1/*
2 *  Copyright 2010
3 *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
4 *
5 * This code provides a IOMMU for Xen PV guests with PCI passthrough.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License v2.0 as published by
9 * the Free Software Foundation
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 * GNU General Public License for more details.
15 *
16 * PV guests under Xen are running in an non-contiguous memory architecture.
17 *
18 * When PCI pass-through is utilized, this necessitates an IOMMU for
19 * translating bus (DMA) to virtual and vice-versa and also providing a
20 * mechanism to have contiguous pages for device drivers operations (say DMA
21 * operations).
22 *
23 * Specifically, under Xen the Linux idea of pages is an illusion. It
24 * assumes that pages start at zero and go up to the available memory. To
25 * help with that, the Linux Xen MMU provides a lookup mechanism to
26 * translate the page frame numbers (PFN) to machine frame numbers (MFN)
27 * and vice-versa. The MFN are the "real" frame numbers. Furthermore
28 * memory is not contiguous. Xen hypervisor stitches memory for guests
29 * from different pools, which means there is no guarantee that PFN==MFN
30 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
31 * allocated in descending order (high to low), meaning the guest might
32 * never get any MFN's under the 4GB mark.
33 *
34 */
35
36#define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
37
38#include <linux/bootmem.h>
39#include <linux/dma-mapping.h>
40#include <linux/export.h>
41#include <xen/swiotlb-xen.h>
42#include <xen/page.h>
43#include <xen/xen-ops.h>
44#include <xen/hvc-console.h>
45
46#include <asm/dma-mapping.h>
47#include <asm/xen/page-coherent.h>
48
49#include <trace/events/swiotlb.h>
50/*
51 * Used to do a quick range check in swiotlb_tbl_unmap_single and
52 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
53 * API.
54 */
55
56#ifndef CONFIG_X86
57static unsigned long dma_alloc_coherent_mask(struct device *dev,
58					    gfp_t gfp)
59{
60	unsigned long dma_mask = 0;
61
62	dma_mask = dev->coherent_dma_mask;
63	if (!dma_mask)
64		dma_mask = (gfp & GFP_DMA) ? DMA_BIT_MASK(24) : DMA_BIT_MASK(32);
65
66	return dma_mask;
67}
68#endif
69
70static char *xen_io_tlb_start, *xen_io_tlb_end;
71static unsigned long xen_io_tlb_nslabs;
72/*
73 * Quick lookup value of the bus address of the IOTLB.
74 */
75
76static u64 start_dma_addr;
77
78/*
79 * Both of these functions should avoid PFN_PHYS because phys_addr_t
80 * can be 32bit when dma_addr_t is 64bit leading to a loss in
81 * information if the shift is done before casting to 64bit.
82 */
83static inline dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
84{
85	unsigned long mfn = pfn_to_mfn(PFN_DOWN(paddr));
86	dma_addr_t dma = (dma_addr_t)mfn << PAGE_SHIFT;
87
88	dma |= paddr & ~PAGE_MASK;
89
90	return dma;
91}
92
93static inline phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
94{
95	unsigned long pfn = mfn_to_pfn(PFN_DOWN(baddr));
96	dma_addr_t dma = (dma_addr_t)pfn << PAGE_SHIFT;
97	phys_addr_t paddr = dma;
98
99	paddr |= baddr & ~PAGE_MASK;
100
101	return paddr;
102}
103
104static inline dma_addr_t xen_virt_to_bus(void *address)
105{
106	return xen_phys_to_bus(virt_to_phys(address));
107}
108
109static int check_pages_physically_contiguous(unsigned long pfn,
110					     unsigned int offset,
111					     size_t length)
112{
113	unsigned long next_mfn;
114	int i;
115	int nr_pages;
116
117	next_mfn = pfn_to_mfn(pfn);
118	nr_pages = (offset + length + PAGE_SIZE-1) >> PAGE_SHIFT;
119
120	for (i = 1; i < nr_pages; i++) {
121		if (pfn_to_mfn(++pfn) != ++next_mfn)
122			return 0;
123	}
124	return 1;
125}
126
127static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
128{
129	unsigned long pfn = PFN_DOWN(p);
130	unsigned int offset = p & ~PAGE_MASK;
131
132	if (offset + size <= PAGE_SIZE)
133		return 0;
134	if (check_pages_physically_contiguous(pfn, offset, size))
135		return 0;
136	return 1;
137}
138
139static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
140{
141	unsigned long mfn = PFN_DOWN(dma_addr);
142	unsigned long pfn = mfn_to_local_pfn(mfn);
143	phys_addr_t paddr;
144
145	/* If the address is outside our domain, it CAN
146	 * have the same virtual address as another address
147	 * in our domain. Therefore _only_ check address within our domain.
148	 */
149	if (pfn_valid(pfn)) {
150		paddr = PFN_PHYS(pfn);
151		return paddr >= virt_to_phys(xen_io_tlb_start) &&
152		       paddr < virt_to_phys(xen_io_tlb_end);
153	}
154	return 0;
155}
156
157static int max_dma_bits = 32;
158
159static int
160xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
161{
162	int i, rc;
163	int dma_bits;
164	dma_addr_t dma_handle;
165	phys_addr_t p = virt_to_phys(buf);
166
167	dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
168
169	i = 0;
170	do {
171		int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
172
173		do {
174			rc = xen_create_contiguous_region(
175				p + (i << IO_TLB_SHIFT),
176				get_order(slabs << IO_TLB_SHIFT),
177				dma_bits, &dma_handle);
178		} while (rc && dma_bits++ < max_dma_bits);
179		if (rc)
180			return rc;
181
182		i += slabs;
183	} while (i < nslabs);
184	return 0;
185}
186static unsigned long xen_set_nslabs(unsigned long nr_tbl)
187{
188	if (!nr_tbl) {
189		xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
190		xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
191	} else
192		xen_io_tlb_nslabs = nr_tbl;
193
194	return xen_io_tlb_nslabs << IO_TLB_SHIFT;
195}
196
197enum xen_swiotlb_err {
198	XEN_SWIOTLB_UNKNOWN = 0,
199	XEN_SWIOTLB_ENOMEM,
200	XEN_SWIOTLB_EFIXUP
201};
202
203static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
204{
205	switch (err) {
206	case XEN_SWIOTLB_ENOMEM:
207		return "Cannot allocate Xen-SWIOTLB buffer\n";
208	case XEN_SWIOTLB_EFIXUP:
209		return "Failed to get contiguous memory for DMA from Xen!\n"\
210		    "You either: don't have the permissions, do not have"\
211		    " enough free memory under 4GB, or the hypervisor memory"\
212		    " is too fragmented!";
213	default:
214		break;
215	}
216	return "";
217}
218int __ref xen_swiotlb_init(int verbose, bool early)
219{
220	unsigned long bytes, order;
221	int rc = -ENOMEM;
222	enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
223	unsigned int repeat = 3;
224
225	xen_io_tlb_nslabs = swiotlb_nr_tbl();
226retry:
227	bytes = xen_set_nslabs(xen_io_tlb_nslabs);
228	order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
229	/*
230	 * Get IO TLB memory from any location.
231	 */
232	if (early)
233		xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes));
234	else {
235#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
236#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
237		while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
238			xen_io_tlb_start = (void *)xen_get_swiotlb_free_pages(order);
239			if (xen_io_tlb_start)
240				break;
241			order--;
242		}
243		if (order != get_order(bytes)) {
244			pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
245				(PAGE_SIZE << order) >> 20);
246			xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
247			bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
248		}
249	}
250	if (!xen_io_tlb_start) {
251		m_ret = XEN_SWIOTLB_ENOMEM;
252		goto error;
253	}
254	xen_io_tlb_end = xen_io_tlb_start + bytes;
255	/*
256	 * And replace that memory with pages under 4GB.
257	 */
258	rc = xen_swiotlb_fixup(xen_io_tlb_start,
259			       bytes,
260			       xen_io_tlb_nslabs);
261	if (rc) {
262		if (early)
263			free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes));
264		else {
265			free_pages((unsigned long)xen_io_tlb_start, order);
266			xen_io_tlb_start = NULL;
267		}
268		m_ret = XEN_SWIOTLB_EFIXUP;
269		goto error;
270	}
271	start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
272	if (early) {
273		if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
274			 verbose))
275			panic("Cannot allocate SWIOTLB buffer");
276		rc = 0;
277	} else
278		rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
279	return rc;
280error:
281	if (repeat--) {
282		xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
283					(xen_io_tlb_nslabs >> 1));
284		pr_info("Lowering to %luMB\n",
285			(xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
286		goto retry;
287	}
288	pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
289	if (early)
290		panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
291	else
292		free_pages((unsigned long)xen_io_tlb_start, order);
293	return rc;
294}
295void *
296xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
297			   dma_addr_t *dma_handle, gfp_t flags,
298			   struct dma_attrs *attrs)
299{
300	void *ret;
301	int order = get_order(size);
302	u64 dma_mask = DMA_BIT_MASK(32);
303	phys_addr_t phys;
304	dma_addr_t dev_addr;
305
306	/*
307	* Ignore region specifiers - the kernel's ideas of
308	* pseudo-phys memory layout has nothing to do with the
309	* machine physical layout.  We can't allocate highmem
310	* because we can't return a pointer to it.
311	*/
312	flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
313
314	if (dma_alloc_from_coherent(hwdev, size, dma_handle, &ret))
315		return ret;
316
317	/* On ARM this function returns an ioremap'ped virtual address for
318	 * which virt_to_phys doesn't return the corresponding physical
319	 * address. In fact on ARM virt_to_phys only works for kernel direct
320	 * mapped RAM memory. Also see comment below.
321	 */
322	ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs);
323
324	if (!ret)
325		return ret;
326
327	if (hwdev && hwdev->coherent_dma_mask)
328		dma_mask = dma_alloc_coherent_mask(hwdev, flags);
329
330	/* At this point dma_handle is the physical address, next we are
331	 * going to set it to the machine address.
332	 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond
333	 * to *dma_handle. */
334	phys = *dma_handle;
335	dev_addr = xen_phys_to_bus(phys);
336	if (((dev_addr + size - 1 <= dma_mask)) &&
337	    !range_straddles_page_boundary(phys, size))
338		*dma_handle = dev_addr;
339	else {
340		if (xen_create_contiguous_region(phys, order,
341						 fls64(dma_mask), dma_handle) != 0) {
342			xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs);
343			return NULL;
344		}
345	}
346	memset(ret, 0, size);
347	return ret;
348}
349EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent);
350
351void
352xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
353			  dma_addr_t dev_addr, struct dma_attrs *attrs)
354{
355	int order = get_order(size);
356	phys_addr_t phys;
357	u64 dma_mask = DMA_BIT_MASK(32);
358
359	if (dma_release_from_coherent(hwdev, order, vaddr))
360		return;
361
362	if (hwdev && hwdev->coherent_dma_mask)
363		dma_mask = hwdev->coherent_dma_mask;
364
365	/* do not use virt_to_phys because on ARM it doesn't return you the
366	 * physical address */
367	phys = xen_bus_to_phys(dev_addr);
368
369	if (((dev_addr + size - 1 > dma_mask)) ||
370	    range_straddles_page_boundary(phys, size))
371		xen_destroy_contiguous_region(phys, order);
372
373	xen_free_coherent_pages(hwdev, size, vaddr, (dma_addr_t)phys, attrs);
374}
375EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent);
376
377
378/*
379 * Map a single buffer of the indicated size for DMA in streaming mode.  The
380 * physical address to use is returned.
381 *
382 * Once the device is given the dma address, the device owns this memory until
383 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
384 */
385dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
386				unsigned long offset, size_t size,
387				enum dma_data_direction dir,
388				struct dma_attrs *attrs)
389{
390	phys_addr_t map, phys = page_to_phys(page) + offset;
391	dma_addr_t dev_addr = xen_phys_to_bus(phys);
392
393	BUG_ON(dir == DMA_NONE);
394	/*
395	 * If the address happens to be in the device's DMA window,
396	 * we can safely return the device addr and not worry about bounce
397	 * buffering it.
398	 */
399	if (dma_capable(dev, dev_addr, size) &&
400	    !range_straddles_page_boundary(phys, size) &&
401		!xen_arch_need_swiotlb(dev, PFN_DOWN(phys), PFN_DOWN(dev_addr)) &&
402		!swiotlb_force) {
403		/* we are not interested in the dma_addr returned by
404		 * xen_dma_map_page, only in the potential cache flushes executed
405		 * by the function. */
406		xen_dma_map_page(dev, page, dev_addr, offset, size, dir, attrs);
407		return dev_addr;
408	}
409
410	/*
411	 * Oh well, have to allocate and map a bounce buffer.
412	 */
413	trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
414
415	map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir);
416	if (map == SWIOTLB_MAP_ERROR)
417		return DMA_ERROR_CODE;
418
419	xen_dma_map_page(dev, pfn_to_page(map >> PAGE_SHIFT),
420					dev_addr, map & ~PAGE_MASK, size, dir, attrs);
421	dev_addr = xen_phys_to_bus(map);
422
423	/*
424	 * Ensure that the address returned is DMA'ble
425	 */
426	if (!dma_capable(dev, dev_addr, size)) {
427		swiotlb_tbl_unmap_single(dev, map, size, dir);
428		dev_addr = 0;
429	}
430	return dev_addr;
431}
432EXPORT_SYMBOL_GPL(xen_swiotlb_map_page);
433
434/*
435 * Unmap a single streaming mode DMA translation.  The dma_addr and size must
436 * match what was provided for in a previous xen_swiotlb_map_page call.  All
437 * other usages are undefined.
438 *
439 * After this call, reads by the cpu to the buffer are guaranteed to see
440 * whatever the device wrote there.
441 */
442static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
443			     size_t size, enum dma_data_direction dir,
444				 struct dma_attrs *attrs)
445{
446	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
447
448	BUG_ON(dir == DMA_NONE);
449
450	xen_dma_unmap_page(hwdev, dev_addr, size, dir, attrs);
451
452	/* NOTE: We use dev_addr here, not paddr! */
453	if (is_xen_swiotlb_buffer(dev_addr)) {
454		swiotlb_tbl_unmap_single(hwdev, paddr, size, dir);
455		return;
456	}
457
458	if (dir != DMA_FROM_DEVICE)
459		return;
460
461	/*
462	 * phys_to_virt doesn't work with hihgmem page but we could
463	 * call dma_mark_clean() with hihgmem page here. However, we
464	 * are fine since dma_mark_clean() is null on POWERPC. We can
465	 * make dma_mark_clean() take a physical address if necessary.
466	 */
467	dma_mark_clean(phys_to_virt(paddr), size);
468}
469
470void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
471			    size_t size, enum dma_data_direction dir,
472			    struct dma_attrs *attrs)
473{
474	xen_unmap_single(hwdev, dev_addr, size, dir, attrs);
475}
476EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page);
477
478/*
479 * Make physical memory consistent for a single streaming mode DMA translation
480 * after a transfer.
481 *
482 * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
483 * using the cpu, yet do not wish to teardown the dma mapping, you must
484 * call this function before doing so.  At the next point you give the dma
485 * address back to the card, you must first perform a
486 * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
487 */
488static void
489xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
490			size_t size, enum dma_data_direction dir,
491			enum dma_sync_target target)
492{
493	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
494
495	BUG_ON(dir == DMA_NONE);
496
497	if (target == SYNC_FOR_CPU)
498		xen_dma_sync_single_for_cpu(hwdev, dev_addr, size, dir);
499
500	/* NOTE: We use dev_addr here, not paddr! */
501	if (is_xen_swiotlb_buffer(dev_addr))
502		swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
503
504	if (target == SYNC_FOR_DEVICE)
505		xen_dma_sync_single_for_device(hwdev, dev_addr, size, dir);
506
507	if (dir != DMA_FROM_DEVICE)
508		return;
509
510	dma_mark_clean(phys_to_virt(paddr), size);
511}
512
513void
514xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
515				size_t size, enum dma_data_direction dir)
516{
517	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
518}
519EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu);
520
521void
522xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
523				   size_t size, enum dma_data_direction dir)
524{
525	xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
526}
527EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device);
528
529/*
530 * Map a set of buffers described by scatterlist in streaming mode for DMA.
531 * This is the scatter-gather version of the above xen_swiotlb_map_page
532 * interface.  Here the scatter gather list elements are each tagged with the
533 * appropriate dma address and length.  They are obtained via
534 * sg_dma_{address,length}(SG).
535 *
536 * NOTE: An implementation may be able to use a smaller number of
537 *       DMA address/length pairs than there are SG table elements.
538 *       (for example via virtual mapping capabilities)
539 *       The routine returns the number of addr/length pairs actually
540 *       used, at most nents.
541 *
542 * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
543 * same here.
544 */
545int
546xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
547			 int nelems, enum dma_data_direction dir,
548			 struct dma_attrs *attrs)
549{
550	struct scatterlist *sg;
551	int i;
552
553	BUG_ON(dir == DMA_NONE);
554
555	for_each_sg(sgl, sg, nelems, i) {
556		phys_addr_t paddr = sg_phys(sg);
557		dma_addr_t dev_addr = xen_phys_to_bus(paddr);
558
559		if (swiotlb_force ||
560		    xen_arch_need_swiotlb(hwdev, PFN_DOWN(paddr), PFN_DOWN(dev_addr)) ||
561		    !dma_capable(hwdev, dev_addr, sg->length) ||
562		    range_straddles_page_boundary(paddr, sg->length)) {
563			phys_addr_t map = swiotlb_tbl_map_single(hwdev,
564								 start_dma_addr,
565								 sg_phys(sg),
566								 sg->length,
567								 dir);
568			if (map == SWIOTLB_MAP_ERROR) {
569				dev_warn(hwdev, "swiotlb buffer is full\n");
570				/* Don't panic here, we expect map_sg users
571				   to do proper error handling. */
572				xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
573							   attrs);
574				sg_dma_len(sgl) = 0;
575				return 0;
576			}
577			xen_dma_map_page(hwdev, pfn_to_page(map >> PAGE_SHIFT),
578						dev_addr,
579						map & ~PAGE_MASK,
580						sg->length,
581						dir,
582						attrs);
583			sg->dma_address = xen_phys_to_bus(map);
584		} else {
585			/* we are not interested in the dma_addr returned by
586			 * xen_dma_map_page, only in the potential cache flushes executed
587			 * by the function. */
588			xen_dma_map_page(hwdev, pfn_to_page(paddr >> PAGE_SHIFT),
589						dev_addr,
590						paddr & ~PAGE_MASK,
591						sg->length,
592						dir,
593						attrs);
594			sg->dma_address = dev_addr;
595		}
596		sg_dma_len(sg) = sg->length;
597	}
598	return nelems;
599}
600EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs);
601
602/*
603 * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
604 * concerning calls here are the same as for swiotlb_unmap_page() above.
605 */
606void
607xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
608			   int nelems, enum dma_data_direction dir,
609			   struct dma_attrs *attrs)
610{
611	struct scatterlist *sg;
612	int i;
613
614	BUG_ON(dir == DMA_NONE);
615
616	for_each_sg(sgl, sg, nelems, i)
617		xen_unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, attrs);
618
619}
620EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs);
621
622/*
623 * Make physical memory consistent for a set of streaming mode DMA translations
624 * after a transfer.
625 *
626 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
627 * and usage.
628 */
629static void
630xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
631		    int nelems, enum dma_data_direction dir,
632		    enum dma_sync_target target)
633{
634	struct scatterlist *sg;
635	int i;
636
637	for_each_sg(sgl, sg, nelems, i)
638		xen_swiotlb_sync_single(hwdev, sg->dma_address,
639					sg_dma_len(sg), dir, target);
640}
641
642void
643xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
644			    int nelems, enum dma_data_direction dir)
645{
646	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
647}
648EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu);
649
650void
651xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
652			       int nelems, enum dma_data_direction dir)
653{
654	xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
655}
656EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device);
657
658int
659xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
660{
661	return !dma_addr;
662}
663EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error);
664
665/*
666 * Return whether the given device DMA address mask can be supported
667 * properly.  For example, if your device can only drive the low 24-bits
668 * during bus mastering, then you would pass 0x00ffffff as the mask to
669 * this function.
670 */
671int
672xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
673{
674	return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
675}
676EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported);
677
678int
679xen_swiotlb_set_dma_mask(struct device *dev, u64 dma_mask)
680{
681	if (!dev->dma_mask || !xen_swiotlb_dma_supported(dev, dma_mask))
682		return -EIO;
683
684	*dev->dma_mask = dma_mask;
685
686	return 0;
687}
688EXPORT_SYMBOL_GPL(xen_swiotlb_set_dma_mask);
689