1/* 2 * Copyright 2010 3 * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> 4 * 5 * This code provides a IOMMU for Xen PV guests with PCI passthrough. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License v2.0 as published by 9 * the Free Software Foundation 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * PV guests under Xen are running in an non-contiguous memory architecture. 17 * 18 * When PCI pass-through is utilized, this necessitates an IOMMU for 19 * translating bus (DMA) to virtual and vice-versa and also providing a 20 * mechanism to have contiguous pages for device drivers operations (say DMA 21 * operations). 22 * 23 * Specifically, under Xen the Linux idea of pages is an illusion. It 24 * assumes that pages start at zero and go up to the available memory. To 25 * help with that, the Linux Xen MMU provides a lookup mechanism to 26 * translate the page frame numbers (PFN) to machine frame numbers (MFN) 27 * and vice-versa. The MFN are the "real" frame numbers. Furthermore 28 * memory is not contiguous. Xen hypervisor stitches memory for guests 29 * from different pools, which means there is no guarantee that PFN==MFN 30 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are 31 * allocated in descending order (high to low), meaning the guest might 32 * never get any MFN's under the 4GB mark. 33 * 34 */ 35 36#define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt 37 38#include <linux/bootmem.h> 39#include <linux/dma-mapping.h> 40#include <linux/export.h> 41#include <xen/swiotlb-xen.h> 42#include <xen/page.h> 43#include <xen/xen-ops.h> 44#include <xen/hvc-console.h> 45 46#include <asm/dma-mapping.h> 47#include <asm/xen/page-coherent.h> 48 49#include <trace/events/swiotlb.h> 50/* 51 * Used to do a quick range check in swiotlb_tbl_unmap_single and 52 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this 53 * API. 54 */ 55 56#ifndef CONFIG_X86 57static unsigned long dma_alloc_coherent_mask(struct device *dev, 58 gfp_t gfp) 59{ 60 unsigned long dma_mask = 0; 61 62 dma_mask = dev->coherent_dma_mask; 63 if (!dma_mask) 64 dma_mask = (gfp & GFP_DMA) ? DMA_BIT_MASK(24) : DMA_BIT_MASK(32); 65 66 return dma_mask; 67} 68#endif 69 70static char *xen_io_tlb_start, *xen_io_tlb_end; 71static unsigned long xen_io_tlb_nslabs; 72/* 73 * Quick lookup value of the bus address of the IOTLB. 74 */ 75 76static u64 start_dma_addr; 77 78/* 79 * Both of these functions should avoid PFN_PHYS because phys_addr_t 80 * can be 32bit when dma_addr_t is 64bit leading to a loss in 81 * information if the shift is done before casting to 64bit. 82 */ 83static inline dma_addr_t xen_phys_to_bus(phys_addr_t paddr) 84{ 85 unsigned long mfn = pfn_to_mfn(PFN_DOWN(paddr)); 86 dma_addr_t dma = (dma_addr_t)mfn << PAGE_SHIFT; 87 88 dma |= paddr & ~PAGE_MASK; 89 90 return dma; 91} 92 93static inline phys_addr_t xen_bus_to_phys(dma_addr_t baddr) 94{ 95 unsigned long pfn = mfn_to_pfn(PFN_DOWN(baddr)); 96 dma_addr_t dma = (dma_addr_t)pfn << PAGE_SHIFT; 97 phys_addr_t paddr = dma; 98 99 paddr |= baddr & ~PAGE_MASK; 100 101 return paddr; 102} 103 104static inline dma_addr_t xen_virt_to_bus(void *address) 105{ 106 return xen_phys_to_bus(virt_to_phys(address)); 107} 108 109static int check_pages_physically_contiguous(unsigned long pfn, 110 unsigned int offset, 111 size_t length) 112{ 113 unsigned long next_mfn; 114 int i; 115 int nr_pages; 116 117 next_mfn = pfn_to_mfn(pfn); 118 nr_pages = (offset + length + PAGE_SIZE-1) >> PAGE_SHIFT; 119 120 for (i = 1; i < nr_pages; i++) { 121 if (pfn_to_mfn(++pfn) != ++next_mfn) 122 return 0; 123 } 124 return 1; 125} 126 127static inline int range_straddles_page_boundary(phys_addr_t p, size_t size) 128{ 129 unsigned long pfn = PFN_DOWN(p); 130 unsigned int offset = p & ~PAGE_MASK; 131 132 if (offset + size <= PAGE_SIZE) 133 return 0; 134 if (check_pages_physically_contiguous(pfn, offset, size)) 135 return 0; 136 return 1; 137} 138 139static int is_xen_swiotlb_buffer(dma_addr_t dma_addr) 140{ 141 unsigned long mfn = PFN_DOWN(dma_addr); 142 unsigned long pfn = mfn_to_local_pfn(mfn); 143 phys_addr_t paddr; 144 145 /* If the address is outside our domain, it CAN 146 * have the same virtual address as another address 147 * in our domain. Therefore _only_ check address within our domain. 148 */ 149 if (pfn_valid(pfn)) { 150 paddr = PFN_PHYS(pfn); 151 return paddr >= virt_to_phys(xen_io_tlb_start) && 152 paddr < virt_to_phys(xen_io_tlb_end); 153 } 154 return 0; 155} 156 157static int max_dma_bits = 32; 158 159static int 160xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs) 161{ 162 int i, rc; 163 int dma_bits; 164 dma_addr_t dma_handle; 165 phys_addr_t p = virt_to_phys(buf); 166 167 dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT; 168 169 i = 0; 170 do { 171 int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE); 172 173 do { 174 rc = xen_create_contiguous_region( 175 p + (i << IO_TLB_SHIFT), 176 get_order(slabs << IO_TLB_SHIFT), 177 dma_bits, &dma_handle); 178 } while (rc && dma_bits++ < max_dma_bits); 179 if (rc) 180 return rc; 181 182 i += slabs; 183 } while (i < nslabs); 184 return 0; 185} 186static unsigned long xen_set_nslabs(unsigned long nr_tbl) 187{ 188 if (!nr_tbl) { 189 xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT); 190 xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE); 191 } else 192 xen_io_tlb_nslabs = nr_tbl; 193 194 return xen_io_tlb_nslabs << IO_TLB_SHIFT; 195} 196 197enum xen_swiotlb_err { 198 XEN_SWIOTLB_UNKNOWN = 0, 199 XEN_SWIOTLB_ENOMEM, 200 XEN_SWIOTLB_EFIXUP 201}; 202 203static const char *xen_swiotlb_error(enum xen_swiotlb_err err) 204{ 205 switch (err) { 206 case XEN_SWIOTLB_ENOMEM: 207 return "Cannot allocate Xen-SWIOTLB buffer\n"; 208 case XEN_SWIOTLB_EFIXUP: 209 return "Failed to get contiguous memory for DMA from Xen!\n"\ 210 "You either: don't have the permissions, do not have"\ 211 " enough free memory under 4GB, or the hypervisor memory"\ 212 " is too fragmented!"; 213 default: 214 break; 215 } 216 return ""; 217} 218int __ref xen_swiotlb_init(int verbose, bool early) 219{ 220 unsigned long bytes, order; 221 int rc = -ENOMEM; 222 enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN; 223 unsigned int repeat = 3; 224 225 xen_io_tlb_nslabs = swiotlb_nr_tbl(); 226retry: 227 bytes = xen_set_nslabs(xen_io_tlb_nslabs); 228 order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT); 229 /* 230 * Get IO TLB memory from any location. 231 */ 232 if (early) 233 xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes)); 234 else { 235#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) 236#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) 237 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { 238 xen_io_tlb_start = (void *)xen_get_swiotlb_free_pages(order); 239 if (xen_io_tlb_start) 240 break; 241 order--; 242 } 243 if (order != get_order(bytes)) { 244 pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n", 245 (PAGE_SIZE << order) >> 20); 246 xen_io_tlb_nslabs = SLABS_PER_PAGE << order; 247 bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT; 248 } 249 } 250 if (!xen_io_tlb_start) { 251 m_ret = XEN_SWIOTLB_ENOMEM; 252 goto error; 253 } 254 xen_io_tlb_end = xen_io_tlb_start + bytes; 255 /* 256 * And replace that memory with pages under 4GB. 257 */ 258 rc = xen_swiotlb_fixup(xen_io_tlb_start, 259 bytes, 260 xen_io_tlb_nslabs); 261 if (rc) { 262 if (early) 263 free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes)); 264 else { 265 free_pages((unsigned long)xen_io_tlb_start, order); 266 xen_io_tlb_start = NULL; 267 } 268 m_ret = XEN_SWIOTLB_EFIXUP; 269 goto error; 270 } 271 start_dma_addr = xen_virt_to_bus(xen_io_tlb_start); 272 if (early) { 273 if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs, 274 verbose)) 275 panic("Cannot allocate SWIOTLB buffer"); 276 rc = 0; 277 } else 278 rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs); 279 return rc; 280error: 281 if (repeat--) { 282 xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */ 283 (xen_io_tlb_nslabs >> 1)); 284 pr_info("Lowering to %luMB\n", 285 (xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20); 286 goto retry; 287 } 288 pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc); 289 if (early) 290 panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc); 291 else 292 free_pages((unsigned long)xen_io_tlb_start, order); 293 return rc; 294} 295void * 296xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size, 297 dma_addr_t *dma_handle, gfp_t flags, 298 struct dma_attrs *attrs) 299{ 300 void *ret; 301 int order = get_order(size); 302 u64 dma_mask = DMA_BIT_MASK(32); 303 phys_addr_t phys; 304 dma_addr_t dev_addr; 305 306 /* 307 * Ignore region specifiers - the kernel's ideas of 308 * pseudo-phys memory layout has nothing to do with the 309 * machine physical layout. We can't allocate highmem 310 * because we can't return a pointer to it. 311 */ 312 flags &= ~(__GFP_DMA | __GFP_HIGHMEM); 313 314 if (dma_alloc_from_coherent(hwdev, size, dma_handle, &ret)) 315 return ret; 316 317 /* On ARM this function returns an ioremap'ped virtual address for 318 * which virt_to_phys doesn't return the corresponding physical 319 * address. In fact on ARM virt_to_phys only works for kernel direct 320 * mapped RAM memory. Also see comment below. 321 */ 322 ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs); 323 324 if (!ret) 325 return ret; 326 327 if (hwdev && hwdev->coherent_dma_mask) 328 dma_mask = dma_alloc_coherent_mask(hwdev, flags); 329 330 /* At this point dma_handle is the physical address, next we are 331 * going to set it to the machine address. 332 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond 333 * to *dma_handle. */ 334 phys = *dma_handle; 335 dev_addr = xen_phys_to_bus(phys); 336 if (((dev_addr + size - 1 <= dma_mask)) && 337 !range_straddles_page_boundary(phys, size)) 338 *dma_handle = dev_addr; 339 else { 340 if (xen_create_contiguous_region(phys, order, 341 fls64(dma_mask), dma_handle) != 0) { 342 xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs); 343 return NULL; 344 } 345 } 346 memset(ret, 0, size); 347 return ret; 348} 349EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent); 350 351void 352xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr, 353 dma_addr_t dev_addr, struct dma_attrs *attrs) 354{ 355 int order = get_order(size); 356 phys_addr_t phys; 357 u64 dma_mask = DMA_BIT_MASK(32); 358 359 if (dma_release_from_coherent(hwdev, order, vaddr)) 360 return; 361 362 if (hwdev && hwdev->coherent_dma_mask) 363 dma_mask = hwdev->coherent_dma_mask; 364 365 /* do not use virt_to_phys because on ARM it doesn't return you the 366 * physical address */ 367 phys = xen_bus_to_phys(dev_addr); 368 369 if (((dev_addr + size - 1 > dma_mask)) || 370 range_straddles_page_boundary(phys, size)) 371 xen_destroy_contiguous_region(phys, order); 372 373 xen_free_coherent_pages(hwdev, size, vaddr, (dma_addr_t)phys, attrs); 374} 375EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent); 376 377 378/* 379 * Map a single buffer of the indicated size for DMA in streaming mode. The 380 * physical address to use is returned. 381 * 382 * Once the device is given the dma address, the device owns this memory until 383 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed. 384 */ 385dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page, 386 unsigned long offset, size_t size, 387 enum dma_data_direction dir, 388 struct dma_attrs *attrs) 389{ 390 phys_addr_t map, phys = page_to_phys(page) + offset; 391 dma_addr_t dev_addr = xen_phys_to_bus(phys); 392 393 BUG_ON(dir == DMA_NONE); 394 /* 395 * If the address happens to be in the device's DMA window, 396 * we can safely return the device addr and not worry about bounce 397 * buffering it. 398 */ 399 if (dma_capable(dev, dev_addr, size) && 400 !range_straddles_page_boundary(phys, size) && 401 !xen_arch_need_swiotlb(dev, PFN_DOWN(phys), PFN_DOWN(dev_addr)) && 402 !swiotlb_force) { 403 /* we are not interested in the dma_addr returned by 404 * xen_dma_map_page, only in the potential cache flushes executed 405 * by the function. */ 406 xen_dma_map_page(dev, page, dev_addr, offset, size, dir, attrs); 407 return dev_addr; 408 } 409 410 /* 411 * Oh well, have to allocate and map a bounce buffer. 412 */ 413 trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force); 414 415 map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir); 416 if (map == SWIOTLB_MAP_ERROR) 417 return DMA_ERROR_CODE; 418 419 xen_dma_map_page(dev, pfn_to_page(map >> PAGE_SHIFT), 420 dev_addr, map & ~PAGE_MASK, size, dir, attrs); 421 dev_addr = xen_phys_to_bus(map); 422 423 /* 424 * Ensure that the address returned is DMA'ble 425 */ 426 if (!dma_capable(dev, dev_addr, size)) { 427 swiotlb_tbl_unmap_single(dev, map, size, dir); 428 dev_addr = 0; 429 } 430 return dev_addr; 431} 432EXPORT_SYMBOL_GPL(xen_swiotlb_map_page); 433 434/* 435 * Unmap a single streaming mode DMA translation. The dma_addr and size must 436 * match what was provided for in a previous xen_swiotlb_map_page call. All 437 * other usages are undefined. 438 * 439 * After this call, reads by the cpu to the buffer are guaranteed to see 440 * whatever the device wrote there. 441 */ 442static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr, 443 size_t size, enum dma_data_direction dir, 444 struct dma_attrs *attrs) 445{ 446 phys_addr_t paddr = xen_bus_to_phys(dev_addr); 447 448 BUG_ON(dir == DMA_NONE); 449 450 xen_dma_unmap_page(hwdev, dev_addr, size, dir, attrs); 451 452 /* NOTE: We use dev_addr here, not paddr! */ 453 if (is_xen_swiotlb_buffer(dev_addr)) { 454 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir); 455 return; 456 } 457 458 if (dir != DMA_FROM_DEVICE) 459 return; 460 461 /* 462 * phys_to_virt doesn't work with hihgmem page but we could 463 * call dma_mark_clean() with hihgmem page here. However, we 464 * are fine since dma_mark_clean() is null on POWERPC. We can 465 * make dma_mark_clean() take a physical address if necessary. 466 */ 467 dma_mark_clean(phys_to_virt(paddr), size); 468} 469 470void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr, 471 size_t size, enum dma_data_direction dir, 472 struct dma_attrs *attrs) 473{ 474 xen_unmap_single(hwdev, dev_addr, size, dir, attrs); 475} 476EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page); 477 478/* 479 * Make physical memory consistent for a single streaming mode DMA translation 480 * after a transfer. 481 * 482 * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer 483 * using the cpu, yet do not wish to teardown the dma mapping, you must 484 * call this function before doing so. At the next point you give the dma 485 * address back to the card, you must first perform a 486 * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer 487 */ 488static void 489xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr, 490 size_t size, enum dma_data_direction dir, 491 enum dma_sync_target target) 492{ 493 phys_addr_t paddr = xen_bus_to_phys(dev_addr); 494 495 BUG_ON(dir == DMA_NONE); 496 497 if (target == SYNC_FOR_CPU) 498 xen_dma_sync_single_for_cpu(hwdev, dev_addr, size, dir); 499 500 /* NOTE: We use dev_addr here, not paddr! */ 501 if (is_xen_swiotlb_buffer(dev_addr)) 502 swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target); 503 504 if (target == SYNC_FOR_DEVICE) 505 xen_dma_sync_single_for_device(hwdev, dev_addr, size, dir); 506 507 if (dir != DMA_FROM_DEVICE) 508 return; 509 510 dma_mark_clean(phys_to_virt(paddr), size); 511} 512 513void 514xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr, 515 size_t size, enum dma_data_direction dir) 516{ 517 xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU); 518} 519EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu); 520 521void 522xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr, 523 size_t size, enum dma_data_direction dir) 524{ 525 xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE); 526} 527EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device); 528 529/* 530 * Map a set of buffers described by scatterlist in streaming mode for DMA. 531 * This is the scatter-gather version of the above xen_swiotlb_map_page 532 * interface. Here the scatter gather list elements are each tagged with the 533 * appropriate dma address and length. They are obtained via 534 * sg_dma_{address,length}(SG). 535 * 536 * NOTE: An implementation may be able to use a smaller number of 537 * DMA address/length pairs than there are SG table elements. 538 * (for example via virtual mapping capabilities) 539 * The routine returns the number of addr/length pairs actually 540 * used, at most nents. 541 * 542 * Device ownership issues as mentioned above for xen_swiotlb_map_page are the 543 * same here. 544 */ 545int 546xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, 547 int nelems, enum dma_data_direction dir, 548 struct dma_attrs *attrs) 549{ 550 struct scatterlist *sg; 551 int i; 552 553 BUG_ON(dir == DMA_NONE); 554 555 for_each_sg(sgl, sg, nelems, i) { 556 phys_addr_t paddr = sg_phys(sg); 557 dma_addr_t dev_addr = xen_phys_to_bus(paddr); 558 559 if (swiotlb_force || 560 xen_arch_need_swiotlb(hwdev, PFN_DOWN(paddr), PFN_DOWN(dev_addr)) || 561 !dma_capable(hwdev, dev_addr, sg->length) || 562 range_straddles_page_boundary(paddr, sg->length)) { 563 phys_addr_t map = swiotlb_tbl_map_single(hwdev, 564 start_dma_addr, 565 sg_phys(sg), 566 sg->length, 567 dir); 568 if (map == SWIOTLB_MAP_ERROR) { 569 dev_warn(hwdev, "swiotlb buffer is full\n"); 570 /* Don't panic here, we expect map_sg users 571 to do proper error handling. */ 572 xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir, 573 attrs); 574 sg_dma_len(sgl) = 0; 575 return 0; 576 } 577 xen_dma_map_page(hwdev, pfn_to_page(map >> PAGE_SHIFT), 578 dev_addr, 579 map & ~PAGE_MASK, 580 sg->length, 581 dir, 582 attrs); 583 sg->dma_address = xen_phys_to_bus(map); 584 } else { 585 /* we are not interested in the dma_addr returned by 586 * xen_dma_map_page, only in the potential cache flushes executed 587 * by the function. */ 588 xen_dma_map_page(hwdev, pfn_to_page(paddr >> PAGE_SHIFT), 589 dev_addr, 590 paddr & ~PAGE_MASK, 591 sg->length, 592 dir, 593 attrs); 594 sg->dma_address = dev_addr; 595 } 596 sg_dma_len(sg) = sg->length; 597 } 598 return nelems; 599} 600EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs); 601 602/* 603 * Unmap a set of streaming mode DMA translations. Again, cpu read rules 604 * concerning calls here are the same as for swiotlb_unmap_page() above. 605 */ 606void 607xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl, 608 int nelems, enum dma_data_direction dir, 609 struct dma_attrs *attrs) 610{ 611 struct scatterlist *sg; 612 int i; 613 614 BUG_ON(dir == DMA_NONE); 615 616 for_each_sg(sgl, sg, nelems, i) 617 xen_unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, attrs); 618 619} 620EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs); 621 622/* 623 * Make physical memory consistent for a set of streaming mode DMA translations 624 * after a transfer. 625 * 626 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules 627 * and usage. 628 */ 629static void 630xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl, 631 int nelems, enum dma_data_direction dir, 632 enum dma_sync_target target) 633{ 634 struct scatterlist *sg; 635 int i; 636 637 for_each_sg(sgl, sg, nelems, i) 638 xen_swiotlb_sync_single(hwdev, sg->dma_address, 639 sg_dma_len(sg), dir, target); 640} 641 642void 643xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg, 644 int nelems, enum dma_data_direction dir) 645{ 646 xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU); 647} 648EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu); 649 650void 651xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg, 652 int nelems, enum dma_data_direction dir) 653{ 654 xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE); 655} 656EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device); 657 658int 659xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr) 660{ 661 return !dma_addr; 662} 663EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error); 664 665/* 666 * Return whether the given device DMA address mask can be supported 667 * properly. For example, if your device can only drive the low 24-bits 668 * during bus mastering, then you would pass 0x00ffffff as the mask to 669 * this function. 670 */ 671int 672xen_swiotlb_dma_supported(struct device *hwdev, u64 mask) 673{ 674 return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask; 675} 676EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported); 677 678int 679xen_swiotlb_set_dma_mask(struct device *dev, u64 dma_mask) 680{ 681 if (!dev->dma_mask || !xen_swiotlb_dma_supported(dev, dma_mask)) 682 return -EIO; 683 684 *dev->dma_mask = dma_mask; 685 686 return 0; 687} 688EXPORT_SYMBOL_GPL(xen_swiotlb_set_dma_mask); 689