1/*
2 *  linux/drivers/video/sa1100fb.c
3 *
4 *  Copyright (C) 1999 Eric A. Thomas
5 *   Based on acornfb.c Copyright (C) Russell King.
6 *
7 * This file is subject to the terms and conditions of the GNU General Public
8 * License.  See the file COPYING in the main directory of this archive for
9 * more details.
10 *
11 *	        StrongARM 1100 LCD Controller Frame Buffer Driver
12 *
13 * Please direct your questions and comments on this driver to the following
14 * email address:
15 *
16 *	linux-arm-kernel@lists.arm.linux.org.uk
17 *
18 * Clean patches should be sent to the ARM Linux Patch System.  Please see the
19 * following web page for more information:
20 *
21 *	http://www.arm.linux.org.uk/developer/patches/info.shtml
22 *
23 * Thank you.
24 *
25 * Known problems:
26 *	- With the Neponset plugged into an Assabet, LCD powerdown
27 *	  doesn't work (LCD stays powered up).  Therefore we shouldn't
28 *	  blank the screen.
29 *	- We don't limit the CPU clock rate nor the mode selection
30 *	  according to the available SDRAM bandwidth.
31 *
32 * Other notes:
33 *	- Linear grayscale palettes and the kernel.
34 *	  Such code does not belong in the kernel.  The kernel frame buffer
35 *	  drivers do not expect a linear colourmap, but a colourmap based on
36 *	  the VT100 standard mapping.
37 *
38 *	  If your _userspace_ requires a linear colourmap, then the setup of
39 *	  such a colourmap belongs _in userspace_, not in the kernel.  Code
40 *	  to set the colourmap correctly from user space has been sent to
41 *	  David Neuer.  It's around 8 lines of C code, plus another 4 to
42 *	  detect if we are using grayscale.
43 *
44 *	- The following must never be specified in a panel definition:
45 *	     LCCR0_LtlEnd, LCCR3_PixClkDiv, LCCR3_VrtSnchL, LCCR3_HorSnchL
46 *
47 *	- The following should be specified:
48 *	     either LCCR0_Color or LCCR0_Mono
49 *	     either LCCR0_Sngl or LCCR0_Dual
50 *	     either LCCR0_Act or LCCR0_Pas
51 *	     either LCCR3_OutEnH or LCCD3_OutEnL
52 *	     either LCCR3_PixRsEdg or LCCR3_PixFlEdg
53 *	     either LCCR3_ACBsDiv or LCCR3_ACBsCntOff
54 *
55 * Code Status:
56 * 1999/04/01:
57 *	- Driver appears to be working for Brutus 320x200x8bpp mode.  Other
58 *	  resolutions are working, but only the 8bpp mode is supported.
59 *	  Changes need to be made to the palette encode and decode routines
60 *	  to support 4 and 16 bpp modes.
61 *	  Driver is not designed to be a module.  The FrameBuffer is statically
62 *	  allocated since dynamic allocation of a 300k buffer cannot be
63 *	  guaranteed.
64 *
65 * 1999/06/17:
66 *	- FrameBuffer memory is now allocated at run-time when the
67 *	  driver is initialized.
68 *
69 * 2000/04/10: Nicolas Pitre <nico@fluxnic.net>
70 *	- Big cleanup for dynamic selection of machine type at run time.
71 *
72 * 2000/07/19: Jamey Hicks <jamey@crl.dec.com>
73 *	- Support for Bitsy aka Compaq iPAQ H3600 added.
74 *
75 * 2000/08/07: Tak-Shing Chan <tchan.rd@idthk.com>
76 *	       Jeff Sutherland <jsutherland@accelent.com>
77 *	- Resolved an issue caused by a change made to the Assabet's PLD
78 *	  earlier this year which broke the framebuffer driver for newer
79 *	  Phase 4 Assabets.  Some other parameters were changed to optimize
80 *	  for the Sharp display.
81 *
82 * 2000/08/09: Kunihiko IMAI <imai@vasara.co.jp>
83 *	- XP860 support added
84 *
85 * 2000/08/19: Mark Huang <mhuang@livetoy.com>
86 *	- Allows standard options to be passed on the kernel command line
87 *	  for most common passive displays.
88 *
89 * 2000/08/29:
90 *	- s/save_flags_cli/local_irq_save/
91 *	- remove unneeded extra save_flags_cli in sa1100fb_enable_lcd_controller
92 *
93 * 2000/10/10: Erik Mouw <J.A.K.Mouw@its.tudelft.nl>
94 *	- Updated LART stuff. Fixed some minor bugs.
95 *
96 * 2000/10/30: Murphy Chen <murphy@mail.dialogue.com.tw>
97 *	- Pangolin support added
98 *
99 * 2000/10/31: Roman Jordan <jor@hoeft-wessel.de>
100 *	- Huw Webpanel support added
101 *
102 * 2000/11/23: Eric Peng <ericpeng@coventive.com>
103 *	- Freebird add
104 *
105 * 2001/02/07: Jamey Hicks <jamey.hicks@compaq.com>
106 *	       Cliff Brake <cbrake@accelent.com>
107 *	- Added PM callback
108 *
109 * 2001/05/26: <rmk@arm.linux.org.uk>
110 *	- Fix 16bpp so that (a) we use the right colours rather than some
111 *	  totally random colour depending on what was in page 0, and (b)
112 *	  we don't de-reference a NULL pointer.
113 *	- remove duplicated implementation of consistent_alloc()
114 *	- convert dma address types to dma_addr_t
115 *	- remove unused 'montype' stuff
116 *	- remove redundant zero inits of init_var after the initial
117 *	  memset.
118 *	- remove allow_modeset (acornfb idea does not belong here)
119 *
120 * 2001/05/28: <rmk@arm.linux.org.uk>
121 *	- massive cleanup - move machine dependent data into structures
122 *	- I've left various #warnings in - if you see one, and know
123 *	  the hardware concerned, please get in contact with me.
124 *
125 * 2001/05/31: <rmk@arm.linux.org.uk>
126 *	- Fix LCCR1 HSW value, fix all machine type specifications to
127 *	  keep values in line.  (Please check your machine type specs)
128 *
129 * 2001/06/10: <rmk@arm.linux.org.uk>
130 *	- Fiddle with the LCD controller from task context only; mainly
131 *	  so that we can run with interrupts on, and sleep.
132 *	- Convert #warnings into #errors.  No pain, no gain. ;)
133 *
134 * 2001/06/14: <rmk@arm.linux.org.uk>
135 *	- Make the palette BPS value for 12bpp come out correctly.
136 *	- Take notice of "greyscale" on any colour depth.
137 *	- Make truecolor visuals use the RGB channel encoding information.
138 *
139 * 2001/07/02: <rmk@arm.linux.org.uk>
140 *	- Fix colourmap problems.
141 *
142 * 2001/07/13: <abraham@2d3d.co.za>
143 *	- Added support for the ICP LCD-Kit01 on LART. This LCD is
144 *	  manufactured by Prime View, model no V16C6448AB
145 *
146 * 2001/07/23: <rmk@arm.linux.org.uk>
147 *	- Hand merge version from handhelds.org CVS tree.  See patch
148 *	  notes for 595/1 for more information.
149 *	- Drop 12bpp (it's 16bpp with different colour register mappings).
150 *	- This hardware can not do direct colour.  Therefore we don't
151 *	  support it.
152 *
153 * 2001/07/27: <rmk@arm.linux.org.uk>
154 *	- Halve YRES on dual scan LCDs.
155 *
156 * 2001/08/22: <rmk@arm.linux.org.uk>
157 *	- Add b/w iPAQ pixclock value.
158 *
159 * 2001/10/12: <rmk@arm.linux.org.uk>
160 *	- Add patch 681/1 and clean up stork definitions.
161 */
162
163#include <linux/module.h>
164#include <linux/kernel.h>
165#include <linux/sched.h>
166#include <linux/errno.h>
167#include <linux/string.h>
168#include <linux/interrupt.h>
169#include <linux/slab.h>
170#include <linux/mm.h>
171#include <linux/fb.h>
172#include <linux/delay.h>
173#include <linux/init.h>
174#include <linux/ioport.h>
175#include <linux/cpufreq.h>
176#include <linux/gpio.h>
177#include <linux/platform_device.h>
178#include <linux/dma-mapping.h>
179#include <linux/mutex.h>
180#include <linux/io.h>
181#include <linux/clk.h>
182
183#include <video/sa1100fb.h>
184
185#include <mach/hardware.h>
186#include <asm/mach-types.h>
187#include <mach/shannon.h>
188
189/*
190 * Complain if VAR is out of range.
191 */
192#define DEBUG_VAR 1
193
194#include "sa1100fb.h"
195
196static const struct sa1100fb_rgb rgb_4 = {
197	.red	= { .offset = 0,  .length = 4, },
198	.green	= { .offset = 0,  .length = 4, },
199	.blue	= { .offset = 0,  .length = 4, },
200	.transp	= { .offset = 0,  .length = 0, },
201};
202
203static const struct sa1100fb_rgb rgb_8 = {
204	.red	= { .offset = 0,  .length = 8, },
205	.green	= { .offset = 0,  .length = 8, },
206	.blue	= { .offset = 0,  .length = 8, },
207	.transp	= { .offset = 0,  .length = 0, },
208};
209
210static const struct sa1100fb_rgb def_rgb_16 = {
211	.red	= { .offset = 11, .length = 5, },
212	.green	= { .offset = 5,  .length = 6, },
213	.blue	= { .offset = 0,  .length = 5, },
214	.transp	= { .offset = 0,  .length = 0, },
215};
216
217
218
219static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *);
220static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state);
221
222static inline void sa1100fb_schedule_work(struct sa1100fb_info *fbi, u_int state)
223{
224	unsigned long flags;
225
226	local_irq_save(flags);
227	/*
228	 * We need to handle two requests being made at the same time.
229	 * There are two important cases:
230	 *  1. When we are changing VT (C_REENABLE) while unblanking (C_ENABLE)
231	 *     We must perform the unblanking, which will do our REENABLE for us.
232	 *  2. When we are blanking, but immediately unblank before we have
233	 *     blanked.  We do the "REENABLE" thing here as well, just to be sure.
234	 */
235	if (fbi->task_state == C_ENABLE && state == C_REENABLE)
236		state = (u_int) -1;
237	if (fbi->task_state == C_DISABLE && state == C_ENABLE)
238		state = C_REENABLE;
239
240	if (state != (u_int)-1) {
241		fbi->task_state = state;
242		schedule_work(&fbi->task);
243	}
244	local_irq_restore(flags);
245}
246
247static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
248{
249	chan &= 0xffff;
250	chan >>= 16 - bf->length;
251	return chan << bf->offset;
252}
253
254/*
255 * Convert bits-per-pixel to a hardware palette PBS value.
256 */
257static inline u_int palette_pbs(struct fb_var_screeninfo *var)
258{
259	int ret = 0;
260	switch (var->bits_per_pixel) {
261	case 4:  ret = 0 << 12;	break;
262	case 8:  ret = 1 << 12; break;
263	case 16: ret = 2 << 12; break;
264	}
265	return ret;
266}
267
268static int
269sa1100fb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
270		       u_int trans, struct fb_info *info)
271{
272	struct sa1100fb_info *fbi =
273		container_of(info, struct sa1100fb_info, fb);
274	u_int val, ret = 1;
275
276	if (regno < fbi->palette_size) {
277		val = ((red >> 4) & 0xf00);
278		val |= ((green >> 8) & 0x0f0);
279		val |= ((blue >> 12) & 0x00f);
280
281		if (regno == 0)
282			val |= palette_pbs(&fbi->fb.var);
283
284		fbi->palette_cpu[regno] = val;
285		ret = 0;
286	}
287	return ret;
288}
289
290static int
291sa1100fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
292		   u_int trans, struct fb_info *info)
293{
294	struct sa1100fb_info *fbi =
295		container_of(info, struct sa1100fb_info, fb);
296	unsigned int val;
297	int ret = 1;
298
299	/*
300	 * If inverse mode was selected, invert all the colours
301	 * rather than the register number.  The register number
302	 * is what you poke into the framebuffer to produce the
303	 * colour you requested.
304	 */
305	if (fbi->inf->cmap_inverse) {
306		red   = 0xffff - red;
307		green = 0xffff - green;
308		blue  = 0xffff - blue;
309	}
310
311	/*
312	 * If greyscale is true, then we convert the RGB value
313	 * to greyscale no mater what visual we are using.
314	 */
315	if (fbi->fb.var.grayscale)
316		red = green = blue = (19595 * red + 38470 * green +
317					7471 * blue) >> 16;
318
319	switch (fbi->fb.fix.visual) {
320	case FB_VISUAL_TRUECOLOR:
321		/*
322		 * 12 or 16-bit True Colour.  We encode the RGB value
323		 * according to the RGB bitfield information.
324		 */
325		if (regno < 16) {
326			u32 *pal = fbi->fb.pseudo_palette;
327
328			val  = chan_to_field(red, &fbi->fb.var.red);
329			val |= chan_to_field(green, &fbi->fb.var.green);
330			val |= chan_to_field(blue, &fbi->fb.var.blue);
331
332			pal[regno] = val;
333			ret = 0;
334		}
335		break;
336
337	case FB_VISUAL_STATIC_PSEUDOCOLOR:
338	case FB_VISUAL_PSEUDOCOLOR:
339		ret = sa1100fb_setpalettereg(regno, red, green, blue, trans, info);
340		break;
341	}
342
343	return ret;
344}
345
346#ifdef CONFIG_CPU_FREQ
347/*
348 *  sa1100fb_display_dma_period()
349 *    Calculate the minimum period (in picoseconds) between two DMA
350 *    requests for the LCD controller.  If we hit this, it means we're
351 *    doing nothing but LCD DMA.
352 */
353static inline unsigned int sa1100fb_display_dma_period(struct fb_var_screeninfo *var)
354{
355	/*
356	 * Period = pixclock * bits_per_byte * bytes_per_transfer
357	 *		/ memory_bits_per_pixel;
358	 */
359	return var->pixclock * 8 * 16 / var->bits_per_pixel;
360}
361#endif
362
363/*
364 *  sa1100fb_check_var():
365 *    Round up in the following order: bits_per_pixel, xres,
366 *    yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
367 *    bitfields, horizontal timing, vertical timing.
368 */
369static int
370sa1100fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
371{
372	struct sa1100fb_info *fbi =
373		container_of(info, struct sa1100fb_info, fb);
374	int rgbidx;
375
376	if (var->xres < MIN_XRES)
377		var->xres = MIN_XRES;
378	if (var->yres < MIN_YRES)
379		var->yres = MIN_YRES;
380	if (var->xres > fbi->inf->xres)
381		var->xres = fbi->inf->xres;
382	if (var->yres > fbi->inf->yres)
383		var->yres = fbi->inf->yres;
384	var->xres_virtual = max(var->xres_virtual, var->xres);
385	var->yres_virtual = max(var->yres_virtual, var->yres);
386
387	dev_dbg(fbi->dev, "var->bits_per_pixel=%d\n", var->bits_per_pixel);
388	switch (var->bits_per_pixel) {
389	case 4:
390		rgbidx = RGB_4;
391		break;
392	case 8:
393		rgbidx = RGB_8;
394		break;
395	case 16:
396		rgbidx = RGB_16;
397		break;
398	default:
399		return -EINVAL;
400	}
401
402	/*
403	 * Copy the RGB parameters for this display
404	 * from the machine specific parameters.
405	 */
406	var->red    = fbi->rgb[rgbidx]->red;
407	var->green  = fbi->rgb[rgbidx]->green;
408	var->blue   = fbi->rgb[rgbidx]->blue;
409	var->transp = fbi->rgb[rgbidx]->transp;
410
411	dev_dbg(fbi->dev, "RGBT length = %d:%d:%d:%d\n",
412		var->red.length, var->green.length, var->blue.length,
413		var->transp.length);
414
415	dev_dbg(fbi->dev, "RGBT offset = %d:%d:%d:%d\n",
416		var->red.offset, var->green.offset, var->blue.offset,
417		var->transp.offset);
418
419#ifdef CONFIG_CPU_FREQ
420	dev_dbg(fbi->dev, "dma period = %d ps, clock = %ld kHz\n",
421		sa1100fb_display_dma_period(var),
422		clk_get_rate(fbi->clk) / 1000);
423#endif
424
425	return 0;
426}
427
428static void sa1100fb_set_visual(struct sa1100fb_info *fbi, u32 visual)
429{
430	if (fbi->inf->set_visual)
431		fbi->inf->set_visual(visual);
432}
433
434/*
435 * sa1100fb_set_par():
436 *	Set the user defined part of the display for the specified console
437 */
438static int sa1100fb_set_par(struct fb_info *info)
439{
440	struct sa1100fb_info *fbi =
441		container_of(info, struct sa1100fb_info, fb);
442	struct fb_var_screeninfo *var = &info->var;
443	unsigned long palette_mem_size;
444
445	dev_dbg(fbi->dev, "set_par\n");
446
447	if (var->bits_per_pixel == 16)
448		fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
449	else if (!fbi->inf->cmap_static)
450		fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
451	else {
452		/*
453		 * Some people have weird ideas about wanting static
454		 * pseudocolor maps.  I suspect their user space
455		 * applications are broken.
456		 */
457		fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
458	}
459
460	fbi->fb.fix.line_length = var->xres_virtual *
461				  var->bits_per_pixel / 8;
462	fbi->palette_size = var->bits_per_pixel == 8 ? 256 : 16;
463
464	palette_mem_size = fbi->palette_size * sizeof(u16);
465
466	dev_dbg(fbi->dev, "palette_mem_size = 0x%08lx\n", palette_mem_size);
467
468	fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size);
469	fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size;
470
471	/*
472	 * Set (any) board control register to handle new color depth
473	 */
474	sa1100fb_set_visual(fbi, fbi->fb.fix.visual);
475	sa1100fb_activate_var(var, fbi);
476
477	return 0;
478}
479
480#if 0
481static int
482sa1100fb_set_cmap(struct fb_cmap *cmap, int kspc, int con,
483		  struct fb_info *info)
484{
485	struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
486
487	/*
488	 * Make sure the user isn't doing something stupid.
489	 */
490	if (!kspc && (fbi->fb.var.bits_per_pixel == 16 || fbi->inf->cmap_static))
491		return -EINVAL;
492
493	return gen_set_cmap(cmap, kspc, con, info);
494}
495#endif
496
497/*
498 * Formal definition of the VESA spec:
499 *  On
500 *  	This refers to the state of the display when it is in full operation
501 *  Stand-By
502 *  	This defines an optional operating state of minimal power reduction with
503 *  	the shortest recovery time
504 *  Suspend
505 *  	This refers to a level of power management in which substantial power
506 *  	reduction is achieved by the display.  The display can have a longer
507 *  	recovery time from this state than from the Stand-by state
508 *  Off
509 *  	This indicates that the display is consuming the lowest level of power
510 *  	and is non-operational. Recovery from this state may optionally require
511 *  	the user to manually power on the monitor
512 *
513 *  Now, the fbdev driver adds an additional state, (blank), where they
514 *  turn off the video (maybe by colormap tricks), but don't mess with the
515 *  video itself: think of it semantically between on and Stand-By.
516 *
517 *  So here's what we should do in our fbdev blank routine:
518 *
519 *  	VESA_NO_BLANKING (mode 0)	Video on,  front/back light on
520 *  	VESA_VSYNC_SUSPEND (mode 1)  	Video on,  front/back light off
521 *  	VESA_HSYNC_SUSPEND (mode 2)  	Video on,  front/back light off
522 *  	VESA_POWERDOWN (mode 3)		Video off, front/back light off
523 *
524 *  This will match the matrox implementation.
525 */
526/*
527 * sa1100fb_blank():
528 *	Blank the display by setting all palette values to zero.  Note, the
529 * 	12 and 16 bpp modes don't really use the palette, so this will not
530 *      blank the display in all modes.
531 */
532static int sa1100fb_blank(int blank, struct fb_info *info)
533{
534	struct sa1100fb_info *fbi =
535		container_of(info, struct sa1100fb_info, fb);
536	int i;
537
538	dev_dbg(fbi->dev, "sa1100fb_blank: blank=%d\n", blank);
539
540	switch (blank) {
541	case FB_BLANK_POWERDOWN:
542	case FB_BLANK_VSYNC_SUSPEND:
543	case FB_BLANK_HSYNC_SUSPEND:
544	case FB_BLANK_NORMAL:
545		if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
546		    fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
547			for (i = 0; i < fbi->palette_size; i++)
548				sa1100fb_setpalettereg(i, 0, 0, 0, 0, info);
549		sa1100fb_schedule_work(fbi, C_DISABLE);
550		break;
551
552	case FB_BLANK_UNBLANK:
553		if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
554		    fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
555			fb_set_cmap(&fbi->fb.cmap, info);
556		sa1100fb_schedule_work(fbi, C_ENABLE);
557	}
558	return 0;
559}
560
561static int sa1100fb_mmap(struct fb_info *info,
562			 struct vm_area_struct *vma)
563{
564	struct sa1100fb_info *fbi =
565		container_of(info, struct sa1100fb_info, fb);
566	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
567
568	if (off < info->fix.smem_len) {
569		vma->vm_pgoff += 1; /* skip over the palette */
570		return dma_mmap_writecombine(fbi->dev, vma, fbi->map_cpu,
571					     fbi->map_dma, fbi->map_size);
572	}
573
574	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
575
576	return vm_iomap_memory(vma, info->fix.mmio_start, info->fix.mmio_len);
577}
578
579static struct fb_ops sa1100fb_ops = {
580	.owner		= THIS_MODULE,
581	.fb_check_var	= sa1100fb_check_var,
582	.fb_set_par	= sa1100fb_set_par,
583//	.fb_set_cmap	= sa1100fb_set_cmap,
584	.fb_setcolreg	= sa1100fb_setcolreg,
585	.fb_fillrect	= cfb_fillrect,
586	.fb_copyarea	= cfb_copyarea,
587	.fb_imageblit	= cfb_imageblit,
588	.fb_blank	= sa1100fb_blank,
589	.fb_mmap	= sa1100fb_mmap,
590};
591
592/*
593 * Calculate the PCD value from the clock rate (in picoseconds).
594 * We take account of the PPCR clock setting.
595 */
596static inline unsigned int get_pcd(struct sa1100fb_info *fbi,
597		unsigned int pixclock)
598{
599	unsigned int pcd = clk_get_rate(fbi->clk) / 100 / 1000;
600
601	pcd *= pixclock;
602	pcd /= 10000000;
603
604	return pcd + 1;	/* make up for integer math truncations */
605}
606
607/*
608 * sa1100fb_activate_var():
609 *	Configures LCD Controller based on entries in var parameter.  Settings are
610 *	only written to the controller if changes were made.
611 */
612static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *fbi)
613{
614	struct sa1100fb_lcd_reg new_regs;
615	u_int half_screen_size, yres, pcd;
616	u_long flags;
617
618	dev_dbg(fbi->dev, "Configuring SA1100 LCD\n");
619
620	dev_dbg(fbi->dev, "var: xres=%d hslen=%d lm=%d rm=%d\n",
621		var->xres, var->hsync_len,
622		var->left_margin, var->right_margin);
623	dev_dbg(fbi->dev, "var: yres=%d vslen=%d um=%d bm=%d\n",
624		var->yres, var->vsync_len,
625		var->upper_margin, var->lower_margin);
626
627#if DEBUG_VAR
628	if (var->xres < 16        || var->xres > 1024)
629		dev_err(fbi->dev, "%s: invalid xres %d\n",
630			fbi->fb.fix.id, var->xres);
631	if (var->hsync_len < 1    || var->hsync_len > 64)
632		dev_err(fbi->dev, "%s: invalid hsync_len %d\n",
633			fbi->fb.fix.id, var->hsync_len);
634	if (var->left_margin < 1  || var->left_margin > 255)
635		dev_err(fbi->dev, "%s: invalid left_margin %d\n",
636			fbi->fb.fix.id, var->left_margin);
637	if (var->right_margin < 1 || var->right_margin > 255)
638		dev_err(fbi->dev, "%s: invalid right_margin %d\n",
639			fbi->fb.fix.id, var->right_margin);
640	if (var->yres < 1         || var->yres > 1024)
641		dev_err(fbi->dev, "%s: invalid yres %d\n",
642			fbi->fb.fix.id, var->yres);
643	if (var->vsync_len < 1    || var->vsync_len > 64)
644		dev_err(fbi->dev, "%s: invalid vsync_len %d\n",
645			fbi->fb.fix.id, var->vsync_len);
646	if (var->upper_margin < 0 || var->upper_margin > 255)
647		dev_err(fbi->dev, "%s: invalid upper_margin %d\n",
648			fbi->fb.fix.id, var->upper_margin);
649	if (var->lower_margin < 0 || var->lower_margin > 255)
650		dev_err(fbi->dev, "%s: invalid lower_margin %d\n",
651			fbi->fb.fix.id, var->lower_margin);
652#endif
653
654	new_regs.lccr0 = fbi->inf->lccr0 |
655		LCCR0_LEN | LCCR0_LDM | LCCR0_BAM |
656		LCCR0_ERM | LCCR0_LtlEnd | LCCR0_DMADel(0);
657
658	new_regs.lccr1 =
659		LCCR1_DisWdth(var->xres) +
660		LCCR1_HorSnchWdth(var->hsync_len) +
661		LCCR1_BegLnDel(var->left_margin) +
662		LCCR1_EndLnDel(var->right_margin);
663
664	/*
665	 * If we have a dual scan LCD, then we need to halve
666	 * the YRES parameter.
667	 */
668	yres = var->yres;
669	if (fbi->inf->lccr0 & LCCR0_Dual)
670		yres /= 2;
671
672	new_regs.lccr2 =
673		LCCR2_DisHght(yres) +
674		LCCR2_VrtSnchWdth(var->vsync_len) +
675		LCCR2_BegFrmDel(var->upper_margin) +
676		LCCR2_EndFrmDel(var->lower_margin);
677
678	pcd = get_pcd(fbi, var->pixclock);
679	new_regs.lccr3 = LCCR3_PixClkDiv(pcd) | fbi->inf->lccr3 |
680		(var->sync & FB_SYNC_HOR_HIGH_ACT ? LCCR3_HorSnchH : LCCR3_HorSnchL) |
681		(var->sync & FB_SYNC_VERT_HIGH_ACT ? LCCR3_VrtSnchH : LCCR3_VrtSnchL);
682
683	dev_dbg(fbi->dev, "nlccr0 = 0x%08lx\n", new_regs.lccr0);
684	dev_dbg(fbi->dev, "nlccr1 = 0x%08lx\n", new_regs.lccr1);
685	dev_dbg(fbi->dev, "nlccr2 = 0x%08lx\n", new_regs.lccr2);
686	dev_dbg(fbi->dev, "nlccr3 = 0x%08lx\n", new_regs.lccr3);
687
688	half_screen_size = var->bits_per_pixel;
689	half_screen_size = half_screen_size * var->xres * var->yres / 16;
690
691	/* Update shadow copy atomically */
692	local_irq_save(flags);
693	fbi->dbar1 = fbi->palette_dma;
694	fbi->dbar2 = fbi->screen_dma + half_screen_size;
695
696	fbi->reg_lccr0 = new_regs.lccr0;
697	fbi->reg_lccr1 = new_regs.lccr1;
698	fbi->reg_lccr2 = new_regs.lccr2;
699	fbi->reg_lccr3 = new_regs.lccr3;
700	local_irq_restore(flags);
701
702	/*
703	 * Only update the registers if the controller is enabled
704	 * and something has changed.
705	 */
706	if (readl_relaxed(fbi->base + LCCR0) != fbi->reg_lccr0 ||
707	    readl_relaxed(fbi->base + LCCR1) != fbi->reg_lccr1 ||
708	    readl_relaxed(fbi->base + LCCR2) != fbi->reg_lccr2 ||
709	    readl_relaxed(fbi->base + LCCR3) != fbi->reg_lccr3 ||
710	    readl_relaxed(fbi->base + DBAR1) != fbi->dbar1 ||
711	    readl_relaxed(fbi->base + DBAR2) != fbi->dbar2)
712		sa1100fb_schedule_work(fbi, C_REENABLE);
713
714	return 0;
715}
716
717/*
718 * NOTE!  The following functions are purely helpers for set_ctrlr_state.
719 * Do not call them directly; set_ctrlr_state does the correct serialisation
720 * to ensure that things happen in the right way 100% of time time.
721 *	-- rmk
722 */
723static inline void __sa1100fb_backlight_power(struct sa1100fb_info *fbi, int on)
724{
725	dev_dbg(fbi->dev, "backlight o%s\n", on ? "n" : "ff");
726
727	if (fbi->inf->backlight_power)
728		fbi->inf->backlight_power(on);
729}
730
731static inline void __sa1100fb_lcd_power(struct sa1100fb_info *fbi, int on)
732{
733	dev_dbg(fbi->dev, "LCD power o%s\n", on ? "n" : "ff");
734
735	if (fbi->inf->lcd_power)
736		fbi->inf->lcd_power(on);
737}
738
739static void sa1100fb_setup_gpio(struct sa1100fb_info *fbi)
740{
741	u_int mask = 0;
742
743	/*
744	 * Enable GPIO<9:2> for LCD use if:
745	 *  1. Active display, or
746	 *  2. Color Dual Passive display
747	 *
748	 * see table 11.8 on page 11-27 in the SA1100 manual
749	 *   -- Erik.
750	 *
751	 * SA1110 spec update nr. 25 says we can and should
752	 * clear LDD15 to 12 for 4 or 8bpp modes with active
753	 * panels.
754	 */
755	if ((fbi->reg_lccr0 & LCCR0_CMS) == LCCR0_Color &&
756	    (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) != 0) {
757		mask = GPIO_LDD11 | GPIO_LDD10 | GPIO_LDD9  | GPIO_LDD8;
758
759		if (fbi->fb.var.bits_per_pixel > 8 ||
760		    (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) == LCCR0_Dual)
761			mask |= GPIO_LDD15 | GPIO_LDD14 | GPIO_LDD13 | GPIO_LDD12;
762
763	}
764
765	if (mask) {
766		unsigned long flags;
767
768		/*
769		 * SA-1100 requires the GPIO direction register set
770		 * appropriately for the alternate function.  Hence
771		 * we set it here via bitmask rather than excessive
772		 * fiddling via the GPIO subsystem - and even then
773		 * we'll still have to deal with GAFR.
774		 */
775		local_irq_save(flags);
776		GPDR |= mask;
777		GAFR |= mask;
778		local_irq_restore(flags);
779	}
780}
781
782static void sa1100fb_enable_controller(struct sa1100fb_info *fbi)
783{
784	dev_dbg(fbi->dev, "Enabling LCD controller\n");
785
786	/*
787	 * Make sure the mode bits are present in the first palette entry
788	 */
789	fbi->palette_cpu[0] &= 0xcfff;
790	fbi->palette_cpu[0] |= palette_pbs(&fbi->fb.var);
791
792	/* enable LCD controller clock */
793	clk_prepare_enable(fbi->clk);
794
795	/* Sequence from 11.7.10 */
796	writel_relaxed(fbi->reg_lccr3, fbi->base + LCCR3);
797	writel_relaxed(fbi->reg_lccr2, fbi->base + LCCR2);
798	writel_relaxed(fbi->reg_lccr1, fbi->base + LCCR1);
799	writel_relaxed(fbi->reg_lccr0 & ~LCCR0_LEN, fbi->base + LCCR0);
800	writel_relaxed(fbi->dbar1, fbi->base + DBAR1);
801	writel_relaxed(fbi->dbar2, fbi->base + DBAR2);
802	writel_relaxed(fbi->reg_lccr0 | LCCR0_LEN, fbi->base + LCCR0);
803
804	if (machine_is_shannon())
805		gpio_set_value(SHANNON_GPIO_DISP_EN, 1);
806
807	dev_dbg(fbi->dev, "DBAR1: 0x%08x\n", readl_relaxed(fbi->base + DBAR1));
808	dev_dbg(fbi->dev, "DBAR2: 0x%08x\n", readl_relaxed(fbi->base + DBAR2));
809	dev_dbg(fbi->dev, "LCCR0: 0x%08x\n", readl_relaxed(fbi->base + LCCR0));
810	dev_dbg(fbi->dev, "LCCR1: 0x%08x\n", readl_relaxed(fbi->base + LCCR1));
811	dev_dbg(fbi->dev, "LCCR2: 0x%08x\n", readl_relaxed(fbi->base + LCCR2));
812	dev_dbg(fbi->dev, "LCCR3: 0x%08x\n", readl_relaxed(fbi->base + LCCR3));
813}
814
815static void sa1100fb_disable_controller(struct sa1100fb_info *fbi)
816{
817	DECLARE_WAITQUEUE(wait, current);
818	u32 lccr0;
819
820	dev_dbg(fbi->dev, "Disabling LCD controller\n");
821
822	if (machine_is_shannon())
823		gpio_set_value(SHANNON_GPIO_DISP_EN, 0);
824
825	set_current_state(TASK_UNINTERRUPTIBLE);
826	add_wait_queue(&fbi->ctrlr_wait, &wait);
827
828	/* Clear LCD Status Register */
829	writel_relaxed(~0, fbi->base + LCSR);
830
831	lccr0 = readl_relaxed(fbi->base + LCCR0);
832	lccr0 &= ~LCCR0_LDM;	/* Enable LCD Disable Done Interrupt */
833	writel_relaxed(lccr0, fbi->base + LCCR0);
834	lccr0 &= ~LCCR0_LEN;	/* Disable LCD Controller */
835	writel_relaxed(lccr0, fbi->base + LCCR0);
836
837	schedule_timeout(20 * HZ / 1000);
838	remove_wait_queue(&fbi->ctrlr_wait, &wait);
839
840	/* disable LCD controller clock */
841	clk_disable_unprepare(fbi->clk);
842}
843
844/*
845 *  sa1100fb_handle_irq: Handle 'LCD DONE' interrupts.
846 */
847static irqreturn_t sa1100fb_handle_irq(int irq, void *dev_id)
848{
849	struct sa1100fb_info *fbi = dev_id;
850	unsigned int lcsr = readl_relaxed(fbi->base + LCSR);
851
852	if (lcsr & LCSR_LDD) {
853		u32 lccr0 = readl_relaxed(fbi->base + LCCR0) | LCCR0_LDM;
854		writel_relaxed(lccr0, fbi->base + LCCR0);
855		wake_up(&fbi->ctrlr_wait);
856	}
857
858	writel_relaxed(lcsr, fbi->base + LCSR);
859	return IRQ_HANDLED;
860}
861
862/*
863 * This function must be called from task context only, since it will
864 * sleep when disabling the LCD controller, or if we get two contending
865 * processes trying to alter state.
866 */
867static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state)
868{
869	u_int old_state;
870
871	mutex_lock(&fbi->ctrlr_lock);
872
873	old_state = fbi->state;
874
875	/*
876	 * Hack around fbcon initialisation.
877	 */
878	if (old_state == C_STARTUP && state == C_REENABLE)
879		state = C_ENABLE;
880
881	switch (state) {
882	case C_DISABLE_CLKCHANGE:
883		/*
884		 * Disable controller for clock change.  If the
885		 * controller is already disabled, then do nothing.
886		 */
887		if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
888			fbi->state = state;
889			sa1100fb_disable_controller(fbi);
890		}
891		break;
892
893	case C_DISABLE_PM:
894	case C_DISABLE:
895		/*
896		 * Disable controller
897		 */
898		if (old_state != C_DISABLE) {
899			fbi->state = state;
900
901			__sa1100fb_backlight_power(fbi, 0);
902			if (old_state != C_DISABLE_CLKCHANGE)
903				sa1100fb_disable_controller(fbi);
904			__sa1100fb_lcd_power(fbi, 0);
905		}
906		break;
907
908	case C_ENABLE_CLKCHANGE:
909		/*
910		 * Enable the controller after clock change.  Only
911		 * do this if we were disabled for the clock change.
912		 */
913		if (old_state == C_DISABLE_CLKCHANGE) {
914			fbi->state = C_ENABLE;
915			sa1100fb_enable_controller(fbi);
916		}
917		break;
918
919	case C_REENABLE:
920		/*
921		 * Re-enable the controller only if it was already
922		 * enabled.  This is so we reprogram the control
923		 * registers.
924		 */
925		if (old_state == C_ENABLE) {
926			sa1100fb_disable_controller(fbi);
927			sa1100fb_setup_gpio(fbi);
928			sa1100fb_enable_controller(fbi);
929		}
930		break;
931
932	case C_ENABLE_PM:
933		/*
934		 * Re-enable the controller after PM.  This is not
935		 * perfect - think about the case where we were doing
936		 * a clock change, and we suspended half-way through.
937		 */
938		if (old_state != C_DISABLE_PM)
939			break;
940		/* fall through */
941
942	case C_ENABLE:
943		/*
944		 * Power up the LCD screen, enable controller, and
945		 * turn on the backlight.
946		 */
947		if (old_state != C_ENABLE) {
948			fbi->state = C_ENABLE;
949			sa1100fb_setup_gpio(fbi);
950			__sa1100fb_lcd_power(fbi, 1);
951			sa1100fb_enable_controller(fbi);
952			__sa1100fb_backlight_power(fbi, 1);
953		}
954		break;
955	}
956	mutex_unlock(&fbi->ctrlr_lock);
957}
958
959/*
960 * Our LCD controller task (which is called when we blank or unblank)
961 * via keventd.
962 */
963static void sa1100fb_task(struct work_struct *w)
964{
965	struct sa1100fb_info *fbi = container_of(w, struct sa1100fb_info, task);
966	u_int state = xchg(&fbi->task_state, -1);
967
968	set_ctrlr_state(fbi, state);
969}
970
971#ifdef CONFIG_CPU_FREQ
972/*
973 * Calculate the minimum DMA period over all displays that we own.
974 * This, together with the SDRAM bandwidth defines the slowest CPU
975 * frequency that can be selected.
976 */
977static unsigned int sa1100fb_min_dma_period(struct sa1100fb_info *fbi)
978{
979#if 0
980	unsigned int min_period = (unsigned int)-1;
981	int i;
982
983	for (i = 0; i < MAX_NR_CONSOLES; i++) {
984		struct display *disp = &fb_display[i];
985		unsigned int period;
986
987		/*
988		 * Do we own this display?
989		 */
990		if (disp->fb_info != &fbi->fb)
991			continue;
992
993		/*
994		 * Ok, calculate its DMA period
995		 */
996		period = sa1100fb_display_dma_period(&disp->var);
997		if (period < min_period)
998			min_period = period;
999	}
1000
1001	return min_period;
1002#else
1003	/*
1004	 * FIXME: we need to verify _all_ consoles.
1005	 */
1006	return sa1100fb_display_dma_period(&fbi->fb.var);
1007#endif
1008}
1009
1010/*
1011 * CPU clock speed change handler.  We need to adjust the LCD timing
1012 * parameters when the CPU clock is adjusted by the power management
1013 * subsystem.
1014 */
1015static int
1016sa1100fb_freq_transition(struct notifier_block *nb, unsigned long val,
1017			 void *data)
1018{
1019	struct sa1100fb_info *fbi = TO_INF(nb, freq_transition);
1020	u_int pcd;
1021
1022	switch (val) {
1023	case CPUFREQ_PRECHANGE:
1024		set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
1025		break;
1026
1027	case CPUFREQ_POSTCHANGE:
1028		pcd = get_pcd(fbi, fbi->fb.var.pixclock);
1029		fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) | LCCR3_PixClkDiv(pcd);
1030		set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
1031		break;
1032	}
1033	return 0;
1034}
1035
1036static int
1037sa1100fb_freq_policy(struct notifier_block *nb, unsigned long val,
1038		     void *data)
1039{
1040	struct sa1100fb_info *fbi = TO_INF(nb, freq_policy);
1041	struct cpufreq_policy *policy = data;
1042
1043	switch (val) {
1044	case CPUFREQ_ADJUST:
1045	case CPUFREQ_INCOMPATIBLE:
1046		dev_dbg(fbi->dev, "min dma period: %d ps, "
1047			"new clock %d kHz\n", sa1100fb_min_dma_period(fbi),
1048			policy->max);
1049		/* todo: fill in min/max values */
1050		break;
1051	case CPUFREQ_NOTIFY:
1052		do {} while(0);
1053		/* todo: panic if min/max values aren't fulfilled
1054		 * [can't really happen unless there's a bug in the
1055		 * CPU policy verififcation process *
1056		 */
1057		break;
1058	}
1059	return 0;
1060}
1061#endif
1062
1063#ifdef CONFIG_PM
1064/*
1065 * Power management hooks.  Note that we won't be called from IRQ context,
1066 * unlike the blank functions above, so we may sleep.
1067 */
1068static int sa1100fb_suspend(struct platform_device *dev, pm_message_t state)
1069{
1070	struct sa1100fb_info *fbi = platform_get_drvdata(dev);
1071
1072	set_ctrlr_state(fbi, C_DISABLE_PM);
1073	return 0;
1074}
1075
1076static int sa1100fb_resume(struct platform_device *dev)
1077{
1078	struct sa1100fb_info *fbi = platform_get_drvdata(dev);
1079
1080	set_ctrlr_state(fbi, C_ENABLE_PM);
1081	return 0;
1082}
1083#else
1084#define sa1100fb_suspend	NULL
1085#define sa1100fb_resume		NULL
1086#endif
1087
1088/*
1089 * sa1100fb_map_video_memory():
1090 *      Allocates the DRAM memory for the frame buffer.  This buffer is
1091 *	remapped into a non-cached, non-buffered, memory region to
1092 *      allow palette and pixel writes to occur without flushing the
1093 *      cache.  Once this area is remapped, all virtual memory
1094 *      access to the video memory should occur at the new region.
1095 */
1096static int sa1100fb_map_video_memory(struct sa1100fb_info *fbi)
1097{
1098	/*
1099	 * We reserve one page for the palette, plus the size
1100	 * of the framebuffer.
1101	 */
1102	fbi->map_size = PAGE_ALIGN(fbi->fb.fix.smem_len + PAGE_SIZE);
1103	fbi->map_cpu = dma_alloc_writecombine(fbi->dev, fbi->map_size,
1104					      &fbi->map_dma, GFP_KERNEL);
1105
1106	if (fbi->map_cpu) {
1107		fbi->fb.screen_base = fbi->map_cpu + PAGE_SIZE;
1108		fbi->screen_dma = fbi->map_dma + PAGE_SIZE;
1109		/*
1110		 * FIXME: this is actually the wrong thing to place in
1111		 * smem_start.  But fbdev suffers from the problem that
1112		 * it needs an API which doesn't exist (in this case,
1113		 * dma_writecombine_mmap)
1114		 */
1115		fbi->fb.fix.smem_start = fbi->screen_dma;
1116	}
1117
1118	return fbi->map_cpu ? 0 : -ENOMEM;
1119}
1120
1121/* Fake monspecs to fill in fbinfo structure */
1122static struct fb_monspecs monspecs = {
1123	.hfmin	= 30000,
1124	.hfmax	= 70000,
1125	.vfmin	= 50,
1126	.vfmax	= 65,
1127};
1128
1129
1130static struct sa1100fb_info *sa1100fb_init_fbinfo(struct device *dev)
1131{
1132	struct sa1100fb_mach_info *inf = dev_get_platdata(dev);
1133	struct sa1100fb_info *fbi;
1134	unsigned i;
1135
1136	fbi = kmalloc(sizeof(struct sa1100fb_info) + sizeof(u32) * 16,
1137		      GFP_KERNEL);
1138	if (!fbi)
1139		return NULL;
1140
1141	memset(fbi, 0, sizeof(struct sa1100fb_info));
1142	fbi->dev = dev;
1143
1144	strcpy(fbi->fb.fix.id, SA1100_NAME);
1145
1146	fbi->fb.fix.type	= FB_TYPE_PACKED_PIXELS;
1147	fbi->fb.fix.type_aux	= 0;
1148	fbi->fb.fix.xpanstep	= 0;
1149	fbi->fb.fix.ypanstep	= 0;
1150	fbi->fb.fix.ywrapstep	= 0;
1151	fbi->fb.fix.accel	= FB_ACCEL_NONE;
1152
1153	fbi->fb.var.nonstd	= 0;
1154	fbi->fb.var.activate	= FB_ACTIVATE_NOW;
1155	fbi->fb.var.height	= -1;
1156	fbi->fb.var.width	= -1;
1157	fbi->fb.var.accel_flags	= 0;
1158	fbi->fb.var.vmode	= FB_VMODE_NONINTERLACED;
1159
1160	fbi->fb.fbops		= &sa1100fb_ops;
1161	fbi->fb.flags		= FBINFO_DEFAULT;
1162	fbi->fb.monspecs	= monspecs;
1163	fbi->fb.pseudo_palette	= (fbi + 1);
1164
1165	fbi->rgb[RGB_4]		= &rgb_4;
1166	fbi->rgb[RGB_8]		= &rgb_8;
1167	fbi->rgb[RGB_16]	= &def_rgb_16;
1168
1169	/*
1170	 * People just don't seem to get this.  We don't support
1171	 * anything but correct entries now, so panic if someone
1172	 * does something stupid.
1173	 */
1174	if (inf->lccr3 & (LCCR3_VrtSnchL|LCCR3_HorSnchL|0xff) ||
1175	    inf->pixclock == 0)
1176		panic("sa1100fb error: invalid LCCR3 fields set or zero "
1177			"pixclock.");
1178
1179	fbi->fb.var.xres		= inf->xres;
1180	fbi->fb.var.xres_virtual	= inf->xres;
1181	fbi->fb.var.yres		= inf->yres;
1182	fbi->fb.var.yres_virtual	= inf->yres;
1183	fbi->fb.var.bits_per_pixel	= inf->bpp;
1184	fbi->fb.var.pixclock		= inf->pixclock;
1185	fbi->fb.var.hsync_len		= inf->hsync_len;
1186	fbi->fb.var.left_margin		= inf->left_margin;
1187	fbi->fb.var.right_margin	= inf->right_margin;
1188	fbi->fb.var.vsync_len		= inf->vsync_len;
1189	fbi->fb.var.upper_margin	= inf->upper_margin;
1190	fbi->fb.var.lower_margin	= inf->lower_margin;
1191	fbi->fb.var.sync		= inf->sync;
1192	fbi->fb.var.grayscale		= inf->cmap_greyscale;
1193	fbi->state			= C_STARTUP;
1194	fbi->task_state			= (u_char)-1;
1195	fbi->fb.fix.smem_len		= inf->xres * inf->yres *
1196					  inf->bpp / 8;
1197	fbi->inf			= inf;
1198
1199	/* Copy the RGB bitfield overrides */
1200	for (i = 0; i < NR_RGB; i++)
1201		if (inf->rgb[i])
1202			fbi->rgb[i] = inf->rgb[i];
1203
1204	init_waitqueue_head(&fbi->ctrlr_wait);
1205	INIT_WORK(&fbi->task, sa1100fb_task);
1206	mutex_init(&fbi->ctrlr_lock);
1207
1208	return fbi;
1209}
1210
1211static int sa1100fb_probe(struct platform_device *pdev)
1212{
1213	struct sa1100fb_info *fbi;
1214	struct resource *res;
1215	int ret, irq;
1216
1217	if (!dev_get_platdata(&pdev->dev)) {
1218		dev_err(&pdev->dev, "no platform LCD data\n");
1219		return -EINVAL;
1220	}
1221
1222	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1223	irq = platform_get_irq(pdev, 0);
1224	if (irq < 0 || !res)
1225		return -EINVAL;
1226
1227	if (!request_mem_region(res->start, resource_size(res), "LCD"))
1228		return -EBUSY;
1229
1230	fbi = sa1100fb_init_fbinfo(&pdev->dev);
1231	ret = -ENOMEM;
1232	if (!fbi)
1233		goto failed;
1234
1235	fbi->clk = clk_get(&pdev->dev, NULL);
1236	if (IS_ERR(fbi->clk)) {
1237		ret = PTR_ERR(fbi->clk);
1238		fbi->clk = NULL;
1239		goto failed;
1240	}
1241
1242	fbi->base = ioremap(res->start, resource_size(res));
1243	if (!fbi->base)
1244		goto failed;
1245
1246	/* Initialize video memory */
1247	ret = sa1100fb_map_video_memory(fbi);
1248	if (ret)
1249		goto failed;
1250
1251	ret = request_irq(irq, sa1100fb_handle_irq, 0, "LCD", fbi);
1252	if (ret) {
1253		dev_err(&pdev->dev, "request_irq failed: %d\n", ret);
1254		goto failed;
1255	}
1256
1257	if (machine_is_shannon()) {
1258		ret = gpio_request_one(SHANNON_GPIO_DISP_EN,
1259			GPIOF_OUT_INIT_LOW, "display enable");
1260		if (ret)
1261			goto err_free_irq;
1262	}
1263
1264	/*
1265	 * This makes sure that our colour bitfield
1266	 * descriptors are correctly initialised.
1267	 */
1268	sa1100fb_check_var(&fbi->fb.var, &fbi->fb);
1269
1270	platform_set_drvdata(pdev, fbi);
1271
1272	ret = register_framebuffer(&fbi->fb);
1273	if (ret < 0)
1274		goto err_reg_fb;
1275
1276#ifdef CONFIG_CPU_FREQ
1277	fbi->freq_transition.notifier_call = sa1100fb_freq_transition;
1278	fbi->freq_policy.notifier_call = sa1100fb_freq_policy;
1279	cpufreq_register_notifier(&fbi->freq_transition, CPUFREQ_TRANSITION_NOTIFIER);
1280	cpufreq_register_notifier(&fbi->freq_policy, CPUFREQ_POLICY_NOTIFIER);
1281#endif
1282
1283	/* This driver cannot be unloaded at the moment */
1284	return 0;
1285
1286 err_reg_fb:
1287	if (machine_is_shannon())
1288		gpio_free(SHANNON_GPIO_DISP_EN);
1289 err_free_irq:
1290	free_irq(irq, fbi);
1291 failed:
1292	if (fbi)
1293		iounmap(fbi->base);
1294	if (fbi->clk)
1295		clk_put(fbi->clk);
1296	kfree(fbi);
1297	release_mem_region(res->start, resource_size(res));
1298	return ret;
1299}
1300
1301static struct platform_driver sa1100fb_driver = {
1302	.probe		= sa1100fb_probe,
1303	.suspend	= sa1100fb_suspend,
1304	.resume		= sa1100fb_resume,
1305	.driver		= {
1306		.name	= "sa11x0-fb",
1307	},
1308};
1309
1310int __init sa1100fb_init(void)
1311{
1312	if (fb_get_options("sa1100fb", NULL))
1313		return -ENODEV;
1314
1315	return platform_driver_register(&sa1100fb_driver);
1316}
1317
1318int __init sa1100fb_setup(char *options)
1319{
1320#if 0
1321	char *this_opt;
1322
1323	if (!options || !*options)
1324		return 0;
1325
1326	while ((this_opt = strsep(&options, ",")) != NULL) {
1327
1328		if (!strncmp(this_opt, "bpp:", 4))
1329			current_par.max_bpp =
1330			    simple_strtoul(this_opt + 4, NULL, 0);
1331
1332		if (!strncmp(this_opt, "lccr0:", 6))
1333			lcd_shadow.lccr0 =
1334			    simple_strtoul(this_opt + 6, NULL, 0);
1335		if (!strncmp(this_opt, "lccr1:", 6)) {
1336			lcd_shadow.lccr1 =
1337			    simple_strtoul(this_opt + 6, NULL, 0);
1338			current_par.max_xres =
1339			    (lcd_shadow.lccr1 & 0x3ff) + 16;
1340		}
1341		if (!strncmp(this_opt, "lccr2:", 6)) {
1342			lcd_shadow.lccr2 =
1343			    simple_strtoul(this_opt + 6, NULL, 0);
1344			current_par.max_yres =
1345			    (lcd_shadow.
1346			     lccr0 & LCCR0_SDS) ? ((lcd_shadow.
1347						    lccr2 & 0x3ff) +
1348						   1) *
1349			    2 : ((lcd_shadow.lccr2 & 0x3ff) + 1);
1350		}
1351		if (!strncmp(this_opt, "lccr3:", 6))
1352			lcd_shadow.lccr3 =
1353			    simple_strtoul(this_opt + 6, NULL, 0);
1354	}
1355#endif
1356	return 0;
1357}
1358
1359module_init(sa1100fb_init);
1360MODULE_DESCRIPTION("StrongARM-1100/1110 framebuffer driver");
1361MODULE_LICENSE("GPL");
1362