1/*
2 * Copyright (C) 2005-2006 by Texas Instruments
3 *
4 * This file implements a DMA  interface using TI's CPPI DMA.
5 * For now it's DaVinci-only, but CPPI isn't specific to DaVinci or USB.
6 * The TUSB6020, using VLYNQ, has CPPI that looks much like DaVinci.
7 */
8
9#include <linux/module.h>
10#include <linux/platform_device.h>
11#include <linux/slab.h>
12#include <linux/usb.h>
13
14#include "musb_core.h"
15#include "musb_debug.h"
16#include "cppi_dma.h"
17
18
19/* CPPI DMA status 7-mar-2006:
20 *
21 * - See musb_{host,gadget}.c for more info
22 *
23 * - Correct RX DMA generally forces the engine into irq-per-packet mode,
24 *   which can easily saturate the CPU under non-mass-storage loads.
25 *
26 * NOTES 24-aug-2006 (2.6.18-rc4):
27 *
28 * - peripheral RXDMA wedged in a test with packets of length 512/512/1.
29 *   evidently after the 1 byte packet was received and acked, the queue
30 *   of BDs got garbaged so it wouldn't empty the fifo.  (rxcsr 0x2003,
31 *   and RX DMA0: 4 left, 80000000 8feff880, 8feff860 8feff860; 8f321401
32 *   004001ff 00000001 .. 8feff860)  Host was just getting NAKed on tx
33 *   of its next (512 byte) packet.  IRQ issues?
34 *
35 * REVISIT:  the "transfer DMA" glue between CPPI and USB fifos will
36 * evidently also directly update the RX and TX CSRs ... so audit all
37 * host and peripheral side DMA code to avoid CSR access after DMA has
38 * been started.
39 */
40
41/* REVISIT now we can avoid preallocating these descriptors; or
42 * more simply, switch to a global freelist not per-channel ones.
43 * Note: at full speed, 64 descriptors == 4K bulk data.
44 */
45#define NUM_TXCHAN_BD       64
46#define NUM_RXCHAN_BD       64
47
48static inline void cpu_drain_writebuffer(void)
49{
50	wmb();
51#ifdef	CONFIG_CPU_ARM926T
52	/* REVISIT this "should not be needed",
53	 * but lack of it sure seemed to hurt ...
54	 */
55	asm("mcr p15, 0, r0, c7, c10, 4 @ drain write buffer\n");
56#endif
57}
58
59static inline struct cppi_descriptor *cppi_bd_alloc(struct cppi_channel *c)
60{
61	struct cppi_descriptor	*bd = c->freelist;
62
63	if (bd)
64		c->freelist = bd->next;
65	return bd;
66}
67
68static inline void
69cppi_bd_free(struct cppi_channel *c, struct cppi_descriptor *bd)
70{
71	if (!bd)
72		return;
73	bd->next = c->freelist;
74	c->freelist = bd;
75}
76
77/*
78 *  Start DMA controller
79 *
80 *  Initialize the DMA controller as necessary.
81 */
82
83/* zero out entire rx state RAM entry for the channel */
84static void cppi_reset_rx(struct cppi_rx_stateram __iomem *rx)
85{
86	musb_writel(&rx->rx_skipbytes, 0, 0);
87	musb_writel(&rx->rx_head, 0, 0);
88	musb_writel(&rx->rx_sop, 0, 0);
89	musb_writel(&rx->rx_current, 0, 0);
90	musb_writel(&rx->rx_buf_current, 0, 0);
91	musb_writel(&rx->rx_len_len, 0, 0);
92	musb_writel(&rx->rx_cnt_cnt, 0, 0);
93}
94
95/* zero out entire tx state RAM entry for the channel */
96static void cppi_reset_tx(struct cppi_tx_stateram __iomem *tx, u32 ptr)
97{
98	musb_writel(&tx->tx_head, 0, 0);
99	musb_writel(&tx->tx_buf, 0, 0);
100	musb_writel(&tx->tx_current, 0, 0);
101	musb_writel(&tx->tx_buf_current, 0, 0);
102	musb_writel(&tx->tx_info, 0, 0);
103	musb_writel(&tx->tx_rem_len, 0, 0);
104	/* musb_writel(&tx->tx_dummy, 0, 0); */
105	musb_writel(&tx->tx_complete, 0, ptr);
106}
107
108static void cppi_pool_init(struct cppi *cppi, struct cppi_channel *c)
109{
110	int	j;
111
112	/* initialize channel fields */
113	c->head = NULL;
114	c->tail = NULL;
115	c->last_processed = NULL;
116	c->channel.status = MUSB_DMA_STATUS_UNKNOWN;
117	c->controller = cppi;
118	c->is_rndis = 0;
119	c->freelist = NULL;
120
121	/* build the BD Free list for the channel */
122	for (j = 0; j < NUM_TXCHAN_BD + 1; j++) {
123		struct cppi_descriptor	*bd;
124		dma_addr_t		dma;
125
126		bd = dma_pool_alloc(cppi->pool, GFP_KERNEL, &dma);
127		bd->dma = dma;
128		cppi_bd_free(c, bd);
129	}
130}
131
132static int cppi_channel_abort(struct dma_channel *);
133
134static void cppi_pool_free(struct cppi_channel *c)
135{
136	struct cppi		*cppi = c->controller;
137	struct cppi_descriptor	*bd;
138
139	(void) cppi_channel_abort(&c->channel);
140	c->channel.status = MUSB_DMA_STATUS_UNKNOWN;
141	c->controller = NULL;
142
143	/* free all its bds */
144	bd = c->last_processed;
145	do {
146		if (bd)
147			dma_pool_free(cppi->pool, bd, bd->dma);
148		bd = cppi_bd_alloc(c);
149	} while (bd);
150	c->last_processed = NULL;
151}
152
153static void cppi_controller_start(struct cppi *controller)
154{
155	void __iomem	*tibase;
156	int		i;
157
158	/* do whatever is necessary to start controller */
159	for (i = 0; i < ARRAY_SIZE(controller->tx); i++) {
160		controller->tx[i].transmit = true;
161		controller->tx[i].index = i;
162	}
163	for (i = 0; i < ARRAY_SIZE(controller->rx); i++) {
164		controller->rx[i].transmit = false;
165		controller->rx[i].index = i;
166	}
167
168	/* setup BD list on a per channel basis */
169	for (i = 0; i < ARRAY_SIZE(controller->tx); i++)
170		cppi_pool_init(controller, controller->tx + i);
171	for (i = 0; i < ARRAY_SIZE(controller->rx); i++)
172		cppi_pool_init(controller, controller->rx + i);
173
174	tibase =  controller->tibase;
175	INIT_LIST_HEAD(&controller->tx_complete);
176
177	/* initialise tx/rx channel head pointers to zero */
178	for (i = 0; i < ARRAY_SIZE(controller->tx); i++) {
179		struct cppi_channel	*tx_ch = controller->tx + i;
180		struct cppi_tx_stateram __iomem *tx;
181
182		INIT_LIST_HEAD(&tx_ch->tx_complete);
183
184		tx = tibase + DAVINCI_TXCPPI_STATERAM_OFFSET(i);
185		tx_ch->state_ram = tx;
186		cppi_reset_tx(tx, 0);
187	}
188	for (i = 0; i < ARRAY_SIZE(controller->rx); i++) {
189		struct cppi_channel	*rx_ch = controller->rx + i;
190		struct cppi_rx_stateram __iomem *rx;
191
192		INIT_LIST_HEAD(&rx_ch->tx_complete);
193
194		rx = tibase + DAVINCI_RXCPPI_STATERAM_OFFSET(i);
195		rx_ch->state_ram = rx;
196		cppi_reset_rx(rx);
197	}
198
199	/* enable individual cppi channels */
200	musb_writel(tibase, DAVINCI_TXCPPI_INTENAB_REG,
201			DAVINCI_DMA_ALL_CHANNELS_ENABLE);
202	musb_writel(tibase, DAVINCI_RXCPPI_INTENAB_REG,
203			DAVINCI_DMA_ALL_CHANNELS_ENABLE);
204
205	/* enable tx/rx CPPI control */
206	musb_writel(tibase, DAVINCI_TXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_ENABLE);
207	musb_writel(tibase, DAVINCI_RXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_ENABLE);
208
209	/* disable RNDIS mode, also host rx RNDIS autorequest */
210	musb_writel(tibase, DAVINCI_RNDIS_REG, 0);
211	musb_writel(tibase, DAVINCI_AUTOREQ_REG, 0);
212}
213
214/*
215 *  Stop DMA controller
216 *
217 *  De-Init the DMA controller as necessary.
218 */
219
220static void cppi_controller_stop(struct cppi *controller)
221{
222	void __iomem		*tibase;
223	int			i;
224	struct musb		*musb;
225
226	musb = controller->musb;
227
228	tibase = controller->tibase;
229	/* DISABLE INDIVIDUAL CHANNEL Interrupts */
230	musb_writel(tibase, DAVINCI_TXCPPI_INTCLR_REG,
231			DAVINCI_DMA_ALL_CHANNELS_ENABLE);
232	musb_writel(tibase, DAVINCI_RXCPPI_INTCLR_REG,
233			DAVINCI_DMA_ALL_CHANNELS_ENABLE);
234
235	dev_dbg(musb->controller, "Tearing down RX and TX Channels\n");
236	for (i = 0; i < ARRAY_SIZE(controller->tx); i++) {
237		/* FIXME restructure of txdma to use bds like rxdma */
238		controller->tx[i].last_processed = NULL;
239		cppi_pool_free(controller->tx + i);
240	}
241	for (i = 0; i < ARRAY_SIZE(controller->rx); i++)
242		cppi_pool_free(controller->rx + i);
243
244	/* in Tx Case proper teardown is supported. We resort to disabling
245	 * Tx/Rx CPPI after cleanup of Tx channels. Before TX teardown is
246	 * complete TX CPPI cannot be disabled.
247	 */
248	/*disable tx/rx cppi */
249	musb_writel(tibase, DAVINCI_TXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_DISABLE);
250	musb_writel(tibase, DAVINCI_RXCPPI_CTRL_REG, DAVINCI_DMA_CTRL_DISABLE);
251}
252
253/* While dma channel is allocated, we only want the core irqs active
254 * for fault reports, otherwise we'd get irqs that we don't care about.
255 * Except for TX irqs, where dma done != fifo empty and reusable ...
256 *
257 * NOTE: docs don't say either way, but irq masking **enables** irqs.
258 *
259 * REVISIT same issue applies to pure PIO usage too, and non-cppi dma...
260 */
261static inline void core_rxirq_disable(void __iomem *tibase, unsigned epnum)
262{
263	musb_writel(tibase, DAVINCI_USB_INT_MASK_CLR_REG, 1 << (epnum + 8));
264}
265
266static inline void core_rxirq_enable(void __iomem *tibase, unsigned epnum)
267{
268	musb_writel(tibase, DAVINCI_USB_INT_MASK_SET_REG, 1 << (epnum + 8));
269}
270
271
272/*
273 * Allocate a CPPI Channel for DMA.  With CPPI, channels are bound to
274 * each transfer direction of a non-control endpoint, so allocating
275 * (and deallocating) is mostly a way to notice bad housekeeping on
276 * the software side.  We assume the irqs are always active.
277 */
278static struct dma_channel *
279cppi_channel_allocate(struct dma_controller *c,
280		struct musb_hw_ep *ep, u8 transmit)
281{
282	struct cppi		*controller;
283	u8			index;
284	struct cppi_channel	*cppi_ch;
285	void __iomem		*tibase;
286	struct musb		*musb;
287
288	controller = container_of(c, struct cppi, controller);
289	tibase = controller->tibase;
290	musb = controller->musb;
291
292	/* ep0 doesn't use DMA; remember cppi indices are 0..N-1 */
293	index = ep->epnum - 1;
294
295	/* return the corresponding CPPI Channel Handle, and
296	 * probably disable the non-CPPI irq until we need it.
297	 */
298	if (transmit) {
299		if (index >= ARRAY_SIZE(controller->tx)) {
300			dev_dbg(musb->controller, "no %cX%d CPPI channel\n", 'T', index);
301			return NULL;
302		}
303		cppi_ch = controller->tx + index;
304	} else {
305		if (index >= ARRAY_SIZE(controller->rx)) {
306			dev_dbg(musb->controller, "no %cX%d CPPI channel\n", 'R', index);
307			return NULL;
308		}
309		cppi_ch = controller->rx + index;
310		core_rxirq_disable(tibase, ep->epnum);
311	}
312
313	/* REVISIT make this an error later once the same driver code works
314	 * with the other DMA engine too
315	 */
316	if (cppi_ch->hw_ep)
317		dev_dbg(musb->controller, "re-allocating DMA%d %cX channel %p\n",
318				index, transmit ? 'T' : 'R', cppi_ch);
319	cppi_ch->hw_ep = ep;
320	cppi_ch->channel.status = MUSB_DMA_STATUS_FREE;
321	cppi_ch->channel.max_len = 0x7fffffff;
322
323	dev_dbg(musb->controller, "Allocate CPPI%d %cX\n", index, transmit ? 'T' : 'R');
324	return &cppi_ch->channel;
325}
326
327/* Release a CPPI Channel.  */
328static void cppi_channel_release(struct dma_channel *channel)
329{
330	struct cppi_channel	*c;
331	void __iomem		*tibase;
332
333	/* REVISIT:  for paranoia, check state and abort if needed... */
334
335	c = container_of(channel, struct cppi_channel, channel);
336	tibase = c->controller->tibase;
337	if (!c->hw_ep)
338		dev_dbg(c->controller->musb->controller,
339			"releasing idle DMA channel %p\n", c);
340	else if (!c->transmit)
341		core_rxirq_enable(tibase, c->index + 1);
342
343	/* for now, leave its cppi IRQ enabled (we won't trigger it) */
344	c->hw_ep = NULL;
345	channel->status = MUSB_DMA_STATUS_UNKNOWN;
346}
347
348/* Context: controller irqlocked */
349static void
350cppi_dump_rx(int level, struct cppi_channel *c, const char *tag)
351{
352	void __iomem			*base = c->controller->mregs;
353	struct cppi_rx_stateram __iomem	*rx = c->state_ram;
354
355	musb_ep_select(base, c->index + 1);
356
357	dev_dbg(c->controller->musb->controller,
358		"RX DMA%d%s: %d left, csr %04x, "
359		"%08x H%08x S%08x C%08x, "
360		"B%08x L%08x %08x .. %08x"
361		"\n",
362		c->index, tag,
363		musb_readl(c->controller->tibase,
364			DAVINCI_RXCPPI_BUFCNT0_REG + 4 * c->index),
365		musb_readw(c->hw_ep->regs, MUSB_RXCSR),
366
367		musb_readl(&rx->rx_skipbytes, 0),
368		musb_readl(&rx->rx_head, 0),
369		musb_readl(&rx->rx_sop, 0),
370		musb_readl(&rx->rx_current, 0),
371
372		musb_readl(&rx->rx_buf_current, 0),
373		musb_readl(&rx->rx_len_len, 0),
374		musb_readl(&rx->rx_cnt_cnt, 0),
375		musb_readl(&rx->rx_complete, 0)
376		);
377}
378
379/* Context: controller irqlocked */
380static void
381cppi_dump_tx(int level, struct cppi_channel *c, const char *tag)
382{
383	void __iomem			*base = c->controller->mregs;
384	struct cppi_tx_stateram __iomem	*tx = c->state_ram;
385
386	musb_ep_select(base, c->index + 1);
387
388	dev_dbg(c->controller->musb->controller,
389		"TX DMA%d%s: csr %04x, "
390		"H%08x S%08x C%08x %08x, "
391		"F%08x L%08x .. %08x"
392		"\n",
393		c->index, tag,
394		musb_readw(c->hw_ep->regs, MUSB_TXCSR),
395
396		musb_readl(&tx->tx_head, 0),
397		musb_readl(&tx->tx_buf, 0),
398		musb_readl(&tx->tx_current, 0),
399		musb_readl(&tx->tx_buf_current, 0),
400
401		musb_readl(&tx->tx_info, 0),
402		musb_readl(&tx->tx_rem_len, 0),
403		/* dummy/unused word 6 */
404		musb_readl(&tx->tx_complete, 0)
405		);
406}
407
408/* Context: controller irqlocked */
409static inline void
410cppi_rndis_update(struct cppi_channel *c, int is_rx,
411		void __iomem *tibase, int is_rndis)
412{
413	/* we may need to change the rndis flag for this cppi channel */
414	if (c->is_rndis != is_rndis) {
415		u32	value = musb_readl(tibase, DAVINCI_RNDIS_REG);
416		u32	temp = 1 << (c->index);
417
418		if (is_rx)
419			temp <<= 16;
420		if (is_rndis)
421			value |= temp;
422		else
423			value &= ~temp;
424		musb_writel(tibase, DAVINCI_RNDIS_REG, value);
425		c->is_rndis = is_rndis;
426	}
427}
428
429static void cppi_dump_rxbd(const char *tag, struct cppi_descriptor *bd)
430{
431	pr_debug("RXBD/%s %08x: "
432			"nxt %08x buf %08x off.blen %08x opt.plen %08x\n",
433			tag, bd->dma,
434			bd->hw_next, bd->hw_bufp, bd->hw_off_len,
435			bd->hw_options);
436}
437
438static void cppi_dump_rxq(int level, const char *tag, struct cppi_channel *rx)
439{
440	struct cppi_descriptor	*bd;
441
442	cppi_dump_rx(level, rx, tag);
443	if (rx->last_processed)
444		cppi_dump_rxbd("last", rx->last_processed);
445	for (bd = rx->head; bd; bd = bd->next)
446		cppi_dump_rxbd("active", bd);
447}
448
449
450/* NOTE:  DaVinci autoreq is ignored except for host side "RNDIS" mode RX;
451 * so we won't ever use it (see "CPPI RX Woes" below).
452 */
453static inline int cppi_autoreq_update(struct cppi_channel *rx,
454		void __iomem *tibase, int onepacket, unsigned n_bds)
455{
456	u32	val;
457
458#ifdef	RNDIS_RX_IS_USABLE
459	u32	tmp;
460	/* assert(is_host_active(musb)) */
461
462	/* start from "AutoReq never" */
463	tmp = musb_readl(tibase, DAVINCI_AUTOREQ_REG);
464	val = tmp & ~((0x3) << (rx->index * 2));
465
466	/* HCD arranged reqpkt for packet #1.  we arrange int
467	 * for all but the last one, maybe in two segments.
468	 */
469	if (!onepacket) {
470#if 0
471		/* use two segments, autoreq "all" then the last "never" */
472		val |= ((0x3) << (rx->index * 2));
473		n_bds--;
474#else
475		/* one segment, autoreq "all-but-last" */
476		val |= ((0x1) << (rx->index * 2));
477#endif
478	}
479
480	if (val != tmp) {
481		int n = 100;
482
483		/* make sure that autoreq is updated before continuing */
484		musb_writel(tibase, DAVINCI_AUTOREQ_REG, val);
485		do {
486			tmp = musb_readl(tibase, DAVINCI_AUTOREQ_REG);
487			if (tmp == val)
488				break;
489			cpu_relax();
490		} while (n-- > 0);
491	}
492#endif
493
494	/* REQPKT is turned off after each segment */
495	if (n_bds && rx->channel.actual_len) {
496		void __iomem	*regs = rx->hw_ep->regs;
497
498		val = musb_readw(regs, MUSB_RXCSR);
499		if (!(val & MUSB_RXCSR_H_REQPKT)) {
500			val |= MUSB_RXCSR_H_REQPKT | MUSB_RXCSR_H_WZC_BITS;
501			musb_writew(regs, MUSB_RXCSR, val);
502			/* flush writebuffer */
503			val = musb_readw(regs, MUSB_RXCSR);
504		}
505	}
506	return n_bds;
507}
508
509
510/* Buffer enqueuing Logic:
511 *
512 *  - RX builds new queues each time, to help handle routine "early
513 *    termination" cases (faults, including errors and short reads)
514 *    more correctly.
515 *
516 *  - for now, TX reuses the same queue of BDs every time
517 *
518 * REVISIT long term, we want a normal dynamic model.
519 * ... the goal will be to append to the
520 * existing queue, processing completed "dma buffers" (segments) on the fly.
521 *
522 * Otherwise we force an IRQ latency between requests, which slows us a lot
523 * (especially in "transparent" dma).  Unfortunately that model seems to be
524 * inherent in the DMA model from the Mentor code, except in the rare case
525 * of transfers big enough (~128+ KB) that we could append "middle" segments
526 * in the TX paths.  (RX can't do this, see below.)
527 *
528 * That's true even in the CPPI- friendly iso case, where most urbs have
529 * several small segments provided in a group and where the "packet at a time"
530 * "transparent" DMA model is always correct, even on the RX side.
531 */
532
533/*
534 * CPPI TX:
535 * ========
536 * TX is a lot more reasonable than RX; it doesn't need to run in
537 * irq-per-packet mode very often.  RNDIS mode seems to behave too
538 * (except how it handles the exactly-N-packets case).  Building a
539 * txdma queue with multiple requests (urb or usb_request) looks
540 * like it would work ... but fault handling would need much testing.
541 *
542 * The main issue with TX mode RNDIS relates to transfer lengths that
543 * are an exact multiple of the packet length.  It appears that there's
544 * a hiccup in that case (maybe the DMA completes before the ZLP gets
545 * written?) boiling down to not being able to rely on CPPI writing any
546 * terminating zero length packet before the next transfer is written.
547 * So that's punted to PIO; better yet, gadget drivers can avoid it.
548 *
549 * Plus, there's allegedly an undocumented constraint that rndis transfer
550 * length be a multiple of 64 bytes ... but the chip doesn't act that
551 * way, and we really don't _want_ that behavior anyway.
552 *
553 * On TX, "transparent" mode works ... although experiments have shown
554 * problems trying to use the SOP/EOP bits in different USB packets.
555 *
556 * REVISIT try to handle terminating zero length packets using CPPI
557 * instead of doing it by PIO after an IRQ.  (Meanwhile, make Ethernet
558 * links avoid that issue by forcing them to avoid zlps.)
559 */
560static void
561cppi_next_tx_segment(struct musb *musb, struct cppi_channel *tx)
562{
563	unsigned		maxpacket = tx->maxpacket;
564	dma_addr_t		addr = tx->buf_dma + tx->offset;
565	size_t			length = tx->buf_len - tx->offset;
566	struct cppi_descriptor	*bd;
567	unsigned		n_bds;
568	unsigned		i;
569	struct cppi_tx_stateram	__iomem *tx_ram = tx->state_ram;
570	int			rndis;
571
572	/* TX can use the CPPI "rndis" mode, where we can probably fit this
573	 * transfer in one BD and one IRQ.  The only time we would NOT want
574	 * to use it is when hardware constraints prevent it, or if we'd
575	 * trigger the "send a ZLP?" confusion.
576	 */
577	rndis = (maxpacket & 0x3f) == 0
578		&& length > maxpacket
579		&& length < 0xffff
580		&& (length % maxpacket) != 0;
581
582	if (rndis) {
583		maxpacket = length;
584		n_bds = 1;
585	} else {
586		n_bds = length / maxpacket;
587		if (!length || (length % maxpacket))
588			n_bds++;
589		n_bds = min(n_bds, (unsigned) NUM_TXCHAN_BD);
590		length = min(n_bds * maxpacket, length);
591	}
592
593	dev_dbg(musb->controller, "TX DMA%d, pktSz %d %s bds %d dma 0x%llx len %u\n",
594			tx->index,
595			maxpacket,
596			rndis ? "rndis" : "transparent",
597			n_bds,
598			(unsigned long long)addr, length);
599
600	cppi_rndis_update(tx, 0, musb->ctrl_base, rndis);
601
602	/* assuming here that channel_program is called during
603	 * transfer initiation ... current code maintains state
604	 * for one outstanding request only (no queues, not even
605	 * the implicit ones of an iso urb).
606	 */
607
608	bd = tx->freelist;
609	tx->head = bd;
610	tx->last_processed = NULL;
611
612	/* FIXME use BD pool like RX side does, and just queue
613	 * the minimum number for this request.
614	 */
615
616	/* Prepare queue of BDs first, then hand it to hardware.
617	 * All BDs except maybe the last should be of full packet
618	 * size; for RNDIS there _is_ only that last packet.
619	 */
620	for (i = 0; i < n_bds; ) {
621		if (++i < n_bds && bd->next)
622			bd->hw_next = bd->next->dma;
623		else
624			bd->hw_next = 0;
625
626		bd->hw_bufp = tx->buf_dma + tx->offset;
627
628		/* FIXME set EOP only on the last packet,
629		 * SOP only on the first ... avoid IRQs
630		 */
631		if ((tx->offset + maxpacket) <= tx->buf_len) {
632			tx->offset += maxpacket;
633			bd->hw_off_len = maxpacket;
634			bd->hw_options = CPPI_SOP_SET | CPPI_EOP_SET
635				| CPPI_OWN_SET | maxpacket;
636		} else {
637			/* only this one may be a partial USB Packet */
638			u32		partial_len;
639
640			partial_len = tx->buf_len - tx->offset;
641			tx->offset = tx->buf_len;
642			bd->hw_off_len = partial_len;
643
644			bd->hw_options = CPPI_SOP_SET | CPPI_EOP_SET
645				| CPPI_OWN_SET | partial_len;
646			if (partial_len == 0)
647				bd->hw_options |= CPPI_ZERO_SET;
648		}
649
650		dev_dbg(musb->controller, "TXBD %p: nxt %08x buf %08x len %04x opt %08x\n",
651				bd, bd->hw_next, bd->hw_bufp,
652				bd->hw_off_len, bd->hw_options);
653
654		/* update the last BD enqueued to the list */
655		tx->tail = bd;
656		bd = bd->next;
657	}
658
659	/* BDs live in DMA-coherent memory, but writes might be pending */
660	cpu_drain_writebuffer();
661
662	/* Write to the HeadPtr in state RAM to trigger */
663	musb_writel(&tx_ram->tx_head, 0, (u32)tx->freelist->dma);
664
665	cppi_dump_tx(5, tx, "/S");
666}
667
668/*
669 * CPPI RX Woes:
670 * =============
671 * Consider a 1KB bulk RX buffer in two scenarios:  (a) it's fed two 300 byte
672 * packets back-to-back, and (b) it's fed two 512 byte packets back-to-back.
673 * (Full speed transfers have similar scenarios.)
674 *
675 * The correct behavior for Linux is that (a) fills the buffer with 300 bytes,
676 * and the next packet goes into a buffer that's queued later; while (b) fills
677 * the buffer with 1024 bytes.  How to do that with CPPI?
678 *
679 * - RX queues in "rndis" mode -- one single BD -- handle (a) correctly, but
680 *   (b) loses **BADLY** because nothing (!) happens when that second packet
681 *   fills the buffer, much less when a third one arrives.  (Which makes this
682 *   not a "true" RNDIS mode.  In the RNDIS protocol short-packet termination
683 *   is optional, and it's fine if peripherals -- not hosts! -- pad messages
684 *   out to end-of-buffer.  Standard PCI host controller DMA descriptors
685 *   implement that mode by default ... which is no accident.)
686 *
687 * - RX queues in "transparent" mode -- two BDs with 512 bytes each -- have
688 *   converse problems:  (b) is handled right, but (a) loses badly.  CPPI RX
689 *   ignores SOP/EOP markings and processes both of those BDs; so both packets
690 *   are loaded into the buffer (with a 212 byte gap between them), and the next
691 *   buffer queued will NOT get its 300 bytes of data. (It seems like SOP/EOP
692 *   are intended as outputs for RX queues, not inputs...)
693 *
694 * - A variant of "transparent" mode -- one BD at a time -- is the only way to
695 *   reliably make both cases work, with software handling both cases correctly
696 *   and at the significant penalty of needing an IRQ per packet.  (The lack of
697 *   I/O overlap can be slightly ameliorated by enabling double buffering.)
698 *
699 * So how to get rid of IRQ-per-packet?  The transparent multi-BD case could
700 * be used in special cases like mass storage, which sets URB_SHORT_NOT_OK
701 * (or maybe its peripheral side counterpart) to flag (a) scenarios as errors
702 * with guaranteed driver level fault recovery and scrubbing out what's left
703 * of that garbaged datastream.
704 *
705 * But there seems to be no way to identify the cases where CPPI RNDIS mode
706 * is appropriate -- which do NOT include RNDIS host drivers, but do include
707 * the CDC Ethernet driver! -- and the documentation is incomplete/wrong.
708 * So we can't _ever_ use RX RNDIS mode ... except by using a heuristic
709 * that applies best on the peripheral side (and which could fail rudely).
710 *
711 * Leaving only "transparent" mode; we avoid multi-bd modes in almost all
712 * cases other than mass storage class.  Otherwise we're correct but slow,
713 * since CPPI penalizes our need for a "true RNDIS" default mode.
714 */
715
716
717/* Heuristic, intended to kick in for ethernet/rndis peripheral ONLY
718 *
719 * IFF
720 *  (a)	peripheral mode ... since rndis peripherals could pad their
721 *	writes to hosts, causing i/o failure; or we'd have to cope with
722 *	a largely unknowable variety of host side protocol variants
723 *  (b)	and short reads are NOT errors ... since full reads would
724 *	cause those same i/o failures
725 *  (c)	and read length is
726 *	- less than 64KB (max per cppi descriptor)
727 *	- not a multiple of 4096 (g_zero default, full reads typical)
728 *	- N (>1) packets long, ditto (full reads not EXPECTED)
729 * THEN
730 *   try rx rndis mode
731 *
732 * Cost of heuristic failing:  RXDMA wedges at the end of transfers that
733 * fill out the whole buffer.  Buggy host side usb network drivers could
734 * trigger that, but "in the field" such bugs seem to be all but unknown.
735 *
736 * So this module parameter lets the heuristic be disabled.  When using
737 * gadgetfs, the heuristic will probably need to be disabled.
738 */
739static bool cppi_rx_rndis = 1;
740
741module_param(cppi_rx_rndis, bool, 0);
742MODULE_PARM_DESC(cppi_rx_rndis, "enable/disable RX RNDIS heuristic");
743
744
745/**
746 * cppi_next_rx_segment - dma read for the next chunk of a buffer
747 * @musb: the controller
748 * @rx: dma channel
749 * @onepacket: true unless caller treats short reads as errors, and
750 *	performs fault recovery above usbcore.
751 * Context: controller irqlocked
752 *
753 * See above notes about why we can't use multi-BD RX queues except in
754 * rare cases (mass storage class), and can never use the hardware "rndis"
755 * mode (since it's not a "true" RNDIS mode) with complete safety..
756 *
757 * It's ESSENTIAL that callers specify "onepacket" mode unless they kick in
758 * code to recover from corrupted datastreams after each short transfer.
759 */
760static void
761cppi_next_rx_segment(struct musb *musb, struct cppi_channel *rx, int onepacket)
762{
763	unsigned		maxpacket = rx->maxpacket;
764	dma_addr_t		addr = rx->buf_dma + rx->offset;
765	size_t			length = rx->buf_len - rx->offset;
766	struct cppi_descriptor	*bd, *tail;
767	unsigned		n_bds;
768	unsigned		i;
769	void __iomem		*tibase = musb->ctrl_base;
770	int			is_rndis = 0;
771	struct cppi_rx_stateram	__iomem *rx_ram = rx->state_ram;
772	struct cppi_descriptor	*d;
773
774	if (onepacket) {
775		/* almost every USB driver, host or peripheral side */
776		n_bds = 1;
777
778		/* maybe apply the heuristic above */
779		if (cppi_rx_rndis
780				&& is_peripheral_active(musb)
781				&& length > maxpacket
782				&& (length & ~0xffff) == 0
783				&& (length & 0x0fff) != 0
784				&& (length & (maxpacket - 1)) == 0) {
785			maxpacket = length;
786			is_rndis = 1;
787		}
788	} else {
789		/* virtually nothing except mass storage class */
790		if (length > 0xffff) {
791			n_bds = 0xffff / maxpacket;
792			length = n_bds * maxpacket;
793		} else {
794			n_bds = length / maxpacket;
795			if (length % maxpacket)
796				n_bds++;
797		}
798		if (n_bds == 1)
799			onepacket = 1;
800		else
801			n_bds = min(n_bds, (unsigned) NUM_RXCHAN_BD);
802	}
803
804	/* In host mode, autorequest logic can generate some IN tokens; it's
805	 * tricky since we can't leave REQPKT set in RXCSR after the transfer
806	 * finishes. So:  multipacket transfers involve two or more segments.
807	 * And always at least two IRQs ... RNDIS mode is not an option.
808	 */
809	if (is_host_active(musb))
810		n_bds = cppi_autoreq_update(rx, tibase, onepacket, n_bds);
811
812	cppi_rndis_update(rx, 1, musb->ctrl_base, is_rndis);
813
814	length = min(n_bds * maxpacket, length);
815
816	dev_dbg(musb->controller, "RX DMA%d seg, maxp %d %s bds %d (cnt %d) "
817			"dma 0x%llx len %u %u/%u\n",
818			rx->index, maxpacket,
819			onepacket
820				? (is_rndis ? "rndis" : "onepacket")
821				: "multipacket",
822			n_bds,
823			musb_readl(tibase,
824				DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4))
825					& 0xffff,
826			(unsigned long long)addr, length,
827			rx->channel.actual_len, rx->buf_len);
828
829	/* only queue one segment at a time, since the hardware prevents
830	 * correct queue shutdown after unexpected short packets
831	 */
832	bd = cppi_bd_alloc(rx);
833	rx->head = bd;
834
835	/* Build BDs for all packets in this segment */
836	for (i = 0, tail = NULL; bd && i < n_bds; i++, tail = bd) {
837		u32	bd_len;
838
839		if (i) {
840			bd = cppi_bd_alloc(rx);
841			if (!bd)
842				break;
843			tail->next = bd;
844			tail->hw_next = bd->dma;
845		}
846		bd->hw_next = 0;
847
848		/* all but the last packet will be maxpacket size */
849		if (maxpacket < length)
850			bd_len = maxpacket;
851		else
852			bd_len = length;
853
854		bd->hw_bufp = addr;
855		addr += bd_len;
856		rx->offset += bd_len;
857
858		bd->hw_off_len = (0 /*offset*/ << 16) + bd_len;
859		bd->buflen = bd_len;
860
861		bd->hw_options = CPPI_OWN_SET | (i == 0 ? length : 0);
862		length -= bd_len;
863	}
864
865	/* we always expect at least one reusable BD! */
866	if (!tail) {
867		WARNING("rx dma%d -- no BDs? need %d\n", rx->index, n_bds);
868		return;
869	} else if (i < n_bds)
870		WARNING("rx dma%d -- only %d of %d BDs\n", rx->index, i, n_bds);
871
872	tail->next = NULL;
873	tail->hw_next = 0;
874
875	bd = rx->head;
876	rx->tail = tail;
877
878	/* short reads and other faults should terminate this entire
879	 * dma segment.  we want one "dma packet" per dma segment, not
880	 * one per USB packet, terminating the whole queue at once...
881	 * NOTE that current hardware seems to ignore SOP and EOP.
882	 */
883	bd->hw_options |= CPPI_SOP_SET;
884	tail->hw_options |= CPPI_EOP_SET;
885
886	for (d = rx->head; d; d = d->next)
887		cppi_dump_rxbd("S", d);
888
889	/* in case the preceding transfer left some state... */
890	tail = rx->last_processed;
891	if (tail) {
892		tail->next = bd;
893		tail->hw_next = bd->dma;
894	}
895
896	core_rxirq_enable(tibase, rx->index + 1);
897
898	/* BDs live in DMA-coherent memory, but writes might be pending */
899	cpu_drain_writebuffer();
900
901	/* REVISIT specs say to write this AFTER the BUFCNT register
902	 * below ... but that loses badly.
903	 */
904	musb_writel(&rx_ram->rx_head, 0, bd->dma);
905
906	/* bufferCount must be at least 3, and zeroes on completion
907	 * unless it underflows below zero, or stops at two, or keeps
908	 * growing ... grr.
909	 */
910	i = musb_readl(tibase,
911			DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4))
912			& 0xffff;
913
914	if (!i)
915		musb_writel(tibase,
916			DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4),
917			n_bds + 2);
918	else if (n_bds > (i - 3))
919		musb_writel(tibase,
920			DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4),
921			n_bds - (i - 3));
922
923	i = musb_readl(tibase,
924			DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4))
925			& 0xffff;
926	if (i < (2 + n_bds)) {
927		dev_dbg(musb->controller, "bufcnt%d underrun - %d (for %d)\n",
928					rx->index, i, n_bds);
929		musb_writel(tibase,
930			DAVINCI_RXCPPI_BUFCNT0_REG + (rx->index * 4),
931			n_bds + 2);
932	}
933
934	cppi_dump_rx(4, rx, "/S");
935}
936
937/**
938 * cppi_channel_program - program channel for data transfer
939 * @ch: the channel
940 * @maxpacket: max packet size
941 * @mode: For RX, 1 unless the usb protocol driver promised to treat
942 *	all short reads as errors and kick in high level fault recovery.
943 *	For TX, ignored because of RNDIS mode races/glitches.
944 * @dma_addr: dma address of buffer
945 * @len: length of buffer
946 * Context: controller irqlocked
947 */
948static int cppi_channel_program(struct dma_channel *ch,
949		u16 maxpacket, u8 mode,
950		dma_addr_t dma_addr, u32 len)
951{
952	struct cppi_channel	*cppi_ch;
953	struct cppi		*controller;
954	struct musb		*musb;
955
956	cppi_ch = container_of(ch, struct cppi_channel, channel);
957	controller = cppi_ch->controller;
958	musb = controller->musb;
959
960	switch (ch->status) {
961	case MUSB_DMA_STATUS_BUS_ABORT:
962	case MUSB_DMA_STATUS_CORE_ABORT:
963		/* fault irq handler should have handled cleanup */
964		WARNING("%cX DMA%d not cleaned up after abort!\n",
965				cppi_ch->transmit ? 'T' : 'R',
966				cppi_ch->index);
967		/* WARN_ON(1); */
968		break;
969	case MUSB_DMA_STATUS_BUSY:
970		WARNING("program active channel?  %cX DMA%d\n",
971				cppi_ch->transmit ? 'T' : 'R',
972				cppi_ch->index);
973		/* WARN_ON(1); */
974		break;
975	case MUSB_DMA_STATUS_UNKNOWN:
976		dev_dbg(musb->controller, "%cX DMA%d not allocated!\n",
977				cppi_ch->transmit ? 'T' : 'R',
978				cppi_ch->index);
979		/* FALLTHROUGH */
980	case MUSB_DMA_STATUS_FREE:
981		break;
982	}
983
984	ch->status = MUSB_DMA_STATUS_BUSY;
985
986	/* set transfer parameters, then queue up its first segment */
987	cppi_ch->buf_dma = dma_addr;
988	cppi_ch->offset = 0;
989	cppi_ch->maxpacket = maxpacket;
990	cppi_ch->buf_len = len;
991	cppi_ch->channel.actual_len = 0;
992
993	/* TX channel? or RX? */
994	if (cppi_ch->transmit)
995		cppi_next_tx_segment(musb, cppi_ch);
996	else
997		cppi_next_rx_segment(musb, cppi_ch, mode);
998
999	return true;
1000}
1001
1002static bool cppi_rx_scan(struct cppi *cppi, unsigned ch)
1003{
1004	struct cppi_channel		*rx = &cppi->rx[ch];
1005	struct cppi_rx_stateram __iomem	*state = rx->state_ram;
1006	struct cppi_descriptor		*bd;
1007	struct cppi_descriptor		*last = rx->last_processed;
1008	bool				completed = false;
1009	bool				acked = false;
1010	int				i;
1011	dma_addr_t			safe2ack;
1012	void __iomem			*regs = rx->hw_ep->regs;
1013	struct musb			*musb = cppi->musb;
1014
1015	cppi_dump_rx(6, rx, "/K");
1016
1017	bd = last ? last->next : rx->head;
1018	if (!bd)
1019		return false;
1020
1021	/* run through all completed BDs */
1022	for (i = 0, safe2ack = musb_readl(&state->rx_complete, 0);
1023			(safe2ack || completed) && bd && i < NUM_RXCHAN_BD;
1024			i++, bd = bd->next) {
1025		u16	len;
1026
1027		/* catch latest BD writes from CPPI */
1028		rmb();
1029		if (!completed && (bd->hw_options & CPPI_OWN_SET))
1030			break;
1031
1032		dev_dbg(musb->controller, "C/RXBD %llx: nxt %08x buf %08x "
1033			"off.len %08x opt.len %08x (%d)\n",
1034			(unsigned long long)bd->dma, bd->hw_next, bd->hw_bufp,
1035			bd->hw_off_len, bd->hw_options,
1036			rx->channel.actual_len);
1037
1038		/* actual packet received length */
1039		if ((bd->hw_options & CPPI_SOP_SET) && !completed)
1040			len = bd->hw_off_len & CPPI_RECV_PKTLEN_MASK;
1041		else
1042			len = 0;
1043
1044		if (bd->hw_options & CPPI_EOQ_MASK)
1045			completed = true;
1046
1047		if (!completed && len < bd->buflen) {
1048			/* NOTE:  when we get a short packet, RXCSR_H_REQPKT
1049			 * must have been cleared, and no more DMA packets may
1050			 * active be in the queue... TI docs didn't say, but
1051			 * CPPI ignores those BDs even though OWN is still set.
1052			 */
1053			completed = true;
1054			dev_dbg(musb->controller, "rx short %d/%d (%d)\n",
1055					len, bd->buflen,
1056					rx->channel.actual_len);
1057		}
1058
1059		/* If we got here, we expect to ack at least one BD; meanwhile
1060		 * CPPI may completing other BDs while we scan this list...
1061		 *
1062		 * RACE: we can notice OWN cleared before CPPI raises the
1063		 * matching irq by writing that BD as the completion pointer.
1064		 * In such cases, stop scanning and wait for the irq, avoiding
1065		 * lost acks and states where BD ownership is unclear.
1066		 */
1067		if (bd->dma == safe2ack) {
1068			musb_writel(&state->rx_complete, 0, safe2ack);
1069			safe2ack = musb_readl(&state->rx_complete, 0);
1070			acked = true;
1071			if (bd->dma == safe2ack)
1072				safe2ack = 0;
1073		}
1074
1075		rx->channel.actual_len += len;
1076
1077		cppi_bd_free(rx, last);
1078		last = bd;
1079
1080		/* stop scanning on end-of-segment */
1081		if (bd->hw_next == 0)
1082			completed = true;
1083	}
1084	rx->last_processed = last;
1085
1086	/* dma abort, lost ack, or ... */
1087	if (!acked && last) {
1088		int	csr;
1089
1090		if (safe2ack == 0 || safe2ack == rx->last_processed->dma)
1091			musb_writel(&state->rx_complete, 0, safe2ack);
1092		if (safe2ack == 0) {
1093			cppi_bd_free(rx, last);
1094			rx->last_processed = NULL;
1095
1096			/* if we land here on the host side, H_REQPKT will
1097			 * be clear and we need to restart the queue...
1098			 */
1099			WARN_ON(rx->head);
1100		}
1101		musb_ep_select(cppi->mregs, rx->index + 1);
1102		csr = musb_readw(regs, MUSB_RXCSR);
1103		if (csr & MUSB_RXCSR_DMAENAB) {
1104			dev_dbg(musb->controller, "list%d %p/%p, last %llx%s, csr %04x\n",
1105				rx->index,
1106				rx->head, rx->tail,
1107				rx->last_processed
1108					? (unsigned long long)
1109						rx->last_processed->dma
1110					: 0,
1111				completed ? ", completed" : "",
1112				csr);
1113			cppi_dump_rxq(4, "/what?", rx);
1114		}
1115	}
1116	if (!completed) {
1117		int	csr;
1118
1119		rx->head = bd;
1120
1121		/* REVISIT seems like "autoreq all but EOP" doesn't...
1122		 * setting it here "should" be racey, but seems to work
1123		 */
1124		csr = musb_readw(rx->hw_ep->regs, MUSB_RXCSR);
1125		if (is_host_active(cppi->musb)
1126				&& bd
1127				&& !(csr & MUSB_RXCSR_H_REQPKT)) {
1128			csr |= MUSB_RXCSR_H_REQPKT;
1129			musb_writew(regs, MUSB_RXCSR,
1130					MUSB_RXCSR_H_WZC_BITS | csr);
1131			csr = musb_readw(rx->hw_ep->regs, MUSB_RXCSR);
1132		}
1133	} else {
1134		rx->head = NULL;
1135		rx->tail = NULL;
1136	}
1137
1138	cppi_dump_rx(6, rx, completed ? "/completed" : "/cleaned");
1139	return completed;
1140}
1141
1142irqreturn_t cppi_interrupt(int irq, void *dev_id)
1143{
1144	struct musb		*musb = dev_id;
1145	struct cppi		*cppi;
1146	void __iomem		*tibase;
1147	struct musb_hw_ep	*hw_ep = NULL;
1148	u32			rx, tx;
1149	int			i, index;
1150	unsigned long		uninitialized_var(flags);
1151
1152	cppi = container_of(musb->dma_controller, struct cppi, controller);
1153	if (cppi->irq)
1154		spin_lock_irqsave(&musb->lock, flags);
1155
1156	tibase = musb->ctrl_base;
1157
1158	tx = musb_readl(tibase, DAVINCI_TXCPPI_MASKED_REG);
1159	rx = musb_readl(tibase, DAVINCI_RXCPPI_MASKED_REG);
1160
1161	if (!tx && !rx) {
1162		if (cppi->irq)
1163			spin_unlock_irqrestore(&musb->lock, flags);
1164		return IRQ_NONE;
1165	}
1166
1167	dev_dbg(musb->controller, "CPPI IRQ Tx%x Rx%x\n", tx, rx);
1168
1169	/* process TX channels */
1170	for (index = 0; tx; tx = tx >> 1, index++) {
1171		struct cppi_channel		*tx_ch;
1172		struct cppi_tx_stateram __iomem	*tx_ram;
1173		bool				completed = false;
1174		struct cppi_descriptor		*bd;
1175
1176		if (!(tx & 1))
1177			continue;
1178
1179		tx_ch = cppi->tx + index;
1180		tx_ram = tx_ch->state_ram;
1181
1182		/* FIXME  need a cppi_tx_scan() routine, which
1183		 * can also be called from abort code
1184		 */
1185
1186		cppi_dump_tx(5, tx_ch, "/E");
1187
1188		bd = tx_ch->head;
1189
1190		/*
1191		 * If Head is null then this could mean that a abort interrupt
1192		 * that needs to be acknowledged.
1193		 */
1194		if (NULL == bd) {
1195			dev_dbg(musb->controller, "null BD\n");
1196			musb_writel(&tx_ram->tx_complete, 0, 0);
1197			continue;
1198		}
1199
1200		/* run through all completed BDs */
1201		for (i = 0; !completed && bd && i < NUM_TXCHAN_BD;
1202				i++, bd = bd->next) {
1203			u16	len;
1204
1205			/* catch latest BD writes from CPPI */
1206			rmb();
1207			if (bd->hw_options & CPPI_OWN_SET)
1208				break;
1209
1210			dev_dbg(musb->controller, "C/TXBD %p n %x b %x off %x opt %x\n",
1211					bd, bd->hw_next, bd->hw_bufp,
1212					bd->hw_off_len, bd->hw_options);
1213
1214			len = bd->hw_off_len & CPPI_BUFFER_LEN_MASK;
1215			tx_ch->channel.actual_len += len;
1216
1217			tx_ch->last_processed = bd;
1218
1219			/* write completion register to acknowledge
1220			 * processing of completed BDs, and possibly
1221			 * release the IRQ; EOQ might not be set ...
1222			 *
1223			 * REVISIT use the same ack strategy as rx
1224			 *
1225			 * REVISIT have observed bit 18 set; huh??
1226			 */
1227			/* if ((bd->hw_options & CPPI_EOQ_MASK)) */
1228				musb_writel(&tx_ram->tx_complete, 0, bd->dma);
1229
1230			/* stop scanning on end-of-segment */
1231			if (bd->hw_next == 0)
1232				completed = true;
1233		}
1234
1235		/* on end of segment, maybe go to next one */
1236		if (completed) {
1237			/* cppi_dump_tx(4, tx_ch, "/complete"); */
1238
1239			/* transfer more, or report completion */
1240			if (tx_ch->offset >= tx_ch->buf_len) {
1241				tx_ch->head = NULL;
1242				tx_ch->tail = NULL;
1243				tx_ch->channel.status = MUSB_DMA_STATUS_FREE;
1244
1245				hw_ep = tx_ch->hw_ep;
1246
1247				musb_dma_completion(musb, index + 1, 1);
1248
1249			} else {
1250				/* Bigger transfer than we could fit in
1251				 * that first batch of descriptors...
1252				 */
1253				cppi_next_tx_segment(musb, tx_ch);
1254			}
1255		} else
1256			tx_ch->head = bd;
1257	}
1258
1259	/* Start processing the RX block */
1260	for (index = 0; rx; rx = rx >> 1, index++) {
1261
1262		if (rx & 1) {
1263			struct cppi_channel		*rx_ch;
1264
1265			rx_ch = cppi->rx + index;
1266
1267			/* let incomplete dma segments finish */
1268			if (!cppi_rx_scan(cppi, index))
1269				continue;
1270
1271			/* start another dma segment if needed */
1272			if (rx_ch->channel.actual_len != rx_ch->buf_len
1273					&& rx_ch->channel.actual_len
1274						== rx_ch->offset) {
1275				cppi_next_rx_segment(musb, rx_ch, 1);
1276				continue;
1277			}
1278
1279			/* all segments completed! */
1280			rx_ch->channel.status = MUSB_DMA_STATUS_FREE;
1281
1282			hw_ep = rx_ch->hw_ep;
1283
1284			core_rxirq_disable(tibase, index + 1);
1285			musb_dma_completion(musb, index + 1, 0);
1286		}
1287	}
1288
1289	/* write to CPPI EOI register to re-enable interrupts */
1290	musb_writel(tibase, DAVINCI_CPPI_EOI_REG, 0);
1291
1292	if (cppi->irq)
1293		spin_unlock_irqrestore(&musb->lock, flags);
1294
1295	return IRQ_HANDLED;
1296}
1297EXPORT_SYMBOL_GPL(cppi_interrupt);
1298
1299/* Instantiate a software object representing a DMA controller. */
1300struct dma_controller *dma_controller_create(struct musb *musb, void __iomem *mregs)
1301{
1302	struct cppi		*controller;
1303	struct device		*dev = musb->controller;
1304	struct platform_device	*pdev = to_platform_device(dev);
1305	int			irq = platform_get_irq_byname(pdev, "dma");
1306
1307	controller = kzalloc(sizeof *controller, GFP_KERNEL);
1308	if (!controller)
1309		return NULL;
1310
1311	controller->mregs = mregs;
1312	controller->tibase = mregs - DAVINCI_BASE_OFFSET;
1313
1314	controller->musb = musb;
1315	controller->controller.channel_alloc = cppi_channel_allocate;
1316	controller->controller.channel_release = cppi_channel_release;
1317	controller->controller.channel_program = cppi_channel_program;
1318	controller->controller.channel_abort = cppi_channel_abort;
1319
1320	/* NOTE: allocating from on-chip SRAM would give the least
1321	 * contention for memory access, if that ever matters here.
1322	 */
1323
1324	/* setup BufferPool */
1325	controller->pool = dma_pool_create("cppi",
1326			controller->musb->controller,
1327			sizeof(struct cppi_descriptor),
1328			CPPI_DESCRIPTOR_ALIGN, 0);
1329	if (!controller->pool) {
1330		kfree(controller);
1331		return NULL;
1332	}
1333
1334	if (irq > 0) {
1335		if (request_irq(irq, cppi_interrupt, 0, "cppi-dma", musb)) {
1336			dev_err(dev, "request_irq %d failed!\n", irq);
1337			dma_controller_destroy(&controller->controller);
1338			return NULL;
1339		}
1340		controller->irq = irq;
1341	}
1342
1343	cppi_controller_start(controller);
1344	return &controller->controller;
1345}
1346
1347/*
1348 *  Destroy a previously-instantiated DMA controller.
1349 */
1350void dma_controller_destroy(struct dma_controller *c)
1351{
1352	struct cppi	*cppi;
1353
1354	cppi = container_of(c, struct cppi, controller);
1355
1356	cppi_controller_stop(cppi);
1357
1358	if (cppi->irq)
1359		free_irq(cppi->irq, cppi->musb);
1360
1361	/* assert:  caller stopped the controller first */
1362	dma_pool_destroy(cppi->pool);
1363
1364	kfree(cppi);
1365}
1366
1367/*
1368 * Context: controller irqlocked, endpoint selected
1369 */
1370static int cppi_channel_abort(struct dma_channel *channel)
1371{
1372	struct cppi_channel	*cppi_ch;
1373	struct cppi		*controller;
1374	void __iomem		*mbase;
1375	void __iomem		*tibase;
1376	void __iomem		*regs;
1377	u32			value;
1378	struct cppi_descriptor	*queue;
1379
1380	cppi_ch = container_of(channel, struct cppi_channel, channel);
1381
1382	controller = cppi_ch->controller;
1383
1384	switch (channel->status) {
1385	case MUSB_DMA_STATUS_BUS_ABORT:
1386	case MUSB_DMA_STATUS_CORE_ABORT:
1387		/* from RX or TX fault irq handler */
1388	case MUSB_DMA_STATUS_BUSY:
1389		/* the hardware needs shutting down */
1390		regs = cppi_ch->hw_ep->regs;
1391		break;
1392	case MUSB_DMA_STATUS_UNKNOWN:
1393	case MUSB_DMA_STATUS_FREE:
1394		return 0;
1395	default:
1396		return -EINVAL;
1397	}
1398
1399	if (!cppi_ch->transmit && cppi_ch->head)
1400		cppi_dump_rxq(3, "/abort", cppi_ch);
1401
1402	mbase = controller->mregs;
1403	tibase = controller->tibase;
1404
1405	queue = cppi_ch->head;
1406	cppi_ch->head = NULL;
1407	cppi_ch->tail = NULL;
1408
1409	/* REVISIT should rely on caller having done this,
1410	 * and caller should rely on us not changing it.
1411	 * peripheral code is safe ... check host too.
1412	 */
1413	musb_ep_select(mbase, cppi_ch->index + 1);
1414
1415	if (cppi_ch->transmit) {
1416		struct cppi_tx_stateram __iomem *tx_ram;
1417		/* REVISIT put timeouts on these controller handshakes */
1418
1419		cppi_dump_tx(6, cppi_ch, " (teardown)");
1420
1421		/* teardown DMA engine then usb core */
1422		do {
1423			value = musb_readl(tibase, DAVINCI_TXCPPI_TEAR_REG);
1424		} while (!(value & CPPI_TEAR_READY));
1425		musb_writel(tibase, DAVINCI_TXCPPI_TEAR_REG, cppi_ch->index);
1426
1427		tx_ram = cppi_ch->state_ram;
1428		do {
1429			value = musb_readl(&tx_ram->tx_complete, 0);
1430		} while (0xFFFFFFFC != value);
1431
1432		/* FIXME clean up the transfer state ... here?
1433		 * the completion routine should get called with
1434		 * an appropriate status code.
1435		 */
1436
1437		value = musb_readw(regs, MUSB_TXCSR);
1438		value &= ~MUSB_TXCSR_DMAENAB;
1439		value |= MUSB_TXCSR_FLUSHFIFO;
1440		musb_writew(regs, MUSB_TXCSR, value);
1441		musb_writew(regs, MUSB_TXCSR, value);
1442
1443		/*
1444		 * 1. Write to completion Ptr value 0x1(bit 0 set)
1445		 *    (write back mode)
1446		 * 2. Wait for abort interrupt and then put the channel in
1447		 *    compare mode by writing 1 to the tx_complete register.
1448		 */
1449		cppi_reset_tx(tx_ram, 1);
1450		cppi_ch->head = NULL;
1451		musb_writel(&tx_ram->tx_complete, 0, 1);
1452		cppi_dump_tx(5, cppi_ch, " (done teardown)");
1453
1454		/* REVISIT tx side _should_ clean up the same way
1455		 * as the RX side ... this does no cleanup at all!
1456		 */
1457
1458	} else /* RX */ {
1459		u16			csr;
1460
1461		/* NOTE: docs don't guarantee any of this works ...  we
1462		 * expect that if the usb core stops telling the cppi core
1463		 * to pull more data from it, then it'll be safe to flush
1464		 * current RX DMA state iff any pending fifo transfer is done.
1465		 */
1466
1467		core_rxirq_disable(tibase, cppi_ch->index + 1);
1468
1469		/* for host, ensure ReqPkt is never set again */
1470		if (is_host_active(cppi_ch->controller->musb)) {
1471			value = musb_readl(tibase, DAVINCI_AUTOREQ_REG);
1472			value &= ~((0x3) << (cppi_ch->index * 2));
1473			musb_writel(tibase, DAVINCI_AUTOREQ_REG, value);
1474		}
1475
1476		csr = musb_readw(regs, MUSB_RXCSR);
1477
1478		/* for host, clear (just) ReqPkt at end of current packet(s) */
1479		if (is_host_active(cppi_ch->controller->musb)) {
1480			csr |= MUSB_RXCSR_H_WZC_BITS;
1481			csr &= ~MUSB_RXCSR_H_REQPKT;
1482		} else
1483			csr |= MUSB_RXCSR_P_WZC_BITS;
1484
1485		/* clear dma enable */
1486		csr &= ~(MUSB_RXCSR_DMAENAB);
1487		musb_writew(regs, MUSB_RXCSR, csr);
1488		csr = musb_readw(regs, MUSB_RXCSR);
1489
1490		/* Quiesce: wait for current dma to finish (if not cleanup).
1491		 * We can't use bit zero of stateram->rx_sop, since that
1492		 * refers to an entire "DMA packet" not just emptying the
1493		 * current fifo.  Most segments need multiple usb packets.
1494		 */
1495		if (channel->status == MUSB_DMA_STATUS_BUSY)
1496			udelay(50);
1497
1498		/* scan the current list, reporting any data that was
1499		 * transferred and acking any IRQ
1500		 */
1501		cppi_rx_scan(controller, cppi_ch->index);
1502
1503		/* clobber the existing state once it's idle
1504		 *
1505		 * NOTE:  arguably, we should also wait for all the other
1506		 * RX channels to quiesce (how??) and then temporarily
1507		 * disable RXCPPI_CTRL_REG ... but it seems that we can
1508		 * rely on the controller restarting from state ram, with
1509		 * only RXCPPI_BUFCNT state being bogus.  BUFCNT will
1510		 * correct itself after the next DMA transfer though.
1511		 *
1512		 * REVISIT does using rndis mode change that?
1513		 */
1514		cppi_reset_rx(cppi_ch->state_ram);
1515
1516		/* next DMA request _should_ load cppi head ptr */
1517
1518		/* ... we don't "free" that list, only mutate it in place.  */
1519		cppi_dump_rx(5, cppi_ch, " (done abort)");
1520
1521		/* clean up previously pending bds */
1522		cppi_bd_free(cppi_ch, cppi_ch->last_processed);
1523		cppi_ch->last_processed = NULL;
1524
1525		while (queue) {
1526			struct cppi_descriptor	*tmp = queue->next;
1527
1528			cppi_bd_free(cppi_ch, queue);
1529			queue = tmp;
1530		}
1531	}
1532
1533	channel->status = MUSB_DMA_STATUS_FREE;
1534	cppi_ch->buf_dma = 0;
1535	cppi_ch->offset = 0;
1536	cppi_ch->buf_len = 0;
1537	cppi_ch->maxpacket = 0;
1538	return 0;
1539}
1540
1541/* TBD Queries:
1542 *
1543 * Power Management ... probably turn off cppi during suspend, restart;
1544 * check state ram?  Clocking is presumably shared with usb core.
1545 */
1546