1/*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23#include <linux/usb.h>
24#include <linux/pci.h>
25#include <linux/slab.h>
26#include <linux/dmapool.h>
27#include <linux/dma-mapping.h>
28
29#include "xhci.h"
30#include "xhci-trace.h"
31
32/*
33 * Allocates a generic ring segment from the ring pool, sets the dma address,
34 * initializes the segment to zero, and sets the private next pointer to NULL.
35 *
36 * Section 4.11.1.1:
37 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
38 */
39static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
40					unsigned int cycle_state, gfp_t flags)
41{
42	struct xhci_segment *seg;
43	dma_addr_t	dma;
44	int		i;
45
46	seg = kzalloc(sizeof *seg, flags);
47	if (!seg)
48		return NULL;
49
50	seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
51	if (!seg->trbs) {
52		kfree(seg);
53		return NULL;
54	}
55
56	memset(seg->trbs, 0, TRB_SEGMENT_SIZE);
57	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
58	if (cycle_state == 0) {
59		for (i = 0; i < TRBS_PER_SEGMENT; i++)
60			seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
61	}
62	seg->dma = dma;
63	seg->next = NULL;
64
65	return seg;
66}
67
68static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
69{
70	if (seg->trbs) {
71		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
72		seg->trbs = NULL;
73	}
74	kfree(seg);
75}
76
77static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
78				struct xhci_segment *first)
79{
80	struct xhci_segment *seg;
81
82	seg = first->next;
83	while (seg != first) {
84		struct xhci_segment *next = seg->next;
85		xhci_segment_free(xhci, seg);
86		seg = next;
87	}
88	xhci_segment_free(xhci, first);
89}
90
91/*
92 * Make the prev segment point to the next segment.
93 *
94 * Change the last TRB in the prev segment to be a Link TRB which points to the
95 * DMA address of the next segment.  The caller needs to set any Link TRB
96 * related flags, such as End TRB, Toggle Cycle, and no snoop.
97 */
98static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
99		struct xhci_segment *next, enum xhci_ring_type type)
100{
101	u32 val;
102
103	if (!prev || !next)
104		return;
105	prev->next = next;
106	if (type != TYPE_EVENT) {
107		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
108			cpu_to_le64(next->dma);
109
110		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
111		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
112		val &= ~TRB_TYPE_BITMASK;
113		val |= TRB_TYPE(TRB_LINK);
114		/* Always set the chain bit with 0.95 hardware */
115		/* Set chain bit for isoc rings on AMD 0.96 host */
116		if (xhci_link_trb_quirk(xhci) ||
117				(type == TYPE_ISOC &&
118				 (xhci->quirks & XHCI_AMD_0x96_HOST)))
119			val |= TRB_CHAIN;
120		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
121	}
122}
123
124/*
125 * Link the ring to the new segments.
126 * Set Toggle Cycle for the new ring if needed.
127 */
128static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
129		struct xhci_segment *first, struct xhci_segment *last,
130		unsigned int num_segs)
131{
132	struct xhci_segment *next;
133
134	if (!ring || !first || !last)
135		return;
136
137	next = ring->enq_seg->next;
138	xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
139	xhci_link_segments(xhci, last, next, ring->type);
140	ring->num_segs += num_segs;
141	ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
142
143	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
144		ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
145			&= ~cpu_to_le32(LINK_TOGGLE);
146		last->trbs[TRBS_PER_SEGMENT-1].link.control
147			|= cpu_to_le32(LINK_TOGGLE);
148		ring->last_seg = last;
149	}
150}
151
152/*
153 * We need a radix tree for mapping physical addresses of TRBs to which stream
154 * ID they belong to.  We need to do this because the host controller won't tell
155 * us which stream ring the TRB came from.  We could store the stream ID in an
156 * event data TRB, but that doesn't help us for the cancellation case, since the
157 * endpoint may stop before it reaches that event data TRB.
158 *
159 * The radix tree maps the upper portion of the TRB DMA address to a ring
160 * segment that has the same upper portion of DMA addresses.  For example, say I
161 * have segments of size 1KB, that are always 1KB aligned.  A segment may
162 * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
163 * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
164 * pass the radix tree a key to get the right stream ID:
165 *
166 *	0x10c90fff >> 10 = 0x43243
167 *	0x10c912c0 >> 10 = 0x43244
168 *	0x10c91400 >> 10 = 0x43245
169 *
170 * Obviously, only those TRBs with DMA addresses that are within the segment
171 * will make the radix tree return the stream ID for that ring.
172 *
173 * Caveats for the radix tree:
174 *
175 * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
176 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
177 * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
178 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
179 * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
180 * extended systems (where the DMA address can be bigger than 32-bits),
181 * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
182 */
183static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
184		struct xhci_ring *ring,
185		struct xhci_segment *seg,
186		gfp_t mem_flags)
187{
188	unsigned long key;
189	int ret;
190
191	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
192	/* Skip any segments that were already added. */
193	if (radix_tree_lookup(trb_address_map, key))
194		return 0;
195
196	ret = radix_tree_maybe_preload(mem_flags);
197	if (ret)
198		return ret;
199	ret = radix_tree_insert(trb_address_map,
200			key, ring);
201	radix_tree_preload_end();
202	return ret;
203}
204
205static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
206		struct xhci_segment *seg)
207{
208	unsigned long key;
209
210	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
211	if (radix_tree_lookup(trb_address_map, key))
212		radix_tree_delete(trb_address_map, key);
213}
214
215static int xhci_update_stream_segment_mapping(
216		struct radix_tree_root *trb_address_map,
217		struct xhci_ring *ring,
218		struct xhci_segment *first_seg,
219		struct xhci_segment *last_seg,
220		gfp_t mem_flags)
221{
222	struct xhci_segment *seg;
223	struct xhci_segment *failed_seg;
224	int ret;
225
226	if (WARN_ON_ONCE(trb_address_map == NULL))
227		return 0;
228
229	seg = first_seg;
230	do {
231		ret = xhci_insert_segment_mapping(trb_address_map,
232				ring, seg, mem_flags);
233		if (ret)
234			goto remove_streams;
235		if (seg == last_seg)
236			return 0;
237		seg = seg->next;
238	} while (seg != first_seg);
239
240	return 0;
241
242remove_streams:
243	failed_seg = seg;
244	seg = first_seg;
245	do {
246		xhci_remove_segment_mapping(trb_address_map, seg);
247		if (seg == failed_seg)
248			return ret;
249		seg = seg->next;
250	} while (seg != first_seg);
251
252	return ret;
253}
254
255static void xhci_remove_stream_mapping(struct xhci_ring *ring)
256{
257	struct xhci_segment *seg;
258
259	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
260		return;
261
262	seg = ring->first_seg;
263	do {
264		xhci_remove_segment_mapping(ring->trb_address_map, seg);
265		seg = seg->next;
266	} while (seg != ring->first_seg);
267}
268
269static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
270{
271	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
272			ring->first_seg, ring->last_seg, mem_flags);
273}
274
275/* XXX: Do we need the hcd structure in all these functions? */
276void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
277{
278	if (!ring)
279		return;
280
281	if (ring->first_seg) {
282		if (ring->type == TYPE_STREAM)
283			xhci_remove_stream_mapping(ring);
284		xhci_free_segments_for_ring(xhci, ring->first_seg);
285	}
286
287	kfree(ring);
288}
289
290static void xhci_initialize_ring_info(struct xhci_ring *ring,
291					unsigned int cycle_state)
292{
293	/* The ring is empty, so the enqueue pointer == dequeue pointer */
294	ring->enqueue = ring->first_seg->trbs;
295	ring->enq_seg = ring->first_seg;
296	ring->dequeue = ring->enqueue;
297	ring->deq_seg = ring->first_seg;
298	/* The ring is initialized to 0. The producer must write 1 to the cycle
299	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
300	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
301	 *
302	 * New rings are initialized with cycle state equal to 1; if we are
303	 * handling ring expansion, set the cycle state equal to the old ring.
304	 */
305	ring->cycle_state = cycle_state;
306	/* Not necessary for new rings, but needed for re-initialized rings */
307	ring->enq_updates = 0;
308	ring->deq_updates = 0;
309
310	/*
311	 * Each segment has a link TRB, and leave an extra TRB for SW
312	 * accounting purpose
313	 */
314	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
315}
316
317/* Allocate segments and link them for a ring */
318static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
319		struct xhci_segment **first, struct xhci_segment **last,
320		unsigned int num_segs, unsigned int cycle_state,
321		enum xhci_ring_type type, gfp_t flags)
322{
323	struct xhci_segment *prev;
324
325	prev = xhci_segment_alloc(xhci, cycle_state, flags);
326	if (!prev)
327		return -ENOMEM;
328	num_segs--;
329
330	*first = prev;
331	while (num_segs > 0) {
332		struct xhci_segment	*next;
333
334		next = xhci_segment_alloc(xhci, cycle_state, flags);
335		if (!next) {
336			prev = *first;
337			while (prev) {
338				next = prev->next;
339				xhci_segment_free(xhci, prev);
340				prev = next;
341			}
342			return -ENOMEM;
343		}
344		xhci_link_segments(xhci, prev, next, type);
345
346		prev = next;
347		num_segs--;
348	}
349	xhci_link_segments(xhci, prev, *first, type);
350	*last = prev;
351
352	return 0;
353}
354
355/**
356 * Create a new ring with zero or more segments.
357 *
358 * Link each segment together into a ring.
359 * Set the end flag and the cycle toggle bit on the last segment.
360 * See section 4.9.1 and figures 15 and 16.
361 */
362static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
363		unsigned int num_segs, unsigned int cycle_state,
364		enum xhci_ring_type type, gfp_t flags)
365{
366	struct xhci_ring	*ring;
367	int ret;
368
369	ring = kzalloc(sizeof *(ring), flags);
370	if (!ring)
371		return NULL;
372
373	ring->num_segs = num_segs;
374	INIT_LIST_HEAD(&ring->td_list);
375	ring->type = type;
376	if (num_segs == 0)
377		return ring;
378
379	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
380			&ring->last_seg, num_segs, cycle_state, type, flags);
381	if (ret)
382		goto fail;
383
384	/* Only event ring does not use link TRB */
385	if (type != TYPE_EVENT) {
386		/* See section 4.9.2.1 and 6.4.4.1 */
387		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
388			cpu_to_le32(LINK_TOGGLE);
389	}
390	xhci_initialize_ring_info(ring, cycle_state);
391	return ring;
392
393fail:
394	kfree(ring);
395	return NULL;
396}
397
398void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
399		struct xhci_virt_device *virt_dev,
400		unsigned int ep_index)
401{
402	int rings_cached;
403
404	rings_cached = virt_dev->num_rings_cached;
405	if (rings_cached < XHCI_MAX_RINGS_CACHED) {
406		virt_dev->ring_cache[rings_cached] =
407			virt_dev->eps[ep_index].ring;
408		virt_dev->num_rings_cached++;
409		xhci_dbg(xhci, "Cached old ring, "
410				"%d ring%s cached\n",
411				virt_dev->num_rings_cached,
412				(virt_dev->num_rings_cached > 1) ? "s" : "");
413	} else {
414		xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
415		xhci_dbg(xhci, "Ring cache full (%d rings), "
416				"freeing ring\n",
417				virt_dev->num_rings_cached);
418	}
419	virt_dev->eps[ep_index].ring = NULL;
420}
421
422/* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
423 * pointers to the beginning of the ring.
424 */
425static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
426			struct xhci_ring *ring, unsigned int cycle_state,
427			enum xhci_ring_type type)
428{
429	struct xhci_segment	*seg = ring->first_seg;
430	int i;
431
432	do {
433		memset(seg->trbs, 0,
434				sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
435		if (cycle_state == 0) {
436			for (i = 0; i < TRBS_PER_SEGMENT; i++)
437				seg->trbs[i].link.control |=
438					cpu_to_le32(TRB_CYCLE);
439		}
440		/* All endpoint rings have link TRBs */
441		xhci_link_segments(xhci, seg, seg->next, type);
442		seg = seg->next;
443	} while (seg != ring->first_seg);
444	ring->type = type;
445	xhci_initialize_ring_info(ring, cycle_state);
446	/* td list should be empty since all URBs have been cancelled,
447	 * but just in case...
448	 */
449	INIT_LIST_HEAD(&ring->td_list);
450}
451
452/*
453 * Expand an existing ring.
454 * Look for a cached ring or allocate a new ring which has same segment numbers
455 * and link the two rings.
456 */
457int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
458				unsigned int num_trbs, gfp_t flags)
459{
460	struct xhci_segment	*first;
461	struct xhci_segment	*last;
462	unsigned int		num_segs;
463	unsigned int		num_segs_needed;
464	int			ret;
465
466	num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
467				(TRBS_PER_SEGMENT - 1);
468
469	/* Allocate number of segments we needed, or double the ring size */
470	num_segs = ring->num_segs > num_segs_needed ?
471			ring->num_segs : num_segs_needed;
472
473	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
474			num_segs, ring->cycle_state, ring->type, flags);
475	if (ret)
476		return -ENOMEM;
477
478	if (ring->type == TYPE_STREAM)
479		ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
480						ring, first, last, flags);
481	if (ret) {
482		struct xhci_segment *next;
483		do {
484			next = first->next;
485			xhci_segment_free(xhci, first);
486			if (first == last)
487				break;
488			first = next;
489		} while (true);
490		return ret;
491	}
492
493	xhci_link_rings(xhci, ring, first, last, num_segs);
494	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
495			"ring expansion succeed, now has %d segments",
496			ring->num_segs);
497
498	return 0;
499}
500
501#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
502
503static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
504						    int type, gfp_t flags)
505{
506	struct xhci_container_ctx *ctx;
507
508	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
509		return NULL;
510
511	ctx = kzalloc(sizeof(*ctx), flags);
512	if (!ctx)
513		return NULL;
514
515	ctx->type = type;
516	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
517	if (type == XHCI_CTX_TYPE_INPUT)
518		ctx->size += CTX_SIZE(xhci->hcc_params);
519
520	ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
521	if (!ctx->bytes) {
522		kfree(ctx);
523		return NULL;
524	}
525	memset(ctx->bytes, 0, ctx->size);
526	return ctx;
527}
528
529static void xhci_free_container_ctx(struct xhci_hcd *xhci,
530			     struct xhci_container_ctx *ctx)
531{
532	if (!ctx)
533		return;
534	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
535	kfree(ctx);
536}
537
538struct xhci_input_control_ctx *xhci_get_input_control_ctx(
539					      struct xhci_container_ctx *ctx)
540{
541	if (ctx->type != XHCI_CTX_TYPE_INPUT)
542		return NULL;
543
544	return (struct xhci_input_control_ctx *)ctx->bytes;
545}
546
547struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
548					struct xhci_container_ctx *ctx)
549{
550	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
551		return (struct xhci_slot_ctx *)ctx->bytes;
552
553	return (struct xhci_slot_ctx *)
554		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
555}
556
557struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
558				    struct xhci_container_ctx *ctx,
559				    unsigned int ep_index)
560{
561	/* increment ep index by offset of start of ep ctx array */
562	ep_index++;
563	if (ctx->type == XHCI_CTX_TYPE_INPUT)
564		ep_index++;
565
566	return (struct xhci_ep_ctx *)
567		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
568}
569
570
571/***************** Streams structures manipulation *************************/
572
573static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
574		unsigned int num_stream_ctxs,
575		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
576{
577	struct device *dev = xhci_to_hcd(xhci)->self.controller;
578	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
579
580	if (size > MEDIUM_STREAM_ARRAY_SIZE)
581		dma_free_coherent(dev, size,
582				stream_ctx, dma);
583	else if (size <= SMALL_STREAM_ARRAY_SIZE)
584		return dma_pool_free(xhci->small_streams_pool,
585				stream_ctx, dma);
586	else
587		return dma_pool_free(xhci->medium_streams_pool,
588				stream_ctx, dma);
589}
590
591/*
592 * The stream context array for each endpoint with bulk streams enabled can
593 * vary in size, based on:
594 *  - how many streams the endpoint supports,
595 *  - the maximum primary stream array size the host controller supports,
596 *  - and how many streams the device driver asks for.
597 *
598 * The stream context array must be a power of 2, and can be as small as
599 * 64 bytes or as large as 1MB.
600 */
601static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
602		unsigned int num_stream_ctxs, dma_addr_t *dma,
603		gfp_t mem_flags)
604{
605	struct device *dev = xhci_to_hcd(xhci)->self.controller;
606	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
607
608	if (size > MEDIUM_STREAM_ARRAY_SIZE)
609		return dma_alloc_coherent(dev, size,
610				dma, mem_flags);
611	else if (size <= SMALL_STREAM_ARRAY_SIZE)
612		return dma_pool_alloc(xhci->small_streams_pool,
613				mem_flags, dma);
614	else
615		return dma_pool_alloc(xhci->medium_streams_pool,
616				mem_flags, dma);
617}
618
619struct xhci_ring *xhci_dma_to_transfer_ring(
620		struct xhci_virt_ep *ep,
621		u64 address)
622{
623	if (ep->ep_state & EP_HAS_STREAMS)
624		return radix_tree_lookup(&ep->stream_info->trb_address_map,
625				address >> TRB_SEGMENT_SHIFT);
626	return ep->ring;
627}
628
629struct xhci_ring *xhci_stream_id_to_ring(
630		struct xhci_virt_device *dev,
631		unsigned int ep_index,
632		unsigned int stream_id)
633{
634	struct xhci_virt_ep *ep = &dev->eps[ep_index];
635
636	if (stream_id == 0)
637		return ep->ring;
638	if (!ep->stream_info)
639		return NULL;
640
641	if (stream_id > ep->stream_info->num_streams)
642		return NULL;
643	return ep->stream_info->stream_rings[stream_id];
644}
645
646/*
647 * Change an endpoint's internal structure so it supports stream IDs.  The
648 * number of requested streams includes stream 0, which cannot be used by device
649 * drivers.
650 *
651 * The number of stream contexts in the stream context array may be bigger than
652 * the number of streams the driver wants to use.  This is because the number of
653 * stream context array entries must be a power of two.
654 */
655struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
656		unsigned int num_stream_ctxs,
657		unsigned int num_streams, gfp_t mem_flags)
658{
659	struct xhci_stream_info *stream_info;
660	u32 cur_stream;
661	struct xhci_ring *cur_ring;
662	u64 addr;
663	int ret;
664
665	xhci_dbg(xhci, "Allocating %u streams and %u "
666			"stream context array entries.\n",
667			num_streams, num_stream_ctxs);
668	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
669		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
670		return NULL;
671	}
672	xhci->cmd_ring_reserved_trbs++;
673
674	stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
675	if (!stream_info)
676		goto cleanup_trbs;
677
678	stream_info->num_streams = num_streams;
679	stream_info->num_stream_ctxs = num_stream_ctxs;
680
681	/* Initialize the array of virtual pointers to stream rings. */
682	stream_info->stream_rings = kzalloc(
683			sizeof(struct xhci_ring *)*num_streams,
684			mem_flags);
685	if (!stream_info->stream_rings)
686		goto cleanup_info;
687
688	/* Initialize the array of DMA addresses for stream rings for the HW. */
689	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
690			num_stream_ctxs, &stream_info->ctx_array_dma,
691			mem_flags);
692	if (!stream_info->stream_ctx_array)
693		goto cleanup_ctx;
694	memset(stream_info->stream_ctx_array, 0,
695			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
696
697	/* Allocate everything needed to free the stream rings later */
698	stream_info->free_streams_command =
699		xhci_alloc_command(xhci, true, true, mem_flags);
700	if (!stream_info->free_streams_command)
701		goto cleanup_ctx;
702
703	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
704
705	/* Allocate rings for all the streams that the driver will use,
706	 * and add their segment DMA addresses to the radix tree.
707	 * Stream 0 is reserved.
708	 */
709	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
710		stream_info->stream_rings[cur_stream] =
711			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
712		cur_ring = stream_info->stream_rings[cur_stream];
713		if (!cur_ring)
714			goto cleanup_rings;
715		cur_ring->stream_id = cur_stream;
716		cur_ring->trb_address_map = &stream_info->trb_address_map;
717		/* Set deq ptr, cycle bit, and stream context type */
718		addr = cur_ring->first_seg->dma |
719			SCT_FOR_CTX(SCT_PRI_TR) |
720			cur_ring->cycle_state;
721		stream_info->stream_ctx_array[cur_stream].stream_ring =
722			cpu_to_le64(addr);
723		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
724				cur_stream, (unsigned long long) addr);
725
726		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
727		if (ret) {
728			xhci_ring_free(xhci, cur_ring);
729			stream_info->stream_rings[cur_stream] = NULL;
730			goto cleanup_rings;
731		}
732	}
733	/* Leave the other unused stream ring pointers in the stream context
734	 * array initialized to zero.  This will cause the xHC to give us an
735	 * error if the device asks for a stream ID we don't have setup (if it
736	 * was any other way, the host controller would assume the ring is
737	 * "empty" and wait forever for data to be queued to that stream ID).
738	 */
739
740	return stream_info;
741
742cleanup_rings:
743	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
744		cur_ring = stream_info->stream_rings[cur_stream];
745		if (cur_ring) {
746			xhci_ring_free(xhci, cur_ring);
747			stream_info->stream_rings[cur_stream] = NULL;
748		}
749	}
750	xhci_free_command(xhci, stream_info->free_streams_command);
751cleanup_ctx:
752	kfree(stream_info->stream_rings);
753cleanup_info:
754	kfree(stream_info);
755cleanup_trbs:
756	xhci->cmd_ring_reserved_trbs--;
757	return NULL;
758}
759/*
760 * Sets the MaxPStreams field and the Linear Stream Array field.
761 * Sets the dequeue pointer to the stream context array.
762 */
763void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
764		struct xhci_ep_ctx *ep_ctx,
765		struct xhci_stream_info *stream_info)
766{
767	u32 max_primary_streams;
768	/* MaxPStreams is the number of stream context array entries, not the
769	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
770	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
771	 */
772	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
773	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
774			"Setting number of stream ctx array entries to %u",
775			1 << (max_primary_streams + 1));
776	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
777	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
778				       | EP_HAS_LSA);
779	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
780}
781
782/*
783 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
784 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
785 * not at the beginning of the ring).
786 */
787void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
788		struct xhci_virt_ep *ep)
789{
790	dma_addr_t addr;
791	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
792	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
793	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
794}
795
796/* Frees all stream contexts associated with the endpoint,
797 *
798 * Caller should fix the endpoint context streams fields.
799 */
800void xhci_free_stream_info(struct xhci_hcd *xhci,
801		struct xhci_stream_info *stream_info)
802{
803	int cur_stream;
804	struct xhci_ring *cur_ring;
805
806	if (!stream_info)
807		return;
808
809	for (cur_stream = 1; cur_stream < stream_info->num_streams;
810			cur_stream++) {
811		cur_ring = stream_info->stream_rings[cur_stream];
812		if (cur_ring) {
813			xhci_ring_free(xhci, cur_ring);
814			stream_info->stream_rings[cur_stream] = NULL;
815		}
816	}
817	xhci_free_command(xhci, stream_info->free_streams_command);
818	xhci->cmd_ring_reserved_trbs--;
819	if (stream_info->stream_ctx_array)
820		xhci_free_stream_ctx(xhci,
821				stream_info->num_stream_ctxs,
822				stream_info->stream_ctx_array,
823				stream_info->ctx_array_dma);
824
825	kfree(stream_info->stream_rings);
826	kfree(stream_info);
827}
828
829
830/***************** Device context manipulation *************************/
831
832static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
833		struct xhci_virt_ep *ep)
834{
835	setup_timer(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
836		    (unsigned long)ep);
837	ep->xhci = xhci;
838}
839
840static void xhci_free_tt_info(struct xhci_hcd *xhci,
841		struct xhci_virt_device *virt_dev,
842		int slot_id)
843{
844	struct list_head *tt_list_head;
845	struct xhci_tt_bw_info *tt_info, *next;
846	bool slot_found = false;
847
848	/* If the device never made it past the Set Address stage,
849	 * it may not have the real_port set correctly.
850	 */
851	if (virt_dev->real_port == 0 ||
852			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
853		xhci_dbg(xhci, "Bad real port.\n");
854		return;
855	}
856
857	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
858	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
859		/* Multi-TT hubs will have more than one entry */
860		if (tt_info->slot_id == slot_id) {
861			slot_found = true;
862			list_del(&tt_info->tt_list);
863			kfree(tt_info);
864		} else if (slot_found) {
865			break;
866		}
867	}
868}
869
870int xhci_alloc_tt_info(struct xhci_hcd *xhci,
871		struct xhci_virt_device *virt_dev,
872		struct usb_device *hdev,
873		struct usb_tt *tt, gfp_t mem_flags)
874{
875	struct xhci_tt_bw_info		*tt_info;
876	unsigned int			num_ports;
877	int				i, j;
878
879	if (!tt->multi)
880		num_ports = 1;
881	else
882		num_ports = hdev->maxchild;
883
884	for (i = 0; i < num_ports; i++, tt_info++) {
885		struct xhci_interval_bw_table *bw_table;
886
887		tt_info = kzalloc(sizeof(*tt_info), mem_flags);
888		if (!tt_info)
889			goto free_tts;
890		INIT_LIST_HEAD(&tt_info->tt_list);
891		list_add(&tt_info->tt_list,
892				&xhci->rh_bw[virt_dev->real_port - 1].tts);
893		tt_info->slot_id = virt_dev->udev->slot_id;
894		if (tt->multi)
895			tt_info->ttport = i+1;
896		bw_table = &tt_info->bw_table;
897		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
898			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
899	}
900	return 0;
901
902free_tts:
903	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
904	return -ENOMEM;
905}
906
907
908/* All the xhci_tds in the ring's TD list should be freed at this point.
909 * Should be called with xhci->lock held if there is any chance the TT lists
910 * will be manipulated by the configure endpoint, allocate device, or update
911 * hub functions while this function is removing the TT entries from the list.
912 */
913void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
914{
915	struct xhci_virt_device *dev;
916	int i;
917	int old_active_eps = 0;
918
919	/* Slot ID 0 is reserved */
920	if (slot_id == 0 || !xhci->devs[slot_id])
921		return;
922
923	dev = xhci->devs[slot_id];
924	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
925	if (!dev)
926		return;
927
928	if (dev->tt_info)
929		old_active_eps = dev->tt_info->active_eps;
930
931	for (i = 0; i < 31; ++i) {
932		if (dev->eps[i].ring)
933			xhci_ring_free(xhci, dev->eps[i].ring);
934		if (dev->eps[i].stream_info)
935			xhci_free_stream_info(xhci,
936					dev->eps[i].stream_info);
937		/* Endpoints on the TT/root port lists should have been removed
938		 * when usb_disable_device() was called for the device.
939		 * We can't drop them anyway, because the udev might have gone
940		 * away by this point, and we can't tell what speed it was.
941		 */
942		if (!list_empty(&dev->eps[i].bw_endpoint_list))
943			xhci_warn(xhci, "Slot %u endpoint %u "
944					"not removed from BW list!\n",
945					slot_id, i);
946	}
947	/* If this is a hub, free the TT(s) from the TT list */
948	xhci_free_tt_info(xhci, dev, slot_id);
949	/* If necessary, update the number of active TTs on this root port */
950	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
951
952	if (dev->ring_cache) {
953		for (i = 0; i < dev->num_rings_cached; i++)
954			xhci_ring_free(xhci, dev->ring_cache[i]);
955		kfree(dev->ring_cache);
956	}
957
958	if (dev->in_ctx)
959		xhci_free_container_ctx(xhci, dev->in_ctx);
960	if (dev->out_ctx)
961		xhci_free_container_ctx(xhci, dev->out_ctx);
962
963	kfree(xhci->devs[slot_id]);
964	xhci->devs[slot_id] = NULL;
965}
966
967int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
968		struct usb_device *udev, gfp_t flags)
969{
970	struct xhci_virt_device *dev;
971	int i;
972
973	/* Slot ID 0 is reserved */
974	if (slot_id == 0 || xhci->devs[slot_id]) {
975		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
976		return 0;
977	}
978
979	xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
980	if (!xhci->devs[slot_id])
981		return 0;
982	dev = xhci->devs[slot_id];
983
984	/* Allocate the (output) device context that will be used in the HC. */
985	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
986	if (!dev->out_ctx)
987		goto fail;
988
989	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
990			(unsigned long long)dev->out_ctx->dma);
991
992	/* Allocate the (input) device context for address device command */
993	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
994	if (!dev->in_ctx)
995		goto fail;
996
997	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
998			(unsigned long long)dev->in_ctx->dma);
999
1000	/* Initialize the cancellation list and watchdog timers for each ep */
1001	for (i = 0; i < 31; i++) {
1002		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1003		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1004		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1005	}
1006
1007	/* Allocate endpoint 0 ring */
1008	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
1009	if (!dev->eps[0].ring)
1010		goto fail;
1011
1012	/* Allocate pointers to the ring cache */
1013	dev->ring_cache = kzalloc(
1014			sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
1015			flags);
1016	if (!dev->ring_cache)
1017		goto fail;
1018	dev->num_rings_cached = 0;
1019
1020	init_completion(&dev->cmd_completion);
1021	dev->udev = udev;
1022
1023	/* Point to output device context in dcbaa. */
1024	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1025	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1026		 slot_id,
1027		 &xhci->dcbaa->dev_context_ptrs[slot_id],
1028		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1029
1030	return 1;
1031fail:
1032	xhci_free_virt_device(xhci, slot_id);
1033	return 0;
1034}
1035
1036void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1037		struct usb_device *udev)
1038{
1039	struct xhci_virt_device *virt_dev;
1040	struct xhci_ep_ctx	*ep0_ctx;
1041	struct xhci_ring	*ep_ring;
1042
1043	virt_dev = xhci->devs[udev->slot_id];
1044	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1045	ep_ring = virt_dev->eps[0].ring;
1046	/*
1047	 * FIXME we don't keep track of the dequeue pointer very well after a
1048	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1049	 * host to our enqueue pointer.  This should only be called after a
1050	 * configured device has reset, so all control transfers should have
1051	 * been completed or cancelled before the reset.
1052	 */
1053	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1054							ep_ring->enqueue)
1055				   | ep_ring->cycle_state);
1056}
1057
1058/*
1059 * The xHCI roothub may have ports of differing speeds in any order in the port
1060 * status registers.  xhci->port_array provides an array of the port speed for
1061 * each offset into the port status registers.
1062 *
1063 * The xHCI hardware wants to know the roothub port number that the USB device
1064 * is attached to (or the roothub port its ancestor hub is attached to).  All we
1065 * know is the index of that port under either the USB 2.0 or the USB 3.0
1066 * roothub, but that doesn't give us the real index into the HW port status
1067 * registers. Call xhci_find_raw_port_number() to get real index.
1068 */
1069static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1070		struct usb_device *udev)
1071{
1072	struct usb_device *top_dev;
1073	struct usb_hcd *hcd;
1074
1075	if (udev->speed == USB_SPEED_SUPER)
1076		hcd = xhci->shared_hcd;
1077	else
1078		hcd = xhci->main_hcd;
1079
1080	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1081			top_dev = top_dev->parent)
1082		/* Found device below root hub */;
1083
1084	return	xhci_find_raw_port_number(hcd, top_dev->portnum);
1085}
1086
1087/* Setup an xHCI virtual device for a Set Address command */
1088int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1089{
1090	struct xhci_virt_device *dev;
1091	struct xhci_ep_ctx	*ep0_ctx;
1092	struct xhci_slot_ctx    *slot_ctx;
1093	u32			port_num;
1094	u32			max_packets;
1095	struct usb_device *top_dev;
1096
1097	dev = xhci->devs[udev->slot_id];
1098	/* Slot ID 0 is reserved */
1099	if (udev->slot_id == 0 || !dev) {
1100		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1101				udev->slot_id);
1102		return -EINVAL;
1103	}
1104	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1105	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1106
1107	/* 3) Only the control endpoint is valid - one endpoint context */
1108	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1109	switch (udev->speed) {
1110	case USB_SPEED_SUPER:
1111		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1112		max_packets = MAX_PACKET(512);
1113		break;
1114	case USB_SPEED_HIGH:
1115		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1116		max_packets = MAX_PACKET(64);
1117		break;
1118	/* USB core guesses at a 64-byte max packet first for FS devices */
1119	case USB_SPEED_FULL:
1120		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1121		max_packets = MAX_PACKET(64);
1122		break;
1123	case USB_SPEED_LOW:
1124		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1125		max_packets = MAX_PACKET(8);
1126		break;
1127	case USB_SPEED_WIRELESS:
1128		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1129		return -EINVAL;
1130		break;
1131	default:
1132		/* Speed was set earlier, this shouldn't happen. */
1133		return -EINVAL;
1134	}
1135	/* Find the root hub port this device is under */
1136	port_num = xhci_find_real_port_number(xhci, udev);
1137	if (!port_num)
1138		return -EINVAL;
1139	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1140	/* Set the port number in the virtual_device to the faked port number */
1141	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1142			top_dev = top_dev->parent)
1143		/* Found device below root hub */;
1144	dev->fake_port = top_dev->portnum;
1145	dev->real_port = port_num;
1146	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1147	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1148
1149	/* Find the right bandwidth table that this device will be a part of.
1150	 * If this is a full speed device attached directly to a root port (or a
1151	 * decendent of one), it counts as a primary bandwidth domain, not a
1152	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1153	 * will never be created for the HS root hub.
1154	 */
1155	if (!udev->tt || !udev->tt->hub->parent) {
1156		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1157	} else {
1158		struct xhci_root_port_bw_info *rh_bw;
1159		struct xhci_tt_bw_info *tt_bw;
1160
1161		rh_bw = &xhci->rh_bw[port_num - 1];
1162		/* Find the right TT. */
1163		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1164			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1165				continue;
1166
1167			if (!dev->udev->tt->multi ||
1168					(udev->tt->multi &&
1169					 tt_bw->ttport == dev->udev->ttport)) {
1170				dev->bw_table = &tt_bw->bw_table;
1171				dev->tt_info = tt_bw;
1172				break;
1173			}
1174		}
1175		if (!dev->tt_info)
1176			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1177	}
1178
1179	/* Is this a LS/FS device under an external HS hub? */
1180	if (udev->tt && udev->tt->hub->parent) {
1181		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1182						(udev->ttport << 8));
1183		if (udev->tt->multi)
1184			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1185	}
1186	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1187	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1188
1189	/* Step 4 - ring already allocated */
1190	/* Step 5 */
1191	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1192
1193	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1194	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1195					 max_packets);
1196
1197	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1198				   dev->eps[0].ring->cycle_state);
1199
1200	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1201
1202	return 0;
1203}
1204
1205/*
1206 * Convert interval expressed as 2^(bInterval - 1) == interval into
1207 * straight exponent value 2^n == interval.
1208 *
1209 */
1210static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1211		struct usb_host_endpoint *ep)
1212{
1213	unsigned int interval;
1214
1215	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1216	if (interval != ep->desc.bInterval - 1)
1217		dev_warn(&udev->dev,
1218			 "ep %#x - rounding interval to %d %sframes\n",
1219			 ep->desc.bEndpointAddress,
1220			 1 << interval,
1221			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1222
1223	if (udev->speed == USB_SPEED_FULL) {
1224		/*
1225		 * Full speed isoc endpoints specify interval in frames,
1226		 * not microframes. We are using microframes everywhere,
1227		 * so adjust accordingly.
1228		 */
1229		interval += 3;	/* 1 frame = 2^3 uframes */
1230	}
1231
1232	return interval;
1233}
1234
1235/*
1236 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1237 * microframes, rounded down to nearest power of 2.
1238 */
1239static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1240		struct usb_host_endpoint *ep, unsigned int desc_interval,
1241		unsigned int min_exponent, unsigned int max_exponent)
1242{
1243	unsigned int interval;
1244
1245	interval = fls(desc_interval) - 1;
1246	interval = clamp_val(interval, min_exponent, max_exponent);
1247	if ((1 << interval) != desc_interval)
1248		dev_warn(&udev->dev,
1249			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1250			 ep->desc.bEndpointAddress,
1251			 1 << interval,
1252			 desc_interval);
1253
1254	return interval;
1255}
1256
1257static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1258		struct usb_host_endpoint *ep)
1259{
1260	if (ep->desc.bInterval == 0)
1261		return 0;
1262	return xhci_microframes_to_exponent(udev, ep,
1263			ep->desc.bInterval, 0, 15);
1264}
1265
1266
1267static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1268		struct usb_host_endpoint *ep)
1269{
1270	return xhci_microframes_to_exponent(udev, ep,
1271			ep->desc.bInterval * 8, 3, 10);
1272}
1273
1274/* Return the polling or NAK interval.
1275 *
1276 * The polling interval is expressed in "microframes".  If xHCI's Interval field
1277 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1278 *
1279 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1280 * is set to 0.
1281 */
1282static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1283		struct usb_host_endpoint *ep)
1284{
1285	unsigned int interval = 0;
1286
1287	switch (udev->speed) {
1288	case USB_SPEED_HIGH:
1289		/* Max NAK rate */
1290		if (usb_endpoint_xfer_control(&ep->desc) ||
1291		    usb_endpoint_xfer_bulk(&ep->desc)) {
1292			interval = xhci_parse_microframe_interval(udev, ep);
1293			break;
1294		}
1295		/* Fall through - SS and HS isoc/int have same decoding */
1296
1297	case USB_SPEED_SUPER:
1298		if (usb_endpoint_xfer_int(&ep->desc) ||
1299		    usb_endpoint_xfer_isoc(&ep->desc)) {
1300			interval = xhci_parse_exponent_interval(udev, ep);
1301		}
1302		break;
1303
1304	case USB_SPEED_FULL:
1305		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1306			interval = xhci_parse_exponent_interval(udev, ep);
1307			break;
1308		}
1309		/*
1310		 * Fall through for interrupt endpoint interval decoding
1311		 * since it uses the same rules as low speed interrupt
1312		 * endpoints.
1313		 */
1314
1315	case USB_SPEED_LOW:
1316		if (usb_endpoint_xfer_int(&ep->desc) ||
1317		    usb_endpoint_xfer_isoc(&ep->desc)) {
1318
1319			interval = xhci_parse_frame_interval(udev, ep);
1320		}
1321		break;
1322
1323	default:
1324		BUG();
1325	}
1326	return EP_INTERVAL(interval);
1327}
1328
1329/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1330 * High speed endpoint descriptors can define "the number of additional
1331 * transaction opportunities per microframe", but that goes in the Max Burst
1332 * endpoint context field.
1333 */
1334static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1335		struct usb_host_endpoint *ep)
1336{
1337	if (udev->speed != USB_SPEED_SUPER ||
1338			!usb_endpoint_xfer_isoc(&ep->desc))
1339		return 0;
1340	return ep->ss_ep_comp.bmAttributes;
1341}
1342
1343static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1344{
1345	int in;
1346	u32 type;
1347
1348	in = usb_endpoint_dir_in(&ep->desc);
1349	if (usb_endpoint_xfer_control(&ep->desc)) {
1350		type = EP_TYPE(CTRL_EP);
1351	} else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1352		if (in)
1353			type = EP_TYPE(BULK_IN_EP);
1354		else
1355			type = EP_TYPE(BULK_OUT_EP);
1356	} else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1357		if (in)
1358			type = EP_TYPE(ISOC_IN_EP);
1359		else
1360			type = EP_TYPE(ISOC_OUT_EP);
1361	} else if (usb_endpoint_xfer_int(&ep->desc)) {
1362		if (in)
1363			type = EP_TYPE(INT_IN_EP);
1364		else
1365			type = EP_TYPE(INT_OUT_EP);
1366	} else {
1367		type = 0;
1368	}
1369	return type;
1370}
1371
1372/* Return the maximum endpoint service interval time (ESIT) payload.
1373 * Basically, this is the maxpacket size, multiplied by the burst size
1374 * and mult size.
1375 */
1376static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1377		struct usb_host_endpoint *ep)
1378{
1379	int max_burst;
1380	int max_packet;
1381
1382	/* Only applies for interrupt or isochronous endpoints */
1383	if (usb_endpoint_xfer_control(&ep->desc) ||
1384			usb_endpoint_xfer_bulk(&ep->desc))
1385		return 0;
1386
1387	if (udev->speed == USB_SPEED_SUPER)
1388		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1389
1390	max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1391	max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1392	/* A 0 in max burst means 1 transfer per ESIT */
1393	return max_packet * (max_burst + 1);
1394}
1395
1396/* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1397 * Drivers will have to call usb_alloc_streams() to do that.
1398 */
1399int xhci_endpoint_init(struct xhci_hcd *xhci,
1400		struct xhci_virt_device *virt_dev,
1401		struct usb_device *udev,
1402		struct usb_host_endpoint *ep,
1403		gfp_t mem_flags)
1404{
1405	unsigned int ep_index;
1406	struct xhci_ep_ctx *ep_ctx;
1407	struct xhci_ring *ep_ring;
1408	unsigned int max_packet;
1409	unsigned int max_burst;
1410	enum xhci_ring_type type;
1411	u32 max_esit_payload;
1412	u32 endpoint_type;
1413
1414	ep_index = xhci_get_endpoint_index(&ep->desc);
1415	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1416
1417	endpoint_type = xhci_get_endpoint_type(ep);
1418	if (!endpoint_type)
1419		return -EINVAL;
1420	ep_ctx->ep_info2 = cpu_to_le32(endpoint_type);
1421
1422	type = usb_endpoint_type(&ep->desc);
1423	/* Set up the endpoint ring */
1424	virt_dev->eps[ep_index].new_ring =
1425		xhci_ring_alloc(xhci, 2, 1, type, mem_flags);
1426	if (!virt_dev->eps[ep_index].new_ring) {
1427		/* Attempt to use the ring cache */
1428		if (virt_dev->num_rings_cached == 0)
1429			return -ENOMEM;
1430		virt_dev->num_rings_cached--;
1431		virt_dev->eps[ep_index].new_ring =
1432			virt_dev->ring_cache[virt_dev->num_rings_cached];
1433		virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1434		xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1435					1, type);
1436	}
1437	virt_dev->eps[ep_index].skip = false;
1438	ep_ring = virt_dev->eps[ep_index].new_ring;
1439	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1440
1441	ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1442				      | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1443
1444	/* FIXME dig Mult and streams info out of ep companion desc */
1445
1446	/* Allow 3 retries for everything but isoc;
1447	 * CErr shall be set to 0 for Isoch endpoints.
1448	 */
1449	if (!usb_endpoint_xfer_isoc(&ep->desc))
1450		ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(3));
1451	else
1452		ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(0));
1453
1454	/* Set the max packet size and max burst */
1455	max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1456	max_burst = 0;
1457	switch (udev->speed) {
1458	case USB_SPEED_SUPER:
1459		/* dig out max burst from ep companion desc */
1460		max_burst = ep->ss_ep_comp.bMaxBurst;
1461		break;
1462	case USB_SPEED_HIGH:
1463		/* Some devices get this wrong */
1464		if (usb_endpoint_xfer_bulk(&ep->desc))
1465			max_packet = 512;
1466		/* bits 11:12 specify the number of additional transaction
1467		 * opportunities per microframe (USB 2.0, section 9.6.6)
1468		 */
1469		if (usb_endpoint_xfer_isoc(&ep->desc) ||
1470				usb_endpoint_xfer_int(&ep->desc)) {
1471			max_burst = (usb_endpoint_maxp(&ep->desc)
1472				     & 0x1800) >> 11;
1473		}
1474		break;
1475	case USB_SPEED_FULL:
1476	case USB_SPEED_LOW:
1477		break;
1478	default:
1479		BUG();
1480	}
1481	ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet) |
1482			MAX_BURST(max_burst));
1483	max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1484	ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1485
1486	/*
1487	 * XXX no idea how to calculate the average TRB buffer length for bulk
1488	 * endpoints, as the driver gives us no clue how big each scatter gather
1489	 * list entry (or buffer) is going to be.
1490	 *
1491	 * For isochronous and interrupt endpoints, we set it to the max
1492	 * available, until we have new API in the USB core to allow drivers to
1493	 * declare how much bandwidth they actually need.
1494	 *
1495	 * Normally, it would be calculated by taking the total of the buffer
1496	 * lengths in the TD and then dividing by the number of TRBs in a TD,
1497	 * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't
1498	 * use Event Data TRBs, and we don't chain in a link TRB on short
1499	 * transfers, we're basically dividing by 1.
1500	 *
1501	 * xHCI 1.0 and 1.1 specification indicates that the Average TRB Length
1502	 * should be set to 8 for control endpoints.
1503	 */
1504	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1505		ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1506	else
1507		ep_ctx->tx_info |=
1508			 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1509
1510	/* FIXME Debug endpoint context */
1511	return 0;
1512}
1513
1514void xhci_endpoint_zero(struct xhci_hcd *xhci,
1515		struct xhci_virt_device *virt_dev,
1516		struct usb_host_endpoint *ep)
1517{
1518	unsigned int ep_index;
1519	struct xhci_ep_ctx *ep_ctx;
1520
1521	ep_index = xhci_get_endpoint_index(&ep->desc);
1522	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1523
1524	ep_ctx->ep_info = 0;
1525	ep_ctx->ep_info2 = 0;
1526	ep_ctx->deq = 0;
1527	ep_ctx->tx_info = 0;
1528	/* Don't free the endpoint ring until the set interface or configuration
1529	 * request succeeds.
1530	 */
1531}
1532
1533void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1534{
1535	bw_info->ep_interval = 0;
1536	bw_info->mult = 0;
1537	bw_info->num_packets = 0;
1538	bw_info->max_packet_size = 0;
1539	bw_info->type = 0;
1540	bw_info->max_esit_payload = 0;
1541}
1542
1543void xhci_update_bw_info(struct xhci_hcd *xhci,
1544		struct xhci_container_ctx *in_ctx,
1545		struct xhci_input_control_ctx *ctrl_ctx,
1546		struct xhci_virt_device *virt_dev)
1547{
1548	struct xhci_bw_info *bw_info;
1549	struct xhci_ep_ctx *ep_ctx;
1550	unsigned int ep_type;
1551	int i;
1552
1553	for (i = 1; i < 31; ++i) {
1554		bw_info = &virt_dev->eps[i].bw_info;
1555
1556		/* We can't tell what endpoint type is being dropped, but
1557		 * unconditionally clearing the bandwidth info for non-periodic
1558		 * endpoints should be harmless because the info will never be
1559		 * set in the first place.
1560		 */
1561		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1562			/* Dropped endpoint */
1563			xhci_clear_endpoint_bw_info(bw_info);
1564			continue;
1565		}
1566
1567		if (EP_IS_ADDED(ctrl_ctx, i)) {
1568			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1569			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1570
1571			/* Ignore non-periodic endpoints */
1572			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1573					ep_type != ISOC_IN_EP &&
1574					ep_type != INT_IN_EP)
1575				continue;
1576
1577			/* Added or changed endpoint */
1578			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1579					le32_to_cpu(ep_ctx->ep_info));
1580			/* Number of packets and mult are zero-based in the
1581			 * input context, but we want one-based for the
1582			 * interval table.
1583			 */
1584			bw_info->mult = CTX_TO_EP_MULT(
1585					le32_to_cpu(ep_ctx->ep_info)) + 1;
1586			bw_info->num_packets = CTX_TO_MAX_BURST(
1587					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1588			bw_info->max_packet_size = MAX_PACKET_DECODED(
1589					le32_to_cpu(ep_ctx->ep_info2));
1590			bw_info->type = ep_type;
1591			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1592					le32_to_cpu(ep_ctx->tx_info));
1593		}
1594	}
1595}
1596
1597/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1598 * Useful when you want to change one particular aspect of the endpoint and then
1599 * issue a configure endpoint command.
1600 */
1601void xhci_endpoint_copy(struct xhci_hcd *xhci,
1602		struct xhci_container_ctx *in_ctx,
1603		struct xhci_container_ctx *out_ctx,
1604		unsigned int ep_index)
1605{
1606	struct xhci_ep_ctx *out_ep_ctx;
1607	struct xhci_ep_ctx *in_ep_ctx;
1608
1609	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1610	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1611
1612	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1613	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1614	in_ep_ctx->deq = out_ep_ctx->deq;
1615	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1616}
1617
1618/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1619 * Useful when you want to change one particular aspect of the endpoint and then
1620 * issue a configure endpoint command.  Only the context entries field matters,
1621 * but we'll copy the whole thing anyway.
1622 */
1623void xhci_slot_copy(struct xhci_hcd *xhci,
1624		struct xhci_container_ctx *in_ctx,
1625		struct xhci_container_ctx *out_ctx)
1626{
1627	struct xhci_slot_ctx *in_slot_ctx;
1628	struct xhci_slot_ctx *out_slot_ctx;
1629
1630	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1631	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1632
1633	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1634	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1635	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1636	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1637}
1638
1639/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1640static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1641{
1642	int i;
1643	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1644	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1645
1646	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1647			"Allocating %d scratchpad buffers", num_sp);
1648
1649	if (!num_sp)
1650		return 0;
1651
1652	xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1653	if (!xhci->scratchpad)
1654		goto fail_sp;
1655
1656	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1657				     num_sp * sizeof(u64),
1658				     &xhci->scratchpad->sp_dma, flags);
1659	if (!xhci->scratchpad->sp_array)
1660		goto fail_sp2;
1661
1662	xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1663	if (!xhci->scratchpad->sp_buffers)
1664		goto fail_sp3;
1665
1666	xhci->scratchpad->sp_dma_buffers =
1667		kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1668
1669	if (!xhci->scratchpad->sp_dma_buffers)
1670		goto fail_sp4;
1671
1672	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1673	for (i = 0; i < num_sp; i++) {
1674		dma_addr_t dma;
1675		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1676				flags);
1677		if (!buf)
1678			goto fail_sp5;
1679
1680		xhci->scratchpad->sp_array[i] = dma;
1681		xhci->scratchpad->sp_buffers[i] = buf;
1682		xhci->scratchpad->sp_dma_buffers[i] = dma;
1683	}
1684
1685	return 0;
1686
1687 fail_sp5:
1688	for (i = i - 1; i >= 0; i--) {
1689		dma_free_coherent(dev, xhci->page_size,
1690				    xhci->scratchpad->sp_buffers[i],
1691				    xhci->scratchpad->sp_dma_buffers[i]);
1692	}
1693	kfree(xhci->scratchpad->sp_dma_buffers);
1694
1695 fail_sp4:
1696	kfree(xhci->scratchpad->sp_buffers);
1697
1698 fail_sp3:
1699	dma_free_coherent(dev, num_sp * sizeof(u64),
1700			    xhci->scratchpad->sp_array,
1701			    xhci->scratchpad->sp_dma);
1702
1703 fail_sp2:
1704	kfree(xhci->scratchpad);
1705	xhci->scratchpad = NULL;
1706
1707 fail_sp:
1708	return -ENOMEM;
1709}
1710
1711static void scratchpad_free(struct xhci_hcd *xhci)
1712{
1713	int num_sp;
1714	int i;
1715	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1716
1717	if (!xhci->scratchpad)
1718		return;
1719
1720	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1721
1722	for (i = 0; i < num_sp; i++) {
1723		dma_free_coherent(dev, xhci->page_size,
1724				    xhci->scratchpad->sp_buffers[i],
1725				    xhci->scratchpad->sp_dma_buffers[i]);
1726	}
1727	kfree(xhci->scratchpad->sp_dma_buffers);
1728	kfree(xhci->scratchpad->sp_buffers);
1729	dma_free_coherent(dev, num_sp * sizeof(u64),
1730			    xhci->scratchpad->sp_array,
1731			    xhci->scratchpad->sp_dma);
1732	kfree(xhci->scratchpad);
1733	xhci->scratchpad = NULL;
1734}
1735
1736struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1737		bool allocate_in_ctx, bool allocate_completion,
1738		gfp_t mem_flags)
1739{
1740	struct xhci_command *command;
1741
1742	command = kzalloc(sizeof(*command), mem_flags);
1743	if (!command)
1744		return NULL;
1745
1746	if (allocate_in_ctx) {
1747		command->in_ctx =
1748			xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1749					mem_flags);
1750		if (!command->in_ctx) {
1751			kfree(command);
1752			return NULL;
1753		}
1754	}
1755
1756	if (allocate_completion) {
1757		command->completion =
1758			kzalloc(sizeof(struct completion), mem_flags);
1759		if (!command->completion) {
1760			xhci_free_container_ctx(xhci, command->in_ctx);
1761			kfree(command);
1762			return NULL;
1763		}
1764		init_completion(command->completion);
1765	}
1766
1767	command->status = 0;
1768	INIT_LIST_HEAD(&command->cmd_list);
1769	return command;
1770}
1771
1772void xhci_urb_free_priv(struct urb_priv *urb_priv)
1773{
1774	if (urb_priv) {
1775		kfree(urb_priv->td[0]);
1776		kfree(urb_priv);
1777	}
1778}
1779
1780void xhci_free_command(struct xhci_hcd *xhci,
1781		struct xhci_command *command)
1782{
1783	xhci_free_container_ctx(xhci,
1784			command->in_ctx);
1785	kfree(command->completion);
1786	kfree(command);
1787}
1788
1789void xhci_mem_cleanup(struct xhci_hcd *xhci)
1790{
1791	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
1792	int size;
1793	int i, j, num_ports;
1794
1795	del_timer_sync(&xhci->cmd_timer);
1796
1797	/* Free the Event Ring Segment Table and the actual Event Ring */
1798	size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1799	if (xhci->erst.entries)
1800		dma_free_coherent(dev, size,
1801				xhci->erst.entries, xhci->erst.erst_dma_addr);
1802	xhci->erst.entries = NULL;
1803	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
1804	if (xhci->event_ring)
1805		xhci_ring_free(xhci, xhci->event_ring);
1806	xhci->event_ring = NULL;
1807	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1808
1809	if (xhci->lpm_command)
1810		xhci_free_command(xhci, xhci->lpm_command);
1811	xhci->lpm_command = NULL;
1812	if (xhci->cmd_ring)
1813		xhci_ring_free(xhci, xhci->cmd_ring);
1814	xhci->cmd_ring = NULL;
1815	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1816	xhci_cleanup_command_queue(xhci);
1817
1818	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1819	for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1820		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1821		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1822			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1823			while (!list_empty(ep))
1824				list_del_init(ep->next);
1825		}
1826	}
1827
1828	for (i = 1; i < MAX_HC_SLOTS; ++i)
1829		xhci_free_virt_device(xhci, i);
1830
1831	if (xhci->segment_pool)
1832		dma_pool_destroy(xhci->segment_pool);
1833	xhci->segment_pool = NULL;
1834	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1835
1836	if (xhci->device_pool)
1837		dma_pool_destroy(xhci->device_pool);
1838	xhci->device_pool = NULL;
1839	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1840
1841	if (xhci->small_streams_pool)
1842		dma_pool_destroy(xhci->small_streams_pool);
1843	xhci->small_streams_pool = NULL;
1844	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1845			"Freed small stream array pool");
1846
1847	if (xhci->medium_streams_pool)
1848		dma_pool_destroy(xhci->medium_streams_pool);
1849	xhci->medium_streams_pool = NULL;
1850	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1851			"Freed medium stream array pool");
1852
1853	if (xhci->dcbaa)
1854		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1855				xhci->dcbaa, xhci->dcbaa->dma);
1856	xhci->dcbaa = NULL;
1857
1858	scratchpad_free(xhci);
1859
1860	if (!xhci->rh_bw)
1861		goto no_bw;
1862
1863	for (i = 0; i < num_ports; i++) {
1864		struct xhci_tt_bw_info *tt, *n;
1865		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1866			list_del(&tt->tt_list);
1867			kfree(tt);
1868		}
1869	}
1870
1871no_bw:
1872	xhci->cmd_ring_reserved_trbs = 0;
1873	xhci->num_usb2_ports = 0;
1874	xhci->num_usb3_ports = 0;
1875	xhci->num_active_eps = 0;
1876	kfree(xhci->usb2_ports);
1877	kfree(xhci->usb3_ports);
1878	kfree(xhci->port_array);
1879	kfree(xhci->rh_bw);
1880	kfree(xhci->ext_caps);
1881
1882	xhci->usb2_ports = NULL;
1883	xhci->usb3_ports = NULL;
1884	xhci->port_array = NULL;
1885	xhci->rh_bw = NULL;
1886	xhci->ext_caps = NULL;
1887
1888	xhci->page_size = 0;
1889	xhci->page_shift = 0;
1890	xhci->bus_state[0].bus_suspended = 0;
1891	xhci->bus_state[1].bus_suspended = 0;
1892}
1893
1894static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1895		struct xhci_segment *input_seg,
1896		union xhci_trb *start_trb,
1897		union xhci_trb *end_trb,
1898		dma_addr_t input_dma,
1899		struct xhci_segment *result_seg,
1900		char *test_name, int test_number)
1901{
1902	unsigned long long start_dma;
1903	unsigned long long end_dma;
1904	struct xhci_segment *seg;
1905
1906	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1907	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1908
1909	seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1910	if (seg != result_seg) {
1911		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1912				test_name, test_number);
1913		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1914				"input DMA 0x%llx\n",
1915				input_seg,
1916				(unsigned long long) input_dma);
1917		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1918				"ending TRB %p (0x%llx DMA)\n",
1919				start_trb, start_dma,
1920				end_trb, end_dma);
1921		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1922				result_seg, seg);
1923		trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1924			  true);
1925		return -1;
1926	}
1927	return 0;
1928}
1929
1930/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1931static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1932{
1933	struct {
1934		dma_addr_t		input_dma;
1935		struct xhci_segment	*result_seg;
1936	} simple_test_vector [] = {
1937		/* A zeroed DMA field should fail */
1938		{ 0, NULL },
1939		/* One TRB before the ring start should fail */
1940		{ xhci->event_ring->first_seg->dma - 16, NULL },
1941		/* One byte before the ring start should fail */
1942		{ xhci->event_ring->first_seg->dma - 1, NULL },
1943		/* Starting TRB should succeed */
1944		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1945		/* Ending TRB should succeed */
1946		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1947			xhci->event_ring->first_seg },
1948		/* One byte after the ring end should fail */
1949		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1950		/* One TRB after the ring end should fail */
1951		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1952		/* An address of all ones should fail */
1953		{ (dma_addr_t) (~0), NULL },
1954	};
1955	struct {
1956		struct xhci_segment	*input_seg;
1957		union xhci_trb		*start_trb;
1958		union xhci_trb		*end_trb;
1959		dma_addr_t		input_dma;
1960		struct xhci_segment	*result_seg;
1961	} complex_test_vector [] = {
1962		/* Test feeding a valid DMA address from a different ring */
1963		{	.input_seg = xhci->event_ring->first_seg,
1964			.start_trb = xhci->event_ring->first_seg->trbs,
1965			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1966			.input_dma = xhci->cmd_ring->first_seg->dma,
1967			.result_seg = NULL,
1968		},
1969		/* Test feeding a valid end TRB from a different ring */
1970		{	.input_seg = xhci->event_ring->first_seg,
1971			.start_trb = xhci->event_ring->first_seg->trbs,
1972			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1973			.input_dma = xhci->cmd_ring->first_seg->dma,
1974			.result_seg = NULL,
1975		},
1976		/* Test feeding a valid start and end TRB from a different ring */
1977		{	.input_seg = xhci->event_ring->first_seg,
1978			.start_trb = xhci->cmd_ring->first_seg->trbs,
1979			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1980			.input_dma = xhci->cmd_ring->first_seg->dma,
1981			.result_seg = NULL,
1982		},
1983		/* TRB in this ring, but after this TD */
1984		{	.input_seg = xhci->event_ring->first_seg,
1985			.start_trb = &xhci->event_ring->first_seg->trbs[0],
1986			.end_trb = &xhci->event_ring->first_seg->trbs[3],
1987			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
1988			.result_seg = NULL,
1989		},
1990		/* TRB in this ring, but before this TD */
1991		{	.input_seg = xhci->event_ring->first_seg,
1992			.start_trb = &xhci->event_ring->first_seg->trbs[3],
1993			.end_trb = &xhci->event_ring->first_seg->trbs[6],
1994			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1995			.result_seg = NULL,
1996		},
1997		/* TRB in this ring, but after this wrapped TD */
1998		{	.input_seg = xhci->event_ring->first_seg,
1999			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2000			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2001			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
2002			.result_seg = NULL,
2003		},
2004		/* TRB in this ring, but before this wrapped TD */
2005		{	.input_seg = xhci->event_ring->first_seg,
2006			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2007			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2008			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2009			.result_seg = NULL,
2010		},
2011		/* TRB not in this ring, and we have a wrapped TD */
2012		{	.input_seg = xhci->event_ring->first_seg,
2013			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2014			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2015			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2016			.result_seg = NULL,
2017		},
2018	};
2019
2020	unsigned int num_tests;
2021	int i, ret;
2022
2023	num_tests = ARRAY_SIZE(simple_test_vector);
2024	for (i = 0; i < num_tests; i++) {
2025		ret = xhci_test_trb_in_td(xhci,
2026				xhci->event_ring->first_seg,
2027				xhci->event_ring->first_seg->trbs,
2028				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2029				simple_test_vector[i].input_dma,
2030				simple_test_vector[i].result_seg,
2031				"Simple", i);
2032		if (ret < 0)
2033			return ret;
2034	}
2035
2036	num_tests = ARRAY_SIZE(complex_test_vector);
2037	for (i = 0; i < num_tests; i++) {
2038		ret = xhci_test_trb_in_td(xhci,
2039				complex_test_vector[i].input_seg,
2040				complex_test_vector[i].start_trb,
2041				complex_test_vector[i].end_trb,
2042				complex_test_vector[i].input_dma,
2043				complex_test_vector[i].result_seg,
2044				"Complex", i);
2045		if (ret < 0)
2046			return ret;
2047	}
2048	xhci_dbg(xhci, "TRB math tests passed.\n");
2049	return 0;
2050}
2051
2052static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2053{
2054	u64 temp;
2055	dma_addr_t deq;
2056
2057	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2058			xhci->event_ring->dequeue);
2059	if (deq == 0 && !in_interrupt())
2060		xhci_warn(xhci, "WARN something wrong with SW event ring "
2061				"dequeue ptr.\n");
2062	/* Update HC event ring dequeue pointer */
2063	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2064	temp &= ERST_PTR_MASK;
2065	/* Don't clear the EHB bit (which is RW1C) because
2066	 * there might be more events to service.
2067	 */
2068	temp &= ~ERST_EHB;
2069	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2070			"// Write event ring dequeue pointer, "
2071			"preserving EHB bit");
2072	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2073			&xhci->ir_set->erst_dequeue);
2074}
2075
2076static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2077		__le32 __iomem *addr, u8 major_revision, int max_caps)
2078{
2079	u32 temp, port_offset, port_count;
2080	int i;
2081
2082	if (major_revision > 0x03) {
2083		xhci_warn(xhci, "Ignoring unknown port speed, "
2084				"Ext Cap %p, revision = 0x%x\n",
2085				addr, major_revision);
2086		/* Ignoring port protocol we can't understand. FIXME */
2087		return;
2088	}
2089
2090	/* Port offset and count in the third dword, see section 7.2 */
2091	temp = readl(addr + 2);
2092	port_offset = XHCI_EXT_PORT_OFF(temp);
2093	port_count = XHCI_EXT_PORT_COUNT(temp);
2094	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2095			"Ext Cap %p, port offset = %u, "
2096			"count = %u, revision = 0x%x",
2097			addr, port_offset, port_count, major_revision);
2098	/* Port count includes the current port offset */
2099	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2100		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2101		return;
2102
2103	/* cache usb2 port capabilities */
2104	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2105		xhci->ext_caps[xhci->num_ext_caps++] = temp;
2106
2107	/* Check the host's USB2 LPM capability */
2108	if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2109			(temp & XHCI_L1C)) {
2110		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2111				"xHCI 0.96: support USB2 software lpm");
2112		xhci->sw_lpm_support = 1;
2113	}
2114
2115	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2116		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2117				"xHCI 1.0: support USB2 software lpm");
2118		xhci->sw_lpm_support = 1;
2119		if (temp & XHCI_HLC) {
2120			xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2121					"xHCI 1.0: support USB2 hardware lpm");
2122			xhci->hw_lpm_support = 1;
2123		}
2124	}
2125
2126	port_offset--;
2127	for (i = port_offset; i < (port_offset + port_count); i++) {
2128		/* Duplicate entry.  Ignore the port if the revisions differ. */
2129		if (xhci->port_array[i] != 0) {
2130			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2131					" port %u\n", addr, i);
2132			xhci_warn(xhci, "Port was marked as USB %u, "
2133					"duplicated as USB %u\n",
2134					xhci->port_array[i], major_revision);
2135			/* Only adjust the roothub port counts if we haven't
2136			 * found a similar duplicate.
2137			 */
2138			if (xhci->port_array[i] != major_revision &&
2139				xhci->port_array[i] != DUPLICATE_ENTRY) {
2140				if (xhci->port_array[i] == 0x03)
2141					xhci->num_usb3_ports--;
2142				else
2143					xhci->num_usb2_ports--;
2144				xhci->port_array[i] = DUPLICATE_ENTRY;
2145			}
2146			/* FIXME: Should we disable the port? */
2147			continue;
2148		}
2149		xhci->port_array[i] = major_revision;
2150		if (major_revision == 0x03)
2151			xhci->num_usb3_ports++;
2152		else
2153			xhci->num_usb2_ports++;
2154	}
2155	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2156}
2157
2158/*
2159 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2160 * specify what speeds each port is supposed to be.  We can't count on the port
2161 * speed bits in the PORTSC register being correct until a device is connected,
2162 * but we need to set up the two fake roothubs with the correct number of USB
2163 * 3.0 and USB 2.0 ports at host controller initialization time.
2164 */
2165static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2166{
2167	__le32 __iomem *addr, *tmp_addr;
2168	u32 offset, tmp_offset;
2169	unsigned int num_ports;
2170	int i, j, port_index;
2171	int cap_count = 0;
2172
2173	addr = &xhci->cap_regs->hcc_params;
2174	offset = XHCI_HCC_EXT_CAPS(readl(addr));
2175	if (offset == 0) {
2176		xhci_err(xhci, "No Extended Capability registers, "
2177				"unable to set up roothub.\n");
2178		return -ENODEV;
2179	}
2180
2181	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2182	xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2183	if (!xhci->port_array)
2184		return -ENOMEM;
2185
2186	xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2187	if (!xhci->rh_bw)
2188		return -ENOMEM;
2189	for (i = 0; i < num_ports; i++) {
2190		struct xhci_interval_bw_table *bw_table;
2191
2192		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2193		bw_table = &xhci->rh_bw[i].bw_table;
2194		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2195			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2196	}
2197
2198	/*
2199	 * For whatever reason, the first capability offset is from the
2200	 * capability register base, not from the HCCPARAMS register.
2201	 * See section 5.3.6 for offset calculation.
2202	 */
2203	addr = &xhci->cap_regs->hc_capbase + offset;
2204
2205	tmp_addr = addr;
2206	tmp_offset = offset;
2207
2208	/* count extended protocol capability entries for later caching */
2209	do {
2210		u32 cap_id;
2211		cap_id = readl(tmp_addr);
2212		if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2213			cap_count++;
2214		tmp_offset = XHCI_EXT_CAPS_NEXT(cap_id);
2215		tmp_addr += tmp_offset;
2216	} while (tmp_offset);
2217
2218	xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2219	if (!xhci->ext_caps)
2220		return -ENOMEM;
2221
2222	while (1) {
2223		u32 cap_id;
2224
2225		cap_id = readl(addr);
2226		if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2227			xhci_add_in_port(xhci, num_ports, addr,
2228					(u8) XHCI_EXT_PORT_MAJOR(cap_id),
2229					cap_count);
2230		offset = XHCI_EXT_CAPS_NEXT(cap_id);
2231		if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
2232				== num_ports)
2233			break;
2234		/*
2235		 * Once you're into the Extended Capabilities, the offset is
2236		 * always relative to the register holding the offset.
2237		 */
2238		addr += offset;
2239	}
2240
2241	if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2242		xhci_warn(xhci, "No ports on the roothubs?\n");
2243		return -ENODEV;
2244	}
2245	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2246			"Found %u USB 2.0 ports and %u USB 3.0 ports.",
2247			xhci->num_usb2_ports, xhci->num_usb3_ports);
2248
2249	/* Place limits on the number of roothub ports so that the hub
2250	 * descriptors aren't longer than the USB core will allocate.
2251	 */
2252	if (xhci->num_usb3_ports > 15) {
2253		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2254				"Limiting USB 3.0 roothub ports to 15.");
2255		xhci->num_usb3_ports = 15;
2256	}
2257	if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2258		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2259				"Limiting USB 2.0 roothub ports to %u.",
2260				USB_MAXCHILDREN);
2261		xhci->num_usb2_ports = USB_MAXCHILDREN;
2262	}
2263
2264	/*
2265	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2266	 * Not sure how the USB core will handle a hub with no ports...
2267	 */
2268	if (xhci->num_usb2_ports) {
2269		xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2270				xhci->num_usb2_ports, flags);
2271		if (!xhci->usb2_ports)
2272			return -ENOMEM;
2273
2274		port_index = 0;
2275		for (i = 0; i < num_ports; i++) {
2276			if (xhci->port_array[i] == 0x03 ||
2277					xhci->port_array[i] == 0 ||
2278					xhci->port_array[i] == DUPLICATE_ENTRY)
2279				continue;
2280
2281			xhci->usb2_ports[port_index] =
2282				&xhci->op_regs->port_status_base +
2283				NUM_PORT_REGS*i;
2284			xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2285					"USB 2.0 port at index %u, "
2286					"addr = %p", i,
2287					xhci->usb2_ports[port_index]);
2288			port_index++;
2289			if (port_index == xhci->num_usb2_ports)
2290				break;
2291		}
2292	}
2293	if (xhci->num_usb3_ports) {
2294		xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2295				xhci->num_usb3_ports, flags);
2296		if (!xhci->usb3_ports)
2297			return -ENOMEM;
2298
2299		port_index = 0;
2300		for (i = 0; i < num_ports; i++)
2301			if (xhci->port_array[i] == 0x03) {
2302				xhci->usb3_ports[port_index] =
2303					&xhci->op_regs->port_status_base +
2304					NUM_PORT_REGS*i;
2305				xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2306						"USB 3.0 port at index %u, "
2307						"addr = %p", i,
2308						xhci->usb3_ports[port_index]);
2309				port_index++;
2310				if (port_index == xhci->num_usb3_ports)
2311					break;
2312			}
2313	}
2314	return 0;
2315}
2316
2317int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2318{
2319	dma_addr_t	dma;
2320	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
2321	unsigned int	val, val2;
2322	u64		val_64;
2323	struct xhci_segment	*seg;
2324	u32 page_size, temp;
2325	int i;
2326
2327	INIT_LIST_HEAD(&xhci->cmd_list);
2328
2329	/* init command timeout timer */
2330	setup_timer(&xhci->cmd_timer, xhci_handle_command_timeout,
2331		    (unsigned long)xhci);
2332
2333	page_size = readl(&xhci->op_regs->page_size);
2334	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2335			"Supported page size register = 0x%x", page_size);
2336	for (i = 0; i < 16; i++) {
2337		if ((0x1 & page_size) != 0)
2338			break;
2339		page_size = page_size >> 1;
2340	}
2341	if (i < 16)
2342		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2343			"Supported page size of %iK", (1 << (i+12)) / 1024);
2344	else
2345		xhci_warn(xhci, "WARN: no supported page size\n");
2346	/* Use 4K pages, since that's common and the minimum the HC supports */
2347	xhci->page_shift = 12;
2348	xhci->page_size = 1 << xhci->page_shift;
2349	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2350			"HCD page size set to %iK", xhci->page_size / 1024);
2351
2352	/*
2353	 * Program the Number of Device Slots Enabled field in the CONFIG
2354	 * register with the max value of slots the HC can handle.
2355	 */
2356	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2357	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2358			"// xHC can handle at most %d device slots.", val);
2359	val2 = readl(&xhci->op_regs->config_reg);
2360	val |= (val2 & ~HCS_SLOTS_MASK);
2361	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2362			"// Setting Max device slots reg = 0x%x.", val);
2363	writel(val, &xhci->op_regs->config_reg);
2364
2365	/*
2366	 * Section 5.4.8 - doorbell array must be
2367	 * "physically contiguous and 64-byte (cache line) aligned".
2368	 */
2369	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2370			GFP_KERNEL);
2371	if (!xhci->dcbaa)
2372		goto fail;
2373	memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2374	xhci->dcbaa->dma = dma;
2375	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2376			"// Device context base array address = 0x%llx (DMA), %p (virt)",
2377			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2378	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2379
2380	/*
2381	 * Initialize the ring segment pool.  The ring must be a contiguous
2382	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2383	 * however, the command ring segment needs 64-byte aligned segments
2384	 * and our use of dma addresses in the trb_address_map radix tree needs
2385	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2386	 */
2387	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2388			TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2389
2390	/* See Table 46 and Note on Figure 55 */
2391	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2392			2112, 64, xhci->page_size);
2393	if (!xhci->segment_pool || !xhci->device_pool)
2394		goto fail;
2395
2396	/* Linear stream context arrays don't have any boundary restrictions,
2397	 * and only need to be 16-byte aligned.
2398	 */
2399	xhci->small_streams_pool =
2400		dma_pool_create("xHCI 256 byte stream ctx arrays",
2401			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2402	xhci->medium_streams_pool =
2403		dma_pool_create("xHCI 1KB stream ctx arrays",
2404			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2405	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2406	 * will be allocated with dma_alloc_coherent()
2407	 */
2408
2409	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2410		goto fail;
2411
2412	/* Set up the command ring to have one segments for now. */
2413	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
2414	if (!xhci->cmd_ring)
2415		goto fail;
2416	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2417			"Allocated command ring at %p", xhci->cmd_ring);
2418	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2419			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2420
2421	/* Set the address in the Command Ring Control register */
2422	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2423	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2424		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2425		xhci->cmd_ring->cycle_state;
2426	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2427			"// Setting command ring address to 0x%x", val);
2428	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2429	xhci_dbg_cmd_ptrs(xhci);
2430
2431	xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2432	if (!xhci->lpm_command)
2433		goto fail;
2434
2435	/* Reserve one command ring TRB for disabling LPM.
2436	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2437	 * disabling LPM, we only need to reserve one TRB for all devices.
2438	 */
2439	xhci->cmd_ring_reserved_trbs++;
2440
2441	val = readl(&xhci->cap_regs->db_off);
2442	val &= DBOFF_MASK;
2443	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2444			"// Doorbell array is located at offset 0x%x"
2445			" from cap regs base addr", val);
2446	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2447	xhci_dbg_regs(xhci);
2448	xhci_print_run_regs(xhci);
2449	/* Set ir_set to interrupt register set 0 */
2450	xhci->ir_set = &xhci->run_regs->ir_set[0];
2451
2452	/*
2453	 * Event ring setup: Allocate a normal ring, but also setup
2454	 * the event ring segment table (ERST).  Section 4.9.3.
2455	 */
2456	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2457	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2458						flags);
2459	if (!xhci->event_ring)
2460		goto fail;
2461	if (xhci_check_trb_in_td_math(xhci) < 0)
2462		goto fail;
2463
2464	xhci->erst.entries = dma_alloc_coherent(dev,
2465			sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2466			GFP_KERNEL);
2467	if (!xhci->erst.entries)
2468		goto fail;
2469	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2470			"// Allocated event ring segment table at 0x%llx",
2471			(unsigned long long)dma);
2472
2473	memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2474	xhci->erst.num_entries = ERST_NUM_SEGS;
2475	xhci->erst.erst_dma_addr = dma;
2476	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2477			"Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2478			xhci->erst.num_entries,
2479			xhci->erst.entries,
2480			(unsigned long long)xhci->erst.erst_dma_addr);
2481
2482	/* set ring base address and size for each segment table entry */
2483	for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2484		struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2485		entry->seg_addr = cpu_to_le64(seg->dma);
2486		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2487		entry->rsvd = 0;
2488		seg = seg->next;
2489	}
2490
2491	/* set ERST count with the number of entries in the segment table */
2492	val = readl(&xhci->ir_set->erst_size);
2493	val &= ERST_SIZE_MASK;
2494	val |= ERST_NUM_SEGS;
2495	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2496			"// Write ERST size = %i to ir_set 0 (some bits preserved)",
2497			val);
2498	writel(val, &xhci->ir_set->erst_size);
2499
2500	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2501			"// Set ERST entries to point to event ring.");
2502	/* set the segment table base address */
2503	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2504			"// Set ERST base address for ir_set 0 = 0x%llx",
2505			(unsigned long long)xhci->erst.erst_dma_addr);
2506	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2507	val_64 &= ERST_PTR_MASK;
2508	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2509	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2510
2511	/* Set the event ring dequeue address */
2512	xhci_set_hc_event_deq(xhci);
2513	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2514			"Wrote ERST address to ir_set 0.");
2515	xhci_print_ir_set(xhci, 0);
2516
2517	/*
2518	 * XXX: Might need to set the Interrupter Moderation Register to
2519	 * something other than the default (~1ms minimum between interrupts).
2520	 * See section 5.5.1.2.
2521	 */
2522	init_completion(&xhci->addr_dev);
2523	for (i = 0; i < MAX_HC_SLOTS; ++i)
2524		xhci->devs[i] = NULL;
2525	for (i = 0; i < USB_MAXCHILDREN; ++i) {
2526		xhci->bus_state[0].resume_done[i] = 0;
2527		xhci->bus_state[1].resume_done[i] = 0;
2528		/* Only the USB 2.0 completions will ever be used. */
2529		init_completion(&xhci->bus_state[1].rexit_done[i]);
2530	}
2531
2532	if (scratchpad_alloc(xhci, flags))
2533		goto fail;
2534	if (xhci_setup_port_arrays(xhci, flags))
2535		goto fail;
2536
2537	/* Enable USB 3.0 device notifications for function remote wake, which
2538	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2539	 * U3 (device suspend).
2540	 */
2541	temp = readl(&xhci->op_regs->dev_notification);
2542	temp &= ~DEV_NOTE_MASK;
2543	temp |= DEV_NOTE_FWAKE;
2544	writel(temp, &xhci->op_regs->dev_notification);
2545
2546	return 0;
2547
2548fail:
2549	xhci_warn(xhci, "Couldn't initialize memory\n");
2550	xhci_halt(xhci);
2551	xhci_reset(xhci);
2552	xhci_mem_cleanup(xhci);
2553	return -ENOMEM;
2554}
2555