1/* 2 * xHCI host controller driver 3 * 4 * Copyright (C) 2008 Intel Corp. 5 * 6 * Author: Sarah Sharp 7 * Some code borrowed from the Linux EHCI driver. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 * for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software Foundation, 20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23#include <linux/usb.h> 24#include <linux/pci.h> 25#include <linux/slab.h> 26#include <linux/dmapool.h> 27#include <linux/dma-mapping.h> 28 29#include "xhci.h" 30#include "xhci-trace.h" 31 32/* 33 * Allocates a generic ring segment from the ring pool, sets the dma address, 34 * initializes the segment to zero, and sets the private next pointer to NULL. 35 * 36 * Section 4.11.1.1: 37 * "All components of all Command and Transfer TRBs shall be initialized to '0'" 38 */ 39static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, 40 unsigned int cycle_state, gfp_t flags) 41{ 42 struct xhci_segment *seg; 43 dma_addr_t dma; 44 int i; 45 46 seg = kzalloc(sizeof *seg, flags); 47 if (!seg) 48 return NULL; 49 50 seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma); 51 if (!seg->trbs) { 52 kfree(seg); 53 return NULL; 54 } 55 56 memset(seg->trbs, 0, TRB_SEGMENT_SIZE); 57 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */ 58 if (cycle_state == 0) { 59 for (i = 0; i < TRBS_PER_SEGMENT; i++) 60 seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE); 61 } 62 seg->dma = dma; 63 seg->next = NULL; 64 65 return seg; 66} 67 68static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg) 69{ 70 if (seg->trbs) { 71 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma); 72 seg->trbs = NULL; 73 } 74 kfree(seg); 75} 76 77static void xhci_free_segments_for_ring(struct xhci_hcd *xhci, 78 struct xhci_segment *first) 79{ 80 struct xhci_segment *seg; 81 82 seg = first->next; 83 while (seg != first) { 84 struct xhci_segment *next = seg->next; 85 xhci_segment_free(xhci, seg); 86 seg = next; 87 } 88 xhci_segment_free(xhci, first); 89} 90 91/* 92 * Make the prev segment point to the next segment. 93 * 94 * Change the last TRB in the prev segment to be a Link TRB which points to the 95 * DMA address of the next segment. The caller needs to set any Link TRB 96 * related flags, such as End TRB, Toggle Cycle, and no snoop. 97 */ 98static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev, 99 struct xhci_segment *next, enum xhci_ring_type type) 100{ 101 u32 val; 102 103 if (!prev || !next) 104 return; 105 prev->next = next; 106 if (type != TYPE_EVENT) { 107 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = 108 cpu_to_le64(next->dma); 109 110 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */ 111 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control); 112 val &= ~TRB_TYPE_BITMASK; 113 val |= TRB_TYPE(TRB_LINK); 114 /* Always set the chain bit with 0.95 hardware */ 115 /* Set chain bit for isoc rings on AMD 0.96 host */ 116 if (xhci_link_trb_quirk(xhci) || 117 (type == TYPE_ISOC && 118 (xhci->quirks & XHCI_AMD_0x96_HOST))) 119 val |= TRB_CHAIN; 120 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val); 121 } 122} 123 124/* 125 * Link the ring to the new segments. 126 * Set Toggle Cycle for the new ring if needed. 127 */ 128static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring, 129 struct xhci_segment *first, struct xhci_segment *last, 130 unsigned int num_segs) 131{ 132 struct xhci_segment *next; 133 134 if (!ring || !first || !last) 135 return; 136 137 next = ring->enq_seg->next; 138 xhci_link_segments(xhci, ring->enq_seg, first, ring->type); 139 xhci_link_segments(xhci, last, next, ring->type); 140 ring->num_segs += num_segs; 141 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs; 142 143 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) { 144 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control 145 &= ~cpu_to_le32(LINK_TOGGLE); 146 last->trbs[TRBS_PER_SEGMENT-1].link.control 147 |= cpu_to_le32(LINK_TOGGLE); 148 ring->last_seg = last; 149 } 150} 151 152/* 153 * We need a radix tree for mapping physical addresses of TRBs to which stream 154 * ID they belong to. We need to do this because the host controller won't tell 155 * us which stream ring the TRB came from. We could store the stream ID in an 156 * event data TRB, but that doesn't help us for the cancellation case, since the 157 * endpoint may stop before it reaches that event data TRB. 158 * 159 * The radix tree maps the upper portion of the TRB DMA address to a ring 160 * segment that has the same upper portion of DMA addresses. For example, say I 161 * have segments of size 1KB, that are always 1KB aligned. A segment may 162 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the 163 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to 164 * pass the radix tree a key to get the right stream ID: 165 * 166 * 0x10c90fff >> 10 = 0x43243 167 * 0x10c912c0 >> 10 = 0x43244 168 * 0x10c91400 >> 10 = 0x43245 169 * 170 * Obviously, only those TRBs with DMA addresses that are within the segment 171 * will make the radix tree return the stream ID for that ring. 172 * 173 * Caveats for the radix tree: 174 * 175 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an 176 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be 177 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the 178 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit 179 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit 180 * extended systems (where the DMA address can be bigger than 32-bits), 181 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that. 182 */ 183static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map, 184 struct xhci_ring *ring, 185 struct xhci_segment *seg, 186 gfp_t mem_flags) 187{ 188 unsigned long key; 189 int ret; 190 191 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); 192 /* Skip any segments that were already added. */ 193 if (radix_tree_lookup(trb_address_map, key)) 194 return 0; 195 196 ret = radix_tree_maybe_preload(mem_flags); 197 if (ret) 198 return ret; 199 ret = radix_tree_insert(trb_address_map, 200 key, ring); 201 radix_tree_preload_end(); 202 return ret; 203} 204 205static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map, 206 struct xhci_segment *seg) 207{ 208 unsigned long key; 209 210 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); 211 if (radix_tree_lookup(trb_address_map, key)) 212 radix_tree_delete(trb_address_map, key); 213} 214 215static int xhci_update_stream_segment_mapping( 216 struct radix_tree_root *trb_address_map, 217 struct xhci_ring *ring, 218 struct xhci_segment *first_seg, 219 struct xhci_segment *last_seg, 220 gfp_t mem_flags) 221{ 222 struct xhci_segment *seg; 223 struct xhci_segment *failed_seg; 224 int ret; 225 226 if (WARN_ON_ONCE(trb_address_map == NULL)) 227 return 0; 228 229 seg = first_seg; 230 do { 231 ret = xhci_insert_segment_mapping(trb_address_map, 232 ring, seg, mem_flags); 233 if (ret) 234 goto remove_streams; 235 if (seg == last_seg) 236 return 0; 237 seg = seg->next; 238 } while (seg != first_seg); 239 240 return 0; 241 242remove_streams: 243 failed_seg = seg; 244 seg = first_seg; 245 do { 246 xhci_remove_segment_mapping(trb_address_map, seg); 247 if (seg == failed_seg) 248 return ret; 249 seg = seg->next; 250 } while (seg != first_seg); 251 252 return ret; 253} 254 255static void xhci_remove_stream_mapping(struct xhci_ring *ring) 256{ 257 struct xhci_segment *seg; 258 259 if (WARN_ON_ONCE(ring->trb_address_map == NULL)) 260 return; 261 262 seg = ring->first_seg; 263 do { 264 xhci_remove_segment_mapping(ring->trb_address_map, seg); 265 seg = seg->next; 266 } while (seg != ring->first_seg); 267} 268 269static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags) 270{ 271 return xhci_update_stream_segment_mapping(ring->trb_address_map, ring, 272 ring->first_seg, ring->last_seg, mem_flags); 273} 274 275/* XXX: Do we need the hcd structure in all these functions? */ 276void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring) 277{ 278 if (!ring) 279 return; 280 281 if (ring->first_seg) { 282 if (ring->type == TYPE_STREAM) 283 xhci_remove_stream_mapping(ring); 284 xhci_free_segments_for_ring(xhci, ring->first_seg); 285 } 286 287 kfree(ring); 288} 289 290static void xhci_initialize_ring_info(struct xhci_ring *ring, 291 unsigned int cycle_state) 292{ 293 /* The ring is empty, so the enqueue pointer == dequeue pointer */ 294 ring->enqueue = ring->first_seg->trbs; 295 ring->enq_seg = ring->first_seg; 296 ring->dequeue = ring->enqueue; 297 ring->deq_seg = ring->first_seg; 298 /* The ring is initialized to 0. The producer must write 1 to the cycle 299 * bit to handover ownership of the TRB, so PCS = 1. The consumer must 300 * compare CCS to the cycle bit to check ownership, so CCS = 1. 301 * 302 * New rings are initialized with cycle state equal to 1; if we are 303 * handling ring expansion, set the cycle state equal to the old ring. 304 */ 305 ring->cycle_state = cycle_state; 306 /* Not necessary for new rings, but needed for re-initialized rings */ 307 ring->enq_updates = 0; 308 ring->deq_updates = 0; 309 310 /* 311 * Each segment has a link TRB, and leave an extra TRB for SW 312 * accounting purpose 313 */ 314 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 315} 316 317/* Allocate segments and link them for a ring */ 318static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci, 319 struct xhci_segment **first, struct xhci_segment **last, 320 unsigned int num_segs, unsigned int cycle_state, 321 enum xhci_ring_type type, gfp_t flags) 322{ 323 struct xhci_segment *prev; 324 325 prev = xhci_segment_alloc(xhci, cycle_state, flags); 326 if (!prev) 327 return -ENOMEM; 328 num_segs--; 329 330 *first = prev; 331 while (num_segs > 0) { 332 struct xhci_segment *next; 333 334 next = xhci_segment_alloc(xhci, cycle_state, flags); 335 if (!next) { 336 prev = *first; 337 while (prev) { 338 next = prev->next; 339 xhci_segment_free(xhci, prev); 340 prev = next; 341 } 342 return -ENOMEM; 343 } 344 xhci_link_segments(xhci, prev, next, type); 345 346 prev = next; 347 num_segs--; 348 } 349 xhci_link_segments(xhci, prev, *first, type); 350 *last = prev; 351 352 return 0; 353} 354 355/** 356 * Create a new ring with zero or more segments. 357 * 358 * Link each segment together into a ring. 359 * Set the end flag and the cycle toggle bit on the last segment. 360 * See section 4.9.1 and figures 15 and 16. 361 */ 362static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci, 363 unsigned int num_segs, unsigned int cycle_state, 364 enum xhci_ring_type type, gfp_t flags) 365{ 366 struct xhci_ring *ring; 367 int ret; 368 369 ring = kzalloc(sizeof *(ring), flags); 370 if (!ring) 371 return NULL; 372 373 ring->num_segs = num_segs; 374 INIT_LIST_HEAD(&ring->td_list); 375 ring->type = type; 376 if (num_segs == 0) 377 return ring; 378 379 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg, 380 &ring->last_seg, num_segs, cycle_state, type, flags); 381 if (ret) 382 goto fail; 383 384 /* Only event ring does not use link TRB */ 385 if (type != TYPE_EVENT) { 386 /* See section 4.9.2.1 and 6.4.4.1 */ 387 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |= 388 cpu_to_le32(LINK_TOGGLE); 389 } 390 xhci_initialize_ring_info(ring, cycle_state); 391 return ring; 392 393fail: 394 kfree(ring); 395 return NULL; 396} 397 398void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci, 399 struct xhci_virt_device *virt_dev, 400 unsigned int ep_index) 401{ 402 int rings_cached; 403 404 rings_cached = virt_dev->num_rings_cached; 405 if (rings_cached < XHCI_MAX_RINGS_CACHED) { 406 virt_dev->ring_cache[rings_cached] = 407 virt_dev->eps[ep_index].ring; 408 virt_dev->num_rings_cached++; 409 xhci_dbg(xhci, "Cached old ring, " 410 "%d ring%s cached\n", 411 virt_dev->num_rings_cached, 412 (virt_dev->num_rings_cached > 1) ? "s" : ""); 413 } else { 414 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring); 415 xhci_dbg(xhci, "Ring cache full (%d rings), " 416 "freeing ring\n", 417 virt_dev->num_rings_cached); 418 } 419 virt_dev->eps[ep_index].ring = NULL; 420} 421 422/* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue 423 * pointers to the beginning of the ring. 424 */ 425static void xhci_reinit_cached_ring(struct xhci_hcd *xhci, 426 struct xhci_ring *ring, unsigned int cycle_state, 427 enum xhci_ring_type type) 428{ 429 struct xhci_segment *seg = ring->first_seg; 430 int i; 431 432 do { 433 memset(seg->trbs, 0, 434 sizeof(union xhci_trb)*TRBS_PER_SEGMENT); 435 if (cycle_state == 0) { 436 for (i = 0; i < TRBS_PER_SEGMENT; i++) 437 seg->trbs[i].link.control |= 438 cpu_to_le32(TRB_CYCLE); 439 } 440 /* All endpoint rings have link TRBs */ 441 xhci_link_segments(xhci, seg, seg->next, type); 442 seg = seg->next; 443 } while (seg != ring->first_seg); 444 ring->type = type; 445 xhci_initialize_ring_info(ring, cycle_state); 446 /* td list should be empty since all URBs have been cancelled, 447 * but just in case... 448 */ 449 INIT_LIST_HEAD(&ring->td_list); 450} 451 452/* 453 * Expand an existing ring. 454 * Look for a cached ring or allocate a new ring which has same segment numbers 455 * and link the two rings. 456 */ 457int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring, 458 unsigned int num_trbs, gfp_t flags) 459{ 460 struct xhci_segment *first; 461 struct xhci_segment *last; 462 unsigned int num_segs; 463 unsigned int num_segs_needed; 464 int ret; 465 466 num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) / 467 (TRBS_PER_SEGMENT - 1); 468 469 /* Allocate number of segments we needed, or double the ring size */ 470 num_segs = ring->num_segs > num_segs_needed ? 471 ring->num_segs : num_segs_needed; 472 473 ret = xhci_alloc_segments_for_ring(xhci, &first, &last, 474 num_segs, ring->cycle_state, ring->type, flags); 475 if (ret) 476 return -ENOMEM; 477 478 if (ring->type == TYPE_STREAM) 479 ret = xhci_update_stream_segment_mapping(ring->trb_address_map, 480 ring, first, last, flags); 481 if (ret) { 482 struct xhci_segment *next; 483 do { 484 next = first->next; 485 xhci_segment_free(xhci, first); 486 if (first == last) 487 break; 488 first = next; 489 } while (true); 490 return ret; 491 } 492 493 xhci_link_rings(xhci, ring, first, last, num_segs); 494 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 495 "ring expansion succeed, now has %d segments", 496 ring->num_segs); 497 498 return 0; 499} 500 501#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32) 502 503static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci, 504 int type, gfp_t flags) 505{ 506 struct xhci_container_ctx *ctx; 507 508 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT)) 509 return NULL; 510 511 ctx = kzalloc(sizeof(*ctx), flags); 512 if (!ctx) 513 return NULL; 514 515 ctx->type = type; 516 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024; 517 if (type == XHCI_CTX_TYPE_INPUT) 518 ctx->size += CTX_SIZE(xhci->hcc_params); 519 520 ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma); 521 if (!ctx->bytes) { 522 kfree(ctx); 523 return NULL; 524 } 525 memset(ctx->bytes, 0, ctx->size); 526 return ctx; 527} 528 529static void xhci_free_container_ctx(struct xhci_hcd *xhci, 530 struct xhci_container_ctx *ctx) 531{ 532 if (!ctx) 533 return; 534 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma); 535 kfree(ctx); 536} 537 538struct xhci_input_control_ctx *xhci_get_input_control_ctx( 539 struct xhci_container_ctx *ctx) 540{ 541 if (ctx->type != XHCI_CTX_TYPE_INPUT) 542 return NULL; 543 544 return (struct xhci_input_control_ctx *)ctx->bytes; 545} 546 547struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci, 548 struct xhci_container_ctx *ctx) 549{ 550 if (ctx->type == XHCI_CTX_TYPE_DEVICE) 551 return (struct xhci_slot_ctx *)ctx->bytes; 552 553 return (struct xhci_slot_ctx *) 554 (ctx->bytes + CTX_SIZE(xhci->hcc_params)); 555} 556 557struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci, 558 struct xhci_container_ctx *ctx, 559 unsigned int ep_index) 560{ 561 /* increment ep index by offset of start of ep ctx array */ 562 ep_index++; 563 if (ctx->type == XHCI_CTX_TYPE_INPUT) 564 ep_index++; 565 566 return (struct xhci_ep_ctx *) 567 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params))); 568} 569 570 571/***************** Streams structures manipulation *************************/ 572 573static void xhci_free_stream_ctx(struct xhci_hcd *xhci, 574 unsigned int num_stream_ctxs, 575 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma) 576{ 577 struct device *dev = xhci_to_hcd(xhci)->self.controller; 578 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs; 579 580 if (size > MEDIUM_STREAM_ARRAY_SIZE) 581 dma_free_coherent(dev, size, 582 stream_ctx, dma); 583 else if (size <= SMALL_STREAM_ARRAY_SIZE) 584 return dma_pool_free(xhci->small_streams_pool, 585 stream_ctx, dma); 586 else 587 return dma_pool_free(xhci->medium_streams_pool, 588 stream_ctx, dma); 589} 590 591/* 592 * The stream context array for each endpoint with bulk streams enabled can 593 * vary in size, based on: 594 * - how many streams the endpoint supports, 595 * - the maximum primary stream array size the host controller supports, 596 * - and how many streams the device driver asks for. 597 * 598 * The stream context array must be a power of 2, and can be as small as 599 * 64 bytes or as large as 1MB. 600 */ 601static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci, 602 unsigned int num_stream_ctxs, dma_addr_t *dma, 603 gfp_t mem_flags) 604{ 605 struct device *dev = xhci_to_hcd(xhci)->self.controller; 606 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs; 607 608 if (size > MEDIUM_STREAM_ARRAY_SIZE) 609 return dma_alloc_coherent(dev, size, 610 dma, mem_flags); 611 else if (size <= SMALL_STREAM_ARRAY_SIZE) 612 return dma_pool_alloc(xhci->small_streams_pool, 613 mem_flags, dma); 614 else 615 return dma_pool_alloc(xhci->medium_streams_pool, 616 mem_flags, dma); 617} 618 619struct xhci_ring *xhci_dma_to_transfer_ring( 620 struct xhci_virt_ep *ep, 621 u64 address) 622{ 623 if (ep->ep_state & EP_HAS_STREAMS) 624 return radix_tree_lookup(&ep->stream_info->trb_address_map, 625 address >> TRB_SEGMENT_SHIFT); 626 return ep->ring; 627} 628 629struct xhci_ring *xhci_stream_id_to_ring( 630 struct xhci_virt_device *dev, 631 unsigned int ep_index, 632 unsigned int stream_id) 633{ 634 struct xhci_virt_ep *ep = &dev->eps[ep_index]; 635 636 if (stream_id == 0) 637 return ep->ring; 638 if (!ep->stream_info) 639 return NULL; 640 641 if (stream_id > ep->stream_info->num_streams) 642 return NULL; 643 return ep->stream_info->stream_rings[stream_id]; 644} 645 646/* 647 * Change an endpoint's internal structure so it supports stream IDs. The 648 * number of requested streams includes stream 0, which cannot be used by device 649 * drivers. 650 * 651 * The number of stream contexts in the stream context array may be bigger than 652 * the number of streams the driver wants to use. This is because the number of 653 * stream context array entries must be a power of two. 654 */ 655struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci, 656 unsigned int num_stream_ctxs, 657 unsigned int num_streams, gfp_t mem_flags) 658{ 659 struct xhci_stream_info *stream_info; 660 u32 cur_stream; 661 struct xhci_ring *cur_ring; 662 u64 addr; 663 int ret; 664 665 xhci_dbg(xhci, "Allocating %u streams and %u " 666 "stream context array entries.\n", 667 num_streams, num_stream_ctxs); 668 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) { 669 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n"); 670 return NULL; 671 } 672 xhci->cmd_ring_reserved_trbs++; 673 674 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags); 675 if (!stream_info) 676 goto cleanup_trbs; 677 678 stream_info->num_streams = num_streams; 679 stream_info->num_stream_ctxs = num_stream_ctxs; 680 681 /* Initialize the array of virtual pointers to stream rings. */ 682 stream_info->stream_rings = kzalloc( 683 sizeof(struct xhci_ring *)*num_streams, 684 mem_flags); 685 if (!stream_info->stream_rings) 686 goto cleanup_info; 687 688 /* Initialize the array of DMA addresses for stream rings for the HW. */ 689 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci, 690 num_stream_ctxs, &stream_info->ctx_array_dma, 691 mem_flags); 692 if (!stream_info->stream_ctx_array) 693 goto cleanup_ctx; 694 memset(stream_info->stream_ctx_array, 0, 695 sizeof(struct xhci_stream_ctx)*num_stream_ctxs); 696 697 /* Allocate everything needed to free the stream rings later */ 698 stream_info->free_streams_command = 699 xhci_alloc_command(xhci, true, true, mem_flags); 700 if (!stream_info->free_streams_command) 701 goto cleanup_ctx; 702 703 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC); 704 705 /* Allocate rings for all the streams that the driver will use, 706 * and add their segment DMA addresses to the radix tree. 707 * Stream 0 is reserved. 708 */ 709 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 710 stream_info->stream_rings[cur_stream] = 711 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags); 712 cur_ring = stream_info->stream_rings[cur_stream]; 713 if (!cur_ring) 714 goto cleanup_rings; 715 cur_ring->stream_id = cur_stream; 716 cur_ring->trb_address_map = &stream_info->trb_address_map; 717 /* Set deq ptr, cycle bit, and stream context type */ 718 addr = cur_ring->first_seg->dma | 719 SCT_FOR_CTX(SCT_PRI_TR) | 720 cur_ring->cycle_state; 721 stream_info->stream_ctx_array[cur_stream].stream_ring = 722 cpu_to_le64(addr); 723 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", 724 cur_stream, (unsigned long long) addr); 725 726 ret = xhci_update_stream_mapping(cur_ring, mem_flags); 727 if (ret) { 728 xhci_ring_free(xhci, cur_ring); 729 stream_info->stream_rings[cur_stream] = NULL; 730 goto cleanup_rings; 731 } 732 } 733 /* Leave the other unused stream ring pointers in the stream context 734 * array initialized to zero. This will cause the xHC to give us an 735 * error if the device asks for a stream ID we don't have setup (if it 736 * was any other way, the host controller would assume the ring is 737 * "empty" and wait forever for data to be queued to that stream ID). 738 */ 739 740 return stream_info; 741 742cleanup_rings: 743 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 744 cur_ring = stream_info->stream_rings[cur_stream]; 745 if (cur_ring) { 746 xhci_ring_free(xhci, cur_ring); 747 stream_info->stream_rings[cur_stream] = NULL; 748 } 749 } 750 xhci_free_command(xhci, stream_info->free_streams_command); 751cleanup_ctx: 752 kfree(stream_info->stream_rings); 753cleanup_info: 754 kfree(stream_info); 755cleanup_trbs: 756 xhci->cmd_ring_reserved_trbs--; 757 return NULL; 758} 759/* 760 * Sets the MaxPStreams field and the Linear Stream Array field. 761 * Sets the dequeue pointer to the stream context array. 762 */ 763void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci, 764 struct xhci_ep_ctx *ep_ctx, 765 struct xhci_stream_info *stream_info) 766{ 767 u32 max_primary_streams; 768 /* MaxPStreams is the number of stream context array entries, not the 769 * number we're actually using. Must be in 2^(MaxPstreams + 1) format. 770 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc. 771 */ 772 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2; 773 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 774 "Setting number of stream ctx array entries to %u", 775 1 << (max_primary_streams + 1)); 776 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK); 777 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams) 778 | EP_HAS_LSA); 779 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma); 780} 781 782/* 783 * Sets the MaxPStreams field and the Linear Stream Array field to 0. 784 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark, 785 * not at the beginning of the ring). 786 */ 787void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx, 788 struct xhci_virt_ep *ep) 789{ 790 dma_addr_t addr; 791 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA)); 792 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue); 793 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state); 794} 795 796/* Frees all stream contexts associated with the endpoint, 797 * 798 * Caller should fix the endpoint context streams fields. 799 */ 800void xhci_free_stream_info(struct xhci_hcd *xhci, 801 struct xhci_stream_info *stream_info) 802{ 803 int cur_stream; 804 struct xhci_ring *cur_ring; 805 806 if (!stream_info) 807 return; 808 809 for (cur_stream = 1; cur_stream < stream_info->num_streams; 810 cur_stream++) { 811 cur_ring = stream_info->stream_rings[cur_stream]; 812 if (cur_ring) { 813 xhci_ring_free(xhci, cur_ring); 814 stream_info->stream_rings[cur_stream] = NULL; 815 } 816 } 817 xhci_free_command(xhci, stream_info->free_streams_command); 818 xhci->cmd_ring_reserved_trbs--; 819 if (stream_info->stream_ctx_array) 820 xhci_free_stream_ctx(xhci, 821 stream_info->num_stream_ctxs, 822 stream_info->stream_ctx_array, 823 stream_info->ctx_array_dma); 824 825 kfree(stream_info->stream_rings); 826 kfree(stream_info); 827} 828 829 830/***************** Device context manipulation *************************/ 831 832static void xhci_init_endpoint_timer(struct xhci_hcd *xhci, 833 struct xhci_virt_ep *ep) 834{ 835 setup_timer(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog, 836 (unsigned long)ep); 837 ep->xhci = xhci; 838} 839 840static void xhci_free_tt_info(struct xhci_hcd *xhci, 841 struct xhci_virt_device *virt_dev, 842 int slot_id) 843{ 844 struct list_head *tt_list_head; 845 struct xhci_tt_bw_info *tt_info, *next; 846 bool slot_found = false; 847 848 /* If the device never made it past the Set Address stage, 849 * it may not have the real_port set correctly. 850 */ 851 if (virt_dev->real_port == 0 || 852 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) { 853 xhci_dbg(xhci, "Bad real port.\n"); 854 return; 855 } 856 857 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts); 858 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) { 859 /* Multi-TT hubs will have more than one entry */ 860 if (tt_info->slot_id == slot_id) { 861 slot_found = true; 862 list_del(&tt_info->tt_list); 863 kfree(tt_info); 864 } else if (slot_found) { 865 break; 866 } 867 } 868} 869 870int xhci_alloc_tt_info(struct xhci_hcd *xhci, 871 struct xhci_virt_device *virt_dev, 872 struct usb_device *hdev, 873 struct usb_tt *tt, gfp_t mem_flags) 874{ 875 struct xhci_tt_bw_info *tt_info; 876 unsigned int num_ports; 877 int i, j; 878 879 if (!tt->multi) 880 num_ports = 1; 881 else 882 num_ports = hdev->maxchild; 883 884 for (i = 0; i < num_ports; i++, tt_info++) { 885 struct xhci_interval_bw_table *bw_table; 886 887 tt_info = kzalloc(sizeof(*tt_info), mem_flags); 888 if (!tt_info) 889 goto free_tts; 890 INIT_LIST_HEAD(&tt_info->tt_list); 891 list_add(&tt_info->tt_list, 892 &xhci->rh_bw[virt_dev->real_port - 1].tts); 893 tt_info->slot_id = virt_dev->udev->slot_id; 894 if (tt->multi) 895 tt_info->ttport = i+1; 896 bw_table = &tt_info->bw_table; 897 for (j = 0; j < XHCI_MAX_INTERVAL; j++) 898 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); 899 } 900 return 0; 901 902free_tts: 903 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id); 904 return -ENOMEM; 905} 906 907 908/* All the xhci_tds in the ring's TD list should be freed at this point. 909 * Should be called with xhci->lock held if there is any chance the TT lists 910 * will be manipulated by the configure endpoint, allocate device, or update 911 * hub functions while this function is removing the TT entries from the list. 912 */ 913void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id) 914{ 915 struct xhci_virt_device *dev; 916 int i; 917 int old_active_eps = 0; 918 919 /* Slot ID 0 is reserved */ 920 if (slot_id == 0 || !xhci->devs[slot_id]) 921 return; 922 923 dev = xhci->devs[slot_id]; 924 xhci->dcbaa->dev_context_ptrs[slot_id] = 0; 925 if (!dev) 926 return; 927 928 if (dev->tt_info) 929 old_active_eps = dev->tt_info->active_eps; 930 931 for (i = 0; i < 31; ++i) { 932 if (dev->eps[i].ring) 933 xhci_ring_free(xhci, dev->eps[i].ring); 934 if (dev->eps[i].stream_info) 935 xhci_free_stream_info(xhci, 936 dev->eps[i].stream_info); 937 /* Endpoints on the TT/root port lists should have been removed 938 * when usb_disable_device() was called for the device. 939 * We can't drop them anyway, because the udev might have gone 940 * away by this point, and we can't tell what speed it was. 941 */ 942 if (!list_empty(&dev->eps[i].bw_endpoint_list)) 943 xhci_warn(xhci, "Slot %u endpoint %u " 944 "not removed from BW list!\n", 945 slot_id, i); 946 } 947 /* If this is a hub, free the TT(s) from the TT list */ 948 xhci_free_tt_info(xhci, dev, slot_id); 949 /* If necessary, update the number of active TTs on this root port */ 950 xhci_update_tt_active_eps(xhci, dev, old_active_eps); 951 952 if (dev->ring_cache) { 953 for (i = 0; i < dev->num_rings_cached; i++) 954 xhci_ring_free(xhci, dev->ring_cache[i]); 955 kfree(dev->ring_cache); 956 } 957 958 if (dev->in_ctx) 959 xhci_free_container_ctx(xhci, dev->in_ctx); 960 if (dev->out_ctx) 961 xhci_free_container_ctx(xhci, dev->out_ctx); 962 963 kfree(xhci->devs[slot_id]); 964 xhci->devs[slot_id] = NULL; 965} 966 967int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id, 968 struct usb_device *udev, gfp_t flags) 969{ 970 struct xhci_virt_device *dev; 971 int i; 972 973 /* Slot ID 0 is reserved */ 974 if (slot_id == 0 || xhci->devs[slot_id]) { 975 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id); 976 return 0; 977 } 978 979 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags); 980 if (!xhci->devs[slot_id]) 981 return 0; 982 dev = xhci->devs[slot_id]; 983 984 /* Allocate the (output) device context that will be used in the HC. */ 985 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags); 986 if (!dev->out_ctx) 987 goto fail; 988 989 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id, 990 (unsigned long long)dev->out_ctx->dma); 991 992 /* Allocate the (input) device context for address device command */ 993 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags); 994 if (!dev->in_ctx) 995 goto fail; 996 997 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id, 998 (unsigned long long)dev->in_ctx->dma); 999 1000 /* Initialize the cancellation list and watchdog timers for each ep */ 1001 for (i = 0; i < 31; i++) { 1002 xhci_init_endpoint_timer(xhci, &dev->eps[i]); 1003 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list); 1004 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list); 1005 } 1006 1007 /* Allocate endpoint 0 ring */ 1008 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags); 1009 if (!dev->eps[0].ring) 1010 goto fail; 1011 1012 /* Allocate pointers to the ring cache */ 1013 dev->ring_cache = kzalloc( 1014 sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED, 1015 flags); 1016 if (!dev->ring_cache) 1017 goto fail; 1018 dev->num_rings_cached = 0; 1019 1020 init_completion(&dev->cmd_completion); 1021 dev->udev = udev; 1022 1023 /* Point to output device context in dcbaa. */ 1024 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma); 1025 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n", 1026 slot_id, 1027 &xhci->dcbaa->dev_context_ptrs[slot_id], 1028 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id])); 1029 1030 return 1; 1031fail: 1032 xhci_free_virt_device(xhci, slot_id); 1033 return 0; 1034} 1035 1036void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci, 1037 struct usb_device *udev) 1038{ 1039 struct xhci_virt_device *virt_dev; 1040 struct xhci_ep_ctx *ep0_ctx; 1041 struct xhci_ring *ep_ring; 1042 1043 virt_dev = xhci->devs[udev->slot_id]; 1044 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0); 1045 ep_ring = virt_dev->eps[0].ring; 1046 /* 1047 * FIXME we don't keep track of the dequeue pointer very well after a 1048 * Set TR dequeue pointer, so we're setting the dequeue pointer of the 1049 * host to our enqueue pointer. This should only be called after a 1050 * configured device has reset, so all control transfers should have 1051 * been completed or cancelled before the reset. 1052 */ 1053 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg, 1054 ep_ring->enqueue) 1055 | ep_ring->cycle_state); 1056} 1057 1058/* 1059 * The xHCI roothub may have ports of differing speeds in any order in the port 1060 * status registers. xhci->port_array provides an array of the port speed for 1061 * each offset into the port status registers. 1062 * 1063 * The xHCI hardware wants to know the roothub port number that the USB device 1064 * is attached to (or the roothub port its ancestor hub is attached to). All we 1065 * know is the index of that port under either the USB 2.0 or the USB 3.0 1066 * roothub, but that doesn't give us the real index into the HW port status 1067 * registers. Call xhci_find_raw_port_number() to get real index. 1068 */ 1069static u32 xhci_find_real_port_number(struct xhci_hcd *xhci, 1070 struct usb_device *udev) 1071{ 1072 struct usb_device *top_dev; 1073 struct usb_hcd *hcd; 1074 1075 if (udev->speed == USB_SPEED_SUPER) 1076 hcd = xhci->shared_hcd; 1077 else 1078 hcd = xhci->main_hcd; 1079 1080 for (top_dev = udev; top_dev->parent && top_dev->parent->parent; 1081 top_dev = top_dev->parent) 1082 /* Found device below root hub */; 1083 1084 return xhci_find_raw_port_number(hcd, top_dev->portnum); 1085} 1086 1087/* Setup an xHCI virtual device for a Set Address command */ 1088int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev) 1089{ 1090 struct xhci_virt_device *dev; 1091 struct xhci_ep_ctx *ep0_ctx; 1092 struct xhci_slot_ctx *slot_ctx; 1093 u32 port_num; 1094 u32 max_packets; 1095 struct usb_device *top_dev; 1096 1097 dev = xhci->devs[udev->slot_id]; 1098 /* Slot ID 0 is reserved */ 1099 if (udev->slot_id == 0 || !dev) { 1100 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n", 1101 udev->slot_id); 1102 return -EINVAL; 1103 } 1104 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0); 1105 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx); 1106 1107 /* 3) Only the control endpoint is valid - one endpoint context */ 1108 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route); 1109 switch (udev->speed) { 1110 case USB_SPEED_SUPER: 1111 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS); 1112 max_packets = MAX_PACKET(512); 1113 break; 1114 case USB_SPEED_HIGH: 1115 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS); 1116 max_packets = MAX_PACKET(64); 1117 break; 1118 /* USB core guesses at a 64-byte max packet first for FS devices */ 1119 case USB_SPEED_FULL: 1120 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS); 1121 max_packets = MAX_PACKET(64); 1122 break; 1123 case USB_SPEED_LOW: 1124 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS); 1125 max_packets = MAX_PACKET(8); 1126 break; 1127 case USB_SPEED_WIRELESS: 1128 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n"); 1129 return -EINVAL; 1130 break; 1131 default: 1132 /* Speed was set earlier, this shouldn't happen. */ 1133 return -EINVAL; 1134 } 1135 /* Find the root hub port this device is under */ 1136 port_num = xhci_find_real_port_number(xhci, udev); 1137 if (!port_num) 1138 return -EINVAL; 1139 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num)); 1140 /* Set the port number in the virtual_device to the faked port number */ 1141 for (top_dev = udev; top_dev->parent && top_dev->parent->parent; 1142 top_dev = top_dev->parent) 1143 /* Found device below root hub */; 1144 dev->fake_port = top_dev->portnum; 1145 dev->real_port = port_num; 1146 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num); 1147 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port); 1148 1149 /* Find the right bandwidth table that this device will be a part of. 1150 * If this is a full speed device attached directly to a root port (or a 1151 * decendent of one), it counts as a primary bandwidth domain, not a 1152 * secondary bandwidth domain under a TT. An xhci_tt_info structure 1153 * will never be created for the HS root hub. 1154 */ 1155 if (!udev->tt || !udev->tt->hub->parent) { 1156 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table; 1157 } else { 1158 struct xhci_root_port_bw_info *rh_bw; 1159 struct xhci_tt_bw_info *tt_bw; 1160 1161 rh_bw = &xhci->rh_bw[port_num - 1]; 1162 /* Find the right TT. */ 1163 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) { 1164 if (tt_bw->slot_id != udev->tt->hub->slot_id) 1165 continue; 1166 1167 if (!dev->udev->tt->multi || 1168 (udev->tt->multi && 1169 tt_bw->ttport == dev->udev->ttport)) { 1170 dev->bw_table = &tt_bw->bw_table; 1171 dev->tt_info = tt_bw; 1172 break; 1173 } 1174 } 1175 if (!dev->tt_info) 1176 xhci_warn(xhci, "WARN: Didn't find a matching TT\n"); 1177 } 1178 1179 /* Is this a LS/FS device under an external HS hub? */ 1180 if (udev->tt && udev->tt->hub->parent) { 1181 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id | 1182 (udev->ttport << 8)); 1183 if (udev->tt->multi) 1184 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 1185 } 1186 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt); 1187 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport); 1188 1189 /* Step 4 - ring already allocated */ 1190 /* Step 5 */ 1191 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP)); 1192 1193 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */ 1194 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) | 1195 max_packets); 1196 1197 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma | 1198 dev->eps[0].ring->cycle_state); 1199 1200 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */ 1201 1202 return 0; 1203} 1204 1205/* 1206 * Convert interval expressed as 2^(bInterval - 1) == interval into 1207 * straight exponent value 2^n == interval. 1208 * 1209 */ 1210static unsigned int xhci_parse_exponent_interval(struct usb_device *udev, 1211 struct usb_host_endpoint *ep) 1212{ 1213 unsigned int interval; 1214 1215 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1; 1216 if (interval != ep->desc.bInterval - 1) 1217 dev_warn(&udev->dev, 1218 "ep %#x - rounding interval to %d %sframes\n", 1219 ep->desc.bEndpointAddress, 1220 1 << interval, 1221 udev->speed == USB_SPEED_FULL ? "" : "micro"); 1222 1223 if (udev->speed == USB_SPEED_FULL) { 1224 /* 1225 * Full speed isoc endpoints specify interval in frames, 1226 * not microframes. We are using microframes everywhere, 1227 * so adjust accordingly. 1228 */ 1229 interval += 3; /* 1 frame = 2^3 uframes */ 1230 } 1231 1232 return interval; 1233} 1234 1235/* 1236 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of 1237 * microframes, rounded down to nearest power of 2. 1238 */ 1239static unsigned int xhci_microframes_to_exponent(struct usb_device *udev, 1240 struct usb_host_endpoint *ep, unsigned int desc_interval, 1241 unsigned int min_exponent, unsigned int max_exponent) 1242{ 1243 unsigned int interval; 1244 1245 interval = fls(desc_interval) - 1; 1246 interval = clamp_val(interval, min_exponent, max_exponent); 1247 if ((1 << interval) != desc_interval) 1248 dev_warn(&udev->dev, 1249 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n", 1250 ep->desc.bEndpointAddress, 1251 1 << interval, 1252 desc_interval); 1253 1254 return interval; 1255} 1256 1257static unsigned int xhci_parse_microframe_interval(struct usb_device *udev, 1258 struct usb_host_endpoint *ep) 1259{ 1260 if (ep->desc.bInterval == 0) 1261 return 0; 1262 return xhci_microframes_to_exponent(udev, ep, 1263 ep->desc.bInterval, 0, 15); 1264} 1265 1266 1267static unsigned int xhci_parse_frame_interval(struct usb_device *udev, 1268 struct usb_host_endpoint *ep) 1269{ 1270 return xhci_microframes_to_exponent(udev, ep, 1271 ep->desc.bInterval * 8, 3, 10); 1272} 1273 1274/* Return the polling or NAK interval. 1275 * 1276 * The polling interval is expressed in "microframes". If xHCI's Interval field 1277 * is set to N, it will service the endpoint every 2^(Interval)*125us. 1278 * 1279 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval 1280 * is set to 0. 1281 */ 1282static unsigned int xhci_get_endpoint_interval(struct usb_device *udev, 1283 struct usb_host_endpoint *ep) 1284{ 1285 unsigned int interval = 0; 1286 1287 switch (udev->speed) { 1288 case USB_SPEED_HIGH: 1289 /* Max NAK rate */ 1290 if (usb_endpoint_xfer_control(&ep->desc) || 1291 usb_endpoint_xfer_bulk(&ep->desc)) { 1292 interval = xhci_parse_microframe_interval(udev, ep); 1293 break; 1294 } 1295 /* Fall through - SS and HS isoc/int have same decoding */ 1296 1297 case USB_SPEED_SUPER: 1298 if (usb_endpoint_xfer_int(&ep->desc) || 1299 usb_endpoint_xfer_isoc(&ep->desc)) { 1300 interval = xhci_parse_exponent_interval(udev, ep); 1301 } 1302 break; 1303 1304 case USB_SPEED_FULL: 1305 if (usb_endpoint_xfer_isoc(&ep->desc)) { 1306 interval = xhci_parse_exponent_interval(udev, ep); 1307 break; 1308 } 1309 /* 1310 * Fall through for interrupt endpoint interval decoding 1311 * since it uses the same rules as low speed interrupt 1312 * endpoints. 1313 */ 1314 1315 case USB_SPEED_LOW: 1316 if (usb_endpoint_xfer_int(&ep->desc) || 1317 usb_endpoint_xfer_isoc(&ep->desc)) { 1318 1319 interval = xhci_parse_frame_interval(udev, ep); 1320 } 1321 break; 1322 1323 default: 1324 BUG(); 1325 } 1326 return EP_INTERVAL(interval); 1327} 1328 1329/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps. 1330 * High speed endpoint descriptors can define "the number of additional 1331 * transaction opportunities per microframe", but that goes in the Max Burst 1332 * endpoint context field. 1333 */ 1334static u32 xhci_get_endpoint_mult(struct usb_device *udev, 1335 struct usb_host_endpoint *ep) 1336{ 1337 if (udev->speed != USB_SPEED_SUPER || 1338 !usb_endpoint_xfer_isoc(&ep->desc)) 1339 return 0; 1340 return ep->ss_ep_comp.bmAttributes; 1341} 1342 1343static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep) 1344{ 1345 int in; 1346 u32 type; 1347 1348 in = usb_endpoint_dir_in(&ep->desc); 1349 if (usb_endpoint_xfer_control(&ep->desc)) { 1350 type = EP_TYPE(CTRL_EP); 1351 } else if (usb_endpoint_xfer_bulk(&ep->desc)) { 1352 if (in) 1353 type = EP_TYPE(BULK_IN_EP); 1354 else 1355 type = EP_TYPE(BULK_OUT_EP); 1356 } else if (usb_endpoint_xfer_isoc(&ep->desc)) { 1357 if (in) 1358 type = EP_TYPE(ISOC_IN_EP); 1359 else 1360 type = EP_TYPE(ISOC_OUT_EP); 1361 } else if (usb_endpoint_xfer_int(&ep->desc)) { 1362 if (in) 1363 type = EP_TYPE(INT_IN_EP); 1364 else 1365 type = EP_TYPE(INT_OUT_EP); 1366 } else { 1367 type = 0; 1368 } 1369 return type; 1370} 1371 1372/* Return the maximum endpoint service interval time (ESIT) payload. 1373 * Basically, this is the maxpacket size, multiplied by the burst size 1374 * and mult size. 1375 */ 1376static u32 xhci_get_max_esit_payload(struct usb_device *udev, 1377 struct usb_host_endpoint *ep) 1378{ 1379 int max_burst; 1380 int max_packet; 1381 1382 /* Only applies for interrupt or isochronous endpoints */ 1383 if (usb_endpoint_xfer_control(&ep->desc) || 1384 usb_endpoint_xfer_bulk(&ep->desc)) 1385 return 0; 1386 1387 if (udev->speed == USB_SPEED_SUPER) 1388 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval); 1389 1390 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc)); 1391 max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11; 1392 /* A 0 in max burst means 1 transfer per ESIT */ 1393 return max_packet * (max_burst + 1); 1394} 1395 1396/* Set up an endpoint with one ring segment. Do not allocate stream rings. 1397 * Drivers will have to call usb_alloc_streams() to do that. 1398 */ 1399int xhci_endpoint_init(struct xhci_hcd *xhci, 1400 struct xhci_virt_device *virt_dev, 1401 struct usb_device *udev, 1402 struct usb_host_endpoint *ep, 1403 gfp_t mem_flags) 1404{ 1405 unsigned int ep_index; 1406 struct xhci_ep_ctx *ep_ctx; 1407 struct xhci_ring *ep_ring; 1408 unsigned int max_packet; 1409 unsigned int max_burst; 1410 enum xhci_ring_type type; 1411 u32 max_esit_payload; 1412 u32 endpoint_type; 1413 1414 ep_index = xhci_get_endpoint_index(&ep->desc); 1415 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1416 1417 endpoint_type = xhci_get_endpoint_type(ep); 1418 if (!endpoint_type) 1419 return -EINVAL; 1420 ep_ctx->ep_info2 = cpu_to_le32(endpoint_type); 1421 1422 type = usb_endpoint_type(&ep->desc); 1423 /* Set up the endpoint ring */ 1424 virt_dev->eps[ep_index].new_ring = 1425 xhci_ring_alloc(xhci, 2, 1, type, mem_flags); 1426 if (!virt_dev->eps[ep_index].new_ring) { 1427 /* Attempt to use the ring cache */ 1428 if (virt_dev->num_rings_cached == 0) 1429 return -ENOMEM; 1430 virt_dev->num_rings_cached--; 1431 virt_dev->eps[ep_index].new_ring = 1432 virt_dev->ring_cache[virt_dev->num_rings_cached]; 1433 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL; 1434 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring, 1435 1, type); 1436 } 1437 virt_dev->eps[ep_index].skip = false; 1438 ep_ring = virt_dev->eps[ep_index].new_ring; 1439 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state); 1440 1441 ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep) 1442 | EP_MULT(xhci_get_endpoint_mult(udev, ep))); 1443 1444 /* FIXME dig Mult and streams info out of ep companion desc */ 1445 1446 /* Allow 3 retries for everything but isoc; 1447 * CErr shall be set to 0 for Isoch endpoints. 1448 */ 1449 if (!usb_endpoint_xfer_isoc(&ep->desc)) 1450 ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(3)); 1451 else 1452 ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(0)); 1453 1454 /* Set the max packet size and max burst */ 1455 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc)); 1456 max_burst = 0; 1457 switch (udev->speed) { 1458 case USB_SPEED_SUPER: 1459 /* dig out max burst from ep companion desc */ 1460 max_burst = ep->ss_ep_comp.bMaxBurst; 1461 break; 1462 case USB_SPEED_HIGH: 1463 /* Some devices get this wrong */ 1464 if (usb_endpoint_xfer_bulk(&ep->desc)) 1465 max_packet = 512; 1466 /* bits 11:12 specify the number of additional transaction 1467 * opportunities per microframe (USB 2.0, section 9.6.6) 1468 */ 1469 if (usb_endpoint_xfer_isoc(&ep->desc) || 1470 usb_endpoint_xfer_int(&ep->desc)) { 1471 max_burst = (usb_endpoint_maxp(&ep->desc) 1472 & 0x1800) >> 11; 1473 } 1474 break; 1475 case USB_SPEED_FULL: 1476 case USB_SPEED_LOW: 1477 break; 1478 default: 1479 BUG(); 1480 } 1481 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet) | 1482 MAX_BURST(max_burst)); 1483 max_esit_payload = xhci_get_max_esit_payload(udev, ep); 1484 ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload)); 1485 1486 /* 1487 * XXX no idea how to calculate the average TRB buffer length for bulk 1488 * endpoints, as the driver gives us no clue how big each scatter gather 1489 * list entry (or buffer) is going to be. 1490 * 1491 * For isochronous and interrupt endpoints, we set it to the max 1492 * available, until we have new API in the USB core to allow drivers to 1493 * declare how much bandwidth they actually need. 1494 * 1495 * Normally, it would be calculated by taking the total of the buffer 1496 * lengths in the TD and then dividing by the number of TRBs in a TD, 1497 * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't 1498 * use Event Data TRBs, and we don't chain in a link TRB on short 1499 * transfers, we're basically dividing by 1. 1500 * 1501 * xHCI 1.0 and 1.1 specification indicates that the Average TRB Length 1502 * should be set to 8 for control endpoints. 1503 */ 1504 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100) 1505 ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8)); 1506 else 1507 ep_ctx->tx_info |= 1508 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload)); 1509 1510 /* FIXME Debug endpoint context */ 1511 return 0; 1512} 1513 1514void xhci_endpoint_zero(struct xhci_hcd *xhci, 1515 struct xhci_virt_device *virt_dev, 1516 struct usb_host_endpoint *ep) 1517{ 1518 unsigned int ep_index; 1519 struct xhci_ep_ctx *ep_ctx; 1520 1521 ep_index = xhci_get_endpoint_index(&ep->desc); 1522 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1523 1524 ep_ctx->ep_info = 0; 1525 ep_ctx->ep_info2 = 0; 1526 ep_ctx->deq = 0; 1527 ep_ctx->tx_info = 0; 1528 /* Don't free the endpoint ring until the set interface or configuration 1529 * request succeeds. 1530 */ 1531} 1532 1533void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info) 1534{ 1535 bw_info->ep_interval = 0; 1536 bw_info->mult = 0; 1537 bw_info->num_packets = 0; 1538 bw_info->max_packet_size = 0; 1539 bw_info->type = 0; 1540 bw_info->max_esit_payload = 0; 1541} 1542 1543void xhci_update_bw_info(struct xhci_hcd *xhci, 1544 struct xhci_container_ctx *in_ctx, 1545 struct xhci_input_control_ctx *ctrl_ctx, 1546 struct xhci_virt_device *virt_dev) 1547{ 1548 struct xhci_bw_info *bw_info; 1549 struct xhci_ep_ctx *ep_ctx; 1550 unsigned int ep_type; 1551 int i; 1552 1553 for (i = 1; i < 31; ++i) { 1554 bw_info = &virt_dev->eps[i].bw_info; 1555 1556 /* We can't tell what endpoint type is being dropped, but 1557 * unconditionally clearing the bandwidth info for non-periodic 1558 * endpoints should be harmless because the info will never be 1559 * set in the first place. 1560 */ 1561 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) { 1562 /* Dropped endpoint */ 1563 xhci_clear_endpoint_bw_info(bw_info); 1564 continue; 1565 } 1566 1567 if (EP_IS_ADDED(ctrl_ctx, i)) { 1568 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i); 1569 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2)); 1570 1571 /* Ignore non-periodic endpoints */ 1572 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 1573 ep_type != ISOC_IN_EP && 1574 ep_type != INT_IN_EP) 1575 continue; 1576 1577 /* Added or changed endpoint */ 1578 bw_info->ep_interval = CTX_TO_EP_INTERVAL( 1579 le32_to_cpu(ep_ctx->ep_info)); 1580 /* Number of packets and mult are zero-based in the 1581 * input context, but we want one-based for the 1582 * interval table. 1583 */ 1584 bw_info->mult = CTX_TO_EP_MULT( 1585 le32_to_cpu(ep_ctx->ep_info)) + 1; 1586 bw_info->num_packets = CTX_TO_MAX_BURST( 1587 le32_to_cpu(ep_ctx->ep_info2)) + 1; 1588 bw_info->max_packet_size = MAX_PACKET_DECODED( 1589 le32_to_cpu(ep_ctx->ep_info2)); 1590 bw_info->type = ep_type; 1591 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD( 1592 le32_to_cpu(ep_ctx->tx_info)); 1593 } 1594 } 1595} 1596 1597/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy. 1598 * Useful when you want to change one particular aspect of the endpoint and then 1599 * issue a configure endpoint command. 1600 */ 1601void xhci_endpoint_copy(struct xhci_hcd *xhci, 1602 struct xhci_container_ctx *in_ctx, 1603 struct xhci_container_ctx *out_ctx, 1604 unsigned int ep_index) 1605{ 1606 struct xhci_ep_ctx *out_ep_ctx; 1607 struct xhci_ep_ctx *in_ep_ctx; 1608 1609 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1610 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 1611 1612 in_ep_ctx->ep_info = out_ep_ctx->ep_info; 1613 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2; 1614 in_ep_ctx->deq = out_ep_ctx->deq; 1615 in_ep_ctx->tx_info = out_ep_ctx->tx_info; 1616} 1617 1618/* Copy output xhci_slot_ctx to the input xhci_slot_ctx. 1619 * Useful when you want to change one particular aspect of the endpoint and then 1620 * issue a configure endpoint command. Only the context entries field matters, 1621 * but we'll copy the whole thing anyway. 1622 */ 1623void xhci_slot_copy(struct xhci_hcd *xhci, 1624 struct xhci_container_ctx *in_ctx, 1625 struct xhci_container_ctx *out_ctx) 1626{ 1627 struct xhci_slot_ctx *in_slot_ctx; 1628 struct xhci_slot_ctx *out_slot_ctx; 1629 1630 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1631 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx); 1632 1633 in_slot_ctx->dev_info = out_slot_ctx->dev_info; 1634 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2; 1635 in_slot_ctx->tt_info = out_slot_ctx->tt_info; 1636 in_slot_ctx->dev_state = out_slot_ctx->dev_state; 1637} 1638 1639/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */ 1640static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags) 1641{ 1642 int i; 1643 struct device *dev = xhci_to_hcd(xhci)->self.controller; 1644 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); 1645 1646 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1647 "Allocating %d scratchpad buffers", num_sp); 1648 1649 if (!num_sp) 1650 return 0; 1651 1652 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags); 1653 if (!xhci->scratchpad) 1654 goto fail_sp; 1655 1656 xhci->scratchpad->sp_array = dma_alloc_coherent(dev, 1657 num_sp * sizeof(u64), 1658 &xhci->scratchpad->sp_dma, flags); 1659 if (!xhci->scratchpad->sp_array) 1660 goto fail_sp2; 1661 1662 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags); 1663 if (!xhci->scratchpad->sp_buffers) 1664 goto fail_sp3; 1665 1666 xhci->scratchpad->sp_dma_buffers = 1667 kzalloc(sizeof(dma_addr_t) * num_sp, flags); 1668 1669 if (!xhci->scratchpad->sp_dma_buffers) 1670 goto fail_sp4; 1671 1672 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma); 1673 for (i = 0; i < num_sp; i++) { 1674 dma_addr_t dma; 1675 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma, 1676 flags); 1677 if (!buf) 1678 goto fail_sp5; 1679 1680 xhci->scratchpad->sp_array[i] = dma; 1681 xhci->scratchpad->sp_buffers[i] = buf; 1682 xhci->scratchpad->sp_dma_buffers[i] = dma; 1683 } 1684 1685 return 0; 1686 1687 fail_sp5: 1688 for (i = i - 1; i >= 0; i--) { 1689 dma_free_coherent(dev, xhci->page_size, 1690 xhci->scratchpad->sp_buffers[i], 1691 xhci->scratchpad->sp_dma_buffers[i]); 1692 } 1693 kfree(xhci->scratchpad->sp_dma_buffers); 1694 1695 fail_sp4: 1696 kfree(xhci->scratchpad->sp_buffers); 1697 1698 fail_sp3: 1699 dma_free_coherent(dev, num_sp * sizeof(u64), 1700 xhci->scratchpad->sp_array, 1701 xhci->scratchpad->sp_dma); 1702 1703 fail_sp2: 1704 kfree(xhci->scratchpad); 1705 xhci->scratchpad = NULL; 1706 1707 fail_sp: 1708 return -ENOMEM; 1709} 1710 1711static void scratchpad_free(struct xhci_hcd *xhci) 1712{ 1713 int num_sp; 1714 int i; 1715 struct device *dev = xhci_to_hcd(xhci)->self.controller; 1716 1717 if (!xhci->scratchpad) 1718 return; 1719 1720 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); 1721 1722 for (i = 0; i < num_sp; i++) { 1723 dma_free_coherent(dev, xhci->page_size, 1724 xhci->scratchpad->sp_buffers[i], 1725 xhci->scratchpad->sp_dma_buffers[i]); 1726 } 1727 kfree(xhci->scratchpad->sp_dma_buffers); 1728 kfree(xhci->scratchpad->sp_buffers); 1729 dma_free_coherent(dev, num_sp * sizeof(u64), 1730 xhci->scratchpad->sp_array, 1731 xhci->scratchpad->sp_dma); 1732 kfree(xhci->scratchpad); 1733 xhci->scratchpad = NULL; 1734} 1735 1736struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci, 1737 bool allocate_in_ctx, bool allocate_completion, 1738 gfp_t mem_flags) 1739{ 1740 struct xhci_command *command; 1741 1742 command = kzalloc(sizeof(*command), mem_flags); 1743 if (!command) 1744 return NULL; 1745 1746 if (allocate_in_ctx) { 1747 command->in_ctx = 1748 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, 1749 mem_flags); 1750 if (!command->in_ctx) { 1751 kfree(command); 1752 return NULL; 1753 } 1754 } 1755 1756 if (allocate_completion) { 1757 command->completion = 1758 kzalloc(sizeof(struct completion), mem_flags); 1759 if (!command->completion) { 1760 xhci_free_container_ctx(xhci, command->in_ctx); 1761 kfree(command); 1762 return NULL; 1763 } 1764 init_completion(command->completion); 1765 } 1766 1767 command->status = 0; 1768 INIT_LIST_HEAD(&command->cmd_list); 1769 return command; 1770} 1771 1772void xhci_urb_free_priv(struct urb_priv *urb_priv) 1773{ 1774 if (urb_priv) { 1775 kfree(urb_priv->td[0]); 1776 kfree(urb_priv); 1777 } 1778} 1779 1780void xhci_free_command(struct xhci_hcd *xhci, 1781 struct xhci_command *command) 1782{ 1783 xhci_free_container_ctx(xhci, 1784 command->in_ctx); 1785 kfree(command->completion); 1786 kfree(command); 1787} 1788 1789void xhci_mem_cleanup(struct xhci_hcd *xhci) 1790{ 1791 struct device *dev = xhci_to_hcd(xhci)->self.controller; 1792 int size; 1793 int i, j, num_ports; 1794 1795 del_timer_sync(&xhci->cmd_timer); 1796 1797 /* Free the Event Ring Segment Table and the actual Event Ring */ 1798 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries); 1799 if (xhci->erst.entries) 1800 dma_free_coherent(dev, size, 1801 xhci->erst.entries, xhci->erst.erst_dma_addr); 1802 xhci->erst.entries = NULL; 1803 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST"); 1804 if (xhci->event_ring) 1805 xhci_ring_free(xhci, xhci->event_ring); 1806 xhci->event_ring = NULL; 1807 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring"); 1808 1809 if (xhci->lpm_command) 1810 xhci_free_command(xhci, xhci->lpm_command); 1811 xhci->lpm_command = NULL; 1812 if (xhci->cmd_ring) 1813 xhci_ring_free(xhci, xhci->cmd_ring); 1814 xhci->cmd_ring = NULL; 1815 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring"); 1816 xhci_cleanup_command_queue(xhci); 1817 1818 num_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1819 for (i = 0; i < num_ports && xhci->rh_bw; i++) { 1820 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table; 1821 for (j = 0; j < XHCI_MAX_INTERVAL; j++) { 1822 struct list_head *ep = &bwt->interval_bw[j].endpoints; 1823 while (!list_empty(ep)) 1824 list_del_init(ep->next); 1825 } 1826 } 1827 1828 for (i = 1; i < MAX_HC_SLOTS; ++i) 1829 xhci_free_virt_device(xhci, i); 1830 1831 if (xhci->segment_pool) 1832 dma_pool_destroy(xhci->segment_pool); 1833 xhci->segment_pool = NULL; 1834 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool"); 1835 1836 if (xhci->device_pool) 1837 dma_pool_destroy(xhci->device_pool); 1838 xhci->device_pool = NULL; 1839 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool"); 1840 1841 if (xhci->small_streams_pool) 1842 dma_pool_destroy(xhci->small_streams_pool); 1843 xhci->small_streams_pool = NULL; 1844 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1845 "Freed small stream array pool"); 1846 1847 if (xhci->medium_streams_pool) 1848 dma_pool_destroy(xhci->medium_streams_pool); 1849 xhci->medium_streams_pool = NULL; 1850 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1851 "Freed medium stream array pool"); 1852 1853 if (xhci->dcbaa) 1854 dma_free_coherent(dev, sizeof(*xhci->dcbaa), 1855 xhci->dcbaa, xhci->dcbaa->dma); 1856 xhci->dcbaa = NULL; 1857 1858 scratchpad_free(xhci); 1859 1860 if (!xhci->rh_bw) 1861 goto no_bw; 1862 1863 for (i = 0; i < num_ports; i++) { 1864 struct xhci_tt_bw_info *tt, *n; 1865 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) { 1866 list_del(&tt->tt_list); 1867 kfree(tt); 1868 } 1869 } 1870 1871no_bw: 1872 xhci->cmd_ring_reserved_trbs = 0; 1873 xhci->num_usb2_ports = 0; 1874 xhci->num_usb3_ports = 0; 1875 xhci->num_active_eps = 0; 1876 kfree(xhci->usb2_ports); 1877 kfree(xhci->usb3_ports); 1878 kfree(xhci->port_array); 1879 kfree(xhci->rh_bw); 1880 kfree(xhci->ext_caps); 1881 1882 xhci->usb2_ports = NULL; 1883 xhci->usb3_ports = NULL; 1884 xhci->port_array = NULL; 1885 xhci->rh_bw = NULL; 1886 xhci->ext_caps = NULL; 1887 1888 xhci->page_size = 0; 1889 xhci->page_shift = 0; 1890 xhci->bus_state[0].bus_suspended = 0; 1891 xhci->bus_state[1].bus_suspended = 0; 1892} 1893 1894static int xhci_test_trb_in_td(struct xhci_hcd *xhci, 1895 struct xhci_segment *input_seg, 1896 union xhci_trb *start_trb, 1897 union xhci_trb *end_trb, 1898 dma_addr_t input_dma, 1899 struct xhci_segment *result_seg, 1900 char *test_name, int test_number) 1901{ 1902 unsigned long long start_dma; 1903 unsigned long long end_dma; 1904 struct xhci_segment *seg; 1905 1906 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb); 1907 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb); 1908 1909 seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false); 1910 if (seg != result_seg) { 1911 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n", 1912 test_name, test_number); 1913 xhci_warn(xhci, "Tested TRB math w/ seg %p and " 1914 "input DMA 0x%llx\n", 1915 input_seg, 1916 (unsigned long long) input_dma); 1917 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), " 1918 "ending TRB %p (0x%llx DMA)\n", 1919 start_trb, start_dma, 1920 end_trb, end_dma); 1921 xhci_warn(xhci, "Expected seg %p, got seg %p\n", 1922 result_seg, seg); 1923 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, 1924 true); 1925 return -1; 1926 } 1927 return 0; 1928} 1929 1930/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */ 1931static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci) 1932{ 1933 struct { 1934 dma_addr_t input_dma; 1935 struct xhci_segment *result_seg; 1936 } simple_test_vector [] = { 1937 /* A zeroed DMA field should fail */ 1938 { 0, NULL }, 1939 /* One TRB before the ring start should fail */ 1940 { xhci->event_ring->first_seg->dma - 16, NULL }, 1941 /* One byte before the ring start should fail */ 1942 { xhci->event_ring->first_seg->dma - 1, NULL }, 1943 /* Starting TRB should succeed */ 1944 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg }, 1945 /* Ending TRB should succeed */ 1946 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16, 1947 xhci->event_ring->first_seg }, 1948 /* One byte after the ring end should fail */ 1949 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL }, 1950 /* One TRB after the ring end should fail */ 1951 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL }, 1952 /* An address of all ones should fail */ 1953 { (dma_addr_t) (~0), NULL }, 1954 }; 1955 struct { 1956 struct xhci_segment *input_seg; 1957 union xhci_trb *start_trb; 1958 union xhci_trb *end_trb; 1959 dma_addr_t input_dma; 1960 struct xhci_segment *result_seg; 1961 } complex_test_vector [] = { 1962 /* Test feeding a valid DMA address from a different ring */ 1963 { .input_seg = xhci->event_ring->first_seg, 1964 .start_trb = xhci->event_ring->first_seg->trbs, 1965 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 1966 .input_dma = xhci->cmd_ring->first_seg->dma, 1967 .result_seg = NULL, 1968 }, 1969 /* Test feeding a valid end TRB from a different ring */ 1970 { .input_seg = xhci->event_ring->first_seg, 1971 .start_trb = xhci->event_ring->first_seg->trbs, 1972 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 1973 .input_dma = xhci->cmd_ring->first_seg->dma, 1974 .result_seg = NULL, 1975 }, 1976 /* Test feeding a valid start and end TRB from a different ring */ 1977 { .input_seg = xhci->event_ring->first_seg, 1978 .start_trb = xhci->cmd_ring->first_seg->trbs, 1979 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 1980 .input_dma = xhci->cmd_ring->first_seg->dma, 1981 .result_seg = NULL, 1982 }, 1983 /* TRB in this ring, but after this TD */ 1984 { .input_seg = xhci->event_ring->first_seg, 1985 .start_trb = &xhci->event_ring->first_seg->trbs[0], 1986 .end_trb = &xhci->event_ring->first_seg->trbs[3], 1987 .input_dma = xhci->event_ring->first_seg->dma + 4*16, 1988 .result_seg = NULL, 1989 }, 1990 /* TRB in this ring, but before this TD */ 1991 { .input_seg = xhci->event_ring->first_seg, 1992 .start_trb = &xhci->event_ring->first_seg->trbs[3], 1993 .end_trb = &xhci->event_ring->first_seg->trbs[6], 1994 .input_dma = xhci->event_ring->first_seg->dma + 2*16, 1995 .result_seg = NULL, 1996 }, 1997 /* TRB in this ring, but after this wrapped TD */ 1998 { .input_seg = xhci->event_ring->first_seg, 1999 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 2000 .end_trb = &xhci->event_ring->first_seg->trbs[1], 2001 .input_dma = xhci->event_ring->first_seg->dma + 2*16, 2002 .result_seg = NULL, 2003 }, 2004 /* TRB in this ring, but before this wrapped TD */ 2005 { .input_seg = xhci->event_ring->first_seg, 2006 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 2007 .end_trb = &xhci->event_ring->first_seg->trbs[1], 2008 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16, 2009 .result_seg = NULL, 2010 }, 2011 /* TRB not in this ring, and we have a wrapped TD */ 2012 { .input_seg = xhci->event_ring->first_seg, 2013 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], 2014 .end_trb = &xhci->event_ring->first_seg->trbs[1], 2015 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16, 2016 .result_seg = NULL, 2017 }, 2018 }; 2019 2020 unsigned int num_tests; 2021 int i, ret; 2022 2023 num_tests = ARRAY_SIZE(simple_test_vector); 2024 for (i = 0; i < num_tests; i++) { 2025 ret = xhci_test_trb_in_td(xhci, 2026 xhci->event_ring->first_seg, 2027 xhci->event_ring->first_seg->trbs, 2028 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], 2029 simple_test_vector[i].input_dma, 2030 simple_test_vector[i].result_seg, 2031 "Simple", i); 2032 if (ret < 0) 2033 return ret; 2034 } 2035 2036 num_tests = ARRAY_SIZE(complex_test_vector); 2037 for (i = 0; i < num_tests; i++) { 2038 ret = xhci_test_trb_in_td(xhci, 2039 complex_test_vector[i].input_seg, 2040 complex_test_vector[i].start_trb, 2041 complex_test_vector[i].end_trb, 2042 complex_test_vector[i].input_dma, 2043 complex_test_vector[i].result_seg, 2044 "Complex", i); 2045 if (ret < 0) 2046 return ret; 2047 } 2048 xhci_dbg(xhci, "TRB math tests passed.\n"); 2049 return 0; 2050} 2051 2052static void xhci_set_hc_event_deq(struct xhci_hcd *xhci) 2053{ 2054 u64 temp; 2055 dma_addr_t deq; 2056 2057 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, 2058 xhci->event_ring->dequeue); 2059 if (deq == 0 && !in_interrupt()) 2060 xhci_warn(xhci, "WARN something wrong with SW event ring " 2061 "dequeue ptr.\n"); 2062 /* Update HC event ring dequeue pointer */ 2063 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); 2064 temp &= ERST_PTR_MASK; 2065 /* Don't clear the EHB bit (which is RW1C) because 2066 * there might be more events to service. 2067 */ 2068 temp &= ~ERST_EHB; 2069 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2070 "// Write event ring dequeue pointer, " 2071 "preserving EHB bit"); 2072 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp, 2073 &xhci->ir_set->erst_dequeue); 2074} 2075 2076static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports, 2077 __le32 __iomem *addr, u8 major_revision, int max_caps) 2078{ 2079 u32 temp, port_offset, port_count; 2080 int i; 2081 2082 if (major_revision > 0x03) { 2083 xhci_warn(xhci, "Ignoring unknown port speed, " 2084 "Ext Cap %p, revision = 0x%x\n", 2085 addr, major_revision); 2086 /* Ignoring port protocol we can't understand. FIXME */ 2087 return; 2088 } 2089 2090 /* Port offset and count in the third dword, see section 7.2 */ 2091 temp = readl(addr + 2); 2092 port_offset = XHCI_EXT_PORT_OFF(temp); 2093 port_count = XHCI_EXT_PORT_COUNT(temp); 2094 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2095 "Ext Cap %p, port offset = %u, " 2096 "count = %u, revision = 0x%x", 2097 addr, port_offset, port_count, major_revision); 2098 /* Port count includes the current port offset */ 2099 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports) 2100 /* WTF? "Valid values are ‘1’ to MaxPorts" */ 2101 return; 2102 2103 /* cache usb2 port capabilities */ 2104 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps) 2105 xhci->ext_caps[xhci->num_ext_caps++] = temp; 2106 2107 /* Check the host's USB2 LPM capability */ 2108 if ((xhci->hci_version == 0x96) && (major_revision != 0x03) && 2109 (temp & XHCI_L1C)) { 2110 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2111 "xHCI 0.96: support USB2 software lpm"); 2112 xhci->sw_lpm_support = 1; 2113 } 2114 2115 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) { 2116 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2117 "xHCI 1.0: support USB2 software lpm"); 2118 xhci->sw_lpm_support = 1; 2119 if (temp & XHCI_HLC) { 2120 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2121 "xHCI 1.0: support USB2 hardware lpm"); 2122 xhci->hw_lpm_support = 1; 2123 } 2124 } 2125 2126 port_offset--; 2127 for (i = port_offset; i < (port_offset + port_count); i++) { 2128 /* Duplicate entry. Ignore the port if the revisions differ. */ 2129 if (xhci->port_array[i] != 0) { 2130 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p," 2131 " port %u\n", addr, i); 2132 xhci_warn(xhci, "Port was marked as USB %u, " 2133 "duplicated as USB %u\n", 2134 xhci->port_array[i], major_revision); 2135 /* Only adjust the roothub port counts if we haven't 2136 * found a similar duplicate. 2137 */ 2138 if (xhci->port_array[i] != major_revision && 2139 xhci->port_array[i] != DUPLICATE_ENTRY) { 2140 if (xhci->port_array[i] == 0x03) 2141 xhci->num_usb3_ports--; 2142 else 2143 xhci->num_usb2_ports--; 2144 xhci->port_array[i] = DUPLICATE_ENTRY; 2145 } 2146 /* FIXME: Should we disable the port? */ 2147 continue; 2148 } 2149 xhci->port_array[i] = major_revision; 2150 if (major_revision == 0x03) 2151 xhci->num_usb3_ports++; 2152 else 2153 xhci->num_usb2_ports++; 2154 } 2155 /* FIXME: Should we disable ports not in the Extended Capabilities? */ 2156} 2157 2158/* 2159 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that 2160 * specify what speeds each port is supposed to be. We can't count on the port 2161 * speed bits in the PORTSC register being correct until a device is connected, 2162 * but we need to set up the two fake roothubs with the correct number of USB 2163 * 3.0 and USB 2.0 ports at host controller initialization time. 2164 */ 2165static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags) 2166{ 2167 __le32 __iomem *addr, *tmp_addr; 2168 u32 offset, tmp_offset; 2169 unsigned int num_ports; 2170 int i, j, port_index; 2171 int cap_count = 0; 2172 2173 addr = &xhci->cap_regs->hcc_params; 2174 offset = XHCI_HCC_EXT_CAPS(readl(addr)); 2175 if (offset == 0) { 2176 xhci_err(xhci, "No Extended Capability registers, " 2177 "unable to set up roothub.\n"); 2178 return -ENODEV; 2179 } 2180 2181 num_ports = HCS_MAX_PORTS(xhci->hcs_params1); 2182 xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags); 2183 if (!xhci->port_array) 2184 return -ENOMEM; 2185 2186 xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags); 2187 if (!xhci->rh_bw) 2188 return -ENOMEM; 2189 for (i = 0; i < num_ports; i++) { 2190 struct xhci_interval_bw_table *bw_table; 2191 2192 INIT_LIST_HEAD(&xhci->rh_bw[i].tts); 2193 bw_table = &xhci->rh_bw[i].bw_table; 2194 for (j = 0; j < XHCI_MAX_INTERVAL; j++) 2195 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); 2196 } 2197 2198 /* 2199 * For whatever reason, the first capability offset is from the 2200 * capability register base, not from the HCCPARAMS register. 2201 * See section 5.3.6 for offset calculation. 2202 */ 2203 addr = &xhci->cap_regs->hc_capbase + offset; 2204 2205 tmp_addr = addr; 2206 tmp_offset = offset; 2207 2208 /* count extended protocol capability entries for later caching */ 2209 do { 2210 u32 cap_id; 2211 cap_id = readl(tmp_addr); 2212 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL) 2213 cap_count++; 2214 tmp_offset = XHCI_EXT_CAPS_NEXT(cap_id); 2215 tmp_addr += tmp_offset; 2216 } while (tmp_offset); 2217 2218 xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags); 2219 if (!xhci->ext_caps) 2220 return -ENOMEM; 2221 2222 while (1) { 2223 u32 cap_id; 2224 2225 cap_id = readl(addr); 2226 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL) 2227 xhci_add_in_port(xhci, num_ports, addr, 2228 (u8) XHCI_EXT_PORT_MAJOR(cap_id), 2229 cap_count); 2230 offset = XHCI_EXT_CAPS_NEXT(cap_id); 2231 if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports) 2232 == num_ports) 2233 break; 2234 /* 2235 * Once you're into the Extended Capabilities, the offset is 2236 * always relative to the register holding the offset. 2237 */ 2238 addr += offset; 2239 } 2240 2241 if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) { 2242 xhci_warn(xhci, "No ports on the roothubs?\n"); 2243 return -ENODEV; 2244 } 2245 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2246 "Found %u USB 2.0 ports and %u USB 3.0 ports.", 2247 xhci->num_usb2_ports, xhci->num_usb3_ports); 2248 2249 /* Place limits on the number of roothub ports so that the hub 2250 * descriptors aren't longer than the USB core will allocate. 2251 */ 2252 if (xhci->num_usb3_ports > 15) { 2253 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2254 "Limiting USB 3.0 roothub ports to 15."); 2255 xhci->num_usb3_ports = 15; 2256 } 2257 if (xhci->num_usb2_ports > USB_MAXCHILDREN) { 2258 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2259 "Limiting USB 2.0 roothub ports to %u.", 2260 USB_MAXCHILDREN); 2261 xhci->num_usb2_ports = USB_MAXCHILDREN; 2262 } 2263 2264 /* 2265 * Note we could have all USB 3.0 ports, or all USB 2.0 ports. 2266 * Not sure how the USB core will handle a hub with no ports... 2267 */ 2268 if (xhci->num_usb2_ports) { 2269 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)* 2270 xhci->num_usb2_ports, flags); 2271 if (!xhci->usb2_ports) 2272 return -ENOMEM; 2273 2274 port_index = 0; 2275 for (i = 0; i < num_ports; i++) { 2276 if (xhci->port_array[i] == 0x03 || 2277 xhci->port_array[i] == 0 || 2278 xhci->port_array[i] == DUPLICATE_ENTRY) 2279 continue; 2280 2281 xhci->usb2_ports[port_index] = 2282 &xhci->op_regs->port_status_base + 2283 NUM_PORT_REGS*i; 2284 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2285 "USB 2.0 port at index %u, " 2286 "addr = %p", i, 2287 xhci->usb2_ports[port_index]); 2288 port_index++; 2289 if (port_index == xhci->num_usb2_ports) 2290 break; 2291 } 2292 } 2293 if (xhci->num_usb3_ports) { 2294 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)* 2295 xhci->num_usb3_ports, flags); 2296 if (!xhci->usb3_ports) 2297 return -ENOMEM; 2298 2299 port_index = 0; 2300 for (i = 0; i < num_ports; i++) 2301 if (xhci->port_array[i] == 0x03) { 2302 xhci->usb3_ports[port_index] = 2303 &xhci->op_regs->port_status_base + 2304 NUM_PORT_REGS*i; 2305 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2306 "USB 3.0 port at index %u, " 2307 "addr = %p", i, 2308 xhci->usb3_ports[port_index]); 2309 port_index++; 2310 if (port_index == xhci->num_usb3_ports) 2311 break; 2312 } 2313 } 2314 return 0; 2315} 2316 2317int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags) 2318{ 2319 dma_addr_t dma; 2320 struct device *dev = xhci_to_hcd(xhci)->self.controller; 2321 unsigned int val, val2; 2322 u64 val_64; 2323 struct xhci_segment *seg; 2324 u32 page_size, temp; 2325 int i; 2326 2327 INIT_LIST_HEAD(&xhci->cmd_list); 2328 2329 /* init command timeout timer */ 2330 setup_timer(&xhci->cmd_timer, xhci_handle_command_timeout, 2331 (unsigned long)xhci); 2332 2333 page_size = readl(&xhci->op_regs->page_size); 2334 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2335 "Supported page size register = 0x%x", page_size); 2336 for (i = 0; i < 16; i++) { 2337 if ((0x1 & page_size) != 0) 2338 break; 2339 page_size = page_size >> 1; 2340 } 2341 if (i < 16) 2342 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2343 "Supported page size of %iK", (1 << (i+12)) / 1024); 2344 else 2345 xhci_warn(xhci, "WARN: no supported page size\n"); 2346 /* Use 4K pages, since that's common and the minimum the HC supports */ 2347 xhci->page_shift = 12; 2348 xhci->page_size = 1 << xhci->page_shift; 2349 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2350 "HCD page size set to %iK", xhci->page_size / 1024); 2351 2352 /* 2353 * Program the Number of Device Slots Enabled field in the CONFIG 2354 * register with the max value of slots the HC can handle. 2355 */ 2356 val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1)); 2357 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2358 "// xHC can handle at most %d device slots.", val); 2359 val2 = readl(&xhci->op_regs->config_reg); 2360 val |= (val2 & ~HCS_SLOTS_MASK); 2361 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2362 "// Setting Max device slots reg = 0x%x.", val); 2363 writel(val, &xhci->op_regs->config_reg); 2364 2365 /* 2366 * Section 5.4.8 - doorbell array must be 2367 * "physically contiguous and 64-byte (cache line) aligned". 2368 */ 2369 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma, 2370 GFP_KERNEL); 2371 if (!xhci->dcbaa) 2372 goto fail; 2373 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa)); 2374 xhci->dcbaa->dma = dma; 2375 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2376 "// Device context base array address = 0x%llx (DMA), %p (virt)", 2377 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa); 2378 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr); 2379 2380 /* 2381 * Initialize the ring segment pool. The ring must be a contiguous 2382 * structure comprised of TRBs. The TRBs must be 16 byte aligned, 2383 * however, the command ring segment needs 64-byte aligned segments 2384 * and our use of dma addresses in the trb_address_map radix tree needs 2385 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need. 2386 */ 2387 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev, 2388 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size); 2389 2390 /* See Table 46 and Note on Figure 55 */ 2391 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev, 2392 2112, 64, xhci->page_size); 2393 if (!xhci->segment_pool || !xhci->device_pool) 2394 goto fail; 2395 2396 /* Linear stream context arrays don't have any boundary restrictions, 2397 * and only need to be 16-byte aligned. 2398 */ 2399 xhci->small_streams_pool = 2400 dma_pool_create("xHCI 256 byte stream ctx arrays", 2401 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0); 2402 xhci->medium_streams_pool = 2403 dma_pool_create("xHCI 1KB stream ctx arrays", 2404 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0); 2405 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE 2406 * will be allocated with dma_alloc_coherent() 2407 */ 2408 2409 if (!xhci->small_streams_pool || !xhci->medium_streams_pool) 2410 goto fail; 2411 2412 /* Set up the command ring to have one segments for now. */ 2413 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags); 2414 if (!xhci->cmd_ring) 2415 goto fail; 2416 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2417 "Allocated command ring at %p", xhci->cmd_ring); 2418 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx", 2419 (unsigned long long)xhci->cmd_ring->first_seg->dma); 2420 2421 /* Set the address in the Command Ring Control register */ 2422 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 2423 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 2424 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) | 2425 xhci->cmd_ring->cycle_state; 2426 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2427 "// Setting command ring address to 0x%x", val); 2428 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 2429 xhci_dbg_cmd_ptrs(xhci); 2430 2431 xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags); 2432 if (!xhci->lpm_command) 2433 goto fail; 2434 2435 /* Reserve one command ring TRB for disabling LPM. 2436 * Since the USB core grabs the shared usb_bus bandwidth mutex before 2437 * disabling LPM, we only need to reserve one TRB for all devices. 2438 */ 2439 xhci->cmd_ring_reserved_trbs++; 2440 2441 val = readl(&xhci->cap_regs->db_off); 2442 val &= DBOFF_MASK; 2443 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2444 "// Doorbell array is located at offset 0x%x" 2445 " from cap regs base addr", val); 2446 xhci->dba = (void __iomem *) xhci->cap_regs + val; 2447 xhci_dbg_regs(xhci); 2448 xhci_print_run_regs(xhci); 2449 /* Set ir_set to interrupt register set 0 */ 2450 xhci->ir_set = &xhci->run_regs->ir_set[0]; 2451 2452 /* 2453 * Event ring setup: Allocate a normal ring, but also setup 2454 * the event ring segment table (ERST). Section 4.9.3. 2455 */ 2456 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring"); 2457 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT, 2458 flags); 2459 if (!xhci->event_ring) 2460 goto fail; 2461 if (xhci_check_trb_in_td_math(xhci) < 0) 2462 goto fail; 2463 2464 xhci->erst.entries = dma_alloc_coherent(dev, 2465 sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma, 2466 GFP_KERNEL); 2467 if (!xhci->erst.entries) 2468 goto fail; 2469 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2470 "// Allocated event ring segment table at 0x%llx", 2471 (unsigned long long)dma); 2472 2473 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS); 2474 xhci->erst.num_entries = ERST_NUM_SEGS; 2475 xhci->erst.erst_dma_addr = dma; 2476 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2477 "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx", 2478 xhci->erst.num_entries, 2479 xhci->erst.entries, 2480 (unsigned long long)xhci->erst.erst_dma_addr); 2481 2482 /* set ring base address and size for each segment table entry */ 2483 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) { 2484 struct xhci_erst_entry *entry = &xhci->erst.entries[val]; 2485 entry->seg_addr = cpu_to_le64(seg->dma); 2486 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT); 2487 entry->rsvd = 0; 2488 seg = seg->next; 2489 } 2490 2491 /* set ERST count with the number of entries in the segment table */ 2492 val = readl(&xhci->ir_set->erst_size); 2493 val &= ERST_SIZE_MASK; 2494 val |= ERST_NUM_SEGS; 2495 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2496 "// Write ERST size = %i to ir_set 0 (some bits preserved)", 2497 val); 2498 writel(val, &xhci->ir_set->erst_size); 2499 2500 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2501 "// Set ERST entries to point to event ring."); 2502 /* set the segment table base address */ 2503 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2504 "// Set ERST base address for ir_set 0 = 0x%llx", 2505 (unsigned long long)xhci->erst.erst_dma_addr); 2506 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base); 2507 val_64 &= ERST_PTR_MASK; 2508 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK); 2509 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base); 2510 2511 /* Set the event ring dequeue address */ 2512 xhci_set_hc_event_deq(xhci); 2513 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2514 "Wrote ERST address to ir_set 0."); 2515 xhci_print_ir_set(xhci, 0); 2516 2517 /* 2518 * XXX: Might need to set the Interrupter Moderation Register to 2519 * something other than the default (~1ms minimum between interrupts). 2520 * See section 5.5.1.2. 2521 */ 2522 init_completion(&xhci->addr_dev); 2523 for (i = 0; i < MAX_HC_SLOTS; ++i) 2524 xhci->devs[i] = NULL; 2525 for (i = 0; i < USB_MAXCHILDREN; ++i) { 2526 xhci->bus_state[0].resume_done[i] = 0; 2527 xhci->bus_state[1].resume_done[i] = 0; 2528 /* Only the USB 2.0 completions will ever be used. */ 2529 init_completion(&xhci->bus_state[1].rexit_done[i]); 2530 } 2531 2532 if (scratchpad_alloc(xhci, flags)) 2533 goto fail; 2534 if (xhci_setup_port_arrays(xhci, flags)) 2535 goto fail; 2536 2537 /* Enable USB 3.0 device notifications for function remote wake, which 2538 * is necessary for allowing USB 3.0 devices to do remote wakeup from 2539 * U3 (device suspend). 2540 */ 2541 temp = readl(&xhci->op_regs->dev_notification); 2542 temp &= ~DEV_NOTE_MASK; 2543 temp |= DEV_NOTE_FWAKE; 2544 writel(temp, &xhci->op_regs->dev_notification); 2545 2546 return 0; 2547 2548fail: 2549 xhci_warn(xhci, "Couldn't initialize memory\n"); 2550 xhci_halt(xhci); 2551 xhci_reset(xhci); 2552 xhci_mem_cleanup(xhci); 2553 return -ENOMEM; 2554} 2555