1/*
2 * Faraday FOTG210 EHCI-like driver
3 *
4 * Copyright (c) 2013 Faraday Technology Corporation
5 *
6 * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
7 *	   Feng-Hsin Chiang <john453@faraday-tech.com>
8 *	   Po-Yu Chuang <ratbert.chuang@gmail.com>
9 *
10 * Most of code borrowed from the Linux-3.7 EHCI driver
11 *
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License as published by the
14 * Free Software Foundation; either version 2 of the License, or (at your
15 * option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
19 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
20 * for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software Foundation,
24 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 */
26#include <linux/module.h>
27#include <linux/device.h>
28#include <linux/dmapool.h>
29#include <linux/kernel.h>
30#include <linux/delay.h>
31#include <linux/ioport.h>
32#include <linux/sched.h>
33#include <linux/vmalloc.h>
34#include <linux/errno.h>
35#include <linux/init.h>
36#include <linux/hrtimer.h>
37#include <linux/list.h>
38#include <linux/interrupt.h>
39#include <linux/usb.h>
40#include <linux/usb/hcd.h>
41#include <linux/moduleparam.h>
42#include <linux/dma-mapping.h>
43#include <linux/debugfs.h>
44#include <linux/slab.h>
45#include <linux/uaccess.h>
46#include <linux/platform_device.h>
47#include <linux/io.h>
48
49#include <asm/byteorder.h>
50#include <asm/irq.h>
51#include <asm/unaligned.h>
52
53/*-------------------------------------------------------------------------*/
54#define DRIVER_AUTHOR "Yuan-Hsin Chen"
55#define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver"
56
57static const char	hcd_name[] = "fotg210_hcd";
58
59#undef FOTG210_URB_TRACE
60
61#define FOTG210_STATS
62
63/* magic numbers that can affect system performance */
64#define	FOTG210_TUNE_CERR		3 /* 0-3 qtd retries; 0 == don't stop */
65#define	FOTG210_TUNE_RL_HS		4 /* nak throttle; see 4.9 */
66#define	FOTG210_TUNE_RL_TT		0
67#define	FOTG210_TUNE_MULT_HS	1	/* 1-3 transactions/uframe; 4.10.3 */
68#define	FOTG210_TUNE_MULT_TT	1
69/*
70 * Some drivers think it's safe to schedule isochronous transfers more than
71 * 256 ms into the future (partly as a result of an old bug in the scheduling
72 * code).  In an attempt to avoid trouble, we will use a minimum scheduling
73 * length of 512 frames instead of 256.
74 */
75#define	FOTG210_TUNE_FLS		1 /* (medium) 512-frame schedule */
76
77/* Initial IRQ latency:  faster than hw default */
78static int log2_irq_thresh;		/* 0 to 6 */
79module_param(log2_irq_thresh, int, S_IRUGO);
80MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
81
82/* initial park setting:  slower than hw default */
83static unsigned park;
84module_param(park, uint, S_IRUGO);
85MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
86
87/* for link power management(LPM) feature */
88static unsigned int hird;
89module_param(hird, int, S_IRUGO);
90MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us");
91
92#define	INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
93
94#include "fotg210.h"
95
96/*-------------------------------------------------------------------------*/
97
98#define fotg210_dbg(fotg210, fmt, args...) \
99	dev_dbg(fotg210_to_hcd(fotg210)->self.controller , fmt , ## args)
100#define fotg210_err(fotg210, fmt, args...) \
101	dev_err(fotg210_to_hcd(fotg210)->self.controller , fmt , ## args)
102#define fotg210_info(fotg210, fmt, args...) \
103	dev_info(fotg210_to_hcd(fotg210)->self.controller , fmt , ## args)
104#define fotg210_warn(fotg210, fmt, args...) \
105	dev_warn(fotg210_to_hcd(fotg210)->self.controller , fmt , ## args)
106
107/* check the values in the HCSPARAMS register
108 * (host controller _Structural_ parameters)
109 * see EHCI spec, Table 2-4 for each value
110 */
111static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label)
112{
113	u32	params = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
114
115	fotg210_dbg(fotg210,
116		"%s hcs_params 0x%x ports=%d\n",
117		label, params,
118		HCS_N_PORTS(params)
119		);
120}
121
122/* check the values in the HCCPARAMS register
123 * (host controller _Capability_ parameters)
124 * see EHCI Spec, Table 2-5 for each value
125 * */
126static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label)
127{
128	u32	params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
129
130	fotg210_dbg(fotg210,
131		"%s hcc_params %04x uframes %s%s\n",
132		label,
133		params,
134		HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024",
135		HCC_CANPARK(params) ? " park" : "");
136}
137
138static void __maybe_unused
139dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd)
140{
141	fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd,
142		hc32_to_cpup(fotg210, &qtd->hw_next),
143		hc32_to_cpup(fotg210, &qtd->hw_alt_next),
144		hc32_to_cpup(fotg210, &qtd->hw_token),
145		hc32_to_cpup(fotg210, &qtd->hw_buf[0]));
146	if (qtd->hw_buf[1])
147		fotg210_dbg(fotg210, "  p1=%08x p2=%08x p3=%08x p4=%08x\n",
148			hc32_to_cpup(fotg210, &qtd->hw_buf[1]),
149			hc32_to_cpup(fotg210, &qtd->hw_buf[2]),
150			hc32_to_cpup(fotg210, &qtd->hw_buf[3]),
151			hc32_to_cpup(fotg210, &qtd->hw_buf[4]));
152}
153
154static void __maybe_unused
155dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
156{
157	struct fotg210_qh_hw *hw = qh->hw;
158
159	fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label,
160		qh, hw->hw_next, hw->hw_info1, hw->hw_info2, hw->hw_current);
161	dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next);
162}
163
164static void __maybe_unused
165dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
166{
167	fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n",
168		label, itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next),
169		itd->urb);
170	fotg210_dbg(fotg210,
171		"  trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
172		hc32_to_cpu(fotg210, itd->hw_transaction[0]),
173		hc32_to_cpu(fotg210, itd->hw_transaction[1]),
174		hc32_to_cpu(fotg210, itd->hw_transaction[2]),
175		hc32_to_cpu(fotg210, itd->hw_transaction[3]),
176		hc32_to_cpu(fotg210, itd->hw_transaction[4]),
177		hc32_to_cpu(fotg210, itd->hw_transaction[5]),
178		hc32_to_cpu(fotg210, itd->hw_transaction[6]),
179		hc32_to_cpu(fotg210, itd->hw_transaction[7]));
180	fotg210_dbg(fotg210,
181		"  buf:   %08x %08x %08x %08x %08x %08x %08x\n",
182		hc32_to_cpu(fotg210, itd->hw_bufp[0]),
183		hc32_to_cpu(fotg210, itd->hw_bufp[1]),
184		hc32_to_cpu(fotg210, itd->hw_bufp[2]),
185		hc32_to_cpu(fotg210, itd->hw_bufp[3]),
186		hc32_to_cpu(fotg210, itd->hw_bufp[4]),
187		hc32_to_cpu(fotg210, itd->hw_bufp[5]),
188		hc32_to_cpu(fotg210, itd->hw_bufp[6]));
189	fotg210_dbg(fotg210, "  index: %d %d %d %d %d %d %d %d\n",
190		itd->index[0], itd->index[1], itd->index[2],
191		itd->index[3], itd->index[4], itd->index[5],
192		itd->index[6], itd->index[7]);
193}
194
195static int __maybe_unused
196dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
197{
198	return scnprintf(buf, len,
199		"%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
200		label, label[0] ? " " : "", status,
201		(status & STS_ASS) ? " Async" : "",
202		(status & STS_PSS) ? " Periodic" : "",
203		(status & STS_RECL) ? " Recl" : "",
204		(status & STS_HALT) ? " Halt" : "",
205		(status & STS_IAA) ? " IAA" : "",
206		(status & STS_FATAL) ? " FATAL" : "",
207		(status & STS_FLR) ? " FLR" : "",
208		(status & STS_PCD) ? " PCD" : "",
209		(status & STS_ERR) ? " ERR" : "",
210		(status & STS_INT) ? " INT" : ""
211		);
212}
213
214static int __maybe_unused
215dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
216{
217	return scnprintf(buf, len,
218		"%s%sintrenable %02x%s%s%s%s%s%s",
219		label, label[0] ? " " : "", enable,
220		(enable & STS_IAA) ? " IAA" : "",
221		(enable & STS_FATAL) ? " FATAL" : "",
222		(enable & STS_FLR) ? " FLR" : "",
223		(enable & STS_PCD) ? " PCD" : "",
224		(enable & STS_ERR) ? " ERR" : "",
225		(enable & STS_INT) ? " INT" : ""
226		);
227}
228
229static const char *const fls_strings[] = { "1024", "512", "256", "??" };
230
231static int
232dbg_command_buf(char *buf, unsigned len, const char *label, u32 command)
233{
234	return scnprintf(buf, len,
235		"%s%scommand %07x %s=%d ithresh=%d%s%s%s "
236		"period=%s%s %s",
237		label, label[0] ? " " : "", command,
238		(command & CMD_PARK) ? " park" : "(park)",
239		CMD_PARK_CNT(command),
240		(command >> 16) & 0x3f,
241		(command & CMD_IAAD) ? " IAAD" : "",
242		(command & CMD_ASE) ? " Async" : "",
243		(command & CMD_PSE) ? " Periodic" : "",
244		fls_strings[(command >> 2) & 0x3],
245		(command & CMD_RESET) ? " Reset" : "",
246		(command & CMD_RUN) ? "RUN" : "HALT"
247		);
248}
249
250static char
251*dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status)
252{
253	char	*sig;
254
255	/* signaling state */
256	switch (status & (3 << 10)) {
257	case 0 << 10:
258		sig = "se0";
259		break;
260	case 1 << 10:
261		sig = "k";
262		break; /* low speed */
263	case 2 << 10:
264		sig = "j";
265		break;
266	default:
267		sig = "?";
268		break;
269	}
270
271	scnprintf(buf, len,
272		"%s%sport:%d status %06x %d "
273		"sig=%s%s%s%s%s%s%s%s",
274		label, label[0] ? " " : "", port, status,
275		status>>25,/*device address */
276		sig,
277		(status & PORT_RESET) ? " RESET" : "",
278		(status & PORT_SUSPEND) ? " SUSPEND" : "",
279		(status & PORT_RESUME) ? " RESUME" : "",
280		(status & PORT_PEC) ? " PEC" : "",
281		(status & PORT_PE) ? " PE" : "",
282		(status & PORT_CSC) ? " CSC" : "",
283		(status & PORT_CONNECT) ? " CONNECT" : "");
284	return buf;
285}
286
287/* functions have the "wrong" filename when they're output... */
288#define dbg_status(fotg210, label, status) { \
289	char _buf[80]; \
290	dbg_status_buf(_buf, sizeof(_buf), label, status); \
291	fotg210_dbg(fotg210, "%s\n", _buf); \
292}
293
294#define dbg_cmd(fotg210, label, command) { \
295	char _buf[80]; \
296	dbg_command_buf(_buf, sizeof(_buf), label, command); \
297	fotg210_dbg(fotg210, "%s\n", _buf); \
298}
299
300#define dbg_port(fotg210, label, port, status) { \
301	char _buf[80]; \
302	fotg210_dbg(fotg210, "%s\n", dbg_port_buf(_buf, sizeof(_buf), label, port, status) ); \
303}
304
305/*-------------------------------------------------------------------------*/
306
307/* troubleshooting help: expose state in debugfs */
308
309static int debug_async_open(struct inode *, struct file *);
310static int debug_periodic_open(struct inode *, struct file *);
311static int debug_registers_open(struct inode *, struct file *);
312static int debug_async_open(struct inode *, struct file *);
313
314static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*);
315static int debug_close(struct inode *, struct file *);
316
317static const struct file_operations debug_async_fops = {
318	.owner		= THIS_MODULE,
319	.open		= debug_async_open,
320	.read		= debug_output,
321	.release	= debug_close,
322	.llseek		= default_llseek,
323};
324static const struct file_operations debug_periodic_fops = {
325	.owner		= THIS_MODULE,
326	.open		= debug_periodic_open,
327	.read		= debug_output,
328	.release	= debug_close,
329	.llseek		= default_llseek,
330};
331static const struct file_operations debug_registers_fops = {
332	.owner		= THIS_MODULE,
333	.open		= debug_registers_open,
334	.read		= debug_output,
335	.release	= debug_close,
336	.llseek		= default_llseek,
337};
338
339static struct dentry *fotg210_debug_root;
340
341struct debug_buffer {
342	ssize_t (*fill_func)(struct debug_buffer *);	/* fill method */
343	struct usb_bus *bus;
344	struct mutex mutex;	/* protect filling of buffer */
345	size_t count;		/* number of characters filled into buffer */
346	char *output_buf;
347	size_t alloc_size;
348};
349
350#define speed_char(info1)({ char tmp; \
351		switch (info1 & (3 << 12)) { \
352		case QH_FULL_SPEED:	\
353			tmp = 'f'; break; \
354		case QH_LOW_SPEED:	\
355			tmp = 'l'; break; \
356		case QH_HIGH_SPEED:	\
357			tmp = 'h'; break; \
358		default:		\
359			tmp = '?'; break; \
360		} tmp; })
361
362static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token)
363{
364	__u32 v = hc32_to_cpu(fotg210, token);
365
366	if (v & QTD_STS_ACTIVE)
367		return '*';
368	if (v & QTD_STS_HALT)
369		return '-';
370	if (!IS_SHORT_READ(v))
371		return ' ';
372	/* tries to advance through hw_alt_next */
373	return '/';
374}
375
376static void qh_lines(
377	struct fotg210_hcd *fotg210,
378	struct fotg210_qh *qh,
379	char **nextp,
380	unsigned *sizep
381)
382{
383	u32			scratch;
384	u32			hw_curr;
385	struct fotg210_qtd	*td;
386	unsigned		temp;
387	unsigned		size = *sizep;
388	char			*next = *nextp;
389	char			mark;
390	__le32			list_end = FOTG210_LIST_END(fotg210);
391	struct fotg210_qh_hw	*hw = qh->hw;
392
393	if (hw->hw_qtd_next == list_end)	/* NEC does this */
394		mark = '@';
395	else
396		mark = token_mark(fotg210, hw->hw_token);
397	if (mark == '/') {	/* qh_alt_next controls qh advance? */
398		if ((hw->hw_alt_next & QTD_MASK(fotg210))
399				== fotg210->async->hw->hw_alt_next)
400			mark = '#';	/* blocked */
401		else if (hw->hw_alt_next == list_end)
402			mark = '.';	/* use hw_qtd_next */
403		/* else alt_next points to some other qtd */
404	}
405	scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
406	hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0;
407	temp = scnprintf(next, size,
408			"qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
409			qh, scratch & 0x007f,
410			speed_char(scratch),
411			(scratch >> 8) & 0x000f,
412			scratch, hc32_to_cpup(fotg210, &hw->hw_info2),
413			hc32_to_cpup(fotg210, &hw->hw_token), mark,
414			(cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token)
415				? "data1" : "data0",
416			(hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f);
417	size -= temp;
418	next += temp;
419
420	/* hc may be modifying the list as we read it ... */
421	list_for_each_entry(td, &qh->qtd_list, qtd_list) {
422		scratch = hc32_to_cpup(fotg210, &td->hw_token);
423		mark = ' ';
424		if (hw_curr == td->qtd_dma)
425			mark = '*';
426		else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma))
427			mark = '+';
428		else if (QTD_LENGTH(scratch)) {
429			if (td->hw_alt_next == fotg210->async->hw->hw_alt_next)
430				mark = '#';
431			else if (td->hw_alt_next != list_end)
432				mark = '/';
433		}
434		temp = snprintf(next, size,
435				"\n\t%p%c%s len=%d %08x urb %p",
436				td, mark, ({ char *tmp;
437				 switch ((scratch>>8)&0x03) {
438				 case 0:
439					tmp = "out";
440					break;
441				 case 1:
442					tmp = "in";
443					break;
444				 case 2:
445					tmp = "setup";
446					break;
447				 default:
448					tmp = "?";
449					break;
450				 } tmp; }),
451				(scratch >> 16) & 0x7fff,
452				scratch,
453				td->urb);
454		if (size < temp)
455			temp = size;
456		size -= temp;
457		next += temp;
458		if (temp == size)
459			goto done;
460	}
461
462	temp = snprintf(next, size, "\n");
463	if (size < temp)
464		temp = size;
465	size -= temp;
466	next += temp;
467
468done:
469	*sizep = size;
470	*nextp = next;
471}
472
473static ssize_t fill_async_buffer(struct debug_buffer *buf)
474{
475	struct usb_hcd		*hcd;
476	struct fotg210_hcd	*fotg210;
477	unsigned long		flags;
478	unsigned		temp, size;
479	char			*next;
480	struct fotg210_qh		*qh;
481
482	hcd = bus_to_hcd(buf->bus);
483	fotg210 = hcd_to_fotg210(hcd);
484	next = buf->output_buf;
485	size = buf->alloc_size;
486
487	*next = 0;
488
489	/* dumps a snapshot of the async schedule.
490	 * usually empty except for long-term bulk reads, or head.
491	 * one QH per line, and TDs we know about
492	 */
493	spin_lock_irqsave(&fotg210->lock, flags);
494	for (qh = fotg210->async->qh_next.qh; size > 0 && qh;
495	     qh = qh->qh_next.qh)
496		qh_lines(fotg210, qh, &next, &size);
497	if (fotg210->async_unlink && size > 0) {
498		temp = scnprintf(next, size, "\nunlink =\n");
499		size -= temp;
500		next += temp;
501
502		for (qh = fotg210->async_unlink; size > 0 && qh;
503				qh = qh->unlink_next)
504			qh_lines(fotg210, qh, &next, &size);
505	}
506	spin_unlock_irqrestore(&fotg210->lock, flags);
507
508	return strlen(buf->output_buf);
509}
510
511#define DBG_SCHED_LIMIT 64
512static ssize_t fill_periodic_buffer(struct debug_buffer *buf)
513{
514	struct usb_hcd		*hcd;
515	struct fotg210_hcd		*fotg210;
516	unsigned long		flags;
517	union fotg210_shadow	p, *seen;
518	unsigned		temp, size, seen_count;
519	char			*next;
520	unsigned		i;
521	__hc32			tag;
522
523	seen = kmalloc(DBG_SCHED_LIMIT * sizeof(*seen), GFP_ATOMIC);
524	if (!seen)
525		return 0;
526	seen_count = 0;
527
528	hcd = bus_to_hcd(buf->bus);
529	fotg210 = hcd_to_fotg210(hcd);
530	next = buf->output_buf;
531	size = buf->alloc_size;
532
533	temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size);
534	size -= temp;
535	next += temp;
536
537	/* dump a snapshot of the periodic schedule.
538	 * iso changes, interrupt usually doesn't.
539	 */
540	spin_lock_irqsave(&fotg210->lock, flags);
541	for (i = 0; i < fotg210->periodic_size; i++) {
542		p = fotg210->pshadow[i];
543		if (likely(!p.ptr))
544			continue;
545		tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]);
546
547		temp = scnprintf(next, size, "%4d: ", i);
548		size -= temp;
549		next += temp;
550
551		do {
552			struct fotg210_qh_hw *hw;
553
554			switch (hc32_to_cpu(fotg210, tag)) {
555			case Q_TYPE_QH:
556				hw = p.qh->hw;
557				temp = scnprintf(next, size, " qh%d-%04x/%p",
558						p.qh->period,
559						hc32_to_cpup(fotg210,
560							&hw->hw_info2)
561							/* uframe masks */
562							& (QH_CMASK | QH_SMASK),
563						p.qh);
564				size -= temp;
565				next += temp;
566				/* don't repeat what follows this qh */
567				for (temp = 0; temp < seen_count; temp++) {
568					if (seen[temp].ptr != p.ptr)
569						continue;
570					if (p.qh->qh_next.ptr) {
571						temp = scnprintf(next, size,
572							" ...");
573						size -= temp;
574						next += temp;
575					}
576					break;
577				}
578				/* show more info the first time around */
579				if (temp == seen_count) {
580					u32	scratch = hc32_to_cpup(fotg210,
581							&hw->hw_info1);
582					struct fotg210_qtd	*qtd;
583					char		*type = "";
584
585					/* count tds, get ep direction */
586					temp = 0;
587					list_for_each_entry(qtd,
588							&p.qh->qtd_list,
589							qtd_list) {
590						temp++;
591						switch (0x03 & (hc32_to_cpu(
592							fotg210,
593							qtd->hw_token) >> 8)) {
594						case 0:
595							type = "out";
596							continue;
597						case 1:
598							type = "in";
599							continue;
600						}
601					}
602
603					temp = scnprintf(next, size,
604						"(%c%d ep%d%s "
605						"[%d/%d] q%d p%d)",
606						speed_char(scratch),
607						scratch & 0x007f,
608						(scratch >> 8) & 0x000f, type,
609						p.qh->usecs, p.qh->c_usecs,
610						temp,
611						0x7ff & (scratch >> 16));
612
613					if (seen_count < DBG_SCHED_LIMIT)
614						seen[seen_count++].qh = p.qh;
615				} else
616					temp = 0;
617				tag = Q_NEXT_TYPE(fotg210, hw->hw_next);
618				p = p.qh->qh_next;
619				break;
620			case Q_TYPE_FSTN:
621				temp = scnprintf(next, size,
622					" fstn-%8x/%p", p.fstn->hw_prev,
623					p.fstn);
624				tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next);
625				p = p.fstn->fstn_next;
626				break;
627			case Q_TYPE_ITD:
628				temp = scnprintf(next, size,
629					" itd/%p", p.itd);
630				tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next);
631				p = p.itd->itd_next;
632				break;
633			}
634			size -= temp;
635			next += temp;
636		} while (p.ptr);
637
638		temp = scnprintf(next, size, "\n");
639		size -= temp;
640		next += temp;
641	}
642	spin_unlock_irqrestore(&fotg210->lock, flags);
643	kfree(seen);
644
645	return buf->alloc_size - size;
646}
647#undef DBG_SCHED_LIMIT
648
649static const char *rh_state_string(struct fotg210_hcd *fotg210)
650{
651	switch (fotg210->rh_state) {
652	case FOTG210_RH_HALTED:
653		return "halted";
654	case FOTG210_RH_SUSPENDED:
655		return "suspended";
656	case FOTG210_RH_RUNNING:
657		return "running";
658	case FOTG210_RH_STOPPING:
659		return "stopping";
660	}
661	return "?";
662}
663
664static ssize_t fill_registers_buffer(struct debug_buffer *buf)
665{
666	struct usb_hcd		*hcd;
667	struct fotg210_hcd	*fotg210;
668	unsigned long		flags;
669	unsigned		temp, size, i;
670	char			*next, scratch[80];
671	static const char	fmt[] = "%*s\n";
672	static const char	label[] = "";
673
674	hcd = bus_to_hcd(buf->bus);
675	fotg210 = hcd_to_fotg210(hcd);
676	next = buf->output_buf;
677	size = buf->alloc_size;
678
679	spin_lock_irqsave(&fotg210->lock, flags);
680
681	if (!HCD_HW_ACCESSIBLE(hcd)) {
682		size = scnprintf(next, size,
683			"bus %s, device %s\n"
684			"%s\n"
685			"SUSPENDED(no register access)\n",
686			hcd->self.controller->bus->name,
687			dev_name(hcd->self.controller),
688			hcd->product_desc);
689		goto done;
690	}
691
692	/* Capability Registers */
693	i = HC_VERSION(fotg210, fotg210_readl(fotg210,
694					      &fotg210->caps->hc_capbase));
695	temp = scnprintf(next, size,
696		"bus %s, device %s\n"
697		"%s\n"
698		"EHCI %x.%02x, rh state %s\n",
699		hcd->self.controller->bus->name,
700		dev_name(hcd->self.controller),
701		hcd->product_desc,
702		i >> 8, i & 0x0ff, rh_state_string(fotg210));
703	size -= temp;
704	next += temp;
705
706	/* FIXME interpret both types of params */
707	i = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
708	temp = scnprintf(next, size, "structural params 0x%08x\n", i);
709	size -= temp;
710	next += temp;
711
712	i = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
713	temp = scnprintf(next, size, "capability params 0x%08x\n", i);
714	size -= temp;
715	next += temp;
716
717	/* Operational Registers */
718	temp = dbg_status_buf(scratch, sizeof(scratch), label,
719			fotg210_readl(fotg210, &fotg210->regs->status));
720	temp = scnprintf(next, size, fmt, temp, scratch);
721	size -= temp;
722	next += temp;
723
724	temp = dbg_command_buf(scratch, sizeof(scratch), label,
725			fotg210_readl(fotg210, &fotg210->regs->command));
726	temp = scnprintf(next, size, fmt, temp, scratch);
727	size -= temp;
728	next += temp;
729
730	temp = dbg_intr_buf(scratch, sizeof(scratch), label,
731			fotg210_readl(fotg210, &fotg210->regs->intr_enable));
732	temp = scnprintf(next, size, fmt, temp, scratch);
733	size -= temp;
734	next += temp;
735
736	temp = scnprintf(next, size, "uframe %04x\n",
737			fotg210_read_frame_index(fotg210));
738	size -= temp;
739	next += temp;
740
741	if (fotg210->async_unlink) {
742		temp = scnprintf(next, size, "async unlink qh %p\n",
743				fotg210->async_unlink);
744		size -= temp;
745		next += temp;
746	}
747
748#ifdef FOTG210_STATS
749	temp = scnprintf(next, size,
750		"irq normal %ld err %ld iaa %ld(lost %ld)\n",
751		fotg210->stats.normal, fotg210->stats.error, fotg210->stats.iaa,
752		fotg210->stats.lost_iaa);
753	size -= temp;
754	next += temp;
755
756	temp = scnprintf(next, size, "complete %ld unlink %ld\n",
757		fotg210->stats.complete, fotg210->stats.unlink);
758	size -= temp;
759	next += temp;
760#endif
761
762done:
763	spin_unlock_irqrestore(&fotg210->lock, flags);
764
765	return buf->alloc_size - size;
766}
767
768static struct debug_buffer *alloc_buffer(struct usb_bus *bus,
769				ssize_t (*fill_func)(struct debug_buffer *))
770{
771	struct debug_buffer *buf;
772
773	buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL);
774
775	if (buf) {
776		buf->bus = bus;
777		buf->fill_func = fill_func;
778		mutex_init(&buf->mutex);
779		buf->alloc_size = PAGE_SIZE;
780	}
781
782	return buf;
783}
784
785static int fill_buffer(struct debug_buffer *buf)
786{
787	int ret = 0;
788
789	if (!buf->output_buf)
790		buf->output_buf = vmalloc(buf->alloc_size);
791
792	if (!buf->output_buf) {
793		ret = -ENOMEM;
794		goto out;
795	}
796
797	ret = buf->fill_func(buf);
798
799	if (ret >= 0) {
800		buf->count = ret;
801		ret = 0;
802	}
803
804out:
805	return ret;
806}
807
808static ssize_t debug_output(struct file *file, char __user *user_buf,
809			    size_t len, loff_t *offset)
810{
811	struct debug_buffer *buf = file->private_data;
812	int ret = 0;
813
814	mutex_lock(&buf->mutex);
815	if (buf->count == 0) {
816		ret = fill_buffer(buf);
817		if (ret != 0) {
818			mutex_unlock(&buf->mutex);
819			goto out;
820		}
821	}
822	mutex_unlock(&buf->mutex);
823
824	ret = simple_read_from_buffer(user_buf, len, offset,
825				      buf->output_buf, buf->count);
826
827out:
828	return ret;
829
830}
831
832static int debug_close(struct inode *inode, struct file *file)
833{
834	struct debug_buffer *buf = file->private_data;
835
836	if (buf) {
837		vfree(buf->output_buf);
838		kfree(buf);
839	}
840
841	return 0;
842}
843static int debug_async_open(struct inode *inode, struct file *file)
844{
845	file->private_data = alloc_buffer(inode->i_private, fill_async_buffer);
846
847	return file->private_data ? 0 : -ENOMEM;
848}
849
850static int debug_periodic_open(struct inode *inode, struct file *file)
851{
852	struct debug_buffer *buf;
853	buf = alloc_buffer(inode->i_private, fill_periodic_buffer);
854	if (!buf)
855		return -ENOMEM;
856
857	buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE;
858	file->private_data = buf;
859	return 0;
860}
861
862static int debug_registers_open(struct inode *inode, struct file *file)
863{
864	file->private_data = alloc_buffer(inode->i_private,
865					  fill_registers_buffer);
866
867	return file->private_data ? 0 : -ENOMEM;
868}
869
870static inline void create_debug_files(struct fotg210_hcd *fotg210)
871{
872	struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
873
874	fotg210->debug_dir = debugfs_create_dir(bus->bus_name,
875						fotg210_debug_root);
876	if (!fotg210->debug_dir)
877		return;
878
879	if (!debugfs_create_file("async", S_IRUGO, fotg210->debug_dir, bus,
880						&debug_async_fops))
881		goto file_error;
882
883	if (!debugfs_create_file("periodic", S_IRUGO, fotg210->debug_dir, bus,
884						&debug_periodic_fops))
885		goto file_error;
886
887	if (!debugfs_create_file("registers", S_IRUGO, fotg210->debug_dir, bus,
888						    &debug_registers_fops))
889		goto file_error;
890
891	return;
892
893file_error:
894	debugfs_remove_recursive(fotg210->debug_dir);
895}
896
897static inline void remove_debug_files(struct fotg210_hcd *fotg210)
898{
899	debugfs_remove_recursive(fotg210->debug_dir);
900}
901
902/*-------------------------------------------------------------------------*/
903
904/*
905 * handshake - spin reading hc until handshake completes or fails
906 * @ptr: address of hc register to be read
907 * @mask: bits to look at in result of read
908 * @done: value of those bits when handshake succeeds
909 * @usec: timeout in microseconds
910 *
911 * Returns negative errno, or zero on success
912 *
913 * Success happens when the "mask" bits have the specified value (hardware
914 * handshake done).  There are two failure modes:  "usec" have passed (major
915 * hardware flakeout), or the register reads as all-ones (hardware removed).
916 *
917 * That last failure should_only happen in cases like physical cardbus eject
918 * before driver shutdown. But it also seems to be caused by bugs in cardbus
919 * bridge shutdown:  shutting down the bridge before the devices using it.
920 */
921static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr,
922		      u32 mask, u32 done, int usec)
923{
924	u32	result;
925
926	do {
927		result = fotg210_readl(fotg210, ptr);
928		if (result == ~(u32)0)		/* card removed */
929			return -ENODEV;
930		result &= mask;
931		if (result == done)
932			return 0;
933		udelay(1);
934		usec--;
935	} while (usec > 0);
936	return -ETIMEDOUT;
937}
938
939/*
940 * Force HC to halt state from unknown (EHCI spec section 2.3).
941 * Must be called with interrupts enabled and the lock not held.
942 */
943static int fotg210_halt(struct fotg210_hcd *fotg210)
944{
945	u32	temp;
946
947	spin_lock_irq(&fotg210->lock);
948
949	/* disable any irqs left enabled by previous code */
950	fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
951
952	/*
953	 * This routine gets called during probe before fotg210->command
954	 * has been initialized, so we can't rely on its value.
955	 */
956	fotg210->command &= ~CMD_RUN;
957	temp = fotg210_readl(fotg210, &fotg210->regs->command);
958	temp &= ~(CMD_RUN | CMD_IAAD);
959	fotg210_writel(fotg210, temp, &fotg210->regs->command);
960
961	spin_unlock_irq(&fotg210->lock);
962	synchronize_irq(fotg210_to_hcd(fotg210)->irq);
963
964	return handshake(fotg210, &fotg210->regs->status,
965			  STS_HALT, STS_HALT, 16 * 125);
966}
967
968/*
969 * Reset a non-running (STS_HALT == 1) controller.
970 * Must be called with interrupts enabled and the lock not held.
971 */
972static int fotg210_reset(struct fotg210_hcd *fotg210)
973{
974	int	retval;
975	u32	command = fotg210_readl(fotg210, &fotg210->regs->command);
976
977	/* If the EHCI debug controller is active, special care must be
978	 * taken before and after a host controller reset */
979	if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210)))
980		fotg210->debug = NULL;
981
982	command |= CMD_RESET;
983	dbg_cmd(fotg210, "reset", command);
984	fotg210_writel(fotg210, command, &fotg210->regs->command);
985	fotg210->rh_state = FOTG210_RH_HALTED;
986	fotg210->next_statechange = jiffies;
987	retval = handshake(fotg210, &fotg210->regs->command,
988			    CMD_RESET, 0, 250 * 1000);
989
990	if (retval)
991		return retval;
992
993	if (fotg210->debug)
994		dbgp_external_startup(fotg210_to_hcd(fotg210));
995
996	fotg210->port_c_suspend = fotg210->suspended_ports =
997			fotg210->resuming_ports = 0;
998	return retval;
999}
1000
1001/*
1002 * Idle the controller (turn off the schedules).
1003 * Must be called with interrupts enabled and the lock not held.
1004 */
1005static void fotg210_quiesce(struct fotg210_hcd *fotg210)
1006{
1007	u32	temp;
1008
1009	if (fotg210->rh_state != FOTG210_RH_RUNNING)
1010		return;
1011
1012	/* wait for any schedule enables/disables to take effect */
1013	temp = (fotg210->command << 10) & (STS_ASS | STS_PSS);
1014	handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp,
1015		  16 * 125);
1016
1017	/* then disable anything that's still active */
1018	spin_lock_irq(&fotg210->lock);
1019	fotg210->command &= ~(CMD_ASE | CMD_PSE);
1020	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1021	spin_unlock_irq(&fotg210->lock);
1022
1023	/* hardware can take 16 microframes to turn off ... */
1024	handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0,
1025		  16 * 125);
1026}
1027
1028/*-------------------------------------------------------------------------*/
1029
1030static void end_unlink_async(struct fotg210_hcd *fotg210);
1031static void unlink_empty_async(struct fotg210_hcd *fotg210);
1032static void fotg210_work(struct fotg210_hcd *fotg210);
1033static void start_unlink_intr(struct fotg210_hcd *fotg210,
1034			      struct fotg210_qh *qh);
1035static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
1036
1037/*-------------------------------------------------------------------------*/
1038
1039/* Set a bit in the USBCMD register */
1040static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1041{
1042	fotg210->command |= bit;
1043	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1044
1045	/* unblock posted write */
1046	fotg210_readl(fotg210, &fotg210->regs->command);
1047}
1048
1049/* Clear a bit in the USBCMD register */
1050static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1051{
1052	fotg210->command &= ~bit;
1053	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1054
1055	/* unblock posted write */
1056	fotg210_readl(fotg210, &fotg210->regs->command);
1057}
1058
1059/*-------------------------------------------------------------------------*/
1060
1061/*
1062 * EHCI timer support...  Now using hrtimers.
1063 *
1064 * Lots of different events are triggered from fotg210->hrtimer.  Whenever
1065 * the timer routine runs, it checks each possible event; events that are
1066 * currently enabled and whose expiration time has passed get handled.
1067 * The set of enabled events is stored as a collection of bitflags in
1068 * fotg210->enabled_hrtimer_events, and they are numbered in order of
1069 * increasing delay values (ranging between 1 ms and 100 ms).
1070 *
1071 * Rather than implementing a sorted list or tree of all pending events,
1072 * we keep track only of the lowest-numbered pending event, in
1073 * fotg210->next_hrtimer_event.  Whenever fotg210->hrtimer gets restarted, its
1074 * expiration time is set to the timeout value for this event.
1075 *
1076 * As a result, events might not get handled right away; the actual delay
1077 * could be anywhere up to twice the requested delay.  This doesn't
1078 * matter, because none of the events are especially time-critical.  The
1079 * ones that matter most all have a delay of 1 ms, so they will be
1080 * handled after 2 ms at most, which is okay.  In addition to this, we
1081 * allow for an expiration range of 1 ms.
1082 */
1083
1084/*
1085 * Delay lengths for the hrtimer event types.
1086 * Keep this list sorted by delay length, in the same order as
1087 * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
1088 */
1089static unsigned event_delays_ns[] = {
1090	1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_ASS */
1091	1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_PSS */
1092	1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_DEAD */
1093	1125 * NSEC_PER_USEC,	/* FOTG210_HRTIMER_UNLINK_INTR */
1094	2 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_FREE_ITDS */
1095	6 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_ASYNC_UNLINKS */
1096	10 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_IAA_WATCHDOG */
1097	10 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_DISABLE_PERIODIC */
1098	15 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_DISABLE_ASYNC */
1099	100 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_IO_WATCHDOG */
1100};
1101
1102/* Enable a pending hrtimer event */
1103static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event,
1104		bool resched)
1105{
1106	ktime_t		*timeout = &fotg210->hr_timeouts[event];
1107
1108	if (resched)
1109		*timeout = ktime_add(ktime_get(),
1110				ktime_set(0, event_delays_ns[event]));
1111	fotg210->enabled_hrtimer_events |= (1 << event);
1112
1113	/* Track only the lowest-numbered pending event */
1114	if (event < fotg210->next_hrtimer_event) {
1115		fotg210->next_hrtimer_event = event;
1116		hrtimer_start_range_ns(&fotg210->hrtimer, *timeout,
1117				NSEC_PER_MSEC, HRTIMER_MODE_ABS);
1118	}
1119}
1120
1121
1122/* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
1123static void fotg210_poll_ASS(struct fotg210_hcd *fotg210)
1124{
1125	unsigned	actual, want;
1126
1127	/* Don't enable anything if the controller isn't running (e.g., died) */
1128	if (fotg210->rh_state != FOTG210_RH_RUNNING)
1129		return;
1130
1131	want = (fotg210->command & CMD_ASE) ? STS_ASS : 0;
1132	actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS;
1133
1134	if (want != actual) {
1135
1136		/* Poll again later, but give up after about 20 ms */
1137		if (fotg210->ASS_poll_count++ < 20) {
1138			fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS,
1139					     true);
1140			return;
1141		}
1142		fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n",
1143				want, actual);
1144	}
1145	fotg210->ASS_poll_count = 0;
1146
1147	/* The status is up-to-date; restart or stop the schedule as needed */
1148	if (want == 0) {	/* Stopped */
1149		if (fotg210->async_count > 0)
1150			fotg210_set_command_bit(fotg210, CMD_ASE);
1151
1152	} else {		/* Running */
1153		if (fotg210->async_count == 0) {
1154
1155			/* Turn off the schedule after a while */
1156			fotg210_enable_event(fotg210,
1157					     FOTG210_HRTIMER_DISABLE_ASYNC,
1158					     true);
1159		}
1160	}
1161}
1162
1163/* Turn off the async schedule after a brief delay */
1164static void fotg210_disable_ASE(struct fotg210_hcd *fotg210)
1165{
1166	fotg210_clear_command_bit(fotg210, CMD_ASE);
1167}
1168
1169
1170/* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
1171static void fotg210_poll_PSS(struct fotg210_hcd *fotg210)
1172{
1173	unsigned	actual, want;
1174
1175	/* Don't do anything if the controller isn't running (e.g., died) */
1176	if (fotg210->rh_state != FOTG210_RH_RUNNING)
1177		return;
1178
1179	want = (fotg210->command & CMD_PSE) ? STS_PSS : 0;
1180	actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS;
1181
1182	if (want != actual) {
1183
1184		/* Poll again later, but give up after about 20 ms */
1185		if (fotg210->PSS_poll_count++ < 20) {
1186			fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS,
1187					     true);
1188			return;
1189		}
1190		fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
1191				want, actual);
1192	}
1193	fotg210->PSS_poll_count = 0;
1194
1195	/* The status is up-to-date; restart or stop the schedule as needed */
1196	if (want == 0) {	/* Stopped */
1197		if (fotg210->periodic_count > 0)
1198			fotg210_set_command_bit(fotg210, CMD_PSE);
1199
1200	} else {		/* Running */
1201		if (fotg210->periodic_count == 0) {
1202
1203			/* Turn off the schedule after a while */
1204			fotg210_enable_event(fotg210,
1205					     FOTG210_HRTIMER_DISABLE_PERIODIC,
1206					     true);
1207		}
1208	}
1209}
1210
1211/* Turn off the periodic schedule after a brief delay */
1212static void fotg210_disable_PSE(struct fotg210_hcd *fotg210)
1213{
1214	fotg210_clear_command_bit(fotg210, CMD_PSE);
1215}
1216
1217
1218/* Poll the STS_HALT status bit; see when a dead controller stops */
1219static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210)
1220{
1221	if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) {
1222
1223		/* Give up after a few milliseconds */
1224		if (fotg210->died_poll_count++ < 5) {
1225			/* Try again later */
1226			fotg210_enable_event(fotg210,
1227					     FOTG210_HRTIMER_POLL_DEAD, true);
1228			return;
1229		}
1230		fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n");
1231	}
1232
1233	/* Clean up the mess */
1234	fotg210->rh_state = FOTG210_RH_HALTED;
1235	fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
1236	fotg210_work(fotg210);
1237	end_unlink_async(fotg210);
1238
1239	/* Not in process context, so don't try to reset the controller */
1240}
1241
1242
1243/* Handle unlinked interrupt QHs once they are gone from the hardware */
1244static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210)
1245{
1246	bool		stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
1247
1248	/*
1249	 * Process all the QHs on the intr_unlink list that were added
1250	 * before the current unlink cycle began.  The list is in
1251	 * temporal order, so stop when we reach the first entry in the
1252	 * current cycle.  But if the root hub isn't running then
1253	 * process all the QHs on the list.
1254	 */
1255	fotg210->intr_unlinking = true;
1256	while (fotg210->intr_unlink) {
1257		struct fotg210_qh	*qh = fotg210->intr_unlink;
1258
1259		if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle)
1260			break;
1261		fotg210->intr_unlink = qh->unlink_next;
1262		qh->unlink_next = NULL;
1263		end_unlink_intr(fotg210, qh);
1264	}
1265
1266	/* Handle remaining entries later */
1267	if (fotg210->intr_unlink) {
1268		fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
1269				     true);
1270		++fotg210->intr_unlink_cycle;
1271	}
1272	fotg210->intr_unlinking = false;
1273}
1274
1275
1276/* Start another free-iTDs/siTDs cycle */
1277static void start_free_itds(struct fotg210_hcd *fotg210)
1278{
1279	if (!(fotg210->enabled_hrtimer_events &
1280			BIT(FOTG210_HRTIMER_FREE_ITDS))) {
1281		fotg210->last_itd_to_free = list_entry(
1282				fotg210->cached_itd_list.prev,
1283				struct fotg210_itd, itd_list);
1284		fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true);
1285	}
1286}
1287
1288/* Wait for controller to stop using old iTDs and siTDs */
1289static void end_free_itds(struct fotg210_hcd *fotg210)
1290{
1291	struct fotg210_itd		*itd, *n;
1292
1293	if (fotg210->rh_state < FOTG210_RH_RUNNING)
1294		fotg210->last_itd_to_free = NULL;
1295
1296	list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) {
1297		list_del(&itd->itd_list);
1298		dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma);
1299		if (itd == fotg210->last_itd_to_free)
1300			break;
1301	}
1302
1303	if (!list_empty(&fotg210->cached_itd_list))
1304		start_free_itds(fotg210);
1305}
1306
1307
1308/* Handle lost (or very late) IAA interrupts */
1309static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210)
1310{
1311	if (fotg210->rh_state != FOTG210_RH_RUNNING)
1312		return;
1313
1314	/*
1315	 * Lost IAA irqs wedge things badly; seen first with a vt8235.
1316	 * So we need this watchdog, but must protect it against both
1317	 * (a) SMP races against real IAA firing and retriggering, and
1318	 * (b) clean HC shutdown, when IAA watchdog was pending.
1319	 */
1320	if (fotg210->async_iaa) {
1321		u32 cmd, status;
1322
1323		/* If we get here, IAA is *REALLY* late.  It's barely
1324		 * conceivable that the system is so busy that CMD_IAAD
1325		 * is still legitimately set, so let's be sure it's
1326		 * clear before we read STS_IAA.  (The HC should clear
1327		 * CMD_IAAD when it sets STS_IAA.)
1328		 */
1329		cmd = fotg210_readl(fotg210, &fotg210->regs->command);
1330
1331		/*
1332		 * If IAA is set here it either legitimately triggered
1333		 * after the watchdog timer expired (_way_ late, so we'll
1334		 * still count it as lost) ... or a silicon erratum:
1335		 * - VIA seems to set IAA without triggering the IRQ;
1336		 * - IAAD potentially cleared without setting IAA.
1337		 */
1338		status = fotg210_readl(fotg210, &fotg210->regs->status);
1339		if ((status & STS_IAA) || !(cmd & CMD_IAAD)) {
1340			COUNT(fotg210->stats.lost_iaa);
1341			fotg210_writel(fotg210, STS_IAA,
1342				       &fotg210->regs->status);
1343		}
1344
1345		fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n",
1346				status, cmd);
1347		end_unlink_async(fotg210);
1348	}
1349}
1350
1351
1352/* Enable the I/O watchdog, if appropriate */
1353static void turn_on_io_watchdog(struct fotg210_hcd *fotg210)
1354{
1355	/* Not needed if the controller isn't running or it's already enabled */
1356	if (fotg210->rh_state != FOTG210_RH_RUNNING ||
1357			(fotg210->enabled_hrtimer_events &
1358				BIT(FOTG210_HRTIMER_IO_WATCHDOG)))
1359		return;
1360
1361	/*
1362	 * Isochronous transfers always need the watchdog.
1363	 * For other sorts we use it only if the flag is set.
1364	 */
1365	if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog &&
1366			fotg210->async_count + fotg210->intr_count > 0))
1367		fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG,
1368				     true);
1369}
1370
1371
1372/*
1373 * Handler functions for the hrtimer event types.
1374 * Keep this array in the same order as the event types indexed by
1375 * enum fotg210_hrtimer_event in fotg210.h.
1376 */
1377static void (*event_handlers[])(struct fotg210_hcd *) = {
1378	fotg210_poll_ASS,			/* FOTG210_HRTIMER_POLL_ASS */
1379	fotg210_poll_PSS,			/* FOTG210_HRTIMER_POLL_PSS */
1380	fotg210_handle_controller_death,	/* FOTG210_HRTIMER_POLL_DEAD */
1381	fotg210_handle_intr_unlinks,	/* FOTG210_HRTIMER_UNLINK_INTR */
1382	end_free_itds,			/* FOTG210_HRTIMER_FREE_ITDS */
1383	unlink_empty_async,		/* FOTG210_HRTIMER_ASYNC_UNLINKS */
1384	fotg210_iaa_watchdog,		/* FOTG210_HRTIMER_IAA_WATCHDOG */
1385	fotg210_disable_PSE,		/* FOTG210_HRTIMER_DISABLE_PERIODIC */
1386	fotg210_disable_ASE,		/* FOTG210_HRTIMER_DISABLE_ASYNC */
1387	fotg210_work,			/* FOTG210_HRTIMER_IO_WATCHDOG */
1388};
1389
1390static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t)
1391{
1392	struct fotg210_hcd *fotg210 =
1393			container_of(t, struct fotg210_hcd, hrtimer);
1394	ktime_t		now;
1395	unsigned long	events;
1396	unsigned long	flags;
1397	unsigned	e;
1398
1399	spin_lock_irqsave(&fotg210->lock, flags);
1400
1401	events = fotg210->enabled_hrtimer_events;
1402	fotg210->enabled_hrtimer_events = 0;
1403	fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
1404
1405	/*
1406	 * Check each pending event.  If its time has expired, handle
1407	 * the event; otherwise re-enable it.
1408	 */
1409	now = ktime_get();
1410	for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) {
1411		if (now.tv64 >= fotg210->hr_timeouts[e].tv64)
1412			event_handlers[e](fotg210);
1413		else
1414			fotg210_enable_event(fotg210, e, false);
1415	}
1416
1417	spin_unlock_irqrestore(&fotg210->lock, flags);
1418	return HRTIMER_NORESTART;
1419}
1420
1421/*-------------------------------------------------------------------------*/
1422
1423#define fotg210_bus_suspend	NULL
1424#define fotg210_bus_resume	NULL
1425
1426/*-------------------------------------------------------------------------*/
1427
1428static int check_reset_complete(
1429	struct fotg210_hcd	*fotg210,
1430	int		index,
1431	u32 __iomem	*status_reg,
1432	int		port_status
1433) {
1434	if (!(port_status & PORT_CONNECT))
1435		return port_status;
1436
1437	/* if reset finished and it's still not enabled -- handoff */
1438	if (!(port_status & PORT_PE)) {
1439		/* with integrated TT, there's nobody to hand it to! */
1440		fotg210_dbg(fotg210,
1441			"Failed to enable port %d on root hub TT\n",
1442			index+1);
1443		return port_status;
1444	} else {
1445		fotg210_dbg(fotg210, "port %d reset complete, port enabled\n",
1446			index + 1);
1447	}
1448
1449	return port_status;
1450}
1451
1452/*-------------------------------------------------------------------------*/
1453
1454
1455/* build "status change" packet (one or two bytes) from HC registers */
1456
1457static int
1458fotg210_hub_status_data(struct usb_hcd *hcd, char *buf)
1459{
1460	struct fotg210_hcd	*fotg210 = hcd_to_fotg210(hcd);
1461	u32		temp, status;
1462	u32		mask;
1463	int		retval = 1;
1464	unsigned long	flags;
1465
1466	/* init status to no-changes */
1467	buf[0] = 0;
1468
1469	/* Inform the core about resumes-in-progress by returning
1470	 * a non-zero value even if there are no status changes.
1471	 */
1472	status = fotg210->resuming_ports;
1473
1474	mask = PORT_CSC | PORT_PEC;
1475	/* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
1476
1477	/* no hub change reports (bit 0) for now (power, ...) */
1478
1479	/* port N changes (bit N)? */
1480	spin_lock_irqsave(&fotg210->lock, flags);
1481
1482	temp = fotg210_readl(fotg210, &fotg210->regs->port_status);
1483
1484	/*
1485	 * Return status information even for ports with OWNER set.
1486	 * Otherwise hub_wq wouldn't see the disconnect event when a
1487	 * high-speed device is switched over to the companion
1488	 * controller by the user.
1489	 */
1490
1491	if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend)
1492			|| (fotg210->reset_done[0] && time_after_eq(
1493				jiffies, fotg210->reset_done[0]))) {
1494		buf[0] |= 1 << 1;
1495		status = STS_PCD;
1496	}
1497	/* FIXME autosuspend idle root hubs */
1498	spin_unlock_irqrestore(&fotg210->lock, flags);
1499	return status ? retval : 0;
1500}
1501
1502/*-------------------------------------------------------------------------*/
1503
1504static void
1505fotg210_hub_descriptor(
1506	struct fotg210_hcd		*fotg210,
1507	struct usb_hub_descriptor	*desc
1508) {
1509	int		ports = HCS_N_PORTS(fotg210->hcs_params);
1510	u16		temp;
1511
1512	desc->bDescriptorType = USB_DT_HUB;
1513	desc->bPwrOn2PwrGood = 10;	/* fotg210 1.0, 2.3.9 says 20ms max */
1514	desc->bHubContrCurrent = 0;
1515
1516	desc->bNbrPorts = ports;
1517	temp = 1 + (ports / 8);
1518	desc->bDescLength = 7 + 2 * temp;
1519
1520	/* two bitmaps:  ports removable, and usb 1.0 legacy PortPwrCtrlMask */
1521	memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
1522	memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
1523
1524	temp = HUB_CHAR_INDV_PORT_OCPM;	/* per-port overcurrent reporting */
1525	temp |= HUB_CHAR_NO_LPSM;	/* no power switching */
1526	desc->wHubCharacteristics = cpu_to_le16(temp);
1527}
1528
1529/*-------------------------------------------------------------------------*/
1530
1531static int fotg210_hub_control(
1532	struct usb_hcd	*hcd,
1533	u16		typeReq,
1534	u16		wValue,
1535	u16		wIndex,
1536	char		*buf,
1537	u16		wLength
1538) {
1539	struct fotg210_hcd	*fotg210 = hcd_to_fotg210(hcd);
1540	int		ports = HCS_N_PORTS(fotg210->hcs_params);
1541	u32 __iomem	*status_reg = &fotg210->regs->port_status;
1542	u32		temp, temp1, status;
1543	unsigned long	flags;
1544	int		retval = 0;
1545	unsigned	selector;
1546
1547	/*
1548	 * FIXME:  support SetPortFeatures USB_PORT_FEAT_INDICATOR.
1549	 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
1550	 * (track current state ourselves) ... blink for diagnostics,
1551	 * power, "this is the one", etc.  EHCI spec supports this.
1552	 */
1553
1554	spin_lock_irqsave(&fotg210->lock, flags);
1555	switch (typeReq) {
1556	case ClearHubFeature:
1557		switch (wValue) {
1558		case C_HUB_LOCAL_POWER:
1559		case C_HUB_OVER_CURRENT:
1560			/* no hub-wide feature/status flags */
1561			break;
1562		default:
1563			goto error;
1564		}
1565		break;
1566	case ClearPortFeature:
1567		if (!wIndex || wIndex > ports)
1568			goto error;
1569		wIndex--;
1570		temp = fotg210_readl(fotg210, status_reg);
1571		temp &= ~PORT_RWC_BITS;
1572
1573		/*
1574		 * Even if OWNER is set, so the port is owned by the
1575		 * companion controller, hub_wq needs to be able to clear
1576		 * the port-change status bits (especially
1577		 * USB_PORT_STAT_C_CONNECTION).
1578		 */
1579
1580		switch (wValue) {
1581		case USB_PORT_FEAT_ENABLE:
1582			fotg210_writel(fotg210, temp & ~PORT_PE, status_reg);
1583			break;
1584		case USB_PORT_FEAT_C_ENABLE:
1585			fotg210_writel(fotg210, temp | PORT_PEC, status_reg);
1586			break;
1587		case USB_PORT_FEAT_SUSPEND:
1588			if (temp & PORT_RESET)
1589				goto error;
1590			if (!(temp & PORT_SUSPEND))
1591				break;
1592			if ((temp & PORT_PE) == 0)
1593				goto error;
1594
1595			/* resume signaling for 20 msec */
1596			fotg210_writel(fotg210, temp | PORT_RESUME, status_reg);
1597			fotg210->reset_done[wIndex] = jiffies
1598					+ msecs_to_jiffies(USB_RESUME_TIMEOUT);
1599			break;
1600		case USB_PORT_FEAT_C_SUSPEND:
1601			clear_bit(wIndex, &fotg210->port_c_suspend);
1602			break;
1603		case USB_PORT_FEAT_C_CONNECTION:
1604			fotg210_writel(fotg210, temp | PORT_CSC, status_reg);
1605			break;
1606		case USB_PORT_FEAT_C_OVER_CURRENT:
1607			fotg210_writel(fotg210, temp | OTGISR_OVC,
1608				       &fotg210->regs->otgisr);
1609			break;
1610		case USB_PORT_FEAT_C_RESET:
1611			/* GetPortStatus clears reset */
1612			break;
1613		default:
1614			goto error;
1615		}
1616		fotg210_readl(fotg210, &fotg210->regs->command);
1617		break;
1618	case GetHubDescriptor:
1619		fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *)
1620			buf);
1621		break;
1622	case GetHubStatus:
1623		/* no hub-wide feature/status flags */
1624		memset(buf, 0, 4);
1625		/*cpu_to_le32s ((u32 *) buf); */
1626		break;
1627	case GetPortStatus:
1628		if (!wIndex || wIndex > ports)
1629			goto error;
1630		wIndex--;
1631		status = 0;
1632		temp = fotg210_readl(fotg210, status_reg);
1633
1634		/* wPortChange bits */
1635		if (temp & PORT_CSC)
1636			status |= USB_PORT_STAT_C_CONNECTION << 16;
1637		if (temp & PORT_PEC)
1638			status |= USB_PORT_STAT_C_ENABLE << 16;
1639
1640		temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1641		if (temp1 & OTGISR_OVC)
1642			status |= USB_PORT_STAT_C_OVERCURRENT << 16;
1643
1644		/* whoever resumes must GetPortStatus to complete it!! */
1645		if (temp & PORT_RESUME) {
1646
1647			/* Remote Wakeup received? */
1648			if (!fotg210->reset_done[wIndex]) {
1649				/* resume signaling for 20 msec */
1650				fotg210->reset_done[wIndex] = jiffies
1651						+ msecs_to_jiffies(20);
1652				/* check the port again */
1653				mod_timer(&fotg210_to_hcd(fotg210)->rh_timer,
1654						fotg210->reset_done[wIndex]);
1655			}
1656
1657			/* resume completed? */
1658			else if (time_after_eq(jiffies,
1659					fotg210->reset_done[wIndex])) {
1660				clear_bit(wIndex, &fotg210->suspended_ports);
1661				set_bit(wIndex, &fotg210->port_c_suspend);
1662				fotg210->reset_done[wIndex] = 0;
1663
1664				/* stop resume signaling */
1665				temp = fotg210_readl(fotg210, status_reg);
1666				fotg210_writel(fotg210,
1667					temp & ~(PORT_RWC_BITS | PORT_RESUME),
1668					status_reg);
1669				clear_bit(wIndex, &fotg210->resuming_ports);
1670				retval = handshake(fotg210, status_reg,
1671					   PORT_RESUME, 0, 2000 /* 2msec */);
1672				if (retval != 0) {
1673					fotg210_err(fotg210,
1674						"port %d resume error %d\n",
1675						wIndex + 1, retval);
1676					goto error;
1677				}
1678				temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
1679			}
1680		}
1681
1682		/* whoever resets must GetPortStatus to complete it!! */
1683		if ((temp & PORT_RESET)
1684				&& time_after_eq(jiffies,
1685					fotg210->reset_done[wIndex])) {
1686			status |= USB_PORT_STAT_C_RESET << 16;
1687			fotg210->reset_done[wIndex] = 0;
1688			clear_bit(wIndex, &fotg210->resuming_ports);
1689
1690			/* force reset to complete */
1691			fotg210_writel(fotg210,
1692				       temp & ~(PORT_RWC_BITS | PORT_RESET),
1693				       status_reg);
1694			/* REVISIT:  some hardware needs 550+ usec to clear
1695			 * this bit; seems too long to spin routinely...
1696			 */
1697			retval = handshake(fotg210, status_reg,
1698					PORT_RESET, 0, 1000);
1699			if (retval != 0) {
1700				fotg210_err(fotg210, "port %d reset error %d\n",
1701					wIndex + 1, retval);
1702				goto error;
1703			}
1704
1705			/* see what we found out */
1706			temp = check_reset_complete(fotg210, wIndex, status_reg,
1707					fotg210_readl(fotg210, status_reg));
1708		}
1709
1710		if (!(temp & (PORT_RESUME|PORT_RESET))) {
1711			fotg210->reset_done[wIndex] = 0;
1712			clear_bit(wIndex, &fotg210->resuming_ports);
1713		}
1714
1715		/* transfer dedicated ports to the companion hc */
1716		if ((temp & PORT_CONNECT) &&
1717				test_bit(wIndex, &fotg210->companion_ports)) {
1718			temp &= ~PORT_RWC_BITS;
1719			fotg210_writel(fotg210, temp, status_reg);
1720			fotg210_dbg(fotg210, "port %d --> companion\n",
1721				    wIndex + 1);
1722			temp = fotg210_readl(fotg210, status_reg);
1723		}
1724
1725		/*
1726		 * Even if OWNER is set, there's no harm letting hub_wq
1727		 * see the wPortStatus values (they should all be 0 except
1728		 * for PORT_POWER anyway).
1729		 */
1730
1731		if (temp & PORT_CONNECT) {
1732			status |= USB_PORT_STAT_CONNECTION;
1733			status |= fotg210_port_speed(fotg210, temp);
1734		}
1735		if (temp & PORT_PE)
1736			status |= USB_PORT_STAT_ENABLE;
1737
1738		/* maybe the port was unsuspended without our knowledge */
1739		if (temp & (PORT_SUSPEND|PORT_RESUME)) {
1740			status |= USB_PORT_STAT_SUSPEND;
1741		} else if (test_bit(wIndex, &fotg210->suspended_ports)) {
1742			clear_bit(wIndex, &fotg210->suspended_ports);
1743			clear_bit(wIndex, &fotg210->resuming_ports);
1744			fotg210->reset_done[wIndex] = 0;
1745			if (temp & PORT_PE)
1746				set_bit(wIndex, &fotg210->port_c_suspend);
1747		}
1748
1749		temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1750		if (temp1 & OTGISR_OVC)
1751			status |= USB_PORT_STAT_OVERCURRENT;
1752		if (temp & PORT_RESET)
1753			status |= USB_PORT_STAT_RESET;
1754		if (test_bit(wIndex, &fotg210->port_c_suspend))
1755			status |= USB_PORT_STAT_C_SUSPEND << 16;
1756
1757		if (status & ~0xffff)	/* only if wPortChange is interesting */
1758			dbg_port(fotg210, "GetStatus", wIndex + 1, temp);
1759		put_unaligned_le32(status, buf);
1760		break;
1761	case SetHubFeature:
1762		switch (wValue) {
1763		case C_HUB_LOCAL_POWER:
1764		case C_HUB_OVER_CURRENT:
1765			/* no hub-wide feature/status flags */
1766			break;
1767		default:
1768			goto error;
1769		}
1770		break;
1771	case SetPortFeature:
1772		selector = wIndex >> 8;
1773		wIndex &= 0xff;
1774
1775		if (!wIndex || wIndex > ports)
1776			goto error;
1777		wIndex--;
1778		temp = fotg210_readl(fotg210, status_reg);
1779		temp &= ~PORT_RWC_BITS;
1780		switch (wValue) {
1781		case USB_PORT_FEAT_SUSPEND:
1782			if ((temp & PORT_PE) == 0
1783					|| (temp & PORT_RESET) != 0)
1784				goto error;
1785
1786			/* After above check the port must be connected.
1787			 * Set appropriate bit thus could put phy into low power
1788			 * mode if we have hostpc feature
1789			 */
1790			fotg210_writel(fotg210, temp | PORT_SUSPEND,
1791				       status_reg);
1792			set_bit(wIndex, &fotg210->suspended_ports);
1793			break;
1794		case USB_PORT_FEAT_RESET:
1795			if (temp & PORT_RESUME)
1796				goto error;
1797			/* line status bits may report this as low speed,
1798			 * which can be fine if this root hub has a
1799			 * transaction translator built in.
1800			 */
1801			fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1);
1802			temp |= PORT_RESET;
1803			temp &= ~PORT_PE;
1804
1805			/*
1806			 * caller must wait, then call GetPortStatus
1807			 * usb 2.0 spec says 50 ms resets on root
1808			 */
1809			fotg210->reset_done[wIndex] = jiffies
1810					+ msecs_to_jiffies(50);
1811			fotg210_writel(fotg210, temp, status_reg);
1812			break;
1813
1814		/* For downstream facing ports (these):  one hub port is put
1815		 * into test mode according to USB2 11.24.2.13, then the hub
1816		 * must be reset (which for root hub now means rmmod+modprobe,
1817		 * or else system reboot).  See EHCI 2.3.9 and 4.14 for info
1818		 * about the EHCI-specific stuff.
1819		 */
1820		case USB_PORT_FEAT_TEST:
1821			if (!selector || selector > 5)
1822				goto error;
1823			spin_unlock_irqrestore(&fotg210->lock, flags);
1824			fotg210_quiesce(fotg210);
1825			spin_lock_irqsave(&fotg210->lock, flags);
1826
1827			/* Put all enabled ports into suspend */
1828			temp = fotg210_readl(fotg210, status_reg) &
1829				~PORT_RWC_BITS;
1830			if (temp & PORT_PE)
1831				fotg210_writel(fotg210, temp | PORT_SUSPEND,
1832						status_reg);
1833
1834			spin_unlock_irqrestore(&fotg210->lock, flags);
1835			fotg210_halt(fotg210);
1836			spin_lock_irqsave(&fotg210->lock, flags);
1837
1838			temp = fotg210_readl(fotg210, status_reg);
1839			temp |= selector << 16;
1840			fotg210_writel(fotg210, temp, status_reg);
1841			break;
1842
1843		default:
1844			goto error;
1845		}
1846		fotg210_readl(fotg210, &fotg210->regs->command);
1847		break;
1848
1849	default:
1850error:
1851		/* "stall" on error */
1852		retval = -EPIPE;
1853	}
1854	spin_unlock_irqrestore(&fotg210->lock, flags);
1855	return retval;
1856}
1857
1858static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd,
1859		int portnum)
1860{
1861	return;
1862}
1863
1864static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd,
1865		int portnum)
1866{
1867	return 0;
1868}
1869/*-------------------------------------------------------------------------*/
1870/*
1871 * There's basically three types of memory:
1872 *	- data used only by the HCD ... kmalloc is fine
1873 *	- async and periodic schedules, shared by HC and HCD ... these
1874 *	  need to use dma_pool or dma_alloc_coherent
1875 *	- driver buffers, read/written by HC ... single shot DMA mapped
1876 *
1877 * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
1878 * No memory seen by this driver is pageable.
1879 */
1880
1881/*-------------------------------------------------------------------------*/
1882
1883/* Allocate the key transfer structures from the previously allocated pool */
1884
1885static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210,
1886				    struct fotg210_qtd *qtd, dma_addr_t dma)
1887{
1888	memset(qtd, 0, sizeof(*qtd));
1889	qtd->qtd_dma = dma;
1890	qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
1891	qtd->hw_next = FOTG210_LIST_END(fotg210);
1892	qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
1893	INIT_LIST_HEAD(&qtd->qtd_list);
1894}
1895
1896static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210,
1897					     gfp_t flags)
1898{
1899	struct fotg210_qtd		*qtd;
1900	dma_addr_t		dma;
1901
1902	qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma);
1903	if (qtd != NULL)
1904		fotg210_qtd_init(fotg210, qtd, dma);
1905
1906	return qtd;
1907}
1908
1909static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210,
1910				    struct fotg210_qtd *qtd)
1911{
1912	dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma);
1913}
1914
1915
1916static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
1917{
1918	/* clean qtds first, and know this is not linked */
1919	if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1920		fotg210_dbg(fotg210, "unused qh not empty!\n");
1921		BUG();
1922	}
1923	if (qh->dummy)
1924		fotg210_qtd_free(fotg210, qh->dummy);
1925	dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1926	kfree(qh);
1927}
1928
1929static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210,
1930					   gfp_t flags)
1931{
1932	struct fotg210_qh		*qh;
1933	dma_addr_t		dma;
1934
1935	qh = kzalloc(sizeof(*qh), GFP_ATOMIC);
1936	if (!qh)
1937		goto done;
1938	qh->hw = (struct fotg210_qh_hw *)
1939		dma_pool_alloc(fotg210->qh_pool, flags, &dma);
1940	if (!qh->hw)
1941		goto fail;
1942	memset(qh->hw, 0, sizeof(*qh->hw));
1943	qh->qh_dma = dma;
1944	INIT_LIST_HEAD(&qh->qtd_list);
1945
1946	/* dummy td enables safe urb queuing */
1947	qh->dummy = fotg210_qtd_alloc(fotg210, flags);
1948	if (qh->dummy == NULL) {
1949		fotg210_dbg(fotg210, "no dummy td\n");
1950		goto fail1;
1951	}
1952done:
1953	return qh;
1954fail1:
1955	dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1956fail:
1957	kfree(qh);
1958	return NULL;
1959}
1960
1961/*-------------------------------------------------------------------------*/
1962
1963/* The queue heads and transfer descriptors are managed from pools tied
1964 * to each of the "per device" structures.
1965 * This is the initialisation and cleanup code.
1966 */
1967
1968static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210)
1969{
1970	if (fotg210->async)
1971		qh_destroy(fotg210, fotg210->async);
1972	fotg210->async = NULL;
1973
1974	if (fotg210->dummy)
1975		qh_destroy(fotg210, fotg210->dummy);
1976	fotg210->dummy = NULL;
1977
1978	/* DMA consistent memory and pools */
1979	if (fotg210->qtd_pool)
1980		dma_pool_destroy(fotg210->qtd_pool);
1981	fotg210->qtd_pool = NULL;
1982
1983	if (fotg210->qh_pool) {
1984		dma_pool_destroy(fotg210->qh_pool);
1985		fotg210->qh_pool = NULL;
1986	}
1987
1988	if (fotg210->itd_pool)
1989		dma_pool_destroy(fotg210->itd_pool);
1990	fotg210->itd_pool = NULL;
1991
1992	if (fotg210->periodic)
1993		dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller,
1994			fotg210->periodic_size * sizeof(u32),
1995			fotg210->periodic, fotg210->periodic_dma);
1996	fotg210->periodic = NULL;
1997
1998	/* shadow periodic table */
1999	kfree(fotg210->pshadow);
2000	fotg210->pshadow = NULL;
2001}
2002
2003/* remember to add cleanup code (above) if you add anything here */
2004static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags)
2005{
2006	int i;
2007
2008	/* QTDs for control/bulk/intr transfers */
2009	fotg210->qtd_pool = dma_pool_create("fotg210_qtd",
2010			fotg210_to_hcd(fotg210)->self.controller,
2011			sizeof(struct fotg210_qtd),
2012			32 /* byte alignment (for hw parts) */,
2013			4096 /* can't cross 4K */);
2014	if (!fotg210->qtd_pool)
2015		goto fail;
2016
2017	/* QHs for control/bulk/intr transfers */
2018	fotg210->qh_pool = dma_pool_create("fotg210_qh",
2019			fotg210_to_hcd(fotg210)->self.controller,
2020			sizeof(struct fotg210_qh_hw),
2021			32 /* byte alignment (for hw parts) */,
2022			4096 /* can't cross 4K */);
2023	if (!fotg210->qh_pool)
2024		goto fail;
2025
2026	fotg210->async = fotg210_qh_alloc(fotg210, flags);
2027	if (!fotg210->async)
2028		goto fail;
2029
2030	/* ITD for high speed ISO transfers */
2031	fotg210->itd_pool = dma_pool_create("fotg210_itd",
2032			fotg210_to_hcd(fotg210)->self.controller,
2033			sizeof(struct fotg210_itd),
2034			64 /* byte alignment (for hw parts) */,
2035			4096 /* can't cross 4K */);
2036	if (!fotg210->itd_pool)
2037		goto fail;
2038
2039	/* Hardware periodic table */
2040	fotg210->periodic = (__le32 *)
2041		dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller,
2042			fotg210->periodic_size * sizeof(__le32),
2043			&fotg210->periodic_dma, 0);
2044	if (fotg210->periodic == NULL)
2045		goto fail;
2046
2047	for (i = 0; i < fotg210->periodic_size; i++)
2048		fotg210->periodic[i] = FOTG210_LIST_END(fotg210);
2049
2050	/* software shadow of hardware table */
2051	fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *),
2052				   flags);
2053	if (fotg210->pshadow != NULL)
2054		return 0;
2055
2056fail:
2057	fotg210_dbg(fotg210, "couldn't init memory\n");
2058	fotg210_mem_cleanup(fotg210);
2059	return -ENOMEM;
2060}
2061/*-------------------------------------------------------------------------*/
2062/*
2063 * EHCI hardware queue manipulation ... the core.  QH/QTD manipulation.
2064 *
2065 * Control, bulk, and interrupt traffic all use "qh" lists.  They list "qtd"
2066 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
2067 * buffers needed for the larger number).  We use one QH per endpoint, queue
2068 * multiple urbs (all three types) per endpoint.  URBs may need several qtds.
2069 *
2070 * ISO traffic uses "ISO TD" (itd) records, and (along with
2071 * interrupts) needs careful scheduling.  Performance improvements can be
2072 * an ongoing challenge.  That's in "ehci-sched.c".
2073 *
2074 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
2075 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
2076 * (b) special fields in qh entries or (c) split iso entries.  TTs will
2077 * buffer low/full speed data so the host collects it at high speed.
2078 */
2079
2080/*-------------------------------------------------------------------------*/
2081
2082/* fill a qtd, returning how much of the buffer we were able to queue up */
2083
2084static int
2085qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd, dma_addr_t buf,
2086		  size_t len, int token, int maxpacket)
2087{
2088	int	i, count;
2089	u64	addr = buf;
2090
2091	/* one buffer entry per 4K ... first might be short or unaligned */
2092	qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr);
2093	qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32));
2094	count = 0x1000 - (buf & 0x0fff);	/* rest of that page */
2095	if (likely(len < count))		/* ... iff needed */
2096		count = len;
2097	else {
2098		buf +=  0x1000;
2099		buf &= ~0x0fff;
2100
2101		/* per-qtd limit: from 16K to 20K (best alignment) */
2102		for (i = 1; count < len && i < 5; i++) {
2103			addr = buf;
2104			qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr);
2105			qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210,
2106					(u32)(addr >> 32));
2107			buf += 0x1000;
2108			if ((count + 0x1000) < len)
2109				count += 0x1000;
2110			else
2111				count = len;
2112		}
2113
2114		/* short packets may only terminate transfers */
2115		if (count != len)
2116			count -= (count % maxpacket);
2117	}
2118	qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token);
2119	qtd->length = count;
2120
2121	return count;
2122}
2123
2124/*-------------------------------------------------------------------------*/
2125
2126static inline void
2127qh_update(struct fotg210_hcd *fotg210, struct fotg210_qh *qh,
2128	  struct fotg210_qtd *qtd)
2129{
2130	struct fotg210_qh_hw *hw = qh->hw;
2131
2132	/* writes to an active overlay are unsafe */
2133	BUG_ON(qh->qh_state != QH_STATE_IDLE);
2134
2135	hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2136	hw->hw_alt_next = FOTG210_LIST_END(fotg210);
2137
2138	/* Except for control endpoints, we make hardware maintain data
2139	 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
2140	 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
2141	 * ever clear it.
2142	 */
2143	if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) {
2144		unsigned	is_out, epnum;
2145
2146		is_out = qh->is_out;
2147		epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f;
2148		if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
2149			hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE);
2150			usb_settoggle(qh->dev, epnum, is_out, 1);
2151		}
2152	}
2153
2154	hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING);
2155}
2156
2157/* if it weren't for a common silicon quirk (writing the dummy into the qh
2158 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
2159 * recovery (including urb dequeue) would need software changes to a QH...
2160 */
2161static void
2162qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2163{
2164	struct fotg210_qtd *qtd;
2165
2166	if (list_empty(&qh->qtd_list))
2167		qtd = qh->dummy;
2168	else {
2169		qtd = list_entry(qh->qtd_list.next,
2170				struct fotg210_qtd, qtd_list);
2171		/*
2172		 * first qtd may already be partially processed.
2173		 * If we come here during unlink, the QH overlay region
2174		 * might have reference to the just unlinked qtd. The
2175		 * qtd is updated in qh_completions(). Update the QH
2176		 * overlay here.
2177		 */
2178		if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) {
2179			qh->hw->hw_qtd_next = qtd->hw_next;
2180			qtd = NULL;
2181		}
2182	}
2183
2184	if (qtd)
2185		qh_update(fotg210, qh, qtd);
2186}
2187
2188/*-------------------------------------------------------------------------*/
2189
2190static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2191
2192static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd,
2193		struct usb_host_endpoint *ep)
2194{
2195	struct fotg210_hcd		*fotg210 = hcd_to_fotg210(hcd);
2196	struct fotg210_qh		*qh = ep->hcpriv;
2197	unsigned long		flags;
2198
2199	spin_lock_irqsave(&fotg210->lock, flags);
2200	qh->clearing_tt = 0;
2201	if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
2202			&& fotg210->rh_state == FOTG210_RH_RUNNING)
2203		qh_link_async(fotg210, qh);
2204	spin_unlock_irqrestore(&fotg210->lock, flags);
2205}
2206
2207static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210,
2208				    struct fotg210_qh *qh,
2209				    struct urb *urb, u32 token)
2210{
2211
2212	/* If an async split transaction gets an error or is unlinked,
2213	 * the TT buffer may be left in an indeterminate state.  We
2214	 * have to clear the TT buffer.
2215	 *
2216	 * Note: this routine is never called for Isochronous transfers.
2217	 */
2218	if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
2219		struct usb_device *tt = urb->dev->tt->hub;
2220		dev_dbg(&tt->dev,
2221			"clear tt buffer port %d, a%d ep%d t%08x\n",
2222			urb->dev->ttport, urb->dev->devnum,
2223			usb_pipeendpoint(urb->pipe), token);
2224
2225		if (urb->dev->tt->hub !=
2226		    fotg210_to_hcd(fotg210)->self.root_hub) {
2227			if (usb_hub_clear_tt_buffer(urb) == 0)
2228				qh->clearing_tt = 1;
2229		}
2230	}
2231}
2232
2233static int qtd_copy_status(
2234	struct fotg210_hcd *fotg210,
2235	struct urb *urb,
2236	size_t length,
2237	u32 token
2238)
2239{
2240	int	status = -EINPROGRESS;
2241
2242	/* count IN/OUT bytes, not SETUP (even short packets) */
2243	if (likely(QTD_PID(token) != 2))
2244		urb->actual_length += length - QTD_LENGTH(token);
2245
2246	/* don't modify error codes */
2247	if (unlikely(urb->unlinked))
2248		return status;
2249
2250	/* force cleanup after short read; not always an error */
2251	if (unlikely(IS_SHORT_READ(token)))
2252		status = -EREMOTEIO;
2253
2254	/* serious "can't proceed" faults reported by the hardware */
2255	if (token & QTD_STS_HALT) {
2256		if (token & QTD_STS_BABBLE) {
2257			/* FIXME "must" disable babbling device's port too */
2258			status = -EOVERFLOW;
2259		/* CERR nonzero + halt --> stall */
2260		} else if (QTD_CERR(token)) {
2261			status = -EPIPE;
2262
2263		/* In theory, more than one of the following bits can be set
2264		 * since they are sticky and the transaction is retried.
2265		 * Which to test first is rather arbitrary.
2266		 */
2267		} else if (token & QTD_STS_MMF) {
2268			/* fs/ls interrupt xfer missed the complete-split */
2269			status = -EPROTO;
2270		} else if (token & QTD_STS_DBE) {
2271			status = (QTD_PID(token) == 1) /* IN ? */
2272				? -ENOSR  /* hc couldn't read data */
2273				: -ECOMM; /* hc couldn't write data */
2274		} else if (token & QTD_STS_XACT) {
2275			/* timeout, bad CRC, wrong PID, etc */
2276			fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n",
2277				urb->dev->devpath,
2278				usb_pipeendpoint(urb->pipe),
2279				usb_pipein(urb->pipe) ? "in" : "out");
2280			status = -EPROTO;
2281		} else {	/* unknown */
2282			status = -EPROTO;
2283		}
2284
2285		fotg210_dbg(fotg210,
2286			"dev%d ep%d%s qtd token %08x --> status %d\n",
2287			usb_pipedevice(urb->pipe),
2288			usb_pipeendpoint(urb->pipe),
2289			usb_pipein(urb->pipe) ? "in" : "out",
2290			token, status);
2291	}
2292
2293	return status;
2294}
2295
2296static void
2297fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb, int status)
2298__releases(fotg210->lock)
2299__acquires(fotg210->lock)
2300{
2301	if (likely(urb->hcpriv != NULL)) {
2302		struct fotg210_qh	*qh = (struct fotg210_qh *) urb->hcpriv;
2303
2304		/* S-mask in a QH means it's an interrupt urb */
2305		if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) {
2306
2307			/* ... update hc-wide periodic stats (for usbfs) */
2308			fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--;
2309		}
2310	}
2311
2312	if (unlikely(urb->unlinked)) {
2313		COUNT(fotg210->stats.unlink);
2314	} else {
2315		/* report non-error and short read status as zero */
2316		if (status == -EINPROGRESS || status == -EREMOTEIO)
2317			status = 0;
2318		COUNT(fotg210->stats.complete);
2319	}
2320
2321#ifdef FOTG210_URB_TRACE
2322	fotg210_dbg(fotg210,
2323		"%s %s urb %p ep%d%s status %d len %d/%d\n",
2324		__func__, urb->dev->devpath, urb,
2325		usb_pipeendpoint(urb->pipe),
2326		usb_pipein(urb->pipe) ? "in" : "out",
2327		status,
2328		urb->actual_length, urb->transfer_buffer_length);
2329#endif
2330
2331	/* complete() can reenter this HCD */
2332	usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
2333	spin_unlock(&fotg210->lock);
2334	usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status);
2335	spin_lock(&fotg210->lock);
2336}
2337
2338static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2339
2340/*
2341 * Process and free completed qtds for a qh, returning URBs to drivers.
2342 * Chases up to qh->hw_current.  Returns number of completions called,
2343 * indicating how much "real" work we did.
2344 */
2345static unsigned
2346qh_completions(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2347{
2348	struct fotg210_qtd		*last, *end = qh->dummy;
2349	struct list_head	*entry, *tmp;
2350	int			last_status;
2351	int			stopped;
2352	unsigned		count = 0;
2353	u8			state;
2354	struct fotg210_qh_hw	*hw = qh->hw;
2355
2356	if (unlikely(list_empty(&qh->qtd_list)))
2357		return count;
2358
2359	/* completions (or tasks on other cpus) must never clobber HALT
2360	 * till we've gone through and cleaned everything up, even when
2361	 * they add urbs to this qh's queue or mark them for unlinking.
2362	 *
2363	 * NOTE:  unlinking expects to be done in queue order.
2364	 *
2365	 * It's a bug for qh->qh_state to be anything other than
2366	 * QH_STATE_IDLE, unless our caller is scan_async() or
2367	 * scan_intr().
2368	 */
2369	state = qh->qh_state;
2370	qh->qh_state = QH_STATE_COMPLETING;
2371	stopped = (state == QH_STATE_IDLE);
2372
2373 rescan:
2374	last = NULL;
2375	last_status = -EINPROGRESS;
2376	qh->needs_rescan = 0;
2377
2378	/* remove de-activated QTDs from front of queue.
2379	 * after faults (including short reads), cleanup this urb
2380	 * then let the queue advance.
2381	 * if queue is stopped, handles unlinks.
2382	 */
2383	list_for_each_safe(entry, tmp, &qh->qtd_list) {
2384		struct fotg210_qtd	*qtd;
2385		struct urb	*urb;
2386		u32		token = 0;
2387
2388		qtd = list_entry(entry, struct fotg210_qtd, qtd_list);
2389		urb = qtd->urb;
2390
2391		/* clean up any state from previous QTD ...*/
2392		if (last) {
2393			if (likely(last->urb != urb)) {
2394				fotg210_urb_done(fotg210, last->urb,
2395						 last_status);
2396				count++;
2397				last_status = -EINPROGRESS;
2398			}
2399			fotg210_qtd_free(fotg210, last);
2400			last = NULL;
2401		}
2402
2403		/* ignore urbs submitted during completions we reported */
2404		if (qtd == end)
2405			break;
2406
2407		/* hardware copies qtd out of qh overlay */
2408		rmb();
2409		token = hc32_to_cpu(fotg210, qtd->hw_token);
2410
2411		/* always clean up qtds the hc de-activated */
2412 retry_xacterr:
2413		if ((token & QTD_STS_ACTIVE) == 0) {
2414
2415			/* Report Data Buffer Error: non-fatal but useful */
2416			if (token & QTD_STS_DBE)
2417				fotg210_dbg(fotg210,
2418					"detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2419					urb,
2420					usb_endpoint_num(&urb->ep->desc),
2421					usb_endpoint_dir_in(&urb->ep->desc)
2422						? "in" : "out",
2423					urb->transfer_buffer_length,
2424					qtd,
2425					qh);
2426
2427			/* on STALL, error, and short reads this urb must
2428			 * complete and all its qtds must be recycled.
2429			 */
2430			if ((token & QTD_STS_HALT) != 0) {
2431
2432				/* retry transaction errors until we
2433				 * reach the software xacterr limit
2434				 */
2435				if ((token & QTD_STS_XACT) &&
2436					QTD_CERR(token) == 0 &&
2437					++qh->xacterrs < QH_XACTERR_MAX &&
2438					!urb->unlinked) {
2439					fotg210_dbg(fotg210,
2440	"detected XactErr len %zu/%zu retry %d\n",
2441	qtd->length - QTD_LENGTH(token), qtd->length, qh->xacterrs);
2442
2443					/* reset the token in the qtd and the
2444					 * qh overlay (which still contains
2445					 * the qtd) so that we pick up from
2446					 * where we left off
2447					 */
2448					token &= ~QTD_STS_HALT;
2449					token |= QTD_STS_ACTIVE |
2450						 (FOTG210_TUNE_CERR << 10);
2451					qtd->hw_token = cpu_to_hc32(fotg210,
2452							token);
2453					wmb();
2454					hw->hw_token = cpu_to_hc32(fotg210,
2455							token);
2456					goto retry_xacterr;
2457				}
2458				stopped = 1;
2459
2460			/* magic dummy for some short reads; qh won't advance.
2461			 * that silicon quirk can kick in with this dummy too.
2462			 *
2463			 * other short reads won't stop the queue, including
2464			 * control transfers (status stage handles that) or
2465			 * most other single-qtd reads ... the queue stops if
2466			 * URB_SHORT_NOT_OK was set so the driver submitting
2467			 * the urbs could clean it up.
2468			 */
2469			} else if (IS_SHORT_READ(token)
2470					&& !(qtd->hw_alt_next
2471						& FOTG210_LIST_END(fotg210))) {
2472				stopped = 1;
2473			}
2474
2475		/* stop scanning when we reach qtds the hc is using */
2476		} else if (likely(!stopped
2477				&& fotg210->rh_state >= FOTG210_RH_RUNNING)) {
2478			break;
2479
2480		/* scan the whole queue for unlinks whenever it stops */
2481		} else {
2482			stopped = 1;
2483
2484			/* cancel everything if we halt, suspend, etc */
2485			if (fotg210->rh_state < FOTG210_RH_RUNNING)
2486				last_status = -ESHUTDOWN;
2487
2488			/* this qtd is active; skip it unless a previous qtd
2489			 * for its urb faulted, or its urb was canceled.
2490			 */
2491			else if (last_status == -EINPROGRESS && !urb->unlinked)
2492				continue;
2493
2494			/* qh unlinked; token in overlay may be most current */
2495			if (state == QH_STATE_IDLE
2496					&& cpu_to_hc32(fotg210, qtd->qtd_dma)
2497						== hw->hw_current) {
2498				token = hc32_to_cpu(fotg210, hw->hw_token);
2499
2500				/* An unlink may leave an incomplete
2501				 * async transaction in the TT buffer.
2502				 * We have to clear it.
2503				 */
2504				fotg210_clear_tt_buffer(fotg210, qh, urb,
2505							token);
2506			}
2507		}
2508
2509		/* unless we already know the urb's status, collect qtd status
2510		 * and update count of bytes transferred.  in common short read
2511		 * cases with only one data qtd (including control transfers),
2512		 * queue processing won't halt.  but with two or more qtds (for
2513		 * example, with a 32 KB transfer), when the first qtd gets a
2514		 * short read the second must be removed by hand.
2515		 */
2516		if (last_status == -EINPROGRESS) {
2517			last_status = qtd_copy_status(fotg210, urb,
2518					qtd->length, token);
2519			if (last_status == -EREMOTEIO
2520					&& (qtd->hw_alt_next
2521						& FOTG210_LIST_END(fotg210)))
2522				last_status = -EINPROGRESS;
2523
2524			/* As part of low/full-speed endpoint-halt processing
2525			 * we must clear the TT buffer (11.17.5).
2526			 */
2527			if (unlikely(last_status != -EINPROGRESS &&
2528					last_status != -EREMOTEIO)) {
2529				/* The TT's in some hubs malfunction when they
2530				 * receive this request following a STALL (they
2531				 * stop sending isochronous packets).  Since a
2532				 * STALL can't leave the TT buffer in a busy
2533				 * state (if you believe Figures 11-48 - 11-51
2534				 * in the USB 2.0 spec), we won't clear the TT
2535				 * buffer in this case.  Strictly speaking this
2536				 * is a violation of the spec.
2537				 */
2538				if (last_status != -EPIPE)
2539					fotg210_clear_tt_buffer(fotg210, qh,
2540								urb, token);
2541			}
2542		}
2543
2544		/* if we're removing something not at the queue head,
2545		 * patch the hardware queue pointer.
2546		 */
2547		if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
2548			last = list_entry(qtd->qtd_list.prev,
2549					struct fotg210_qtd, qtd_list);
2550			last->hw_next = qtd->hw_next;
2551		}
2552
2553		/* remove qtd; it's recycled after possible urb completion */
2554		list_del(&qtd->qtd_list);
2555		last = qtd;
2556
2557		/* reinit the xacterr counter for the next qtd */
2558		qh->xacterrs = 0;
2559	}
2560
2561	/* last urb's completion might still need calling */
2562	if (likely(last != NULL)) {
2563		fotg210_urb_done(fotg210, last->urb, last_status);
2564		count++;
2565		fotg210_qtd_free(fotg210, last);
2566	}
2567
2568	/* Do we need to rescan for URBs dequeued during a giveback? */
2569	if (unlikely(qh->needs_rescan)) {
2570		/* If the QH is already unlinked, do the rescan now. */
2571		if (state == QH_STATE_IDLE)
2572			goto rescan;
2573
2574		/* Otherwise we have to wait until the QH is fully unlinked.
2575		 * Our caller will start an unlink if qh->needs_rescan is
2576		 * set.  But if an unlink has already started, nothing needs
2577		 * to be done.
2578		 */
2579		if (state != QH_STATE_LINKED)
2580			qh->needs_rescan = 0;
2581	}
2582
2583	/* restore original state; caller must unlink or relink */
2584	qh->qh_state = state;
2585
2586	/* be sure the hardware's done with the qh before refreshing
2587	 * it after fault cleanup, or recovering from silicon wrongly
2588	 * overlaying the dummy qtd (which reduces DMA chatter).
2589	 */
2590	if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) {
2591		switch (state) {
2592		case QH_STATE_IDLE:
2593			qh_refresh(fotg210, qh);
2594			break;
2595		case QH_STATE_LINKED:
2596			/* We won't refresh a QH that's linked (after the HC
2597			 * stopped the queue).  That avoids a race:
2598			 *  - HC reads first part of QH;
2599			 *  - CPU updates that first part and the token;
2600			 *  - HC reads rest of that QH, including token
2601			 * Result:  HC gets an inconsistent image, and then
2602			 * DMAs to/from the wrong memory (corrupting it).
2603			 *
2604			 * That should be rare for interrupt transfers,
2605			 * except maybe high bandwidth ...
2606			 */
2607
2608			/* Tell the caller to start an unlink */
2609			qh->needs_rescan = 1;
2610			break;
2611		/* otherwise, unlink already started */
2612		}
2613	}
2614
2615	return count;
2616}
2617
2618/*-------------------------------------------------------------------------*/
2619
2620/* high bandwidth multiplier, as encoded in highspeed endpoint descriptors */
2621#define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
2622/* ... and packet size, for any kind of endpoint descriptor */
2623#define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
2624
2625/*
2626 * reverse of qh_urb_transaction:  free a list of TDs.
2627 * used for cleanup after errors, before HC sees an URB's TDs.
2628 */
2629static void qtd_list_free(
2630	struct fotg210_hcd		*fotg210,
2631	struct urb		*urb,
2632	struct list_head	*qtd_list
2633) {
2634	struct list_head	*entry, *temp;
2635
2636	list_for_each_safe(entry, temp, qtd_list) {
2637		struct fotg210_qtd	*qtd;
2638
2639		qtd = list_entry(entry, struct fotg210_qtd, qtd_list);
2640		list_del(&qtd->qtd_list);
2641		fotg210_qtd_free(fotg210, qtd);
2642	}
2643}
2644
2645/*
2646 * create a list of filled qtds for this URB; won't link into qh.
2647 */
2648static struct list_head *
2649qh_urb_transaction(
2650	struct fotg210_hcd		*fotg210,
2651	struct urb		*urb,
2652	struct list_head	*head,
2653	gfp_t			flags
2654) {
2655	struct fotg210_qtd		*qtd, *qtd_prev;
2656	dma_addr_t		buf;
2657	int			len, this_sg_len, maxpacket;
2658	int			is_input;
2659	u32			token;
2660	int			i;
2661	struct scatterlist	*sg;
2662
2663	/*
2664	 * URBs map to sequences of QTDs:  one logical transaction
2665	 */
2666	qtd = fotg210_qtd_alloc(fotg210, flags);
2667	if (unlikely(!qtd))
2668		return NULL;
2669	list_add_tail(&qtd->qtd_list, head);
2670	qtd->urb = urb;
2671
2672	token = QTD_STS_ACTIVE;
2673	token |= (FOTG210_TUNE_CERR << 10);
2674	/* for split transactions, SplitXState initialized to zero */
2675
2676	len = urb->transfer_buffer_length;
2677	is_input = usb_pipein(urb->pipe);
2678	if (usb_pipecontrol(urb->pipe)) {
2679		/* SETUP pid */
2680		qtd_fill(fotg210, qtd, urb->setup_dma,
2681				sizeof(struct usb_ctrlrequest),
2682				token | (2 /* "setup" */ << 8), 8);
2683
2684		/* ... and always at least one more pid */
2685		token ^= QTD_TOGGLE;
2686		qtd_prev = qtd;
2687		qtd = fotg210_qtd_alloc(fotg210, flags);
2688		if (unlikely(!qtd))
2689			goto cleanup;
2690		qtd->urb = urb;
2691		qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2692		list_add_tail(&qtd->qtd_list, head);
2693
2694		/* for zero length DATA stages, STATUS is always IN */
2695		if (len == 0)
2696			token |= (1 /* "in" */ << 8);
2697	}
2698
2699	/*
2700	 * data transfer stage:  buffer setup
2701	 */
2702	i = urb->num_mapped_sgs;
2703	if (len > 0 && i > 0) {
2704		sg = urb->sg;
2705		buf = sg_dma_address(sg);
2706
2707		/* urb->transfer_buffer_length may be smaller than the
2708		 * size of the scatterlist (or vice versa)
2709		 */
2710		this_sg_len = min_t(int, sg_dma_len(sg), len);
2711	} else {
2712		sg = NULL;
2713		buf = urb->transfer_dma;
2714		this_sg_len = len;
2715	}
2716
2717	if (is_input)
2718		token |= (1 /* "in" */ << 8);
2719	/* else it's already initted to "out" pid (0 << 8) */
2720
2721	maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
2722
2723	/*
2724	 * buffer gets wrapped in one or more qtds;
2725	 * last one may be "short" (including zero len)
2726	 * and may serve as a control status ack
2727	 */
2728	for (;;) {
2729		int this_qtd_len;
2730
2731		this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token,
2732				maxpacket);
2733		this_sg_len -= this_qtd_len;
2734		len -= this_qtd_len;
2735		buf += this_qtd_len;
2736
2737		/*
2738		 * short reads advance to a "magic" dummy instead of the next
2739		 * qtd ... that forces the queue to stop, for manual cleanup.
2740		 * (this will usually be overridden later.)
2741		 */
2742		if (is_input)
2743			qtd->hw_alt_next = fotg210->async->hw->hw_alt_next;
2744
2745		/* qh makes control packets use qtd toggle; maybe switch it */
2746		if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
2747			token ^= QTD_TOGGLE;
2748
2749		if (likely(this_sg_len <= 0)) {
2750			if (--i <= 0 || len <= 0)
2751				break;
2752			sg = sg_next(sg);
2753			buf = sg_dma_address(sg);
2754			this_sg_len = min_t(int, sg_dma_len(sg), len);
2755		}
2756
2757		qtd_prev = qtd;
2758		qtd = fotg210_qtd_alloc(fotg210, flags);
2759		if (unlikely(!qtd))
2760			goto cleanup;
2761		qtd->urb = urb;
2762		qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2763		list_add_tail(&qtd->qtd_list, head);
2764	}
2765
2766	/*
2767	 * unless the caller requires manual cleanup after short reads,
2768	 * have the alt_next mechanism keep the queue running after the
2769	 * last data qtd (the only one, for control and most other cases).
2770	 */
2771	if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
2772				|| usb_pipecontrol(urb->pipe)))
2773		qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
2774
2775	/*
2776	 * control requests may need a terminating data "status" ack;
2777	 * other OUT ones may need a terminating short packet
2778	 * (zero length).
2779	 */
2780	if (likely(urb->transfer_buffer_length != 0)) {
2781		int	one_more = 0;
2782
2783		if (usb_pipecontrol(urb->pipe)) {
2784			one_more = 1;
2785			token ^= 0x0100;	/* "in" <--> "out"  */
2786			token |= QTD_TOGGLE;	/* force DATA1 */
2787		} else if (usb_pipeout(urb->pipe)
2788				&& (urb->transfer_flags & URB_ZERO_PACKET)
2789				&& !(urb->transfer_buffer_length % maxpacket)) {
2790			one_more = 1;
2791		}
2792		if (one_more) {
2793			qtd_prev = qtd;
2794			qtd = fotg210_qtd_alloc(fotg210, flags);
2795			if (unlikely(!qtd))
2796				goto cleanup;
2797			qtd->urb = urb;
2798			qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2799			list_add_tail(&qtd->qtd_list, head);
2800
2801			/* never any data in such packets */
2802			qtd_fill(fotg210, qtd, 0, 0, token, 0);
2803		}
2804	}
2805
2806	/* by default, enable interrupt on urb completion */
2807	if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
2808		qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC);
2809	return head;
2810
2811cleanup:
2812	qtd_list_free(fotg210, urb, head);
2813	return NULL;
2814}
2815
2816/*-------------------------------------------------------------------------*/
2817/*
2818 * Would be best to create all qh's from config descriptors,
2819 * when each interface/altsetting is established.  Unlink
2820 * any previous qh and cancel its urbs first; endpoints are
2821 * implicitly reset then (data toggle too).
2822 * That'd mean updating how usbcore talks to HCDs. (2.7?)
2823*/
2824
2825
2826/*
2827 * Each QH holds a qtd list; a QH is used for everything except iso.
2828 *
2829 * For interrupt urbs, the scheduler must set the microframe scheduling
2830 * mask(s) each time the QH gets scheduled.  For highspeed, that's
2831 * just one microframe in the s-mask.  For split interrupt transactions
2832 * there are additional complications: c-mask, maybe FSTNs.
2833 */
2834static struct fotg210_qh *
2835qh_make(
2836	struct fotg210_hcd		*fotg210,
2837	struct urb		*urb,
2838	gfp_t			flags
2839) {
2840	struct fotg210_qh		*qh = fotg210_qh_alloc(fotg210, flags);
2841	u32			info1 = 0, info2 = 0;
2842	int			is_input, type;
2843	int			maxp = 0;
2844	struct usb_tt		*tt = urb->dev->tt;
2845	struct fotg210_qh_hw	*hw;
2846
2847	if (!qh)
2848		return qh;
2849
2850	/*
2851	 * init endpoint/device data for this QH
2852	 */
2853	info1 |= usb_pipeendpoint(urb->pipe) << 8;
2854	info1 |= usb_pipedevice(urb->pipe) << 0;
2855
2856	is_input = usb_pipein(urb->pipe);
2857	type = usb_pipetype(urb->pipe);
2858	maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
2859
2860	/* 1024 byte maxpacket is a hardware ceiling.  High bandwidth
2861	 * acts like up to 3KB, but is built from smaller packets.
2862	 */
2863	if (max_packet(maxp) > 1024) {
2864		fotg210_dbg(fotg210, "bogus qh maxpacket %d\n",
2865			    max_packet(maxp));
2866		goto done;
2867	}
2868
2869	/* Compute interrupt scheduling parameters just once, and save.
2870	 * - allowing for high bandwidth, how many nsec/uframe are used?
2871	 * - split transactions need a second CSPLIT uframe; same question
2872	 * - splits also need a schedule gap (for full/low speed I/O)
2873	 * - qh has a polling interval
2874	 *
2875	 * For control/bulk requests, the HC or TT handles these.
2876	 */
2877	if (type == PIPE_INTERRUPT) {
2878		qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
2879				is_input, 0,
2880				hb_mult(maxp) * max_packet(maxp)));
2881		qh->start = NO_FRAME;
2882
2883		if (urb->dev->speed == USB_SPEED_HIGH) {
2884			qh->c_usecs = 0;
2885			qh->gap_uf = 0;
2886
2887			qh->period = urb->interval >> 3;
2888			if (qh->period == 0 && urb->interval != 1) {
2889				/* NOTE interval 2 or 4 uframes could work.
2890				 * But interval 1 scheduling is simpler, and
2891				 * includes high bandwidth.
2892				 */
2893				urb->interval = 1;
2894			} else if (qh->period > fotg210->periodic_size) {
2895				qh->period = fotg210->periodic_size;
2896				urb->interval = qh->period << 3;
2897			}
2898		} else {
2899			int		think_time;
2900
2901			/* gap is f(FS/LS transfer times) */
2902			qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
2903					is_input, 0, maxp) / (125 * 1000);
2904
2905			/* FIXME this just approximates SPLIT/CSPLIT times */
2906			if (is_input) {		/* SPLIT, gap, CSPLIT+DATA */
2907				qh->c_usecs = qh->usecs + HS_USECS(0);
2908				qh->usecs = HS_USECS(1);
2909			} else {		/* SPLIT+DATA, gap, CSPLIT */
2910				qh->usecs += HS_USECS(1);
2911				qh->c_usecs = HS_USECS(0);
2912			}
2913
2914			think_time = tt ? tt->think_time : 0;
2915			qh->tt_usecs = NS_TO_US(think_time +
2916					usb_calc_bus_time(urb->dev->speed,
2917					is_input, 0, max_packet(maxp)));
2918			qh->period = urb->interval;
2919			if (qh->period > fotg210->periodic_size) {
2920				qh->period = fotg210->periodic_size;
2921				urb->interval = qh->period;
2922			}
2923		}
2924	}
2925
2926	/* support for tt scheduling, and access to toggles */
2927	qh->dev = urb->dev;
2928
2929	/* using TT? */
2930	switch (urb->dev->speed) {
2931	case USB_SPEED_LOW:
2932		info1 |= QH_LOW_SPEED;
2933		/* FALL THROUGH */
2934
2935	case USB_SPEED_FULL:
2936		/* EPS 0 means "full" */
2937		if (type != PIPE_INTERRUPT)
2938			info1 |= (FOTG210_TUNE_RL_TT << 28);
2939		if (type == PIPE_CONTROL) {
2940			info1 |= QH_CONTROL_EP;		/* for TT */
2941			info1 |= QH_TOGGLE_CTL;		/* toggle from qtd */
2942		}
2943		info1 |= maxp << 16;
2944
2945		info2 |= (FOTG210_TUNE_MULT_TT << 30);
2946
2947		/* Some Freescale processors have an erratum in which the
2948		 * port number in the queue head was 0..N-1 instead of 1..N.
2949		 */
2950		if (fotg210_has_fsl_portno_bug(fotg210))
2951			info2 |= (urb->dev->ttport-1) << 23;
2952		else
2953			info2 |= urb->dev->ttport << 23;
2954
2955		/* set the address of the TT; for TDI's integrated
2956		 * root hub tt, leave it zeroed.
2957		 */
2958		if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub)
2959			info2 |= tt->hub->devnum << 16;
2960
2961		/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
2962
2963		break;
2964
2965	case USB_SPEED_HIGH:		/* no TT involved */
2966		info1 |= QH_HIGH_SPEED;
2967		if (type == PIPE_CONTROL) {
2968			info1 |= (FOTG210_TUNE_RL_HS << 28);
2969			info1 |= 64 << 16;	/* usb2 fixed maxpacket */
2970			info1 |= QH_TOGGLE_CTL;	/* toggle from qtd */
2971			info2 |= (FOTG210_TUNE_MULT_HS << 30);
2972		} else if (type == PIPE_BULK) {
2973			info1 |= (FOTG210_TUNE_RL_HS << 28);
2974			/* The USB spec says that high speed bulk endpoints
2975			 * always use 512 byte maxpacket.  But some device
2976			 * vendors decided to ignore that, and MSFT is happy
2977			 * to help them do so.  So now people expect to use
2978			 * such nonconformant devices with Linux too; sigh.
2979			 */
2980			info1 |= max_packet(maxp) << 16;
2981			info2 |= (FOTG210_TUNE_MULT_HS << 30);
2982		} else {		/* PIPE_INTERRUPT */
2983			info1 |= max_packet(maxp) << 16;
2984			info2 |= hb_mult(maxp) << 30;
2985		}
2986		break;
2987	default:
2988		fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev,
2989			urb->dev->speed);
2990done:
2991		qh_destroy(fotg210, qh);
2992		return NULL;
2993	}
2994
2995	/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
2996
2997	/* init as live, toggle clear, advance to dummy */
2998	qh->qh_state = QH_STATE_IDLE;
2999	hw = qh->hw;
3000	hw->hw_info1 = cpu_to_hc32(fotg210, info1);
3001	hw->hw_info2 = cpu_to_hc32(fotg210, info2);
3002	qh->is_out = !is_input;
3003	usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
3004	qh_refresh(fotg210, qh);
3005	return qh;
3006}
3007
3008/*-------------------------------------------------------------------------*/
3009
3010static void enable_async(struct fotg210_hcd *fotg210)
3011{
3012	if (fotg210->async_count++)
3013		return;
3014
3015	/* Stop waiting to turn off the async schedule */
3016	fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC);
3017
3018	/* Don't start the schedule until ASS is 0 */
3019	fotg210_poll_ASS(fotg210);
3020	turn_on_io_watchdog(fotg210);
3021}
3022
3023static void disable_async(struct fotg210_hcd *fotg210)
3024{
3025	if (--fotg210->async_count)
3026		return;
3027
3028	/* The async schedule and async_unlink list are supposed to be empty */
3029	WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink);
3030
3031	/* Don't turn off the schedule until ASS is 1 */
3032	fotg210_poll_ASS(fotg210);
3033}
3034
3035/* move qh (and its qtds) onto async queue; maybe enable queue.  */
3036
3037static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3038{
3039	__hc32		dma = QH_NEXT(fotg210, qh->qh_dma);
3040	struct fotg210_qh	*head;
3041
3042	/* Don't link a QH if there's a Clear-TT-Buffer pending */
3043	if (unlikely(qh->clearing_tt))
3044		return;
3045
3046	WARN_ON(qh->qh_state != QH_STATE_IDLE);
3047
3048	/* clear halt and/or toggle; and maybe recover from silicon quirk */
3049	qh_refresh(fotg210, qh);
3050
3051	/* splice right after start */
3052	head = fotg210->async;
3053	qh->qh_next = head->qh_next;
3054	qh->hw->hw_next = head->hw->hw_next;
3055	wmb();
3056
3057	head->qh_next.qh = qh;
3058	head->hw->hw_next = dma;
3059
3060	qh->xacterrs = 0;
3061	qh->qh_state = QH_STATE_LINKED;
3062	/* qtd completions reported later by interrupt */
3063
3064	enable_async(fotg210);
3065}
3066
3067/*-------------------------------------------------------------------------*/
3068
3069/*
3070 * For control/bulk/interrupt, return QH with these TDs appended.
3071 * Allocates and initializes the QH if necessary.
3072 * Returns null if it can't allocate a QH it needs to.
3073 * If the QH has TDs (urbs) already, that's great.
3074 */
3075static struct fotg210_qh *qh_append_tds(
3076	struct fotg210_hcd		*fotg210,
3077	struct urb		*urb,
3078	struct list_head	*qtd_list,
3079	int			epnum,
3080	void			**ptr
3081)
3082{
3083	struct fotg210_qh		*qh = NULL;
3084	__hc32			qh_addr_mask = cpu_to_hc32(fotg210, 0x7f);
3085
3086	qh = (struct fotg210_qh *) *ptr;
3087	if (unlikely(qh == NULL)) {
3088		/* can't sleep here, we have fotg210->lock... */
3089		qh = qh_make(fotg210, urb, GFP_ATOMIC);
3090		*ptr = qh;
3091	}
3092	if (likely(qh != NULL)) {
3093		struct fotg210_qtd	*qtd;
3094
3095		if (unlikely(list_empty(qtd_list)))
3096			qtd = NULL;
3097		else
3098			qtd = list_entry(qtd_list->next, struct fotg210_qtd,
3099					qtd_list);
3100
3101		/* control qh may need patching ... */
3102		if (unlikely(epnum == 0)) {
3103			/* usb_reset_device() briefly reverts to address 0 */
3104			if (usb_pipedevice(urb->pipe) == 0)
3105				qh->hw->hw_info1 &= ~qh_addr_mask;
3106		}
3107
3108		/* just one way to queue requests: swap with the dummy qtd.
3109		 * only hc or qh_refresh() ever modify the overlay.
3110		 */
3111		if (likely(qtd != NULL)) {
3112			struct fotg210_qtd		*dummy;
3113			dma_addr_t		dma;
3114			__hc32			token;
3115
3116			/* to avoid racing the HC, use the dummy td instead of
3117			 * the first td of our list (becomes new dummy).  both
3118			 * tds stay deactivated until we're done, when the
3119			 * HC is allowed to fetch the old dummy (4.10.2).
3120			 */
3121			token = qtd->hw_token;
3122			qtd->hw_token = HALT_BIT(fotg210);
3123
3124			dummy = qh->dummy;
3125
3126			dma = dummy->qtd_dma;
3127			*dummy = *qtd;
3128			dummy->qtd_dma = dma;
3129
3130			list_del(&qtd->qtd_list);
3131			list_add(&dummy->qtd_list, qtd_list);
3132			list_splice_tail(qtd_list, &qh->qtd_list);
3133
3134			fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma);
3135			qh->dummy = qtd;
3136
3137			/* hc must see the new dummy at list end */
3138			dma = qtd->qtd_dma;
3139			qtd = list_entry(qh->qtd_list.prev,
3140					struct fotg210_qtd, qtd_list);
3141			qtd->hw_next = QTD_NEXT(fotg210, dma);
3142
3143			/* let the hc process these next qtds */
3144			wmb();
3145			dummy->hw_token = token;
3146
3147			urb->hcpriv = qh;
3148		}
3149	}
3150	return qh;
3151}
3152
3153/*-------------------------------------------------------------------------*/
3154
3155static int
3156submit_async(
3157	struct fotg210_hcd		*fotg210,
3158	struct urb		*urb,
3159	struct list_head	*qtd_list,
3160	gfp_t			mem_flags
3161) {
3162	int			epnum;
3163	unsigned long		flags;
3164	struct fotg210_qh		*qh = NULL;
3165	int			rc;
3166
3167	epnum = urb->ep->desc.bEndpointAddress;
3168
3169#ifdef FOTG210_URB_TRACE
3170	{
3171		struct fotg210_qtd *qtd;
3172		qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list);
3173		fotg210_dbg(fotg210,
3174			 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
3175			 __func__, urb->dev->devpath, urb,
3176			 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
3177			 urb->transfer_buffer_length,
3178			 qtd, urb->ep->hcpriv);
3179	}
3180#endif
3181
3182	spin_lock_irqsave(&fotg210->lock, flags);
3183	if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3184		rc = -ESHUTDOWN;
3185		goto done;
3186	}
3187	rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3188	if (unlikely(rc))
3189		goto done;
3190
3191	qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3192	if (unlikely(qh == NULL)) {
3193		usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3194		rc = -ENOMEM;
3195		goto done;
3196	}
3197
3198	/* Control/bulk operations through TTs don't need scheduling,
3199	 * the HC and TT handle it when the TT has a buffer ready.
3200	 */
3201	if (likely(qh->qh_state == QH_STATE_IDLE))
3202		qh_link_async(fotg210, qh);
3203 done:
3204	spin_unlock_irqrestore(&fotg210->lock, flags);
3205	if (unlikely(qh == NULL))
3206		qtd_list_free(fotg210, urb, qtd_list);
3207	return rc;
3208}
3209
3210/*-------------------------------------------------------------------------*/
3211
3212static void single_unlink_async(struct fotg210_hcd *fotg210,
3213				struct fotg210_qh *qh)
3214{
3215	struct fotg210_qh		*prev;
3216
3217	/* Add to the end of the list of QHs waiting for the next IAAD */
3218	qh->qh_state = QH_STATE_UNLINK;
3219	if (fotg210->async_unlink)
3220		fotg210->async_unlink_last->unlink_next = qh;
3221	else
3222		fotg210->async_unlink = qh;
3223	fotg210->async_unlink_last = qh;
3224
3225	/* Unlink it from the schedule */
3226	prev = fotg210->async;
3227	while (prev->qh_next.qh != qh)
3228		prev = prev->qh_next.qh;
3229
3230	prev->hw->hw_next = qh->hw->hw_next;
3231	prev->qh_next = qh->qh_next;
3232	if (fotg210->qh_scan_next == qh)
3233		fotg210->qh_scan_next = qh->qh_next.qh;
3234}
3235
3236static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested)
3237{
3238	/*
3239	 * Do nothing if an IAA cycle is already running or
3240	 * if one will be started shortly.
3241	 */
3242	if (fotg210->async_iaa || fotg210->async_unlinking)
3243		return;
3244
3245	/* Do all the waiting QHs at once */
3246	fotg210->async_iaa = fotg210->async_unlink;
3247	fotg210->async_unlink = NULL;
3248
3249	/* If the controller isn't running, we don't have to wait for it */
3250	if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) {
3251		if (!nested)		/* Avoid recursion */
3252			end_unlink_async(fotg210);
3253
3254	/* Otherwise start a new IAA cycle */
3255	} else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) {
3256		/* Make sure the unlinks are all visible to the hardware */
3257		wmb();
3258
3259		fotg210_writel(fotg210, fotg210->command | CMD_IAAD,
3260				&fotg210->regs->command);
3261		fotg210_readl(fotg210, &fotg210->regs->command);
3262		fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG,
3263				     true);
3264	}
3265}
3266
3267/* the async qh for the qtds being unlinked are now gone from the HC */
3268
3269static void end_unlink_async(struct fotg210_hcd *fotg210)
3270{
3271	struct fotg210_qh		*qh;
3272
3273	/* Process the idle QHs */
3274 restart:
3275	fotg210->async_unlinking = true;
3276	while (fotg210->async_iaa) {
3277		qh = fotg210->async_iaa;
3278		fotg210->async_iaa = qh->unlink_next;
3279		qh->unlink_next = NULL;
3280
3281		qh->qh_state = QH_STATE_IDLE;
3282		qh->qh_next.qh = NULL;
3283
3284		qh_completions(fotg210, qh);
3285		if (!list_empty(&qh->qtd_list) &&
3286				fotg210->rh_state == FOTG210_RH_RUNNING)
3287			qh_link_async(fotg210, qh);
3288		disable_async(fotg210);
3289	}
3290	fotg210->async_unlinking = false;
3291
3292	/* Start a new IAA cycle if any QHs are waiting for it */
3293	if (fotg210->async_unlink) {
3294		start_iaa_cycle(fotg210, true);
3295		if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING))
3296			goto restart;
3297	}
3298}
3299
3300static void unlink_empty_async(struct fotg210_hcd *fotg210)
3301{
3302	struct fotg210_qh *qh, *next;
3303	bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
3304	bool check_unlinks_later = false;
3305
3306	/* Unlink all the async QHs that have been empty for a timer cycle */
3307	next = fotg210->async->qh_next.qh;
3308	while (next) {
3309		qh = next;
3310		next = qh->qh_next.qh;
3311
3312		if (list_empty(&qh->qtd_list) &&
3313				qh->qh_state == QH_STATE_LINKED) {
3314			if (!stopped && qh->unlink_cycle ==
3315					fotg210->async_unlink_cycle)
3316				check_unlinks_later = true;
3317			else
3318				single_unlink_async(fotg210, qh);
3319		}
3320	}
3321
3322	/* Start a new IAA cycle if any QHs are waiting for it */
3323	if (fotg210->async_unlink)
3324		start_iaa_cycle(fotg210, false);
3325
3326	/* QHs that haven't been empty for long enough will be handled later */
3327	if (check_unlinks_later) {
3328		fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS,
3329				     true);
3330		++fotg210->async_unlink_cycle;
3331	}
3332}
3333
3334/* makes sure the async qh will become idle */
3335/* caller must own fotg210->lock */
3336
3337static void start_unlink_async(struct fotg210_hcd *fotg210,
3338			       struct fotg210_qh *qh)
3339{
3340	/*
3341	 * If the QH isn't linked then there's nothing we can do
3342	 * unless we were called during a giveback, in which case
3343	 * qh_completions() has to deal with it.
3344	 */
3345	if (qh->qh_state != QH_STATE_LINKED) {
3346		if (qh->qh_state == QH_STATE_COMPLETING)
3347			qh->needs_rescan = 1;
3348		return;
3349	}
3350
3351	single_unlink_async(fotg210, qh);
3352	start_iaa_cycle(fotg210, false);
3353}
3354
3355/*-------------------------------------------------------------------------*/
3356
3357static void scan_async(struct fotg210_hcd *fotg210)
3358{
3359	struct fotg210_qh		*qh;
3360	bool			check_unlinks_later = false;
3361
3362	fotg210->qh_scan_next = fotg210->async->qh_next.qh;
3363	while (fotg210->qh_scan_next) {
3364		qh = fotg210->qh_scan_next;
3365		fotg210->qh_scan_next = qh->qh_next.qh;
3366 rescan:
3367		/* clean any finished work for this qh */
3368		if (!list_empty(&qh->qtd_list)) {
3369			int temp;
3370
3371			/*
3372			 * Unlinks could happen here; completion reporting
3373			 * drops the lock.  That's why fotg210->qh_scan_next
3374			 * always holds the next qh to scan; if the next qh
3375			 * gets unlinked then fotg210->qh_scan_next is adjusted
3376			 * in single_unlink_async().
3377			 */
3378			temp = qh_completions(fotg210, qh);
3379			if (qh->needs_rescan) {
3380				start_unlink_async(fotg210, qh);
3381			} else if (list_empty(&qh->qtd_list)
3382					&& qh->qh_state == QH_STATE_LINKED) {
3383				qh->unlink_cycle = fotg210->async_unlink_cycle;
3384				check_unlinks_later = true;
3385			} else if (temp != 0)
3386				goto rescan;
3387		}
3388	}
3389
3390	/*
3391	 * Unlink empty entries, reducing DMA usage as well
3392	 * as HCD schedule-scanning costs.  Delay for any qh
3393	 * we just scanned, there's a not-unusual case that it
3394	 * doesn't stay idle for long.
3395	 */
3396	if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING &&
3397			!(fotg210->enabled_hrtimer_events &
3398				BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) {
3399		fotg210_enable_event(fotg210,
3400				     FOTG210_HRTIMER_ASYNC_UNLINKS, true);
3401		++fotg210->async_unlink_cycle;
3402	}
3403}
3404/*-------------------------------------------------------------------------*/
3405/*
3406 * EHCI scheduled transaction support:  interrupt, iso, split iso
3407 * These are called "periodic" transactions in the EHCI spec.
3408 *
3409 * Note that for interrupt transfers, the QH/QTD manipulation is shared
3410 * with the "asynchronous" transaction support (control/bulk transfers).
3411 * The only real difference is in how interrupt transfers are scheduled.
3412 *
3413 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
3414 * It keeps track of every ITD (or SITD) that's linked, and holds enough
3415 * pre-calculated schedule data to make appending to the queue be quick.
3416 */
3417
3418static int fotg210_get_frame(struct usb_hcd *hcd);
3419
3420/*-------------------------------------------------------------------------*/
3421
3422/*
3423 * periodic_next_shadow - return "next" pointer on shadow list
3424 * @periodic: host pointer to qh/itd
3425 * @tag: hardware tag for type of this record
3426 */
3427static union fotg210_shadow *
3428periodic_next_shadow(struct fotg210_hcd *fotg210,
3429		     union fotg210_shadow *periodic, __hc32 tag)
3430{
3431	switch (hc32_to_cpu(fotg210, tag)) {
3432	case Q_TYPE_QH:
3433		return &periodic->qh->qh_next;
3434	case Q_TYPE_FSTN:
3435		return &periodic->fstn->fstn_next;
3436	default:
3437		return &periodic->itd->itd_next;
3438	}
3439}
3440
3441static __hc32 *
3442shadow_next_periodic(struct fotg210_hcd *fotg210,
3443		     union fotg210_shadow *periodic, __hc32 tag)
3444{
3445	switch (hc32_to_cpu(fotg210, tag)) {
3446	/* our fotg210_shadow.qh is actually software part */
3447	case Q_TYPE_QH:
3448		return &periodic->qh->hw->hw_next;
3449	/* others are hw parts */
3450	default:
3451		return periodic->hw_next;
3452	}
3453}
3454
3455/* caller must hold fotg210->lock */
3456static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame,
3457			    void *ptr)
3458{
3459	union fotg210_shadow	*prev_p = &fotg210->pshadow[frame];
3460	__hc32			*hw_p = &fotg210->periodic[frame];
3461	union fotg210_shadow	here = *prev_p;
3462
3463	/* find predecessor of "ptr"; hw and shadow lists are in sync */
3464	while (here.ptr && here.ptr != ptr) {
3465		prev_p = periodic_next_shadow(fotg210, prev_p,
3466				Q_NEXT_TYPE(fotg210, *hw_p));
3467		hw_p = shadow_next_periodic(fotg210, &here,
3468				Q_NEXT_TYPE(fotg210, *hw_p));
3469		here = *prev_p;
3470	}
3471	/* an interrupt entry (at list end) could have been shared */
3472	if (!here.ptr)
3473		return;
3474
3475	/* update shadow and hardware lists ... the old "next" pointers
3476	 * from ptr may still be in use, the caller updates them.
3477	 */
3478	*prev_p = *periodic_next_shadow(fotg210, &here,
3479			Q_NEXT_TYPE(fotg210, *hw_p));
3480
3481	*hw_p = *shadow_next_periodic(fotg210, &here,
3482				Q_NEXT_TYPE(fotg210, *hw_p));
3483}
3484
3485/* how many of the uframe's 125 usecs are allocated? */
3486static unsigned short
3487periodic_usecs(struct fotg210_hcd *fotg210, unsigned frame, unsigned uframe)
3488{
3489	__hc32			*hw_p = &fotg210->periodic[frame];
3490	union fotg210_shadow	*q = &fotg210->pshadow[frame];
3491	unsigned		usecs = 0;
3492	struct fotg210_qh_hw	*hw;
3493
3494	while (q->ptr) {
3495		switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) {
3496		case Q_TYPE_QH:
3497			hw = q->qh->hw;
3498			/* is it in the S-mask? */
3499			if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe))
3500				usecs += q->qh->usecs;
3501			/* ... or C-mask? */
3502			if (hw->hw_info2 & cpu_to_hc32(fotg210,
3503					1 << (8 + uframe)))
3504				usecs += q->qh->c_usecs;
3505			hw_p = &hw->hw_next;
3506			q = &q->qh->qh_next;
3507			break;
3508		/* case Q_TYPE_FSTN: */
3509		default:
3510			/* for "save place" FSTNs, count the relevant INTR
3511			 * bandwidth from the previous frame
3512			 */
3513			if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210))
3514				fotg210_dbg(fotg210, "ignoring FSTN cost ...\n");
3515
3516			hw_p = &q->fstn->hw_next;
3517			q = &q->fstn->fstn_next;
3518			break;
3519		case Q_TYPE_ITD:
3520			if (q->itd->hw_transaction[uframe])
3521				usecs += q->itd->stream->usecs;
3522			hw_p = &q->itd->hw_next;
3523			q = &q->itd->itd_next;
3524			break;
3525		}
3526	}
3527	if (usecs > fotg210->uframe_periodic_max)
3528		fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n",
3529			frame * 8 + uframe, usecs);
3530	return usecs;
3531}
3532
3533/*-------------------------------------------------------------------------*/
3534
3535static int same_tt(struct usb_device *dev1, struct usb_device *dev2)
3536{
3537	if (!dev1->tt || !dev2->tt)
3538		return 0;
3539	if (dev1->tt != dev2->tt)
3540		return 0;
3541	if (dev1->tt->multi)
3542		return dev1->ttport == dev2->ttport;
3543	else
3544		return 1;
3545}
3546
3547/* return true iff the device's transaction translator is available
3548 * for a periodic transfer starting at the specified frame, using
3549 * all the uframes in the mask.
3550 */
3551static int tt_no_collision(
3552	struct fotg210_hcd		*fotg210,
3553	unsigned		period,
3554	struct usb_device	*dev,
3555	unsigned		frame,
3556	u32			uf_mask
3557)
3558{
3559	if (period == 0)	/* error */
3560		return 0;
3561
3562	/* note bandwidth wastage:  split never follows csplit
3563	 * (different dev or endpoint) until the next uframe.
3564	 * calling convention doesn't make that distinction.
3565	 */
3566	for (; frame < fotg210->periodic_size; frame += period) {
3567		union fotg210_shadow	here;
3568		__hc32			type;
3569		struct fotg210_qh_hw	*hw;
3570
3571		here = fotg210->pshadow[frame];
3572		type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]);
3573		while (here.ptr) {
3574			switch (hc32_to_cpu(fotg210, type)) {
3575			case Q_TYPE_ITD:
3576				type = Q_NEXT_TYPE(fotg210, here.itd->hw_next);
3577				here = here.itd->itd_next;
3578				continue;
3579			case Q_TYPE_QH:
3580				hw = here.qh->hw;
3581				if (same_tt(dev, here.qh->dev)) {
3582					u32		mask;
3583
3584					mask = hc32_to_cpu(fotg210,
3585							hw->hw_info2);
3586					/* "knows" no gap is needed */
3587					mask |= mask >> 8;
3588					if (mask & uf_mask)
3589						break;
3590				}
3591				type = Q_NEXT_TYPE(fotg210, hw->hw_next);
3592				here = here.qh->qh_next;
3593				continue;
3594			/* case Q_TYPE_FSTN: */
3595			default:
3596				fotg210_dbg(fotg210,
3597					"periodic frame %d bogus type %d\n",
3598					frame, type);
3599			}
3600
3601			/* collision or error */
3602			return 0;
3603		}
3604	}
3605
3606	/* no collision */
3607	return 1;
3608}
3609
3610/*-------------------------------------------------------------------------*/
3611
3612static void enable_periodic(struct fotg210_hcd *fotg210)
3613{
3614	if (fotg210->periodic_count++)
3615		return;
3616
3617	/* Stop waiting to turn off the periodic schedule */
3618	fotg210->enabled_hrtimer_events &=
3619		~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC);
3620
3621	/* Don't start the schedule until PSS is 0 */
3622	fotg210_poll_PSS(fotg210);
3623	turn_on_io_watchdog(fotg210);
3624}
3625
3626static void disable_periodic(struct fotg210_hcd *fotg210)
3627{
3628	if (--fotg210->periodic_count)
3629		return;
3630
3631	/* Don't turn off the schedule until PSS is 1 */
3632	fotg210_poll_PSS(fotg210);
3633}
3634
3635/*-------------------------------------------------------------------------*/
3636
3637/* periodic schedule slots have iso tds (normal or split) first, then a
3638 * sparse tree for active interrupt transfers.
3639 *
3640 * this just links in a qh; caller guarantees uframe masks are set right.
3641 * no FSTN support (yet; fotg210 0.96+)
3642 */
3643static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3644{
3645	unsigned	i;
3646	unsigned	period = qh->period;
3647
3648	dev_dbg(&qh->dev->dev,
3649		"link qh%d-%04x/%p start %d [%d/%d us]\n",
3650		period, hc32_to_cpup(fotg210, &qh->hw->hw_info2)
3651			& (QH_CMASK | QH_SMASK),
3652		qh, qh->start, qh->usecs, qh->c_usecs);
3653
3654	/* high bandwidth, or otherwise every microframe */
3655	if (period == 0)
3656		period = 1;
3657
3658	for (i = qh->start; i < fotg210->periodic_size; i += period) {
3659		union fotg210_shadow	*prev = &fotg210->pshadow[i];
3660		__hc32			*hw_p = &fotg210->periodic[i];
3661		union fotg210_shadow	here = *prev;
3662		__hc32			type = 0;
3663
3664		/* skip the iso nodes at list head */
3665		while (here.ptr) {
3666			type = Q_NEXT_TYPE(fotg210, *hw_p);
3667			if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
3668				break;
3669			prev = periodic_next_shadow(fotg210, prev, type);
3670			hw_p = shadow_next_periodic(fotg210, &here, type);
3671			here = *prev;
3672		}
3673
3674		/* sorting each branch by period (slow-->fast)
3675		 * enables sharing interior tree nodes
3676		 */
3677		while (here.ptr && qh != here.qh) {
3678			if (qh->period > here.qh->period)
3679				break;
3680			prev = &here.qh->qh_next;
3681			hw_p = &here.qh->hw->hw_next;
3682			here = *prev;
3683		}
3684		/* link in this qh, unless some earlier pass did that */
3685		if (qh != here.qh) {
3686			qh->qh_next = here;
3687			if (here.qh)
3688				qh->hw->hw_next = *hw_p;
3689			wmb();
3690			prev->qh = qh;
3691			*hw_p = QH_NEXT(fotg210, qh->qh_dma);
3692		}
3693	}
3694	qh->qh_state = QH_STATE_LINKED;
3695	qh->xacterrs = 0;
3696
3697	/* update per-qh bandwidth for usbfs */
3698	fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period
3699		? ((qh->usecs + qh->c_usecs) / qh->period)
3700		: (qh->usecs * 8);
3701
3702	list_add(&qh->intr_node, &fotg210->intr_qh_list);
3703
3704	/* maybe enable periodic schedule processing */
3705	++fotg210->intr_count;
3706	enable_periodic(fotg210);
3707}
3708
3709static void qh_unlink_periodic(struct fotg210_hcd *fotg210,
3710			       struct fotg210_qh *qh)
3711{
3712	unsigned	i;
3713	unsigned	period;
3714
3715	/*
3716	 * If qh is for a low/full-speed device, simply unlinking it
3717	 * could interfere with an ongoing split transaction.  To unlink
3718	 * it safely would require setting the QH_INACTIVATE bit and
3719	 * waiting at least one frame, as described in EHCI 4.12.2.5.
3720	 *
3721	 * We won't bother with any of this.  Instead, we assume that the
3722	 * only reason for unlinking an interrupt QH while the current URB
3723	 * is still active is to dequeue all the URBs (flush the whole
3724	 * endpoint queue).
3725	 *
3726	 * If rebalancing the periodic schedule is ever implemented, this
3727	 * approach will no longer be valid.
3728	 */
3729
3730	/* high bandwidth, or otherwise part of every microframe */
3731	period = qh->period;
3732	if (!period)
3733		period = 1;
3734
3735	for (i = qh->start; i < fotg210->periodic_size; i += period)
3736		periodic_unlink(fotg210, i, qh);
3737
3738	/* update per-qh bandwidth for usbfs */
3739	fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period
3740		? ((qh->usecs + qh->c_usecs) / qh->period)
3741		: (qh->usecs * 8);
3742
3743	dev_dbg(&qh->dev->dev,
3744		"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
3745		qh->period,
3746		hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3747		(QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs, qh->c_usecs);
3748
3749	/* qh->qh_next still "live" to HC */
3750	qh->qh_state = QH_STATE_UNLINK;
3751	qh->qh_next.ptr = NULL;
3752
3753	if (fotg210->qh_scan_next == qh)
3754		fotg210->qh_scan_next = list_entry(qh->intr_node.next,
3755				struct fotg210_qh, intr_node);
3756	list_del(&qh->intr_node);
3757}
3758
3759static void start_unlink_intr(struct fotg210_hcd *fotg210,
3760			      struct fotg210_qh *qh)
3761{
3762	/* If the QH isn't linked then there's nothing we can do
3763	 * unless we were called during a giveback, in which case
3764	 * qh_completions() has to deal with it.
3765	 */
3766	if (qh->qh_state != QH_STATE_LINKED) {
3767		if (qh->qh_state == QH_STATE_COMPLETING)
3768			qh->needs_rescan = 1;
3769		return;
3770	}
3771
3772	qh_unlink_periodic(fotg210, qh);
3773
3774	/* Make sure the unlinks are visible before starting the timer */
3775	wmb();
3776
3777	/*
3778	 * The EHCI spec doesn't say how long it takes the controller to
3779	 * stop accessing an unlinked interrupt QH.  The timer delay is
3780	 * 9 uframes; presumably that will be long enough.
3781	 */
3782	qh->unlink_cycle = fotg210->intr_unlink_cycle;
3783
3784	/* New entries go at the end of the intr_unlink list */
3785	if (fotg210->intr_unlink)
3786		fotg210->intr_unlink_last->unlink_next = qh;
3787	else
3788		fotg210->intr_unlink = qh;
3789	fotg210->intr_unlink_last = qh;
3790
3791	if (fotg210->intr_unlinking)
3792		;	/* Avoid recursive calls */
3793	else if (fotg210->rh_state < FOTG210_RH_RUNNING)
3794		fotg210_handle_intr_unlinks(fotg210);
3795	else if (fotg210->intr_unlink == qh) {
3796		fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
3797				     true);
3798		++fotg210->intr_unlink_cycle;
3799	}
3800}
3801
3802static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3803{
3804	struct fotg210_qh_hw	*hw = qh->hw;
3805	int			rc;
3806
3807	qh->qh_state = QH_STATE_IDLE;
3808	hw->hw_next = FOTG210_LIST_END(fotg210);
3809
3810	qh_completions(fotg210, qh);
3811
3812	/* reschedule QH iff another request is queued */
3813	if (!list_empty(&qh->qtd_list) &&
3814	    fotg210->rh_state == FOTG210_RH_RUNNING) {
3815		rc = qh_schedule(fotg210, qh);
3816
3817		/* An error here likely indicates handshake failure
3818		 * or no space left in the schedule.  Neither fault
3819		 * should happen often ...
3820		 *
3821		 * FIXME kill the now-dysfunctional queued urbs
3822		 */
3823		if (rc != 0)
3824			fotg210_err(fotg210, "can't reschedule qh %p, err %d\n",
3825					qh, rc);
3826	}
3827
3828	/* maybe turn off periodic schedule */
3829	--fotg210->intr_count;
3830	disable_periodic(fotg210);
3831}
3832
3833/*-------------------------------------------------------------------------*/
3834
3835static int check_period(
3836	struct fotg210_hcd *fotg210,
3837	unsigned	frame,
3838	unsigned	uframe,
3839	unsigned	period,
3840	unsigned	usecs
3841) {
3842	int		claimed;
3843
3844	/* complete split running into next frame?
3845	 * given FSTN support, we could sometimes check...
3846	 */
3847	if (uframe >= 8)
3848		return 0;
3849
3850	/* convert "usecs we need" to "max already claimed" */
3851	usecs = fotg210->uframe_periodic_max - usecs;
3852
3853	/* we "know" 2 and 4 uframe intervals were rejected; so
3854	 * for period 0, check _every_ microframe in the schedule.
3855	 */
3856	if (unlikely(period == 0)) {
3857		do {
3858			for (uframe = 0; uframe < 7; uframe++) {
3859				claimed = periodic_usecs(fotg210, frame,
3860							 uframe);
3861				if (claimed > usecs)
3862					return 0;
3863			}
3864		} while ((frame += 1) < fotg210->periodic_size);
3865
3866	/* just check the specified uframe, at that period */
3867	} else {
3868		do {
3869			claimed = periodic_usecs(fotg210, frame, uframe);
3870			if (claimed > usecs)
3871				return 0;
3872		} while ((frame += period) < fotg210->periodic_size);
3873	}
3874
3875	/* success! */
3876	return 1;
3877}
3878
3879static int check_intr_schedule(
3880	struct fotg210_hcd		*fotg210,
3881	unsigned		frame,
3882	unsigned		uframe,
3883	const struct fotg210_qh	*qh,
3884	__hc32			*c_maskp
3885)
3886{
3887	int		retval = -ENOSPC;
3888	u8		mask = 0;
3889
3890	if (qh->c_usecs && uframe >= 6)		/* FSTN territory? */
3891		goto done;
3892
3893	if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs))
3894		goto done;
3895	if (!qh->c_usecs) {
3896		retval = 0;
3897		*c_maskp = 0;
3898		goto done;
3899	}
3900
3901	/* Make sure this tt's buffer is also available for CSPLITs.
3902	 * We pessimize a bit; probably the typical full speed case
3903	 * doesn't need the second CSPLIT.
3904	 *
3905	 * NOTE:  both SPLIT and CSPLIT could be checked in just
3906	 * one smart pass...
3907	 */
3908	mask = 0x03 << (uframe + qh->gap_uf);
3909	*c_maskp = cpu_to_hc32(fotg210, mask << 8);
3910
3911	mask |= 1 << uframe;
3912	if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) {
3913		if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1,
3914					qh->period, qh->c_usecs))
3915			goto done;
3916		if (!check_period(fotg210, frame, uframe + qh->gap_uf,
3917					qh->period, qh->c_usecs))
3918			goto done;
3919		retval = 0;
3920	}
3921done:
3922	return retval;
3923}
3924
3925/* "first fit" scheduling policy used the first time through,
3926 * or when the previous schedule slot can't be re-used.
3927 */
3928static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3929{
3930	int		status;
3931	unsigned	uframe;
3932	__hc32		c_mask;
3933	unsigned	frame;		/* 0..(qh->period - 1), or NO_FRAME */
3934	struct fotg210_qh_hw	*hw = qh->hw;
3935
3936	qh_refresh(fotg210, qh);
3937	hw->hw_next = FOTG210_LIST_END(fotg210);
3938	frame = qh->start;
3939
3940	/* reuse the previous schedule slots, if we can */
3941	if (frame < qh->period) {
3942		uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK);
3943		status = check_intr_schedule(fotg210, frame, --uframe,
3944				qh, &c_mask);
3945	} else {
3946		uframe = 0;
3947		c_mask = 0;
3948		status = -ENOSPC;
3949	}
3950
3951	/* else scan the schedule to find a group of slots such that all
3952	 * uframes have enough periodic bandwidth available.
3953	 */
3954	if (status) {
3955		/* "normal" case, uframing flexible except with splits */
3956		if (qh->period) {
3957			int		i;
3958
3959			for (i = qh->period; status && i > 0; --i) {
3960				frame = ++fotg210->random_frame % qh->period;
3961				for (uframe = 0; uframe < 8; uframe++) {
3962					status = check_intr_schedule(fotg210,
3963							frame, uframe, qh,
3964							&c_mask);
3965					if (status == 0)
3966						break;
3967				}
3968			}
3969
3970		/* qh->period == 0 means every uframe */
3971		} else {
3972			frame = 0;
3973			status = check_intr_schedule(fotg210, 0, 0, qh,
3974						     &c_mask);
3975		}
3976		if (status)
3977			goto done;
3978		qh->start = frame;
3979
3980		/* reset S-frame and (maybe) C-frame masks */
3981		hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK));
3982		hw->hw_info2 |= qh->period
3983			? cpu_to_hc32(fotg210, 1 << uframe)
3984			: cpu_to_hc32(fotg210, QH_SMASK);
3985		hw->hw_info2 |= c_mask;
3986	} else
3987		fotg210_dbg(fotg210, "reused qh %p schedule\n", qh);
3988
3989	/* stuff into the periodic schedule */
3990	qh_link_periodic(fotg210, qh);
3991done:
3992	return status;
3993}
3994
3995static int intr_submit(
3996	struct fotg210_hcd		*fotg210,
3997	struct urb		*urb,
3998	struct list_head	*qtd_list,
3999	gfp_t			mem_flags
4000) {
4001	unsigned		epnum;
4002	unsigned long		flags;
4003	struct fotg210_qh		*qh;
4004	int			status;
4005	struct list_head	empty;
4006
4007	/* get endpoint and transfer/schedule data */
4008	epnum = urb->ep->desc.bEndpointAddress;
4009
4010	spin_lock_irqsave(&fotg210->lock, flags);
4011
4012	if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
4013		status = -ESHUTDOWN;
4014		goto done_not_linked;
4015	}
4016	status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
4017	if (unlikely(status))
4018		goto done_not_linked;
4019
4020	/* get qh and force any scheduling errors */
4021	INIT_LIST_HEAD(&empty);
4022	qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv);
4023	if (qh == NULL) {
4024		status = -ENOMEM;
4025		goto done;
4026	}
4027	if (qh->qh_state == QH_STATE_IDLE) {
4028		status = qh_schedule(fotg210, qh);
4029		if (status)
4030			goto done;
4031	}
4032
4033	/* then queue the urb's tds to the qh */
4034	qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
4035	BUG_ON(qh == NULL);
4036
4037	/* ... update usbfs periodic stats */
4038	fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++;
4039
4040done:
4041	if (unlikely(status))
4042		usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
4043done_not_linked:
4044	spin_unlock_irqrestore(&fotg210->lock, flags);
4045	if (status)
4046		qtd_list_free(fotg210, urb, qtd_list);
4047
4048	return status;
4049}
4050
4051static void scan_intr(struct fotg210_hcd *fotg210)
4052{
4053	struct fotg210_qh		*qh;
4054
4055	list_for_each_entry_safe(qh, fotg210->qh_scan_next,
4056				 &fotg210->intr_qh_list, intr_node) {
4057 rescan:
4058		/* clean any finished work for this qh */
4059		if (!list_empty(&qh->qtd_list)) {
4060			int temp;
4061
4062			/*
4063			 * Unlinks could happen here; completion reporting
4064			 * drops the lock.  That's why fotg210->qh_scan_next
4065			 * always holds the next qh to scan; if the next qh
4066			 * gets unlinked then fotg210->qh_scan_next is adjusted
4067			 * in qh_unlink_periodic().
4068			 */
4069			temp = qh_completions(fotg210, qh);
4070			if (unlikely(qh->needs_rescan ||
4071					(list_empty(&qh->qtd_list) &&
4072					 qh->qh_state == QH_STATE_LINKED)))
4073				start_unlink_intr(fotg210, qh);
4074			else if (temp != 0)
4075				goto rescan;
4076		}
4077	}
4078}
4079
4080/*-------------------------------------------------------------------------*/
4081
4082/* fotg210_iso_stream ops work with both ITD and SITD */
4083
4084static struct fotg210_iso_stream *
4085iso_stream_alloc(gfp_t mem_flags)
4086{
4087	struct fotg210_iso_stream *stream;
4088
4089	stream = kzalloc(sizeof(*stream), mem_flags);
4090	if (likely(stream != NULL)) {
4091		INIT_LIST_HEAD(&stream->td_list);
4092		INIT_LIST_HEAD(&stream->free_list);
4093		stream->next_uframe = -1;
4094	}
4095	return stream;
4096}
4097
4098static void
4099iso_stream_init(
4100	struct fotg210_hcd		*fotg210,
4101	struct fotg210_iso_stream	*stream,
4102	struct usb_device	*dev,
4103	int			pipe,
4104	unsigned		interval
4105)
4106{
4107	u32			buf1;
4108	unsigned		epnum, maxp;
4109	int			is_input;
4110	long			bandwidth;
4111	unsigned		multi;
4112
4113	/*
4114	 * this might be a "high bandwidth" highspeed endpoint,
4115	 * as encoded in the ep descriptor's wMaxPacket field
4116	 */
4117	epnum = usb_pipeendpoint(pipe);
4118	is_input = usb_pipein(pipe) ? USB_DIR_IN : 0;
4119	maxp = usb_maxpacket(dev, pipe, !is_input);
4120	if (is_input)
4121		buf1 = (1 << 11);
4122	else
4123		buf1 = 0;
4124
4125	maxp = max_packet(maxp);
4126	multi = hb_mult(maxp);
4127	buf1 |= maxp;
4128	maxp *= multi;
4129
4130	stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum);
4131	stream->buf1 = cpu_to_hc32(fotg210, buf1);
4132	stream->buf2 = cpu_to_hc32(fotg210, multi);
4133
4134	/* usbfs wants to report the average usecs per frame tied up
4135	 * when transfers on this endpoint are scheduled ...
4136	 */
4137	if (dev->speed == USB_SPEED_FULL) {
4138		interval <<= 3;
4139		stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed,
4140				is_input, 1, maxp));
4141		stream->usecs /= 8;
4142	} else {
4143		stream->highspeed = 1;
4144		stream->usecs = HS_USECS_ISO(maxp);
4145	}
4146	bandwidth = stream->usecs * 8;
4147	bandwidth /= interval;
4148
4149	stream->bandwidth = bandwidth;
4150	stream->udev = dev;
4151	stream->bEndpointAddress = is_input | epnum;
4152	stream->interval = interval;
4153	stream->maxp = maxp;
4154}
4155
4156static struct fotg210_iso_stream *
4157iso_stream_find(struct fotg210_hcd *fotg210, struct urb *urb)
4158{
4159	unsigned		epnum;
4160	struct fotg210_iso_stream	*stream;
4161	struct usb_host_endpoint *ep;
4162	unsigned long		flags;
4163
4164	epnum = usb_pipeendpoint(urb->pipe);
4165	if (usb_pipein(urb->pipe))
4166		ep = urb->dev->ep_in[epnum];
4167	else
4168		ep = urb->dev->ep_out[epnum];
4169
4170	spin_lock_irqsave(&fotg210->lock, flags);
4171	stream = ep->hcpriv;
4172
4173	if (unlikely(stream == NULL)) {
4174		stream = iso_stream_alloc(GFP_ATOMIC);
4175		if (likely(stream != NULL)) {
4176			ep->hcpriv = stream;
4177			stream->ep = ep;
4178			iso_stream_init(fotg210, stream, urb->dev, urb->pipe,
4179					urb->interval);
4180		}
4181
4182	/* if dev->ep[epnum] is a QH, hw is set */
4183	} else if (unlikely(stream->hw != NULL)) {
4184		fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n",
4185			urb->dev->devpath, epnum,
4186			usb_pipein(urb->pipe) ? "in" : "out");
4187		stream = NULL;
4188	}
4189
4190	spin_unlock_irqrestore(&fotg210->lock, flags);
4191	return stream;
4192}
4193
4194/*-------------------------------------------------------------------------*/
4195
4196/* fotg210_iso_sched ops can be ITD-only or SITD-only */
4197
4198static struct fotg210_iso_sched *
4199iso_sched_alloc(unsigned packets, gfp_t mem_flags)
4200{
4201	struct fotg210_iso_sched	*iso_sched;
4202	int			size = sizeof(*iso_sched);
4203
4204	size += packets * sizeof(struct fotg210_iso_packet);
4205	iso_sched = kzalloc(size, mem_flags);
4206	if (likely(iso_sched != NULL))
4207		INIT_LIST_HEAD(&iso_sched->td_list);
4208
4209	return iso_sched;
4210}
4211
4212static inline void
4213itd_sched_init(
4214	struct fotg210_hcd		*fotg210,
4215	struct fotg210_iso_sched	*iso_sched,
4216	struct fotg210_iso_stream	*stream,
4217	struct urb		*urb
4218)
4219{
4220	unsigned	i;
4221	dma_addr_t	dma = urb->transfer_dma;
4222
4223	/* how many uframes are needed for these transfers */
4224	iso_sched->span = urb->number_of_packets * stream->interval;
4225
4226	/* figure out per-uframe itd fields that we'll need later
4227	 * when we fit new itds into the schedule.
4228	 */
4229	for (i = 0; i < urb->number_of_packets; i++) {
4230		struct fotg210_iso_packet	*uframe = &iso_sched->packet[i];
4231		unsigned		length;
4232		dma_addr_t		buf;
4233		u32			trans;
4234
4235		length = urb->iso_frame_desc[i].length;
4236		buf = dma + urb->iso_frame_desc[i].offset;
4237
4238		trans = FOTG210_ISOC_ACTIVE;
4239		trans |= buf & 0x0fff;
4240		if (unlikely(((i + 1) == urb->number_of_packets))
4241				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
4242			trans |= FOTG210_ITD_IOC;
4243		trans |= length << 16;
4244		uframe->transaction = cpu_to_hc32(fotg210, trans);
4245
4246		/* might need to cross a buffer page within a uframe */
4247		uframe->bufp = (buf & ~(u64)0x0fff);
4248		buf += length;
4249		if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
4250			uframe->cross = 1;
4251	}
4252}
4253
4254static void
4255iso_sched_free(
4256	struct fotg210_iso_stream	*stream,
4257	struct fotg210_iso_sched	*iso_sched
4258)
4259{
4260	if (!iso_sched)
4261		return;
4262	/* caller must hold fotg210->lock!*/
4263	list_splice(&iso_sched->td_list, &stream->free_list);
4264	kfree(iso_sched);
4265}
4266
4267static int
4268itd_urb_transaction(
4269	struct fotg210_iso_stream	*stream,
4270	struct fotg210_hcd		*fotg210,
4271	struct urb		*urb,
4272	gfp_t			mem_flags
4273)
4274{
4275	struct fotg210_itd		*itd;
4276	dma_addr_t		itd_dma;
4277	int			i;
4278	unsigned		num_itds;
4279	struct fotg210_iso_sched	*sched;
4280	unsigned long		flags;
4281
4282	sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
4283	if (unlikely(sched == NULL))
4284		return -ENOMEM;
4285
4286	itd_sched_init(fotg210, sched, stream, urb);
4287
4288	if (urb->interval < 8)
4289		num_itds = 1 + (sched->span + 7) / 8;
4290	else
4291		num_itds = urb->number_of_packets;
4292
4293	/* allocate/init ITDs */
4294	spin_lock_irqsave(&fotg210->lock, flags);
4295	for (i = 0; i < num_itds; i++) {
4296
4297		/*
4298		 * Use iTDs from the free list, but not iTDs that may
4299		 * still be in use by the hardware.
4300		 */
4301		if (likely(!list_empty(&stream->free_list))) {
4302			itd = list_first_entry(&stream->free_list,
4303					struct fotg210_itd, itd_list);
4304			if (itd->frame == fotg210->now_frame)
4305				goto alloc_itd;
4306			list_del(&itd->itd_list);
4307			itd_dma = itd->itd_dma;
4308		} else {
4309 alloc_itd:
4310			spin_unlock_irqrestore(&fotg210->lock, flags);
4311			itd = dma_pool_alloc(fotg210->itd_pool, mem_flags,
4312					&itd_dma);
4313			spin_lock_irqsave(&fotg210->lock, flags);
4314			if (!itd) {
4315				iso_sched_free(stream, sched);
4316				spin_unlock_irqrestore(&fotg210->lock, flags);
4317				return -ENOMEM;
4318			}
4319		}
4320
4321		memset(itd, 0, sizeof(*itd));
4322		itd->itd_dma = itd_dma;
4323		list_add(&itd->itd_list, &sched->td_list);
4324	}
4325	spin_unlock_irqrestore(&fotg210->lock, flags);
4326
4327	/* temporarily store schedule info in hcpriv */
4328	urb->hcpriv = sched;
4329	urb->error_count = 0;
4330	return 0;
4331}
4332
4333/*-------------------------------------------------------------------------*/
4334
4335static inline int
4336itd_slot_ok(
4337	struct fotg210_hcd		*fotg210,
4338	u32			mod,
4339	u32			uframe,
4340	u8			usecs,
4341	u32			period
4342)
4343{
4344	uframe %= period;
4345	do {
4346		/* can't commit more than uframe_periodic_max usec */
4347		if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7)
4348				> (fotg210->uframe_periodic_max - usecs))
4349			return 0;
4350
4351		/* we know urb->interval is 2^N uframes */
4352		uframe += period;
4353	} while (uframe < mod);
4354	return 1;
4355}
4356
4357/*
4358 * This scheduler plans almost as far into the future as it has actual
4359 * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to
4360 * "as small as possible" to be cache-friendlier.)  That limits the size
4361 * transfers you can stream reliably; avoid more than 64 msec per urb.
4362 * Also avoid queue depths of less than fotg210's worst irq latency (affected
4363 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
4364 * and other factors); or more than about 230 msec total (for portability,
4365 * given FOTG210_TUNE_FLS and the slop).  Or, write a smarter scheduler!
4366 */
4367
4368#define SCHEDULE_SLOP	80	/* microframes */
4369
4370static int
4371iso_stream_schedule(
4372	struct fotg210_hcd		*fotg210,
4373	struct urb		*urb,
4374	struct fotg210_iso_stream	*stream
4375)
4376{
4377	u32			now, next, start, period, span;
4378	int			status;
4379	unsigned		mod = fotg210->periodic_size << 3;
4380	struct fotg210_iso_sched	*sched = urb->hcpriv;
4381
4382	period = urb->interval;
4383	span = sched->span;
4384
4385	if (span > mod - SCHEDULE_SLOP) {
4386		fotg210_dbg(fotg210, "iso request %p too long\n", urb);
4387		status = -EFBIG;
4388		goto fail;
4389	}
4390
4391	now = fotg210_read_frame_index(fotg210) & (mod - 1);
4392
4393	/* Typical case: reuse current schedule, stream is still active.
4394	 * Hopefully there are no gaps from the host falling behind
4395	 * (irq delays etc), but if there are we'll take the next
4396	 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
4397	 */
4398	if (likely(!list_empty(&stream->td_list))) {
4399		u32	excess;
4400
4401		/* For high speed devices, allow scheduling within the
4402		 * isochronous scheduling threshold.  For full speed devices
4403		 * and Intel PCI-based controllers, don't (work around for
4404		 * Intel ICH9 bug).
4405		 */
4406		if (!stream->highspeed && fotg210->fs_i_thresh)
4407			next = now + fotg210->i_thresh;
4408		else
4409			next = now;
4410
4411		/* Fell behind (by up to twice the slop amount)?
4412		 * We decide based on the time of the last currently-scheduled
4413		 * slot, not the time of the next available slot.
4414		 */
4415		excess = (stream->next_uframe - period - next) & (mod - 1);
4416		if (excess >= mod - 2 * SCHEDULE_SLOP)
4417			start = next + excess - mod + period *
4418					DIV_ROUND_UP(mod - excess, period);
4419		else
4420			start = next + excess + period;
4421		if (start - now >= mod) {
4422			fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4423					urb, start - now - period, period,
4424					mod);
4425			status = -EFBIG;
4426			goto fail;
4427		}
4428	}
4429
4430	/* need to schedule; when's the next (u)frame we could start?
4431	 * this is bigger than fotg210->i_thresh allows; scheduling itself
4432	 * isn't free, the slop should handle reasonably slow cpus.  it
4433	 * can also help high bandwidth if the dma and irq loads don't
4434	 * jump until after the queue is primed.
4435	 */
4436	else {
4437		int done = 0;
4438		start = SCHEDULE_SLOP + (now & ~0x07);
4439
4440		/* NOTE:  assumes URB_ISO_ASAP, to limit complexity/bugs */
4441
4442		/* find a uframe slot with enough bandwidth.
4443		 * Early uframes are more precious because full-speed
4444		 * iso IN transfers can't use late uframes,
4445		 * and therefore they should be allocated last.
4446		 */
4447		next = start;
4448		start += period;
4449		do {
4450			start--;
4451			/* check schedule: enough space? */
4452			if (itd_slot_ok(fotg210, mod, start,
4453					stream->usecs, period))
4454				done = 1;
4455		} while (start > next && !done);
4456
4457		/* no room in the schedule */
4458		if (!done) {
4459			fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n",
4460				urb, now, now + mod);
4461			status = -ENOSPC;
4462			goto fail;
4463		}
4464	}
4465
4466	/* Tried to schedule too far into the future? */
4467	if (unlikely(start - now + span - period
4468				>= mod - 2 * SCHEDULE_SLOP)) {
4469		fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4470				urb, start - now, span - period,
4471				mod - 2 * SCHEDULE_SLOP);
4472		status = -EFBIG;
4473		goto fail;
4474	}
4475
4476	stream->next_uframe = start & (mod - 1);
4477
4478	/* report high speed start in uframes; full speed, in frames */
4479	urb->start_frame = stream->next_uframe;
4480	if (!stream->highspeed)
4481		urb->start_frame >>= 3;
4482
4483	/* Make sure scan_isoc() sees these */
4484	if (fotg210->isoc_count == 0)
4485		fotg210->next_frame = now >> 3;
4486	return 0;
4487
4488 fail:
4489	iso_sched_free(stream, sched);
4490	urb->hcpriv = NULL;
4491	return status;
4492}
4493
4494/*-------------------------------------------------------------------------*/
4495
4496static inline void
4497itd_init(struct fotg210_hcd *fotg210, struct fotg210_iso_stream *stream,
4498		struct fotg210_itd *itd)
4499{
4500	int i;
4501
4502	/* it's been recently zeroed */
4503	itd->hw_next = FOTG210_LIST_END(fotg210);
4504	itd->hw_bufp[0] = stream->buf0;
4505	itd->hw_bufp[1] = stream->buf1;
4506	itd->hw_bufp[2] = stream->buf2;
4507
4508	for (i = 0; i < 8; i++)
4509		itd->index[i] = -1;
4510
4511	/* All other fields are filled when scheduling */
4512}
4513
4514static inline void
4515itd_patch(
4516	struct fotg210_hcd		*fotg210,
4517	struct fotg210_itd		*itd,
4518	struct fotg210_iso_sched	*iso_sched,
4519	unsigned		index,
4520	u16			uframe
4521)
4522{
4523	struct fotg210_iso_packet	*uf = &iso_sched->packet[index];
4524	unsigned		pg = itd->pg;
4525
4526	uframe &= 0x07;
4527	itd->index[uframe] = index;
4528
4529	itd->hw_transaction[uframe] = uf->transaction;
4530	itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12);
4531	itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0);
4532	itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32));
4533
4534	/* iso_frame_desc[].offset must be strictly increasing */
4535	if (unlikely(uf->cross)) {
4536		u64	bufp = uf->bufp + 4096;
4537
4538		itd->pg = ++pg;
4539		itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0);
4540		itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32));
4541	}
4542}
4543
4544static inline void
4545itd_link(struct fotg210_hcd *fotg210, unsigned frame, struct fotg210_itd *itd)
4546{
4547	union fotg210_shadow	*prev = &fotg210->pshadow[frame];
4548	__hc32			*hw_p = &fotg210->periodic[frame];
4549	union fotg210_shadow	here = *prev;
4550	__hc32			type = 0;
4551
4552	/* skip any iso nodes which might belong to previous microframes */
4553	while (here.ptr) {
4554		type = Q_NEXT_TYPE(fotg210, *hw_p);
4555		if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
4556			break;
4557		prev = periodic_next_shadow(fotg210, prev, type);
4558		hw_p = shadow_next_periodic(fotg210, &here, type);
4559		here = *prev;
4560	}
4561
4562	itd->itd_next = here;
4563	itd->hw_next = *hw_p;
4564	prev->itd = itd;
4565	itd->frame = frame;
4566	wmb();
4567	*hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD);
4568}
4569
4570/* fit urb's itds into the selected schedule slot; activate as needed */
4571static void itd_link_urb(
4572	struct fotg210_hcd		*fotg210,
4573	struct urb		*urb,
4574	unsigned		mod,
4575	struct fotg210_iso_stream	*stream
4576)
4577{
4578	int			packet;
4579	unsigned		next_uframe, uframe, frame;
4580	struct fotg210_iso_sched	*iso_sched = urb->hcpriv;
4581	struct fotg210_itd		*itd;
4582
4583	next_uframe = stream->next_uframe & (mod - 1);
4584
4585	if (unlikely(list_empty(&stream->td_list))) {
4586		fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4587				+= stream->bandwidth;
4588		fotg210_dbg(fotg210,
4589			"schedule devp %s ep%d%s-iso period %d start %d.%d\n",
4590			urb->dev->devpath, stream->bEndpointAddress & 0x0f,
4591			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
4592			urb->interval,
4593			next_uframe >> 3, next_uframe & 0x7);
4594	}
4595
4596	/* fill iTDs uframe by uframe */
4597	for (packet = 0, itd = NULL; packet < urb->number_of_packets;) {
4598		if (itd == NULL) {
4599			/* ASSERT:  we have all necessary itds */
4600
4601			/* ASSERT:  no itds for this endpoint in this uframe */
4602
4603			itd = list_entry(iso_sched->td_list.next,
4604					struct fotg210_itd, itd_list);
4605			list_move_tail(&itd->itd_list, &stream->td_list);
4606			itd->stream = stream;
4607			itd->urb = urb;
4608			itd_init(fotg210, stream, itd);
4609		}
4610
4611		uframe = next_uframe & 0x07;
4612		frame = next_uframe >> 3;
4613
4614		itd_patch(fotg210, itd, iso_sched, packet, uframe);
4615
4616		next_uframe += stream->interval;
4617		next_uframe &= mod - 1;
4618		packet++;
4619
4620		/* link completed itds into the schedule */
4621		if (((next_uframe >> 3) != frame)
4622				|| packet == urb->number_of_packets) {
4623			itd_link(fotg210, frame & (fotg210->periodic_size - 1),
4624				 itd);
4625			itd = NULL;
4626		}
4627	}
4628	stream->next_uframe = next_uframe;
4629
4630	/* don't need that schedule data any more */
4631	iso_sched_free(stream, iso_sched);
4632	urb->hcpriv = NULL;
4633
4634	++fotg210->isoc_count;
4635	enable_periodic(fotg210);
4636}
4637
4638#define	ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
4639		  FOTG210_ISOC_XACTERR)
4640
4641/* Process and recycle a completed ITD.  Return true iff its urb completed,
4642 * and hence its completion callback probably added things to the hardware
4643 * schedule.
4644 *
4645 * Note that we carefully avoid recycling this descriptor until after any
4646 * completion callback runs, so that it won't be reused quickly.  That is,
4647 * assuming (a) no more than two urbs per frame on this endpoint, and also
4648 * (b) only this endpoint's completions submit URBs.  It seems some silicon
4649 * corrupts things if you reuse completed descriptors very quickly...
4650 */
4651static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
4652{
4653	struct urb				*urb = itd->urb;
4654	struct usb_iso_packet_descriptor	*desc;
4655	u32					t;
4656	unsigned				uframe;
4657	int					urb_index = -1;
4658	struct fotg210_iso_stream			*stream = itd->stream;
4659	struct usb_device			*dev;
4660	bool					retval = false;
4661
4662	/* for each uframe with a packet */
4663	for (uframe = 0; uframe < 8; uframe++) {
4664		if (likely(itd->index[uframe] == -1))
4665			continue;
4666		urb_index = itd->index[uframe];
4667		desc = &urb->iso_frame_desc[urb_index];
4668
4669		t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]);
4670		itd->hw_transaction[uframe] = 0;
4671
4672		/* report transfer status */
4673		if (unlikely(t & ISO_ERRS)) {
4674			urb->error_count++;
4675			if (t & FOTG210_ISOC_BUF_ERR)
4676				desc->status = usb_pipein(urb->pipe)
4677					? -ENOSR  /* hc couldn't read */
4678					: -ECOMM; /* hc couldn't write */
4679			else if (t & FOTG210_ISOC_BABBLE)
4680				desc->status = -EOVERFLOW;
4681			else /* (t & FOTG210_ISOC_XACTERR) */
4682				desc->status = -EPROTO;
4683
4684			/* HC need not update length with this error */
4685			if (!(t & FOTG210_ISOC_BABBLE)) {
4686				desc->actual_length =
4687					fotg210_itdlen(urb, desc, t);
4688				urb->actual_length += desc->actual_length;
4689			}
4690		} else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) {
4691			desc->status = 0;
4692			desc->actual_length = fotg210_itdlen(urb, desc, t);
4693			urb->actual_length += desc->actual_length;
4694		} else {
4695			/* URB was too late */
4696			desc->status = -EXDEV;
4697		}
4698	}
4699
4700	/* handle completion now? */
4701	if (likely((urb_index + 1) != urb->number_of_packets))
4702		goto done;
4703
4704	/* ASSERT: it's really the last itd for this urb
4705	list_for_each_entry (itd, &stream->td_list, itd_list)
4706		BUG_ON (itd->urb == urb);
4707	 */
4708
4709	/* give urb back to the driver; completion often (re)submits */
4710	dev = urb->dev;
4711	fotg210_urb_done(fotg210, urb, 0);
4712	retval = true;
4713	urb = NULL;
4714
4715	--fotg210->isoc_count;
4716	disable_periodic(fotg210);
4717
4718	if (unlikely(list_is_singular(&stream->td_list))) {
4719		fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4720				-= stream->bandwidth;
4721		fotg210_dbg(fotg210,
4722			"deschedule devp %s ep%d%s-iso\n",
4723			dev->devpath, stream->bEndpointAddress & 0x0f,
4724			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
4725	}
4726
4727done:
4728	itd->urb = NULL;
4729
4730	/* Add to the end of the free list for later reuse */
4731	list_move_tail(&itd->itd_list, &stream->free_list);
4732
4733	/* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
4734	if (list_empty(&stream->td_list)) {
4735		list_splice_tail_init(&stream->free_list,
4736				&fotg210->cached_itd_list);
4737		start_free_itds(fotg210);
4738	}
4739
4740	return retval;
4741}
4742
4743/*-------------------------------------------------------------------------*/
4744
4745static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb,
4746	gfp_t mem_flags)
4747{
4748	int			status = -EINVAL;
4749	unsigned long		flags;
4750	struct fotg210_iso_stream	*stream;
4751
4752	/* Get iso_stream head */
4753	stream = iso_stream_find(fotg210, urb);
4754	if (unlikely(stream == NULL)) {
4755		fotg210_dbg(fotg210, "can't get iso stream\n");
4756		return -ENOMEM;
4757	}
4758	if (unlikely(urb->interval != stream->interval &&
4759		      fotg210_port_speed(fotg210, 0) ==
4760				USB_PORT_STAT_HIGH_SPEED)) {
4761			fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n",
4762				stream->interval, urb->interval);
4763			goto done;
4764	}
4765
4766#ifdef FOTG210_URB_TRACE
4767	fotg210_dbg(fotg210,
4768		"%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
4769		__func__, urb->dev->devpath, urb,
4770		usb_pipeendpoint(urb->pipe),
4771		usb_pipein(urb->pipe) ? "in" : "out",
4772		urb->transfer_buffer_length,
4773		urb->number_of_packets, urb->interval,
4774		stream);
4775#endif
4776
4777	/* allocate ITDs w/o locking anything */
4778	status = itd_urb_transaction(stream, fotg210, urb, mem_flags);
4779	if (unlikely(status < 0)) {
4780		fotg210_dbg(fotg210, "can't init itds\n");
4781		goto done;
4782	}
4783
4784	/* schedule ... need to lock */
4785	spin_lock_irqsave(&fotg210->lock, flags);
4786	if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
4787		status = -ESHUTDOWN;
4788		goto done_not_linked;
4789	}
4790	status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
4791	if (unlikely(status))
4792		goto done_not_linked;
4793	status = iso_stream_schedule(fotg210, urb, stream);
4794	if (likely(status == 0))
4795		itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream);
4796	else
4797		usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
4798 done_not_linked:
4799	spin_unlock_irqrestore(&fotg210->lock, flags);
4800 done:
4801	return status;
4802}
4803
4804/*-------------------------------------------------------------------------*/
4805
4806static void scan_isoc(struct fotg210_hcd *fotg210)
4807{
4808	unsigned	uf, now_frame, frame;
4809	unsigned	fmask = fotg210->periodic_size - 1;
4810	bool		modified, live;
4811
4812	/*
4813	 * When running, scan from last scan point up to "now"
4814	 * else clean up by scanning everything that's left.
4815	 * Touches as few pages as possible:  cache-friendly.
4816	 */
4817	if (fotg210->rh_state >= FOTG210_RH_RUNNING) {
4818		uf = fotg210_read_frame_index(fotg210);
4819		now_frame = (uf >> 3) & fmask;
4820		live = true;
4821	} else  {
4822		now_frame = (fotg210->next_frame - 1) & fmask;
4823		live = false;
4824	}
4825	fotg210->now_frame = now_frame;
4826
4827	frame = fotg210->next_frame;
4828	for (;;) {
4829		union fotg210_shadow	q, *q_p;
4830		__hc32			type, *hw_p;
4831
4832restart:
4833		/* scan each element in frame's queue for completions */
4834		q_p = &fotg210->pshadow[frame];
4835		hw_p = &fotg210->periodic[frame];
4836		q.ptr = q_p->ptr;
4837		type = Q_NEXT_TYPE(fotg210, *hw_p);
4838		modified = false;
4839
4840		while (q.ptr != NULL) {
4841			switch (hc32_to_cpu(fotg210, type)) {
4842			case Q_TYPE_ITD:
4843				/* If this ITD is still active, leave it for
4844				 * later processing ... check the next entry.
4845				 * No need to check for activity unless the
4846				 * frame is current.
4847				 */
4848				if (frame == now_frame && live) {
4849					rmb();
4850					for (uf = 0; uf < 8; uf++) {
4851						if (q.itd->hw_transaction[uf] &
4852							    ITD_ACTIVE(fotg210))
4853							break;
4854					}
4855					if (uf < 8) {
4856						q_p = &q.itd->itd_next;
4857						hw_p = &q.itd->hw_next;
4858						type = Q_NEXT_TYPE(fotg210,
4859							q.itd->hw_next);
4860						q = *q_p;
4861						break;
4862					}
4863				}
4864
4865				/* Take finished ITDs out of the schedule
4866				 * and process them:  recycle, maybe report
4867				 * URB completion.  HC won't cache the
4868				 * pointer for much longer, if at all.
4869				 */
4870				*q_p = q.itd->itd_next;
4871				*hw_p = q.itd->hw_next;
4872				type = Q_NEXT_TYPE(fotg210, q.itd->hw_next);
4873				wmb();
4874				modified = itd_complete(fotg210, q.itd);
4875				q = *q_p;
4876				break;
4877			default:
4878				fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n",
4879					type, frame, q.ptr);
4880				/* FALL THROUGH */
4881			case Q_TYPE_QH:
4882			case Q_TYPE_FSTN:
4883				/* End of the iTDs and siTDs */
4884				q.ptr = NULL;
4885				break;
4886			}
4887
4888			/* assume completion callbacks modify the queue */
4889			if (unlikely(modified && fotg210->isoc_count > 0))
4890				goto restart;
4891		}
4892
4893		/* Stop when we have reached the current frame */
4894		if (frame == now_frame)
4895			break;
4896		frame = (frame + 1) & fmask;
4897	}
4898	fotg210->next_frame = now_frame;
4899}
4900/*-------------------------------------------------------------------------*/
4901/*
4902 * Display / Set uframe_periodic_max
4903 */
4904static ssize_t show_uframe_periodic_max(struct device *dev,
4905					struct device_attribute *attr,
4906					char *buf)
4907{
4908	struct fotg210_hcd		*fotg210;
4909	int			n;
4910
4911	fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4912	n = scnprintf(buf, PAGE_SIZE, "%d\n", fotg210->uframe_periodic_max);
4913	return n;
4914}
4915
4916
4917static ssize_t store_uframe_periodic_max(struct device *dev,
4918					struct device_attribute *attr,
4919					const char *buf, size_t count)
4920{
4921	struct fotg210_hcd	*fotg210;
4922	unsigned		uframe_periodic_max;
4923	unsigned		frame, uframe;
4924	unsigned short		allocated_max;
4925	unsigned long		flags;
4926	ssize_t			ret;
4927
4928	fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4929	if (kstrtouint(buf, 0, &uframe_periodic_max) < 0)
4930		return -EINVAL;
4931
4932	if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) {
4933		fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n",
4934			     uframe_periodic_max);
4935		return -EINVAL;
4936	}
4937
4938	ret = -EINVAL;
4939
4940	/*
4941	 * lock, so that our checking does not race with possible periodic
4942	 * bandwidth allocation through submitting new urbs.
4943	 */
4944	spin_lock_irqsave(&fotg210->lock, flags);
4945
4946	/*
4947	 * for request to decrease max periodic bandwidth, we have to check
4948	 * every microframe in the schedule to see whether the decrease is
4949	 * possible.
4950	 */
4951	if (uframe_periodic_max < fotg210->uframe_periodic_max) {
4952		allocated_max = 0;
4953
4954		for (frame = 0; frame < fotg210->periodic_size; ++frame)
4955			for (uframe = 0; uframe < 7; ++uframe)
4956				allocated_max = max(allocated_max,
4957						    periodic_usecs(fotg210, frame, uframe));
4958
4959		if (allocated_max > uframe_periodic_max) {
4960			fotg210_info(fotg210,
4961				"cannot decrease uframe_periodic_max because "
4962				"periodic bandwidth is already allocated "
4963				"(%u > %u)\n",
4964				allocated_max, uframe_periodic_max);
4965			goto out_unlock;
4966		}
4967	}
4968
4969	/* increasing is always ok */
4970
4971	fotg210_info(fotg210, "setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
4972		     100 * uframe_periodic_max/125, uframe_periodic_max);
4973
4974	if (uframe_periodic_max != 100)
4975		fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n");
4976
4977	fotg210->uframe_periodic_max = uframe_periodic_max;
4978	ret = count;
4979
4980out_unlock:
4981	spin_unlock_irqrestore(&fotg210->lock, flags);
4982	return ret;
4983}
4984
4985static DEVICE_ATTR(uframe_periodic_max, 0644, show_uframe_periodic_max,
4986		   store_uframe_periodic_max);
4987
4988static inline int create_sysfs_files(struct fotg210_hcd *fotg210)
4989{
4990	struct device	*controller = fotg210_to_hcd(fotg210)->self.controller;
4991	int	i = 0;
4992
4993	if (i)
4994		goto out;
4995
4996	i = device_create_file(controller, &dev_attr_uframe_periodic_max);
4997out:
4998	return i;
4999}
5000
5001static inline void remove_sysfs_files(struct fotg210_hcd *fotg210)
5002{
5003	struct device	*controller = fotg210_to_hcd(fotg210)->self.controller;
5004
5005	device_remove_file(controller, &dev_attr_uframe_periodic_max);
5006}
5007/*-------------------------------------------------------------------------*/
5008
5009/* On some systems, leaving remote wakeup enabled prevents system shutdown.
5010 * The firmware seems to think that powering off is a wakeup event!
5011 * This routine turns off remote wakeup and everything else, on all ports.
5012 */
5013static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210)
5014{
5015	u32 __iomem *status_reg = &fotg210->regs->port_status;
5016
5017	fotg210_writel(fotg210, PORT_RWC_BITS, status_reg);
5018}
5019
5020/*
5021 * Halt HC, turn off all ports, and let the BIOS use the companion controllers.
5022 * Must be called with interrupts enabled and the lock not held.
5023 */
5024static void fotg210_silence_controller(struct fotg210_hcd *fotg210)
5025{
5026	fotg210_halt(fotg210);
5027
5028	spin_lock_irq(&fotg210->lock);
5029	fotg210->rh_state = FOTG210_RH_HALTED;
5030	fotg210_turn_off_all_ports(fotg210);
5031	spin_unlock_irq(&fotg210->lock);
5032}
5033
5034/* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
5035 * This forcibly disables dma and IRQs, helping kexec and other cases
5036 * where the next system software may expect clean state.
5037 */
5038static void fotg210_shutdown(struct usb_hcd *hcd)
5039{
5040	struct fotg210_hcd	*fotg210 = hcd_to_fotg210(hcd);
5041
5042	spin_lock_irq(&fotg210->lock);
5043	fotg210->shutdown = true;
5044	fotg210->rh_state = FOTG210_RH_STOPPING;
5045	fotg210->enabled_hrtimer_events = 0;
5046	spin_unlock_irq(&fotg210->lock);
5047
5048	fotg210_silence_controller(fotg210);
5049
5050	hrtimer_cancel(&fotg210->hrtimer);
5051}
5052
5053/*-------------------------------------------------------------------------*/
5054
5055/*
5056 * fotg210_work is called from some interrupts, timers, and so on.
5057 * it calls driver completion functions, after dropping fotg210->lock.
5058 */
5059static void fotg210_work(struct fotg210_hcd *fotg210)
5060{
5061	/* another CPU may drop fotg210->lock during a schedule scan while
5062	 * it reports urb completions.  this flag guards against bogus
5063	 * attempts at re-entrant schedule scanning.
5064	 */
5065	if (fotg210->scanning) {
5066		fotg210->need_rescan = true;
5067		return;
5068	}
5069	fotg210->scanning = true;
5070
5071 rescan:
5072	fotg210->need_rescan = false;
5073	if (fotg210->async_count)
5074		scan_async(fotg210);
5075	if (fotg210->intr_count > 0)
5076		scan_intr(fotg210);
5077	if (fotg210->isoc_count > 0)
5078		scan_isoc(fotg210);
5079	if (fotg210->need_rescan)
5080		goto rescan;
5081	fotg210->scanning = false;
5082
5083	/* the IO watchdog guards against hardware or driver bugs that
5084	 * misplace IRQs, and should let us run completely without IRQs.
5085	 * such lossage has been observed on both VT6202 and VT8235.
5086	 */
5087	turn_on_io_watchdog(fotg210);
5088}
5089
5090/*
5091 * Called when the fotg210_hcd module is removed.
5092 */
5093static void fotg210_stop(struct usb_hcd *hcd)
5094{
5095	struct fotg210_hcd		*fotg210 = hcd_to_fotg210(hcd);
5096
5097	fotg210_dbg(fotg210, "stop\n");
5098
5099	/* no more interrupts ... */
5100
5101	spin_lock_irq(&fotg210->lock);
5102	fotg210->enabled_hrtimer_events = 0;
5103	spin_unlock_irq(&fotg210->lock);
5104
5105	fotg210_quiesce(fotg210);
5106	fotg210_silence_controller(fotg210);
5107	fotg210_reset(fotg210);
5108
5109	hrtimer_cancel(&fotg210->hrtimer);
5110	remove_sysfs_files(fotg210);
5111	remove_debug_files(fotg210);
5112
5113	/* root hub is shut down separately (first, when possible) */
5114	spin_lock_irq(&fotg210->lock);
5115	end_free_itds(fotg210);
5116	spin_unlock_irq(&fotg210->lock);
5117	fotg210_mem_cleanup(fotg210);
5118
5119#ifdef	FOTG210_STATS
5120	fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
5121		fotg210->stats.normal, fotg210->stats.error, fotg210->stats.iaa,
5122		fotg210->stats.lost_iaa);
5123	fotg210_dbg(fotg210, "complete %ld unlink %ld\n",
5124		fotg210->stats.complete, fotg210->stats.unlink);
5125#endif
5126
5127	dbg_status(fotg210, "fotg210_stop completed",
5128		    fotg210_readl(fotg210, &fotg210->regs->status));
5129}
5130
5131/* one-time init, only for memory state */
5132static int hcd_fotg210_init(struct usb_hcd *hcd)
5133{
5134	struct fotg210_hcd		*fotg210 = hcd_to_fotg210(hcd);
5135	u32			temp;
5136	int			retval;
5137	u32			hcc_params;
5138	struct fotg210_qh_hw	*hw;
5139
5140	spin_lock_init(&fotg210->lock);
5141
5142	/*
5143	 * keep io watchdog by default, those good HCDs could turn off it later
5144	 */
5145	fotg210->need_io_watchdog = 1;
5146
5147	hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
5148	fotg210->hrtimer.function = fotg210_hrtimer_func;
5149	fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
5150
5151	hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
5152
5153	/*
5154	 * by default set standard 80% (== 100 usec/uframe) max periodic
5155	 * bandwidth as required by USB 2.0
5156	 */
5157	fotg210->uframe_periodic_max = 100;
5158
5159	/*
5160	 * hw default: 1K periodic list heads, one per frame.
5161	 * periodic_size can shrink by USBCMD update if hcc_params allows.
5162	 */
5163	fotg210->periodic_size = DEFAULT_I_TDPS;
5164	INIT_LIST_HEAD(&fotg210->intr_qh_list);
5165	INIT_LIST_HEAD(&fotg210->cached_itd_list);
5166
5167	if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
5168		/* periodic schedule size can be smaller than default */
5169		switch (FOTG210_TUNE_FLS) {
5170		case 0:
5171			fotg210->periodic_size = 1024;
5172			break;
5173		case 1:
5174			fotg210->periodic_size = 512;
5175			break;
5176		case 2:
5177			fotg210->periodic_size = 256;
5178			break;
5179		default:
5180			BUG();
5181		}
5182	}
5183	retval = fotg210_mem_init(fotg210, GFP_KERNEL);
5184	if (retval < 0)
5185		return retval;
5186
5187	/* controllers may cache some of the periodic schedule ... */
5188	fotg210->i_thresh = 2;
5189
5190	/*
5191	 * dedicate a qh for the async ring head, since we couldn't unlink
5192	 * a 'real' qh without stopping the async schedule [4.8].  use it
5193	 * as the 'reclamation list head' too.
5194	 * its dummy is used in hw_alt_next of many tds, to prevent the qh
5195	 * from automatically advancing to the next td after short reads.
5196	 */
5197	fotg210->async->qh_next.qh = NULL;
5198	hw = fotg210->async->hw;
5199	hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma);
5200	hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD);
5201	hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
5202	hw->hw_qtd_next = FOTG210_LIST_END(fotg210);
5203	fotg210->async->qh_state = QH_STATE_LINKED;
5204	hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma);
5205
5206	/* clear interrupt enables, set irq latency */
5207	if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
5208		log2_irq_thresh = 0;
5209	temp = 1 << (16 + log2_irq_thresh);
5210	if (HCC_CANPARK(hcc_params)) {
5211		/* HW default park == 3, on hardware that supports it (like
5212		 * NVidia and ALI silicon), maximizes throughput on the async
5213		 * schedule by avoiding QH fetches between transfers.
5214		 *
5215		 * With fast usb storage devices and NForce2, "park" seems to
5216		 * make problems:  throughput reduction (!), data errors...
5217		 */
5218		if (park) {
5219			park = min_t(unsigned, park, 3);
5220			temp |= CMD_PARK;
5221			temp |= park << 8;
5222		}
5223		fotg210_dbg(fotg210, "park %d\n", park);
5224	}
5225	if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
5226		/* periodic schedule size can be smaller than default */
5227		temp &= ~(3 << 2);
5228		temp |= (FOTG210_TUNE_FLS << 2);
5229	}
5230	fotg210->command = temp;
5231
5232	/* Accept arbitrarily long scatter-gather lists */
5233	if (!(hcd->driver->flags & HCD_LOCAL_MEM))
5234		hcd->self.sg_tablesize = ~0;
5235	return 0;
5236}
5237
5238/* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
5239static int fotg210_run(struct usb_hcd *hcd)
5240{
5241	struct fotg210_hcd		*fotg210 = hcd_to_fotg210(hcd);
5242	u32			temp;
5243	u32			hcc_params;
5244
5245	hcd->uses_new_polling = 1;
5246
5247	/* EHCI spec section 4.1 */
5248
5249	fotg210_writel(fotg210, fotg210->periodic_dma,
5250		       &fotg210->regs->frame_list);
5251	fotg210_writel(fotg210, (u32)fotg210->async->qh_dma,
5252		       &fotg210->regs->async_next);
5253
5254	/*
5255	 * hcc_params controls whether fotg210->regs->segment must (!!!)
5256	 * be used; it constrains QH/ITD/SITD and QTD locations.
5257	 * pci_pool consistent memory always uses segment zero.
5258	 * streaming mappings for I/O buffers, like pci_map_single(),
5259	 * can return segments above 4GB, if the device allows.
5260	 *
5261	 * NOTE:  the dma mask is visible through dma_supported(), so
5262	 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
5263	 * Scsi_Host.highmem_io, and so forth.  It's readonly to all
5264	 * host side drivers though.
5265	 */
5266	hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
5267
5268	/*
5269	 * Philips, Intel, and maybe others need CMD_RUN before the
5270	 * root hub will detect new devices (why?); NEC doesn't
5271	 */
5272	fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET);
5273	fotg210->command |= CMD_RUN;
5274	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
5275	dbg_cmd(fotg210, "init", fotg210->command);
5276
5277	/*
5278	 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
5279	 * are explicitly handed to companion controller(s), so no TT is
5280	 * involved with the root hub.  (Except where one is integrated,
5281	 * and there's no companion controller unless maybe for USB OTG.)
5282	 *
5283	 * Turning on the CF flag will transfer ownership of all ports
5284	 * from the companions to the EHCI controller.  If any of the
5285	 * companions are in the middle of a port reset at the time, it
5286	 * could cause trouble.  Write-locking ehci_cf_port_reset_rwsem
5287	 * guarantees that no resets are in progress.  After we set CF,
5288	 * a short delay lets the hardware catch up; new resets shouldn't
5289	 * be started before the port switching actions could complete.
5290	 */
5291	down_write(&ehci_cf_port_reset_rwsem);
5292	fotg210->rh_state = FOTG210_RH_RUNNING;
5293	/* unblock posted writes */
5294	fotg210_readl(fotg210, &fotg210->regs->command);
5295	msleep(5);
5296	up_write(&ehci_cf_port_reset_rwsem);
5297	fotg210->last_periodic_enable = ktime_get_real();
5298
5299	temp = HC_VERSION(fotg210,
5300			  fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5301	fotg210_info(fotg210,
5302		"USB %x.%x started, EHCI %x.%02x\n",
5303		((fotg210->sbrn & 0xf0)>>4), (fotg210->sbrn & 0x0f),
5304		temp >> 8, temp & 0xff);
5305
5306	fotg210_writel(fotg210, INTR_MASK,
5307		    &fotg210->regs->intr_enable); /* Turn On Interrupts */
5308
5309	/* GRR this is run-once init(), being done every time the HC starts.
5310	 * So long as they're part of class devices, we can't do it init()
5311	 * since the class device isn't created that early.
5312	 */
5313	create_debug_files(fotg210);
5314	create_sysfs_files(fotg210);
5315
5316	return 0;
5317}
5318
5319static int fotg210_setup(struct usb_hcd *hcd)
5320{
5321	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5322	int retval;
5323
5324	fotg210->regs = (void __iomem *)fotg210->caps +
5325	    HC_LENGTH(fotg210,
5326		      fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5327	dbg_hcs_params(fotg210, "reset");
5328	dbg_hcc_params(fotg210, "reset");
5329
5330	/* cache this readonly data; minimize chip reads */
5331	fotg210->hcs_params = fotg210_readl(fotg210,
5332					    &fotg210->caps->hcs_params);
5333
5334	fotg210->sbrn = HCD_USB2;
5335
5336	/* data structure init */
5337	retval = hcd_fotg210_init(hcd);
5338	if (retval)
5339		return retval;
5340
5341	retval = fotg210_halt(fotg210);
5342	if (retval)
5343		return retval;
5344
5345	fotg210_reset(fotg210);
5346
5347	return 0;
5348}
5349
5350/*-------------------------------------------------------------------------*/
5351
5352static irqreturn_t fotg210_irq(struct usb_hcd *hcd)
5353{
5354	struct fotg210_hcd		*fotg210 = hcd_to_fotg210(hcd);
5355	u32			status, masked_status, pcd_status = 0, cmd;
5356	int			bh;
5357
5358	spin_lock(&fotg210->lock);
5359
5360	status = fotg210_readl(fotg210, &fotg210->regs->status);
5361
5362	/* e.g. cardbus physical eject */
5363	if (status == ~(u32) 0) {
5364		fotg210_dbg(fotg210, "device removed\n");
5365		goto dead;
5366	}
5367
5368	/*
5369	 * We don't use STS_FLR, but some controllers don't like it to
5370	 * remain on, so mask it out along with the other status bits.
5371	 */
5372	masked_status = status & (INTR_MASK | STS_FLR);
5373
5374	/* Shared IRQ? */
5375	if (!masked_status ||
5376	    unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) {
5377		spin_unlock(&fotg210->lock);
5378		return IRQ_NONE;
5379	}
5380
5381	/* clear (just) interrupts */
5382	fotg210_writel(fotg210, masked_status, &fotg210->regs->status);
5383	cmd = fotg210_readl(fotg210, &fotg210->regs->command);
5384	bh = 0;
5385
5386	/* unrequested/ignored: Frame List Rollover */
5387	dbg_status(fotg210, "irq", status);
5388
5389	/* INT, ERR, and IAA interrupt rates can be throttled */
5390
5391	/* normal [4.15.1.2] or error [4.15.1.1] completion */
5392	if (likely((status & (STS_INT|STS_ERR)) != 0)) {
5393		if (likely((status & STS_ERR) == 0))
5394			COUNT(fotg210->stats.normal);
5395		else
5396			COUNT(fotg210->stats.error);
5397		bh = 1;
5398	}
5399
5400	/* complete the unlinking of some qh [4.15.2.3] */
5401	if (status & STS_IAA) {
5402
5403		/* Turn off the IAA watchdog */
5404		fotg210->enabled_hrtimer_events &=
5405			~BIT(FOTG210_HRTIMER_IAA_WATCHDOG);
5406
5407		/*
5408		 * Mild optimization: Allow another IAAD to reset the
5409		 * hrtimer, if one occurs before the next expiration.
5410		 * In theory we could always cancel the hrtimer, but
5411		 * tests show that about half the time it will be reset
5412		 * for some other event anyway.
5413		 */
5414		if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG)
5415			++fotg210->next_hrtimer_event;
5416
5417		/* guard against (alleged) silicon errata */
5418		if (cmd & CMD_IAAD)
5419			fotg210_dbg(fotg210, "IAA with IAAD still set?\n");
5420		if (fotg210->async_iaa) {
5421			COUNT(fotg210->stats.iaa);
5422			end_unlink_async(fotg210);
5423		} else
5424			fotg210_dbg(fotg210, "IAA with nothing unlinked?\n");
5425	}
5426
5427	/* remote wakeup [4.3.1] */
5428	if (status & STS_PCD) {
5429		int pstatus;
5430		u32 __iomem *status_reg = &fotg210->regs->port_status;
5431
5432		/* kick root hub later */
5433		pcd_status = status;
5434
5435		/* resume root hub? */
5436		if (fotg210->rh_state == FOTG210_RH_SUSPENDED)
5437			usb_hcd_resume_root_hub(hcd);
5438
5439		pstatus = fotg210_readl(fotg210, status_reg);
5440
5441		if (test_bit(0, &fotg210->suspended_ports) &&
5442				((pstatus & PORT_RESUME) ||
5443					!(pstatus & PORT_SUSPEND)) &&
5444				(pstatus & PORT_PE) &&
5445				fotg210->reset_done[0] == 0) {
5446
5447			/* start 20 msec resume signaling from this port,
5448			 * and make hub_wq collect PORT_STAT_C_SUSPEND to
5449			 * stop that signaling.  Use 5 ms extra for safety,
5450			 * like usb_port_resume() does.
5451			 */
5452			fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25);
5453			set_bit(0, &fotg210->resuming_ports);
5454			fotg210_dbg(fotg210, "port 1 remote wakeup\n");
5455			mod_timer(&hcd->rh_timer, fotg210->reset_done[0]);
5456		}
5457	}
5458
5459	/* PCI errors [4.15.2.4] */
5460	if (unlikely((status & STS_FATAL) != 0)) {
5461		fotg210_err(fotg210, "fatal error\n");
5462		dbg_cmd(fotg210, "fatal", cmd);
5463		dbg_status(fotg210, "fatal", status);
5464dead:
5465		usb_hc_died(hcd);
5466
5467		/* Don't let the controller do anything more */
5468		fotg210->shutdown = true;
5469		fotg210->rh_state = FOTG210_RH_STOPPING;
5470		fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE);
5471		fotg210_writel(fotg210, fotg210->command,
5472			       &fotg210->regs->command);
5473		fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
5474		fotg210_handle_controller_death(fotg210);
5475
5476		/* Handle completions when the controller stops */
5477		bh = 0;
5478	}
5479
5480	if (bh)
5481		fotg210_work(fotg210);
5482	spin_unlock(&fotg210->lock);
5483	if (pcd_status)
5484		usb_hcd_poll_rh_status(hcd);
5485	return IRQ_HANDLED;
5486}
5487
5488/*-------------------------------------------------------------------------*/
5489
5490/*
5491 * non-error returns are a promise to giveback() the urb later
5492 * we drop ownership so next owner (or urb unlink) can get it
5493 *
5494 * urb + dev is in hcd.self.controller.urb_list
5495 * we're queueing TDs onto software and hardware lists
5496 *
5497 * hcd-specific init for hcpriv hasn't been done yet
5498 *
5499 * NOTE:  control, bulk, and interrupt share the same code to append TDs
5500 * to a (possibly active) QH, and the same QH scanning code.
5501 */
5502static int fotg210_urb_enqueue(
5503	struct usb_hcd	*hcd,
5504	struct urb	*urb,
5505	gfp_t		mem_flags
5506) {
5507	struct fotg210_hcd		*fotg210 = hcd_to_fotg210(hcd);
5508	struct list_head	qtd_list;
5509
5510	INIT_LIST_HEAD(&qtd_list);
5511
5512	switch (usb_pipetype(urb->pipe)) {
5513	case PIPE_CONTROL:
5514		/* qh_completions() code doesn't handle all the fault cases
5515		 * in multi-TD control transfers.  Even 1KB is rare anyway.
5516		 */
5517		if (urb->transfer_buffer_length > (16 * 1024))
5518			return -EMSGSIZE;
5519		/* FALLTHROUGH */
5520	/* case PIPE_BULK: */
5521	default:
5522		if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5523			return -ENOMEM;
5524		return submit_async(fotg210, urb, &qtd_list, mem_flags);
5525
5526	case PIPE_INTERRUPT:
5527		if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5528			return -ENOMEM;
5529		return intr_submit(fotg210, urb, &qtd_list, mem_flags);
5530
5531	case PIPE_ISOCHRONOUS:
5532		return itd_submit(fotg210, urb, mem_flags);
5533	}
5534}
5535
5536/* remove from hardware lists
5537 * completions normally happen asynchronously
5538 */
5539
5540static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
5541{
5542	struct fotg210_hcd		*fotg210 = hcd_to_fotg210(hcd);
5543	struct fotg210_qh		*qh;
5544	unsigned long		flags;
5545	int			rc;
5546
5547	spin_lock_irqsave(&fotg210->lock, flags);
5548	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
5549	if (rc)
5550		goto done;
5551
5552	switch (usb_pipetype(urb->pipe)) {
5553	/* case PIPE_CONTROL: */
5554	/* case PIPE_BULK:*/
5555	default:
5556		qh = (struct fotg210_qh *) urb->hcpriv;
5557		if (!qh)
5558			break;
5559		switch (qh->qh_state) {
5560		case QH_STATE_LINKED:
5561		case QH_STATE_COMPLETING:
5562			start_unlink_async(fotg210, qh);
5563			break;
5564		case QH_STATE_UNLINK:
5565		case QH_STATE_UNLINK_WAIT:
5566			/* already started */
5567			break;
5568		case QH_STATE_IDLE:
5569			/* QH might be waiting for a Clear-TT-Buffer */
5570			qh_completions(fotg210, qh);
5571			break;
5572		}
5573		break;
5574
5575	case PIPE_INTERRUPT:
5576		qh = (struct fotg210_qh *) urb->hcpriv;
5577		if (!qh)
5578			break;
5579		switch (qh->qh_state) {
5580		case QH_STATE_LINKED:
5581		case QH_STATE_COMPLETING:
5582			start_unlink_intr(fotg210, qh);
5583			break;
5584		case QH_STATE_IDLE:
5585			qh_completions(fotg210, qh);
5586			break;
5587		default:
5588			fotg210_dbg(fotg210, "bogus qh %p state %d\n",
5589					qh, qh->qh_state);
5590			goto done;
5591		}
5592		break;
5593
5594	case PIPE_ISOCHRONOUS:
5595		/* itd... */
5596
5597		/* wait till next completion, do it then. */
5598		/* completion irqs can wait up to 1024 msec, */
5599		break;
5600	}
5601done:
5602	spin_unlock_irqrestore(&fotg210->lock, flags);
5603	return rc;
5604}
5605
5606/*-------------------------------------------------------------------------*/
5607
5608/* bulk qh holds the data toggle */
5609
5610static void
5611fotg210_endpoint_disable(struct usb_hcd *hcd, struct usb_host_endpoint *ep)
5612{
5613	struct fotg210_hcd		*fotg210 = hcd_to_fotg210(hcd);
5614	unsigned long		flags;
5615	struct fotg210_qh		*qh, *tmp;
5616
5617	/* ASSERT:  any requests/urbs are being unlinked */
5618	/* ASSERT:  nobody can be submitting urbs for this any more */
5619
5620rescan:
5621	spin_lock_irqsave(&fotg210->lock, flags);
5622	qh = ep->hcpriv;
5623	if (!qh)
5624		goto done;
5625
5626	/* endpoints can be iso streams.  for now, we don't
5627	 * accelerate iso completions ... so spin a while.
5628	 */
5629	if (qh->hw == NULL) {
5630		struct fotg210_iso_stream	*stream = ep->hcpriv;
5631
5632		if (!list_empty(&stream->td_list))
5633			goto idle_timeout;
5634
5635		/* BUG_ON(!list_empty(&stream->free_list)); */
5636		kfree(stream);
5637		goto done;
5638	}
5639
5640	if (fotg210->rh_state < FOTG210_RH_RUNNING)
5641		qh->qh_state = QH_STATE_IDLE;
5642	switch (qh->qh_state) {
5643	case QH_STATE_LINKED:
5644	case QH_STATE_COMPLETING:
5645		for (tmp = fotg210->async->qh_next.qh;
5646				tmp && tmp != qh;
5647				tmp = tmp->qh_next.qh)
5648			continue;
5649		/* periodic qh self-unlinks on empty, and a COMPLETING qh
5650		 * may already be unlinked.
5651		 */
5652		if (tmp)
5653			start_unlink_async(fotg210, qh);
5654		/* FALL THROUGH */
5655	case QH_STATE_UNLINK:		/* wait for hw to finish? */
5656	case QH_STATE_UNLINK_WAIT:
5657idle_timeout:
5658		spin_unlock_irqrestore(&fotg210->lock, flags);
5659		schedule_timeout_uninterruptible(1);
5660		goto rescan;
5661	case QH_STATE_IDLE:		/* fully unlinked */
5662		if (qh->clearing_tt)
5663			goto idle_timeout;
5664		if (list_empty(&qh->qtd_list)) {
5665			qh_destroy(fotg210, qh);
5666			break;
5667		}
5668		/* else FALL THROUGH */
5669	default:
5670		/* caller was supposed to have unlinked any requests;
5671		 * that's not our job.  just leak this memory.
5672		 */
5673		fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n",
5674			qh, ep->desc.bEndpointAddress, qh->qh_state,
5675			list_empty(&qh->qtd_list) ? "" : "(has tds)");
5676		break;
5677	}
5678 done:
5679	ep->hcpriv = NULL;
5680	spin_unlock_irqrestore(&fotg210->lock, flags);
5681}
5682
5683static void
5684fotg210_endpoint_reset(struct usb_hcd *hcd, struct usb_host_endpoint *ep)
5685{
5686	struct fotg210_hcd		*fotg210 = hcd_to_fotg210(hcd);
5687	struct fotg210_qh		*qh;
5688	int			eptype = usb_endpoint_type(&ep->desc);
5689	int			epnum = usb_endpoint_num(&ep->desc);
5690	int			is_out = usb_endpoint_dir_out(&ep->desc);
5691	unsigned long		flags;
5692
5693	if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT)
5694		return;
5695
5696	spin_lock_irqsave(&fotg210->lock, flags);
5697	qh = ep->hcpriv;
5698
5699	/* For Bulk and Interrupt endpoints we maintain the toggle state
5700	 * in the hardware; the toggle bits in udev aren't used at all.
5701	 * When an endpoint is reset by usb_clear_halt() we must reset
5702	 * the toggle bit in the QH.
5703	 */
5704	if (qh) {
5705		usb_settoggle(qh->dev, epnum, is_out, 0);
5706		if (!list_empty(&qh->qtd_list)) {
5707			WARN_ONCE(1, "clear_halt for a busy endpoint\n");
5708		} else if (qh->qh_state == QH_STATE_LINKED ||
5709				qh->qh_state == QH_STATE_COMPLETING) {
5710
5711			/* The toggle value in the QH can't be updated
5712			 * while the QH is active.  Unlink it now;
5713			 * re-linking will call qh_refresh().
5714			 */
5715			if (eptype == USB_ENDPOINT_XFER_BULK)
5716				start_unlink_async(fotg210, qh);
5717			else
5718				start_unlink_intr(fotg210, qh);
5719		}
5720	}
5721	spin_unlock_irqrestore(&fotg210->lock, flags);
5722}
5723
5724static int fotg210_get_frame(struct usb_hcd *hcd)
5725{
5726	struct fotg210_hcd		*fotg210 = hcd_to_fotg210(hcd);
5727	return (fotg210_read_frame_index(fotg210) >> 3) %
5728		fotg210->periodic_size;
5729}
5730
5731/*-------------------------------------------------------------------------*/
5732
5733/*
5734 * The EHCI in ChipIdea HDRC cannot be a separate module or device,
5735 * because its registers (and irq) are shared between host/gadget/otg
5736 * functions  and in order to facilitate role switching we cannot
5737 * give the fotg210 driver exclusive access to those.
5738 */
5739MODULE_DESCRIPTION(DRIVER_DESC);
5740MODULE_AUTHOR(DRIVER_AUTHOR);
5741MODULE_LICENSE("GPL");
5742
5743static const struct hc_driver fotg210_fotg210_hc_driver = {
5744	.description		= hcd_name,
5745	.product_desc		= "Faraday USB2.0 Host Controller",
5746	.hcd_priv_size		= sizeof(struct fotg210_hcd),
5747
5748	/*
5749	 * generic hardware linkage
5750	 */
5751	.irq			= fotg210_irq,
5752	.flags			= HCD_MEMORY | HCD_USB2,
5753
5754	/*
5755	 * basic lifecycle operations
5756	 */
5757	.reset			= hcd_fotg210_init,
5758	.start			= fotg210_run,
5759	.stop			= fotg210_stop,
5760	.shutdown		= fotg210_shutdown,
5761
5762	/*
5763	 * managing i/o requests and associated device resources
5764	 */
5765	.urb_enqueue		= fotg210_urb_enqueue,
5766	.urb_dequeue		= fotg210_urb_dequeue,
5767	.endpoint_disable	= fotg210_endpoint_disable,
5768	.endpoint_reset		= fotg210_endpoint_reset,
5769
5770	/*
5771	 * scheduling support
5772	 */
5773	.get_frame_number	= fotg210_get_frame,
5774
5775	/*
5776	 * root hub support
5777	 */
5778	.hub_status_data	= fotg210_hub_status_data,
5779	.hub_control		= fotg210_hub_control,
5780	.bus_suspend		= fotg210_bus_suspend,
5781	.bus_resume		= fotg210_bus_resume,
5782
5783	.relinquish_port	= fotg210_relinquish_port,
5784	.port_handed_over	= fotg210_port_handed_over,
5785
5786	.clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete,
5787};
5788
5789static void fotg210_init(struct fotg210_hcd *fotg210)
5790{
5791	u32 value;
5792
5793	iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY,
5794		  &fotg210->regs->gmir);
5795
5796	value = ioread32(&fotg210->regs->otgcsr);
5797	value &= ~OTGCSR_A_BUS_DROP;
5798	value |= OTGCSR_A_BUS_REQ;
5799	iowrite32(value, &fotg210->regs->otgcsr);
5800}
5801
5802/**
5803 * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
5804 *
5805 * Allocates basic resources for this USB host controller, and
5806 * then invokes the start() method for the HCD associated with it
5807 * through the hotplug entry's driver_data.
5808 */
5809static int fotg210_hcd_probe(struct platform_device *pdev)
5810{
5811	struct device			*dev = &pdev->dev;
5812	struct usb_hcd			*hcd;
5813	struct resource			*res;
5814	int				irq;
5815	int				retval = -ENODEV;
5816	struct fotg210_hcd		*fotg210;
5817
5818	if (usb_disabled())
5819		return -ENODEV;
5820
5821	pdev->dev.power.power_state = PMSG_ON;
5822
5823	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
5824	if (!res) {
5825		dev_err(dev,
5826			"Found HC with no IRQ. Check %s setup!\n",
5827			dev_name(dev));
5828		return -ENODEV;
5829	}
5830
5831	irq = res->start;
5832
5833	hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev,
5834			dev_name(dev));
5835	if (!hcd) {
5836		dev_err(dev, "failed to create hcd with err %d\n", retval);
5837		retval = -ENOMEM;
5838		goto fail_create_hcd;
5839	}
5840
5841	hcd->has_tt = 1;
5842
5843	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5844	hcd->regs = devm_ioremap_resource(&pdev->dev, res);
5845	if (IS_ERR(hcd->regs)) {
5846		retval = PTR_ERR(hcd->regs);
5847		goto failed;
5848	}
5849
5850	hcd->rsrc_start = res->start;
5851	hcd->rsrc_len = resource_size(res);
5852
5853	fotg210 = hcd_to_fotg210(hcd);
5854
5855	fotg210->caps = hcd->regs;
5856
5857	retval = fotg210_setup(hcd);
5858	if (retval)
5859		goto failed;
5860
5861	fotg210_init(fotg210);
5862
5863	retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
5864	if (retval) {
5865		dev_err(dev, "failed to add hcd with err %d\n", retval);
5866		goto failed;
5867	}
5868	device_wakeup_enable(hcd->self.controller);
5869
5870	return retval;
5871
5872failed:
5873	usb_put_hcd(hcd);
5874fail_create_hcd:
5875	dev_err(dev, "init %s fail, %d\n", dev_name(dev), retval);
5876	return retval;
5877}
5878
5879/**
5880 * fotg210_hcd_remove - shutdown processing for EHCI HCDs
5881 * @dev: USB Host Controller being removed
5882 *
5883 */
5884static int fotg210_hcd_remove(struct platform_device *pdev)
5885{
5886	struct device *dev	= &pdev->dev;
5887	struct usb_hcd *hcd	= dev_get_drvdata(dev);
5888
5889	if (!hcd)
5890		return 0;
5891
5892	usb_remove_hcd(hcd);
5893	usb_put_hcd(hcd);
5894
5895	return 0;
5896}
5897
5898static struct platform_driver fotg210_hcd_driver = {
5899	.driver = {
5900		.name   = "fotg210-hcd",
5901	},
5902	.probe  = fotg210_hcd_probe,
5903	.remove = fotg210_hcd_remove,
5904};
5905
5906static int __init fotg210_hcd_init(void)
5907{
5908	int retval = 0;
5909
5910	if (usb_disabled())
5911		return -ENODEV;
5912
5913	pr_info("%s: " DRIVER_DESC "\n", hcd_name);
5914	set_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5915	if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) ||
5916			test_bit(USB_OHCI_LOADED, &usb_hcds_loaded))
5917		pr_warn(KERN_WARNING "Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
5918
5919	pr_debug("%s: block sizes: qh %Zd qtd %Zd itd %Zd\n",
5920		 hcd_name,
5921		 sizeof(struct fotg210_qh), sizeof(struct fotg210_qtd),
5922		 sizeof(struct fotg210_itd));
5923
5924	fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root);
5925	if (!fotg210_debug_root) {
5926		retval = -ENOENT;
5927		goto err_debug;
5928	}
5929
5930	retval = platform_driver_register(&fotg210_hcd_driver);
5931	if (retval < 0)
5932		goto clean;
5933	return retval;
5934
5935	platform_driver_unregister(&fotg210_hcd_driver);
5936clean:
5937	debugfs_remove(fotg210_debug_root);
5938	fotg210_debug_root = NULL;
5939err_debug:
5940	clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5941	return retval;
5942}
5943module_init(fotg210_hcd_init);
5944
5945static void __exit fotg210_hcd_cleanup(void)
5946{
5947	platform_driver_unregister(&fotg210_hcd_driver);
5948	debugfs_remove(fotg210_debug_root);
5949	clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5950}
5951module_exit(fotg210_hcd_cleanup);
5952