1/* 2 * Faraday FOTG210 EHCI-like driver 3 * 4 * Copyright (c) 2013 Faraday Technology Corporation 5 * 6 * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com> 7 * Feng-Hsin Chiang <john453@faraday-tech.com> 8 * Po-Yu Chuang <ratbert.chuang@gmail.com> 9 * 10 * Most of code borrowed from the Linux-3.7 EHCI driver 11 * 12 * This program is free software; you can redistribute it and/or modify it 13 * under the terms of the GNU General Public License as published by the 14 * Free Software Foundation; either version 2 of the License, or (at your 15 * option) any later version. 16 * 17 * This program is distributed in the hope that it will be useful, but 18 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 19 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 20 * for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; if not, write to the Free Software Foundation, 24 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 25 */ 26#include <linux/module.h> 27#include <linux/device.h> 28#include <linux/dmapool.h> 29#include <linux/kernel.h> 30#include <linux/delay.h> 31#include <linux/ioport.h> 32#include <linux/sched.h> 33#include <linux/vmalloc.h> 34#include <linux/errno.h> 35#include <linux/init.h> 36#include <linux/hrtimer.h> 37#include <linux/list.h> 38#include <linux/interrupt.h> 39#include <linux/usb.h> 40#include <linux/usb/hcd.h> 41#include <linux/moduleparam.h> 42#include <linux/dma-mapping.h> 43#include <linux/debugfs.h> 44#include <linux/slab.h> 45#include <linux/uaccess.h> 46#include <linux/platform_device.h> 47#include <linux/io.h> 48 49#include <asm/byteorder.h> 50#include <asm/irq.h> 51#include <asm/unaligned.h> 52 53/*-------------------------------------------------------------------------*/ 54#define DRIVER_AUTHOR "Yuan-Hsin Chen" 55#define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver" 56 57static const char hcd_name[] = "fotg210_hcd"; 58 59#undef FOTG210_URB_TRACE 60 61#define FOTG210_STATS 62 63/* magic numbers that can affect system performance */ 64#define FOTG210_TUNE_CERR 3 /* 0-3 qtd retries; 0 == don't stop */ 65#define FOTG210_TUNE_RL_HS 4 /* nak throttle; see 4.9 */ 66#define FOTG210_TUNE_RL_TT 0 67#define FOTG210_TUNE_MULT_HS 1 /* 1-3 transactions/uframe; 4.10.3 */ 68#define FOTG210_TUNE_MULT_TT 1 69/* 70 * Some drivers think it's safe to schedule isochronous transfers more than 71 * 256 ms into the future (partly as a result of an old bug in the scheduling 72 * code). In an attempt to avoid trouble, we will use a minimum scheduling 73 * length of 512 frames instead of 256. 74 */ 75#define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */ 76 77/* Initial IRQ latency: faster than hw default */ 78static int log2_irq_thresh; /* 0 to 6 */ 79module_param(log2_irq_thresh, int, S_IRUGO); 80MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes"); 81 82/* initial park setting: slower than hw default */ 83static unsigned park; 84module_param(park, uint, S_IRUGO); 85MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets"); 86 87/* for link power management(LPM) feature */ 88static unsigned int hird; 89module_param(hird, int, S_IRUGO); 90MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us"); 91 92#define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT) 93 94#include "fotg210.h" 95 96/*-------------------------------------------------------------------------*/ 97 98#define fotg210_dbg(fotg210, fmt, args...) \ 99 dev_dbg(fotg210_to_hcd(fotg210)->self.controller , fmt , ## args) 100#define fotg210_err(fotg210, fmt, args...) \ 101 dev_err(fotg210_to_hcd(fotg210)->self.controller , fmt , ## args) 102#define fotg210_info(fotg210, fmt, args...) \ 103 dev_info(fotg210_to_hcd(fotg210)->self.controller , fmt , ## args) 104#define fotg210_warn(fotg210, fmt, args...) \ 105 dev_warn(fotg210_to_hcd(fotg210)->self.controller , fmt , ## args) 106 107/* check the values in the HCSPARAMS register 108 * (host controller _Structural_ parameters) 109 * see EHCI spec, Table 2-4 for each value 110 */ 111static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label) 112{ 113 u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params); 114 115 fotg210_dbg(fotg210, 116 "%s hcs_params 0x%x ports=%d\n", 117 label, params, 118 HCS_N_PORTS(params) 119 ); 120} 121 122/* check the values in the HCCPARAMS register 123 * (host controller _Capability_ parameters) 124 * see EHCI Spec, Table 2-5 for each value 125 * */ 126static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label) 127{ 128 u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params); 129 130 fotg210_dbg(fotg210, 131 "%s hcc_params %04x uframes %s%s\n", 132 label, 133 params, 134 HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024", 135 HCC_CANPARK(params) ? " park" : ""); 136} 137 138static void __maybe_unused 139dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd) 140{ 141 fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd, 142 hc32_to_cpup(fotg210, &qtd->hw_next), 143 hc32_to_cpup(fotg210, &qtd->hw_alt_next), 144 hc32_to_cpup(fotg210, &qtd->hw_token), 145 hc32_to_cpup(fotg210, &qtd->hw_buf[0])); 146 if (qtd->hw_buf[1]) 147 fotg210_dbg(fotg210, " p1=%08x p2=%08x p3=%08x p4=%08x\n", 148 hc32_to_cpup(fotg210, &qtd->hw_buf[1]), 149 hc32_to_cpup(fotg210, &qtd->hw_buf[2]), 150 hc32_to_cpup(fotg210, &qtd->hw_buf[3]), 151 hc32_to_cpup(fotg210, &qtd->hw_buf[4])); 152} 153 154static void __maybe_unused 155dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh) 156{ 157 struct fotg210_qh_hw *hw = qh->hw; 158 159 fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label, 160 qh, hw->hw_next, hw->hw_info1, hw->hw_info2, hw->hw_current); 161 dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next); 162} 163 164static void __maybe_unused 165dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd) 166{ 167 fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n", 168 label, itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next), 169 itd->urb); 170 fotg210_dbg(fotg210, 171 " trans: %08x %08x %08x %08x %08x %08x %08x %08x\n", 172 hc32_to_cpu(fotg210, itd->hw_transaction[0]), 173 hc32_to_cpu(fotg210, itd->hw_transaction[1]), 174 hc32_to_cpu(fotg210, itd->hw_transaction[2]), 175 hc32_to_cpu(fotg210, itd->hw_transaction[3]), 176 hc32_to_cpu(fotg210, itd->hw_transaction[4]), 177 hc32_to_cpu(fotg210, itd->hw_transaction[5]), 178 hc32_to_cpu(fotg210, itd->hw_transaction[6]), 179 hc32_to_cpu(fotg210, itd->hw_transaction[7])); 180 fotg210_dbg(fotg210, 181 " buf: %08x %08x %08x %08x %08x %08x %08x\n", 182 hc32_to_cpu(fotg210, itd->hw_bufp[0]), 183 hc32_to_cpu(fotg210, itd->hw_bufp[1]), 184 hc32_to_cpu(fotg210, itd->hw_bufp[2]), 185 hc32_to_cpu(fotg210, itd->hw_bufp[3]), 186 hc32_to_cpu(fotg210, itd->hw_bufp[4]), 187 hc32_to_cpu(fotg210, itd->hw_bufp[5]), 188 hc32_to_cpu(fotg210, itd->hw_bufp[6])); 189 fotg210_dbg(fotg210, " index: %d %d %d %d %d %d %d %d\n", 190 itd->index[0], itd->index[1], itd->index[2], 191 itd->index[3], itd->index[4], itd->index[5], 192 itd->index[6], itd->index[7]); 193} 194 195static int __maybe_unused 196dbg_status_buf(char *buf, unsigned len, const char *label, u32 status) 197{ 198 return scnprintf(buf, len, 199 "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s", 200 label, label[0] ? " " : "", status, 201 (status & STS_ASS) ? " Async" : "", 202 (status & STS_PSS) ? " Periodic" : "", 203 (status & STS_RECL) ? " Recl" : "", 204 (status & STS_HALT) ? " Halt" : "", 205 (status & STS_IAA) ? " IAA" : "", 206 (status & STS_FATAL) ? " FATAL" : "", 207 (status & STS_FLR) ? " FLR" : "", 208 (status & STS_PCD) ? " PCD" : "", 209 (status & STS_ERR) ? " ERR" : "", 210 (status & STS_INT) ? " INT" : "" 211 ); 212} 213 214static int __maybe_unused 215dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable) 216{ 217 return scnprintf(buf, len, 218 "%s%sintrenable %02x%s%s%s%s%s%s", 219 label, label[0] ? " " : "", enable, 220 (enable & STS_IAA) ? " IAA" : "", 221 (enable & STS_FATAL) ? " FATAL" : "", 222 (enable & STS_FLR) ? " FLR" : "", 223 (enable & STS_PCD) ? " PCD" : "", 224 (enable & STS_ERR) ? " ERR" : "", 225 (enable & STS_INT) ? " INT" : "" 226 ); 227} 228 229static const char *const fls_strings[] = { "1024", "512", "256", "??" }; 230 231static int 232dbg_command_buf(char *buf, unsigned len, const char *label, u32 command) 233{ 234 return scnprintf(buf, len, 235 "%s%scommand %07x %s=%d ithresh=%d%s%s%s " 236 "period=%s%s %s", 237 label, label[0] ? " " : "", command, 238 (command & CMD_PARK) ? " park" : "(park)", 239 CMD_PARK_CNT(command), 240 (command >> 16) & 0x3f, 241 (command & CMD_IAAD) ? " IAAD" : "", 242 (command & CMD_ASE) ? " Async" : "", 243 (command & CMD_PSE) ? " Periodic" : "", 244 fls_strings[(command >> 2) & 0x3], 245 (command & CMD_RESET) ? " Reset" : "", 246 (command & CMD_RUN) ? "RUN" : "HALT" 247 ); 248} 249 250static char 251*dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status) 252{ 253 char *sig; 254 255 /* signaling state */ 256 switch (status & (3 << 10)) { 257 case 0 << 10: 258 sig = "se0"; 259 break; 260 case 1 << 10: 261 sig = "k"; 262 break; /* low speed */ 263 case 2 << 10: 264 sig = "j"; 265 break; 266 default: 267 sig = "?"; 268 break; 269 } 270 271 scnprintf(buf, len, 272 "%s%sport:%d status %06x %d " 273 "sig=%s%s%s%s%s%s%s%s", 274 label, label[0] ? " " : "", port, status, 275 status>>25,/*device address */ 276 sig, 277 (status & PORT_RESET) ? " RESET" : "", 278 (status & PORT_SUSPEND) ? " SUSPEND" : "", 279 (status & PORT_RESUME) ? " RESUME" : "", 280 (status & PORT_PEC) ? " PEC" : "", 281 (status & PORT_PE) ? " PE" : "", 282 (status & PORT_CSC) ? " CSC" : "", 283 (status & PORT_CONNECT) ? " CONNECT" : ""); 284 return buf; 285} 286 287/* functions have the "wrong" filename when they're output... */ 288#define dbg_status(fotg210, label, status) { \ 289 char _buf[80]; \ 290 dbg_status_buf(_buf, sizeof(_buf), label, status); \ 291 fotg210_dbg(fotg210, "%s\n", _buf); \ 292} 293 294#define dbg_cmd(fotg210, label, command) { \ 295 char _buf[80]; \ 296 dbg_command_buf(_buf, sizeof(_buf), label, command); \ 297 fotg210_dbg(fotg210, "%s\n", _buf); \ 298} 299 300#define dbg_port(fotg210, label, port, status) { \ 301 char _buf[80]; \ 302 fotg210_dbg(fotg210, "%s\n", dbg_port_buf(_buf, sizeof(_buf), label, port, status) ); \ 303} 304 305/*-------------------------------------------------------------------------*/ 306 307/* troubleshooting help: expose state in debugfs */ 308 309static int debug_async_open(struct inode *, struct file *); 310static int debug_periodic_open(struct inode *, struct file *); 311static int debug_registers_open(struct inode *, struct file *); 312static int debug_async_open(struct inode *, struct file *); 313 314static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*); 315static int debug_close(struct inode *, struct file *); 316 317static const struct file_operations debug_async_fops = { 318 .owner = THIS_MODULE, 319 .open = debug_async_open, 320 .read = debug_output, 321 .release = debug_close, 322 .llseek = default_llseek, 323}; 324static const struct file_operations debug_periodic_fops = { 325 .owner = THIS_MODULE, 326 .open = debug_periodic_open, 327 .read = debug_output, 328 .release = debug_close, 329 .llseek = default_llseek, 330}; 331static const struct file_operations debug_registers_fops = { 332 .owner = THIS_MODULE, 333 .open = debug_registers_open, 334 .read = debug_output, 335 .release = debug_close, 336 .llseek = default_llseek, 337}; 338 339static struct dentry *fotg210_debug_root; 340 341struct debug_buffer { 342 ssize_t (*fill_func)(struct debug_buffer *); /* fill method */ 343 struct usb_bus *bus; 344 struct mutex mutex; /* protect filling of buffer */ 345 size_t count; /* number of characters filled into buffer */ 346 char *output_buf; 347 size_t alloc_size; 348}; 349 350#define speed_char(info1)({ char tmp; \ 351 switch (info1 & (3 << 12)) { \ 352 case QH_FULL_SPEED: \ 353 tmp = 'f'; break; \ 354 case QH_LOW_SPEED: \ 355 tmp = 'l'; break; \ 356 case QH_HIGH_SPEED: \ 357 tmp = 'h'; break; \ 358 default: \ 359 tmp = '?'; break; \ 360 } tmp; }) 361 362static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token) 363{ 364 __u32 v = hc32_to_cpu(fotg210, token); 365 366 if (v & QTD_STS_ACTIVE) 367 return '*'; 368 if (v & QTD_STS_HALT) 369 return '-'; 370 if (!IS_SHORT_READ(v)) 371 return ' '; 372 /* tries to advance through hw_alt_next */ 373 return '/'; 374} 375 376static void qh_lines( 377 struct fotg210_hcd *fotg210, 378 struct fotg210_qh *qh, 379 char **nextp, 380 unsigned *sizep 381) 382{ 383 u32 scratch; 384 u32 hw_curr; 385 struct fotg210_qtd *td; 386 unsigned temp; 387 unsigned size = *sizep; 388 char *next = *nextp; 389 char mark; 390 __le32 list_end = FOTG210_LIST_END(fotg210); 391 struct fotg210_qh_hw *hw = qh->hw; 392 393 if (hw->hw_qtd_next == list_end) /* NEC does this */ 394 mark = '@'; 395 else 396 mark = token_mark(fotg210, hw->hw_token); 397 if (mark == '/') { /* qh_alt_next controls qh advance? */ 398 if ((hw->hw_alt_next & QTD_MASK(fotg210)) 399 == fotg210->async->hw->hw_alt_next) 400 mark = '#'; /* blocked */ 401 else if (hw->hw_alt_next == list_end) 402 mark = '.'; /* use hw_qtd_next */ 403 /* else alt_next points to some other qtd */ 404 } 405 scratch = hc32_to_cpup(fotg210, &hw->hw_info1); 406 hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0; 407 temp = scnprintf(next, size, 408 "qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)", 409 qh, scratch & 0x007f, 410 speed_char(scratch), 411 (scratch >> 8) & 0x000f, 412 scratch, hc32_to_cpup(fotg210, &hw->hw_info2), 413 hc32_to_cpup(fotg210, &hw->hw_token), mark, 414 (cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token) 415 ? "data1" : "data0", 416 (hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f); 417 size -= temp; 418 next += temp; 419 420 /* hc may be modifying the list as we read it ... */ 421 list_for_each_entry(td, &qh->qtd_list, qtd_list) { 422 scratch = hc32_to_cpup(fotg210, &td->hw_token); 423 mark = ' '; 424 if (hw_curr == td->qtd_dma) 425 mark = '*'; 426 else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma)) 427 mark = '+'; 428 else if (QTD_LENGTH(scratch)) { 429 if (td->hw_alt_next == fotg210->async->hw->hw_alt_next) 430 mark = '#'; 431 else if (td->hw_alt_next != list_end) 432 mark = '/'; 433 } 434 temp = snprintf(next, size, 435 "\n\t%p%c%s len=%d %08x urb %p", 436 td, mark, ({ char *tmp; 437 switch ((scratch>>8)&0x03) { 438 case 0: 439 tmp = "out"; 440 break; 441 case 1: 442 tmp = "in"; 443 break; 444 case 2: 445 tmp = "setup"; 446 break; 447 default: 448 tmp = "?"; 449 break; 450 } tmp; }), 451 (scratch >> 16) & 0x7fff, 452 scratch, 453 td->urb); 454 if (size < temp) 455 temp = size; 456 size -= temp; 457 next += temp; 458 if (temp == size) 459 goto done; 460 } 461 462 temp = snprintf(next, size, "\n"); 463 if (size < temp) 464 temp = size; 465 size -= temp; 466 next += temp; 467 468done: 469 *sizep = size; 470 *nextp = next; 471} 472 473static ssize_t fill_async_buffer(struct debug_buffer *buf) 474{ 475 struct usb_hcd *hcd; 476 struct fotg210_hcd *fotg210; 477 unsigned long flags; 478 unsigned temp, size; 479 char *next; 480 struct fotg210_qh *qh; 481 482 hcd = bus_to_hcd(buf->bus); 483 fotg210 = hcd_to_fotg210(hcd); 484 next = buf->output_buf; 485 size = buf->alloc_size; 486 487 *next = 0; 488 489 /* dumps a snapshot of the async schedule. 490 * usually empty except for long-term bulk reads, or head. 491 * one QH per line, and TDs we know about 492 */ 493 spin_lock_irqsave(&fotg210->lock, flags); 494 for (qh = fotg210->async->qh_next.qh; size > 0 && qh; 495 qh = qh->qh_next.qh) 496 qh_lines(fotg210, qh, &next, &size); 497 if (fotg210->async_unlink && size > 0) { 498 temp = scnprintf(next, size, "\nunlink =\n"); 499 size -= temp; 500 next += temp; 501 502 for (qh = fotg210->async_unlink; size > 0 && qh; 503 qh = qh->unlink_next) 504 qh_lines(fotg210, qh, &next, &size); 505 } 506 spin_unlock_irqrestore(&fotg210->lock, flags); 507 508 return strlen(buf->output_buf); 509} 510 511#define DBG_SCHED_LIMIT 64 512static ssize_t fill_periodic_buffer(struct debug_buffer *buf) 513{ 514 struct usb_hcd *hcd; 515 struct fotg210_hcd *fotg210; 516 unsigned long flags; 517 union fotg210_shadow p, *seen; 518 unsigned temp, size, seen_count; 519 char *next; 520 unsigned i; 521 __hc32 tag; 522 523 seen = kmalloc(DBG_SCHED_LIMIT * sizeof(*seen), GFP_ATOMIC); 524 if (!seen) 525 return 0; 526 seen_count = 0; 527 528 hcd = bus_to_hcd(buf->bus); 529 fotg210 = hcd_to_fotg210(hcd); 530 next = buf->output_buf; 531 size = buf->alloc_size; 532 533 temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size); 534 size -= temp; 535 next += temp; 536 537 /* dump a snapshot of the periodic schedule. 538 * iso changes, interrupt usually doesn't. 539 */ 540 spin_lock_irqsave(&fotg210->lock, flags); 541 for (i = 0; i < fotg210->periodic_size; i++) { 542 p = fotg210->pshadow[i]; 543 if (likely(!p.ptr)) 544 continue; 545 tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]); 546 547 temp = scnprintf(next, size, "%4d: ", i); 548 size -= temp; 549 next += temp; 550 551 do { 552 struct fotg210_qh_hw *hw; 553 554 switch (hc32_to_cpu(fotg210, tag)) { 555 case Q_TYPE_QH: 556 hw = p.qh->hw; 557 temp = scnprintf(next, size, " qh%d-%04x/%p", 558 p.qh->period, 559 hc32_to_cpup(fotg210, 560 &hw->hw_info2) 561 /* uframe masks */ 562 & (QH_CMASK | QH_SMASK), 563 p.qh); 564 size -= temp; 565 next += temp; 566 /* don't repeat what follows this qh */ 567 for (temp = 0; temp < seen_count; temp++) { 568 if (seen[temp].ptr != p.ptr) 569 continue; 570 if (p.qh->qh_next.ptr) { 571 temp = scnprintf(next, size, 572 " ..."); 573 size -= temp; 574 next += temp; 575 } 576 break; 577 } 578 /* show more info the first time around */ 579 if (temp == seen_count) { 580 u32 scratch = hc32_to_cpup(fotg210, 581 &hw->hw_info1); 582 struct fotg210_qtd *qtd; 583 char *type = ""; 584 585 /* count tds, get ep direction */ 586 temp = 0; 587 list_for_each_entry(qtd, 588 &p.qh->qtd_list, 589 qtd_list) { 590 temp++; 591 switch (0x03 & (hc32_to_cpu( 592 fotg210, 593 qtd->hw_token) >> 8)) { 594 case 0: 595 type = "out"; 596 continue; 597 case 1: 598 type = "in"; 599 continue; 600 } 601 } 602 603 temp = scnprintf(next, size, 604 "(%c%d ep%d%s " 605 "[%d/%d] q%d p%d)", 606 speed_char(scratch), 607 scratch & 0x007f, 608 (scratch >> 8) & 0x000f, type, 609 p.qh->usecs, p.qh->c_usecs, 610 temp, 611 0x7ff & (scratch >> 16)); 612 613 if (seen_count < DBG_SCHED_LIMIT) 614 seen[seen_count++].qh = p.qh; 615 } else 616 temp = 0; 617 tag = Q_NEXT_TYPE(fotg210, hw->hw_next); 618 p = p.qh->qh_next; 619 break; 620 case Q_TYPE_FSTN: 621 temp = scnprintf(next, size, 622 " fstn-%8x/%p", p.fstn->hw_prev, 623 p.fstn); 624 tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next); 625 p = p.fstn->fstn_next; 626 break; 627 case Q_TYPE_ITD: 628 temp = scnprintf(next, size, 629 " itd/%p", p.itd); 630 tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next); 631 p = p.itd->itd_next; 632 break; 633 } 634 size -= temp; 635 next += temp; 636 } while (p.ptr); 637 638 temp = scnprintf(next, size, "\n"); 639 size -= temp; 640 next += temp; 641 } 642 spin_unlock_irqrestore(&fotg210->lock, flags); 643 kfree(seen); 644 645 return buf->alloc_size - size; 646} 647#undef DBG_SCHED_LIMIT 648 649static const char *rh_state_string(struct fotg210_hcd *fotg210) 650{ 651 switch (fotg210->rh_state) { 652 case FOTG210_RH_HALTED: 653 return "halted"; 654 case FOTG210_RH_SUSPENDED: 655 return "suspended"; 656 case FOTG210_RH_RUNNING: 657 return "running"; 658 case FOTG210_RH_STOPPING: 659 return "stopping"; 660 } 661 return "?"; 662} 663 664static ssize_t fill_registers_buffer(struct debug_buffer *buf) 665{ 666 struct usb_hcd *hcd; 667 struct fotg210_hcd *fotg210; 668 unsigned long flags; 669 unsigned temp, size, i; 670 char *next, scratch[80]; 671 static const char fmt[] = "%*s\n"; 672 static const char label[] = ""; 673 674 hcd = bus_to_hcd(buf->bus); 675 fotg210 = hcd_to_fotg210(hcd); 676 next = buf->output_buf; 677 size = buf->alloc_size; 678 679 spin_lock_irqsave(&fotg210->lock, flags); 680 681 if (!HCD_HW_ACCESSIBLE(hcd)) { 682 size = scnprintf(next, size, 683 "bus %s, device %s\n" 684 "%s\n" 685 "SUSPENDED(no register access)\n", 686 hcd->self.controller->bus->name, 687 dev_name(hcd->self.controller), 688 hcd->product_desc); 689 goto done; 690 } 691 692 /* Capability Registers */ 693 i = HC_VERSION(fotg210, fotg210_readl(fotg210, 694 &fotg210->caps->hc_capbase)); 695 temp = scnprintf(next, size, 696 "bus %s, device %s\n" 697 "%s\n" 698 "EHCI %x.%02x, rh state %s\n", 699 hcd->self.controller->bus->name, 700 dev_name(hcd->self.controller), 701 hcd->product_desc, 702 i >> 8, i & 0x0ff, rh_state_string(fotg210)); 703 size -= temp; 704 next += temp; 705 706 /* FIXME interpret both types of params */ 707 i = fotg210_readl(fotg210, &fotg210->caps->hcs_params); 708 temp = scnprintf(next, size, "structural params 0x%08x\n", i); 709 size -= temp; 710 next += temp; 711 712 i = fotg210_readl(fotg210, &fotg210->caps->hcc_params); 713 temp = scnprintf(next, size, "capability params 0x%08x\n", i); 714 size -= temp; 715 next += temp; 716 717 /* Operational Registers */ 718 temp = dbg_status_buf(scratch, sizeof(scratch), label, 719 fotg210_readl(fotg210, &fotg210->regs->status)); 720 temp = scnprintf(next, size, fmt, temp, scratch); 721 size -= temp; 722 next += temp; 723 724 temp = dbg_command_buf(scratch, sizeof(scratch), label, 725 fotg210_readl(fotg210, &fotg210->regs->command)); 726 temp = scnprintf(next, size, fmt, temp, scratch); 727 size -= temp; 728 next += temp; 729 730 temp = dbg_intr_buf(scratch, sizeof(scratch), label, 731 fotg210_readl(fotg210, &fotg210->regs->intr_enable)); 732 temp = scnprintf(next, size, fmt, temp, scratch); 733 size -= temp; 734 next += temp; 735 736 temp = scnprintf(next, size, "uframe %04x\n", 737 fotg210_read_frame_index(fotg210)); 738 size -= temp; 739 next += temp; 740 741 if (fotg210->async_unlink) { 742 temp = scnprintf(next, size, "async unlink qh %p\n", 743 fotg210->async_unlink); 744 size -= temp; 745 next += temp; 746 } 747 748#ifdef FOTG210_STATS 749 temp = scnprintf(next, size, 750 "irq normal %ld err %ld iaa %ld(lost %ld)\n", 751 fotg210->stats.normal, fotg210->stats.error, fotg210->stats.iaa, 752 fotg210->stats.lost_iaa); 753 size -= temp; 754 next += temp; 755 756 temp = scnprintf(next, size, "complete %ld unlink %ld\n", 757 fotg210->stats.complete, fotg210->stats.unlink); 758 size -= temp; 759 next += temp; 760#endif 761 762done: 763 spin_unlock_irqrestore(&fotg210->lock, flags); 764 765 return buf->alloc_size - size; 766} 767 768static struct debug_buffer *alloc_buffer(struct usb_bus *bus, 769 ssize_t (*fill_func)(struct debug_buffer *)) 770{ 771 struct debug_buffer *buf; 772 773 buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL); 774 775 if (buf) { 776 buf->bus = bus; 777 buf->fill_func = fill_func; 778 mutex_init(&buf->mutex); 779 buf->alloc_size = PAGE_SIZE; 780 } 781 782 return buf; 783} 784 785static int fill_buffer(struct debug_buffer *buf) 786{ 787 int ret = 0; 788 789 if (!buf->output_buf) 790 buf->output_buf = vmalloc(buf->alloc_size); 791 792 if (!buf->output_buf) { 793 ret = -ENOMEM; 794 goto out; 795 } 796 797 ret = buf->fill_func(buf); 798 799 if (ret >= 0) { 800 buf->count = ret; 801 ret = 0; 802 } 803 804out: 805 return ret; 806} 807 808static ssize_t debug_output(struct file *file, char __user *user_buf, 809 size_t len, loff_t *offset) 810{ 811 struct debug_buffer *buf = file->private_data; 812 int ret = 0; 813 814 mutex_lock(&buf->mutex); 815 if (buf->count == 0) { 816 ret = fill_buffer(buf); 817 if (ret != 0) { 818 mutex_unlock(&buf->mutex); 819 goto out; 820 } 821 } 822 mutex_unlock(&buf->mutex); 823 824 ret = simple_read_from_buffer(user_buf, len, offset, 825 buf->output_buf, buf->count); 826 827out: 828 return ret; 829 830} 831 832static int debug_close(struct inode *inode, struct file *file) 833{ 834 struct debug_buffer *buf = file->private_data; 835 836 if (buf) { 837 vfree(buf->output_buf); 838 kfree(buf); 839 } 840 841 return 0; 842} 843static int debug_async_open(struct inode *inode, struct file *file) 844{ 845 file->private_data = alloc_buffer(inode->i_private, fill_async_buffer); 846 847 return file->private_data ? 0 : -ENOMEM; 848} 849 850static int debug_periodic_open(struct inode *inode, struct file *file) 851{ 852 struct debug_buffer *buf; 853 buf = alloc_buffer(inode->i_private, fill_periodic_buffer); 854 if (!buf) 855 return -ENOMEM; 856 857 buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE; 858 file->private_data = buf; 859 return 0; 860} 861 862static int debug_registers_open(struct inode *inode, struct file *file) 863{ 864 file->private_data = alloc_buffer(inode->i_private, 865 fill_registers_buffer); 866 867 return file->private_data ? 0 : -ENOMEM; 868} 869 870static inline void create_debug_files(struct fotg210_hcd *fotg210) 871{ 872 struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self; 873 874 fotg210->debug_dir = debugfs_create_dir(bus->bus_name, 875 fotg210_debug_root); 876 if (!fotg210->debug_dir) 877 return; 878 879 if (!debugfs_create_file("async", S_IRUGO, fotg210->debug_dir, bus, 880 &debug_async_fops)) 881 goto file_error; 882 883 if (!debugfs_create_file("periodic", S_IRUGO, fotg210->debug_dir, bus, 884 &debug_periodic_fops)) 885 goto file_error; 886 887 if (!debugfs_create_file("registers", S_IRUGO, fotg210->debug_dir, bus, 888 &debug_registers_fops)) 889 goto file_error; 890 891 return; 892 893file_error: 894 debugfs_remove_recursive(fotg210->debug_dir); 895} 896 897static inline void remove_debug_files(struct fotg210_hcd *fotg210) 898{ 899 debugfs_remove_recursive(fotg210->debug_dir); 900} 901 902/*-------------------------------------------------------------------------*/ 903 904/* 905 * handshake - spin reading hc until handshake completes or fails 906 * @ptr: address of hc register to be read 907 * @mask: bits to look at in result of read 908 * @done: value of those bits when handshake succeeds 909 * @usec: timeout in microseconds 910 * 911 * Returns negative errno, or zero on success 912 * 913 * Success happens when the "mask" bits have the specified value (hardware 914 * handshake done). There are two failure modes: "usec" have passed (major 915 * hardware flakeout), or the register reads as all-ones (hardware removed). 916 * 917 * That last failure should_only happen in cases like physical cardbus eject 918 * before driver shutdown. But it also seems to be caused by bugs in cardbus 919 * bridge shutdown: shutting down the bridge before the devices using it. 920 */ 921static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr, 922 u32 mask, u32 done, int usec) 923{ 924 u32 result; 925 926 do { 927 result = fotg210_readl(fotg210, ptr); 928 if (result == ~(u32)0) /* card removed */ 929 return -ENODEV; 930 result &= mask; 931 if (result == done) 932 return 0; 933 udelay(1); 934 usec--; 935 } while (usec > 0); 936 return -ETIMEDOUT; 937} 938 939/* 940 * Force HC to halt state from unknown (EHCI spec section 2.3). 941 * Must be called with interrupts enabled and the lock not held. 942 */ 943static int fotg210_halt(struct fotg210_hcd *fotg210) 944{ 945 u32 temp; 946 947 spin_lock_irq(&fotg210->lock); 948 949 /* disable any irqs left enabled by previous code */ 950 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable); 951 952 /* 953 * This routine gets called during probe before fotg210->command 954 * has been initialized, so we can't rely on its value. 955 */ 956 fotg210->command &= ~CMD_RUN; 957 temp = fotg210_readl(fotg210, &fotg210->regs->command); 958 temp &= ~(CMD_RUN | CMD_IAAD); 959 fotg210_writel(fotg210, temp, &fotg210->regs->command); 960 961 spin_unlock_irq(&fotg210->lock); 962 synchronize_irq(fotg210_to_hcd(fotg210)->irq); 963 964 return handshake(fotg210, &fotg210->regs->status, 965 STS_HALT, STS_HALT, 16 * 125); 966} 967 968/* 969 * Reset a non-running (STS_HALT == 1) controller. 970 * Must be called with interrupts enabled and the lock not held. 971 */ 972static int fotg210_reset(struct fotg210_hcd *fotg210) 973{ 974 int retval; 975 u32 command = fotg210_readl(fotg210, &fotg210->regs->command); 976 977 /* If the EHCI debug controller is active, special care must be 978 * taken before and after a host controller reset */ 979 if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210))) 980 fotg210->debug = NULL; 981 982 command |= CMD_RESET; 983 dbg_cmd(fotg210, "reset", command); 984 fotg210_writel(fotg210, command, &fotg210->regs->command); 985 fotg210->rh_state = FOTG210_RH_HALTED; 986 fotg210->next_statechange = jiffies; 987 retval = handshake(fotg210, &fotg210->regs->command, 988 CMD_RESET, 0, 250 * 1000); 989 990 if (retval) 991 return retval; 992 993 if (fotg210->debug) 994 dbgp_external_startup(fotg210_to_hcd(fotg210)); 995 996 fotg210->port_c_suspend = fotg210->suspended_ports = 997 fotg210->resuming_ports = 0; 998 return retval; 999} 1000 1001/* 1002 * Idle the controller (turn off the schedules). 1003 * Must be called with interrupts enabled and the lock not held. 1004 */ 1005static void fotg210_quiesce(struct fotg210_hcd *fotg210) 1006{ 1007 u32 temp; 1008 1009 if (fotg210->rh_state != FOTG210_RH_RUNNING) 1010 return; 1011 1012 /* wait for any schedule enables/disables to take effect */ 1013 temp = (fotg210->command << 10) & (STS_ASS | STS_PSS); 1014 handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp, 1015 16 * 125); 1016 1017 /* then disable anything that's still active */ 1018 spin_lock_irq(&fotg210->lock); 1019 fotg210->command &= ~(CMD_ASE | CMD_PSE); 1020 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command); 1021 spin_unlock_irq(&fotg210->lock); 1022 1023 /* hardware can take 16 microframes to turn off ... */ 1024 handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0, 1025 16 * 125); 1026} 1027 1028/*-------------------------------------------------------------------------*/ 1029 1030static void end_unlink_async(struct fotg210_hcd *fotg210); 1031static void unlink_empty_async(struct fotg210_hcd *fotg210); 1032static void fotg210_work(struct fotg210_hcd *fotg210); 1033static void start_unlink_intr(struct fotg210_hcd *fotg210, 1034 struct fotg210_qh *qh); 1035static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh); 1036 1037/*-------------------------------------------------------------------------*/ 1038 1039/* Set a bit in the USBCMD register */ 1040static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit) 1041{ 1042 fotg210->command |= bit; 1043 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command); 1044 1045 /* unblock posted write */ 1046 fotg210_readl(fotg210, &fotg210->regs->command); 1047} 1048 1049/* Clear a bit in the USBCMD register */ 1050static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit) 1051{ 1052 fotg210->command &= ~bit; 1053 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command); 1054 1055 /* unblock posted write */ 1056 fotg210_readl(fotg210, &fotg210->regs->command); 1057} 1058 1059/*-------------------------------------------------------------------------*/ 1060 1061/* 1062 * EHCI timer support... Now using hrtimers. 1063 * 1064 * Lots of different events are triggered from fotg210->hrtimer. Whenever 1065 * the timer routine runs, it checks each possible event; events that are 1066 * currently enabled and whose expiration time has passed get handled. 1067 * The set of enabled events is stored as a collection of bitflags in 1068 * fotg210->enabled_hrtimer_events, and they are numbered in order of 1069 * increasing delay values (ranging between 1 ms and 100 ms). 1070 * 1071 * Rather than implementing a sorted list or tree of all pending events, 1072 * we keep track only of the lowest-numbered pending event, in 1073 * fotg210->next_hrtimer_event. Whenever fotg210->hrtimer gets restarted, its 1074 * expiration time is set to the timeout value for this event. 1075 * 1076 * As a result, events might not get handled right away; the actual delay 1077 * could be anywhere up to twice the requested delay. This doesn't 1078 * matter, because none of the events are especially time-critical. The 1079 * ones that matter most all have a delay of 1 ms, so they will be 1080 * handled after 2 ms at most, which is okay. In addition to this, we 1081 * allow for an expiration range of 1 ms. 1082 */ 1083 1084/* 1085 * Delay lengths for the hrtimer event types. 1086 * Keep this list sorted by delay length, in the same order as 1087 * the event types indexed by enum fotg210_hrtimer_event in fotg210.h. 1088 */ 1089static unsigned event_delays_ns[] = { 1090 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_ASS */ 1091 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_PSS */ 1092 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_DEAD */ 1093 1125 * NSEC_PER_USEC, /* FOTG210_HRTIMER_UNLINK_INTR */ 1094 2 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_FREE_ITDS */ 1095 6 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_ASYNC_UNLINKS */ 1096 10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IAA_WATCHDOG */ 1097 10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_PERIODIC */ 1098 15 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_ASYNC */ 1099 100 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IO_WATCHDOG */ 1100}; 1101 1102/* Enable a pending hrtimer event */ 1103static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event, 1104 bool resched) 1105{ 1106 ktime_t *timeout = &fotg210->hr_timeouts[event]; 1107 1108 if (resched) 1109 *timeout = ktime_add(ktime_get(), 1110 ktime_set(0, event_delays_ns[event])); 1111 fotg210->enabled_hrtimer_events |= (1 << event); 1112 1113 /* Track only the lowest-numbered pending event */ 1114 if (event < fotg210->next_hrtimer_event) { 1115 fotg210->next_hrtimer_event = event; 1116 hrtimer_start_range_ns(&fotg210->hrtimer, *timeout, 1117 NSEC_PER_MSEC, HRTIMER_MODE_ABS); 1118 } 1119} 1120 1121 1122/* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */ 1123static void fotg210_poll_ASS(struct fotg210_hcd *fotg210) 1124{ 1125 unsigned actual, want; 1126 1127 /* Don't enable anything if the controller isn't running (e.g., died) */ 1128 if (fotg210->rh_state != FOTG210_RH_RUNNING) 1129 return; 1130 1131 want = (fotg210->command & CMD_ASE) ? STS_ASS : 0; 1132 actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS; 1133 1134 if (want != actual) { 1135 1136 /* Poll again later, but give up after about 20 ms */ 1137 if (fotg210->ASS_poll_count++ < 20) { 1138 fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS, 1139 true); 1140 return; 1141 } 1142 fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n", 1143 want, actual); 1144 } 1145 fotg210->ASS_poll_count = 0; 1146 1147 /* The status is up-to-date; restart or stop the schedule as needed */ 1148 if (want == 0) { /* Stopped */ 1149 if (fotg210->async_count > 0) 1150 fotg210_set_command_bit(fotg210, CMD_ASE); 1151 1152 } else { /* Running */ 1153 if (fotg210->async_count == 0) { 1154 1155 /* Turn off the schedule after a while */ 1156 fotg210_enable_event(fotg210, 1157 FOTG210_HRTIMER_DISABLE_ASYNC, 1158 true); 1159 } 1160 } 1161} 1162 1163/* Turn off the async schedule after a brief delay */ 1164static void fotg210_disable_ASE(struct fotg210_hcd *fotg210) 1165{ 1166 fotg210_clear_command_bit(fotg210, CMD_ASE); 1167} 1168 1169 1170/* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */ 1171static void fotg210_poll_PSS(struct fotg210_hcd *fotg210) 1172{ 1173 unsigned actual, want; 1174 1175 /* Don't do anything if the controller isn't running (e.g., died) */ 1176 if (fotg210->rh_state != FOTG210_RH_RUNNING) 1177 return; 1178 1179 want = (fotg210->command & CMD_PSE) ? STS_PSS : 0; 1180 actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS; 1181 1182 if (want != actual) { 1183 1184 /* Poll again later, but give up after about 20 ms */ 1185 if (fotg210->PSS_poll_count++ < 20) { 1186 fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS, 1187 true); 1188 return; 1189 } 1190 fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n", 1191 want, actual); 1192 } 1193 fotg210->PSS_poll_count = 0; 1194 1195 /* The status is up-to-date; restart or stop the schedule as needed */ 1196 if (want == 0) { /* Stopped */ 1197 if (fotg210->periodic_count > 0) 1198 fotg210_set_command_bit(fotg210, CMD_PSE); 1199 1200 } else { /* Running */ 1201 if (fotg210->periodic_count == 0) { 1202 1203 /* Turn off the schedule after a while */ 1204 fotg210_enable_event(fotg210, 1205 FOTG210_HRTIMER_DISABLE_PERIODIC, 1206 true); 1207 } 1208 } 1209} 1210 1211/* Turn off the periodic schedule after a brief delay */ 1212static void fotg210_disable_PSE(struct fotg210_hcd *fotg210) 1213{ 1214 fotg210_clear_command_bit(fotg210, CMD_PSE); 1215} 1216 1217 1218/* Poll the STS_HALT status bit; see when a dead controller stops */ 1219static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210) 1220{ 1221 if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) { 1222 1223 /* Give up after a few milliseconds */ 1224 if (fotg210->died_poll_count++ < 5) { 1225 /* Try again later */ 1226 fotg210_enable_event(fotg210, 1227 FOTG210_HRTIMER_POLL_DEAD, true); 1228 return; 1229 } 1230 fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n"); 1231 } 1232 1233 /* Clean up the mess */ 1234 fotg210->rh_state = FOTG210_RH_HALTED; 1235 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable); 1236 fotg210_work(fotg210); 1237 end_unlink_async(fotg210); 1238 1239 /* Not in process context, so don't try to reset the controller */ 1240} 1241 1242 1243/* Handle unlinked interrupt QHs once they are gone from the hardware */ 1244static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210) 1245{ 1246 bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING); 1247 1248 /* 1249 * Process all the QHs on the intr_unlink list that were added 1250 * before the current unlink cycle began. The list is in 1251 * temporal order, so stop when we reach the first entry in the 1252 * current cycle. But if the root hub isn't running then 1253 * process all the QHs on the list. 1254 */ 1255 fotg210->intr_unlinking = true; 1256 while (fotg210->intr_unlink) { 1257 struct fotg210_qh *qh = fotg210->intr_unlink; 1258 1259 if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle) 1260 break; 1261 fotg210->intr_unlink = qh->unlink_next; 1262 qh->unlink_next = NULL; 1263 end_unlink_intr(fotg210, qh); 1264 } 1265 1266 /* Handle remaining entries later */ 1267 if (fotg210->intr_unlink) { 1268 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR, 1269 true); 1270 ++fotg210->intr_unlink_cycle; 1271 } 1272 fotg210->intr_unlinking = false; 1273} 1274 1275 1276/* Start another free-iTDs/siTDs cycle */ 1277static void start_free_itds(struct fotg210_hcd *fotg210) 1278{ 1279 if (!(fotg210->enabled_hrtimer_events & 1280 BIT(FOTG210_HRTIMER_FREE_ITDS))) { 1281 fotg210->last_itd_to_free = list_entry( 1282 fotg210->cached_itd_list.prev, 1283 struct fotg210_itd, itd_list); 1284 fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true); 1285 } 1286} 1287 1288/* Wait for controller to stop using old iTDs and siTDs */ 1289static void end_free_itds(struct fotg210_hcd *fotg210) 1290{ 1291 struct fotg210_itd *itd, *n; 1292 1293 if (fotg210->rh_state < FOTG210_RH_RUNNING) 1294 fotg210->last_itd_to_free = NULL; 1295 1296 list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) { 1297 list_del(&itd->itd_list); 1298 dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma); 1299 if (itd == fotg210->last_itd_to_free) 1300 break; 1301 } 1302 1303 if (!list_empty(&fotg210->cached_itd_list)) 1304 start_free_itds(fotg210); 1305} 1306 1307 1308/* Handle lost (or very late) IAA interrupts */ 1309static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210) 1310{ 1311 if (fotg210->rh_state != FOTG210_RH_RUNNING) 1312 return; 1313 1314 /* 1315 * Lost IAA irqs wedge things badly; seen first with a vt8235. 1316 * So we need this watchdog, but must protect it against both 1317 * (a) SMP races against real IAA firing and retriggering, and 1318 * (b) clean HC shutdown, when IAA watchdog was pending. 1319 */ 1320 if (fotg210->async_iaa) { 1321 u32 cmd, status; 1322 1323 /* If we get here, IAA is *REALLY* late. It's barely 1324 * conceivable that the system is so busy that CMD_IAAD 1325 * is still legitimately set, so let's be sure it's 1326 * clear before we read STS_IAA. (The HC should clear 1327 * CMD_IAAD when it sets STS_IAA.) 1328 */ 1329 cmd = fotg210_readl(fotg210, &fotg210->regs->command); 1330 1331 /* 1332 * If IAA is set here it either legitimately triggered 1333 * after the watchdog timer expired (_way_ late, so we'll 1334 * still count it as lost) ... or a silicon erratum: 1335 * - VIA seems to set IAA without triggering the IRQ; 1336 * - IAAD potentially cleared without setting IAA. 1337 */ 1338 status = fotg210_readl(fotg210, &fotg210->regs->status); 1339 if ((status & STS_IAA) || !(cmd & CMD_IAAD)) { 1340 COUNT(fotg210->stats.lost_iaa); 1341 fotg210_writel(fotg210, STS_IAA, 1342 &fotg210->regs->status); 1343 } 1344 1345 fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n", 1346 status, cmd); 1347 end_unlink_async(fotg210); 1348 } 1349} 1350 1351 1352/* Enable the I/O watchdog, if appropriate */ 1353static void turn_on_io_watchdog(struct fotg210_hcd *fotg210) 1354{ 1355 /* Not needed if the controller isn't running or it's already enabled */ 1356 if (fotg210->rh_state != FOTG210_RH_RUNNING || 1357 (fotg210->enabled_hrtimer_events & 1358 BIT(FOTG210_HRTIMER_IO_WATCHDOG))) 1359 return; 1360 1361 /* 1362 * Isochronous transfers always need the watchdog. 1363 * For other sorts we use it only if the flag is set. 1364 */ 1365 if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog && 1366 fotg210->async_count + fotg210->intr_count > 0)) 1367 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG, 1368 true); 1369} 1370 1371 1372/* 1373 * Handler functions for the hrtimer event types. 1374 * Keep this array in the same order as the event types indexed by 1375 * enum fotg210_hrtimer_event in fotg210.h. 1376 */ 1377static void (*event_handlers[])(struct fotg210_hcd *) = { 1378 fotg210_poll_ASS, /* FOTG210_HRTIMER_POLL_ASS */ 1379 fotg210_poll_PSS, /* FOTG210_HRTIMER_POLL_PSS */ 1380 fotg210_handle_controller_death, /* FOTG210_HRTIMER_POLL_DEAD */ 1381 fotg210_handle_intr_unlinks, /* FOTG210_HRTIMER_UNLINK_INTR */ 1382 end_free_itds, /* FOTG210_HRTIMER_FREE_ITDS */ 1383 unlink_empty_async, /* FOTG210_HRTIMER_ASYNC_UNLINKS */ 1384 fotg210_iaa_watchdog, /* FOTG210_HRTIMER_IAA_WATCHDOG */ 1385 fotg210_disable_PSE, /* FOTG210_HRTIMER_DISABLE_PERIODIC */ 1386 fotg210_disable_ASE, /* FOTG210_HRTIMER_DISABLE_ASYNC */ 1387 fotg210_work, /* FOTG210_HRTIMER_IO_WATCHDOG */ 1388}; 1389 1390static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t) 1391{ 1392 struct fotg210_hcd *fotg210 = 1393 container_of(t, struct fotg210_hcd, hrtimer); 1394 ktime_t now; 1395 unsigned long events; 1396 unsigned long flags; 1397 unsigned e; 1398 1399 spin_lock_irqsave(&fotg210->lock, flags); 1400 1401 events = fotg210->enabled_hrtimer_events; 1402 fotg210->enabled_hrtimer_events = 0; 1403 fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT; 1404 1405 /* 1406 * Check each pending event. If its time has expired, handle 1407 * the event; otherwise re-enable it. 1408 */ 1409 now = ktime_get(); 1410 for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) { 1411 if (now.tv64 >= fotg210->hr_timeouts[e].tv64) 1412 event_handlers[e](fotg210); 1413 else 1414 fotg210_enable_event(fotg210, e, false); 1415 } 1416 1417 spin_unlock_irqrestore(&fotg210->lock, flags); 1418 return HRTIMER_NORESTART; 1419} 1420 1421/*-------------------------------------------------------------------------*/ 1422 1423#define fotg210_bus_suspend NULL 1424#define fotg210_bus_resume NULL 1425 1426/*-------------------------------------------------------------------------*/ 1427 1428static int check_reset_complete( 1429 struct fotg210_hcd *fotg210, 1430 int index, 1431 u32 __iomem *status_reg, 1432 int port_status 1433) { 1434 if (!(port_status & PORT_CONNECT)) 1435 return port_status; 1436 1437 /* if reset finished and it's still not enabled -- handoff */ 1438 if (!(port_status & PORT_PE)) { 1439 /* with integrated TT, there's nobody to hand it to! */ 1440 fotg210_dbg(fotg210, 1441 "Failed to enable port %d on root hub TT\n", 1442 index+1); 1443 return port_status; 1444 } else { 1445 fotg210_dbg(fotg210, "port %d reset complete, port enabled\n", 1446 index + 1); 1447 } 1448 1449 return port_status; 1450} 1451 1452/*-------------------------------------------------------------------------*/ 1453 1454 1455/* build "status change" packet (one or two bytes) from HC registers */ 1456 1457static int 1458fotg210_hub_status_data(struct usb_hcd *hcd, char *buf) 1459{ 1460 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 1461 u32 temp, status; 1462 u32 mask; 1463 int retval = 1; 1464 unsigned long flags; 1465 1466 /* init status to no-changes */ 1467 buf[0] = 0; 1468 1469 /* Inform the core about resumes-in-progress by returning 1470 * a non-zero value even if there are no status changes. 1471 */ 1472 status = fotg210->resuming_ports; 1473 1474 mask = PORT_CSC | PORT_PEC; 1475 /* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */ 1476 1477 /* no hub change reports (bit 0) for now (power, ...) */ 1478 1479 /* port N changes (bit N)? */ 1480 spin_lock_irqsave(&fotg210->lock, flags); 1481 1482 temp = fotg210_readl(fotg210, &fotg210->regs->port_status); 1483 1484 /* 1485 * Return status information even for ports with OWNER set. 1486 * Otherwise hub_wq wouldn't see the disconnect event when a 1487 * high-speed device is switched over to the companion 1488 * controller by the user. 1489 */ 1490 1491 if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend) 1492 || (fotg210->reset_done[0] && time_after_eq( 1493 jiffies, fotg210->reset_done[0]))) { 1494 buf[0] |= 1 << 1; 1495 status = STS_PCD; 1496 } 1497 /* FIXME autosuspend idle root hubs */ 1498 spin_unlock_irqrestore(&fotg210->lock, flags); 1499 return status ? retval : 0; 1500} 1501 1502/*-------------------------------------------------------------------------*/ 1503 1504static void 1505fotg210_hub_descriptor( 1506 struct fotg210_hcd *fotg210, 1507 struct usb_hub_descriptor *desc 1508) { 1509 int ports = HCS_N_PORTS(fotg210->hcs_params); 1510 u16 temp; 1511 1512 desc->bDescriptorType = USB_DT_HUB; 1513 desc->bPwrOn2PwrGood = 10; /* fotg210 1.0, 2.3.9 says 20ms max */ 1514 desc->bHubContrCurrent = 0; 1515 1516 desc->bNbrPorts = ports; 1517 temp = 1 + (ports / 8); 1518 desc->bDescLength = 7 + 2 * temp; 1519 1520 /* two bitmaps: ports removable, and usb 1.0 legacy PortPwrCtrlMask */ 1521 memset(&desc->u.hs.DeviceRemovable[0], 0, temp); 1522 memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp); 1523 1524 temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */ 1525 temp |= HUB_CHAR_NO_LPSM; /* no power switching */ 1526 desc->wHubCharacteristics = cpu_to_le16(temp); 1527} 1528 1529/*-------------------------------------------------------------------------*/ 1530 1531static int fotg210_hub_control( 1532 struct usb_hcd *hcd, 1533 u16 typeReq, 1534 u16 wValue, 1535 u16 wIndex, 1536 char *buf, 1537 u16 wLength 1538) { 1539 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 1540 int ports = HCS_N_PORTS(fotg210->hcs_params); 1541 u32 __iomem *status_reg = &fotg210->regs->port_status; 1542 u32 temp, temp1, status; 1543 unsigned long flags; 1544 int retval = 0; 1545 unsigned selector; 1546 1547 /* 1548 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR. 1549 * HCS_INDICATOR may say we can change LEDs to off/amber/green. 1550 * (track current state ourselves) ... blink for diagnostics, 1551 * power, "this is the one", etc. EHCI spec supports this. 1552 */ 1553 1554 spin_lock_irqsave(&fotg210->lock, flags); 1555 switch (typeReq) { 1556 case ClearHubFeature: 1557 switch (wValue) { 1558 case C_HUB_LOCAL_POWER: 1559 case C_HUB_OVER_CURRENT: 1560 /* no hub-wide feature/status flags */ 1561 break; 1562 default: 1563 goto error; 1564 } 1565 break; 1566 case ClearPortFeature: 1567 if (!wIndex || wIndex > ports) 1568 goto error; 1569 wIndex--; 1570 temp = fotg210_readl(fotg210, status_reg); 1571 temp &= ~PORT_RWC_BITS; 1572 1573 /* 1574 * Even if OWNER is set, so the port is owned by the 1575 * companion controller, hub_wq needs to be able to clear 1576 * the port-change status bits (especially 1577 * USB_PORT_STAT_C_CONNECTION). 1578 */ 1579 1580 switch (wValue) { 1581 case USB_PORT_FEAT_ENABLE: 1582 fotg210_writel(fotg210, temp & ~PORT_PE, status_reg); 1583 break; 1584 case USB_PORT_FEAT_C_ENABLE: 1585 fotg210_writel(fotg210, temp | PORT_PEC, status_reg); 1586 break; 1587 case USB_PORT_FEAT_SUSPEND: 1588 if (temp & PORT_RESET) 1589 goto error; 1590 if (!(temp & PORT_SUSPEND)) 1591 break; 1592 if ((temp & PORT_PE) == 0) 1593 goto error; 1594 1595 /* resume signaling for 20 msec */ 1596 fotg210_writel(fotg210, temp | PORT_RESUME, status_reg); 1597 fotg210->reset_done[wIndex] = jiffies 1598 + msecs_to_jiffies(USB_RESUME_TIMEOUT); 1599 break; 1600 case USB_PORT_FEAT_C_SUSPEND: 1601 clear_bit(wIndex, &fotg210->port_c_suspend); 1602 break; 1603 case USB_PORT_FEAT_C_CONNECTION: 1604 fotg210_writel(fotg210, temp | PORT_CSC, status_reg); 1605 break; 1606 case USB_PORT_FEAT_C_OVER_CURRENT: 1607 fotg210_writel(fotg210, temp | OTGISR_OVC, 1608 &fotg210->regs->otgisr); 1609 break; 1610 case USB_PORT_FEAT_C_RESET: 1611 /* GetPortStatus clears reset */ 1612 break; 1613 default: 1614 goto error; 1615 } 1616 fotg210_readl(fotg210, &fotg210->regs->command); 1617 break; 1618 case GetHubDescriptor: 1619 fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *) 1620 buf); 1621 break; 1622 case GetHubStatus: 1623 /* no hub-wide feature/status flags */ 1624 memset(buf, 0, 4); 1625 /*cpu_to_le32s ((u32 *) buf); */ 1626 break; 1627 case GetPortStatus: 1628 if (!wIndex || wIndex > ports) 1629 goto error; 1630 wIndex--; 1631 status = 0; 1632 temp = fotg210_readl(fotg210, status_reg); 1633 1634 /* wPortChange bits */ 1635 if (temp & PORT_CSC) 1636 status |= USB_PORT_STAT_C_CONNECTION << 16; 1637 if (temp & PORT_PEC) 1638 status |= USB_PORT_STAT_C_ENABLE << 16; 1639 1640 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr); 1641 if (temp1 & OTGISR_OVC) 1642 status |= USB_PORT_STAT_C_OVERCURRENT << 16; 1643 1644 /* whoever resumes must GetPortStatus to complete it!! */ 1645 if (temp & PORT_RESUME) { 1646 1647 /* Remote Wakeup received? */ 1648 if (!fotg210->reset_done[wIndex]) { 1649 /* resume signaling for 20 msec */ 1650 fotg210->reset_done[wIndex] = jiffies 1651 + msecs_to_jiffies(20); 1652 /* check the port again */ 1653 mod_timer(&fotg210_to_hcd(fotg210)->rh_timer, 1654 fotg210->reset_done[wIndex]); 1655 } 1656 1657 /* resume completed? */ 1658 else if (time_after_eq(jiffies, 1659 fotg210->reset_done[wIndex])) { 1660 clear_bit(wIndex, &fotg210->suspended_ports); 1661 set_bit(wIndex, &fotg210->port_c_suspend); 1662 fotg210->reset_done[wIndex] = 0; 1663 1664 /* stop resume signaling */ 1665 temp = fotg210_readl(fotg210, status_reg); 1666 fotg210_writel(fotg210, 1667 temp & ~(PORT_RWC_BITS | PORT_RESUME), 1668 status_reg); 1669 clear_bit(wIndex, &fotg210->resuming_ports); 1670 retval = handshake(fotg210, status_reg, 1671 PORT_RESUME, 0, 2000 /* 2msec */); 1672 if (retval != 0) { 1673 fotg210_err(fotg210, 1674 "port %d resume error %d\n", 1675 wIndex + 1, retval); 1676 goto error; 1677 } 1678 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10)); 1679 } 1680 } 1681 1682 /* whoever resets must GetPortStatus to complete it!! */ 1683 if ((temp & PORT_RESET) 1684 && time_after_eq(jiffies, 1685 fotg210->reset_done[wIndex])) { 1686 status |= USB_PORT_STAT_C_RESET << 16; 1687 fotg210->reset_done[wIndex] = 0; 1688 clear_bit(wIndex, &fotg210->resuming_ports); 1689 1690 /* force reset to complete */ 1691 fotg210_writel(fotg210, 1692 temp & ~(PORT_RWC_BITS | PORT_RESET), 1693 status_reg); 1694 /* REVISIT: some hardware needs 550+ usec to clear 1695 * this bit; seems too long to spin routinely... 1696 */ 1697 retval = handshake(fotg210, status_reg, 1698 PORT_RESET, 0, 1000); 1699 if (retval != 0) { 1700 fotg210_err(fotg210, "port %d reset error %d\n", 1701 wIndex + 1, retval); 1702 goto error; 1703 } 1704 1705 /* see what we found out */ 1706 temp = check_reset_complete(fotg210, wIndex, status_reg, 1707 fotg210_readl(fotg210, status_reg)); 1708 } 1709 1710 if (!(temp & (PORT_RESUME|PORT_RESET))) { 1711 fotg210->reset_done[wIndex] = 0; 1712 clear_bit(wIndex, &fotg210->resuming_ports); 1713 } 1714 1715 /* transfer dedicated ports to the companion hc */ 1716 if ((temp & PORT_CONNECT) && 1717 test_bit(wIndex, &fotg210->companion_ports)) { 1718 temp &= ~PORT_RWC_BITS; 1719 fotg210_writel(fotg210, temp, status_reg); 1720 fotg210_dbg(fotg210, "port %d --> companion\n", 1721 wIndex + 1); 1722 temp = fotg210_readl(fotg210, status_reg); 1723 } 1724 1725 /* 1726 * Even if OWNER is set, there's no harm letting hub_wq 1727 * see the wPortStatus values (they should all be 0 except 1728 * for PORT_POWER anyway). 1729 */ 1730 1731 if (temp & PORT_CONNECT) { 1732 status |= USB_PORT_STAT_CONNECTION; 1733 status |= fotg210_port_speed(fotg210, temp); 1734 } 1735 if (temp & PORT_PE) 1736 status |= USB_PORT_STAT_ENABLE; 1737 1738 /* maybe the port was unsuspended without our knowledge */ 1739 if (temp & (PORT_SUSPEND|PORT_RESUME)) { 1740 status |= USB_PORT_STAT_SUSPEND; 1741 } else if (test_bit(wIndex, &fotg210->suspended_ports)) { 1742 clear_bit(wIndex, &fotg210->suspended_ports); 1743 clear_bit(wIndex, &fotg210->resuming_ports); 1744 fotg210->reset_done[wIndex] = 0; 1745 if (temp & PORT_PE) 1746 set_bit(wIndex, &fotg210->port_c_suspend); 1747 } 1748 1749 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr); 1750 if (temp1 & OTGISR_OVC) 1751 status |= USB_PORT_STAT_OVERCURRENT; 1752 if (temp & PORT_RESET) 1753 status |= USB_PORT_STAT_RESET; 1754 if (test_bit(wIndex, &fotg210->port_c_suspend)) 1755 status |= USB_PORT_STAT_C_SUSPEND << 16; 1756 1757 if (status & ~0xffff) /* only if wPortChange is interesting */ 1758 dbg_port(fotg210, "GetStatus", wIndex + 1, temp); 1759 put_unaligned_le32(status, buf); 1760 break; 1761 case SetHubFeature: 1762 switch (wValue) { 1763 case C_HUB_LOCAL_POWER: 1764 case C_HUB_OVER_CURRENT: 1765 /* no hub-wide feature/status flags */ 1766 break; 1767 default: 1768 goto error; 1769 } 1770 break; 1771 case SetPortFeature: 1772 selector = wIndex >> 8; 1773 wIndex &= 0xff; 1774 1775 if (!wIndex || wIndex > ports) 1776 goto error; 1777 wIndex--; 1778 temp = fotg210_readl(fotg210, status_reg); 1779 temp &= ~PORT_RWC_BITS; 1780 switch (wValue) { 1781 case USB_PORT_FEAT_SUSPEND: 1782 if ((temp & PORT_PE) == 0 1783 || (temp & PORT_RESET) != 0) 1784 goto error; 1785 1786 /* After above check the port must be connected. 1787 * Set appropriate bit thus could put phy into low power 1788 * mode if we have hostpc feature 1789 */ 1790 fotg210_writel(fotg210, temp | PORT_SUSPEND, 1791 status_reg); 1792 set_bit(wIndex, &fotg210->suspended_ports); 1793 break; 1794 case USB_PORT_FEAT_RESET: 1795 if (temp & PORT_RESUME) 1796 goto error; 1797 /* line status bits may report this as low speed, 1798 * which can be fine if this root hub has a 1799 * transaction translator built in. 1800 */ 1801 fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1); 1802 temp |= PORT_RESET; 1803 temp &= ~PORT_PE; 1804 1805 /* 1806 * caller must wait, then call GetPortStatus 1807 * usb 2.0 spec says 50 ms resets on root 1808 */ 1809 fotg210->reset_done[wIndex] = jiffies 1810 + msecs_to_jiffies(50); 1811 fotg210_writel(fotg210, temp, status_reg); 1812 break; 1813 1814 /* For downstream facing ports (these): one hub port is put 1815 * into test mode according to USB2 11.24.2.13, then the hub 1816 * must be reset (which for root hub now means rmmod+modprobe, 1817 * or else system reboot). See EHCI 2.3.9 and 4.14 for info 1818 * about the EHCI-specific stuff. 1819 */ 1820 case USB_PORT_FEAT_TEST: 1821 if (!selector || selector > 5) 1822 goto error; 1823 spin_unlock_irqrestore(&fotg210->lock, flags); 1824 fotg210_quiesce(fotg210); 1825 spin_lock_irqsave(&fotg210->lock, flags); 1826 1827 /* Put all enabled ports into suspend */ 1828 temp = fotg210_readl(fotg210, status_reg) & 1829 ~PORT_RWC_BITS; 1830 if (temp & PORT_PE) 1831 fotg210_writel(fotg210, temp | PORT_SUSPEND, 1832 status_reg); 1833 1834 spin_unlock_irqrestore(&fotg210->lock, flags); 1835 fotg210_halt(fotg210); 1836 spin_lock_irqsave(&fotg210->lock, flags); 1837 1838 temp = fotg210_readl(fotg210, status_reg); 1839 temp |= selector << 16; 1840 fotg210_writel(fotg210, temp, status_reg); 1841 break; 1842 1843 default: 1844 goto error; 1845 } 1846 fotg210_readl(fotg210, &fotg210->regs->command); 1847 break; 1848 1849 default: 1850error: 1851 /* "stall" on error */ 1852 retval = -EPIPE; 1853 } 1854 spin_unlock_irqrestore(&fotg210->lock, flags); 1855 return retval; 1856} 1857 1858static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd, 1859 int portnum) 1860{ 1861 return; 1862} 1863 1864static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd, 1865 int portnum) 1866{ 1867 return 0; 1868} 1869/*-------------------------------------------------------------------------*/ 1870/* 1871 * There's basically three types of memory: 1872 * - data used only by the HCD ... kmalloc is fine 1873 * - async and periodic schedules, shared by HC and HCD ... these 1874 * need to use dma_pool or dma_alloc_coherent 1875 * - driver buffers, read/written by HC ... single shot DMA mapped 1876 * 1877 * There's also "register" data (e.g. PCI or SOC), which is memory mapped. 1878 * No memory seen by this driver is pageable. 1879 */ 1880 1881/*-------------------------------------------------------------------------*/ 1882 1883/* Allocate the key transfer structures from the previously allocated pool */ 1884 1885static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210, 1886 struct fotg210_qtd *qtd, dma_addr_t dma) 1887{ 1888 memset(qtd, 0, sizeof(*qtd)); 1889 qtd->qtd_dma = dma; 1890 qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT); 1891 qtd->hw_next = FOTG210_LIST_END(fotg210); 1892 qtd->hw_alt_next = FOTG210_LIST_END(fotg210); 1893 INIT_LIST_HEAD(&qtd->qtd_list); 1894} 1895 1896static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210, 1897 gfp_t flags) 1898{ 1899 struct fotg210_qtd *qtd; 1900 dma_addr_t dma; 1901 1902 qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma); 1903 if (qtd != NULL) 1904 fotg210_qtd_init(fotg210, qtd, dma); 1905 1906 return qtd; 1907} 1908 1909static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210, 1910 struct fotg210_qtd *qtd) 1911{ 1912 dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma); 1913} 1914 1915 1916static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) 1917{ 1918 /* clean qtds first, and know this is not linked */ 1919 if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) { 1920 fotg210_dbg(fotg210, "unused qh not empty!\n"); 1921 BUG(); 1922 } 1923 if (qh->dummy) 1924 fotg210_qtd_free(fotg210, qh->dummy); 1925 dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma); 1926 kfree(qh); 1927} 1928 1929static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210, 1930 gfp_t flags) 1931{ 1932 struct fotg210_qh *qh; 1933 dma_addr_t dma; 1934 1935 qh = kzalloc(sizeof(*qh), GFP_ATOMIC); 1936 if (!qh) 1937 goto done; 1938 qh->hw = (struct fotg210_qh_hw *) 1939 dma_pool_alloc(fotg210->qh_pool, flags, &dma); 1940 if (!qh->hw) 1941 goto fail; 1942 memset(qh->hw, 0, sizeof(*qh->hw)); 1943 qh->qh_dma = dma; 1944 INIT_LIST_HEAD(&qh->qtd_list); 1945 1946 /* dummy td enables safe urb queuing */ 1947 qh->dummy = fotg210_qtd_alloc(fotg210, flags); 1948 if (qh->dummy == NULL) { 1949 fotg210_dbg(fotg210, "no dummy td\n"); 1950 goto fail1; 1951 } 1952done: 1953 return qh; 1954fail1: 1955 dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma); 1956fail: 1957 kfree(qh); 1958 return NULL; 1959} 1960 1961/*-------------------------------------------------------------------------*/ 1962 1963/* The queue heads and transfer descriptors are managed from pools tied 1964 * to each of the "per device" structures. 1965 * This is the initialisation and cleanup code. 1966 */ 1967 1968static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210) 1969{ 1970 if (fotg210->async) 1971 qh_destroy(fotg210, fotg210->async); 1972 fotg210->async = NULL; 1973 1974 if (fotg210->dummy) 1975 qh_destroy(fotg210, fotg210->dummy); 1976 fotg210->dummy = NULL; 1977 1978 /* DMA consistent memory and pools */ 1979 if (fotg210->qtd_pool) 1980 dma_pool_destroy(fotg210->qtd_pool); 1981 fotg210->qtd_pool = NULL; 1982 1983 if (fotg210->qh_pool) { 1984 dma_pool_destroy(fotg210->qh_pool); 1985 fotg210->qh_pool = NULL; 1986 } 1987 1988 if (fotg210->itd_pool) 1989 dma_pool_destroy(fotg210->itd_pool); 1990 fotg210->itd_pool = NULL; 1991 1992 if (fotg210->periodic) 1993 dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller, 1994 fotg210->periodic_size * sizeof(u32), 1995 fotg210->periodic, fotg210->periodic_dma); 1996 fotg210->periodic = NULL; 1997 1998 /* shadow periodic table */ 1999 kfree(fotg210->pshadow); 2000 fotg210->pshadow = NULL; 2001} 2002 2003/* remember to add cleanup code (above) if you add anything here */ 2004static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags) 2005{ 2006 int i; 2007 2008 /* QTDs for control/bulk/intr transfers */ 2009 fotg210->qtd_pool = dma_pool_create("fotg210_qtd", 2010 fotg210_to_hcd(fotg210)->self.controller, 2011 sizeof(struct fotg210_qtd), 2012 32 /* byte alignment (for hw parts) */, 2013 4096 /* can't cross 4K */); 2014 if (!fotg210->qtd_pool) 2015 goto fail; 2016 2017 /* QHs for control/bulk/intr transfers */ 2018 fotg210->qh_pool = dma_pool_create("fotg210_qh", 2019 fotg210_to_hcd(fotg210)->self.controller, 2020 sizeof(struct fotg210_qh_hw), 2021 32 /* byte alignment (for hw parts) */, 2022 4096 /* can't cross 4K */); 2023 if (!fotg210->qh_pool) 2024 goto fail; 2025 2026 fotg210->async = fotg210_qh_alloc(fotg210, flags); 2027 if (!fotg210->async) 2028 goto fail; 2029 2030 /* ITD for high speed ISO transfers */ 2031 fotg210->itd_pool = dma_pool_create("fotg210_itd", 2032 fotg210_to_hcd(fotg210)->self.controller, 2033 sizeof(struct fotg210_itd), 2034 64 /* byte alignment (for hw parts) */, 2035 4096 /* can't cross 4K */); 2036 if (!fotg210->itd_pool) 2037 goto fail; 2038 2039 /* Hardware periodic table */ 2040 fotg210->periodic = (__le32 *) 2041 dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller, 2042 fotg210->periodic_size * sizeof(__le32), 2043 &fotg210->periodic_dma, 0); 2044 if (fotg210->periodic == NULL) 2045 goto fail; 2046 2047 for (i = 0; i < fotg210->periodic_size; i++) 2048 fotg210->periodic[i] = FOTG210_LIST_END(fotg210); 2049 2050 /* software shadow of hardware table */ 2051 fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *), 2052 flags); 2053 if (fotg210->pshadow != NULL) 2054 return 0; 2055 2056fail: 2057 fotg210_dbg(fotg210, "couldn't init memory\n"); 2058 fotg210_mem_cleanup(fotg210); 2059 return -ENOMEM; 2060} 2061/*-------------------------------------------------------------------------*/ 2062/* 2063 * EHCI hardware queue manipulation ... the core. QH/QTD manipulation. 2064 * 2065 * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd" 2066 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned 2067 * buffers needed for the larger number). We use one QH per endpoint, queue 2068 * multiple urbs (all three types) per endpoint. URBs may need several qtds. 2069 * 2070 * ISO traffic uses "ISO TD" (itd) records, and (along with 2071 * interrupts) needs careful scheduling. Performance improvements can be 2072 * an ongoing challenge. That's in "ehci-sched.c". 2073 * 2074 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs, 2075 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using 2076 * (b) special fields in qh entries or (c) split iso entries. TTs will 2077 * buffer low/full speed data so the host collects it at high speed. 2078 */ 2079 2080/*-------------------------------------------------------------------------*/ 2081 2082/* fill a qtd, returning how much of the buffer we were able to queue up */ 2083 2084static int 2085qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd, dma_addr_t buf, 2086 size_t len, int token, int maxpacket) 2087{ 2088 int i, count; 2089 u64 addr = buf; 2090 2091 /* one buffer entry per 4K ... first might be short or unaligned */ 2092 qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr); 2093 qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32)); 2094 count = 0x1000 - (buf & 0x0fff); /* rest of that page */ 2095 if (likely(len < count)) /* ... iff needed */ 2096 count = len; 2097 else { 2098 buf += 0x1000; 2099 buf &= ~0x0fff; 2100 2101 /* per-qtd limit: from 16K to 20K (best alignment) */ 2102 for (i = 1; count < len && i < 5; i++) { 2103 addr = buf; 2104 qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr); 2105 qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210, 2106 (u32)(addr >> 32)); 2107 buf += 0x1000; 2108 if ((count + 0x1000) < len) 2109 count += 0x1000; 2110 else 2111 count = len; 2112 } 2113 2114 /* short packets may only terminate transfers */ 2115 if (count != len) 2116 count -= (count % maxpacket); 2117 } 2118 qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token); 2119 qtd->length = count; 2120 2121 return count; 2122} 2123 2124/*-------------------------------------------------------------------------*/ 2125 2126static inline void 2127qh_update(struct fotg210_hcd *fotg210, struct fotg210_qh *qh, 2128 struct fotg210_qtd *qtd) 2129{ 2130 struct fotg210_qh_hw *hw = qh->hw; 2131 2132 /* writes to an active overlay are unsafe */ 2133 BUG_ON(qh->qh_state != QH_STATE_IDLE); 2134 2135 hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma); 2136 hw->hw_alt_next = FOTG210_LIST_END(fotg210); 2137 2138 /* Except for control endpoints, we make hardware maintain data 2139 * toggle (like OHCI) ... here (re)initialize the toggle in the QH, 2140 * and set the pseudo-toggle in udev. Only usb_clear_halt() will 2141 * ever clear it. 2142 */ 2143 if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) { 2144 unsigned is_out, epnum; 2145 2146 is_out = qh->is_out; 2147 epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f; 2148 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) { 2149 hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE); 2150 usb_settoggle(qh->dev, epnum, is_out, 1); 2151 } 2152 } 2153 2154 hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING); 2155} 2156 2157/* if it weren't for a common silicon quirk (writing the dummy into the qh 2158 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault 2159 * recovery (including urb dequeue) would need software changes to a QH... 2160 */ 2161static void 2162qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) 2163{ 2164 struct fotg210_qtd *qtd; 2165 2166 if (list_empty(&qh->qtd_list)) 2167 qtd = qh->dummy; 2168 else { 2169 qtd = list_entry(qh->qtd_list.next, 2170 struct fotg210_qtd, qtd_list); 2171 /* 2172 * first qtd may already be partially processed. 2173 * If we come here during unlink, the QH overlay region 2174 * might have reference to the just unlinked qtd. The 2175 * qtd is updated in qh_completions(). Update the QH 2176 * overlay here. 2177 */ 2178 if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) { 2179 qh->hw->hw_qtd_next = qtd->hw_next; 2180 qtd = NULL; 2181 } 2182 } 2183 2184 if (qtd) 2185 qh_update(fotg210, qh, qtd); 2186} 2187 2188/*-------------------------------------------------------------------------*/ 2189 2190static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh); 2191 2192static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd, 2193 struct usb_host_endpoint *ep) 2194{ 2195 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 2196 struct fotg210_qh *qh = ep->hcpriv; 2197 unsigned long flags; 2198 2199 spin_lock_irqsave(&fotg210->lock, flags); 2200 qh->clearing_tt = 0; 2201 if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list) 2202 && fotg210->rh_state == FOTG210_RH_RUNNING) 2203 qh_link_async(fotg210, qh); 2204 spin_unlock_irqrestore(&fotg210->lock, flags); 2205} 2206 2207static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210, 2208 struct fotg210_qh *qh, 2209 struct urb *urb, u32 token) 2210{ 2211 2212 /* If an async split transaction gets an error or is unlinked, 2213 * the TT buffer may be left in an indeterminate state. We 2214 * have to clear the TT buffer. 2215 * 2216 * Note: this routine is never called for Isochronous transfers. 2217 */ 2218 if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) { 2219 struct usb_device *tt = urb->dev->tt->hub; 2220 dev_dbg(&tt->dev, 2221 "clear tt buffer port %d, a%d ep%d t%08x\n", 2222 urb->dev->ttport, urb->dev->devnum, 2223 usb_pipeendpoint(urb->pipe), token); 2224 2225 if (urb->dev->tt->hub != 2226 fotg210_to_hcd(fotg210)->self.root_hub) { 2227 if (usb_hub_clear_tt_buffer(urb) == 0) 2228 qh->clearing_tt = 1; 2229 } 2230 } 2231} 2232 2233static int qtd_copy_status( 2234 struct fotg210_hcd *fotg210, 2235 struct urb *urb, 2236 size_t length, 2237 u32 token 2238) 2239{ 2240 int status = -EINPROGRESS; 2241 2242 /* count IN/OUT bytes, not SETUP (even short packets) */ 2243 if (likely(QTD_PID(token) != 2)) 2244 urb->actual_length += length - QTD_LENGTH(token); 2245 2246 /* don't modify error codes */ 2247 if (unlikely(urb->unlinked)) 2248 return status; 2249 2250 /* force cleanup after short read; not always an error */ 2251 if (unlikely(IS_SHORT_READ(token))) 2252 status = -EREMOTEIO; 2253 2254 /* serious "can't proceed" faults reported by the hardware */ 2255 if (token & QTD_STS_HALT) { 2256 if (token & QTD_STS_BABBLE) { 2257 /* FIXME "must" disable babbling device's port too */ 2258 status = -EOVERFLOW; 2259 /* CERR nonzero + halt --> stall */ 2260 } else if (QTD_CERR(token)) { 2261 status = -EPIPE; 2262 2263 /* In theory, more than one of the following bits can be set 2264 * since they are sticky and the transaction is retried. 2265 * Which to test first is rather arbitrary. 2266 */ 2267 } else if (token & QTD_STS_MMF) { 2268 /* fs/ls interrupt xfer missed the complete-split */ 2269 status = -EPROTO; 2270 } else if (token & QTD_STS_DBE) { 2271 status = (QTD_PID(token) == 1) /* IN ? */ 2272 ? -ENOSR /* hc couldn't read data */ 2273 : -ECOMM; /* hc couldn't write data */ 2274 } else if (token & QTD_STS_XACT) { 2275 /* timeout, bad CRC, wrong PID, etc */ 2276 fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n", 2277 urb->dev->devpath, 2278 usb_pipeendpoint(urb->pipe), 2279 usb_pipein(urb->pipe) ? "in" : "out"); 2280 status = -EPROTO; 2281 } else { /* unknown */ 2282 status = -EPROTO; 2283 } 2284 2285 fotg210_dbg(fotg210, 2286 "dev%d ep%d%s qtd token %08x --> status %d\n", 2287 usb_pipedevice(urb->pipe), 2288 usb_pipeendpoint(urb->pipe), 2289 usb_pipein(urb->pipe) ? "in" : "out", 2290 token, status); 2291 } 2292 2293 return status; 2294} 2295 2296static void 2297fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb, int status) 2298__releases(fotg210->lock) 2299__acquires(fotg210->lock) 2300{ 2301 if (likely(urb->hcpriv != NULL)) { 2302 struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv; 2303 2304 /* S-mask in a QH means it's an interrupt urb */ 2305 if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) { 2306 2307 /* ... update hc-wide periodic stats (for usbfs) */ 2308 fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--; 2309 } 2310 } 2311 2312 if (unlikely(urb->unlinked)) { 2313 COUNT(fotg210->stats.unlink); 2314 } else { 2315 /* report non-error and short read status as zero */ 2316 if (status == -EINPROGRESS || status == -EREMOTEIO) 2317 status = 0; 2318 COUNT(fotg210->stats.complete); 2319 } 2320 2321#ifdef FOTG210_URB_TRACE 2322 fotg210_dbg(fotg210, 2323 "%s %s urb %p ep%d%s status %d len %d/%d\n", 2324 __func__, urb->dev->devpath, urb, 2325 usb_pipeendpoint(urb->pipe), 2326 usb_pipein(urb->pipe) ? "in" : "out", 2327 status, 2328 urb->actual_length, urb->transfer_buffer_length); 2329#endif 2330 2331 /* complete() can reenter this HCD */ 2332 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb); 2333 spin_unlock(&fotg210->lock); 2334 usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status); 2335 spin_lock(&fotg210->lock); 2336} 2337 2338static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh); 2339 2340/* 2341 * Process and free completed qtds for a qh, returning URBs to drivers. 2342 * Chases up to qh->hw_current. Returns number of completions called, 2343 * indicating how much "real" work we did. 2344 */ 2345static unsigned 2346qh_completions(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) 2347{ 2348 struct fotg210_qtd *last, *end = qh->dummy; 2349 struct list_head *entry, *tmp; 2350 int last_status; 2351 int stopped; 2352 unsigned count = 0; 2353 u8 state; 2354 struct fotg210_qh_hw *hw = qh->hw; 2355 2356 if (unlikely(list_empty(&qh->qtd_list))) 2357 return count; 2358 2359 /* completions (or tasks on other cpus) must never clobber HALT 2360 * till we've gone through and cleaned everything up, even when 2361 * they add urbs to this qh's queue or mark them for unlinking. 2362 * 2363 * NOTE: unlinking expects to be done in queue order. 2364 * 2365 * It's a bug for qh->qh_state to be anything other than 2366 * QH_STATE_IDLE, unless our caller is scan_async() or 2367 * scan_intr(). 2368 */ 2369 state = qh->qh_state; 2370 qh->qh_state = QH_STATE_COMPLETING; 2371 stopped = (state == QH_STATE_IDLE); 2372 2373 rescan: 2374 last = NULL; 2375 last_status = -EINPROGRESS; 2376 qh->needs_rescan = 0; 2377 2378 /* remove de-activated QTDs from front of queue. 2379 * after faults (including short reads), cleanup this urb 2380 * then let the queue advance. 2381 * if queue is stopped, handles unlinks. 2382 */ 2383 list_for_each_safe(entry, tmp, &qh->qtd_list) { 2384 struct fotg210_qtd *qtd; 2385 struct urb *urb; 2386 u32 token = 0; 2387 2388 qtd = list_entry(entry, struct fotg210_qtd, qtd_list); 2389 urb = qtd->urb; 2390 2391 /* clean up any state from previous QTD ...*/ 2392 if (last) { 2393 if (likely(last->urb != urb)) { 2394 fotg210_urb_done(fotg210, last->urb, 2395 last_status); 2396 count++; 2397 last_status = -EINPROGRESS; 2398 } 2399 fotg210_qtd_free(fotg210, last); 2400 last = NULL; 2401 } 2402 2403 /* ignore urbs submitted during completions we reported */ 2404 if (qtd == end) 2405 break; 2406 2407 /* hardware copies qtd out of qh overlay */ 2408 rmb(); 2409 token = hc32_to_cpu(fotg210, qtd->hw_token); 2410 2411 /* always clean up qtds the hc de-activated */ 2412 retry_xacterr: 2413 if ((token & QTD_STS_ACTIVE) == 0) { 2414 2415 /* Report Data Buffer Error: non-fatal but useful */ 2416 if (token & QTD_STS_DBE) 2417 fotg210_dbg(fotg210, 2418 "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n", 2419 urb, 2420 usb_endpoint_num(&urb->ep->desc), 2421 usb_endpoint_dir_in(&urb->ep->desc) 2422 ? "in" : "out", 2423 urb->transfer_buffer_length, 2424 qtd, 2425 qh); 2426 2427 /* on STALL, error, and short reads this urb must 2428 * complete and all its qtds must be recycled. 2429 */ 2430 if ((token & QTD_STS_HALT) != 0) { 2431 2432 /* retry transaction errors until we 2433 * reach the software xacterr limit 2434 */ 2435 if ((token & QTD_STS_XACT) && 2436 QTD_CERR(token) == 0 && 2437 ++qh->xacterrs < QH_XACTERR_MAX && 2438 !urb->unlinked) { 2439 fotg210_dbg(fotg210, 2440 "detected XactErr len %zu/%zu retry %d\n", 2441 qtd->length - QTD_LENGTH(token), qtd->length, qh->xacterrs); 2442 2443 /* reset the token in the qtd and the 2444 * qh overlay (which still contains 2445 * the qtd) so that we pick up from 2446 * where we left off 2447 */ 2448 token &= ~QTD_STS_HALT; 2449 token |= QTD_STS_ACTIVE | 2450 (FOTG210_TUNE_CERR << 10); 2451 qtd->hw_token = cpu_to_hc32(fotg210, 2452 token); 2453 wmb(); 2454 hw->hw_token = cpu_to_hc32(fotg210, 2455 token); 2456 goto retry_xacterr; 2457 } 2458 stopped = 1; 2459 2460 /* magic dummy for some short reads; qh won't advance. 2461 * that silicon quirk can kick in with this dummy too. 2462 * 2463 * other short reads won't stop the queue, including 2464 * control transfers (status stage handles that) or 2465 * most other single-qtd reads ... the queue stops if 2466 * URB_SHORT_NOT_OK was set so the driver submitting 2467 * the urbs could clean it up. 2468 */ 2469 } else if (IS_SHORT_READ(token) 2470 && !(qtd->hw_alt_next 2471 & FOTG210_LIST_END(fotg210))) { 2472 stopped = 1; 2473 } 2474 2475 /* stop scanning when we reach qtds the hc is using */ 2476 } else if (likely(!stopped 2477 && fotg210->rh_state >= FOTG210_RH_RUNNING)) { 2478 break; 2479 2480 /* scan the whole queue for unlinks whenever it stops */ 2481 } else { 2482 stopped = 1; 2483 2484 /* cancel everything if we halt, suspend, etc */ 2485 if (fotg210->rh_state < FOTG210_RH_RUNNING) 2486 last_status = -ESHUTDOWN; 2487 2488 /* this qtd is active; skip it unless a previous qtd 2489 * for its urb faulted, or its urb was canceled. 2490 */ 2491 else if (last_status == -EINPROGRESS && !urb->unlinked) 2492 continue; 2493 2494 /* qh unlinked; token in overlay may be most current */ 2495 if (state == QH_STATE_IDLE 2496 && cpu_to_hc32(fotg210, qtd->qtd_dma) 2497 == hw->hw_current) { 2498 token = hc32_to_cpu(fotg210, hw->hw_token); 2499 2500 /* An unlink may leave an incomplete 2501 * async transaction in the TT buffer. 2502 * We have to clear it. 2503 */ 2504 fotg210_clear_tt_buffer(fotg210, qh, urb, 2505 token); 2506 } 2507 } 2508 2509 /* unless we already know the urb's status, collect qtd status 2510 * and update count of bytes transferred. in common short read 2511 * cases with only one data qtd (including control transfers), 2512 * queue processing won't halt. but with two or more qtds (for 2513 * example, with a 32 KB transfer), when the first qtd gets a 2514 * short read the second must be removed by hand. 2515 */ 2516 if (last_status == -EINPROGRESS) { 2517 last_status = qtd_copy_status(fotg210, urb, 2518 qtd->length, token); 2519 if (last_status == -EREMOTEIO 2520 && (qtd->hw_alt_next 2521 & FOTG210_LIST_END(fotg210))) 2522 last_status = -EINPROGRESS; 2523 2524 /* As part of low/full-speed endpoint-halt processing 2525 * we must clear the TT buffer (11.17.5). 2526 */ 2527 if (unlikely(last_status != -EINPROGRESS && 2528 last_status != -EREMOTEIO)) { 2529 /* The TT's in some hubs malfunction when they 2530 * receive this request following a STALL (they 2531 * stop sending isochronous packets). Since a 2532 * STALL can't leave the TT buffer in a busy 2533 * state (if you believe Figures 11-48 - 11-51 2534 * in the USB 2.0 spec), we won't clear the TT 2535 * buffer in this case. Strictly speaking this 2536 * is a violation of the spec. 2537 */ 2538 if (last_status != -EPIPE) 2539 fotg210_clear_tt_buffer(fotg210, qh, 2540 urb, token); 2541 } 2542 } 2543 2544 /* if we're removing something not at the queue head, 2545 * patch the hardware queue pointer. 2546 */ 2547 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) { 2548 last = list_entry(qtd->qtd_list.prev, 2549 struct fotg210_qtd, qtd_list); 2550 last->hw_next = qtd->hw_next; 2551 } 2552 2553 /* remove qtd; it's recycled after possible urb completion */ 2554 list_del(&qtd->qtd_list); 2555 last = qtd; 2556 2557 /* reinit the xacterr counter for the next qtd */ 2558 qh->xacterrs = 0; 2559 } 2560 2561 /* last urb's completion might still need calling */ 2562 if (likely(last != NULL)) { 2563 fotg210_urb_done(fotg210, last->urb, last_status); 2564 count++; 2565 fotg210_qtd_free(fotg210, last); 2566 } 2567 2568 /* Do we need to rescan for URBs dequeued during a giveback? */ 2569 if (unlikely(qh->needs_rescan)) { 2570 /* If the QH is already unlinked, do the rescan now. */ 2571 if (state == QH_STATE_IDLE) 2572 goto rescan; 2573 2574 /* Otherwise we have to wait until the QH is fully unlinked. 2575 * Our caller will start an unlink if qh->needs_rescan is 2576 * set. But if an unlink has already started, nothing needs 2577 * to be done. 2578 */ 2579 if (state != QH_STATE_LINKED) 2580 qh->needs_rescan = 0; 2581 } 2582 2583 /* restore original state; caller must unlink or relink */ 2584 qh->qh_state = state; 2585 2586 /* be sure the hardware's done with the qh before refreshing 2587 * it after fault cleanup, or recovering from silicon wrongly 2588 * overlaying the dummy qtd (which reduces DMA chatter). 2589 */ 2590 if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) { 2591 switch (state) { 2592 case QH_STATE_IDLE: 2593 qh_refresh(fotg210, qh); 2594 break; 2595 case QH_STATE_LINKED: 2596 /* We won't refresh a QH that's linked (after the HC 2597 * stopped the queue). That avoids a race: 2598 * - HC reads first part of QH; 2599 * - CPU updates that first part and the token; 2600 * - HC reads rest of that QH, including token 2601 * Result: HC gets an inconsistent image, and then 2602 * DMAs to/from the wrong memory (corrupting it). 2603 * 2604 * That should be rare for interrupt transfers, 2605 * except maybe high bandwidth ... 2606 */ 2607 2608 /* Tell the caller to start an unlink */ 2609 qh->needs_rescan = 1; 2610 break; 2611 /* otherwise, unlink already started */ 2612 } 2613 } 2614 2615 return count; 2616} 2617 2618/*-------------------------------------------------------------------------*/ 2619 2620/* high bandwidth multiplier, as encoded in highspeed endpoint descriptors */ 2621#define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03)) 2622/* ... and packet size, for any kind of endpoint descriptor */ 2623#define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff) 2624 2625/* 2626 * reverse of qh_urb_transaction: free a list of TDs. 2627 * used for cleanup after errors, before HC sees an URB's TDs. 2628 */ 2629static void qtd_list_free( 2630 struct fotg210_hcd *fotg210, 2631 struct urb *urb, 2632 struct list_head *qtd_list 2633) { 2634 struct list_head *entry, *temp; 2635 2636 list_for_each_safe(entry, temp, qtd_list) { 2637 struct fotg210_qtd *qtd; 2638 2639 qtd = list_entry(entry, struct fotg210_qtd, qtd_list); 2640 list_del(&qtd->qtd_list); 2641 fotg210_qtd_free(fotg210, qtd); 2642 } 2643} 2644 2645/* 2646 * create a list of filled qtds for this URB; won't link into qh. 2647 */ 2648static struct list_head * 2649qh_urb_transaction( 2650 struct fotg210_hcd *fotg210, 2651 struct urb *urb, 2652 struct list_head *head, 2653 gfp_t flags 2654) { 2655 struct fotg210_qtd *qtd, *qtd_prev; 2656 dma_addr_t buf; 2657 int len, this_sg_len, maxpacket; 2658 int is_input; 2659 u32 token; 2660 int i; 2661 struct scatterlist *sg; 2662 2663 /* 2664 * URBs map to sequences of QTDs: one logical transaction 2665 */ 2666 qtd = fotg210_qtd_alloc(fotg210, flags); 2667 if (unlikely(!qtd)) 2668 return NULL; 2669 list_add_tail(&qtd->qtd_list, head); 2670 qtd->urb = urb; 2671 2672 token = QTD_STS_ACTIVE; 2673 token |= (FOTG210_TUNE_CERR << 10); 2674 /* for split transactions, SplitXState initialized to zero */ 2675 2676 len = urb->transfer_buffer_length; 2677 is_input = usb_pipein(urb->pipe); 2678 if (usb_pipecontrol(urb->pipe)) { 2679 /* SETUP pid */ 2680 qtd_fill(fotg210, qtd, urb->setup_dma, 2681 sizeof(struct usb_ctrlrequest), 2682 token | (2 /* "setup" */ << 8), 8); 2683 2684 /* ... and always at least one more pid */ 2685 token ^= QTD_TOGGLE; 2686 qtd_prev = qtd; 2687 qtd = fotg210_qtd_alloc(fotg210, flags); 2688 if (unlikely(!qtd)) 2689 goto cleanup; 2690 qtd->urb = urb; 2691 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma); 2692 list_add_tail(&qtd->qtd_list, head); 2693 2694 /* for zero length DATA stages, STATUS is always IN */ 2695 if (len == 0) 2696 token |= (1 /* "in" */ << 8); 2697 } 2698 2699 /* 2700 * data transfer stage: buffer setup 2701 */ 2702 i = urb->num_mapped_sgs; 2703 if (len > 0 && i > 0) { 2704 sg = urb->sg; 2705 buf = sg_dma_address(sg); 2706 2707 /* urb->transfer_buffer_length may be smaller than the 2708 * size of the scatterlist (or vice versa) 2709 */ 2710 this_sg_len = min_t(int, sg_dma_len(sg), len); 2711 } else { 2712 sg = NULL; 2713 buf = urb->transfer_dma; 2714 this_sg_len = len; 2715 } 2716 2717 if (is_input) 2718 token |= (1 /* "in" */ << 8); 2719 /* else it's already initted to "out" pid (0 << 8) */ 2720 2721 maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input)); 2722 2723 /* 2724 * buffer gets wrapped in one or more qtds; 2725 * last one may be "short" (including zero len) 2726 * and may serve as a control status ack 2727 */ 2728 for (;;) { 2729 int this_qtd_len; 2730 2731 this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token, 2732 maxpacket); 2733 this_sg_len -= this_qtd_len; 2734 len -= this_qtd_len; 2735 buf += this_qtd_len; 2736 2737 /* 2738 * short reads advance to a "magic" dummy instead of the next 2739 * qtd ... that forces the queue to stop, for manual cleanup. 2740 * (this will usually be overridden later.) 2741 */ 2742 if (is_input) 2743 qtd->hw_alt_next = fotg210->async->hw->hw_alt_next; 2744 2745 /* qh makes control packets use qtd toggle; maybe switch it */ 2746 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0) 2747 token ^= QTD_TOGGLE; 2748 2749 if (likely(this_sg_len <= 0)) { 2750 if (--i <= 0 || len <= 0) 2751 break; 2752 sg = sg_next(sg); 2753 buf = sg_dma_address(sg); 2754 this_sg_len = min_t(int, sg_dma_len(sg), len); 2755 } 2756 2757 qtd_prev = qtd; 2758 qtd = fotg210_qtd_alloc(fotg210, flags); 2759 if (unlikely(!qtd)) 2760 goto cleanup; 2761 qtd->urb = urb; 2762 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma); 2763 list_add_tail(&qtd->qtd_list, head); 2764 } 2765 2766 /* 2767 * unless the caller requires manual cleanup after short reads, 2768 * have the alt_next mechanism keep the queue running after the 2769 * last data qtd (the only one, for control and most other cases). 2770 */ 2771 if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 2772 || usb_pipecontrol(urb->pipe))) 2773 qtd->hw_alt_next = FOTG210_LIST_END(fotg210); 2774 2775 /* 2776 * control requests may need a terminating data "status" ack; 2777 * other OUT ones may need a terminating short packet 2778 * (zero length). 2779 */ 2780 if (likely(urb->transfer_buffer_length != 0)) { 2781 int one_more = 0; 2782 2783 if (usb_pipecontrol(urb->pipe)) { 2784 one_more = 1; 2785 token ^= 0x0100; /* "in" <--> "out" */ 2786 token |= QTD_TOGGLE; /* force DATA1 */ 2787 } else if (usb_pipeout(urb->pipe) 2788 && (urb->transfer_flags & URB_ZERO_PACKET) 2789 && !(urb->transfer_buffer_length % maxpacket)) { 2790 one_more = 1; 2791 } 2792 if (one_more) { 2793 qtd_prev = qtd; 2794 qtd = fotg210_qtd_alloc(fotg210, flags); 2795 if (unlikely(!qtd)) 2796 goto cleanup; 2797 qtd->urb = urb; 2798 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma); 2799 list_add_tail(&qtd->qtd_list, head); 2800 2801 /* never any data in such packets */ 2802 qtd_fill(fotg210, qtd, 0, 0, token, 0); 2803 } 2804 } 2805 2806 /* by default, enable interrupt on urb completion */ 2807 if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT))) 2808 qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC); 2809 return head; 2810 2811cleanup: 2812 qtd_list_free(fotg210, urb, head); 2813 return NULL; 2814} 2815 2816/*-------------------------------------------------------------------------*/ 2817/* 2818 * Would be best to create all qh's from config descriptors, 2819 * when each interface/altsetting is established. Unlink 2820 * any previous qh and cancel its urbs first; endpoints are 2821 * implicitly reset then (data toggle too). 2822 * That'd mean updating how usbcore talks to HCDs. (2.7?) 2823*/ 2824 2825 2826/* 2827 * Each QH holds a qtd list; a QH is used for everything except iso. 2828 * 2829 * For interrupt urbs, the scheduler must set the microframe scheduling 2830 * mask(s) each time the QH gets scheduled. For highspeed, that's 2831 * just one microframe in the s-mask. For split interrupt transactions 2832 * there are additional complications: c-mask, maybe FSTNs. 2833 */ 2834static struct fotg210_qh * 2835qh_make( 2836 struct fotg210_hcd *fotg210, 2837 struct urb *urb, 2838 gfp_t flags 2839) { 2840 struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags); 2841 u32 info1 = 0, info2 = 0; 2842 int is_input, type; 2843 int maxp = 0; 2844 struct usb_tt *tt = urb->dev->tt; 2845 struct fotg210_qh_hw *hw; 2846 2847 if (!qh) 2848 return qh; 2849 2850 /* 2851 * init endpoint/device data for this QH 2852 */ 2853 info1 |= usb_pipeendpoint(urb->pipe) << 8; 2854 info1 |= usb_pipedevice(urb->pipe) << 0; 2855 2856 is_input = usb_pipein(urb->pipe); 2857 type = usb_pipetype(urb->pipe); 2858 maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input); 2859 2860 /* 1024 byte maxpacket is a hardware ceiling. High bandwidth 2861 * acts like up to 3KB, but is built from smaller packets. 2862 */ 2863 if (max_packet(maxp) > 1024) { 2864 fotg210_dbg(fotg210, "bogus qh maxpacket %d\n", 2865 max_packet(maxp)); 2866 goto done; 2867 } 2868 2869 /* Compute interrupt scheduling parameters just once, and save. 2870 * - allowing for high bandwidth, how many nsec/uframe are used? 2871 * - split transactions need a second CSPLIT uframe; same question 2872 * - splits also need a schedule gap (for full/low speed I/O) 2873 * - qh has a polling interval 2874 * 2875 * For control/bulk requests, the HC or TT handles these. 2876 */ 2877 if (type == PIPE_INTERRUPT) { 2878 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH, 2879 is_input, 0, 2880 hb_mult(maxp) * max_packet(maxp))); 2881 qh->start = NO_FRAME; 2882 2883 if (urb->dev->speed == USB_SPEED_HIGH) { 2884 qh->c_usecs = 0; 2885 qh->gap_uf = 0; 2886 2887 qh->period = urb->interval >> 3; 2888 if (qh->period == 0 && urb->interval != 1) { 2889 /* NOTE interval 2 or 4 uframes could work. 2890 * But interval 1 scheduling is simpler, and 2891 * includes high bandwidth. 2892 */ 2893 urb->interval = 1; 2894 } else if (qh->period > fotg210->periodic_size) { 2895 qh->period = fotg210->periodic_size; 2896 urb->interval = qh->period << 3; 2897 } 2898 } else { 2899 int think_time; 2900 2901 /* gap is f(FS/LS transfer times) */ 2902 qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed, 2903 is_input, 0, maxp) / (125 * 1000); 2904 2905 /* FIXME this just approximates SPLIT/CSPLIT times */ 2906 if (is_input) { /* SPLIT, gap, CSPLIT+DATA */ 2907 qh->c_usecs = qh->usecs + HS_USECS(0); 2908 qh->usecs = HS_USECS(1); 2909 } else { /* SPLIT+DATA, gap, CSPLIT */ 2910 qh->usecs += HS_USECS(1); 2911 qh->c_usecs = HS_USECS(0); 2912 } 2913 2914 think_time = tt ? tt->think_time : 0; 2915 qh->tt_usecs = NS_TO_US(think_time + 2916 usb_calc_bus_time(urb->dev->speed, 2917 is_input, 0, max_packet(maxp))); 2918 qh->period = urb->interval; 2919 if (qh->period > fotg210->periodic_size) { 2920 qh->period = fotg210->periodic_size; 2921 urb->interval = qh->period; 2922 } 2923 } 2924 } 2925 2926 /* support for tt scheduling, and access to toggles */ 2927 qh->dev = urb->dev; 2928 2929 /* using TT? */ 2930 switch (urb->dev->speed) { 2931 case USB_SPEED_LOW: 2932 info1 |= QH_LOW_SPEED; 2933 /* FALL THROUGH */ 2934 2935 case USB_SPEED_FULL: 2936 /* EPS 0 means "full" */ 2937 if (type != PIPE_INTERRUPT) 2938 info1 |= (FOTG210_TUNE_RL_TT << 28); 2939 if (type == PIPE_CONTROL) { 2940 info1 |= QH_CONTROL_EP; /* for TT */ 2941 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */ 2942 } 2943 info1 |= maxp << 16; 2944 2945 info2 |= (FOTG210_TUNE_MULT_TT << 30); 2946 2947 /* Some Freescale processors have an erratum in which the 2948 * port number in the queue head was 0..N-1 instead of 1..N. 2949 */ 2950 if (fotg210_has_fsl_portno_bug(fotg210)) 2951 info2 |= (urb->dev->ttport-1) << 23; 2952 else 2953 info2 |= urb->dev->ttport << 23; 2954 2955 /* set the address of the TT; for TDI's integrated 2956 * root hub tt, leave it zeroed. 2957 */ 2958 if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub) 2959 info2 |= tt->hub->devnum << 16; 2960 2961 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */ 2962 2963 break; 2964 2965 case USB_SPEED_HIGH: /* no TT involved */ 2966 info1 |= QH_HIGH_SPEED; 2967 if (type == PIPE_CONTROL) { 2968 info1 |= (FOTG210_TUNE_RL_HS << 28); 2969 info1 |= 64 << 16; /* usb2 fixed maxpacket */ 2970 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */ 2971 info2 |= (FOTG210_TUNE_MULT_HS << 30); 2972 } else if (type == PIPE_BULK) { 2973 info1 |= (FOTG210_TUNE_RL_HS << 28); 2974 /* The USB spec says that high speed bulk endpoints 2975 * always use 512 byte maxpacket. But some device 2976 * vendors decided to ignore that, and MSFT is happy 2977 * to help them do so. So now people expect to use 2978 * such nonconformant devices with Linux too; sigh. 2979 */ 2980 info1 |= max_packet(maxp) << 16; 2981 info2 |= (FOTG210_TUNE_MULT_HS << 30); 2982 } else { /* PIPE_INTERRUPT */ 2983 info1 |= max_packet(maxp) << 16; 2984 info2 |= hb_mult(maxp) << 30; 2985 } 2986 break; 2987 default: 2988 fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev, 2989 urb->dev->speed); 2990done: 2991 qh_destroy(fotg210, qh); 2992 return NULL; 2993 } 2994 2995 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */ 2996 2997 /* init as live, toggle clear, advance to dummy */ 2998 qh->qh_state = QH_STATE_IDLE; 2999 hw = qh->hw; 3000 hw->hw_info1 = cpu_to_hc32(fotg210, info1); 3001 hw->hw_info2 = cpu_to_hc32(fotg210, info2); 3002 qh->is_out = !is_input; 3003 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1); 3004 qh_refresh(fotg210, qh); 3005 return qh; 3006} 3007 3008/*-------------------------------------------------------------------------*/ 3009 3010static void enable_async(struct fotg210_hcd *fotg210) 3011{ 3012 if (fotg210->async_count++) 3013 return; 3014 3015 /* Stop waiting to turn off the async schedule */ 3016 fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC); 3017 3018 /* Don't start the schedule until ASS is 0 */ 3019 fotg210_poll_ASS(fotg210); 3020 turn_on_io_watchdog(fotg210); 3021} 3022 3023static void disable_async(struct fotg210_hcd *fotg210) 3024{ 3025 if (--fotg210->async_count) 3026 return; 3027 3028 /* The async schedule and async_unlink list are supposed to be empty */ 3029 WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink); 3030 3031 /* Don't turn off the schedule until ASS is 1 */ 3032 fotg210_poll_ASS(fotg210); 3033} 3034 3035/* move qh (and its qtds) onto async queue; maybe enable queue. */ 3036 3037static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) 3038{ 3039 __hc32 dma = QH_NEXT(fotg210, qh->qh_dma); 3040 struct fotg210_qh *head; 3041 3042 /* Don't link a QH if there's a Clear-TT-Buffer pending */ 3043 if (unlikely(qh->clearing_tt)) 3044 return; 3045 3046 WARN_ON(qh->qh_state != QH_STATE_IDLE); 3047 3048 /* clear halt and/or toggle; and maybe recover from silicon quirk */ 3049 qh_refresh(fotg210, qh); 3050 3051 /* splice right after start */ 3052 head = fotg210->async; 3053 qh->qh_next = head->qh_next; 3054 qh->hw->hw_next = head->hw->hw_next; 3055 wmb(); 3056 3057 head->qh_next.qh = qh; 3058 head->hw->hw_next = dma; 3059 3060 qh->xacterrs = 0; 3061 qh->qh_state = QH_STATE_LINKED; 3062 /* qtd completions reported later by interrupt */ 3063 3064 enable_async(fotg210); 3065} 3066 3067/*-------------------------------------------------------------------------*/ 3068 3069/* 3070 * For control/bulk/interrupt, return QH with these TDs appended. 3071 * Allocates and initializes the QH if necessary. 3072 * Returns null if it can't allocate a QH it needs to. 3073 * If the QH has TDs (urbs) already, that's great. 3074 */ 3075static struct fotg210_qh *qh_append_tds( 3076 struct fotg210_hcd *fotg210, 3077 struct urb *urb, 3078 struct list_head *qtd_list, 3079 int epnum, 3080 void **ptr 3081) 3082{ 3083 struct fotg210_qh *qh = NULL; 3084 __hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f); 3085 3086 qh = (struct fotg210_qh *) *ptr; 3087 if (unlikely(qh == NULL)) { 3088 /* can't sleep here, we have fotg210->lock... */ 3089 qh = qh_make(fotg210, urb, GFP_ATOMIC); 3090 *ptr = qh; 3091 } 3092 if (likely(qh != NULL)) { 3093 struct fotg210_qtd *qtd; 3094 3095 if (unlikely(list_empty(qtd_list))) 3096 qtd = NULL; 3097 else 3098 qtd = list_entry(qtd_list->next, struct fotg210_qtd, 3099 qtd_list); 3100 3101 /* control qh may need patching ... */ 3102 if (unlikely(epnum == 0)) { 3103 /* usb_reset_device() briefly reverts to address 0 */ 3104 if (usb_pipedevice(urb->pipe) == 0) 3105 qh->hw->hw_info1 &= ~qh_addr_mask; 3106 } 3107 3108 /* just one way to queue requests: swap with the dummy qtd. 3109 * only hc or qh_refresh() ever modify the overlay. 3110 */ 3111 if (likely(qtd != NULL)) { 3112 struct fotg210_qtd *dummy; 3113 dma_addr_t dma; 3114 __hc32 token; 3115 3116 /* to avoid racing the HC, use the dummy td instead of 3117 * the first td of our list (becomes new dummy). both 3118 * tds stay deactivated until we're done, when the 3119 * HC is allowed to fetch the old dummy (4.10.2). 3120 */ 3121 token = qtd->hw_token; 3122 qtd->hw_token = HALT_BIT(fotg210); 3123 3124 dummy = qh->dummy; 3125 3126 dma = dummy->qtd_dma; 3127 *dummy = *qtd; 3128 dummy->qtd_dma = dma; 3129 3130 list_del(&qtd->qtd_list); 3131 list_add(&dummy->qtd_list, qtd_list); 3132 list_splice_tail(qtd_list, &qh->qtd_list); 3133 3134 fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma); 3135 qh->dummy = qtd; 3136 3137 /* hc must see the new dummy at list end */ 3138 dma = qtd->qtd_dma; 3139 qtd = list_entry(qh->qtd_list.prev, 3140 struct fotg210_qtd, qtd_list); 3141 qtd->hw_next = QTD_NEXT(fotg210, dma); 3142 3143 /* let the hc process these next qtds */ 3144 wmb(); 3145 dummy->hw_token = token; 3146 3147 urb->hcpriv = qh; 3148 } 3149 } 3150 return qh; 3151} 3152 3153/*-------------------------------------------------------------------------*/ 3154 3155static int 3156submit_async( 3157 struct fotg210_hcd *fotg210, 3158 struct urb *urb, 3159 struct list_head *qtd_list, 3160 gfp_t mem_flags 3161) { 3162 int epnum; 3163 unsigned long flags; 3164 struct fotg210_qh *qh = NULL; 3165 int rc; 3166 3167 epnum = urb->ep->desc.bEndpointAddress; 3168 3169#ifdef FOTG210_URB_TRACE 3170 { 3171 struct fotg210_qtd *qtd; 3172 qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list); 3173 fotg210_dbg(fotg210, 3174 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n", 3175 __func__, urb->dev->devpath, urb, 3176 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out", 3177 urb->transfer_buffer_length, 3178 qtd, urb->ep->hcpriv); 3179 } 3180#endif 3181 3182 spin_lock_irqsave(&fotg210->lock, flags); 3183 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) { 3184 rc = -ESHUTDOWN; 3185 goto done; 3186 } 3187 rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb); 3188 if (unlikely(rc)) 3189 goto done; 3190 3191 qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv); 3192 if (unlikely(qh == NULL)) { 3193 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb); 3194 rc = -ENOMEM; 3195 goto done; 3196 } 3197 3198 /* Control/bulk operations through TTs don't need scheduling, 3199 * the HC and TT handle it when the TT has a buffer ready. 3200 */ 3201 if (likely(qh->qh_state == QH_STATE_IDLE)) 3202 qh_link_async(fotg210, qh); 3203 done: 3204 spin_unlock_irqrestore(&fotg210->lock, flags); 3205 if (unlikely(qh == NULL)) 3206 qtd_list_free(fotg210, urb, qtd_list); 3207 return rc; 3208} 3209 3210/*-------------------------------------------------------------------------*/ 3211 3212static void single_unlink_async(struct fotg210_hcd *fotg210, 3213 struct fotg210_qh *qh) 3214{ 3215 struct fotg210_qh *prev; 3216 3217 /* Add to the end of the list of QHs waiting for the next IAAD */ 3218 qh->qh_state = QH_STATE_UNLINK; 3219 if (fotg210->async_unlink) 3220 fotg210->async_unlink_last->unlink_next = qh; 3221 else 3222 fotg210->async_unlink = qh; 3223 fotg210->async_unlink_last = qh; 3224 3225 /* Unlink it from the schedule */ 3226 prev = fotg210->async; 3227 while (prev->qh_next.qh != qh) 3228 prev = prev->qh_next.qh; 3229 3230 prev->hw->hw_next = qh->hw->hw_next; 3231 prev->qh_next = qh->qh_next; 3232 if (fotg210->qh_scan_next == qh) 3233 fotg210->qh_scan_next = qh->qh_next.qh; 3234} 3235 3236static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested) 3237{ 3238 /* 3239 * Do nothing if an IAA cycle is already running or 3240 * if one will be started shortly. 3241 */ 3242 if (fotg210->async_iaa || fotg210->async_unlinking) 3243 return; 3244 3245 /* Do all the waiting QHs at once */ 3246 fotg210->async_iaa = fotg210->async_unlink; 3247 fotg210->async_unlink = NULL; 3248 3249 /* If the controller isn't running, we don't have to wait for it */ 3250 if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) { 3251 if (!nested) /* Avoid recursion */ 3252 end_unlink_async(fotg210); 3253 3254 /* Otherwise start a new IAA cycle */ 3255 } else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) { 3256 /* Make sure the unlinks are all visible to the hardware */ 3257 wmb(); 3258 3259 fotg210_writel(fotg210, fotg210->command | CMD_IAAD, 3260 &fotg210->regs->command); 3261 fotg210_readl(fotg210, &fotg210->regs->command); 3262 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG, 3263 true); 3264 } 3265} 3266 3267/* the async qh for the qtds being unlinked are now gone from the HC */ 3268 3269static void end_unlink_async(struct fotg210_hcd *fotg210) 3270{ 3271 struct fotg210_qh *qh; 3272 3273 /* Process the idle QHs */ 3274 restart: 3275 fotg210->async_unlinking = true; 3276 while (fotg210->async_iaa) { 3277 qh = fotg210->async_iaa; 3278 fotg210->async_iaa = qh->unlink_next; 3279 qh->unlink_next = NULL; 3280 3281 qh->qh_state = QH_STATE_IDLE; 3282 qh->qh_next.qh = NULL; 3283 3284 qh_completions(fotg210, qh); 3285 if (!list_empty(&qh->qtd_list) && 3286 fotg210->rh_state == FOTG210_RH_RUNNING) 3287 qh_link_async(fotg210, qh); 3288 disable_async(fotg210); 3289 } 3290 fotg210->async_unlinking = false; 3291 3292 /* Start a new IAA cycle if any QHs are waiting for it */ 3293 if (fotg210->async_unlink) { 3294 start_iaa_cycle(fotg210, true); 3295 if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) 3296 goto restart; 3297 } 3298} 3299 3300static void unlink_empty_async(struct fotg210_hcd *fotg210) 3301{ 3302 struct fotg210_qh *qh, *next; 3303 bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING); 3304 bool check_unlinks_later = false; 3305 3306 /* Unlink all the async QHs that have been empty for a timer cycle */ 3307 next = fotg210->async->qh_next.qh; 3308 while (next) { 3309 qh = next; 3310 next = qh->qh_next.qh; 3311 3312 if (list_empty(&qh->qtd_list) && 3313 qh->qh_state == QH_STATE_LINKED) { 3314 if (!stopped && qh->unlink_cycle == 3315 fotg210->async_unlink_cycle) 3316 check_unlinks_later = true; 3317 else 3318 single_unlink_async(fotg210, qh); 3319 } 3320 } 3321 3322 /* Start a new IAA cycle if any QHs are waiting for it */ 3323 if (fotg210->async_unlink) 3324 start_iaa_cycle(fotg210, false); 3325 3326 /* QHs that haven't been empty for long enough will be handled later */ 3327 if (check_unlinks_later) { 3328 fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS, 3329 true); 3330 ++fotg210->async_unlink_cycle; 3331 } 3332} 3333 3334/* makes sure the async qh will become idle */ 3335/* caller must own fotg210->lock */ 3336 3337static void start_unlink_async(struct fotg210_hcd *fotg210, 3338 struct fotg210_qh *qh) 3339{ 3340 /* 3341 * If the QH isn't linked then there's nothing we can do 3342 * unless we were called during a giveback, in which case 3343 * qh_completions() has to deal with it. 3344 */ 3345 if (qh->qh_state != QH_STATE_LINKED) { 3346 if (qh->qh_state == QH_STATE_COMPLETING) 3347 qh->needs_rescan = 1; 3348 return; 3349 } 3350 3351 single_unlink_async(fotg210, qh); 3352 start_iaa_cycle(fotg210, false); 3353} 3354 3355/*-------------------------------------------------------------------------*/ 3356 3357static void scan_async(struct fotg210_hcd *fotg210) 3358{ 3359 struct fotg210_qh *qh; 3360 bool check_unlinks_later = false; 3361 3362 fotg210->qh_scan_next = fotg210->async->qh_next.qh; 3363 while (fotg210->qh_scan_next) { 3364 qh = fotg210->qh_scan_next; 3365 fotg210->qh_scan_next = qh->qh_next.qh; 3366 rescan: 3367 /* clean any finished work for this qh */ 3368 if (!list_empty(&qh->qtd_list)) { 3369 int temp; 3370 3371 /* 3372 * Unlinks could happen here; completion reporting 3373 * drops the lock. That's why fotg210->qh_scan_next 3374 * always holds the next qh to scan; if the next qh 3375 * gets unlinked then fotg210->qh_scan_next is adjusted 3376 * in single_unlink_async(). 3377 */ 3378 temp = qh_completions(fotg210, qh); 3379 if (qh->needs_rescan) { 3380 start_unlink_async(fotg210, qh); 3381 } else if (list_empty(&qh->qtd_list) 3382 && qh->qh_state == QH_STATE_LINKED) { 3383 qh->unlink_cycle = fotg210->async_unlink_cycle; 3384 check_unlinks_later = true; 3385 } else if (temp != 0) 3386 goto rescan; 3387 } 3388 } 3389 3390 /* 3391 * Unlink empty entries, reducing DMA usage as well 3392 * as HCD schedule-scanning costs. Delay for any qh 3393 * we just scanned, there's a not-unusual case that it 3394 * doesn't stay idle for long. 3395 */ 3396 if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING && 3397 !(fotg210->enabled_hrtimer_events & 3398 BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) { 3399 fotg210_enable_event(fotg210, 3400 FOTG210_HRTIMER_ASYNC_UNLINKS, true); 3401 ++fotg210->async_unlink_cycle; 3402 } 3403} 3404/*-------------------------------------------------------------------------*/ 3405/* 3406 * EHCI scheduled transaction support: interrupt, iso, split iso 3407 * These are called "periodic" transactions in the EHCI spec. 3408 * 3409 * Note that for interrupt transfers, the QH/QTD manipulation is shared 3410 * with the "asynchronous" transaction support (control/bulk transfers). 3411 * The only real difference is in how interrupt transfers are scheduled. 3412 * 3413 * For ISO, we make an "iso_stream" head to serve the same role as a QH. 3414 * It keeps track of every ITD (or SITD) that's linked, and holds enough 3415 * pre-calculated schedule data to make appending to the queue be quick. 3416 */ 3417 3418static int fotg210_get_frame(struct usb_hcd *hcd); 3419 3420/*-------------------------------------------------------------------------*/ 3421 3422/* 3423 * periodic_next_shadow - return "next" pointer on shadow list 3424 * @periodic: host pointer to qh/itd 3425 * @tag: hardware tag for type of this record 3426 */ 3427static union fotg210_shadow * 3428periodic_next_shadow(struct fotg210_hcd *fotg210, 3429 union fotg210_shadow *periodic, __hc32 tag) 3430{ 3431 switch (hc32_to_cpu(fotg210, tag)) { 3432 case Q_TYPE_QH: 3433 return &periodic->qh->qh_next; 3434 case Q_TYPE_FSTN: 3435 return &periodic->fstn->fstn_next; 3436 default: 3437 return &periodic->itd->itd_next; 3438 } 3439} 3440 3441static __hc32 * 3442shadow_next_periodic(struct fotg210_hcd *fotg210, 3443 union fotg210_shadow *periodic, __hc32 tag) 3444{ 3445 switch (hc32_to_cpu(fotg210, tag)) { 3446 /* our fotg210_shadow.qh is actually software part */ 3447 case Q_TYPE_QH: 3448 return &periodic->qh->hw->hw_next; 3449 /* others are hw parts */ 3450 default: 3451 return periodic->hw_next; 3452 } 3453} 3454 3455/* caller must hold fotg210->lock */ 3456static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame, 3457 void *ptr) 3458{ 3459 union fotg210_shadow *prev_p = &fotg210->pshadow[frame]; 3460 __hc32 *hw_p = &fotg210->periodic[frame]; 3461 union fotg210_shadow here = *prev_p; 3462 3463 /* find predecessor of "ptr"; hw and shadow lists are in sync */ 3464 while (here.ptr && here.ptr != ptr) { 3465 prev_p = periodic_next_shadow(fotg210, prev_p, 3466 Q_NEXT_TYPE(fotg210, *hw_p)); 3467 hw_p = shadow_next_periodic(fotg210, &here, 3468 Q_NEXT_TYPE(fotg210, *hw_p)); 3469 here = *prev_p; 3470 } 3471 /* an interrupt entry (at list end) could have been shared */ 3472 if (!here.ptr) 3473 return; 3474 3475 /* update shadow and hardware lists ... the old "next" pointers 3476 * from ptr may still be in use, the caller updates them. 3477 */ 3478 *prev_p = *periodic_next_shadow(fotg210, &here, 3479 Q_NEXT_TYPE(fotg210, *hw_p)); 3480 3481 *hw_p = *shadow_next_periodic(fotg210, &here, 3482 Q_NEXT_TYPE(fotg210, *hw_p)); 3483} 3484 3485/* how many of the uframe's 125 usecs are allocated? */ 3486static unsigned short 3487periodic_usecs(struct fotg210_hcd *fotg210, unsigned frame, unsigned uframe) 3488{ 3489 __hc32 *hw_p = &fotg210->periodic[frame]; 3490 union fotg210_shadow *q = &fotg210->pshadow[frame]; 3491 unsigned usecs = 0; 3492 struct fotg210_qh_hw *hw; 3493 3494 while (q->ptr) { 3495 switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) { 3496 case Q_TYPE_QH: 3497 hw = q->qh->hw; 3498 /* is it in the S-mask? */ 3499 if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe)) 3500 usecs += q->qh->usecs; 3501 /* ... or C-mask? */ 3502 if (hw->hw_info2 & cpu_to_hc32(fotg210, 3503 1 << (8 + uframe))) 3504 usecs += q->qh->c_usecs; 3505 hw_p = &hw->hw_next; 3506 q = &q->qh->qh_next; 3507 break; 3508 /* case Q_TYPE_FSTN: */ 3509 default: 3510 /* for "save place" FSTNs, count the relevant INTR 3511 * bandwidth from the previous frame 3512 */ 3513 if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210)) 3514 fotg210_dbg(fotg210, "ignoring FSTN cost ...\n"); 3515 3516 hw_p = &q->fstn->hw_next; 3517 q = &q->fstn->fstn_next; 3518 break; 3519 case Q_TYPE_ITD: 3520 if (q->itd->hw_transaction[uframe]) 3521 usecs += q->itd->stream->usecs; 3522 hw_p = &q->itd->hw_next; 3523 q = &q->itd->itd_next; 3524 break; 3525 } 3526 } 3527 if (usecs > fotg210->uframe_periodic_max) 3528 fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n", 3529 frame * 8 + uframe, usecs); 3530 return usecs; 3531} 3532 3533/*-------------------------------------------------------------------------*/ 3534 3535static int same_tt(struct usb_device *dev1, struct usb_device *dev2) 3536{ 3537 if (!dev1->tt || !dev2->tt) 3538 return 0; 3539 if (dev1->tt != dev2->tt) 3540 return 0; 3541 if (dev1->tt->multi) 3542 return dev1->ttport == dev2->ttport; 3543 else 3544 return 1; 3545} 3546 3547/* return true iff the device's transaction translator is available 3548 * for a periodic transfer starting at the specified frame, using 3549 * all the uframes in the mask. 3550 */ 3551static int tt_no_collision( 3552 struct fotg210_hcd *fotg210, 3553 unsigned period, 3554 struct usb_device *dev, 3555 unsigned frame, 3556 u32 uf_mask 3557) 3558{ 3559 if (period == 0) /* error */ 3560 return 0; 3561 3562 /* note bandwidth wastage: split never follows csplit 3563 * (different dev or endpoint) until the next uframe. 3564 * calling convention doesn't make that distinction. 3565 */ 3566 for (; frame < fotg210->periodic_size; frame += period) { 3567 union fotg210_shadow here; 3568 __hc32 type; 3569 struct fotg210_qh_hw *hw; 3570 3571 here = fotg210->pshadow[frame]; 3572 type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]); 3573 while (here.ptr) { 3574 switch (hc32_to_cpu(fotg210, type)) { 3575 case Q_TYPE_ITD: 3576 type = Q_NEXT_TYPE(fotg210, here.itd->hw_next); 3577 here = here.itd->itd_next; 3578 continue; 3579 case Q_TYPE_QH: 3580 hw = here.qh->hw; 3581 if (same_tt(dev, here.qh->dev)) { 3582 u32 mask; 3583 3584 mask = hc32_to_cpu(fotg210, 3585 hw->hw_info2); 3586 /* "knows" no gap is needed */ 3587 mask |= mask >> 8; 3588 if (mask & uf_mask) 3589 break; 3590 } 3591 type = Q_NEXT_TYPE(fotg210, hw->hw_next); 3592 here = here.qh->qh_next; 3593 continue; 3594 /* case Q_TYPE_FSTN: */ 3595 default: 3596 fotg210_dbg(fotg210, 3597 "periodic frame %d bogus type %d\n", 3598 frame, type); 3599 } 3600 3601 /* collision or error */ 3602 return 0; 3603 } 3604 } 3605 3606 /* no collision */ 3607 return 1; 3608} 3609 3610/*-------------------------------------------------------------------------*/ 3611 3612static void enable_periodic(struct fotg210_hcd *fotg210) 3613{ 3614 if (fotg210->periodic_count++) 3615 return; 3616 3617 /* Stop waiting to turn off the periodic schedule */ 3618 fotg210->enabled_hrtimer_events &= 3619 ~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC); 3620 3621 /* Don't start the schedule until PSS is 0 */ 3622 fotg210_poll_PSS(fotg210); 3623 turn_on_io_watchdog(fotg210); 3624} 3625 3626static void disable_periodic(struct fotg210_hcd *fotg210) 3627{ 3628 if (--fotg210->periodic_count) 3629 return; 3630 3631 /* Don't turn off the schedule until PSS is 1 */ 3632 fotg210_poll_PSS(fotg210); 3633} 3634 3635/*-------------------------------------------------------------------------*/ 3636 3637/* periodic schedule slots have iso tds (normal or split) first, then a 3638 * sparse tree for active interrupt transfers. 3639 * 3640 * this just links in a qh; caller guarantees uframe masks are set right. 3641 * no FSTN support (yet; fotg210 0.96+) 3642 */ 3643static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) 3644{ 3645 unsigned i; 3646 unsigned period = qh->period; 3647 3648 dev_dbg(&qh->dev->dev, 3649 "link qh%d-%04x/%p start %d [%d/%d us]\n", 3650 period, hc32_to_cpup(fotg210, &qh->hw->hw_info2) 3651 & (QH_CMASK | QH_SMASK), 3652 qh, qh->start, qh->usecs, qh->c_usecs); 3653 3654 /* high bandwidth, or otherwise every microframe */ 3655 if (period == 0) 3656 period = 1; 3657 3658 for (i = qh->start; i < fotg210->periodic_size; i += period) { 3659 union fotg210_shadow *prev = &fotg210->pshadow[i]; 3660 __hc32 *hw_p = &fotg210->periodic[i]; 3661 union fotg210_shadow here = *prev; 3662 __hc32 type = 0; 3663 3664 /* skip the iso nodes at list head */ 3665 while (here.ptr) { 3666 type = Q_NEXT_TYPE(fotg210, *hw_p); 3667 if (type == cpu_to_hc32(fotg210, Q_TYPE_QH)) 3668 break; 3669 prev = periodic_next_shadow(fotg210, prev, type); 3670 hw_p = shadow_next_periodic(fotg210, &here, type); 3671 here = *prev; 3672 } 3673 3674 /* sorting each branch by period (slow-->fast) 3675 * enables sharing interior tree nodes 3676 */ 3677 while (here.ptr && qh != here.qh) { 3678 if (qh->period > here.qh->period) 3679 break; 3680 prev = &here.qh->qh_next; 3681 hw_p = &here.qh->hw->hw_next; 3682 here = *prev; 3683 } 3684 /* link in this qh, unless some earlier pass did that */ 3685 if (qh != here.qh) { 3686 qh->qh_next = here; 3687 if (here.qh) 3688 qh->hw->hw_next = *hw_p; 3689 wmb(); 3690 prev->qh = qh; 3691 *hw_p = QH_NEXT(fotg210, qh->qh_dma); 3692 } 3693 } 3694 qh->qh_state = QH_STATE_LINKED; 3695 qh->xacterrs = 0; 3696 3697 /* update per-qh bandwidth for usbfs */ 3698 fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period 3699 ? ((qh->usecs + qh->c_usecs) / qh->period) 3700 : (qh->usecs * 8); 3701 3702 list_add(&qh->intr_node, &fotg210->intr_qh_list); 3703 3704 /* maybe enable periodic schedule processing */ 3705 ++fotg210->intr_count; 3706 enable_periodic(fotg210); 3707} 3708 3709static void qh_unlink_periodic(struct fotg210_hcd *fotg210, 3710 struct fotg210_qh *qh) 3711{ 3712 unsigned i; 3713 unsigned period; 3714 3715 /* 3716 * If qh is for a low/full-speed device, simply unlinking it 3717 * could interfere with an ongoing split transaction. To unlink 3718 * it safely would require setting the QH_INACTIVATE bit and 3719 * waiting at least one frame, as described in EHCI 4.12.2.5. 3720 * 3721 * We won't bother with any of this. Instead, we assume that the 3722 * only reason for unlinking an interrupt QH while the current URB 3723 * is still active is to dequeue all the URBs (flush the whole 3724 * endpoint queue). 3725 * 3726 * If rebalancing the periodic schedule is ever implemented, this 3727 * approach will no longer be valid. 3728 */ 3729 3730 /* high bandwidth, or otherwise part of every microframe */ 3731 period = qh->period; 3732 if (!period) 3733 period = 1; 3734 3735 for (i = qh->start; i < fotg210->periodic_size; i += period) 3736 periodic_unlink(fotg210, i, qh); 3737 3738 /* update per-qh bandwidth for usbfs */ 3739 fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period 3740 ? ((qh->usecs + qh->c_usecs) / qh->period) 3741 : (qh->usecs * 8); 3742 3743 dev_dbg(&qh->dev->dev, 3744 "unlink qh%d-%04x/%p start %d [%d/%d us]\n", 3745 qh->period, 3746 hc32_to_cpup(fotg210, &qh->hw->hw_info2) & 3747 (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs, qh->c_usecs); 3748 3749 /* qh->qh_next still "live" to HC */ 3750 qh->qh_state = QH_STATE_UNLINK; 3751 qh->qh_next.ptr = NULL; 3752 3753 if (fotg210->qh_scan_next == qh) 3754 fotg210->qh_scan_next = list_entry(qh->intr_node.next, 3755 struct fotg210_qh, intr_node); 3756 list_del(&qh->intr_node); 3757} 3758 3759static void start_unlink_intr(struct fotg210_hcd *fotg210, 3760 struct fotg210_qh *qh) 3761{ 3762 /* If the QH isn't linked then there's nothing we can do 3763 * unless we were called during a giveback, in which case 3764 * qh_completions() has to deal with it. 3765 */ 3766 if (qh->qh_state != QH_STATE_LINKED) { 3767 if (qh->qh_state == QH_STATE_COMPLETING) 3768 qh->needs_rescan = 1; 3769 return; 3770 } 3771 3772 qh_unlink_periodic(fotg210, qh); 3773 3774 /* Make sure the unlinks are visible before starting the timer */ 3775 wmb(); 3776 3777 /* 3778 * The EHCI spec doesn't say how long it takes the controller to 3779 * stop accessing an unlinked interrupt QH. The timer delay is 3780 * 9 uframes; presumably that will be long enough. 3781 */ 3782 qh->unlink_cycle = fotg210->intr_unlink_cycle; 3783 3784 /* New entries go at the end of the intr_unlink list */ 3785 if (fotg210->intr_unlink) 3786 fotg210->intr_unlink_last->unlink_next = qh; 3787 else 3788 fotg210->intr_unlink = qh; 3789 fotg210->intr_unlink_last = qh; 3790 3791 if (fotg210->intr_unlinking) 3792 ; /* Avoid recursive calls */ 3793 else if (fotg210->rh_state < FOTG210_RH_RUNNING) 3794 fotg210_handle_intr_unlinks(fotg210); 3795 else if (fotg210->intr_unlink == qh) { 3796 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR, 3797 true); 3798 ++fotg210->intr_unlink_cycle; 3799 } 3800} 3801 3802static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) 3803{ 3804 struct fotg210_qh_hw *hw = qh->hw; 3805 int rc; 3806 3807 qh->qh_state = QH_STATE_IDLE; 3808 hw->hw_next = FOTG210_LIST_END(fotg210); 3809 3810 qh_completions(fotg210, qh); 3811 3812 /* reschedule QH iff another request is queued */ 3813 if (!list_empty(&qh->qtd_list) && 3814 fotg210->rh_state == FOTG210_RH_RUNNING) { 3815 rc = qh_schedule(fotg210, qh); 3816 3817 /* An error here likely indicates handshake failure 3818 * or no space left in the schedule. Neither fault 3819 * should happen often ... 3820 * 3821 * FIXME kill the now-dysfunctional queued urbs 3822 */ 3823 if (rc != 0) 3824 fotg210_err(fotg210, "can't reschedule qh %p, err %d\n", 3825 qh, rc); 3826 } 3827 3828 /* maybe turn off periodic schedule */ 3829 --fotg210->intr_count; 3830 disable_periodic(fotg210); 3831} 3832 3833/*-------------------------------------------------------------------------*/ 3834 3835static int check_period( 3836 struct fotg210_hcd *fotg210, 3837 unsigned frame, 3838 unsigned uframe, 3839 unsigned period, 3840 unsigned usecs 3841) { 3842 int claimed; 3843 3844 /* complete split running into next frame? 3845 * given FSTN support, we could sometimes check... 3846 */ 3847 if (uframe >= 8) 3848 return 0; 3849 3850 /* convert "usecs we need" to "max already claimed" */ 3851 usecs = fotg210->uframe_periodic_max - usecs; 3852 3853 /* we "know" 2 and 4 uframe intervals were rejected; so 3854 * for period 0, check _every_ microframe in the schedule. 3855 */ 3856 if (unlikely(period == 0)) { 3857 do { 3858 for (uframe = 0; uframe < 7; uframe++) { 3859 claimed = periodic_usecs(fotg210, frame, 3860 uframe); 3861 if (claimed > usecs) 3862 return 0; 3863 } 3864 } while ((frame += 1) < fotg210->periodic_size); 3865 3866 /* just check the specified uframe, at that period */ 3867 } else { 3868 do { 3869 claimed = periodic_usecs(fotg210, frame, uframe); 3870 if (claimed > usecs) 3871 return 0; 3872 } while ((frame += period) < fotg210->periodic_size); 3873 } 3874 3875 /* success! */ 3876 return 1; 3877} 3878 3879static int check_intr_schedule( 3880 struct fotg210_hcd *fotg210, 3881 unsigned frame, 3882 unsigned uframe, 3883 const struct fotg210_qh *qh, 3884 __hc32 *c_maskp 3885) 3886{ 3887 int retval = -ENOSPC; 3888 u8 mask = 0; 3889 3890 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */ 3891 goto done; 3892 3893 if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs)) 3894 goto done; 3895 if (!qh->c_usecs) { 3896 retval = 0; 3897 *c_maskp = 0; 3898 goto done; 3899 } 3900 3901 /* Make sure this tt's buffer is also available for CSPLITs. 3902 * We pessimize a bit; probably the typical full speed case 3903 * doesn't need the second CSPLIT. 3904 * 3905 * NOTE: both SPLIT and CSPLIT could be checked in just 3906 * one smart pass... 3907 */ 3908 mask = 0x03 << (uframe + qh->gap_uf); 3909 *c_maskp = cpu_to_hc32(fotg210, mask << 8); 3910 3911 mask |= 1 << uframe; 3912 if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) { 3913 if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1, 3914 qh->period, qh->c_usecs)) 3915 goto done; 3916 if (!check_period(fotg210, frame, uframe + qh->gap_uf, 3917 qh->period, qh->c_usecs)) 3918 goto done; 3919 retval = 0; 3920 } 3921done: 3922 return retval; 3923} 3924 3925/* "first fit" scheduling policy used the first time through, 3926 * or when the previous schedule slot can't be re-used. 3927 */ 3928static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh) 3929{ 3930 int status; 3931 unsigned uframe; 3932 __hc32 c_mask; 3933 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */ 3934 struct fotg210_qh_hw *hw = qh->hw; 3935 3936 qh_refresh(fotg210, qh); 3937 hw->hw_next = FOTG210_LIST_END(fotg210); 3938 frame = qh->start; 3939 3940 /* reuse the previous schedule slots, if we can */ 3941 if (frame < qh->period) { 3942 uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK); 3943 status = check_intr_schedule(fotg210, frame, --uframe, 3944 qh, &c_mask); 3945 } else { 3946 uframe = 0; 3947 c_mask = 0; 3948 status = -ENOSPC; 3949 } 3950 3951 /* else scan the schedule to find a group of slots such that all 3952 * uframes have enough periodic bandwidth available. 3953 */ 3954 if (status) { 3955 /* "normal" case, uframing flexible except with splits */ 3956 if (qh->period) { 3957 int i; 3958 3959 for (i = qh->period; status && i > 0; --i) { 3960 frame = ++fotg210->random_frame % qh->period; 3961 for (uframe = 0; uframe < 8; uframe++) { 3962 status = check_intr_schedule(fotg210, 3963 frame, uframe, qh, 3964 &c_mask); 3965 if (status == 0) 3966 break; 3967 } 3968 } 3969 3970 /* qh->period == 0 means every uframe */ 3971 } else { 3972 frame = 0; 3973 status = check_intr_schedule(fotg210, 0, 0, qh, 3974 &c_mask); 3975 } 3976 if (status) 3977 goto done; 3978 qh->start = frame; 3979 3980 /* reset S-frame and (maybe) C-frame masks */ 3981 hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK)); 3982 hw->hw_info2 |= qh->period 3983 ? cpu_to_hc32(fotg210, 1 << uframe) 3984 : cpu_to_hc32(fotg210, QH_SMASK); 3985 hw->hw_info2 |= c_mask; 3986 } else 3987 fotg210_dbg(fotg210, "reused qh %p schedule\n", qh); 3988 3989 /* stuff into the periodic schedule */ 3990 qh_link_periodic(fotg210, qh); 3991done: 3992 return status; 3993} 3994 3995static int intr_submit( 3996 struct fotg210_hcd *fotg210, 3997 struct urb *urb, 3998 struct list_head *qtd_list, 3999 gfp_t mem_flags 4000) { 4001 unsigned epnum; 4002 unsigned long flags; 4003 struct fotg210_qh *qh; 4004 int status; 4005 struct list_head empty; 4006 4007 /* get endpoint and transfer/schedule data */ 4008 epnum = urb->ep->desc.bEndpointAddress; 4009 4010 spin_lock_irqsave(&fotg210->lock, flags); 4011 4012 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) { 4013 status = -ESHUTDOWN; 4014 goto done_not_linked; 4015 } 4016 status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb); 4017 if (unlikely(status)) 4018 goto done_not_linked; 4019 4020 /* get qh and force any scheduling errors */ 4021 INIT_LIST_HEAD(&empty); 4022 qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv); 4023 if (qh == NULL) { 4024 status = -ENOMEM; 4025 goto done; 4026 } 4027 if (qh->qh_state == QH_STATE_IDLE) { 4028 status = qh_schedule(fotg210, qh); 4029 if (status) 4030 goto done; 4031 } 4032 4033 /* then queue the urb's tds to the qh */ 4034 qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv); 4035 BUG_ON(qh == NULL); 4036 4037 /* ... update usbfs periodic stats */ 4038 fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++; 4039 4040done: 4041 if (unlikely(status)) 4042 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb); 4043done_not_linked: 4044 spin_unlock_irqrestore(&fotg210->lock, flags); 4045 if (status) 4046 qtd_list_free(fotg210, urb, qtd_list); 4047 4048 return status; 4049} 4050 4051static void scan_intr(struct fotg210_hcd *fotg210) 4052{ 4053 struct fotg210_qh *qh; 4054 4055 list_for_each_entry_safe(qh, fotg210->qh_scan_next, 4056 &fotg210->intr_qh_list, intr_node) { 4057 rescan: 4058 /* clean any finished work for this qh */ 4059 if (!list_empty(&qh->qtd_list)) { 4060 int temp; 4061 4062 /* 4063 * Unlinks could happen here; completion reporting 4064 * drops the lock. That's why fotg210->qh_scan_next 4065 * always holds the next qh to scan; if the next qh 4066 * gets unlinked then fotg210->qh_scan_next is adjusted 4067 * in qh_unlink_periodic(). 4068 */ 4069 temp = qh_completions(fotg210, qh); 4070 if (unlikely(qh->needs_rescan || 4071 (list_empty(&qh->qtd_list) && 4072 qh->qh_state == QH_STATE_LINKED))) 4073 start_unlink_intr(fotg210, qh); 4074 else if (temp != 0) 4075 goto rescan; 4076 } 4077 } 4078} 4079 4080/*-------------------------------------------------------------------------*/ 4081 4082/* fotg210_iso_stream ops work with both ITD and SITD */ 4083 4084static struct fotg210_iso_stream * 4085iso_stream_alloc(gfp_t mem_flags) 4086{ 4087 struct fotg210_iso_stream *stream; 4088 4089 stream = kzalloc(sizeof(*stream), mem_flags); 4090 if (likely(stream != NULL)) { 4091 INIT_LIST_HEAD(&stream->td_list); 4092 INIT_LIST_HEAD(&stream->free_list); 4093 stream->next_uframe = -1; 4094 } 4095 return stream; 4096} 4097 4098static void 4099iso_stream_init( 4100 struct fotg210_hcd *fotg210, 4101 struct fotg210_iso_stream *stream, 4102 struct usb_device *dev, 4103 int pipe, 4104 unsigned interval 4105) 4106{ 4107 u32 buf1; 4108 unsigned epnum, maxp; 4109 int is_input; 4110 long bandwidth; 4111 unsigned multi; 4112 4113 /* 4114 * this might be a "high bandwidth" highspeed endpoint, 4115 * as encoded in the ep descriptor's wMaxPacket field 4116 */ 4117 epnum = usb_pipeendpoint(pipe); 4118 is_input = usb_pipein(pipe) ? USB_DIR_IN : 0; 4119 maxp = usb_maxpacket(dev, pipe, !is_input); 4120 if (is_input) 4121 buf1 = (1 << 11); 4122 else 4123 buf1 = 0; 4124 4125 maxp = max_packet(maxp); 4126 multi = hb_mult(maxp); 4127 buf1 |= maxp; 4128 maxp *= multi; 4129 4130 stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum); 4131 stream->buf1 = cpu_to_hc32(fotg210, buf1); 4132 stream->buf2 = cpu_to_hc32(fotg210, multi); 4133 4134 /* usbfs wants to report the average usecs per frame tied up 4135 * when transfers on this endpoint are scheduled ... 4136 */ 4137 if (dev->speed == USB_SPEED_FULL) { 4138 interval <<= 3; 4139 stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed, 4140 is_input, 1, maxp)); 4141 stream->usecs /= 8; 4142 } else { 4143 stream->highspeed = 1; 4144 stream->usecs = HS_USECS_ISO(maxp); 4145 } 4146 bandwidth = stream->usecs * 8; 4147 bandwidth /= interval; 4148 4149 stream->bandwidth = bandwidth; 4150 stream->udev = dev; 4151 stream->bEndpointAddress = is_input | epnum; 4152 stream->interval = interval; 4153 stream->maxp = maxp; 4154} 4155 4156static struct fotg210_iso_stream * 4157iso_stream_find(struct fotg210_hcd *fotg210, struct urb *urb) 4158{ 4159 unsigned epnum; 4160 struct fotg210_iso_stream *stream; 4161 struct usb_host_endpoint *ep; 4162 unsigned long flags; 4163 4164 epnum = usb_pipeendpoint(urb->pipe); 4165 if (usb_pipein(urb->pipe)) 4166 ep = urb->dev->ep_in[epnum]; 4167 else 4168 ep = urb->dev->ep_out[epnum]; 4169 4170 spin_lock_irqsave(&fotg210->lock, flags); 4171 stream = ep->hcpriv; 4172 4173 if (unlikely(stream == NULL)) { 4174 stream = iso_stream_alloc(GFP_ATOMIC); 4175 if (likely(stream != NULL)) { 4176 ep->hcpriv = stream; 4177 stream->ep = ep; 4178 iso_stream_init(fotg210, stream, urb->dev, urb->pipe, 4179 urb->interval); 4180 } 4181 4182 /* if dev->ep[epnum] is a QH, hw is set */ 4183 } else if (unlikely(stream->hw != NULL)) { 4184 fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n", 4185 urb->dev->devpath, epnum, 4186 usb_pipein(urb->pipe) ? "in" : "out"); 4187 stream = NULL; 4188 } 4189 4190 spin_unlock_irqrestore(&fotg210->lock, flags); 4191 return stream; 4192} 4193 4194/*-------------------------------------------------------------------------*/ 4195 4196/* fotg210_iso_sched ops can be ITD-only or SITD-only */ 4197 4198static struct fotg210_iso_sched * 4199iso_sched_alloc(unsigned packets, gfp_t mem_flags) 4200{ 4201 struct fotg210_iso_sched *iso_sched; 4202 int size = sizeof(*iso_sched); 4203 4204 size += packets * sizeof(struct fotg210_iso_packet); 4205 iso_sched = kzalloc(size, mem_flags); 4206 if (likely(iso_sched != NULL)) 4207 INIT_LIST_HEAD(&iso_sched->td_list); 4208 4209 return iso_sched; 4210} 4211 4212static inline void 4213itd_sched_init( 4214 struct fotg210_hcd *fotg210, 4215 struct fotg210_iso_sched *iso_sched, 4216 struct fotg210_iso_stream *stream, 4217 struct urb *urb 4218) 4219{ 4220 unsigned i; 4221 dma_addr_t dma = urb->transfer_dma; 4222 4223 /* how many uframes are needed for these transfers */ 4224 iso_sched->span = urb->number_of_packets * stream->interval; 4225 4226 /* figure out per-uframe itd fields that we'll need later 4227 * when we fit new itds into the schedule. 4228 */ 4229 for (i = 0; i < urb->number_of_packets; i++) { 4230 struct fotg210_iso_packet *uframe = &iso_sched->packet[i]; 4231 unsigned length; 4232 dma_addr_t buf; 4233 u32 trans; 4234 4235 length = urb->iso_frame_desc[i].length; 4236 buf = dma + urb->iso_frame_desc[i].offset; 4237 4238 trans = FOTG210_ISOC_ACTIVE; 4239 trans |= buf & 0x0fff; 4240 if (unlikely(((i + 1) == urb->number_of_packets)) 4241 && !(urb->transfer_flags & URB_NO_INTERRUPT)) 4242 trans |= FOTG210_ITD_IOC; 4243 trans |= length << 16; 4244 uframe->transaction = cpu_to_hc32(fotg210, trans); 4245 4246 /* might need to cross a buffer page within a uframe */ 4247 uframe->bufp = (buf & ~(u64)0x0fff); 4248 buf += length; 4249 if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff)))) 4250 uframe->cross = 1; 4251 } 4252} 4253 4254static void 4255iso_sched_free( 4256 struct fotg210_iso_stream *stream, 4257 struct fotg210_iso_sched *iso_sched 4258) 4259{ 4260 if (!iso_sched) 4261 return; 4262 /* caller must hold fotg210->lock!*/ 4263 list_splice(&iso_sched->td_list, &stream->free_list); 4264 kfree(iso_sched); 4265} 4266 4267static int 4268itd_urb_transaction( 4269 struct fotg210_iso_stream *stream, 4270 struct fotg210_hcd *fotg210, 4271 struct urb *urb, 4272 gfp_t mem_flags 4273) 4274{ 4275 struct fotg210_itd *itd; 4276 dma_addr_t itd_dma; 4277 int i; 4278 unsigned num_itds; 4279 struct fotg210_iso_sched *sched; 4280 unsigned long flags; 4281 4282 sched = iso_sched_alloc(urb->number_of_packets, mem_flags); 4283 if (unlikely(sched == NULL)) 4284 return -ENOMEM; 4285 4286 itd_sched_init(fotg210, sched, stream, urb); 4287 4288 if (urb->interval < 8) 4289 num_itds = 1 + (sched->span + 7) / 8; 4290 else 4291 num_itds = urb->number_of_packets; 4292 4293 /* allocate/init ITDs */ 4294 spin_lock_irqsave(&fotg210->lock, flags); 4295 for (i = 0; i < num_itds; i++) { 4296 4297 /* 4298 * Use iTDs from the free list, but not iTDs that may 4299 * still be in use by the hardware. 4300 */ 4301 if (likely(!list_empty(&stream->free_list))) { 4302 itd = list_first_entry(&stream->free_list, 4303 struct fotg210_itd, itd_list); 4304 if (itd->frame == fotg210->now_frame) 4305 goto alloc_itd; 4306 list_del(&itd->itd_list); 4307 itd_dma = itd->itd_dma; 4308 } else { 4309 alloc_itd: 4310 spin_unlock_irqrestore(&fotg210->lock, flags); 4311 itd = dma_pool_alloc(fotg210->itd_pool, mem_flags, 4312 &itd_dma); 4313 spin_lock_irqsave(&fotg210->lock, flags); 4314 if (!itd) { 4315 iso_sched_free(stream, sched); 4316 spin_unlock_irqrestore(&fotg210->lock, flags); 4317 return -ENOMEM; 4318 } 4319 } 4320 4321 memset(itd, 0, sizeof(*itd)); 4322 itd->itd_dma = itd_dma; 4323 list_add(&itd->itd_list, &sched->td_list); 4324 } 4325 spin_unlock_irqrestore(&fotg210->lock, flags); 4326 4327 /* temporarily store schedule info in hcpriv */ 4328 urb->hcpriv = sched; 4329 urb->error_count = 0; 4330 return 0; 4331} 4332 4333/*-------------------------------------------------------------------------*/ 4334 4335static inline int 4336itd_slot_ok( 4337 struct fotg210_hcd *fotg210, 4338 u32 mod, 4339 u32 uframe, 4340 u8 usecs, 4341 u32 period 4342) 4343{ 4344 uframe %= period; 4345 do { 4346 /* can't commit more than uframe_periodic_max usec */ 4347 if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7) 4348 > (fotg210->uframe_periodic_max - usecs)) 4349 return 0; 4350 4351 /* we know urb->interval is 2^N uframes */ 4352 uframe += period; 4353 } while (uframe < mod); 4354 return 1; 4355} 4356 4357/* 4358 * This scheduler plans almost as far into the future as it has actual 4359 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to 4360 * "as small as possible" to be cache-friendlier.) That limits the size 4361 * transfers you can stream reliably; avoid more than 64 msec per urb. 4362 * Also avoid queue depths of less than fotg210's worst irq latency (affected 4363 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter, 4364 * and other factors); or more than about 230 msec total (for portability, 4365 * given FOTG210_TUNE_FLS and the slop). Or, write a smarter scheduler! 4366 */ 4367 4368#define SCHEDULE_SLOP 80 /* microframes */ 4369 4370static int 4371iso_stream_schedule( 4372 struct fotg210_hcd *fotg210, 4373 struct urb *urb, 4374 struct fotg210_iso_stream *stream 4375) 4376{ 4377 u32 now, next, start, period, span; 4378 int status; 4379 unsigned mod = fotg210->periodic_size << 3; 4380 struct fotg210_iso_sched *sched = urb->hcpriv; 4381 4382 period = urb->interval; 4383 span = sched->span; 4384 4385 if (span > mod - SCHEDULE_SLOP) { 4386 fotg210_dbg(fotg210, "iso request %p too long\n", urb); 4387 status = -EFBIG; 4388 goto fail; 4389 } 4390 4391 now = fotg210_read_frame_index(fotg210) & (mod - 1); 4392 4393 /* Typical case: reuse current schedule, stream is still active. 4394 * Hopefully there are no gaps from the host falling behind 4395 * (irq delays etc), but if there are we'll take the next 4396 * slot in the schedule, implicitly assuming URB_ISO_ASAP. 4397 */ 4398 if (likely(!list_empty(&stream->td_list))) { 4399 u32 excess; 4400 4401 /* For high speed devices, allow scheduling within the 4402 * isochronous scheduling threshold. For full speed devices 4403 * and Intel PCI-based controllers, don't (work around for 4404 * Intel ICH9 bug). 4405 */ 4406 if (!stream->highspeed && fotg210->fs_i_thresh) 4407 next = now + fotg210->i_thresh; 4408 else 4409 next = now; 4410 4411 /* Fell behind (by up to twice the slop amount)? 4412 * We decide based on the time of the last currently-scheduled 4413 * slot, not the time of the next available slot. 4414 */ 4415 excess = (stream->next_uframe - period - next) & (mod - 1); 4416 if (excess >= mod - 2 * SCHEDULE_SLOP) 4417 start = next + excess - mod + period * 4418 DIV_ROUND_UP(mod - excess, period); 4419 else 4420 start = next + excess + period; 4421 if (start - now >= mod) { 4422 fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n", 4423 urb, start - now - period, period, 4424 mod); 4425 status = -EFBIG; 4426 goto fail; 4427 } 4428 } 4429 4430 /* need to schedule; when's the next (u)frame we could start? 4431 * this is bigger than fotg210->i_thresh allows; scheduling itself 4432 * isn't free, the slop should handle reasonably slow cpus. it 4433 * can also help high bandwidth if the dma and irq loads don't 4434 * jump until after the queue is primed. 4435 */ 4436 else { 4437 int done = 0; 4438 start = SCHEDULE_SLOP + (now & ~0x07); 4439 4440 /* NOTE: assumes URB_ISO_ASAP, to limit complexity/bugs */ 4441 4442 /* find a uframe slot with enough bandwidth. 4443 * Early uframes are more precious because full-speed 4444 * iso IN transfers can't use late uframes, 4445 * and therefore they should be allocated last. 4446 */ 4447 next = start; 4448 start += period; 4449 do { 4450 start--; 4451 /* check schedule: enough space? */ 4452 if (itd_slot_ok(fotg210, mod, start, 4453 stream->usecs, period)) 4454 done = 1; 4455 } while (start > next && !done); 4456 4457 /* no room in the schedule */ 4458 if (!done) { 4459 fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n", 4460 urb, now, now + mod); 4461 status = -ENOSPC; 4462 goto fail; 4463 } 4464 } 4465 4466 /* Tried to schedule too far into the future? */ 4467 if (unlikely(start - now + span - period 4468 >= mod - 2 * SCHEDULE_SLOP)) { 4469 fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n", 4470 urb, start - now, span - period, 4471 mod - 2 * SCHEDULE_SLOP); 4472 status = -EFBIG; 4473 goto fail; 4474 } 4475 4476 stream->next_uframe = start & (mod - 1); 4477 4478 /* report high speed start in uframes; full speed, in frames */ 4479 urb->start_frame = stream->next_uframe; 4480 if (!stream->highspeed) 4481 urb->start_frame >>= 3; 4482 4483 /* Make sure scan_isoc() sees these */ 4484 if (fotg210->isoc_count == 0) 4485 fotg210->next_frame = now >> 3; 4486 return 0; 4487 4488 fail: 4489 iso_sched_free(stream, sched); 4490 urb->hcpriv = NULL; 4491 return status; 4492} 4493 4494/*-------------------------------------------------------------------------*/ 4495 4496static inline void 4497itd_init(struct fotg210_hcd *fotg210, struct fotg210_iso_stream *stream, 4498 struct fotg210_itd *itd) 4499{ 4500 int i; 4501 4502 /* it's been recently zeroed */ 4503 itd->hw_next = FOTG210_LIST_END(fotg210); 4504 itd->hw_bufp[0] = stream->buf0; 4505 itd->hw_bufp[1] = stream->buf1; 4506 itd->hw_bufp[2] = stream->buf2; 4507 4508 for (i = 0; i < 8; i++) 4509 itd->index[i] = -1; 4510 4511 /* All other fields are filled when scheduling */ 4512} 4513 4514static inline void 4515itd_patch( 4516 struct fotg210_hcd *fotg210, 4517 struct fotg210_itd *itd, 4518 struct fotg210_iso_sched *iso_sched, 4519 unsigned index, 4520 u16 uframe 4521) 4522{ 4523 struct fotg210_iso_packet *uf = &iso_sched->packet[index]; 4524 unsigned pg = itd->pg; 4525 4526 uframe &= 0x07; 4527 itd->index[uframe] = index; 4528 4529 itd->hw_transaction[uframe] = uf->transaction; 4530 itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12); 4531 itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0); 4532 itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32)); 4533 4534 /* iso_frame_desc[].offset must be strictly increasing */ 4535 if (unlikely(uf->cross)) { 4536 u64 bufp = uf->bufp + 4096; 4537 4538 itd->pg = ++pg; 4539 itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0); 4540 itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32)); 4541 } 4542} 4543 4544static inline void 4545itd_link(struct fotg210_hcd *fotg210, unsigned frame, struct fotg210_itd *itd) 4546{ 4547 union fotg210_shadow *prev = &fotg210->pshadow[frame]; 4548 __hc32 *hw_p = &fotg210->periodic[frame]; 4549 union fotg210_shadow here = *prev; 4550 __hc32 type = 0; 4551 4552 /* skip any iso nodes which might belong to previous microframes */ 4553 while (here.ptr) { 4554 type = Q_NEXT_TYPE(fotg210, *hw_p); 4555 if (type == cpu_to_hc32(fotg210, Q_TYPE_QH)) 4556 break; 4557 prev = periodic_next_shadow(fotg210, prev, type); 4558 hw_p = shadow_next_periodic(fotg210, &here, type); 4559 here = *prev; 4560 } 4561 4562 itd->itd_next = here; 4563 itd->hw_next = *hw_p; 4564 prev->itd = itd; 4565 itd->frame = frame; 4566 wmb(); 4567 *hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD); 4568} 4569 4570/* fit urb's itds into the selected schedule slot; activate as needed */ 4571static void itd_link_urb( 4572 struct fotg210_hcd *fotg210, 4573 struct urb *urb, 4574 unsigned mod, 4575 struct fotg210_iso_stream *stream 4576) 4577{ 4578 int packet; 4579 unsigned next_uframe, uframe, frame; 4580 struct fotg210_iso_sched *iso_sched = urb->hcpriv; 4581 struct fotg210_itd *itd; 4582 4583 next_uframe = stream->next_uframe & (mod - 1); 4584 4585 if (unlikely(list_empty(&stream->td_list))) { 4586 fotg210_to_hcd(fotg210)->self.bandwidth_allocated 4587 += stream->bandwidth; 4588 fotg210_dbg(fotg210, 4589 "schedule devp %s ep%d%s-iso period %d start %d.%d\n", 4590 urb->dev->devpath, stream->bEndpointAddress & 0x0f, 4591 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out", 4592 urb->interval, 4593 next_uframe >> 3, next_uframe & 0x7); 4594 } 4595 4596 /* fill iTDs uframe by uframe */ 4597 for (packet = 0, itd = NULL; packet < urb->number_of_packets;) { 4598 if (itd == NULL) { 4599 /* ASSERT: we have all necessary itds */ 4600 4601 /* ASSERT: no itds for this endpoint in this uframe */ 4602 4603 itd = list_entry(iso_sched->td_list.next, 4604 struct fotg210_itd, itd_list); 4605 list_move_tail(&itd->itd_list, &stream->td_list); 4606 itd->stream = stream; 4607 itd->urb = urb; 4608 itd_init(fotg210, stream, itd); 4609 } 4610 4611 uframe = next_uframe & 0x07; 4612 frame = next_uframe >> 3; 4613 4614 itd_patch(fotg210, itd, iso_sched, packet, uframe); 4615 4616 next_uframe += stream->interval; 4617 next_uframe &= mod - 1; 4618 packet++; 4619 4620 /* link completed itds into the schedule */ 4621 if (((next_uframe >> 3) != frame) 4622 || packet == urb->number_of_packets) { 4623 itd_link(fotg210, frame & (fotg210->periodic_size - 1), 4624 itd); 4625 itd = NULL; 4626 } 4627 } 4628 stream->next_uframe = next_uframe; 4629 4630 /* don't need that schedule data any more */ 4631 iso_sched_free(stream, iso_sched); 4632 urb->hcpriv = NULL; 4633 4634 ++fotg210->isoc_count; 4635 enable_periodic(fotg210); 4636} 4637 4638#define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\ 4639 FOTG210_ISOC_XACTERR) 4640 4641/* Process and recycle a completed ITD. Return true iff its urb completed, 4642 * and hence its completion callback probably added things to the hardware 4643 * schedule. 4644 * 4645 * Note that we carefully avoid recycling this descriptor until after any 4646 * completion callback runs, so that it won't be reused quickly. That is, 4647 * assuming (a) no more than two urbs per frame on this endpoint, and also 4648 * (b) only this endpoint's completions submit URBs. It seems some silicon 4649 * corrupts things if you reuse completed descriptors very quickly... 4650 */ 4651static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd) 4652{ 4653 struct urb *urb = itd->urb; 4654 struct usb_iso_packet_descriptor *desc; 4655 u32 t; 4656 unsigned uframe; 4657 int urb_index = -1; 4658 struct fotg210_iso_stream *stream = itd->stream; 4659 struct usb_device *dev; 4660 bool retval = false; 4661 4662 /* for each uframe with a packet */ 4663 for (uframe = 0; uframe < 8; uframe++) { 4664 if (likely(itd->index[uframe] == -1)) 4665 continue; 4666 urb_index = itd->index[uframe]; 4667 desc = &urb->iso_frame_desc[urb_index]; 4668 4669 t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]); 4670 itd->hw_transaction[uframe] = 0; 4671 4672 /* report transfer status */ 4673 if (unlikely(t & ISO_ERRS)) { 4674 urb->error_count++; 4675 if (t & FOTG210_ISOC_BUF_ERR) 4676 desc->status = usb_pipein(urb->pipe) 4677 ? -ENOSR /* hc couldn't read */ 4678 : -ECOMM; /* hc couldn't write */ 4679 else if (t & FOTG210_ISOC_BABBLE) 4680 desc->status = -EOVERFLOW; 4681 else /* (t & FOTG210_ISOC_XACTERR) */ 4682 desc->status = -EPROTO; 4683 4684 /* HC need not update length with this error */ 4685 if (!(t & FOTG210_ISOC_BABBLE)) { 4686 desc->actual_length = 4687 fotg210_itdlen(urb, desc, t); 4688 urb->actual_length += desc->actual_length; 4689 } 4690 } else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) { 4691 desc->status = 0; 4692 desc->actual_length = fotg210_itdlen(urb, desc, t); 4693 urb->actual_length += desc->actual_length; 4694 } else { 4695 /* URB was too late */ 4696 desc->status = -EXDEV; 4697 } 4698 } 4699 4700 /* handle completion now? */ 4701 if (likely((urb_index + 1) != urb->number_of_packets)) 4702 goto done; 4703 4704 /* ASSERT: it's really the last itd for this urb 4705 list_for_each_entry (itd, &stream->td_list, itd_list) 4706 BUG_ON (itd->urb == urb); 4707 */ 4708 4709 /* give urb back to the driver; completion often (re)submits */ 4710 dev = urb->dev; 4711 fotg210_urb_done(fotg210, urb, 0); 4712 retval = true; 4713 urb = NULL; 4714 4715 --fotg210->isoc_count; 4716 disable_periodic(fotg210); 4717 4718 if (unlikely(list_is_singular(&stream->td_list))) { 4719 fotg210_to_hcd(fotg210)->self.bandwidth_allocated 4720 -= stream->bandwidth; 4721 fotg210_dbg(fotg210, 4722 "deschedule devp %s ep%d%s-iso\n", 4723 dev->devpath, stream->bEndpointAddress & 0x0f, 4724 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out"); 4725 } 4726 4727done: 4728 itd->urb = NULL; 4729 4730 /* Add to the end of the free list for later reuse */ 4731 list_move_tail(&itd->itd_list, &stream->free_list); 4732 4733 /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */ 4734 if (list_empty(&stream->td_list)) { 4735 list_splice_tail_init(&stream->free_list, 4736 &fotg210->cached_itd_list); 4737 start_free_itds(fotg210); 4738 } 4739 4740 return retval; 4741} 4742 4743/*-------------------------------------------------------------------------*/ 4744 4745static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb, 4746 gfp_t mem_flags) 4747{ 4748 int status = -EINVAL; 4749 unsigned long flags; 4750 struct fotg210_iso_stream *stream; 4751 4752 /* Get iso_stream head */ 4753 stream = iso_stream_find(fotg210, urb); 4754 if (unlikely(stream == NULL)) { 4755 fotg210_dbg(fotg210, "can't get iso stream\n"); 4756 return -ENOMEM; 4757 } 4758 if (unlikely(urb->interval != stream->interval && 4759 fotg210_port_speed(fotg210, 0) == 4760 USB_PORT_STAT_HIGH_SPEED)) { 4761 fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n", 4762 stream->interval, urb->interval); 4763 goto done; 4764 } 4765 4766#ifdef FOTG210_URB_TRACE 4767 fotg210_dbg(fotg210, 4768 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n", 4769 __func__, urb->dev->devpath, urb, 4770 usb_pipeendpoint(urb->pipe), 4771 usb_pipein(urb->pipe) ? "in" : "out", 4772 urb->transfer_buffer_length, 4773 urb->number_of_packets, urb->interval, 4774 stream); 4775#endif 4776 4777 /* allocate ITDs w/o locking anything */ 4778 status = itd_urb_transaction(stream, fotg210, urb, mem_flags); 4779 if (unlikely(status < 0)) { 4780 fotg210_dbg(fotg210, "can't init itds\n"); 4781 goto done; 4782 } 4783 4784 /* schedule ... need to lock */ 4785 spin_lock_irqsave(&fotg210->lock, flags); 4786 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) { 4787 status = -ESHUTDOWN; 4788 goto done_not_linked; 4789 } 4790 status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb); 4791 if (unlikely(status)) 4792 goto done_not_linked; 4793 status = iso_stream_schedule(fotg210, urb, stream); 4794 if (likely(status == 0)) 4795 itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream); 4796 else 4797 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb); 4798 done_not_linked: 4799 spin_unlock_irqrestore(&fotg210->lock, flags); 4800 done: 4801 return status; 4802} 4803 4804/*-------------------------------------------------------------------------*/ 4805 4806static void scan_isoc(struct fotg210_hcd *fotg210) 4807{ 4808 unsigned uf, now_frame, frame; 4809 unsigned fmask = fotg210->periodic_size - 1; 4810 bool modified, live; 4811 4812 /* 4813 * When running, scan from last scan point up to "now" 4814 * else clean up by scanning everything that's left. 4815 * Touches as few pages as possible: cache-friendly. 4816 */ 4817 if (fotg210->rh_state >= FOTG210_RH_RUNNING) { 4818 uf = fotg210_read_frame_index(fotg210); 4819 now_frame = (uf >> 3) & fmask; 4820 live = true; 4821 } else { 4822 now_frame = (fotg210->next_frame - 1) & fmask; 4823 live = false; 4824 } 4825 fotg210->now_frame = now_frame; 4826 4827 frame = fotg210->next_frame; 4828 for (;;) { 4829 union fotg210_shadow q, *q_p; 4830 __hc32 type, *hw_p; 4831 4832restart: 4833 /* scan each element in frame's queue for completions */ 4834 q_p = &fotg210->pshadow[frame]; 4835 hw_p = &fotg210->periodic[frame]; 4836 q.ptr = q_p->ptr; 4837 type = Q_NEXT_TYPE(fotg210, *hw_p); 4838 modified = false; 4839 4840 while (q.ptr != NULL) { 4841 switch (hc32_to_cpu(fotg210, type)) { 4842 case Q_TYPE_ITD: 4843 /* If this ITD is still active, leave it for 4844 * later processing ... check the next entry. 4845 * No need to check for activity unless the 4846 * frame is current. 4847 */ 4848 if (frame == now_frame && live) { 4849 rmb(); 4850 for (uf = 0; uf < 8; uf++) { 4851 if (q.itd->hw_transaction[uf] & 4852 ITD_ACTIVE(fotg210)) 4853 break; 4854 } 4855 if (uf < 8) { 4856 q_p = &q.itd->itd_next; 4857 hw_p = &q.itd->hw_next; 4858 type = Q_NEXT_TYPE(fotg210, 4859 q.itd->hw_next); 4860 q = *q_p; 4861 break; 4862 } 4863 } 4864 4865 /* Take finished ITDs out of the schedule 4866 * and process them: recycle, maybe report 4867 * URB completion. HC won't cache the 4868 * pointer for much longer, if at all. 4869 */ 4870 *q_p = q.itd->itd_next; 4871 *hw_p = q.itd->hw_next; 4872 type = Q_NEXT_TYPE(fotg210, q.itd->hw_next); 4873 wmb(); 4874 modified = itd_complete(fotg210, q.itd); 4875 q = *q_p; 4876 break; 4877 default: 4878 fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n", 4879 type, frame, q.ptr); 4880 /* FALL THROUGH */ 4881 case Q_TYPE_QH: 4882 case Q_TYPE_FSTN: 4883 /* End of the iTDs and siTDs */ 4884 q.ptr = NULL; 4885 break; 4886 } 4887 4888 /* assume completion callbacks modify the queue */ 4889 if (unlikely(modified && fotg210->isoc_count > 0)) 4890 goto restart; 4891 } 4892 4893 /* Stop when we have reached the current frame */ 4894 if (frame == now_frame) 4895 break; 4896 frame = (frame + 1) & fmask; 4897 } 4898 fotg210->next_frame = now_frame; 4899} 4900/*-------------------------------------------------------------------------*/ 4901/* 4902 * Display / Set uframe_periodic_max 4903 */ 4904static ssize_t show_uframe_periodic_max(struct device *dev, 4905 struct device_attribute *attr, 4906 char *buf) 4907{ 4908 struct fotg210_hcd *fotg210; 4909 int n; 4910 4911 fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev))); 4912 n = scnprintf(buf, PAGE_SIZE, "%d\n", fotg210->uframe_periodic_max); 4913 return n; 4914} 4915 4916 4917static ssize_t store_uframe_periodic_max(struct device *dev, 4918 struct device_attribute *attr, 4919 const char *buf, size_t count) 4920{ 4921 struct fotg210_hcd *fotg210; 4922 unsigned uframe_periodic_max; 4923 unsigned frame, uframe; 4924 unsigned short allocated_max; 4925 unsigned long flags; 4926 ssize_t ret; 4927 4928 fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev))); 4929 if (kstrtouint(buf, 0, &uframe_periodic_max) < 0) 4930 return -EINVAL; 4931 4932 if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) { 4933 fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n", 4934 uframe_periodic_max); 4935 return -EINVAL; 4936 } 4937 4938 ret = -EINVAL; 4939 4940 /* 4941 * lock, so that our checking does not race with possible periodic 4942 * bandwidth allocation through submitting new urbs. 4943 */ 4944 spin_lock_irqsave(&fotg210->lock, flags); 4945 4946 /* 4947 * for request to decrease max periodic bandwidth, we have to check 4948 * every microframe in the schedule to see whether the decrease is 4949 * possible. 4950 */ 4951 if (uframe_periodic_max < fotg210->uframe_periodic_max) { 4952 allocated_max = 0; 4953 4954 for (frame = 0; frame < fotg210->periodic_size; ++frame) 4955 for (uframe = 0; uframe < 7; ++uframe) 4956 allocated_max = max(allocated_max, 4957 periodic_usecs(fotg210, frame, uframe)); 4958 4959 if (allocated_max > uframe_periodic_max) { 4960 fotg210_info(fotg210, 4961 "cannot decrease uframe_periodic_max because " 4962 "periodic bandwidth is already allocated " 4963 "(%u > %u)\n", 4964 allocated_max, uframe_periodic_max); 4965 goto out_unlock; 4966 } 4967 } 4968 4969 /* increasing is always ok */ 4970 4971 fotg210_info(fotg210, "setting max periodic bandwidth to %u%% (== %u usec/uframe)\n", 4972 100 * uframe_periodic_max/125, uframe_periodic_max); 4973 4974 if (uframe_periodic_max != 100) 4975 fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n"); 4976 4977 fotg210->uframe_periodic_max = uframe_periodic_max; 4978 ret = count; 4979 4980out_unlock: 4981 spin_unlock_irqrestore(&fotg210->lock, flags); 4982 return ret; 4983} 4984 4985static DEVICE_ATTR(uframe_periodic_max, 0644, show_uframe_periodic_max, 4986 store_uframe_periodic_max); 4987 4988static inline int create_sysfs_files(struct fotg210_hcd *fotg210) 4989{ 4990 struct device *controller = fotg210_to_hcd(fotg210)->self.controller; 4991 int i = 0; 4992 4993 if (i) 4994 goto out; 4995 4996 i = device_create_file(controller, &dev_attr_uframe_periodic_max); 4997out: 4998 return i; 4999} 5000 5001static inline void remove_sysfs_files(struct fotg210_hcd *fotg210) 5002{ 5003 struct device *controller = fotg210_to_hcd(fotg210)->self.controller; 5004 5005 device_remove_file(controller, &dev_attr_uframe_periodic_max); 5006} 5007/*-------------------------------------------------------------------------*/ 5008 5009/* On some systems, leaving remote wakeup enabled prevents system shutdown. 5010 * The firmware seems to think that powering off is a wakeup event! 5011 * This routine turns off remote wakeup and everything else, on all ports. 5012 */ 5013static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210) 5014{ 5015 u32 __iomem *status_reg = &fotg210->regs->port_status; 5016 5017 fotg210_writel(fotg210, PORT_RWC_BITS, status_reg); 5018} 5019 5020/* 5021 * Halt HC, turn off all ports, and let the BIOS use the companion controllers. 5022 * Must be called with interrupts enabled and the lock not held. 5023 */ 5024static void fotg210_silence_controller(struct fotg210_hcd *fotg210) 5025{ 5026 fotg210_halt(fotg210); 5027 5028 spin_lock_irq(&fotg210->lock); 5029 fotg210->rh_state = FOTG210_RH_HALTED; 5030 fotg210_turn_off_all_ports(fotg210); 5031 spin_unlock_irq(&fotg210->lock); 5032} 5033 5034/* fotg210_shutdown kick in for silicon on any bus (not just pci, etc). 5035 * This forcibly disables dma and IRQs, helping kexec and other cases 5036 * where the next system software may expect clean state. 5037 */ 5038static void fotg210_shutdown(struct usb_hcd *hcd) 5039{ 5040 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 5041 5042 spin_lock_irq(&fotg210->lock); 5043 fotg210->shutdown = true; 5044 fotg210->rh_state = FOTG210_RH_STOPPING; 5045 fotg210->enabled_hrtimer_events = 0; 5046 spin_unlock_irq(&fotg210->lock); 5047 5048 fotg210_silence_controller(fotg210); 5049 5050 hrtimer_cancel(&fotg210->hrtimer); 5051} 5052 5053/*-------------------------------------------------------------------------*/ 5054 5055/* 5056 * fotg210_work is called from some interrupts, timers, and so on. 5057 * it calls driver completion functions, after dropping fotg210->lock. 5058 */ 5059static void fotg210_work(struct fotg210_hcd *fotg210) 5060{ 5061 /* another CPU may drop fotg210->lock during a schedule scan while 5062 * it reports urb completions. this flag guards against bogus 5063 * attempts at re-entrant schedule scanning. 5064 */ 5065 if (fotg210->scanning) { 5066 fotg210->need_rescan = true; 5067 return; 5068 } 5069 fotg210->scanning = true; 5070 5071 rescan: 5072 fotg210->need_rescan = false; 5073 if (fotg210->async_count) 5074 scan_async(fotg210); 5075 if (fotg210->intr_count > 0) 5076 scan_intr(fotg210); 5077 if (fotg210->isoc_count > 0) 5078 scan_isoc(fotg210); 5079 if (fotg210->need_rescan) 5080 goto rescan; 5081 fotg210->scanning = false; 5082 5083 /* the IO watchdog guards against hardware or driver bugs that 5084 * misplace IRQs, and should let us run completely without IRQs. 5085 * such lossage has been observed on both VT6202 and VT8235. 5086 */ 5087 turn_on_io_watchdog(fotg210); 5088} 5089 5090/* 5091 * Called when the fotg210_hcd module is removed. 5092 */ 5093static void fotg210_stop(struct usb_hcd *hcd) 5094{ 5095 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 5096 5097 fotg210_dbg(fotg210, "stop\n"); 5098 5099 /* no more interrupts ... */ 5100 5101 spin_lock_irq(&fotg210->lock); 5102 fotg210->enabled_hrtimer_events = 0; 5103 spin_unlock_irq(&fotg210->lock); 5104 5105 fotg210_quiesce(fotg210); 5106 fotg210_silence_controller(fotg210); 5107 fotg210_reset(fotg210); 5108 5109 hrtimer_cancel(&fotg210->hrtimer); 5110 remove_sysfs_files(fotg210); 5111 remove_debug_files(fotg210); 5112 5113 /* root hub is shut down separately (first, when possible) */ 5114 spin_lock_irq(&fotg210->lock); 5115 end_free_itds(fotg210); 5116 spin_unlock_irq(&fotg210->lock); 5117 fotg210_mem_cleanup(fotg210); 5118 5119#ifdef FOTG210_STATS 5120 fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n", 5121 fotg210->stats.normal, fotg210->stats.error, fotg210->stats.iaa, 5122 fotg210->stats.lost_iaa); 5123 fotg210_dbg(fotg210, "complete %ld unlink %ld\n", 5124 fotg210->stats.complete, fotg210->stats.unlink); 5125#endif 5126 5127 dbg_status(fotg210, "fotg210_stop completed", 5128 fotg210_readl(fotg210, &fotg210->regs->status)); 5129} 5130 5131/* one-time init, only for memory state */ 5132static int hcd_fotg210_init(struct usb_hcd *hcd) 5133{ 5134 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 5135 u32 temp; 5136 int retval; 5137 u32 hcc_params; 5138 struct fotg210_qh_hw *hw; 5139 5140 spin_lock_init(&fotg210->lock); 5141 5142 /* 5143 * keep io watchdog by default, those good HCDs could turn off it later 5144 */ 5145 fotg210->need_io_watchdog = 1; 5146 5147 hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 5148 fotg210->hrtimer.function = fotg210_hrtimer_func; 5149 fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT; 5150 5151 hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params); 5152 5153 /* 5154 * by default set standard 80% (== 100 usec/uframe) max periodic 5155 * bandwidth as required by USB 2.0 5156 */ 5157 fotg210->uframe_periodic_max = 100; 5158 5159 /* 5160 * hw default: 1K periodic list heads, one per frame. 5161 * periodic_size can shrink by USBCMD update if hcc_params allows. 5162 */ 5163 fotg210->periodic_size = DEFAULT_I_TDPS; 5164 INIT_LIST_HEAD(&fotg210->intr_qh_list); 5165 INIT_LIST_HEAD(&fotg210->cached_itd_list); 5166 5167 if (HCC_PGM_FRAMELISTLEN(hcc_params)) { 5168 /* periodic schedule size can be smaller than default */ 5169 switch (FOTG210_TUNE_FLS) { 5170 case 0: 5171 fotg210->periodic_size = 1024; 5172 break; 5173 case 1: 5174 fotg210->periodic_size = 512; 5175 break; 5176 case 2: 5177 fotg210->periodic_size = 256; 5178 break; 5179 default: 5180 BUG(); 5181 } 5182 } 5183 retval = fotg210_mem_init(fotg210, GFP_KERNEL); 5184 if (retval < 0) 5185 return retval; 5186 5187 /* controllers may cache some of the periodic schedule ... */ 5188 fotg210->i_thresh = 2; 5189 5190 /* 5191 * dedicate a qh for the async ring head, since we couldn't unlink 5192 * a 'real' qh without stopping the async schedule [4.8]. use it 5193 * as the 'reclamation list head' too. 5194 * its dummy is used in hw_alt_next of many tds, to prevent the qh 5195 * from automatically advancing to the next td after short reads. 5196 */ 5197 fotg210->async->qh_next.qh = NULL; 5198 hw = fotg210->async->hw; 5199 hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma); 5200 hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD); 5201 hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT); 5202 hw->hw_qtd_next = FOTG210_LIST_END(fotg210); 5203 fotg210->async->qh_state = QH_STATE_LINKED; 5204 hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma); 5205 5206 /* clear interrupt enables, set irq latency */ 5207 if (log2_irq_thresh < 0 || log2_irq_thresh > 6) 5208 log2_irq_thresh = 0; 5209 temp = 1 << (16 + log2_irq_thresh); 5210 if (HCC_CANPARK(hcc_params)) { 5211 /* HW default park == 3, on hardware that supports it (like 5212 * NVidia and ALI silicon), maximizes throughput on the async 5213 * schedule by avoiding QH fetches between transfers. 5214 * 5215 * With fast usb storage devices and NForce2, "park" seems to 5216 * make problems: throughput reduction (!), data errors... 5217 */ 5218 if (park) { 5219 park = min_t(unsigned, park, 3); 5220 temp |= CMD_PARK; 5221 temp |= park << 8; 5222 } 5223 fotg210_dbg(fotg210, "park %d\n", park); 5224 } 5225 if (HCC_PGM_FRAMELISTLEN(hcc_params)) { 5226 /* periodic schedule size can be smaller than default */ 5227 temp &= ~(3 << 2); 5228 temp |= (FOTG210_TUNE_FLS << 2); 5229 } 5230 fotg210->command = temp; 5231 5232 /* Accept arbitrarily long scatter-gather lists */ 5233 if (!(hcd->driver->flags & HCD_LOCAL_MEM)) 5234 hcd->self.sg_tablesize = ~0; 5235 return 0; 5236} 5237 5238/* start HC running; it's halted, hcd_fotg210_init() has been run (once) */ 5239static int fotg210_run(struct usb_hcd *hcd) 5240{ 5241 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 5242 u32 temp; 5243 u32 hcc_params; 5244 5245 hcd->uses_new_polling = 1; 5246 5247 /* EHCI spec section 4.1 */ 5248 5249 fotg210_writel(fotg210, fotg210->periodic_dma, 5250 &fotg210->regs->frame_list); 5251 fotg210_writel(fotg210, (u32)fotg210->async->qh_dma, 5252 &fotg210->regs->async_next); 5253 5254 /* 5255 * hcc_params controls whether fotg210->regs->segment must (!!!) 5256 * be used; it constrains QH/ITD/SITD and QTD locations. 5257 * pci_pool consistent memory always uses segment zero. 5258 * streaming mappings for I/O buffers, like pci_map_single(), 5259 * can return segments above 4GB, if the device allows. 5260 * 5261 * NOTE: the dma mask is visible through dma_supported(), so 5262 * drivers can pass this info along ... like NETIF_F_HIGHDMA, 5263 * Scsi_Host.highmem_io, and so forth. It's readonly to all 5264 * host side drivers though. 5265 */ 5266 hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params); 5267 5268 /* 5269 * Philips, Intel, and maybe others need CMD_RUN before the 5270 * root hub will detect new devices (why?); NEC doesn't 5271 */ 5272 fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET); 5273 fotg210->command |= CMD_RUN; 5274 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command); 5275 dbg_cmd(fotg210, "init", fotg210->command); 5276 5277 /* 5278 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices 5279 * are explicitly handed to companion controller(s), so no TT is 5280 * involved with the root hub. (Except where one is integrated, 5281 * and there's no companion controller unless maybe for USB OTG.) 5282 * 5283 * Turning on the CF flag will transfer ownership of all ports 5284 * from the companions to the EHCI controller. If any of the 5285 * companions are in the middle of a port reset at the time, it 5286 * could cause trouble. Write-locking ehci_cf_port_reset_rwsem 5287 * guarantees that no resets are in progress. After we set CF, 5288 * a short delay lets the hardware catch up; new resets shouldn't 5289 * be started before the port switching actions could complete. 5290 */ 5291 down_write(&ehci_cf_port_reset_rwsem); 5292 fotg210->rh_state = FOTG210_RH_RUNNING; 5293 /* unblock posted writes */ 5294 fotg210_readl(fotg210, &fotg210->regs->command); 5295 msleep(5); 5296 up_write(&ehci_cf_port_reset_rwsem); 5297 fotg210->last_periodic_enable = ktime_get_real(); 5298 5299 temp = HC_VERSION(fotg210, 5300 fotg210_readl(fotg210, &fotg210->caps->hc_capbase)); 5301 fotg210_info(fotg210, 5302 "USB %x.%x started, EHCI %x.%02x\n", 5303 ((fotg210->sbrn & 0xf0)>>4), (fotg210->sbrn & 0x0f), 5304 temp >> 8, temp & 0xff); 5305 5306 fotg210_writel(fotg210, INTR_MASK, 5307 &fotg210->regs->intr_enable); /* Turn On Interrupts */ 5308 5309 /* GRR this is run-once init(), being done every time the HC starts. 5310 * So long as they're part of class devices, we can't do it init() 5311 * since the class device isn't created that early. 5312 */ 5313 create_debug_files(fotg210); 5314 create_sysfs_files(fotg210); 5315 5316 return 0; 5317} 5318 5319static int fotg210_setup(struct usb_hcd *hcd) 5320{ 5321 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 5322 int retval; 5323 5324 fotg210->regs = (void __iomem *)fotg210->caps + 5325 HC_LENGTH(fotg210, 5326 fotg210_readl(fotg210, &fotg210->caps->hc_capbase)); 5327 dbg_hcs_params(fotg210, "reset"); 5328 dbg_hcc_params(fotg210, "reset"); 5329 5330 /* cache this readonly data; minimize chip reads */ 5331 fotg210->hcs_params = fotg210_readl(fotg210, 5332 &fotg210->caps->hcs_params); 5333 5334 fotg210->sbrn = HCD_USB2; 5335 5336 /* data structure init */ 5337 retval = hcd_fotg210_init(hcd); 5338 if (retval) 5339 return retval; 5340 5341 retval = fotg210_halt(fotg210); 5342 if (retval) 5343 return retval; 5344 5345 fotg210_reset(fotg210); 5346 5347 return 0; 5348} 5349 5350/*-------------------------------------------------------------------------*/ 5351 5352static irqreturn_t fotg210_irq(struct usb_hcd *hcd) 5353{ 5354 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 5355 u32 status, masked_status, pcd_status = 0, cmd; 5356 int bh; 5357 5358 spin_lock(&fotg210->lock); 5359 5360 status = fotg210_readl(fotg210, &fotg210->regs->status); 5361 5362 /* e.g. cardbus physical eject */ 5363 if (status == ~(u32) 0) { 5364 fotg210_dbg(fotg210, "device removed\n"); 5365 goto dead; 5366 } 5367 5368 /* 5369 * We don't use STS_FLR, but some controllers don't like it to 5370 * remain on, so mask it out along with the other status bits. 5371 */ 5372 masked_status = status & (INTR_MASK | STS_FLR); 5373 5374 /* Shared IRQ? */ 5375 if (!masked_status || 5376 unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) { 5377 spin_unlock(&fotg210->lock); 5378 return IRQ_NONE; 5379 } 5380 5381 /* clear (just) interrupts */ 5382 fotg210_writel(fotg210, masked_status, &fotg210->regs->status); 5383 cmd = fotg210_readl(fotg210, &fotg210->regs->command); 5384 bh = 0; 5385 5386 /* unrequested/ignored: Frame List Rollover */ 5387 dbg_status(fotg210, "irq", status); 5388 5389 /* INT, ERR, and IAA interrupt rates can be throttled */ 5390 5391 /* normal [4.15.1.2] or error [4.15.1.1] completion */ 5392 if (likely((status & (STS_INT|STS_ERR)) != 0)) { 5393 if (likely((status & STS_ERR) == 0)) 5394 COUNT(fotg210->stats.normal); 5395 else 5396 COUNT(fotg210->stats.error); 5397 bh = 1; 5398 } 5399 5400 /* complete the unlinking of some qh [4.15.2.3] */ 5401 if (status & STS_IAA) { 5402 5403 /* Turn off the IAA watchdog */ 5404 fotg210->enabled_hrtimer_events &= 5405 ~BIT(FOTG210_HRTIMER_IAA_WATCHDOG); 5406 5407 /* 5408 * Mild optimization: Allow another IAAD to reset the 5409 * hrtimer, if one occurs before the next expiration. 5410 * In theory we could always cancel the hrtimer, but 5411 * tests show that about half the time it will be reset 5412 * for some other event anyway. 5413 */ 5414 if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG) 5415 ++fotg210->next_hrtimer_event; 5416 5417 /* guard against (alleged) silicon errata */ 5418 if (cmd & CMD_IAAD) 5419 fotg210_dbg(fotg210, "IAA with IAAD still set?\n"); 5420 if (fotg210->async_iaa) { 5421 COUNT(fotg210->stats.iaa); 5422 end_unlink_async(fotg210); 5423 } else 5424 fotg210_dbg(fotg210, "IAA with nothing unlinked?\n"); 5425 } 5426 5427 /* remote wakeup [4.3.1] */ 5428 if (status & STS_PCD) { 5429 int pstatus; 5430 u32 __iomem *status_reg = &fotg210->regs->port_status; 5431 5432 /* kick root hub later */ 5433 pcd_status = status; 5434 5435 /* resume root hub? */ 5436 if (fotg210->rh_state == FOTG210_RH_SUSPENDED) 5437 usb_hcd_resume_root_hub(hcd); 5438 5439 pstatus = fotg210_readl(fotg210, status_reg); 5440 5441 if (test_bit(0, &fotg210->suspended_ports) && 5442 ((pstatus & PORT_RESUME) || 5443 !(pstatus & PORT_SUSPEND)) && 5444 (pstatus & PORT_PE) && 5445 fotg210->reset_done[0] == 0) { 5446 5447 /* start 20 msec resume signaling from this port, 5448 * and make hub_wq collect PORT_STAT_C_SUSPEND to 5449 * stop that signaling. Use 5 ms extra for safety, 5450 * like usb_port_resume() does. 5451 */ 5452 fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25); 5453 set_bit(0, &fotg210->resuming_ports); 5454 fotg210_dbg(fotg210, "port 1 remote wakeup\n"); 5455 mod_timer(&hcd->rh_timer, fotg210->reset_done[0]); 5456 } 5457 } 5458 5459 /* PCI errors [4.15.2.4] */ 5460 if (unlikely((status & STS_FATAL) != 0)) { 5461 fotg210_err(fotg210, "fatal error\n"); 5462 dbg_cmd(fotg210, "fatal", cmd); 5463 dbg_status(fotg210, "fatal", status); 5464dead: 5465 usb_hc_died(hcd); 5466 5467 /* Don't let the controller do anything more */ 5468 fotg210->shutdown = true; 5469 fotg210->rh_state = FOTG210_RH_STOPPING; 5470 fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE); 5471 fotg210_writel(fotg210, fotg210->command, 5472 &fotg210->regs->command); 5473 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable); 5474 fotg210_handle_controller_death(fotg210); 5475 5476 /* Handle completions when the controller stops */ 5477 bh = 0; 5478 } 5479 5480 if (bh) 5481 fotg210_work(fotg210); 5482 spin_unlock(&fotg210->lock); 5483 if (pcd_status) 5484 usb_hcd_poll_rh_status(hcd); 5485 return IRQ_HANDLED; 5486} 5487 5488/*-------------------------------------------------------------------------*/ 5489 5490/* 5491 * non-error returns are a promise to giveback() the urb later 5492 * we drop ownership so next owner (or urb unlink) can get it 5493 * 5494 * urb + dev is in hcd.self.controller.urb_list 5495 * we're queueing TDs onto software and hardware lists 5496 * 5497 * hcd-specific init for hcpriv hasn't been done yet 5498 * 5499 * NOTE: control, bulk, and interrupt share the same code to append TDs 5500 * to a (possibly active) QH, and the same QH scanning code. 5501 */ 5502static int fotg210_urb_enqueue( 5503 struct usb_hcd *hcd, 5504 struct urb *urb, 5505 gfp_t mem_flags 5506) { 5507 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 5508 struct list_head qtd_list; 5509 5510 INIT_LIST_HEAD(&qtd_list); 5511 5512 switch (usb_pipetype(urb->pipe)) { 5513 case PIPE_CONTROL: 5514 /* qh_completions() code doesn't handle all the fault cases 5515 * in multi-TD control transfers. Even 1KB is rare anyway. 5516 */ 5517 if (urb->transfer_buffer_length > (16 * 1024)) 5518 return -EMSGSIZE; 5519 /* FALLTHROUGH */ 5520 /* case PIPE_BULK: */ 5521 default: 5522 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags)) 5523 return -ENOMEM; 5524 return submit_async(fotg210, urb, &qtd_list, mem_flags); 5525 5526 case PIPE_INTERRUPT: 5527 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags)) 5528 return -ENOMEM; 5529 return intr_submit(fotg210, urb, &qtd_list, mem_flags); 5530 5531 case PIPE_ISOCHRONOUS: 5532 return itd_submit(fotg210, urb, mem_flags); 5533 } 5534} 5535 5536/* remove from hardware lists 5537 * completions normally happen asynchronously 5538 */ 5539 5540static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 5541{ 5542 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 5543 struct fotg210_qh *qh; 5544 unsigned long flags; 5545 int rc; 5546 5547 spin_lock_irqsave(&fotg210->lock, flags); 5548 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 5549 if (rc) 5550 goto done; 5551 5552 switch (usb_pipetype(urb->pipe)) { 5553 /* case PIPE_CONTROL: */ 5554 /* case PIPE_BULK:*/ 5555 default: 5556 qh = (struct fotg210_qh *) urb->hcpriv; 5557 if (!qh) 5558 break; 5559 switch (qh->qh_state) { 5560 case QH_STATE_LINKED: 5561 case QH_STATE_COMPLETING: 5562 start_unlink_async(fotg210, qh); 5563 break; 5564 case QH_STATE_UNLINK: 5565 case QH_STATE_UNLINK_WAIT: 5566 /* already started */ 5567 break; 5568 case QH_STATE_IDLE: 5569 /* QH might be waiting for a Clear-TT-Buffer */ 5570 qh_completions(fotg210, qh); 5571 break; 5572 } 5573 break; 5574 5575 case PIPE_INTERRUPT: 5576 qh = (struct fotg210_qh *) urb->hcpriv; 5577 if (!qh) 5578 break; 5579 switch (qh->qh_state) { 5580 case QH_STATE_LINKED: 5581 case QH_STATE_COMPLETING: 5582 start_unlink_intr(fotg210, qh); 5583 break; 5584 case QH_STATE_IDLE: 5585 qh_completions(fotg210, qh); 5586 break; 5587 default: 5588 fotg210_dbg(fotg210, "bogus qh %p state %d\n", 5589 qh, qh->qh_state); 5590 goto done; 5591 } 5592 break; 5593 5594 case PIPE_ISOCHRONOUS: 5595 /* itd... */ 5596 5597 /* wait till next completion, do it then. */ 5598 /* completion irqs can wait up to 1024 msec, */ 5599 break; 5600 } 5601done: 5602 spin_unlock_irqrestore(&fotg210->lock, flags); 5603 return rc; 5604} 5605 5606/*-------------------------------------------------------------------------*/ 5607 5608/* bulk qh holds the data toggle */ 5609 5610static void 5611fotg210_endpoint_disable(struct usb_hcd *hcd, struct usb_host_endpoint *ep) 5612{ 5613 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 5614 unsigned long flags; 5615 struct fotg210_qh *qh, *tmp; 5616 5617 /* ASSERT: any requests/urbs are being unlinked */ 5618 /* ASSERT: nobody can be submitting urbs for this any more */ 5619 5620rescan: 5621 spin_lock_irqsave(&fotg210->lock, flags); 5622 qh = ep->hcpriv; 5623 if (!qh) 5624 goto done; 5625 5626 /* endpoints can be iso streams. for now, we don't 5627 * accelerate iso completions ... so spin a while. 5628 */ 5629 if (qh->hw == NULL) { 5630 struct fotg210_iso_stream *stream = ep->hcpriv; 5631 5632 if (!list_empty(&stream->td_list)) 5633 goto idle_timeout; 5634 5635 /* BUG_ON(!list_empty(&stream->free_list)); */ 5636 kfree(stream); 5637 goto done; 5638 } 5639 5640 if (fotg210->rh_state < FOTG210_RH_RUNNING) 5641 qh->qh_state = QH_STATE_IDLE; 5642 switch (qh->qh_state) { 5643 case QH_STATE_LINKED: 5644 case QH_STATE_COMPLETING: 5645 for (tmp = fotg210->async->qh_next.qh; 5646 tmp && tmp != qh; 5647 tmp = tmp->qh_next.qh) 5648 continue; 5649 /* periodic qh self-unlinks on empty, and a COMPLETING qh 5650 * may already be unlinked. 5651 */ 5652 if (tmp) 5653 start_unlink_async(fotg210, qh); 5654 /* FALL THROUGH */ 5655 case QH_STATE_UNLINK: /* wait for hw to finish? */ 5656 case QH_STATE_UNLINK_WAIT: 5657idle_timeout: 5658 spin_unlock_irqrestore(&fotg210->lock, flags); 5659 schedule_timeout_uninterruptible(1); 5660 goto rescan; 5661 case QH_STATE_IDLE: /* fully unlinked */ 5662 if (qh->clearing_tt) 5663 goto idle_timeout; 5664 if (list_empty(&qh->qtd_list)) { 5665 qh_destroy(fotg210, qh); 5666 break; 5667 } 5668 /* else FALL THROUGH */ 5669 default: 5670 /* caller was supposed to have unlinked any requests; 5671 * that's not our job. just leak this memory. 5672 */ 5673 fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n", 5674 qh, ep->desc.bEndpointAddress, qh->qh_state, 5675 list_empty(&qh->qtd_list) ? "" : "(has tds)"); 5676 break; 5677 } 5678 done: 5679 ep->hcpriv = NULL; 5680 spin_unlock_irqrestore(&fotg210->lock, flags); 5681} 5682 5683static void 5684fotg210_endpoint_reset(struct usb_hcd *hcd, struct usb_host_endpoint *ep) 5685{ 5686 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 5687 struct fotg210_qh *qh; 5688 int eptype = usb_endpoint_type(&ep->desc); 5689 int epnum = usb_endpoint_num(&ep->desc); 5690 int is_out = usb_endpoint_dir_out(&ep->desc); 5691 unsigned long flags; 5692 5693 if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT) 5694 return; 5695 5696 spin_lock_irqsave(&fotg210->lock, flags); 5697 qh = ep->hcpriv; 5698 5699 /* For Bulk and Interrupt endpoints we maintain the toggle state 5700 * in the hardware; the toggle bits in udev aren't used at all. 5701 * When an endpoint is reset by usb_clear_halt() we must reset 5702 * the toggle bit in the QH. 5703 */ 5704 if (qh) { 5705 usb_settoggle(qh->dev, epnum, is_out, 0); 5706 if (!list_empty(&qh->qtd_list)) { 5707 WARN_ONCE(1, "clear_halt for a busy endpoint\n"); 5708 } else if (qh->qh_state == QH_STATE_LINKED || 5709 qh->qh_state == QH_STATE_COMPLETING) { 5710 5711 /* The toggle value in the QH can't be updated 5712 * while the QH is active. Unlink it now; 5713 * re-linking will call qh_refresh(). 5714 */ 5715 if (eptype == USB_ENDPOINT_XFER_BULK) 5716 start_unlink_async(fotg210, qh); 5717 else 5718 start_unlink_intr(fotg210, qh); 5719 } 5720 } 5721 spin_unlock_irqrestore(&fotg210->lock, flags); 5722} 5723 5724static int fotg210_get_frame(struct usb_hcd *hcd) 5725{ 5726 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd); 5727 return (fotg210_read_frame_index(fotg210) >> 3) % 5728 fotg210->periodic_size; 5729} 5730 5731/*-------------------------------------------------------------------------*/ 5732 5733/* 5734 * The EHCI in ChipIdea HDRC cannot be a separate module or device, 5735 * because its registers (and irq) are shared between host/gadget/otg 5736 * functions and in order to facilitate role switching we cannot 5737 * give the fotg210 driver exclusive access to those. 5738 */ 5739MODULE_DESCRIPTION(DRIVER_DESC); 5740MODULE_AUTHOR(DRIVER_AUTHOR); 5741MODULE_LICENSE("GPL"); 5742 5743static const struct hc_driver fotg210_fotg210_hc_driver = { 5744 .description = hcd_name, 5745 .product_desc = "Faraday USB2.0 Host Controller", 5746 .hcd_priv_size = sizeof(struct fotg210_hcd), 5747 5748 /* 5749 * generic hardware linkage 5750 */ 5751 .irq = fotg210_irq, 5752 .flags = HCD_MEMORY | HCD_USB2, 5753 5754 /* 5755 * basic lifecycle operations 5756 */ 5757 .reset = hcd_fotg210_init, 5758 .start = fotg210_run, 5759 .stop = fotg210_stop, 5760 .shutdown = fotg210_shutdown, 5761 5762 /* 5763 * managing i/o requests and associated device resources 5764 */ 5765 .urb_enqueue = fotg210_urb_enqueue, 5766 .urb_dequeue = fotg210_urb_dequeue, 5767 .endpoint_disable = fotg210_endpoint_disable, 5768 .endpoint_reset = fotg210_endpoint_reset, 5769 5770 /* 5771 * scheduling support 5772 */ 5773 .get_frame_number = fotg210_get_frame, 5774 5775 /* 5776 * root hub support 5777 */ 5778 .hub_status_data = fotg210_hub_status_data, 5779 .hub_control = fotg210_hub_control, 5780 .bus_suspend = fotg210_bus_suspend, 5781 .bus_resume = fotg210_bus_resume, 5782 5783 .relinquish_port = fotg210_relinquish_port, 5784 .port_handed_over = fotg210_port_handed_over, 5785 5786 .clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete, 5787}; 5788 5789static void fotg210_init(struct fotg210_hcd *fotg210) 5790{ 5791 u32 value; 5792 5793 iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY, 5794 &fotg210->regs->gmir); 5795 5796 value = ioread32(&fotg210->regs->otgcsr); 5797 value &= ~OTGCSR_A_BUS_DROP; 5798 value |= OTGCSR_A_BUS_REQ; 5799 iowrite32(value, &fotg210->regs->otgcsr); 5800} 5801 5802/** 5803 * fotg210_hcd_probe - initialize faraday FOTG210 HCDs 5804 * 5805 * Allocates basic resources for this USB host controller, and 5806 * then invokes the start() method for the HCD associated with it 5807 * through the hotplug entry's driver_data. 5808 */ 5809static int fotg210_hcd_probe(struct platform_device *pdev) 5810{ 5811 struct device *dev = &pdev->dev; 5812 struct usb_hcd *hcd; 5813 struct resource *res; 5814 int irq; 5815 int retval = -ENODEV; 5816 struct fotg210_hcd *fotg210; 5817 5818 if (usb_disabled()) 5819 return -ENODEV; 5820 5821 pdev->dev.power.power_state = PMSG_ON; 5822 5823 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); 5824 if (!res) { 5825 dev_err(dev, 5826 "Found HC with no IRQ. Check %s setup!\n", 5827 dev_name(dev)); 5828 return -ENODEV; 5829 } 5830 5831 irq = res->start; 5832 5833 hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev, 5834 dev_name(dev)); 5835 if (!hcd) { 5836 dev_err(dev, "failed to create hcd with err %d\n", retval); 5837 retval = -ENOMEM; 5838 goto fail_create_hcd; 5839 } 5840 5841 hcd->has_tt = 1; 5842 5843 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 5844 hcd->regs = devm_ioremap_resource(&pdev->dev, res); 5845 if (IS_ERR(hcd->regs)) { 5846 retval = PTR_ERR(hcd->regs); 5847 goto failed; 5848 } 5849 5850 hcd->rsrc_start = res->start; 5851 hcd->rsrc_len = resource_size(res); 5852 5853 fotg210 = hcd_to_fotg210(hcd); 5854 5855 fotg210->caps = hcd->regs; 5856 5857 retval = fotg210_setup(hcd); 5858 if (retval) 5859 goto failed; 5860 5861 fotg210_init(fotg210); 5862 5863 retval = usb_add_hcd(hcd, irq, IRQF_SHARED); 5864 if (retval) { 5865 dev_err(dev, "failed to add hcd with err %d\n", retval); 5866 goto failed; 5867 } 5868 device_wakeup_enable(hcd->self.controller); 5869 5870 return retval; 5871 5872failed: 5873 usb_put_hcd(hcd); 5874fail_create_hcd: 5875 dev_err(dev, "init %s fail, %d\n", dev_name(dev), retval); 5876 return retval; 5877} 5878 5879/** 5880 * fotg210_hcd_remove - shutdown processing for EHCI HCDs 5881 * @dev: USB Host Controller being removed 5882 * 5883 */ 5884static int fotg210_hcd_remove(struct platform_device *pdev) 5885{ 5886 struct device *dev = &pdev->dev; 5887 struct usb_hcd *hcd = dev_get_drvdata(dev); 5888 5889 if (!hcd) 5890 return 0; 5891 5892 usb_remove_hcd(hcd); 5893 usb_put_hcd(hcd); 5894 5895 return 0; 5896} 5897 5898static struct platform_driver fotg210_hcd_driver = { 5899 .driver = { 5900 .name = "fotg210-hcd", 5901 }, 5902 .probe = fotg210_hcd_probe, 5903 .remove = fotg210_hcd_remove, 5904}; 5905 5906static int __init fotg210_hcd_init(void) 5907{ 5908 int retval = 0; 5909 5910 if (usb_disabled()) 5911 return -ENODEV; 5912 5913 pr_info("%s: " DRIVER_DESC "\n", hcd_name); 5914 set_bit(USB_EHCI_LOADED, &usb_hcds_loaded); 5915 if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) || 5916 test_bit(USB_OHCI_LOADED, &usb_hcds_loaded)) 5917 pr_warn(KERN_WARNING "Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n"); 5918 5919 pr_debug("%s: block sizes: qh %Zd qtd %Zd itd %Zd\n", 5920 hcd_name, 5921 sizeof(struct fotg210_qh), sizeof(struct fotg210_qtd), 5922 sizeof(struct fotg210_itd)); 5923 5924 fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root); 5925 if (!fotg210_debug_root) { 5926 retval = -ENOENT; 5927 goto err_debug; 5928 } 5929 5930 retval = platform_driver_register(&fotg210_hcd_driver); 5931 if (retval < 0) 5932 goto clean; 5933 return retval; 5934 5935 platform_driver_unregister(&fotg210_hcd_driver); 5936clean: 5937 debugfs_remove(fotg210_debug_root); 5938 fotg210_debug_root = NULL; 5939err_debug: 5940 clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded); 5941 return retval; 5942} 5943module_init(fotg210_hcd_init); 5944 5945static void __exit fotg210_hcd_cleanup(void) 5946{ 5947 platform_driver_unregister(&fotg210_hcd_driver); 5948 debugfs_remove(fotg210_debug_root); 5949 clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded); 5950} 5951module_exit(fotg210_hcd_cleanup); 5952