1/* 2 * core.c - DesignWare HS OTG Controller common routines 3 * 4 * Copyright (C) 2004-2013 Synopsys, Inc. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions, and the following disclaimer, 11 * without modification. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. The names of the above-listed copyright holders may not be used 16 * to endorse or promote products derived from this software without 17 * specific prior written permission. 18 * 19 * ALTERNATIVELY, this software may be distributed under the terms of the 20 * GNU General Public License ("GPL") as published by the Free Software 21 * Foundation; either version 2 of the License, or (at your option) any 22 * later version. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS 25 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 28 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 29 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 30 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 31 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 32 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 35 */ 36 37/* 38 * The Core code provides basic services for accessing and managing the 39 * DWC_otg hardware. These services are used by both the Host Controller 40 * Driver and the Peripheral Controller Driver. 41 */ 42#include <linux/kernel.h> 43#include <linux/module.h> 44#include <linux/moduleparam.h> 45#include <linux/spinlock.h> 46#include <linux/interrupt.h> 47#include <linux/dma-mapping.h> 48#include <linux/delay.h> 49#include <linux/io.h> 50#include <linux/slab.h> 51#include <linux/usb.h> 52 53#include <linux/usb/hcd.h> 54#include <linux/usb/ch11.h> 55 56#include "core.h" 57#include "hcd.h" 58 59/** 60 * dwc2_enable_common_interrupts() - Initializes the commmon interrupts, 61 * used in both device and host modes 62 * 63 * @hsotg: Programming view of the DWC_otg controller 64 */ 65static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg) 66{ 67 u32 intmsk; 68 69 /* Clear any pending OTG Interrupts */ 70 writel(0xffffffff, hsotg->regs + GOTGINT); 71 72 /* Clear any pending interrupts */ 73 writel(0xffffffff, hsotg->regs + GINTSTS); 74 75 /* Enable the interrupts in the GINTMSK */ 76 intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT; 77 78 if (hsotg->core_params->dma_enable <= 0) 79 intmsk |= GINTSTS_RXFLVL; 80 81 intmsk |= GINTSTS_CONIDSTSCHNG | GINTSTS_WKUPINT | GINTSTS_USBSUSP | 82 GINTSTS_SESSREQINT; 83 84 writel(intmsk, hsotg->regs + GINTMSK); 85} 86 87/* 88 * Initializes the FSLSPClkSel field of the HCFG register depending on the 89 * PHY type 90 */ 91static void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg) 92{ 93 u32 hcfg, val; 94 95 if ((hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI && 96 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED && 97 hsotg->core_params->ulpi_fs_ls > 0) || 98 hsotg->core_params->phy_type == DWC2_PHY_TYPE_PARAM_FS) { 99 /* Full speed PHY */ 100 val = HCFG_FSLSPCLKSEL_48_MHZ; 101 } else { 102 /* High speed PHY running at full speed or high speed */ 103 val = HCFG_FSLSPCLKSEL_30_60_MHZ; 104 } 105 106 dev_dbg(hsotg->dev, "Initializing HCFG.FSLSPClkSel to %08x\n", val); 107 hcfg = readl(hsotg->regs + HCFG); 108 hcfg &= ~HCFG_FSLSPCLKSEL_MASK; 109 hcfg |= val << HCFG_FSLSPCLKSEL_SHIFT; 110 writel(hcfg, hsotg->regs + HCFG); 111} 112 113/* 114 * Do core a soft reset of the core. Be careful with this because it 115 * resets all the internal state machines of the core. 116 */ 117static int dwc2_core_reset(struct dwc2_hsotg *hsotg) 118{ 119 u32 greset; 120 int count = 0; 121 u32 gusbcfg; 122 123 dev_vdbg(hsotg->dev, "%s()\n", __func__); 124 125 /* Wait for AHB master IDLE state */ 126 do { 127 usleep_range(20000, 40000); 128 greset = readl(hsotg->regs + GRSTCTL); 129 if (++count > 50) { 130 dev_warn(hsotg->dev, 131 "%s() HANG! AHB Idle GRSTCTL=%0x\n", 132 __func__, greset); 133 return -EBUSY; 134 } 135 } while (!(greset & GRSTCTL_AHBIDLE)); 136 137 /* Core Soft Reset */ 138 count = 0; 139 greset |= GRSTCTL_CSFTRST; 140 writel(greset, hsotg->regs + GRSTCTL); 141 do { 142 usleep_range(20000, 40000); 143 greset = readl(hsotg->regs + GRSTCTL); 144 if (++count > 50) { 145 dev_warn(hsotg->dev, 146 "%s() HANG! Soft Reset GRSTCTL=%0x\n", 147 __func__, greset); 148 return -EBUSY; 149 } 150 } while (greset & GRSTCTL_CSFTRST); 151 152 if (hsotg->dr_mode == USB_DR_MODE_HOST) { 153 gusbcfg = readl(hsotg->regs + GUSBCFG); 154 gusbcfg &= ~GUSBCFG_FORCEDEVMODE; 155 gusbcfg |= GUSBCFG_FORCEHOSTMODE; 156 writel(gusbcfg, hsotg->regs + GUSBCFG); 157 } else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) { 158 gusbcfg = readl(hsotg->regs + GUSBCFG); 159 gusbcfg &= ~GUSBCFG_FORCEHOSTMODE; 160 gusbcfg |= GUSBCFG_FORCEDEVMODE; 161 writel(gusbcfg, hsotg->regs + GUSBCFG); 162 } else if (hsotg->dr_mode == USB_DR_MODE_OTG) { 163 gusbcfg = readl(hsotg->regs + GUSBCFG); 164 gusbcfg &= ~GUSBCFG_FORCEHOSTMODE; 165 gusbcfg &= ~GUSBCFG_FORCEDEVMODE; 166 writel(gusbcfg, hsotg->regs + GUSBCFG); 167 } 168 169 /* 170 * NOTE: This long sleep is _very_ important, otherwise the core will 171 * not stay in host mode after a connector ID change! 172 */ 173 usleep_range(150000, 200000); 174 175 return 0; 176} 177 178static int dwc2_fs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy) 179{ 180 u32 usbcfg, i2cctl; 181 int retval = 0; 182 183 /* 184 * core_init() is now called on every switch so only call the 185 * following for the first time through 186 */ 187 if (select_phy) { 188 dev_dbg(hsotg->dev, "FS PHY selected\n"); 189 usbcfg = readl(hsotg->regs + GUSBCFG); 190 usbcfg |= GUSBCFG_PHYSEL; 191 writel(usbcfg, hsotg->regs + GUSBCFG); 192 193 /* Reset after a PHY select */ 194 retval = dwc2_core_reset(hsotg); 195 if (retval) { 196 dev_err(hsotg->dev, "%s() Reset failed, aborting", 197 __func__); 198 return retval; 199 } 200 } 201 202 /* 203 * Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also 204 * do this on HNP Dev/Host mode switches (done in dev_init and 205 * host_init). 206 */ 207 if (dwc2_is_host_mode(hsotg)) 208 dwc2_init_fs_ls_pclk_sel(hsotg); 209 210 if (hsotg->core_params->i2c_enable > 0) { 211 dev_dbg(hsotg->dev, "FS PHY enabling I2C\n"); 212 213 /* Program GUSBCFG.OtgUtmiFsSel to I2C */ 214 usbcfg = readl(hsotg->regs + GUSBCFG); 215 usbcfg |= GUSBCFG_OTG_UTMI_FS_SEL; 216 writel(usbcfg, hsotg->regs + GUSBCFG); 217 218 /* Program GI2CCTL.I2CEn */ 219 i2cctl = readl(hsotg->regs + GI2CCTL); 220 i2cctl &= ~GI2CCTL_I2CDEVADDR_MASK; 221 i2cctl |= 1 << GI2CCTL_I2CDEVADDR_SHIFT; 222 i2cctl &= ~GI2CCTL_I2CEN; 223 writel(i2cctl, hsotg->regs + GI2CCTL); 224 i2cctl |= GI2CCTL_I2CEN; 225 writel(i2cctl, hsotg->regs + GI2CCTL); 226 } 227 228 return retval; 229} 230 231static int dwc2_hs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy) 232{ 233 u32 usbcfg; 234 int retval = 0; 235 236 if (!select_phy) 237 return 0; 238 239 usbcfg = readl(hsotg->regs + GUSBCFG); 240 241 /* 242 * HS PHY parameters. These parameters are preserved during soft reset 243 * so only program the first time. Do a soft reset immediately after 244 * setting phyif. 245 */ 246 switch (hsotg->core_params->phy_type) { 247 case DWC2_PHY_TYPE_PARAM_ULPI: 248 /* ULPI interface */ 249 dev_dbg(hsotg->dev, "HS ULPI PHY selected\n"); 250 usbcfg |= GUSBCFG_ULPI_UTMI_SEL; 251 usbcfg &= ~(GUSBCFG_PHYIF16 | GUSBCFG_DDRSEL); 252 if (hsotg->core_params->phy_ulpi_ddr > 0) 253 usbcfg |= GUSBCFG_DDRSEL; 254 break; 255 case DWC2_PHY_TYPE_PARAM_UTMI: 256 /* UTMI+ interface */ 257 dev_dbg(hsotg->dev, "HS UTMI+ PHY selected\n"); 258 usbcfg &= ~(GUSBCFG_ULPI_UTMI_SEL | GUSBCFG_PHYIF16); 259 if (hsotg->core_params->phy_utmi_width == 16) 260 usbcfg |= GUSBCFG_PHYIF16; 261 break; 262 default: 263 dev_err(hsotg->dev, "FS PHY selected at HS!\n"); 264 break; 265 } 266 267 writel(usbcfg, hsotg->regs + GUSBCFG); 268 269 /* Reset after setting the PHY parameters */ 270 retval = dwc2_core_reset(hsotg); 271 if (retval) { 272 dev_err(hsotg->dev, "%s() Reset failed, aborting", 273 __func__); 274 return retval; 275 } 276 277 return retval; 278} 279 280static int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy) 281{ 282 u32 usbcfg; 283 int retval = 0; 284 285 if (hsotg->core_params->speed == DWC2_SPEED_PARAM_FULL && 286 hsotg->core_params->phy_type == DWC2_PHY_TYPE_PARAM_FS) { 287 /* If FS mode with FS PHY */ 288 retval = dwc2_fs_phy_init(hsotg, select_phy); 289 if (retval) 290 return retval; 291 } else { 292 /* High speed PHY */ 293 retval = dwc2_hs_phy_init(hsotg, select_phy); 294 if (retval) 295 return retval; 296 } 297 298 if (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI && 299 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED && 300 hsotg->core_params->ulpi_fs_ls > 0) { 301 dev_dbg(hsotg->dev, "Setting ULPI FSLS\n"); 302 usbcfg = readl(hsotg->regs + GUSBCFG); 303 usbcfg |= GUSBCFG_ULPI_FS_LS; 304 usbcfg |= GUSBCFG_ULPI_CLK_SUSP_M; 305 writel(usbcfg, hsotg->regs + GUSBCFG); 306 } else { 307 usbcfg = readl(hsotg->regs + GUSBCFG); 308 usbcfg &= ~GUSBCFG_ULPI_FS_LS; 309 usbcfg &= ~GUSBCFG_ULPI_CLK_SUSP_M; 310 writel(usbcfg, hsotg->regs + GUSBCFG); 311 } 312 313 return retval; 314} 315 316static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg) 317{ 318 u32 ahbcfg = readl(hsotg->regs + GAHBCFG); 319 320 switch (hsotg->hw_params.arch) { 321 case GHWCFG2_EXT_DMA_ARCH: 322 dev_err(hsotg->dev, "External DMA Mode not supported\n"); 323 return -EINVAL; 324 325 case GHWCFG2_INT_DMA_ARCH: 326 dev_dbg(hsotg->dev, "Internal DMA Mode\n"); 327 if (hsotg->core_params->ahbcfg != -1) { 328 ahbcfg &= GAHBCFG_CTRL_MASK; 329 ahbcfg |= hsotg->core_params->ahbcfg & 330 ~GAHBCFG_CTRL_MASK; 331 } 332 break; 333 334 case GHWCFG2_SLAVE_ONLY_ARCH: 335 default: 336 dev_dbg(hsotg->dev, "Slave Only Mode\n"); 337 break; 338 } 339 340 dev_dbg(hsotg->dev, "dma_enable:%d dma_desc_enable:%d\n", 341 hsotg->core_params->dma_enable, 342 hsotg->core_params->dma_desc_enable); 343 344 if (hsotg->core_params->dma_enable > 0) { 345 if (hsotg->core_params->dma_desc_enable > 0) 346 dev_dbg(hsotg->dev, "Using Descriptor DMA mode\n"); 347 else 348 dev_dbg(hsotg->dev, "Using Buffer DMA mode\n"); 349 } else { 350 dev_dbg(hsotg->dev, "Using Slave mode\n"); 351 hsotg->core_params->dma_desc_enable = 0; 352 } 353 354 if (hsotg->core_params->dma_enable > 0) 355 ahbcfg |= GAHBCFG_DMA_EN; 356 357 writel(ahbcfg, hsotg->regs + GAHBCFG); 358 359 return 0; 360} 361 362static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg) 363{ 364 u32 usbcfg; 365 366 usbcfg = readl(hsotg->regs + GUSBCFG); 367 usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP); 368 369 switch (hsotg->hw_params.op_mode) { 370 case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE: 371 if (hsotg->core_params->otg_cap == 372 DWC2_CAP_PARAM_HNP_SRP_CAPABLE) 373 usbcfg |= GUSBCFG_HNPCAP; 374 if (hsotg->core_params->otg_cap != 375 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE) 376 usbcfg |= GUSBCFG_SRPCAP; 377 break; 378 379 case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE: 380 case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE: 381 case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST: 382 if (hsotg->core_params->otg_cap != 383 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE) 384 usbcfg |= GUSBCFG_SRPCAP; 385 break; 386 387 case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE: 388 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE: 389 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST: 390 default: 391 break; 392 } 393 394 writel(usbcfg, hsotg->regs + GUSBCFG); 395} 396 397/** 398 * dwc2_core_init() - Initializes the DWC_otg controller registers and 399 * prepares the core for device mode or host mode operation 400 * 401 * @hsotg: Programming view of the DWC_otg controller 402 * @select_phy: If true then also set the Phy type 403 * @irq: If >= 0, the irq to register 404 */ 405int dwc2_core_init(struct dwc2_hsotg *hsotg, bool select_phy, int irq) 406{ 407 u32 usbcfg, otgctl; 408 int retval; 409 410 dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg); 411 412 usbcfg = readl(hsotg->regs + GUSBCFG); 413 414 /* Set ULPI External VBUS bit if needed */ 415 usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV; 416 if (hsotg->core_params->phy_ulpi_ext_vbus == 417 DWC2_PHY_ULPI_EXTERNAL_VBUS) 418 usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV; 419 420 /* Set external TS Dline pulsing bit if needed */ 421 usbcfg &= ~GUSBCFG_TERMSELDLPULSE; 422 if (hsotg->core_params->ts_dline > 0) 423 usbcfg |= GUSBCFG_TERMSELDLPULSE; 424 425 writel(usbcfg, hsotg->regs + GUSBCFG); 426 427 /* Reset the Controller */ 428 retval = dwc2_core_reset(hsotg); 429 if (retval) { 430 dev_err(hsotg->dev, "%s(): Reset failed, aborting\n", 431 __func__); 432 return retval; 433 } 434 435 /* 436 * This needs to happen in FS mode before any other programming occurs 437 */ 438 retval = dwc2_phy_init(hsotg, select_phy); 439 if (retval) 440 return retval; 441 442 /* Program the GAHBCFG Register */ 443 retval = dwc2_gahbcfg_init(hsotg); 444 if (retval) 445 return retval; 446 447 /* Program the GUSBCFG register */ 448 dwc2_gusbcfg_init(hsotg); 449 450 /* Program the GOTGCTL register */ 451 otgctl = readl(hsotg->regs + GOTGCTL); 452 otgctl &= ~GOTGCTL_OTGVER; 453 if (hsotg->core_params->otg_ver > 0) 454 otgctl |= GOTGCTL_OTGVER; 455 writel(otgctl, hsotg->regs + GOTGCTL); 456 dev_dbg(hsotg->dev, "OTG VER PARAM: %d\n", hsotg->core_params->otg_ver); 457 458 /* Clear the SRP success bit for FS-I2c */ 459 hsotg->srp_success = 0; 460 461 /* Enable common interrupts */ 462 dwc2_enable_common_interrupts(hsotg); 463 464 /* 465 * Do device or host initialization based on mode during PCD and 466 * HCD initialization 467 */ 468 if (dwc2_is_host_mode(hsotg)) { 469 dev_dbg(hsotg->dev, "Host Mode\n"); 470 hsotg->op_state = OTG_STATE_A_HOST; 471 } else { 472 dev_dbg(hsotg->dev, "Device Mode\n"); 473 hsotg->op_state = OTG_STATE_B_PERIPHERAL; 474 } 475 476 return 0; 477} 478 479/** 480 * dwc2_enable_host_interrupts() - Enables the Host mode interrupts 481 * 482 * @hsotg: Programming view of DWC_otg controller 483 */ 484void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg) 485{ 486 u32 intmsk; 487 488 dev_dbg(hsotg->dev, "%s()\n", __func__); 489 490 /* Disable all interrupts */ 491 writel(0, hsotg->regs + GINTMSK); 492 writel(0, hsotg->regs + HAINTMSK); 493 494 /* Enable the common interrupts */ 495 dwc2_enable_common_interrupts(hsotg); 496 497 /* Enable host mode interrupts without disturbing common interrupts */ 498 intmsk = readl(hsotg->regs + GINTMSK); 499 intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT; 500 writel(intmsk, hsotg->regs + GINTMSK); 501} 502 503/** 504 * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts 505 * 506 * @hsotg: Programming view of DWC_otg controller 507 */ 508void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg) 509{ 510 u32 intmsk = readl(hsotg->regs + GINTMSK); 511 512 /* Disable host mode interrupts without disturbing common interrupts */ 513 intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT | 514 GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP); 515 writel(intmsk, hsotg->regs + GINTMSK); 516} 517 518/* 519 * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size 520 * For system that have a total fifo depth that is smaller than the default 521 * RX + TX fifo size. 522 * 523 * @hsotg: Programming view of DWC_otg controller 524 */ 525static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg) 526{ 527 struct dwc2_core_params *params = hsotg->core_params; 528 struct dwc2_hw_params *hw = &hsotg->hw_params; 529 u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size; 530 531 total_fifo_size = hw->total_fifo_size; 532 rxfsiz = params->host_rx_fifo_size; 533 nptxfsiz = params->host_nperio_tx_fifo_size; 534 ptxfsiz = params->host_perio_tx_fifo_size; 535 536 /* 537 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth 538 * allocation with support for high bandwidth endpoints. Synopsys 539 * defines MPS(Max Packet size) for a periodic EP=1024, and for 540 * non-periodic as 512. 541 */ 542 if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) { 543 /* 544 * For Buffer DMA mode/Scatter Gather DMA mode 545 * 2 * ((Largest Packet size / 4) + 1 + 1) + n 546 * with n = number of host channel. 547 * 2 * ((1024/4) + 2) = 516 548 */ 549 rxfsiz = 516 + hw->host_channels; 550 551 /* 552 * min non-periodic tx fifo depth 553 * 2 * (largest non-periodic USB packet used / 4) 554 * 2 * (512/4) = 256 555 */ 556 nptxfsiz = 256; 557 558 /* 559 * min periodic tx fifo depth 560 * (largest packet size*MC)/4 561 * (1024 * 3)/4 = 768 562 */ 563 ptxfsiz = 768; 564 565 params->host_rx_fifo_size = rxfsiz; 566 params->host_nperio_tx_fifo_size = nptxfsiz; 567 params->host_perio_tx_fifo_size = ptxfsiz; 568 } 569 570 /* 571 * If the summation of RX, NPTX and PTX fifo sizes is still 572 * bigger than the total_fifo_size, then we have a problem. 573 * 574 * We won't be able to allocate as many endpoints. Right now, 575 * we're just printing an error message, but ideally this FIFO 576 * allocation algorithm would be improved in the future. 577 * 578 * FIXME improve this FIFO allocation algorithm. 579 */ 580 if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz))) 581 dev_err(hsotg->dev, "invalid fifo sizes\n"); 582} 583 584static void dwc2_config_fifos(struct dwc2_hsotg *hsotg) 585{ 586 struct dwc2_core_params *params = hsotg->core_params; 587 u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz; 588 589 if (!params->enable_dynamic_fifo) 590 return; 591 592 dwc2_calculate_dynamic_fifo(hsotg); 593 594 /* Rx FIFO */ 595 grxfsiz = readl(hsotg->regs + GRXFSIZ); 596 dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz); 597 grxfsiz &= ~GRXFSIZ_DEPTH_MASK; 598 grxfsiz |= params->host_rx_fifo_size << 599 GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK; 600 writel(grxfsiz, hsotg->regs + GRXFSIZ); 601 dev_dbg(hsotg->dev, "new grxfsiz=%08x\n", readl(hsotg->regs + GRXFSIZ)); 602 603 /* Non-periodic Tx FIFO */ 604 dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n", 605 readl(hsotg->regs + GNPTXFSIZ)); 606 nptxfsiz = params->host_nperio_tx_fifo_size << 607 FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK; 608 nptxfsiz |= params->host_rx_fifo_size << 609 FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK; 610 writel(nptxfsiz, hsotg->regs + GNPTXFSIZ); 611 dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n", 612 readl(hsotg->regs + GNPTXFSIZ)); 613 614 /* Periodic Tx FIFO */ 615 dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n", 616 readl(hsotg->regs + HPTXFSIZ)); 617 hptxfsiz = params->host_perio_tx_fifo_size << 618 FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK; 619 hptxfsiz |= (params->host_rx_fifo_size + 620 params->host_nperio_tx_fifo_size) << 621 FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK; 622 writel(hptxfsiz, hsotg->regs + HPTXFSIZ); 623 dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n", 624 readl(hsotg->regs + HPTXFSIZ)); 625 626 if (hsotg->core_params->en_multiple_tx_fifo > 0 && 627 hsotg->hw_params.snpsid <= DWC2_CORE_REV_2_94a) { 628 /* 629 * Global DFIFOCFG calculation for Host mode - 630 * include RxFIFO, NPTXFIFO and HPTXFIFO 631 */ 632 dfifocfg = readl(hsotg->regs + GDFIFOCFG); 633 dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK; 634 dfifocfg |= (params->host_rx_fifo_size + 635 params->host_nperio_tx_fifo_size + 636 params->host_perio_tx_fifo_size) << 637 GDFIFOCFG_EPINFOBASE_SHIFT & 638 GDFIFOCFG_EPINFOBASE_MASK; 639 writel(dfifocfg, hsotg->regs + GDFIFOCFG); 640 } 641} 642 643/** 644 * dwc2_core_host_init() - Initializes the DWC_otg controller registers for 645 * Host mode 646 * 647 * @hsotg: Programming view of DWC_otg controller 648 * 649 * This function flushes the Tx and Rx FIFOs and flushes any entries in the 650 * request queues. Host channels are reset to ensure that they are ready for 651 * performing transfers. 652 */ 653void dwc2_core_host_init(struct dwc2_hsotg *hsotg) 654{ 655 u32 hcfg, hfir, otgctl; 656 657 dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg); 658 659 /* Restart the Phy Clock */ 660 writel(0, hsotg->regs + PCGCTL); 661 662 /* Initialize Host Configuration Register */ 663 dwc2_init_fs_ls_pclk_sel(hsotg); 664 if (hsotg->core_params->speed == DWC2_SPEED_PARAM_FULL) { 665 hcfg = readl(hsotg->regs + HCFG); 666 hcfg |= HCFG_FSLSSUPP; 667 writel(hcfg, hsotg->regs + HCFG); 668 } 669 670 /* 671 * This bit allows dynamic reloading of the HFIR register during 672 * runtime. This bit needs to be programmed during initial configuration 673 * and its value must not be changed during runtime. 674 */ 675 if (hsotg->core_params->reload_ctl > 0) { 676 hfir = readl(hsotg->regs + HFIR); 677 hfir |= HFIR_RLDCTRL; 678 writel(hfir, hsotg->regs + HFIR); 679 } 680 681 if (hsotg->core_params->dma_desc_enable > 0) { 682 u32 op_mode = hsotg->hw_params.op_mode; 683 if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a || 684 !hsotg->hw_params.dma_desc_enable || 685 op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE || 686 op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE || 687 op_mode == GHWCFG2_OP_MODE_UNDEFINED) { 688 dev_err(hsotg->dev, 689 "Hardware does not support descriptor DMA mode -\n"); 690 dev_err(hsotg->dev, 691 "falling back to buffer DMA mode.\n"); 692 hsotg->core_params->dma_desc_enable = 0; 693 } else { 694 hcfg = readl(hsotg->regs + HCFG); 695 hcfg |= HCFG_DESCDMA; 696 writel(hcfg, hsotg->regs + HCFG); 697 } 698 } 699 700 /* Configure data FIFO sizes */ 701 dwc2_config_fifos(hsotg); 702 703 /* TODO - check this */ 704 /* Clear Host Set HNP Enable in the OTG Control Register */ 705 otgctl = readl(hsotg->regs + GOTGCTL); 706 otgctl &= ~GOTGCTL_HSTSETHNPEN; 707 writel(otgctl, hsotg->regs + GOTGCTL); 708 709 /* Make sure the FIFOs are flushed */ 710 dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */); 711 dwc2_flush_rx_fifo(hsotg); 712 713 /* Clear Host Set HNP Enable in the OTG Control Register */ 714 otgctl = readl(hsotg->regs + GOTGCTL); 715 otgctl &= ~GOTGCTL_HSTSETHNPEN; 716 writel(otgctl, hsotg->regs + GOTGCTL); 717 718 if (hsotg->core_params->dma_desc_enable <= 0) { 719 int num_channels, i; 720 u32 hcchar; 721 722 /* Flush out any leftover queued requests */ 723 num_channels = hsotg->core_params->host_channels; 724 for (i = 0; i < num_channels; i++) { 725 hcchar = readl(hsotg->regs + HCCHAR(i)); 726 hcchar &= ~HCCHAR_CHENA; 727 hcchar |= HCCHAR_CHDIS; 728 hcchar &= ~HCCHAR_EPDIR; 729 writel(hcchar, hsotg->regs + HCCHAR(i)); 730 } 731 732 /* Halt all channels to put them into a known state */ 733 for (i = 0; i < num_channels; i++) { 734 int count = 0; 735 736 hcchar = readl(hsotg->regs + HCCHAR(i)); 737 hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS; 738 hcchar &= ~HCCHAR_EPDIR; 739 writel(hcchar, hsotg->regs + HCCHAR(i)); 740 dev_dbg(hsotg->dev, "%s: Halt channel %d\n", 741 __func__, i); 742 do { 743 hcchar = readl(hsotg->regs + HCCHAR(i)); 744 if (++count > 1000) { 745 dev_err(hsotg->dev, 746 "Unable to clear enable on channel %d\n", 747 i); 748 break; 749 } 750 udelay(1); 751 } while (hcchar & HCCHAR_CHENA); 752 } 753 } 754 755 /* Turn on the vbus power */ 756 dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state); 757 if (hsotg->op_state == OTG_STATE_A_HOST) { 758 u32 hprt0 = dwc2_read_hprt0(hsotg); 759 760 dev_dbg(hsotg->dev, "Init: Power Port (%d)\n", 761 !!(hprt0 & HPRT0_PWR)); 762 if (!(hprt0 & HPRT0_PWR)) { 763 hprt0 |= HPRT0_PWR; 764 writel(hprt0, hsotg->regs + HPRT0); 765 } 766 } 767 768 dwc2_enable_host_interrupts(hsotg); 769} 770 771static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg, 772 struct dwc2_host_chan *chan) 773{ 774 u32 hcintmsk = HCINTMSK_CHHLTD; 775 776 switch (chan->ep_type) { 777 case USB_ENDPOINT_XFER_CONTROL: 778 case USB_ENDPOINT_XFER_BULK: 779 dev_vdbg(hsotg->dev, "control/bulk\n"); 780 hcintmsk |= HCINTMSK_XFERCOMPL; 781 hcintmsk |= HCINTMSK_STALL; 782 hcintmsk |= HCINTMSK_XACTERR; 783 hcintmsk |= HCINTMSK_DATATGLERR; 784 if (chan->ep_is_in) { 785 hcintmsk |= HCINTMSK_BBLERR; 786 } else { 787 hcintmsk |= HCINTMSK_NAK; 788 hcintmsk |= HCINTMSK_NYET; 789 if (chan->do_ping) 790 hcintmsk |= HCINTMSK_ACK; 791 } 792 793 if (chan->do_split) { 794 hcintmsk |= HCINTMSK_NAK; 795 if (chan->complete_split) 796 hcintmsk |= HCINTMSK_NYET; 797 else 798 hcintmsk |= HCINTMSK_ACK; 799 } 800 801 if (chan->error_state) 802 hcintmsk |= HCINTMSK_ACK; 803 break; 804 805 case USB_ENDPOINT_XFER_INT: 806 if (dbg_perio()) 807 dev_vdbg(hsotg->dev, "intr\n"); 808 hcintmsk |= HCINTMSK_XFERCOMPL; 809 hcintmsk |= HCINTMSK_NAK; 810 hcintmsk |= HCINTMSK_STALL; 811 hcintmsk |= HCINTMSK_XACTERR; 812 hcintmsk |= HCINTMSK_DATATGLERR; 813 hcintmsk |= HCINTMSK_FRMOVRUN; 814 815 if (chan->ep_is_in) 816 hcintmsk |= HCINTMSK_BBLERR; 817 if (chan->error_state) 818 hcintmsk |= HCINTMSK_ACK; 819 if (chan->do_split) { 820 if (chan->complete_split) 821 hcintmsk |= HCINTMSK_NYET; 822 else 823 hcintmsk |= HCINTMSK_ACK; 824 } 825 break; 826 827 case USB_ENDPOINT_XFER_ISOC: 828 if (dbg_perio()) 829 dev_vdbg(hsotg->dev, "isoc\n"); 830 hcintmsk |= HCINTMSK_XFERCOMPL; 831 hcintmsk |= HCINTMSK_FRMOVRUN; 832 hcintmsk |= HCINTMSK_ACK; 833 834 if (chan->ep_is_in) { 835 hcintmsk |= HCINTMSK_XACTERR; 836 hcintmsk |= HCINTMSK_BBLERR; 837 } 838 break; 839 default: 840 dev_err(hsotg->dev, "## Unknown EP type ##\n"); 841 break; 842 } 843 844 writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num)); 845 if (dbg_hc(chan)) 846 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk); 847} 848 849static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg, 850 struct dwc2_host_chan *chan) 851{ 852 u32 hcintmsk = HCINTMSK_CHHLTD; 853 854 /* 855 * For Descriptor DMA mode core halts the channel on AHB error. 856 * Interrupt is not required. 857 */ 858 if (hsotg->core_params->dma_desc_enable <= 0) { 859 if (dbg_hc(chan)) 860 dev_vdbg(hsotg->dev, "desc DMA disabled\n"); 861 hcintmsk |= HCINTMSK_AHBERR; 862 } else { 863 if (dbg_hc(chan)) 864 dev_vdbg(hsotg->dev, "desc DMA enabled\n"); 865 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC) 866 hcintmsk |= HCINTMSK_XFERCOMPL; 867 } 868 869 if (chan->error_state && !chan->do_split && 870 chan->ep_type != USB_ENDPOINT_XFER_ISOC) { 871 if (dbg_hc(chan)) 872 dev_vdbg(hsotg->dev, "setting ACK\n"); 873 hcintmsk |= HCINTMSK_ACK; 874 if (chan->ep_is_in) { 875 hcintmsk |= HCINTMSK_DATATGLERR; 876 if (chan->ep_type != USB_ENDPOINT_XFER_INT) 877 hcintmsk |= HCINTMSK_NAK; 878 } 879 } 880 881 writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num)); 882 if (dbg_hc(chan)) 883 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk); 884} 885 886static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg, 887 struct dwc2_host_chan *chan) 888{ 889 u32 intmsk; 890 891 if (hsotg->core_params->dma_enable > 0) { 892 if (dbg_hc(chan)) 893 dev_vdbg(hsotg->dev, "DMA enabled\n"); 894 dwc2_hc_enable_dma_ints(hsotg, chan); 895 } else { 896 if (dbg_hc(chan)) 897 dev_vdbg(hsotg->dev, "DMA disabled\n"); 898 dwc2_hc_enable_slave_ints(hsotg, chan); 899 } 900 901 /* Enable the top level host channel interrupt */ 902 intmsk = readl(hsotg->regs + HAINTMSK); 903 intmsk |= 1 << chan->hc_num; 904 writel(intmsk, hsotg->regs + HAINTMSK); 905 if (dbg_hc(chan)) 906 dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk); 907 908 /* Make sure host channel interrupts are enabled */ 909 intmsk = readl(hsotg->regs + GINTMSK); 910 intmsk |= GINTSTS_HCHINT; 911 writel(intmsk, hsotg->regs + GINTMSK); 912 if (dbg_hc(chan)) 913 dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk); 914} 915 916/** 917 * dwc2_hc_init() - Prepares a host channel for transferring packets to/from 918 * a specific endpoint 919 * 920 * @hsotg: Programming view of DWC_otg controller 921 * @chan: Information needed to initialize the host channel 922 * 923 * The HCCHARn register is set up with the characteristics specified in chan. 924 * Host channel interrupts that may need to be serviced while this transfer is 925 * in progress are enabled. 926 */ 927void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan) 928{ 929 u8 hc_num = chan->hc_num; 930 u32 hcintmsk; 931 u32 hcchar; 932 u32 hcsplt = 0; 933 934 if (dbg_hc(chan)) 935 dev_vdbg(hsotg->dev, "%s()\n", __func__); 936 937 /* Clear old interrupt conditions for this host channel */ 938 hcintmsk = 0xffffffff; 939 hcintmsk &= ~HCINTMSK_RESERVED14_31; 940 writel(hcintmsk, hsotg->regs + HCINT(hc_num)); 941 942 /* Enable channel interrupts required for this transfer */ 943 dwc2_hc_enable_ints(hsotg, chan); 944 945 /* 946 * Program the HCCHARn register with the endpoint characteristics for 947 * the current transfer 948 */ 949 hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK; 950 hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK; 951 if (chan->ep_is_in) 952 hcchar |= HCCHAR_EPDIR; 953 if (chan->speed == USB_SPEED_LOW) 954 hcchar |= HCCHAR_LSPDDEV; 955 hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK; 956 hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK; 957 writel(hcchar, hsotg->regs + HCCHAR(hc_num)); 958 if (dbg_hc(chan)) { 959 dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n", 960 hc_num, hcchar); 961 962 dev_vdbg(hsotg->dev, "%s: Channel %d\n", 963 __func__, hc_num); 964 dev_vdbg(hsotg->dev, " Dev Addr: %d\n", 965 chan->dev_addr); 966 dev_vdbg(hsotg->dev, " Ep Num: %d\n", 967 chan->ep_num); 968 dev_vdbg(hsotg->dev, " Is In: %d\n", 969 chan->ep_is_in); 970 dev_vdbg(hsotg->dev, " Is Low Speed: %d\n", 971 chan->speed == USB_SPEED_LOW); 972 dev_vdbg(hsotg->dev, " Ep Type: %d\n", 973 chan->ep_type); 974 dev_vdbg(hsotg->dev, " Max Pkt: %d\n", 975 chan->max_packet); 976 } 977 978 /* Program the HCSPLT register for SPLITs */ 979 if (chan->do_split) { 980 if (dbg_hc(chan)) 981 dev_vdbg(hsotg->dev, 982 "Programming HC %d with split --> %s\n", 983 hc_num, 984 chan->complete_split ? "CSPLIT" : "SSPLIT"); 985 if (chan->complete_split) 986 hcsplt |= HCSPLT_COMPSPLT; 987 hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT & 988 HCSPLT_XACTPOS_MASK; 989 hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT & 990 HCSPLT_HUBADDR_MASK; 991 hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT & 992 HCSPLT_PRTADDR_MASK; 993 if (dbg_hc(chan)) { 994 dev_vdbg(hsotg->dev, " comp split %d\n", 995 chan->complete_split); 996 dev_vdbg(hsotg->dev, " xact pos %d\n", 997 chan->xact_pos); 998 dev_vdbg(hsotg->dev, " hub addr %d\n", 999 chan->hub_addr); 1000 dev_vdbg(hsotg->dev, " hub port %d\n", 1001 chan->hub_port); 1002 dev_vdbg(hsotg->dev, " is_in %d\n", 1003 chan->ep_is_in); 1004 dev_vdbg(hsotg->dev, " Max Pkt %d\n", 1005 chan->max_packet); 1006 dev_vdbg(hsotg->dev, " xferlen %d\n", 1007 chan->xfer_len); 1008 } 1009 } 1010 1011 writel(hcsplt, hsotg->regs + HCSPLT(hc_num)); 1012} 1013 1014/** 1015 * dwc2_hc_halt() - Attempts to halt a host channel 1016 * 1017 * @hsotg: Controller register interface 1018 * @chan: Host channel to halt 1019 * @halt_status: Reason for halting the channel 1020 * 1021 * This function should only be called in Slave mode or to abort a transfer in 1022 * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the 1023 * controller halts the channel when the transfer is complete or a condition 1024 * occurs that requires application intervention. 1025 * 1026 * In slave mode, checks for a free request queue entry, then sets the Channel 1027 * Enable and Channel Disable bits of the Host Channel Characteristics 1028 * register of the specified channel to intiate the halt. If there is no free 1029 * request queue entry, sets only the Channel Disable bit of the HCCHARn 1030 * register to flush requests for this channel. In the latter case, sets a 1031 * flag to indicate that the host channel needs to be halted when a request 1032 * queue slot is open. 1033 * 1034 * In DMA mode, always sets the Channel Enable and Channel Disable bits of the 1035 * HCCHARn register. The controller ensures there is space in the request 1036 * queue before submitting the halt request. 1037 * 1038 * Some time may elapse before the core flushes any posted requests for this 1039 * host channel and halts. The Channel Halted interrupt handler completes the 1040 * deactivation of the host channel. 1041 */ 1042void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan, 1043 enum dwc2_halt_status halt_status) 1044{ 1045 u32 nptxsts, hptxsts, hcchar; 1046 1047 if (dbg_hc(chan)) 1048 dev_vdbg(hsotg->dev, "%s()\n", __func__); 1049 if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS) 1050 dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status); 1051 1052 if (halt_status == DWC2_HC_XFER_URB_DEQUEUE || 1053 halt_status == DWC2_HC_XFER_AHB_ERR) { 1054 /* 1055 * Disable all channel interrupts except Ch Halted. The QTD 1056 * and QH state associated with this transfer has been cleared 1057 * (in the case of URB_DEQUEUE), so the channel needs to be 1058 * shut down carefully to prevent crashes. 1059 */ 1060 u32 hcintmsk = HCINTMSK_CHHLTD; 1061 1062 dev_vdbg(hsotg->dev, "dequeue/error\n"); 1063 writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num)); 1064 1065 /* 1066 * Make sure no other interrupts besides halt are currently 1067 * pending. Handling another interrupt could cause a crash due 1068 * to the QTD and QH state. 1069 */ 1070 writel(~hcintmsk, hsotg->regs + HCINT(chan->hc_num)); 1071 1072 /* 1073 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR 1074 * even if the channel was already halted for some other 1075 * reason 1076 */ 1077 chan->halt_status = halt_status; 1078 1079 hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num)); 1080 if (!(hcchar & HCCHAR_CHENA)) { 1081 /* 1082 * The channel is either already halted or it hasn't 1083 * started yet. In DMA mode, the transfer may halt if 1084 * it finishes normally or a condition occurs that 1085 * requires driver intervention. Don't want to halt 1086 * the channel again. In either Slave or DMA mode, 1087 * it's possible that the transfer has been assigned 1088 * to a channel, but not started yet when an URB is 1089 * dequeued. Don't want to halt a channel that hasn't 1090 * started yet. 1091 */ 1092 return; 1093 } 1094 } 1095 if (chan->halt_pending) { 1096 /* 1097 * A halt has already been issued for this channel. This might 1098 * happen when a transfer is aborted by a higher level in 1099 * the stack. 1100 */ 1101 dev_vdbg(hsotg->dev, 1102 "*** %s: Channel %d, chan->halt_pending already set ***\n", 1103 __func__, chan->hc_num); 1104 return; 1105 } 1106 1107 hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num)); 1108 1109 /* No need to set the bit in DDMA for disabling the channel */ 1110 /* TODO check it everywhere channel is disabled */ 1111 if (hsotg->core_params->dma_desc_enable <= 0) { 1112 if (dbg_hc(chan)) 1113 dev_vdbg(hsotg->dev, "desc DMA disabled\n"); 1114 hcchar |= HCCHAR_CHENA; 1115 } else { 1116 if (dbg_hc(chan)) 1117 dev_dbg(hsotg->dev, "desc DMA enabled\n"); 1118 } 1119 hcchar |= HCCHAR_CHDIS; 1120 1121 if (hsotg->core_params->dma_enable <= 0) { 1122 if (dbg_hc(chan)) 1123 dev_vdbg(hsotg->dev, "DMA not enabled\n"); 1124 hcchar |= HCCHAR_CHENA; 1125 1126 /* Check for space in the request queue to issue the halt */ 1127 if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL || 1128 chan->ep_type == USB_ENDPOINT_XFER_BULK) { 1129 dev_vdbg(hsotg->dev, "control/bulk\n"); 1130 nptxsts = readl(hsotg->regs + GNPTXSTS); 1131 if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) { 1132 dev_vdbg(hsotg->dev, "Disabling channel\n"); 1133 hcchar &= ~HCCHAR_CHENA; 1134 } 1135 } else { 1136 if (dbg_perio()) 1137 dev_vdbg(hsotg->dev, "isoc/intr\n"); 1138 hptxsts = readl(hsotg->regs + HPTXSTS); 1139 if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 || 1140 hsotg->queuing_high_bandwidth) { 1141 if (dbg_perio()) 1142 dev_vdbg(hsotg->dev, "Disabling channel\n"); 1143 hcchar &= ~HCCHAR_CHENA; 1144 } 1145 } 1146 } else { 1147 if (dbg_hc(chan)) 1148 dev_vdbg(hsotg->dev, "DMA enabled\n"); 1149 } 1150 1151 writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num)); 1152 chan->halt_status = halt_status; 1153 1154 if (hcchar & HCCHAR_CHENA) { 1155 if (dbg_hc(chan)) 1156 dev_vdbg(hsotg->dev, "Channel enabled\n"); 1157 chan->halt_pending = 1; 1158 chan->halt_on_queue = 0; 1159 } else { 1160 if (dbg_hc(chan)) 1161 dev_vdbg(hsotg->dev, "Channel disabled\n"); 1162 chan->halt_on_queue = 1; 1163 } 1164 1165 if (dbg_hc(chan)) { 1166 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__, 1167 chan->hc_num); 1168 dev_vdbg(hsotg->dev, " hcchar: 0x%08x\n", 1169 hcchar); 1170 dev_vdbg(hsotg->dev, " halt_pending: %d\n", 1171 chan->halt_pending); 1172 dev_vdbg(hsotg->dev, " halt_on_queue: %d\n", 1173 chan->halt_on_queue); 1174 dev_vdbg(hsotg->dev, " halt_status: %d\n", 1175 chan->halt_status); 1176 } 1177} 1178 1179/** 1180 * dwc2_hc_cleanup() - Clears the transfer state for a host channel 1181 * 1182 * @hsotg: Programming view of DWC_otg controller 1183 * @chan: Identifies the host channel to clean up 1184 * 1185 * This function is normally called after a transfer is done and the host 1186 * channel is being released 1187 */ 1188void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan) 1189{ 1190 u32 hcintmsk; 1191 1192 chan->xfer_started = 0; 1193 1194 /* 1195 * Clear channel interrupt enables and any unhandled channel interrupt 1196 * conditions 1197 */ 1198 writel(0, hsotg->regs + HCINTMSK(chan->hc_num)); 1199 hcintmsk = 0xffffffff; 1200 hcintmsk &= ~HCINTMSK_RESERVED14_31; 1201 writel(hcintmsk, hsotg->regs + HCINT(chan->hc_num)); 1202} 1203 1204/** 1205 * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in 1206 * which frame a periodic transfer should occur 1207 * 1208 * @hsotg: Programming view of DWC_otg controller 1209 * @chan: Identifies the host channel to set up and its properties 1210 * @hcchar: Current value of the HCCHAR register for the specified host channel 1211 * 1212 * This function has no effect on non-periodic transfers 1213 */ 1214static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg, 1215 struct dwc2_host_chan *chan, u32 *hcchar) 1216{ 1217 if (chan->ep_type == USB_ENDPOINT_XFER_INT || 1218 chan->ep_type == USB_ENDPOINT_XFER_ISOC) { 1219 /* 1 if _next_ frame is odd, 0 if it's even */ 1220 if (!(dwc2_hcd_get_frame_number(hsotg) & 0x1)) 1221 *hcchar |= HCCHAR_ODDFRM; 1222 } 1223} 1224 1225static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan) 1226{ 1227 /* Set up the initial PID for the transfer */ 1228 if (chan->speed == USB_SPEED_HIGH) { 1229 if (chan->ep_is_in) { 1230 if (chan->multi_count == 1) 1231 chan->data_pid_start = DWC2_HC_PID_DATA0; 1232 else if (chan->multi_count == 2) 1233 chan->data_pid_start = DWC2_HC_PID_DATA1; 1234 else 1235 chan->data_pid_start = DWC2_HC_PID_DATA2; 1236 } else { 1237 if (chan->multi_count == 1) 1238 chan->data_pid_start = DWC2_HC_PID_DATA0; 1239 else 1240 chan->data_pid_start = DWC2_HC_PID_MDATA; 1241 } 1242 } else { 1243 chan->data_pid_start = DWC2_HC_PID_DATA0; 1244 } 1245} 1246 1247/** 1248 * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with 1249 * the Host Channel 1250 * 1251 * @hsotg: Programming view of DWC_otg controller 1252 * @chan: Information needed to initialize the host channel 1253 * 1254 * This function should only be called in Slave mode. For a channel associated 1255 * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel 1256 * associated with a periodic EP, the periodic Tx FIFO is written. 1257 * 1258 * Upon return the xfer_buf and xfer_count fields in chan are incremented by 1259 * the number of bytes written to the Tx FIFO. 1260 */ 1261static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg, 1262 struct dwc2_host_chan *chan) 1263{ 1264 u32 i; 1265 u32 remaining_count; 1266 u32 byte_count; 1267 u32 dword_count; 1268 u32 __iomem *data_fifo; 1269 u32 *data_buf = (u32 *)chan->xfer_buf; 1270 1271 if (dbg_hc(chan)) 1272 dev_vdbg(hsotg->dev, "%s()\n", __func__); 1273 1274 data_fifo = (u32 __iomem *)(hsotg->regs + HCFIFO(chan->hc_num)); 1275 1276 remaining_count = chan->xfer_len - chan->xfer_count; 1277 if (remaining_count > chan->max_packet) 1278 byte_count = chan->max_packet; 1279 else 1280 byte_count = remaining_count; 1281 1282 dword_count = (byte_count + 3) / 4; 1283 1284 if (((unsigned long)data_buf & 0x3) == 0) { 1285 /* xfer_buf is DWORD aligned */ 1286 for (i = 0; i < dword_count; i++, data_buf++) 1287 writel(*data_buf, data_fifo); 1288 } else { 1289 /* xfer_buf is not DWORD aligned */ 1290 for (i = 0; i < dword_count; i++, data_buf++) { 1291 u32 data = data_buf[0] | data_buf[1] << 8 | 1292 data_buf[2] << 16 | data_buf[3] << 24; 1293 writel(data, data_fifo); 1294 } 1295 } 1296 1297 chan->xfer_count += byte_count; 1298 chan->xfer_buf += byte_count; 1299} 1300 1301/** 1302 * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host 1303 * channel and starts the transfer 1304 * 1305 * @hsotg: Programming view of DWC_otg controller 1306 * @chan: Information needed to initialize the host channel. The xfer_len value 1307 * may be reduced to accommodate the max widths of the XferSize and 1308 * PktCnt fields in the HCTSIZn register. The multi_count value may be 1309 * changed to reflect the final xfer_len value. 1310 * 1311 * This function may be called in either Slave mode or DMA mode. In Slave mode, 1312 * the caller must ensure that there is sufficient space in the request queue 1313 * and Tx Data FIFO. 1314 * 1315 * For an OUT transfer in Slave mode, it loads a data packet into the 1316 * appropriate FIFO. If necessary, additional data packets are loaded in the 1317 * Host ISR. 1318 * 1319 * For an IN transfer in Slave mode, a data packet is requested. The data 1320 * packets are unloaded from the Rx FIFO in the Host ISR. If necessary, 1321 * additional data packets are requested in the Host ISR. 1322 * 1323 * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ 1324 * register along with a packet count of 1 and the channel is enabled. This 1325 * causes a single PING transaction to occur. Other fields in HCTSIZ are 1326 * simply set to 0 since no data transfer occurs in this case. 1327 * 1328 * For a PING transfer in DMA mode, the HCTSIZ register is initialized with 1329 * all the information required to perform the subsequent data transfer. In 1330 * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the 1331 * controller performs the entire PING protocol, then starts the data 1332 * transfer. 1333 */ 1334void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg, 1335 struct dwc2_host_chan *chan) 1336{ 1337 u32 max_hc_xfer_size = hsotg->core_params->max_transfer_size; 1338 u16 max_hc_pkt_count = hsotg->core_params->max_packet_count; 1339 u32 hcchar; 1340 u32 hctsiz = 0; 1341 u16 num_packets; 1342 1343 if (dbg_hc(chan)) 1344 dev_vdbg(hsotg->dev, "%s()\n", __func__); 1345 1346 if (chan->do_ping) { 1347 if (hsotg->core_params->dma_enable <= 0) { 1348 if (dbg_hc(chan)) 1349 dev_vdbg(hsotg->dev, "ping, no DMA\n"); 1350 dwc2_hc_do_ping(hsotg, chan); 1351 chan->xfer_started = 1; 1352 return; 1353 } else { 1354 if (dbg_hc(chan)) 1355 dev_vdbg(hsotg->dev, "ping, DMA\n"); 1356 hctsiz |= TSIZ_DOPNG; 1357 } 1358 } 1359 1360 if (chan->do_split) { 1361 if (dbg_hc(chan)) 1362 dev_vdbg(hsotg->dev, "split\n"); 1363 num_packets = 1; 1364 1365 if (chan->complete_split && !chan->ep_is_in) 1366 /* 1367 * For CSPLIT OUT Transfer, set the size to 0 so the 1368 * core doesn't expect any data written to the FIFO 1369 */ 1370 chan->xfer_len = 0; 1371 else if (chan->ep_is_in || chan->xfer_len > chan->max_packet) 1372 chan->xfer_len = chan->max_packet; 1373 else if (!chan->ep_is_in && chan->xfer_len > 188) 1374 chan->xfer_len = 188; 1375 1376 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT & 1377 TSIZ_XFERSIZE_MASK; 1378 } else { 1379 if (dbg_hc(chan)) 1380 dev_vdbg(hsotg->dev, "no split\n"); 1381 /* 1382 * Ensure that the transfer length and packet count will fit 1383 * in the widths allocated for them in the HCTSIZn register 1384 */ 1385 if (chan->ep_type == USB_ENDPOINT_XFER_INT || 1386 chan->ep_type == USB_ENDPOINT_XFER_ISOC) { 1387 /* 1388 * Make sure the transfer size is no larger than one 1389 * (micro)frame's worth of data. (A check was done 1390 * when the periodic transfer was accepted to ensure 1391 * that a (micro)frame's worth of data can be 1392 * programmed into a channel.) 1393 */ 1394 u32 max_periodic_len = 1395 chan->multi_count * chan->max_packet; 1396 1397 if (chan->xfer_len > max_periodic_len) 1398 chan->xfer_len = max_periodic_len; 1399 } else if (chan->xfer_len > max_hc_xfer_size) { 1400 /* 1401 * Make sure that xfer_len is a multiple of max packet 1402 * size 1403 */ 1404 chan->xfer_len = 1405 max_hc_xfer_size - chan->max_packet + 1; 1406 } 1407 1408 if (chan->xfer_len > 0) { 1409 num_packets = (chan->xfer_len + chan->max_packet - 1) / 1410 chan->max_packet; 1411 if (num_packets > max_hc_pkt_count) { 1412 num_packets = max_hc_pkt_count; 1413 chan->xfer_len = num_packets * chan->max_packet; 1414 } 1415 } else { 1416 /* Need 1 packet for transfer length of 0 */ 1417 num_packets = 1; 1418 } 1419 1420 if (chan->ep_is_in) 1421 /* 1422 * Always program an integral # of max packets for IN 1423 * transfers 1424 */ 1425 chan->xfer_len = num_packets * chan->max_packet; 1426 1427 if (chan->ep_type == USB_ENDPOINT_XFER_INT || 1428 chan->ep_type == USB_ENDPOINT_XFER_ISOC) 1429 /* 1430 * Make sure that the multi_count field matches the 1431 * actual transfer length 1432 */ 1433 chan->multi_count = num_packets; 1434 1435 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC) 1436 dwc2_set_pid_isoc(chan); 1437 1438 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT & 1439 TSIZ_XFERSIZE_MASK; 1440 } 1441 1442 chan->start_pkt_count = num_packets; 1443 hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK; 1444 hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT & 1445 TSIZ_SC_MC_PID_MASK; 1446 writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num)); 1447 if (dbg_hc(chan)) { 1448 dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n", 1449 hctsiz, chan->hc_num); 1450 1451 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__, 1452 chan->hc_num); 1453 dev_vdbg(hsotg->dev, " Xfer Size: %d\n", 1454 (hctsiz & TSIZ_XFERSIZE_MASK) >> 1455 TSIZ_XFERSIZE_SHIFT); 1456 dev_vdbg(hsotg->dev, " Num Pkts: %d\n", 1457 (hctsiz & TSIZ_PKTCNT_MASK) >> 1458 TSIZ_PKTCNT_SHIFT); 1459 dev_vdbg(hsotg->dev, " Start PID: %d\n", 1460 (hctsiz & TSIZ_SC_MC_PID_MASK) >> 1461 TSIZ_SC_MC_PID_SHIFT); 1462 } 1463 1464 if (hsotg->core_params->dma_enable > 0) { 1465 dma_addr_t dma_addr; 1466 1467 if (chan->align_buf) { 1468 if (dbg_hc(chan)) 1469 dev_vdbg(hsotg->dev, "align_buf\n"); 1470 dma_addr = chan->align_buf; 1471 } else { 1472 dma_addr = chan->xfer_dma; 1473 } 1474 writel((u32)dma_addr, hsotg->regs + HCDMA(chan->hc_num)); 1475 if (dbg_hc(chan)) 1476 dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n", 1477 (unsigned long)dma_addr, chan->hc_num); 1478 } 1479 1480 /* Start the split */ 1481 if (chan->do_split) { 1482 u32 hcsplt = readl(hsotg->regs + HCSPLT(chan->hc_num)); 1483 1484 hcsplt |= HCSPLT_SPLTENA; 1485 writel(hcsplt, hsotg->regs + HCSPLT(chan->hc_num)); 1486 } 1487 1488 hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num)); 1489 hcchar &= ~HCCHAR_MULTICNT_MASK; 1490 hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT & 1491 HCCHAR_MULTICNT_MASK; 1492 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar); 1493 1494 if (hcchar & HCCHAR_CHDIS) 1495 dev_warn(hsotg->dev, 1496 "%s: chdis set, channel %d, hcchar 0x%08x\n", 1497 __func__, chan->hc_num, hcchar); 1498 1499 /* Set host channel enable after all other setup is complete */ 1500 hcchar |= HCCHAR_CHENA; 1501 hcchar &= ~HCCHAR_CHDIS; 1502 1503 if (dbg_hc(chan)) 1504 dev_vdbg(hsotg->dev, " Multi Cnt: %d\n", 1505 (hcchar & HCCHAR_MULTICNT_MASK) >> 1506 HCCHAR_MULTICNT_SHIFT); 1507 1508 writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num)); 1509 if (dbg_hc(chan)) 1510 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar, 1511 chan->hc_num); 1512 1513 chan->xfer_started = 1; 1514 chan->requests++; 1515 1516 if (hsotg->core_params->dma_enable <= 0 && 1517 !chan->ep_is_in && chan->xfer_len > 0) 1518 /* Load OUT packet into the appropriate Tx FIFO */ 1519 dwc2_hc_write_packet(hsotg, chan); 1520} 1521 1522/** 1523 * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a 1524 * host channel and starts the transfer in Descriptor DMA mode 1525 * 1526 * @hsotg: Programming view of DWC_otg controller 1527 * @chan: Information needed to initialize the host channel 1528 * 1529 * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set. 1530 * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field 1531 * with micro-frame bitmap. 1532 * 1533 * Initializes HCDMA register with descriptor list address and CTD value then 1534 * starts the transfer via enabling the channel. 1535 */ 1536void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg, 1537 struct dwc2_host_chan *chan) 1538{ 1539 u32 hcchar; 1540 u32 hc_dma; 1541 u32 hctsiz = 0; 1542 1543 if (chan->do_ping) 1544 hctsiz |= TSIZ_DOPNG; 1545 1546 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC) 1547 dwc2_set_pid_isoc(chan); 1548 1549 /* Packet Count and Xfer Size are not used in Descriptor DMA mode */ 1550 hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT & 1551 TSIZ_SC_MC_PID_MASK; 1552 1553 /* 0 - 1 descriptor, 1 - 2 descriptors, etc */ 1554 hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK; 1555 1556 /* Non-zero only for high-speed interrupt endpoints */ 1557 hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK; 1558 1559 if (dbg_hc(chan)) { 1560 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__, 1561 chan->hc_num); 1562 dev_vdbg(hsotg->dev, " Start PID: %d\n", 1563 chan->data_pid_start); 1564 dev_vdbg(hsotg->dev, " NTD: %d\n", chan->ntd - 1); 1565 } 1566 1567 writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num)); 1568 1569 hc_dma = (u32)chan->desc_list_addr & HCDMA_DMA_ADDR_MASK; 1570 1571 /* Always start from first descriptor */ 1572 hc_dma &= ~HCDMA_CTD_MASK; 1573 writel(hc_dma, hsotg->regs + HCDMA(chan->hc_num)); 1574 if (dbg_hc(chan)) 1575 dev_vdbg(hsotg->dev, "Wrote %08x to HCDMA(%d)\n", 1576 hc_dma, chan->hc_num); 1577 1578 hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num)); 1579 hcchar &= ~HCCHAR_MULTICNT_MASK; 1580 hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT & 1581 HCCHAR_MULTICNT_MASK; 1582 1583 if (hcchar & HCCHAR_CHDIS) 1584 dev_warn(hsotg->dev, 1585 "%s: chdis set, channel %d, hcchar 0x%08x\n", 1586 __func__, chan->hc_num, hcchar); 1587 1588 /* Set host channel enable after all other setup is complete */ 1589 hcchar |= HCCHAR_CHENA; 1590 hcchar &= ~HCCHAR_CHDIS; 1591 1592 if (dbg_hc(chan)) 1593 dev_vdbg(hsotg->dev, " Multi Cnt: %d\n", 1594 (hcchar & HCCHAR_MULTICNT_MASK) >> 1595 HCCHAR_MULTICNT_SHIFT); 1596 1597 writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num)); 1598 if (dbg_hc(chan)) 1599 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar, 1600 chan->hc_num); 1601 1602 chan->xfer_started = 1; 1603 chan->requests++; 1604} 1605 1606/** 1607 * dwc2_hc_continue_transfer() - Continues a data transfer that was started by 1608 * a previous call to dwc2_hc_start_transfer() 1609 * 1610 * @hsotg: Programming view of DWC_otg controller 1611 * @chan: Information needed to initialize the host channel 1612 * 1613 * The caller must ensure there is sufficient space in the request queue and Tx 1614 * Data FIFO. This function should only be called in Slave mode. In DMA mode, 1615 * the controller acts autonomously to complete transfers programmed to a host 1616 * channel. 1617 * 1618 * For an OUT transfer, a new data packet is loaded into the appropriate FIFO 1619 * if there is any data remaining to be queued. For an IN transfer, another 1620 * data packet is always requested. For the SETUP phase of a control transfer, 1621 * this function does nothing. 1622 * 1623 * Return: 1 if a new request is queued, 0 if no more requests are required 1624 * for this transfer 1625 */ 1626int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg, 1627 struct dwc2_host_chan *chan) 1628{ 1629 if (dbg_hc(chan)) 1630 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__, 1631 chan->hc_num); 1632 1633 if (chan->do_split) 1634 /* SPLITs always queue just once per channel */ 1635 return 0; 1636 1637 if (chan->data_pid_start == DWC2_HC_PID_SETUP) 1638 /* SETUPs are queued only once since they can't be NAK'd */ 1639 return 0; 1640 1641 if (chan->ep_is_in) { 1642 /* 1643 * Always queue another request for other IN transfers. If 1644 * back-to-back INs are issued and NAKs are received for both, 1645 * the driver may still be processing the first NAK when the 1646 * second NAK is received. When the interrupt handler clears 1647 * the NAK interrupt for the first NAK, the second NAK will 1648 * not be seen. So we can't depend on the NAK interrupt 1649 * handler to requeue a NAK'd request. Instead, IN requests 1650 * are issued each time this function is called. When the 1651 * transfer completes, the extra requests for the channel will 1652 * be flushed. 1653 */ 1654 u32 hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num)); 1655 1656 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar); 1657 hcchar |= HCCHAR_CHENA; 1658 hcchar &= ~HCCHAR_CHDIS; 1659 if (dbg_hc(chan)) 1660 dev_vdbg(hsotg->dev, " IN xfer: hcchar = 0x%08x\n", 1661 hcchar); 1662 writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num)); 1663 chan->requests++; 1664 return 1; 1665 } 1666 1667 /* OUT transfers */ 1668 1669 if (chan->xfer_count < chan->xfer_len) { 1670 if (chan->ep_type == USB_ENDPOINT_XFER_INT || 1671 chan->ep_type == USB_ENDPOINT_XFER_ISOC) { 1672 u32 hcchar = readl(hsotg->regs + 1673 HCCHAR(chan->hc_num)); 1674 1675 dwc2_hc_set_even_odd_frame(hsotg, chan, 1676 &hcchar); 1677 } 1678 1679 /* Load OUT packet into the appropriate Tx FIFO */ 1680 dwc2_hc_write_packet(hsotg, chan); 1681 chan->requests++; 1682 return 1; 1683 } 1684 1685 return 0; 1686} 1687 1688/** 1689 * dwc2_hc_do_ping() - Starts a PING transfer 1690 * 1691 * @hsotg: Programming view of DWC_otg controller 1692 * @chan: Information needed to initialize the host channel 1693 * 1694 * This function should only be called in Slave mode. The Do Ping bit is set in 1695 * the HCTSIZ register, then the channel is enabled. 1696 */ 1697void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan) 1698{ 1699 u32 hcchar; 1700 u32 hctsiz; 1701 1702 if (dbg_hc(chan)) 1703 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__, 1704 chan->hc_num); 1705 1706 1707 hctsiz = TSIZ_DOPNG; 1708 hctsiz |= 1 << TSIZ_PKTCNT_SHIFT; 1709 writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num)); 1710 1711 hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num)); 1712 hcchar |= HCCHAR_CHENA; 1713 hcchar &= ~HCCHAR_CHDIS; 1714 writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num)); 1715} 1716 1717/** 1718 * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for 1719 * the HFIR register according to PHY type and speed 1720 * 1721 * @hsotg: Programming view of DWC_otg controller 1722 * 1723 * NOTE: The caller can modify the value of the HFIR register only after the 1724 * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort) 1725 * has been set 1726 */ 1727u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg) 1728{ 1729 u32 usbcfg; 1730 u32 hprt0; 1731 int clock = 60; /* default value */ 1732 1733 usbcfg = readl(hsotg->regs + GUSBCFG); 1734 hprt0 = readl(hsotg->regs + HPRT0); 1735 1736 if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) && 1737 !(usbcfg & GUSBCFG_PHYIF16)) 1738 clock = 60; 1739 if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type == 1740 GHWCFG2_FS_PHY_TYPE_SHARED_ULPI) 1741 clock = 48; 1742 if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) && 1743 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16)) 1744 clock = 30; 1745 if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) && 1746 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16)) 1747 clock = 60; 1748 if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) && 1749 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16)) 1750 clock = 48; 1751 if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) && 1752 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI) 1753 clock = 48; 1754 if ((usbcfg & GUSBCFG_PHYSEL) && 1755 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) 1756 clock = 48; 1757 1758 if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED) 1759 /* High speed case */ 1760 return 125 * clock; 1761 else 1762 /* FS/LS case */ 1763 return 1000 * clock; 1764} 1765 1766/** 1767 * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination 1768 * buffer 1769 * 1770 * @core_if: Programming view of DWC_otg controller 1771 * @dest: Destination buffer for the packet 1772 * @bytes: Number of bytes to copy to the destination 1773 */ 1774void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes) 1775{ 1776 u32 __iomem *fifo = hsotg->regs + HCFIFO(0); 1777 u32 *data_buf = (u32 *)dest; 1778 int word_count = (bytes + 3) / 4; 1779 int i; 1780 1781 /* 1782 * Todo: Account for the case where dest is not dword aligned. This 1783 * requires reading data from the FIFO into a u32 temp buffer, then 1784 * moving it into the data buffer. 1785 */ 1786 1787 dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes); 1788 1789 for (i = 0; i < word_count; i++, data_buf++) 1790 *data_buf = readl(fifo); 1791} 1792 1793/** 1794 * dwc2_dump_host_registers() - Prints the host registers 1795 * 1796 * @hsotg: Programming view of DWC_otg controller 1797 * 1798 * NOTE: This function will be removed once the peripheral controller code 1799 * is integrated and the driver is stable 1800 */ 1801void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg) 1802{ 1803#ifdef DEBUG 1804 u32 __iomem *addr; 1805 int i; 1806 1807 dev_dbg(hsotg->dev, "Host Global Registers\n"); 1808 addr = hsotg->regs + HCFG; 1809 dev_dbg(hsotg->dev, "HCFG @0x%08lX : 0x%08X\n", 1810 (unsigned long)addr, readl(addr)); 1811 addr = hsotg->regs + HFIR; 1812 dev_dbg(hsotg->dev, "HFIR @0x%08lX : 0x%08X\n", 1813 (unsigned long)addr, readl(addr)); 1814 addr = hsotg->regs + HFNUM; 1815 dev_dbg(hsotg->dev, "HFNUM @0x%08lX : 0x%08X\n", 1816 (unsigned long)addr, readl(addr)); 1817 addr = hsotg->regs + HPTXSTS; 1818 dev_dbg(hsotg->dev, "HPTXSTS @0x%08lX : 0x%08X\n", 1819 (unsigned long)addr, readl(addr)); 1820 addr = hsotg->regs + HAINT; 1821 dev_dbg(hsotg->dev, "HAINT @0x%08lX : 0x%08X\n", 1822 (unsigned long)addr, readl(addr)); 1823 addr = hsotg->regs + HAINTMSK; 1824 dev_dbg(hsotg->dev, "HAINTMSK @0x%08lX : 0x%08X\n", 1825 (unsigned long)addr, readl(addr)); 1826 if (hsotg->core_params->dma_desc_enable > 0) { 1827 addr = hsotg->regs + HFLBADDR; 1828 dev_dbg(hsotg->dev, "HFLBADDR @0x%08lX : 0x%08X\n", 1829 (unsigned long)addr, readl(addr)); 1830 } 1831 1832 addr = hsotg->regs + HPRT0; 1833 dev_dbg(hsotg->dev, "HPRT0 @0x%08lX : 0x%08X\n", 1834 (unsigned long)addr, readl(addr)); 1835 1836 for (i = 0; i < hsotg->core_params->host_channels; i++) { 1837 dev_dbg(hsotg->dev, "Host Channel %d Specific Registers\n", i); 1838 addr = hsotg->regs + HCCHAR(i); 1839 dev_dbg(hsotg->dev, "HCCHAR @0x%08lX : 0x%08X\n", 1840 (unsigned long)addr, readl(addr)); 1841 addr = hsotg->regs + HCSPLT(i); 1842 dev_dbg(hsotg->dev, "HCSPLT @0x%08lX : 0x%08X\n", 1843 (unsigned long)addr, readl(addr)); 1844 addr = hsotg->regs + HCINT(i); 1845 dev_dbg(hsotg->dev, "HCINT @0x%08lX : 0x%08X\n", 1846 (unsigned long)addr, readl(addr)); 1847 addr = hsotg->regs + HCINTMSK(i); 1848 dev_dbg(hsotg->dev, "HCINTMSK @0x%08lX : 0x%08X\n", 1849 (unsigned long)addr, readl(addr)); 1850 addr = hsotg->regs + HCTSIZ(i); 1851 dev_dbg(hsotg->dev, "HCTSIZ @0x%08lX : 0x%08X\n", 1852 (unsigned long)addr, readl(addr)); 1853 addr = hsotg->regs + HCDMA(i); 1854 dev_dbg(hsotg->dev, "HCDMA @0x%08lX : 0x%08X\n", 1855 (unsigned long)addr, readl(addr)); 1856 if (hsotg->core_params->dma_desc_enable > 0) { 1857 addr = hsotg->regs + HCDMAB(i); 1858 dev_dbg(hsotg->dev, "HCDMAB @0x%08lX : 0x%08X\n", 1859 (unsigned long)addr, readl(addr)); 1860 } 1861 } 1862#endif 1863} 1864 1865/** 1866 * dwc2_dump_global_registers() - Prints the core global registers 1867 * 1868 * @hsotg: Programming view of DWC_otg controller 1869 * 1870 * NOTE: This function will be removed once the peripheral controller code 1871 * is integrated and the driver is stable 1872 */ 1873void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg) 1874{ 1875#ifdef DEBUG 1876 u32 __iomem *addr; 1877 1878 dev_dbg(hsotg->dev, "Core Global Registers\n"); 1879 addr = hsotg->regs + GOTGCTL; 1880 dev_dbg(hsotg->dev, "GOTGCTL @0x%08lX : 0x%08X\n", 1881 (unsigned long)addr, readl(addr)); 1882 addr = hsotg->regs + GOTGINT; 1883 dev_dbg(hsotg->dev, "GOTGINT @0x%08lX : 0x%08X\n", 1884 (unsigned long)addr, readl(addr)); 1885 addr = hsotg->regs + GAHBCFG; 1886 dev_dbg(hsotg->dev, "GAHBCFG @0x%08lX : 0x%08X\n", 1887 (unsigned long)addr, readl(addr)); 1888 addr = hsotg->regs + GUSBCFG; 1889 dev_dbg(hsotg->dev, "GUSBCFG @0x%08lX : 0x%08X\n", 1890 (unsigned long)addr, readl(addr)); 1891 addr = hsotg->regs + GRSTCTL; 1892 dev_dbg(hsotg->dev, "GRSTCTL @0x%08lX : 0x%08X\n", 1893 (unsigned long)addr, readl(addr)); 1894 addr = hsotg->regs + GINTSTS; 1895 dev_dbg(hsotg->dev, "GINTSTS @0x%08lX : 0x%08X\n", 1896 (unsigned long)addr, readl(addr)); 1897 addr = hsotg->regs + GINTMSK; 1898 dev_dbg(hsotg->dev, "GINTMSK @0x%08lX : 0x%08X\n", 1899 (unsigned long)addr, readl(addr)); 1900 addr = hsotg->regs + GRXSTSR; 1901 dev_dbg(hsotg->dev, "GRXSTSR @0x%08lX : 0x%08X\n", 1902 (unsigned long)addr, readl(addr)); 1903 addr = hsotg->regs + GRXFSIZ; 1904 dev_dbg(hsotg->dev, "GRXFSIZ @0x%08lX : 0x%08X\n", 1905 (unsigned long)addr, readl(addr)); 1906 addr = hsotg->regs + GNPTXFSIZ; 1907 dev_dbg(hsotg->dev, "GNPTXFSIZ @0x%08lX : 0x%08X\n", 1908 (unsigned long)addr, readl(addr)); 1909 addr = hsotg->regs + GNPTXSTS; 1910 dev_dbg(hsotg->dev, "GNPTXSTS @0x%08lX : 0x%08X\n", 1911 (unsigned long)addr, readl(addr)); 1912 addr = hsotg->regs + GI2CCTL; 1913 dev_dbg(hsotg->dev, "GI2CCTL @0x%08lX : 0x%08X\n", 1914 (unsigned long)addr, readl(addr)); 1915 addr = hsotg->regs + GPVNDCTL; 1916 dev_dbg(hsotg->dev, "GPVNDCTL @0x%08lX : 0x%08X\n", 1917 (unsigned long)addr, readl(addr)); 1918 addr = hsotg->regs + GGPIO; 1919 dev_dbg(hsotg->dev, "GGPIO @0x%08lX : 0x%08X\n", 1920 (unsigned long)addr, readl(addr)); 1921 addr = hsotg->regs + GUID; 1922 dev_dbg(hsotg->dev, "GUID @0x%08lX : 0x%08X\n", 1923 (unsigned long)addr, readl(addr)); 1924 addr = hsotg->regs + GSNPSID; 1925 dev_dbg(hsotg->dev, "GSNPSID @0x%08lX : 0x%08X\n", 1926 (unsigned long)addr, readl(addr)); 1927 addr = hsotg->regs + GHWCFG1; 1928 dev_dbg(hsotg->dev, "GHWCFG1 @0x%08lX : 0x%08X\n", 1929 (unsigned long)addr, readl(addr)); 1930 addr = hsotg->regs + GHWCFG2; 1931 dev_dbg(hsotg->dev, "GHWCFG2 @0x%08lX : 0x%08X\n", 1932 (unsigned long)addr, readl(addr)); 1933 addr = hsotg->regs + GHWCFG3; 1934 dev_dbg(hsotg->dev, "GHWCFG3 @0x%08lX : 0x%08X\n", 1935 (unsigned long)addr, readl(addr)); 1936 addr = hsotg->regs + GHWCFG4; 1937 dev_dbg(hsotg->dev, "GHWCFG4 @0x%08lX : 0x%08X\n", 1938 (unsigned long)addr, readl(addr)); 1939 addr = hsotg->regs + GLPMCFG; 1940 dev_dbg(hsotg->dev, "GLPMCFG @0x%08lX : 0x%08X\n", 1941 (unsigned long)addr, readl(addr)); 1942 addr = hsotg->regs + GPWRDN; 1943 dev_dbg(hsotg->dev, "GPWRDN @0x%08lX : 0x%08X\n", 1944 (unsigned long)addr, readl(addr)); 1945 addr = hsotg->regs + GDFIFOCFG; 1946 dev_dbg(hsotg->dev, "GDFIFOCFG @0x%08lX : 0x%08X\n", 1947 (unsigned long)addr, readl(addr)); 1948 addr = hsotg->regs + HPTXFSIZ; 1949 dev_dbg(hsotg->dev, "HPTXFSIZ @0x%08lX : 0x%08X\n", 1950 (unsigned long)addr, readl(addr)); 1951 1952 addr = hsotg->regs + PCGCTL; 1953 dev_dbg(hsotg->dev, "PCGCTL @0x%08lX : 0x%08X\n", 1954 (unsigned long)addr, readl(addr)); 1955#endif 1956} 1957 1958/** 1959 * dwc2_flush_tx_fifo() - Flushes a Tx FIFO 1960 * 1961 * @hsotg: Programming view of DWC_otg controller 1962 * @num: Tx FIFO to flush 1963 */ 1964void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num) 1965{ 1966 u32 greset; 1967 int count = 0; 1968 1969 dev_vdbg(hsotg->dev, "Flush Tx FIFO %d\n", num); 1970 1971 greset = GRSTCTL_TXFFLSH; 1972 greset |= num << GRSTCTL_TXFNUM_SHIFT & GRSTCTL_TXFNUM_MASK; 1973 writel(greset, hsotg->regs + GRSTCTL); 1974 1975 do { 1976 greset = readl(hsotg->regs + GRSTCTL); 1977 if (++count > 10000) { 1978 dev_warn(hsotg->dev, 1979 "%s() HANG! GRSTCTL=%0x GNPTXSTS=0x%08x\n", 1980 __func__, greset, 1981 readl(hsotg->regs + GNPTXSTS)); 1982 break; 1983 } 1984 udelay(1); 1985 } while (greset & GRSTCTL_TXFFLSH); 1986 1987 /* Wait for at least 3 PHY Clocks */ 1988 udelay(1); 1989} 1990 1991/** 1992 * dwc2_flush_rx_fifo() - Flushes the Rx FIFO 1993 * 1994 * @hsotg: Programming view of DWC_otg controller 1995 */ 1996void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg) 1997{ 1998 u32 greset; 1999 int count = 0; 2000 2001 dev_vdbg(hsotg->dev, "%s()\n", __func__); 2002 2003 greset = GRSTCTL_RXFFLSH; 2004 writel(greset, hsotg->regs + GRSTCTL); 2005 2006 do { 2007 greset = readl(hsotg->regs + GRSTCTL); 2008 if (++count > 10000) { 2009 dev_warn(hsotg->dev, "%s() HANG! GRSTCTL=%0x\n", 2010 __func__, greset); 2011 break; 2012 } 2013 udelay(1); 2014 } while (greset & GRSTCTL_RXFFLSH); 2015 2016 /* Wait for at least 3 PHY Clocks */ 2017 udelay(1); 2018} 2019 2020#define DWC2_OUT_OF_BOUNDS(a, b, c) ((a) < (b) || (a) > (c)) 2021 2022/* Parameter access functions */ 2023void dwc2_set_param_otg_cap(struct dwc2_hsotg *hsotg, int val) 2024{ 2025 int valid = 1; 2026 2027 switch (val) { 2028 case DWC2_CAP_PARAM_HNP_SRP_CAPABLE: 2029 if (hsotg->hw_params.op_mode != GHWCFG2_OP_MODE_HNP_SRP_CAPABLE) 2030 valid = 0; 2031 break; 2032 case DWC2_CAP_PARAM_SRP_ONLY_CAPABLE: 2033 switch (hsotg->hw_params.op_mode) { 2034 case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE: 2035 case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE: 2036 case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE: 2037 case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST: 2038 break; 2039 default: 2040 valid = 0; 2041 break; 2042 } 2043 break; 2044 case DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE: 2045 /* always valid */ 2046 break; 2047 default: 2048 valid = 0; 2049 break; 2050 } 2051 2052 if (!valid) { 2053 if (val >= 0) 2054 dev_err(hsotg->dev, 2055 "%d invalid for otg_cap parameter. Check HW configuration.\n", 2056 val); 2057 switch (hsotg->hw_params.op_mode) { 2058 case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE: 2059 val = DWC2_CAP_PARAM_HNP_SRP_CAPABLE; 2060 break; 2061 case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE: 2062 case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE: 2063 case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST: 2064 val = DWC2_CAP_PARAM_SRP_ONLY_CAPABLE; 2065 break; 2066 default: 2067 val = DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE; 2068 break; 2069 } 2070 dev_dbg(hsotg->dev, "Setting otg_cap to %d\n", val); 2071 } 2072 2073 hsotg->core_params->otg_cap = val; 2074} 2075 2076void dwc2_set_param_dma_enable(struct dwc2_hsotg *hsotg, int val) 2077{ 2078 int valid = 1; 2079 2080 if (val > 0 && hsotg->hw_params.arch == GHWCFG2_SLAVE_ONLY_ARCH) 2081 valid = 0; 2082 if (val < 0) 2083 valid = 0; 2084 2085 if (!valid) { 2086 if (val >= 0) 2087 dev_err(hsotg->dev, 2088 "%d invalid for dma_enable parameter. Check HW configuration.\n", 2089 val); 2090 val = hsotg->hw_params.arch != GHWCFG2_SLAVE_ONLY_ARCH; 2091 dev_dbg(hsotg->dev, "Setting dma_enable to %d\n", val); 2092 } 2093 2094 hsotg->core_params->dma_enable = val; 2095} 2096 2097void dwc2_set_param_dma_desc_enable(struct dwc2_hsotg *hsotg, int val) 2098{ 2099 int valid = 1; 2100 2101 if (val > 0 && (hsotg->core_params->dma_enable <= 0 || 2102 !hsotg->hw_params.dma_desc_enable)) 2103 valid = 0; 2104 if (val < 0) 2105 valid = 0; 2106 2107 if (!valid) { 2108 if (val >= 0) 2109 dev_err(hsotg->dev, 2110 "%d invalid for dma_desc_enable parameter. Check HW configuration.\n", 2111 val); 2112 val = (hsotg->core_params->dma_enable > 0 && 2113 hsotg->hw_params.dma_desc_enable); 2114 dev_dbg(hsotg->dev, "Setting dma_desc_enable to %d\n", val); 2115 } 2116 2117 hsotg->core_params->dma_desc_enable = val; 2118} 2119 2120void dwc2_set_param_host_support_fs_ls_low_power(struct dwc2_hsotg *hsotg, 2121 int val) 2122{ 2123 if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) { 2124 if (val >= 0) { 2125 dev_err(hsotg->dev, 2126 "Wrong value for host_support_fs_low_power\n"); 2127 dev_err(hsotg->dev, 2128 "host_support_fs_low_power must be 0 or 1\n"); 2129 } 2130 val = 0; 2131 dev_dbg(hsotg->dev, 2132 "Setting host_support_fs_low_power to %d\n", val); 2133 } 2134 2135 hsotg->core_params->host_support_fs_ls_low_power = val; 2136} 2137 2138void dwc2_set_param_enable_dynamic_fifo(struct dwc2_hsotg *hsotg, int val) 2139{ 2140 int valid = 1; 2141 2142 if (val > 0 && !hsotg->hw_params.enable_dynamic_fifo) 2143 valid = 0; 2144 if (val < 0) 2145 valid = 0; 2146 2147 if (!valid) { 2148 if (val >= 0) 2149 dev_err(hsotg->dev, 2150 "%d invalid for enable_dynamic_fifo parameter. Check HW configuration.\n", 2151 val); 2152 val = hsotg->hw_params.enable_dynamic_fifo; 2153 dev_dbg(hsotg->dev, "Setting enable_dynamic_fifo to %d\n", val); 2154 } 2155 2156 hsotg->core_params->enable_dynamic_fifo = val; 2157} 2158 2159void dwc2_set_param_host_rx_fifo_size(struct dwc2_hsotg *hsotg, int val) 2160{ 2161 int valid = 1; 2162 2163 if (val < 16 || val > hsotg->hw_params.host_rx_fifo_size) 2164 valid = 0; 2165 2166 if (!valid) { 2167 if (val >= 0) 2168 dev_err(hsotg->dev, 2169 "%d invalid for host_rx_fifo_size. Check HW configuration.\n", 2170 val); 2171 val = hsotg->hw_params.host_rx_fifo_size; 2172 dev_dbg(hsotg->dev, "Setting host_rx_fifo_size to %d\n", val); 2173 } 2174 2175 hsotg->core_params->host_rx_fifo_size = val; 2176} 2177 2178void dwc2_set_param_host_nperio_tx_fifo_size(struct dwc2_hsotg *hsotg, int val) 2179{ 2180 int valid = 1; 2181 2182 if (val < 16 || val > hsotg->hw_params.host_nperio_tx_fifo_size) 2183 valid = 0; 2184 2185 if (!valid) { 2186 if (val >= 0) 2187 dev_err(hsotg->dev, 2188 "%d invalid for host_nperio_tx_fifo_size. Check HW configuration.\n", 2189 val); 2190 val = hsotg->hw_params.host_nperio_tx_fifo_size; 2191 dev_dbg(hsotg->dev, "Setting host_nperio_tx_fifo_size to %d\n", 2192 val); 2193 } 2194 2195 hsotg->core_params->host_nperio_tx_fifo_size = val; 2196} 2197 2198void dwc2_set_param_host_perio_tx_fifo_size(struct dwc2_hsotg *hsotg, int val) 2199{ 2200 int valid = 1; 2201 2202 if (val < 16 || val > hsotg->hw_params.host_perio_tx_fifo_size) 2203 valid = 0; 2204 2205 if (!valid) { 2206 if (val >= 0) 2207 dev_err(hsotg->dev, 2208 "%d invalid for host_perio_tx_fifo_size. Check HW configuration.\n", 2209 val); 2210 val = hsotg->hw_params.host_perio_tx_fifo_size; 2211 dev_dbg(hsotg->dev, "Setting host_perio_tx_fifo_size to %d\n", 2212 val); 2213 } 2214 2215 hsotg->core_params->host_perio_tx_fifo_size = val; 2216} 2217 2218void dwc2_set_param_max_transfer_size(struct dwc2_hsotg *hsotg, int val) 2219{ 2220 int valid = 1; 2221 2222 if (val < 2047 || val > hsotg->hw_params.max_transfer_size) 2223 valid = 0; 2224 2225 if (!valid) { 2226 if (val >= 0) 2227 dev_err(hsotg->dev, 2228 "%d invalid for max_transfer_size. Check HW configuration.\n", 2229 val); 2230 val = hsotg->hw_params.max_transfer_size; 2231 dev_dbg(hsotg->dev, "Setting max_transfer_size to %d\n", val); 2232 } 2233 2234 hsotg->core_params->max_transfer_size = val; 2235} 2236 2237void dwc2_set_param_max_packet_count(struct dwc2_hsotg *hsotg, int val) 2238{ 2239 int valid = 1; 2240 2241 if (val < 15 || val > hsotg->hw_params.max_packet_count) 2242 valid = 0; 2243 2244 if (!valid) { 2245 if (val >= 0) 2246 dev_err(hsotg->dev, 2247 "%d invalid for max_packet_count. Check HW configuration.\n", 2248 val); 2249 val = hsotg->hw_params.max_packet_count; 2250 dev_dbg(hsotg->dev, "Setting max_packet_count to %d\n", val); 2251 } 2252 2253 hsotg->core_params->max_packet_count = val; 2254} 2255 2256void dwc2_set_param_host_channels(struct dwc2_hsotg *hsotg, int val) 2257{ 2258 int valid = 1; 2259 2260 if (val < 1 || val > hsotg->hw_params.host_channels) 2261 valid = 0; 2262 2263 if (!valid) { 2264 if (val >= 0) 2265 dev_err(hsotg->dev, 2266 "%d invalid for host_channels. Check HW configuration.\n", 2267 val); 2268 val = hsotg->hw_params.host_channels; 2269 dev_dbg(hsotg->dev, "Setting host_channels to %d\n", val); 2270 } 2271 2272 hsotg->core_params->host_channels = val; 2273} 2274 2275void dwc2_set_param_phy_type(struct dwc2_hsotg *hsotg, int val) 2276{ 2277 int valid = 0; 2278 u32 hs_phy_type, fs_phy_type; 2279 2280 if (DWC2_OUT_OF_BOUNDS(val, DWC2_PHY_TYPE_PARAM_FS, 2281 DWC2_PHY_TYPE_PARAM_ULPI)) { 2282 if (val >= 0) { 2283 dev_err(hsotg->dev, "Wrong value for phy_type\n"); 2284 dev_err(hsotg->dev, "phy_type must be 0, 1 or 2\n"); 2285 } 2286 2287 valid = 0; 2288 } 2289 2290 hs_phy_type = hsotg->hw_params.hs_phy_type; 2291 fs_phy_type = hsotg->hw_params.fs_phy_type; 2292 if (val == DWC2_PHY_TYPE_PARAM_UTMI && 2293 (hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI || 2294 hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI_ULPI)) 2295 valid = 1; 2296 else if (val == DWC2_PHY_TYPE_PARAM_ULPI && 2297 (hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI || 2298 hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI_ULPI)) 2299 valid = 1; 2300 else if (val == DWC2_PHY_TYPE_PARAM_FS && 2301 fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) 2302 valid = 1; 2303 2304 if (!valid) { 2305 if (val >= 0) 2306 dev_err(hsotg->dev, 2307 "%d invalid for phy_type. Check HW configuration.\n", 2308 val); 2309 val = DWC2_PHY_TYPE_PARAM_FS; 2310 if (hs_phy_type != GHWCFG2_HS_PHY_TYPE_NOT_SUPPORTED) { 2311 if (hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI || 2312 hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI_ULPI) 2313 val = DWC2_PHY_TYPE_PARAM_UTMI; 2314 else 2315 val = DWC2_PHY_TYPE_PARAM_ULPI; 2316 } 2317 dev_dbg(hsotg->dev, "Setting phy_type to %d\n", val); 2318 } 2319 2320 hsotg->core_params->phy_type = val; 2321} 2322 2323static int dwc2_get_param_phy_type(struct dwc2_hsotg *hsotg) 2324{ 2325 return hsotg->core_params->phy_type; 2326} 2327 2328void dwc2_set_param_speed(struct dwc2_hsotg *hsotg, int val) 2329{ 2330 int valid = 1; 2331 2332 if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) { 2333 if (val >= 0) { 2334 dev_err(hsotg->dev, "Wrong value for speed parameter\n"); 2335 dev_err(hsotg->dev, "max_speed parameter must be 0 or 1\n"); 2336 } 2337 valid = 0; 2338 } 2339 2340 if (val == DWC2_SPEED_PARAM_HIGH && 2341 dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS) 2342 valid = 0; 2343 2344 if (!valid) { 2345 if (val >= 0) 2346 dev_err(hsotg->dev, 2347 "%d invalid for speed parameter. Check HW configuration.\n", 2348 val); 2349 val = dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS ? 2350 DWC2_SPEED_PARAM_FULL : DWC2_SPEED_PARAM_HIGH; 2351 dev_dbg(hsotg->dev, "Setting speed to %d\n", val); 2352 } 2353 2354 hsotg->core_params->speed = val; 2355} 2356 2357void dwc2_set_param_host_ls_low_power_phy_clk(struct dwc2_hsotg *hsotg, int val) 2358{ 2359 int valid = 1; 2360 2361 if (DWC2_OUT_OF_BOUNDS(val, DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ, 2362 DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ)) { 2363 if (val >= 0) { 2364 dev_err(hsotg->dev, 2365 "Wrong value for host_ls_low_power_phy_clk parameter\n"); 2366 dev_err(hsotg->dev, 2367 "host_ls_low_power_phy_clk must be 0 or 1\n"); 2368 } 2369 valid = 0; 2370 } 2371 2372 if (val == DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ && 2373 dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS) 2374 valid = 0; 2375 2376 if (!valid) { 2377 if (val >= 0) 2378 dev_err(hsotg->dev, 2379 "%d invalid for host_ls_low_power_phy_clk. Check HW configuration.\n", 2380 val); 2381 val = dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS 2382 ? DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ 2383 : DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ; 2384 dev_dbg(hsotg->dev, "Setting host_ls_low_power_phy_clk to %d\n", 2385 val); 2386 } 2387 2388 hsotg->core_params->host_ls_low_power_phy_clk = val; 2389} 2390 2391void dwc2_set_param_phy_ulpi_ddr(struct dwc2_hsotg *hsotg, int val) 2392{ 2393 if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) { 2394 if (val >= 0) { 2395 dev_err(hsotg->dev, "Wrong value for phy_ulpi_ddr\n"); 2396 dev_err(hsotg->dev, "phy_upli_ddr must be 0 or 1\n"); 2397 } 2398 val = 0; 2399 dev_dbg(hsotg->dev, "Setting phy_upli_ddr to %d\n", val); 2400 } 2401 2402 hsotg->core_params->phy_ulpi_ddr = val; 2403} 2404 2405void dwc2_set_param_phy_ulpi_ext_vbus(struct dwc2_hsotg *hsotg, int val) 2406{ 2407 if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) { 2408 if (val >= 0) { 2409 dev_err(hsotg->dev, 2410 "Wrong value for phy_ulpi_ext_vbus\n"); 2411 dev_err(hsotg->dev, 2412 "phy_ulpi_ext_vbus must be 0 or 1\n"); 2413 } 2414 val = 0; 2415 dev_dbg(hsotg->dev, "Setting phy_ulpi_ext_vbus to %d\n", val); 2416 } 2417 2418 hsotg->core_params->phy_ulpi_ext_vbus = val; 2419} 2420 2421void dwc2_set_param_phy_utmi_width(struct dwc2_hsotg *hsotg, int val) 2422{ 2423 int valid = 0; 2424 2425 switch (hsotg->hw_params.utmi_phy_data_width) { 2426 case GHWCFG4_UTMI_PHY_DATA_WIDTH_8: 2427 valid = (val == 8); 2428 break; 2429 case GHWCFG4_UTMI_PHY_DATA_WIDTH_16: 2430 valid = (val == 16); 2431 break; 2432 case GHWCFG4_UTMI_PHY_DATA_WIDTH_8_OR_16: 2433 valid = (val == 8 || val == 16); 2434 break; 2435 } 2436 2437 if (!valid) { 2438 if (val >= 0) { 2439 dev_err(hsotg->dev, 2440 "%d invalid for phy_utmi_width. Check HW configuration.\n", 2441 val); 2442 } 2443 val = (hsotg->hw_params.utmi_phy_data_width == 2444 GHWCFG4_UTMI_PHY_DATA_WIDTH_8) ? 8 : 16; 2445 dev_dbg(hsotg->dev, "Setting phy_utmi_width to %d\n", val); 2446 } 2447 2448 hsotg->core_params->phy_utmi_width = val; 2449} 2450 2451void dwc2_set_param_ulpi_fs_ls(struct dwc2_hsotg *hsotg, int val) 2452{ 2453 if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) { 2454 if (val >= 0) { 2455 dev_err(hsotg->dev, "Wrong value for ulpi_fs_ls\n"); 2456 dev_err(hsotg->dev, "ulpi_fs_ls must be 0 or 1\n"); 2457 } 2458 val = 0; 2459 dev_dbg(hsotg->dev, "Setting ulpi_fs_ls to %d\n", val); 2460 } 2461 2462 hsotg->core_params->ulpi_fs_ls = val; 2463} 2464 2465void dwc2_set_param_ts_dline(struct dwc2_hsotg *hsotg, int val) 2466{ 2467 if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) { 2468 if (val >= 0) { 2469 dev_err(hsotg->dev, "Wrong value for ts_dline\n"); 2470 dev_err(hsotg->dev, "ts_dline must be 0 or 1\n"); 2471 } 2472 val = 0; 2473 dev_dbg(hsotg->dev, "Setting ts_dline to %d\n", val); 2474 } 2475 2476 hsotg->core_params->ts_dline = val; 2477} 2478 2479void dwc2_set_param_i2c_enable(struct dwc2_hsotg *hsotg, int val) 2480{ 2481 int valid = 1; 2482 2483 if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) { 2484 if (val >= 0) { 2485 dev_err(hsotg->dev, "Wrong value for i2c_enable\n"); 2486 dev_err(hsotg->dev, "i2c_enable must be 0 or 1\n"); 2487 } 2488 2489 valid = 0; 2490 } 2491 2492 if (val == 1 && !(hsotg->hw_params.i2c_enable)) 2493 valid = 0; 2494 2495 if (!valid) { 2496 if (val >= 0) 2497 dev_err(hsotg->dev, 2498 "%d invalid for i2c_enable. Check HW configuration.\n", 2499 val); 2500 val = hsotg->hw_params.i2c_enable; 2501 dev_dbg(hsotg->dev, "Setting i2c_enable to %d\n", val); 2502 } 2503 2504 hsotg->core_params->i2c_enable = val; 2505} 2506 2507void dwc2_set_param_en_multiple_tx_fifo(struct dwc2_hsotg *hsotg, int val) 2508{ 2509 int valid = 1; 2510 2511 if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) { 2512 if (val >= 0) { 2513 dev_err(hsotg->dev, 2514 "Wrong value for en_multiple_tx_fifo,\n"); 2515 dev_err(hsotg->dev, 2516 "en_multiple_tx_fifo must be 0 or 1\n"); 2517 } 2518 valid = 0; 2519 } 2520 2521 if (val == 1 && !hsotg->hw_params.en_multiple_tx_fifo) 2522 valid = 0; 2523 2524 if (!valid) { 2525 if (val >= 0) 2526 dev_err(hsotg->dev, 2527 "%d invalid for parameter en_multiple_tx_fifo. Check HW configuration.\n", 2528 val); 2529 val = hsotg->hw_params.en_multiple_tx_fifo; 2530 dev_dbg(hsotg->dev, "Setting en_multiple_tx_fifo to %d\n", val); 2531 } 2532 2533 hsotg->core_params->en_multiple_tx_fifo = val; 2534} 2535 2536void dwc2_set_param_reload_ctl(struct dwc2_hsotg *hsotg, int val) 2537{ 2538 int valid = 1; 2539 2540 if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) { 2541 if (val >= 0) { 2542 dev_err(hsotg->dev, 2543 "'%d' invalid for parameter reload_ctl\n", val); 2544 dev_err(hsotg->dev, "reload_ctl must be 0 or 1\n"); 2545 } 2546 valid = 0; 2547 } 2548 2549 if (val == 1 && hsotg->hw_params.snpsid < DWC2_CORE_REV_2_92a) 2550 valid = 0; 2551 2552 if (!valid) { 2553 if (val >= 0) 2554 dev_err(hsotg->dev, 2555 "%d invalid for parameter reload_ctl. Check HW configuration.\n", 2556 val); 2557 val = hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_92a; 2558 dev_dbg(hsotg->dev, "Setting reload_ctl to %d\n", val); 2559 } 2560 2561 hsotg->core_params->reload_ctl = val; 2562} 2563 2564void dwc2_set_param_ahbcfg(struct dwc2_hsotg *hsotg, int val) 2565{ 2566 if (val != -1) 2567 hsotg->core_params->ahbcfg = val; 2568 else 2569 hsotg->core_params->ahbcfg = GAHBCFG_HBSTLEN_INCR4 << 2570 GAHBCFG_HBSTLEN_SHIFT; 2571} 2572 2573void dwc2_set_param_otg_ver(struct dwc2_hsotg *hsotg, int val) 2574{ 2575 if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) { 2576 if (val >= 0) { 2577 dev_err(hsotg->dev, 2578 "'%d' invalid for parameter otg_ver\n", val); 2579 dev_err(hsotg->dev, 2580 "otg_ver must be 0 (for OTG 1.3 support) or 1 (for OTG 2.0 support)\n"); 2581 } 2582 val = 0; 2583 dev_dbg(hsotg->dev, "Setting otg_ver to %d\n", val); 2584 } 2585 2586 hsotg->core_params->otg_ver = val; 2587} 2588 2589static void dwc2_set_param_uframe_sched(struct dwc2_hsotg *hsotg, int val) 2590{ 2591 if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) { 2592 if (val >= 0) { 2593 dev_err(hsotg->dev, 2594 "'%d' invalid for parameter uframe_sched\n", 2595 val); 2596 dev_err(hsotg->dev, "uframe_sched must be 0 or 1\n"); 2597 } 2598 val = 1; 2599 dev_dbg(hsotg->dev, "Setting uframe_sched to %d\n", val); 2600 } 2601 2602 hsotg->core_params->uframe_sched = val; 2603} 2604 2605/* 2606 * This function is called during module intialization to pass module parameters 2607 * for the DWC_otg core. 2608 */ 2609void dwc2_set_parameters(struct dwc2_hsotg *hsotg, 2610 const struct dwc2_core_params *params) 2611{ 2612 dev_dbg(hsotg->dev, "%s()\n", __func__); 2613 2614 dwc2_set_param_otg_cap(hsotg, params->otg_cap); 2615 dwc2_set_param_dma_enable(hsotg, params->dma_enable); 2616 dwc2_set_param_dma_desc_enable(hsotg, params->dma_desc_enable); 2617 dwc2_set_param_host_support_fs_ls_low_power(hsotg, 2618 params->host_support_fs_ls_low_power); 2619 dwc2_set_param_enable_dynamic_fifo(hsotg, 2620 params->enable_dynamic_fifo); 2621 dwc2_set_param_host_rx_fifo_size(hsotg, 2622 params->host_rx_fifo_size); 2623 dwc2_set_param_host_nperio_tx_fifo_size(hsotg, 2624 params->host_nperio_tx_fifo_size); 2625 dwc2_set_param_host_perio_tx_fifo_size(hsotg, 2626 params->host_perio_tx_fifo_size); 2627 dwc2_set_param_max_transfer_size(hsotg, 2628 params->max_transfer_size); 2629 dwc2_set_param_max_packet_count(hsotg, 2630 params->max_packet_count); 2631 dwc2_set_param_host_channels(hsotg, params->host_channels); 2632 dwc2_set_param_phy_type(hsotg, params->phy_type); 2633 dwc2_set_param_speed(hsotg, params->speed); 2634 dwc2_set_param_host_ls_low_power_phy_clk(hsotg, 2635 params->host_ls_low_power_phy_clk); 2636 dwc2_set_param_phy_ulpi_ddr(hsotg, params->phy_ulpi_ddr); 2637 dwc2_set_param_phy_ulpi_ext_vbus(hsotg, 2638 params->phy_ulpi_ext_vbus); 2639 dwc2_set_param_phy_utmi_width(hsotg, params->phy_utmi_width); 2640 dwc2_set_param_ulpi_fs_ls(hsotg, params->ulpi_fs_ls); 2641 dwc2_set_param_ts_dline(hsotg, params->ts_dline); 2642 dwc2_set_param_i2c_enable(hsotg, params->i2c_enable); 2643 dwc2_set_param_en_multiple_tx_fifo(hsotg, 2644 params->en_multiple_tx_fifo); 2645 dwc2_set_param_reload_ctl(hsotg, params->reload_ctl); 2646 dwc2_set_param_ahbcfg(hsotg, params->ahbcfg); 2647 dwc2_set_param_otg_ver(hsotg, params->otg_ver); 2648 dwc2_set_param_uframe_sched(hsotg, params->uframe_sched); 2649} 2650 2651/** 2652 * During device initialization, read various hardware configuration 2653 * registers and interpret the contents. 2654 */ 2655int dwc2_get_hwparams(struct dwc2_hsotg *hsotg) 2656{ 2657 struct dwc2_hw_params *hw = &hsotg->hw_params; 2658 unsigned width; 2659 u32 hwcfg1, hwcfg2, hwcfg3, hwcfg4; 2660 u32 hptxfsiz, grxfsiz, gnptxfsiz; 2661 u32 gusbcfg; 2662 2663 /* 2664 * Attempt to ensure this device is really a DWC_otg Controller. 2665 * Read and verify the GSNPSID register contents. The value should be 2666 * 0x45f42xxx or 0x45f43xxx, which corresponds to either "OT2" or "OT3", 2667 * as in "OTG version 2.xx" or "OTG version 3.xx". 2668 */ 2669 hw->snpsid = readl(hsotg->regs + GSNPSID); 2670 if ((hw->snpsid & 0xfffff000) != 0x4f542000 && 2671 (hw->snpsid & 0xfffff000) != 0x4f543000) { 2672 dev_err(hsotg->dev, "Bad value for GSNPSID: 0x%08x\n", 2673 hw->snpsid); 2674 return -ENODEV; 2675 } 2676 2677 dev_dbg(hsotg->dev, "Core Release: %1x.%1x%1x%1x (snpsid=%x)\n", 2678 hw->snpsid >> 12 & 0xf, hw->snpsid >> 8 & 0xf, 2679 hw->snpsid >> 4 & 0xf, hw->snpsid & 0xf, hw->snpsid); 2680 2681 hwcfg1 = readl(hsotg->regs + GHWCFG1); 2682 hwcfg2 = readl(hsotg->regs + GHWCFG2); 2683 hwcfg3 = readl(hsotg->regs + GHWCFG3); 2684 hwcfg4 = readl(hsotg->regs + GHWCFG4); 2685 grxfsiz = readl(hsotg->regs + GRXFSIZ); 2686 2687 dev_dbg(hsotg->dev, "hwcfg1=%08x\n", hwcfg1); 2688 dev_dbg(hsotg->dev, "hwcfg2=%08x\n", hwcfg2); 2689 dev_dbg(hsotg->dev, "hwcfg3=%08x\n", hwcfg3); 2690 dev_dbg(hsotg->dev, "hwcfg4=%08x\n", hwcfg4); 2691 dev_dbg(hsotg->dev, "grxfsiz=%08x\n", grxfsiz); 2692 2693 /* Force host mode to get HPTXFSIZ / GNPTXFSIZ exact power on value */ 2694 gusbcfg = readl(hsotg->regs + GUSBCFG); 2695 gusbcfg |= GUSBCFG_FORCEHOSTMODE; 2696 writel(gusbcfg, hsotg->regs + GUSBCFG); 2697 usleep_range(100000, 150000); 2698 2699 gnptxfsiz = readl(hsotg->regs + GNPTXFSIZ); 2700 hptxfsiz = readl(hsotg->regs + HPTXFSIZ); 2701 dev_dbg(hsotg->dev, "gnptxfsiz=%08x\n", gnptxfsiz); 2702 dev_dbg(hsotg->dev, "hptxfsiz=%08x\n", hptxfsiz); 2703 gusbcfg = readl(hsotg->regs + GUSBCFG); 2704 gusbcfg &= ~GUSBCFG_FORCEHOSTMODE; 2705 writel(gusbcfg, hsotg->regs + GUSBCFG); 2706 usleep_range(100000, 150000); 2707 2708 /* hwcfg2 */ 2709 hw->op_mode = (hwcfg2 & GHWCFG2_OP_MODE_MASK) >> 2710 GHWCFG2_OP_MODE_SHIFT; 2711 hw->arch = (hwcfg2 & GHWCFG2_ARCHITECTURE_MASK) >> 2712 GHWCFG2_ARCHITECTURE_SHIFT; 2713 hw->enable_dynamic_fifo = !!(hwcfg2 & GHWCFG2_DYNAMIC_FIFO); 2714 hw->host_channels = 1 + ((hwcfg2 & GHWCFG2_NUM_HOST_CHAN_MASK) >> 2715 GHWCFG2_NUM_HOST_CHAN_SHIFT); 2716 hw->hs_phy_type = (hwcfg2 & GHWCFG2_HS_PHY_TYPE_MASK) >> 2717 GHWCFG2_HS_PHY_TYPE_SHIFT; 2718 hw->fs_phy_type = (hwcfg2 & GHWCFG2_FS_PHY_TYPE_MASK) >> 2719 GHWCFG2_FS_PHY_TYPE_SHIFT; 2720 hw->num_dev_ep = (hwcfg2 & GHWCFG2_NUM_DEV_EP_MASK) >> 2721 GHWCFG2_NUM_DEV_EP_SHIFT; 2722 hw->nperio_tx_q_depth = 2723 (hwcfg2 & GHWCFG2_NONPERIO_TX_Q_DEPTH_MASK) >> 2724 GHWCFG2_NONPERIO_TX_Q_DEPTH_SHIFT << 1; 2725 hw->host_perio_tx_q_depth = 2726 (hwcfg2 & GHWCFG2_HOST_PERIO_TX_Q_DEPTH_MASK) >> 2727 GHWCFG2_HOST_PERIO_TX_Q_DEPTH_SHIFT << 1; 2728 hw->dev_token_q_depth = 2729 (hwcfg2 & GHWCFG2_DEV_TOKEN_Q_DEPTH_MASK) >> 2730 GHWCFG2_DEV_TOKEN_Q_DEPTH_SHIFT; 2731 2732 /* hwcfg3 */ 2733 width = (hwcfg3 & GHWCFG3_XFER_SIZE_CNTR_WIDTH_MASK) >> 2734 GHWCFG3_XFER_SIZE_CNTR_WIDTH_SHIFT; 2735 hw->max_transfer_size = (1 << (width + 11)) - 1; 2736 /* 2737 * Clip max_transfer_size to 65535. dwc2_hc_setup_align_buf() allocates 2738 * coherent buffers with this size, and if it's too large we can 2739 * exhaust the coherent DMA pool. 2740 */ 2741 if (hw->max_transfer_size > 65535) 2742 hw->max_transfer_size = 65535; 2743 width = (hwcfg3 & GHWCFG3_PACKET_SIZE_CNTR_WIDTH_MASK) >> 2744 GHWCFG3_PACKET_SIZE_CNTR_WIDTH_SHIFT; 2745 hw->max_packet_count = (1 << (width + 4)) - 1; 2746 hw->i2c_enable = !!(hwcfg3 & GHWCFG3_I2C); 2747 hw->total_fifo_size = (hwcfg3 & GHWCFG3_DFIFO_DEPTH_MASK) >> 2748 GHWCFG3_DFIFO_DEPTH_SHIFT; 2749 2750 /* hwcfg4 */ 2751 hw->en_multiple_tx_fifo = !!(hwcfg4 & GHWCFG4_DED_FIFO_EN); 2752 hw->num_dev_perio_in_ep = (hwcfg4 & GHWCFG4_NUM_DEV_PERIO_IN_EP_MASK) >> 2753 GHWCFG4_NUM_DEV_PERIO_IN_EP_SHIFT; 2754 hw->dma_desc_enable = !!(hwcfg4 & GHWCFG4_DESC_DMA); 2755 hw->power_optimized = !!(hwcfg4 & GHWCFG4_POWER_OPTIMIZ); 2756 hw->utmi_phy_data_width = (hwcfg4 & GHWCFG4_UTMI_PHY_DATA_WIDTH_MASK) >> 2757 GHWCFG4_UTMI_PHY_DATA_WIDTH_SHIFT; 2758 2759 /* fifo sizes */ 2760 hw->host_rx_fifo_size = (grxfsiz & GRXFSIZ_DEPTH_MASK) >> 2761 GRXFSIZ_DEPTH_SHIFT; 2762 hw->host_nperio_tx_fifo_size = (gnptxfsiz & FIFOSIZE_DEPTH_MASK) >> 2763 FIFOSIZE_DEPTH_SHIFT; 2764 hw->host_perio_tx_fifo_size = (hptxfsiz & FIFOSIZE_DEPTH_MASK) >> 2765 FIFOSIZE_DEPTH_SHIFT; 2766 2767 dev_dbg(hsotg->dev, "Detected values from hardware:\n"); 2768 dev_dbg(hsotg->dev, " op_mode=%d\n", 2769 hw->op_mode); 2770 dev_dbg(hsotg->dev, " arch=%d\n", 2771 hw->arch); 2772 dev_dbg(hsotg->dev, " dma_desc_enable=%d\n", 2773 hw->dma_desc_enable); 2774 dev_dbg(hsotg->dev, " power_optimized=%d\n", 2775 hw->power_optimized); 2776 dev_dbg(hsotg->dev, " i2c_enable=%d\n", 2777 hw->i2c_enable); 2778 dev_dbg(hsotg->dev, " hs_phy_type=%d\n", 2779 hw->hs_phy_type); 2780 dev_dbg(hsotg->dev, " fs_phy_type=%d\n", 2781 hw->fs_phy_type); 2782 dev_dbg(hsotg->dev, " utmi_phy_data_wdith=%d\n", 2783 hw->utmi_phy_data_width); 2784 dev_dbg(hsotg->dev, " num_dev_ep=%d\n", 2785 hw->num_dev_ep); 2786 dev_dbg(hsotg->dev, " num_dev_perio_in_ep=%d\n", 2787 hw->num_dev_perio_in_ep); 2788 dev_dbg(hsotg->dev, " host_channels=%d\n", 2789 hw->host_channels); 2790 dev_dbg(hsotg->dev, " max_transfer_size=%d\n", 2791 hw->max_transfer_size); 2792 dev_dbg(hsotg->dev, " max_packet_count=%d\n", 2793 hw->max_packet_count); 2794 dev_dbg(hsotg->dev, " nperio_tx_q_depth=0x%0x\n", 2795 hw->nperio_tx_q_depth); 2796 dev_dbg(hsotg->dev, " host_perio_tx_q_depth=0x%0x\n", 2797 hw->host_perio_tx_q_depth); 2798 dev_dbg(hsotg->dev, " dev_token_q_depth=0x%0x\n", 2799 hw->dev_token_q_depth); 2800 dev_dbg(hsotg->dev, " enable_dynamic_fifo=%d\n", 2801 hw->enable_dynamic_fifo); 2802 dev_dbg(hsotg->dev, " en_multiple_tx_fifo=%d\n", 2803 hw->en_multiple_tx_fifo); 2804 dev_dbg(hsotg->dev, " total_fifo_size=%d\n", 2805 hw->total_fifo_size); 2806 dev_dbg(hsotg->dev, " host_rx_fifo_size=%d\n", 2807 hw->host_rx_fifo_size); 2808 dev_dbg(hsotg->dev, " host_nperio_tx_fifo_size=%d\n", 2809 hw->host_nperio_tx_fifo_size); 2810 dev_dbg(hsotg->dev, " host_perio_tx_fifo_size=%d\n", 2811 hw->host_perio_tx_fifo_size); 2812 dev_dbg(hsotg->dev, "\n"); 2813 2814 return 0; 2815} 2816 2817u16 dwc2_get_otg_version(struct dwc2_hsotg *hsotg) 2818{ 2819 return hsotg->core_params->otg_ver == 1 ? 0x0200 : 0x0103; 2820} 2821 2822bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg) 2823{ 2824 if (readl(hsotg->regs + GSNPSID) == 0xffffffff) 2825 return false; 2826 else 2827 return true; 2828} 2829 2830/** 2831 * dwc2_enable_global_interrupts() - Enables the controller's Global 2832 * Interrupt in the AHB Config register 2833 * 2834 * @hsotg: Programming view of DWC_otg controller 2835 */ 2836void dwc2_enable_global_interrupts(struct dwc2_hsotg *hsotg) 2837{ 2838 u32 ahbcfg = readl(hsotg->regs + GAHBCFG); 2839 2840 ahbcfg |= GAHBCFG_GLBL_INTR_EN; 2841 writel(ahbcfg, hsotg->regs + GAHBCFG); 2842} 2843 2844/** 2845 * dwc2_disable_global_interrupts() - Disables the controller's Global 2846 * Interrupt in the AHB Config register 2847 * 2848 * @hsotg: Programming view of DWC_otg controller 2849 */ 2850void dwc2_disable_global_interrupts(struct dwc2_hsotg *hsotg) 2851{ 2852 u32 ahbcfg = readl(hsotg->regs + GAHBCFG); 2853 2854 ahbcfg &= ~GAHBCFG_GLBL_INTR_EN; 2855 writel(ahbcfg, hsotg->regs + GAHBCFG); 2856} 2857 2858MODULE_DESCRIPTION("DESIGNWARE HS OTG Core"); 2859MODULE_AUTHOR("Synopsys, Inc."); 2860MODULE_LICENSE("Dual BSD/GPL"); 2861