1/*
2 * (C) Copyright Linus Torvalds 1999
3 * (C) Copyright Johannes Erdfelt 1999-2001
4 * (C) Copyright Andreas Gal 1999
5 * (C) Copyright Gregory P. Smith 1999
6 * (C) Copyright Deti Fliegl 1999
7 * (C) Copyright Randy Dunlap 2000
8 * (C) Copyright David Brownell 2000-2002
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18 * for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25#include <linux/bcd.h>
26#include <linux/module.h>
27#include <linux/version.h>
28#include <linux/kernel.h>
29#include <linux/slab.h>
30#include <linux/completion.h>
31#include <linux/utsname.h>
32#include <linux/mm.h>
33#include <asm/io.h>
34#include <linux/device.h>
35#include <linux/dma-mapping.h>
36#include <linux/mutex.h>
37#include <asm/irq.h>
38#include <asm/byteorder.h>
39#include <asm/unaligned.h>
40#include <linux/platform_device.h>
41#include <linux/workqueue.h>
42#include <linux/pm_runtime.h>
43#include <linux/types.h>
44
45#include <linux/phy/phy.h>
46#include <linux/usb.h>
47#include <linux/usb/hcd.h>
48#include <linux/usb/phy.h>
49
50#include "usb.h"
51
52
53/*-------------------------------------------------------------------------*/
54
55/*
56 * USB Host Controller Driver framework
57 *
58 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
59 * HCD-specific behaviors/bugs.
60 *
61 * This does error checks, tracks devices and urbs, and delegates to a
62 * "hc_driver" only for code (and data) that really needs to know about
63 * hardware differences.  That includes root hub registers, i/o queues,
64 * and so on ... but as little else as possible.
65 *
66 * Shared code includes most of the "root hub" code (these are emulated,
67 * though each HC's hardware works differently) and PCI glue, plus request
68 * tracking overhead.  The HCD code should only block on spinlocks or on
69 * hardware handshaking; blocking on software events (such as other kernel
70 * threads releasing resources, or completing actions) is all generic.
71 *
72 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
73 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
74 * only by the hub driver ... and that neither should be seen or used by
75 * usb client device drivers.
76 *
77 * Contributors of ideas or unattributed patches include: David Brownell,
78 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
79 *
80 * HISTORY:
81 * 2002-02-21	Pull in most of the usb_bus support from usb.c; some
82 *		associated cleanup.  "usb_hcd" still != "usb_bus".
83 * 2001-12-12	Initial patch version for Linux 2.5.1 kernel.
84 */
85
86/*-------------------------------------------------------------------------*/
87
88/* Keep track of which host controller drivers are loaded */
89unsigned long usb_hcds_loaded;
90EXPORT_SYMBOL_GPL(usb_hcds_loaded);
91
92/* host controllers we manage */
93LIST_HEAD (usb_bus_list);
94EXPORT_SYMBOL_GPL (usb_bus_list);
95
96/* used when allocating bus numbers */
97#define USB_MAXBUS		64
98static DECLARE_BITMAP(busmap, USB_MAXBUS);
99
100/* used when updating list of hcds */
101DEFINE_MUTEX(usb_bus_list_lock);	/* exported only for usbfs */
102EXPORT_SYMBOL_GPL (usb_bus_list_lock);
103
104/* used for controlling access to virtual root hubs */
105static DEFINE_SPINLOCK(hcd_root_hub_lock);
106
107/* used when updating an endpoint's URB list */
108static DEFINE_SPINLOCK(hcd_urb_list_lock);
109
110/* used to protect against unlinking URBs after the device is gone */
111static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
112
113/* wait queue for synchronous unlinks */
114DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
115
116static inline int is_root_hub(struct usb_device *udev)
117{
118	return (udev->parent == NULL);
119}
120
121/*-------------------------------------------------------------------------*/
122
123/*
124 * Sharable chunks of root hub code.
125 */
126
127/*-------------------------------------------------------------------------*/
128#define KERNEL_REL	bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
129#define KERNEL_VER	bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
130
131/* usb 3.0 root hub device descriptor */
132static const u8 usb3_rh_dev_descriptor[18] = {
133	0x12,       /*  __u8  bLength; */
134	0x01,       /*  __u8  bDescriptorType; Device */
135	0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
136
137	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
138	0x00,	    /*  __u8  bDeviceSubClass; */
139	0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
140	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
141
142	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
143	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
144	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
145
146	0x03,       /*  __u8  iManufacturer; */
147	0x02,       /*  __u8  iProduct; */
148	0x01,       /*  __u8  iSerialNumber; */
149	0x01        /*  __u8  bNumConfigurations; */
150};
151
152/* usb 2.5 (wireless USB 1.0) root hub device descriptor */
153static const u8 usb25_rh_dev_descriptor[18] = {
154	0x12,       /*  __u8  bLength; */
155	0x01,       /*  __u8  bDescriptorType; Device */
156	0x50, 0x02, /*  __le16 bcdUSB; v2.5 */
157
158	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
159	0x00,	    /*  __u8  bDeviceSubClass; */
160	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
161	0xFF,       /*  __u8  bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
162
163	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
164	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
165	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
166
167	0x03,       /*  __u8  iManufacturer; */
168	0x02,       /*  __u8  iProduct; */
169	0x01,       /*  __u8  iSerialNumber; */
170	0x01        /*  __u8  bNumConfigurations; */
171};
172
173/* usb 2.0 root hub device descriptor */
174static const u8 usb2_rh_dev_descriptor[18] = {
175	0x12,       /*  __u8  bLength; */
176	0x01,       /*  __u8  bDescriptorType; Device */
177	0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
178
179	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
180	0x00,	    /*  __u8  bDeviceSubClass; */
181	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
182	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
183
184	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
185	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
186	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
187
188	0x03,       /*  __u8  iManufacturer; */
189	0x02,       /*  __u8  iProduct; */
190	0x01,       /*  __u8  iSerialNumber; */
191	0x01        /*  __u8  bNumConfigurations; */
192};
193
194/* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
195
196/* usb 1.1 root hub device descriptor */
197static const u8 usb11_rh_dev_descriptor[18] = {
198	0x12,       /*  __u8  bLength; */
199	0x01,       /*  __u8  bDescriptorType; Device */
200	0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
201
202	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
203	0x00,	    /*  __u8  bDeviceSubClass; */
204	0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
205	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
206
207	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
208	0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
209	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
210
211	0x03,       /*  __u8  iManufacturer; */
212	0x02,       /*  __u8  iProduct; */
213	0x01,       /*  __u8  iSerialNumber; */
214	0x01        /*  __u8  bNumConfigurations; */
215};
216
217
218/*-------------------------------------------------------------------------*/
219
220/* Configuration descriptors for our root hubs */
221
222static const u8 fs_rh_config_descriptor[] = {
223
224	/* one configuration */
225	0x09,       /*  __u8  bLength; */
226	0x02,       /*  __u8  bDescriptorType; Configuration */
227	0x19, 0x00, /*  __le16 wTotalLength; */
228	0x01,       /*  __u8  bNumInterfaces; (1) */
229	0x01,       /*  __u8  bConfigurationValue; */
230	0x00,       /*  __u8  iConfiguration; */
231	0xc0,       /*  __u8  bmAttributes;
232				 Bit 7: must be set,
233				     6: Self-powered,
234				     5: Remote wakeup,
235				     4..0: resvd */
236	0x00,       /*  __u8  MaxPower; */
237
238	/* USB 1.1:
239	 * USB 2.0, single TT organization (mandatory):
240	 *	one interface, protocol 0
241	 *
242	 * USB 2.0, multiple TT organization (optional):
243	 *	two interfaces, protocols 1 (like single TT)
244	 *	and 2 (multiple TT mode) ... config is
245	 *	sometimes settable
246	 *	NOT IMPLEMENTED
247	 */
248
249	/* one interface */
250	0x09,       /*  __u8  if_bLength; */
251	0x04,       /*  __u8  if_bDescriptorType; Interface */
252	0x00,       /*  __u8  if_bInterfaceNumber; */
253	0x00,       /*  __u8  if_bAlternateSetting; */
254	0x01,       /*  __u8  if_bNumEndpoints; */
255	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
256	0x00,       /*  __u8  if_bInterfaceSubClass; */
257	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
258	0x00,       /*  __u8  if_iInterface; */
259
260	/* one endpoint (status change endpoint) */
261	0x07,       /*  __u8  ep_bLength; */
262	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
263	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
264	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
265	0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
266	0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
267};
268
269static const u8 hs_rh_config_descriptor[] = {
270
271	/* one configuration */
272	0x09,       /*  __u8  bLength; */
273	0x02,       /*  __u8  bDescriptorType; Configuration */
274	0x19, 0x00, /*  __le16 wTotalLength; */
275	0x01,       /*  __u8  bNumInterfaces; (1) */
276	0x01,       /*  __u8  bConfigurationValue; */
277	0x00,       /*  __u8  iConfiguration; */
278	0xc0,       /*  __u8  bmAttributes;
279				 Bit 7: must be set,
280				     6: Self-powered,
281				     5: Remote wakeup,
282				     4..0: resvd */
283	0x00,       /*  __u8  MaxPower; */
284
285	/* USB 1.1:
286	 * USB 2.0, single TT organization (mandatory):
287	 *	one interface, protocol 0
288	 *
289	 * USB 2.0, multiple TT organization (optional):
290	 *	two interfaces, protocols 1 (like single TT)
291	 *	and 2 (multiple TT mode) ... config is
292	 *	sometimes settable
293	 *	NOT IMPLEMENTED
294	 */
295
296	/* one interface */
297	0x09,       /*  __u8  if_bLength; */
298	0x04,       /*  __u8  if_bDescriptorType; Interface */
299	0x00,       /*  __u8  if_bInterfaceNumber; */
300	0x00,       /*  __u8  if_bAlternateSetting; */
301	0x01,       /*  __u8  if_bNumEndpoints; */
302	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
303	0x00,       /*  __u8  if_bInterfaceSubClass; */
304	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
305	0x00,       /*  __u8  if_iInterface; */
306
307	/* one endpoint (status change endpoint) */
308	0x07,       /*  __u8  ep_bLength; */
309	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
310	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
311	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
312		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
313		     * see hub.c:hub_configure() for details. */
314	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
315	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
316};
317
318static const u8 ss_rh_config_descriptor[] = {
319	/* one configuration */
320	0x09,       /*  __u8  bLength; */
321	0x02,       /*  __u8  bDescriptorType; Configuration */
322	0x1f, 0x00, /*  __le16 wTotalLength; */
323	0x01,       /*  __u8  bNumInterfaces; (1) */
324	0x01,       /*  __u8  bConfigurationValue; */
325	0x00,       /*  __u8  iConfiguration; */
326	0xc0,       /*  __u8  bmAttributes;
327				 Bit 7: must be set,
328				     6: Self-powered,
329				     5: Remote wakeup,
330				     4..0: resvd */
331	0x00,       /*  __u8  MaxPower; */
332
333	/* one interface */
334	0x09,       /*  __u8  if_bLength; */
335	0x04,       /*  __u8  if_bDescriptorType; Interface */
336	0x00,       /*  __u8  if_bInterfaceNumber; */
337	0x00,       /*  __u8  if_bAlternateSetting; */
338	0x01,       /*  __u8  if_bNumEndpoints; */
339	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
340	0x00,       /*  __u8  if_bInterfaceSubClass; */
341	0x00,       /*  __u8  if_bInterfaceProtocol; */
342	0x00,       /*  __u8  if_iInterface; */
343
344	/* one endpoint (status change endpoint) */
345	0x07,       /*  __u8  ep_bLength; */
346	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
347	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
348	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
349		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
350		     * see hub.c:hub_configure() for details. */
351	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
352	0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
353
354	/* one SuperSpeed endpoint companion descriptor */
355	0x06,        /* __u8 ss_bLength */
356	0x30,        /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */
357	0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
358	0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
359	0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
360};
361
362/* authorized_default behaviour:
363 * -1 is authorized for all devices except wireless (old behaviour)
364 * 0 is unauthorized for all devices
365 * 1 is authorized for all devices
366 */
367static int authorized_default = -1;
368module_param(authorized_default, int, S_IRUGO|S_IWUSR);
369MODULE_PARM_DESC(authorized_default,
370		"Default USB device authorization: 0 is not authorized, 1 is "
371		"authorized, -1 is authorized except for wireless USB (default, "
372		"old behaviour");
373/*-------------------------------------------------------------------------*/
374
375/**
376 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
377 * @s: Null-terminated ASCII (actually ISO-8859-1) string
378 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
379 * @len: Length (in bytes; may be odd) of descriptor buffer.
380 *
381 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
382 * whichever is less.
383 *
384 * Note:
385 * USB String descriptors can contain at most 126 characters; input
386 * strings longer than that are truncated.
387 */
388static unsigned
389ascii2desc(char const *s, u8 *buf, unsigned len)
390{
391	unsigned n, t = 2 + 2*strlen(s);
392
393	if (t > 254)
394		t = 254;	/* Longest possible UTF string descriptor */
395	if (len > t)
396		len = t;
397
398	t += USB_DT_STRING << 8;	/* Now t is first 16 bits to store */
399
400	n = len;
401	while (n--) {
402		*buf++ = t;
403		if (!n--)
404			break;
405		*buf++ = t >> 8;
406		t = (unsigned char)*s++;
407	}
408	return len;
409}
410
411/**
412 * rh_string() - provides string descriptors for root hub
413 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
414 * @hcd: the host controller for this root hub
415 * @data: buffer for output packet
416 * @len: length of the provided buffer
417 *
418 * Produces either a manufacturer, product or serial number string for the
419 * virtual root hub device.
420 *
421 * Return: The number of bytes filled in: the length of the descriptor or
422 * of the provided buffer, whichever is less.
423 */
424static unsigned
425rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
426{
427	char buf[100];
428	char const *s;
429	static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
430
431	/* language ids */
432	switch (id) {
433	case 0:
434		/* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
435		/* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
436		if (len > 4)
437			len = 4;
438		memcpy(data, langids, len);
439		return len;
440	case 1:
441		/* Serial number */
442		s = hcd->self.bus_name;
443		break;
444	case 2:
445		/* Product name */
446		s = hcd->product_desc;
447		break;
448	case 3:
449		/* Manufacturer */
450		snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
451			init_utsname()->release, hcd->driver->description);
452		s = buf;
453		break;
454	default:
455		/* Can't happen; caller guarantees it */
456		return 0;
457	}
458
459	return ascii2desc(s, data, len);
460}
461
462
463/* Root hub control transfers execute synchronously */
464static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
465{
466	struct usb_ctrlrequest *cmd;
467	u16		typeReq, wValue, wIndex, wLength;
468	u8		*ubuf = urb->transfer_buffer;
469	unsigned	len = 0;
470	int		status;
471	u8		patch_wakeup = 0;
472	u8		patch_protocol = 0;
473	u16		tbuf_size;
474	u8		*tbuf = NULL;
475	const u8	*bufp;
476
477	might_sleep();
478
479	spin_lock_irq(&hcd_root_hub_lock);
480	status = usb_hcd_link_urb_to_ep(hcd, urb);
481	spin_unlock_irq(&hcd_root_hub_lock);
482	if (status)
483		return status;
484	urb->hcpriv = hcd;	/* Indicate it's queued */
485
486	cmd = (struct usb_ctrlrequest *) urb->setup_packet;
487	typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
488	wValue   = le16_to_cpu (cmd->wValue);
489	wIndex   = le16_to_cpu (cmd->wIndex);
490	wLength  = le16_to_cpu (cmd->wLength);
491
492	if (wLength > urb->transfer_buffer_length)
493		goto error;
494
495	/*
496	 * tbuf should be at least as big as the
497	 * USB hub descriptor.
498	 */
499	tbuf_size =  max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
500	tbuf = kzalloc(tbuf_size, GFP_KERNEL);
501	if (!tbuf)
502		return -ENOMEM;
503
504	bufp = tbuf;
505
506
507	urb->actual_length = 0;
508	switch (typeReq) {
509
510	/* DEVICE REQUESTS */
511
512	/* The root hub's remote wakeup enable bit is implemented using
513	 * driver model wakeup flags.  If this system supports wakeup
514	 * through USB, userspace may change the default "allow wakeup"
515	 * policy through sysfs or these calls.
516	 *
517	 * Most root hubs support wakeup from downstream devices, for
518	 * runtime power management (disabling USB clocks and reducing
519	 * VBUS power usage).  However, not all of them do so; silicon,
520	 * board, and BIOS bugs here are not uncommon, so these can't
521	 * be treated quite like external hubs.
522	 *
523	 * Likewise, not all root hubs will pass wakeup events upstream,
524	 * to wake up the whole system.  So don't assume root hub and
525	 * controller capabilities are identical.
526	 */
527
528	case DeviceRequest | USB_REQ_GET_STATUS:
529		tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
530					<< USB_DEVICE_REMOTE_WAKEUP)
531				| (1 << USB_DEVICE_SELF_POWERED);
532		tbuf[1] = 0;
533		len = 2;
534		break;
535	case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
536		if (wValue == USB_DEVICE_REMOTE_WAKEUP)
537			device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
538		else
539			goto error;
540		break;
541	case DeviceOutRequest | USB_REQ_SET_FEATURE:
542		if (device_can_wakeup(&hcd->self.root_hub->dev)
543				&& wValue == USB_DEVICE_REMOTE_WAKEUP)
544			device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
545		else
546			goto error;
547		break;
548	case DeviceRequest | USB_REQ_GET_CONFIGURATION:
549		tbuf[0] = 1;
550		len = 1;
551			/* FALLTHROUGH */
552	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
553		break;
554	case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
555		switch (wValue & 0xff00) {
556		case USB_DT_DEVICE << 8:
557			switch (hcd->speed) {
558			case HCD_USB3:
559				bufp = usb3_rh_dev_descriptor;
560				break;
561			case HCD_USB25:
562				bufp = usb25_rh_dev_descriptor;
563				break;
564			case HCD_USB2:
565				bufp = usb2_rh_dev_descriptor;
566				break;
567			case HCD_USB11:
568				bufp = usb11_rh_dev_descriptor;
569				break;
570			default:
571				goto error;
572			}
573			len = 18;
574			if (hcd->has_tt)
575				patch_protocol = 1;
576			break;
577		case USB_DT_CONFIG << 8:
578			switch (hcd->speed) {
579			case HCD_USB3:
580				bufp = ss_rh_config_descriptor;
581				len = sizeof ss_rh_config_descriptor;
582				break;
583			case HCD_USB25:
584			case HCD_USB2:
585				bufp = hs_rh_config_descriptor;
586				len = sizeof hs_rh_config_descriptor;
587				break;
588			case HCD_USB11:
589				bufp = fs_rh_config_descriptor;
590				len = sizeof fs_rh_config_descriptor;
591				break;
592			default:
593				goto error;
594			}
595			if (device_can_wakeup(&hcd->self.root_hub->dev))
596				patch_wakeup = 1;
597			break;
598		case USB_DT_STRING << 8:
599			if ((wValue & 0xff) < 4)
600				urb->actual_length = rh_string(wValue & 0xff,
601						hcd, ubuf, wLength);
602			else /* unsupported IDs --> "protocol stall" */
603				goto error;
604			break;
605		case USB_DT_BOS << 8:
606			goto nongeneric;
607		default:
608			goto error;
609		}
610		break;
611	case DeviceRequest | USB_REQ_GET_INTERFACE:
612		tbuf[0] = 0;
613		len = 1;
614			/* FALLTHROUGH */
615	case DeviceOutRequest | USB_REQ_SET_INTERFACE:
616		break;
617	case DeviceOutRequest | USB_REQ_SET_ADDRESS:
618		/* wValue == urb->dev->devaddr */
619		dev_dbg (hcd->self.controller, "root hub device address %d\n",
620			wValue);
621		break;
622
623	/* INTERFACE REQUESTS (no defined feature/status flags) */
624
625	/* ENDPOINT REQUESTS */
626
627	case EndpointRequest | USB_REQ_GET_STATUS:
628		/* ENDPOINT_HALT flag */
629		tbuf[0] = 0;
630		tbuf[1] = 0;
631		len = 2;
632			/* FALLTHROUGH */
633	case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
634	case EndpointOutRequest | USB_REQ_SET_FEATURE:
635		dev_dbg (hcd->self.controller, "no endpoint features yet\n");
636		break;
637
638	/* CLASS REQUESTS (and errors) */
639
640	default:
641nongeneric:
642		/* non-generic request */
643		switch (typeReq) {
644		case GetHubStatus:
645		case GetPortStatus:
646			len = 4;
647			break;
648		case GetHubDescriptor:
649			len = sizeof (struct usb_hub_descriptor);
650			break;
651		case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
652			/* len is returned by hub_control */
653			break;
654		}
655		status = hcd->driver->hub_control (hcd,
656			typeReq, wValue, wIndex,
657			tbuf, wLength);
658
659		if (typeReq == GetHubDescriptor)
660			usb_hub_adjust_deviceremovable(hcd->self.root_hub,
661				(struct usb_hub_descriptor *)tbuf);
662		break;
663error:
664		/* "protocol stall" on error */
665		status = -EPIPE;
666	}
667
668	if (status < 0) {
669		len = 0;
670		if (status != -EPIPE) {
671			dev_dbg (hcd->self.controller,
672				"CTRL: TypeReq=0x%x val=0x%x "
673				"idx=0x%x len=%d ==> %d\n",
674				typeReq, wValue, wIndex,
675				wLength, status);
676		}
677	} else if (status > 0) {
678		/* hub_control may return the length of data copied. */
679		len = status;
680		status = 0;
681	}
682	if (len) {
683		if (urb->transfer_buffer_length < len)
684			len = urb->transfer_buffer_length;
685		urb->actual_length = len;
686		/* always USB_DIR_IN, toward host */
687		memcpy (ubuf, bufp, len);
688
689		/* report whether RH hardware supports remote wakeup */
690		if (patch_wakeup &&
691				len > offsetof (struct usb_config_descriptor,
692						bmAttributes))
693			((struct usb_config_descriptor *)ubuf)->bmAttributes
694				|= USB_CONFIG_ATT_WAKEUP;
695
696		/* report whether RH hardware has an integrated TT */
697		if (patch_protocol &&
698				len > offsetof(struct usb_device_descriptor,
699						bDeviceProtocol))
700			((struct usb_device_descriptor *) ubuf)->
701				bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
702	}
703
704	kfree(tbuf);
705
706	/* any errors get returned through the urb completion */
707	spin_lock_irq(&hcd_root_hub_lock);
708	usb_hcd_unlink_urb_from_ep(hcd, urb);
709	usb_hcd_giveback_urb(hcd, urb, status);
710	spin_unlock_irq(&hcd_root_hub_lock);
711	return 0;
712}
713
714/*-------------------------------------------------------------------------*/
715
716/*
717 * Root Hub interrupt transfers are polled using a timer if the
718 * driver requests it; otherwise the driver is responsible for
719 * calling usb_hcd_poll_rh_status() when an event occurs.
720 *
721 * Completions are called in_interrupt(), but they may or may not
722 * be in_irq().
723 */
724void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
725{
726	struct urb	*urb;
727	int		length;
728	unsigned long	flags;
729	char		buffer[6];	/* Any root hubs with > 31 ports? */
730
731	if (unlikely(!hcd->rh_pollable))
732		return;
733	if (!hcd->uses_new_polling && !hcd->status_urb)
734		return;
735
736	length = hcd->driver->hub_status_data(hcd, buffer);
737	if (length > 0) {
738
739		/* try to complete the status urb */
740		spin_lock_irqsave(&hcd_root_hub_lock, flags);
741		urb = hcd->status_urb;
742		if (urb) {
743			clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
744			hcd->status_urb = NULL;
745			urb->actual_length = length;
746			memcpy(urb->transfer_buffer, buffer, length);
747
748			usb_hcd_unlink_urb_from_ep(hcd, urb);
749			usb_hcd_giveback_urb(hcd, urb, 0);
750		} else {
751			length = 0;
752			set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
753		}
754		spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
755	}
756
757	/* The USB 2.0 spec says 256 ms.  This is close enough and won't
758	 * exceed that limit if HZ is 100. The math is more clunky than
759	 * maybe expected, this is to make sure that all timers for USB devices
760	 * fire at the same time to give the CPU a break in between */
761	if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
762			(length == 0 && hcd->status_urb != NULL))
763		mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
764}
765EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
766
767/* timer callback */
768static void rh_timer_func (unsigned long _hcd)
769{
770	usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
771}
772
773/*-------------------------------------------------------------------------*/
774
775static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
776{
777	int		retval;
778	unsigned long	flags;
779	unsigned	len = 1 + (urb->dev->maxchild / 8);
780
781	spin_lock_irqsave (&hcd_root_hub_lock, flags);
782	if (hcd->status_urb || urb->transfer_buffer_length < len) {
783		dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
784		retval = -EINVAL;
785		goto done;
786	}
787
788	retval = usb_hcd_link_urb_to_ep(hcd, urb);
789	if (retval)
790		goto done;
791
792	hcd->status_urb = urb;
793	urb->hcpriv = hcd;	/* indicate it's queued */
794	if (!hcd->uses_new_polling)
795		mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
796
797	/* If a status change has already occurred, report it ASAP */
798	else if (HCD_POLL_PENDING(hcd))
799		mod_timer(&hcd->rh_timer, jiffies);
800	retval = 0;
801 done:
802	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
803	return retval;
804}
805
806static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
807{
808	if (usb_endpoint_xfer_int(&urb->ep->desc))
809		return rh_queue_status (hcd, urb);
810	if (usb_endpoint_xfer_control(&urb->ep->desc))
811		return rh_call_control (hcd, urb);
812	return -EINVAL;
813}
814
815/*-------------------------------------------------------------------------*/
816
817/* Unlinks of root-hub control URBs are legal, but they don't do anything
818 * since these URBs always execute synchronously.
819 */
820static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
821{
822	unsigned long	flags;
823	int		rc;
824
825	spin_lock_irqsave(&hcd_root_hub_lock, flags);
826	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
827	if (rc)
828		goto done;
829
830	if (usb_endpoint_num(&urb->ep->desc) == 0) {	/* Control URB */
831		;	/* Do nothing */
832
833	} else {				/* Status URB */
834		if (!hcd->uses_new_polling)
835			del_timer (&hcd->rh_timer);
836		if (urb == hcd->status_urb) {
837			hcd->status_urb = NULL;
838			usb_hcd_unlink_urb_from_ep(hcd, urb);
839			usb_hcd_giveback_urb(hcd, urb, status);
840		}
841	}
842 done:
843	spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
844	return rc;
845}
846
847
848
849/*
850 * Show & store the current value of authorized_default
851 */
852static ssize_t authorized_default_show(struct device *dev,
853				       struct device_attribute *attr, char *buf)
854{
855	struct usb_device *rh_usb_dev = to_usb_device(dev);
856	struct usb_bus *usb_bus = rh_usb_dev->bus;
857	struct usb_hcd *usb_hcd;
858
859	usb_hcd = bus_to_hcd(usb_bus);
860	return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
861}
862
863static ssize_t authorized_default_store(struct device *dev,
864					struct device_attribute *attr,
865					const char *buf, size_t size)
866{
867	ssize_t result;
868	unsigned val;
869	struct usb_device *rh_usb_dev = to_usb_device(dev);
870	struct usb_bus *usb_bus = rh_usb_dev->bus;
871	struct usb_hcd *usb_hcd;
872
873	usb_hcd = bus_to_hcd(usb_bus);
874	result = sscanf(buf, "%u\n", &val);
875	if (result == 1) {
876		usb_hcd->authorized_default = val ? 1 : 0;
877		result = size;
878	} else {
879		result = -EINVAL;
880	}
881	return result;
882}
883static DEVICE_ATTR_RW(authorized_default);
884
885/* Group all the USB bus attributes */
886static struct attribute *usb_bus_attrs[] = {
887		&dev_attr_authorized_default.attr,
888		NULL,
889};
890
891static struct attribute_group usb_bus_attr_group = {
892	.name = NULL,	/* we want them in the same directory */
893	.attrs = usb_bus_attrs,
894};
895
896
897
898/*-------------------------------------------------------------------------*/
899
900/**
901 * usb_bus_init - shared initialization code
902 * @bus: the bus structure being initialized
903 *
904 * This code is used to initialize a usb_bus structure, memory for which is
905 * separately managed.
906 */
907static void usb_bus_init (struct usb_bus *bus)
908{
909	memset (&bus->devmap, 0, sizeof(struct usb_devmap));
910
911	bus->devnum_next = 1;
912
913	bus->root_hub = NULL;
914	bus->busnum = -1;
915	bus->bandwidth_allocated = 0;
916	bus->bandwidth_int_reqs  = 0;
917	bus->bandwidth_isoc_reqs = 0;
918	mutex_init(&bus->devnum_next_mutex);
919
920	INIT_LIST_HEAD (&bus->bus_list);
921}
922
923/*-------------------------------------------------------------------------*/
924
925/**
926 * usb_register_bus - registers the USB host controller with the usb core
927 * @bus: pointer to the bus to register
928 * Context: !in_interrupt()
929 *
930 * Assigns a bus number, and links the controller into usbcore data
931 * structures so that it can be seen by scanning the bus list.
932 *
933 * Return: 0 if successful. A negative error code otherwise.
934 */
935static int usb_register_bus(struct usb_bus *bus)
936{
937	int result = -E2BIG;
938	int busnum;
939
940	mutex_lock(&usb_bus_list_lock);
941	busnum = find_next_zero_bit(busmap, USB_MAXBUS, 1);
942	if (busnum >= USB_MAXBUS) {
943		printk (KERN_ERR "%s: too many buses\n", usbcore_name);
944		goto error_find_busnum;
945	}
946	set_bit(busnum, busmap);
947	bus->busnum = busnum;
948
949	/* Add it to the local list of buses */
950	list_add (&bus->bus_list, &usb_bus_list);
951	mutex_unlock(&usb_bus_list_lock);
952
953	usb_notify_add_bus(bus);
954
955	dev_info (bus->controller, "new USB bus registered, assigned bus "
956		  "number %d\n", bus->busnum);
957	return 0;
958
959error_find_busnum:
960	mutex_unlock(&usb_bus_list_lock);
961	return result;
962}
963
964/**
965 * usb_deregister_bus - deregisters the USB host controller
966 * @bus: pointer to the bus to deregister
967 * Context: !in_interrupt()
968 *
969 * Recycles the bus number, and unlinks the controller from usbcore data
970 * structures so that it won't be seen by scanning the bus list.
971 */
972static void usb_deregister_bus (struct usb_bus *bus)
973{
974	dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
975
976	/*
977	 * NOTE: make sure that all the devices are removed by the
978	 * controller code, as well as having it call this when cleaning
979	 * itself up
980	 */
981	mutex_lock(&usb_bus_list_lock);
982	list_del (&bus->bus_list);
983	mutex_unlock(&usb_bus_list_lock);
984
985	usb_notify_remove_bus(bus);
986
987	clear_bit(bus->busnum, busmap);
988}
989
990/**
991 * register_root_hub - called by usb_add_hcd() to register a root hub
992 * @hcd: host controller for this root hub
993 *
994 * This function registers the root hub with the USB subsystem.  It sets up
995 * the device properly in the device tree and then calls usb_new_device()
996 * to register the usb device.  It also assigns the root hub's USB address
997 * (always 1).
998 *
999 * Return: 0 if successful. A negative error code otherwise.
1000 */
1001static int register_root_hub(struct usb_hcd *hcd)
1002{
1003	struct device *parent_dev = hcd->self.controller;
1004	struct usb_device *usb_dev = hcd->self.root_hub;
1005	const int devnum = 1;
1006	int retval;
1007
1008	usb_dev->devnum = devnum;
1009	usb_dev->bus->devnum_next = devnum + 1;
1010	memset (&usb_dev->bus->devmap.devicemap, 0,
1011			sizeof usb_dev->bus->devmap.devicemap);
1012	set_bit (devnum, usb_dev->bus->devmap.devicemap);
1013	usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1014
1015	mutex_lock(&usb_bus_list_lock);
1016
1017	usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1018	retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1019	if (retval != sizeof usb_dev->descriptor) {
1020		mutex_unlock(&usb_bus_list_lock);
1021		dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1022				dev_name(&usb_dev->dev), retval);
1023		return (retval < 0) ? retval : -EMSGSIZE;
1024	}
1025
1026	if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1027		retval = usb_get_bos_descriptor(usb_dev);
1028		if (!retval) {
1029			usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1030		} else if (usb_dev->speed == USB_SPEED_SUPER) {
1031			mutex_unlock(&usb_bus_list_lock);
1032			dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1033					dev_name(&usb_dev->dev), retval);
1034			return retval;
1035		}
1036	}
1037
1038	retval = usb_new_device (usb_dev);
1039	if (retval) {
1040		dev_err (parent_dev, "can't register root hub for %s, %d\n",
1041				dev_name(&usb_dev->dev), retval);
1042	} else {
1043		spin_lock_irq (&hcd_root_hub_lock);
1044		hcd->rh_registered = 1;
1045		spin_unlock_irq (&hcd_root_hub_lock);
1046
1047		/* Did the HC die before the root hub was registered? */
1048		if (HCD_DEAD(hcd))
1049			usb_hc_died (hcd);	/* This time clean up */
1050	}
1051	mutex_unlock(&usb_bus_list_lock);
1052
1053	return retval;
1054}
1055
1056/*
1057 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1058 * @bus: the bus which the root hub belongs to
1059 * @portnum: the port which is being resumed
1060 *
1061 * HCDs should call this function when they know that a resume signal is
1062 * being sent to a root-hub port.  The root hub will be prevented from
1063 * going into autosuspend until usb_hcd_end_port_resume() is called.
1064 *
1065 * The bus's private lock must be held by the caller.
1066 */
1067void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1068{
1069	unsigned bit = 1 << portnum;
1070
1071	if (!(bus->resuming_ports & bit)) {
1072		bus->resuming_ports |= bit;
1073		pm_runtime_get_noresume(&bus->root_hub->dev);
1074	}
1075}
1076EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1077
1078/*
1079 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1080 * @bus: the bus which the root hub belongs to
1081 * @portnum: the port which is being resumed
1082 *
1083 * HCDs should call this function when they know that a resume signal has
1084 * stopped being sent to a root-hub port.  The root hub will be allowed to
1085 * autosuspend again.
1086 *
1087 * The bus's private lock must be held by the caller.
1088 */
1089void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1090{
1091	unsigned bit = 1 << portnum;
1092
1093	if (bus->resuming_ports & bit) {
1094		bus->resuming_ports &= ~bit;
1095		pm_runtime_put_noidle(&bus->root_hub->dev);
1096	}
1097}
1098EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1099
1100/*-------------------------------------------------------------------------*/
1101
1102/**
1103 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1104 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1105 * @is_input: true iff the transaction sends data to the host
1106 * @isoc: true for isochronous transactions, false for interrupt ones
1107 * @bytecount: how many bytes in the transaction.
1108 *
1109 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1110 *
1111 * Note:
1112 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1113 * scheduled in software, this function is only used for such scheduling.
1114 */
1115long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1116{
1117	unsigned long	tmp;
1118
1119	switch (speed) {
1120	case USB_SPEED_LOW: 	/* INTR only */
1121		if (is_input) {
1122			tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1123			return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1124		} else {
1125			tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1126			return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1127		}
1128	case USB_SPEED_FULL:	/* ISOC or INTR */
1129		if (isoc) {
1130			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1131			return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1132		} else {
1133			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1134			return 9107L + BW_HOST_DELAY + tmp;
1135		}
1136	case USB_SPEED_HIGH:	/* ISOC or INTR */
1137		/* FIXME adjust for input vs output */
1138		if (isoc)
1139			tmp = HS_NSECS_ISO (bytecount);
1140		else
1141			tmp = HS_NSECS (bytecount);
1142		return tmp;
1143	default:
1144		pr_debug ("%s: bogus device speed!\n", usbcore_name);
1145		return -1;
1146	}
1147}
1148EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1149
1150
1151/*-------------------------------------------------------------------------*/
1152
1153/*
1154 * Generic HC operations.
1155 */
1156
1157/*-------------------------------------------------------------------------*/
1158
1159/**
1160 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1161 * @hcd: host controller to which @urb was submitted
1162 * @urb: URB being submitted
1163 *
1164 * Host controller drivers should call this routine in their enqueue()
1165 * method.  The HCD's private spinlock must be held and interrupts must
1166 * be disabled.  The actions carried out here are required for URB
1167 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1168 *
1169 * Return: 0 for no error, otherwise a negative error code (in which case
1170 * the enqueue() method must fail).  If no error occurs but enqueue() fails
1171 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1172 * the private spinlock and returning.
1173 */
1174int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1175{
1176	int		rc = 0;
1177
1178	spin_lock(&hcd_urb_list_lock);
1179
1180	/* Check that the URB isn't being killed */
1181	if (unlikely(atomic_read(&urb->reject))) {
1182		rc = -EPERM;
1183		goto done;
1184	}
1185
1186	if (unlikely(!urb->ep->enabled)) {
1187		rc = -ENOENT;
1188		goto done;
1189	}
1190
1191	if (unlikely(!urb->dev->can_submit)) {
1192		rc = -EHOSTUNREACH;
1193		goto done;
1194	}
1195
1196	/*
1197	 * Check the host controller's state and add the URB to the
1198	 * endpoint's queue.
1199	 */
1200	if (HCD_RH_RUNNING(hcd)) {
1201		urb->unlinked = 0;
1202		list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1203	} else {
1204		rc = -ESHUTDOWN;
1205		goto done;
1206	}
1207 done:
1208	spin_unlock(&hcd_urb_list_lock);
1209	return rc;
1210}
1211EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1212
1213/**
1214 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1215 * @hcd: host controller to which @urb was submitted
1216 * @urb: URB being checked for unlinkability
1217 * @status: error code to store in @urb if the unlink succeeds
1218 *
1219 * Host controller drivers should call this routine in their dequeue()
1220 * method.  The HCD's private spinlock must be held and interrupts must
1221 * be disabled.  The actions carried out here are required for making
1222 * sure than an unlink is valid.
1223 *
1224 * Return: 0 for no error, otherwise a negative error code (in which case
1225 * the dequeue() method must fail).  The possible error codes are:
1226 *
1227 *	-EIDRM: @urb was not submitted or has already completed.
1228 *		The completion function may not have been called yet.
1229 *
1230 *	-EBUSY: @urb has already been unlinked.
1231 */
1232int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1233		int status)
1234{
1235	struct list_head	*tmp;
1236
1237	/* insist the urb is still queued */
1238	list_for_each(tmp, &urb->ep->urb_list) {
1239		if (tmp == &urb->urb_list)
1240			break;
1241	}
1242	if (tmp != &urb->urb_list)
1243		return -EIDRM;
1244
1245	/* Any status except -EINPROGRESS means something already started to
1246	 * unlink this URB from the hardware.  So there's no more work to do.
1247	 */
1248	if (urb->unlinked)
1249		return -EBUSY;
1250	urb->unlinked = status;
1251	return 0;
1252}
1253EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1254
1255/**
1256 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1257 * @hcd: host controller to which @urb was submitted
1258 * @urb: URB being unlinked
1259 *
1260 * Host controller drivers should call this routine before calling
1261 * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1262 * interrupts must be disabled.  The actions carried out here are required
1263 * for URB completion.
1264 */
1265void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1266{
1267	/* clear all state linking urb to this dev (and hcd) */
1268	spin_lock(&hcd_urb_list_lock);
1269	list_del_init(&urb->urb_list);
1270	spin_unlock(&hcd_urb_list_lock);
1271}
1272EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1273
1274/*
1275 * Some usb host controllers can only perform dma using a small SRAM area.
1276 * The usb core itself is however optimized for host controllers that can dma
1277 * using regular system memory - like pci devices doing bus mastering.
1278 *
1279 * To support host controllers with limited dma capabilities we provide dma
1280 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1281 * For this to work properly the host controller code must first use the
1282 * function dma_declare_coherent_memory() to point out which memory area
1283 * that should be used for dma allocations.
1284 *
1285 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1286 * dma using dma_alloc_coherent() which in turn allocates from the memory
1287 * area pointed out with dma_declare_coherent_memory().
1288 *
1289 * So, to summarize...
1290 *
1291 * - We need "local" memory, canonical example being
1292 *   a small SRAM on a discrete controller being the
1293 *   only memory that the controller can read ...
1294 *   (a) "normal" kernel memory is no good, and
1295 *   (b) there's not enough to share
1296 *
1297 * - The only *portable* hook for such stuff in the
1298 *   DMA framework is dma_declare_coherent_memory()
1299 *
1300 * - So we use that, even though the primary requirement
1301 *   is that the memory be "local" (hence addressable
1302 *   by that device), not "coherent".
1303 *
1304 */
1305
1306static int hcd_alloc_coherent(struct usb_bus *bus,
1307			      gfp_t mem_flags, dma_addr_t *dma_handle,
1308			      void **vaddr_handle, size_t size,
1309			      enum dma_data_direction dir)
1310{
1311	unsigned char *vaddr;
1312
1313	if (*vaddr_handle == NULL) {
1314		WARN_ON_ONCE(1);
1315		return -EFAULT;
1316	}
1317
1318	vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1319				 mem_flags, dma_handle);
1320	if (!vaddr)
1321		return -ENOMEM;
1322
1323	/*
1324	 * Store the virtual address of the buffer at the end
1325	 * of the allocated dma buffer. The size of the buffer
1326	 * may be uneven so use unaligned functions instead
1327	 * of just rounding up. It makes sense to optimize for
1328	 * memory footprint over access speed since the amount
1329	 * of memory available for dma may be limited.
1330	 */
1331	put_unaligned((unsigned long)*vaddr_handle,
1332		      (unsigned long *)(vaddr + size));
1333
1334	if (dir == DMA_TO_DEVICE)
1335		memcpy(vaddr, *vaddr_handle, size);
1336
1337	*vaddr_handle = vaddr;
1338	return 0;
1339}
1340
1341static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1342			      void **vaddr_handle, size_t size,
1343			      enum dma_data_direction dir)
1344{
1345	unsigned char *vaddr = *vaddr_handle;
1346
1347	vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1348
1349	if (dir == DMA_FROM_DEVICE)
1350		memcpy(vaddr, *vaddr_handle, size);
1351
1352	hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1353
1354	*vaddr_handle = vaddr;
1355	*dma_handle = 0;
1356}
1357
1358void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1359{
1360	if (urb->transfer_flags & URB_SETUP_MAP_SINGLE)
1361		dma_unmap_single(hcd->self.controller,
1362				urb->setup_dma,
1363				sizeof(struct usb_ctrlrequest),
1364				DMA_TO_DEVICE);
1365	else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1366		hcd_free_coherent(urb->dev->bus,
1367				&urb->setup_dma,
1368				(void **) &urb->setup_packet,
1369				sizeof(struct usb_ctrlrequest),
1370				DMA_TO_DEVICE);
1371
1372	/* Make it safe to call this routine more than once */
1373	urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1374}
1375EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1376
1377static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1378{
1379	if (hcd->driver->unmap_urb_for_dma)
1380		hcd->driver->unmap_urb_for_dma(hcd, urb);
1381	else
1382		usb_hcd_unmap_urb_for_dma(hcd, urb);
1383}
1384
1385void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1386{
1387	enum dma_data_direction dir;
1388
1389	usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1390
1391	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1392	if (urb->transfer_flags & URB_DMA_MAP_SG)
1393		dma_unmap_sg(hcd->self.controller,
1394				urb->sg,
1395				urb->num_sgs,
1396				dir);
1397	else if (urb->transfer_flags & URB_DMA_MAP_PAGE)
1398		dma_unmap_page(hcd->self.controller,
1399				urb->transfer_dma,
1400				urb->transfer_buffer_length,
1401				dir);
1402	else if (urb->transfer_flags & URB_DMA_MAP_SINGLE)
1403		dma_unmap_single(hcd->self.controller,
1404				urb->transfer_dma,
1405				urb->transfer_buffer_length,
1406				dir);
1407	else if (urb->transfer_flags & URB_MAP_LOCAL)
1408		hcd_free_coherent(urb->dev->bus,
1409				&urb->transfer_dma,
1410				&urb->transfer_buffer,
1411				urb->transfer_buffer_length,
1412				dir);
1413
1414	/* Make it safe to call this routine more than once */
1415	urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1416			URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1417}
1418EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1419
1420static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1421			   gfp_t mem_flags)
1422{
1423	if (hcd->driver->map_urb_for_dma)
1424		return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1425	else
1426		return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1427}
1428
1429int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1430			    gfp_t mem_flags)
1431{
1432	enum dma_data_direction dir;
1433	int ret = 0;
1434
1435	/* Map the URB's buffers for DMA access.
1436	 * Lower level HCD code should use *_dma exclusively,
1437	 * unless it uses pio or talks to another transport,
1438	 * or uses the provided scatter gather list for bulk.
1439	 */
1440
1441	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1442		if (hcd->self.uses_pio_for_control)
1443			return ret;
1444		if (hcd->self.uses_dma) {
1445			urb->setup_dma = dma_map_single(
1446					hcd->self.controller,
1447					urb->setup_packet,
1448					sizeof(struct usb_ctrlrequest),
1449					DMA_TO_DEVICE);
1450			if (dma_mapping_error(hcd->self.controller,
1451						urb->setup_dma))
1452				return -EAGAIN;
1453			urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1454		} else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1455			ret = hcd_alloc_coherent(
1456					urb->dev->bus, mem_flags,
1457					&urb->setup_dma,
1458					(void **)&urb->setup_packet,
1459					sizeof(struct usb_ctrlrequest),
1460					DMA_TO_DEVICE);
1461			if (ret)
1462				return ret;
1463			urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1464		}
1465	}
1466
1467	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1468	if (urb->transfer_buffer_length != 0
1469	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1470		if (hcd->self.uses_dma) {
1471			if (urb->num_sgs) {
1472				int n;
1473
1474				/* We don't support sg for isoc transfers ! */
1475				if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1476					WARN_ON(1);
1477					return -EINVAL;
1478				}
1479
1480				n = dma_map_sg(
1481						hcd->self.controller,
1482						urb->sg,
1483						urb->num_sgs,
1484						dir);
1485				if (n <= 0)
1486					ret = -EAGAIN;
1487				else
1488					urb->transfer_flags |= URB_DMA_MAP_SG;
1489				urb->num_mapped_sgs = n;
1490				if (n != urb->num_sgs)
1491					urb->transfer_flags |=
1492							URB_DMA_SG_COMBINED;
1493			} else if (urb->sg) {
1494				struct scatterlist *sg = urb->sg;
1495				urb->transfer_dma = dma_map_page(
1496						hcd->self.controller,
1497						sg_page(sg),
1498						sg->offset,
1499						urb->transfer_buffer_length,
1500						dir);
1501				if (dma_mapping_error(hcd->self.controller,
1502						urb->transfer_dma))
1503					ret = -EAGAIN;
1504				else
1505					urb->transfer_flags |= URB_DMA_MAP_PAGE;
1506			} else if (is_vmalloc_addr(urb->transfer_buffer)) {
1507				WARN_ONCE(1, "transfer buffer not dma capable\n");
1508				ret = -EAGAIN;
1509			} else {
1510				urb->transfer_dma = dma_map_single(
1511						hcd->self.controller,
1512						urb->transfer_buffer,
1513						urb->transfer_buffer_length,
1514						dir);
1515				if (dma_mapping_error(hcd->self.controller,
1516						urb->transfer_dma))
1517					ret = -EAGAIN;
1518				else
1519					urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1520			}
1521		} else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1522			ret = hcd_alloc_coherent(
1523					urb->dev->bus, mem_flags,
1524					&urb->transfer_dma,
1525					&urb->transfer_buffer,
1526					urb->transfer_buffer_length,
1527					dir);
1528			if (ret == 0)
1529				urb->transfer_flags |= URB_MAP_LOCAL;
1530		}
1531		if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1532				URB_SETUP_MAP_LOCAL)))
1533			usb_hcd_unmap_urb_for_dma(hcd, urb);
1534	}
1535	return ret;
1536}
1537EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1538
1539/*-------------------------------------------------------------------------*/
1540
1541/* may be called in any context with a valid urb->dev usecount
1542 * caller surrenders "ownership" of urb
1543 * expects usb_submit_urb() to have sanity checked and conditioned all
1544 * inputs in the urb
1545 */
1546int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1547{
1548	int			status;
1549	struct usb_hcd		*hcd = bus_to_hcd(urb->dev->bus);
1550
1551	/* increment urb's reference count as part of giving it to the HCD
1552	 * (which will control it).  HCD guarantees that it either returns
1553	 * an error or calls giveback(), but not both.
1554	 */
1555	usb_get_urb(urb);
1556	atomic_inc(&urb->use_count);
1557	atomic_inc(&urb->dev->urbnum);
1558	usbmon_urb_submit(&hcd->self, urb);
1559
1560	/* NOTE requirements on root-hub callers (usbfs and the hub
1561	 * driver, for now):  URBs' urb->transfer_buffer must be
1562	 * valid and usb_buffer_{sync,unmap}() not be needed, since
1563	 * they could clobber root hub response data.  Also, control
1564	 * URBs must be submitted in process context with interrupts
1565	 * enabled.
1566	 */
1567
1568	if (is_root_hub(urb->dev)) {
1569		status = rh_urb_enqueue(hcd, urb);
1570	} else {
1571		status = map_urb_for_dma(hcd, urb, mem_flags);
1572		if (likely(status == 0)) {
1573			status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1574			if (unlikely(status))
1575				unmap_urb_for_dma(hcd, urb);
1576		}
1577	}
1578
1579	if (unlikely(status)) {
1580		usbmon_urb_submit_error(&hcd->self, urb, status);
1581		urb->hcpriv = NULL;
1582		INIT_LIST_HEAD(&urb->urb_list);
1583		atomic_dec(&urb->use_count);
1584		atomic_dec(&urb->dev->urbnum);
1585		if (atomic_read(&urb->reject))
1586			wake_up(&usb_kill_urb_queue);
1587		usb_put_urb(urb);
1588	}
1589	return status;
1590}
1591
1592/*-------------------------------------------------------------------------*/
1593
1594/* this makes the hcd giveback() the urb more quickly, by kicking it
1595 * off hardware queues (which may take a while) and returning it as
1596 * soon as practical.  we've already set up the urb's return status,
1597 * but we can't know if the callback completed already.
1598 */
1599static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1600{
1601	int		value;
1602
1603	if (is_root_hub(urb->dev))
1604		value = usb_rh_urb_dequeue(hcd, urb, status);
1605	else {
1606
1607		/* The only reason an HCD might fail this call is if
1608		 * it has not yet fully queued the urb to begin with.
1609		 * Such failures should be harmless. */
1610		value = hcd->driver->urb_dequeue(hcd, urb, status);
1611	}
1612	return value;
1613}
1614
1615/*
1616 * called in any context
1617 *
1618 * caller guarantees urb won't be recycled till both unlink()
1619 * and the urb's completion function return
1620 */
1621int usb_hcd_unlink_urb (struct urb *urb, int status)
1622{
1623	struct usb_hcd		*hcd;
1624	struct usb_device	*udev = urb->dev;
1625	int			retval = -EIDRM;
1626	unsigned long		flags;
1627
1628	/* Prevent the device and bus from going away while
1629	 * the unlink is carried out.  If they are already gone
1630	 * then urb->use_count must be 0, since disconnected
1631	 * devices can't have any active URBs.
1632	 */
1633	spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1634	if (atomic_read(&urb->use_count) > 0) {
1635		retval = 0;
1636		usb_get_dev(udev);
1637	}
1638	spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1639	if (retval == 0) {
1640		hcd = bus_to_hcd(urb->dev->bus);
1641		retval = unlink1(hcd, urb, status);
1642		if (retval == 0)
1643			retval = -EINPROGRESS;
1644		else if (retval != -EIDRM && retval != -EBUSY)
1645			dev_dbg(&udev->dev, "hcd_unlink_urb %p fail %d\n",
1646					urb, retval);
1647		usb_put_dev(udev);
1648	}
1649	return retval;
1650}
1651
1652/*-------------------------------------------------------------------------*/
1653
1654static void __usb_hcd_giveback_urb(struct urb *urb)
1655{
1656	struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1657	struct usb_anchor *anchor = urb->anchor;
1658	int status = urb->unlinked;
1659	unsigned long flags;
1660
1661	urb->hcpriv = NULL;
1662	if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1663	    urb->actual_length < urb->transfer_buffer_length &&
1664	    !status))
1665		status = -EREMOTEIO;
1666
1667	unmap_urb_for_dma(hcd, urb);
1668	usbmon_urb_complete(&hcd->self, urb, status);
1669	usb_anchor_suspend_wakeups(anchor);
1670	usb_unanchor_urb(urb);
1671	if (likely(status == 0))
1672		usb_led_activity(USB_LED_EVENT_HOST);
1673
1674	/* pass ownership to the completion handler */
1675	urb->status = status;
1676
1677	/*
1678	 * We disable local IRQs here avoid possible deadlock because
1679	 * drivers may call spin_lock() to hold lock which might be
1680	 * acquired in one hard interrupt handler.
1681	 *
1682	 * The local_irq_save()/local_irq_restore() around complete()
1683	 * will be removed if current USB drivers have been cleaned up
1684	 * and no one may trigger the above deadlock situation when
1685	 * running complete() in tasklet.
1686	 */
1687	local_irq_save(flags);
1688	urb->complete(urb);
1689	local_irq_restore(flags);
1690
1691	usb_anchor_resume_wakeups(anchor);
1692	atomic_dec(&urb->use_count);
1693	if (unlikely(atomic_read(&urb->reject)))
1694		wake_up(&usb_kill_urb_queue);
1695	usb_put_urb(urb);
1696}
1697
1698static void usb_giveback_urb_bh(unsigned long param)
1699{
1700	struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1701	struct list_head local_list;
1702
1703	spin_lock_irq(&bh->lock);
1704	bh->running = true;
1705 restart:
1706	list_replace_init(&bh->head, &local_list);
1707	spin_unlock_irq(&bh->lock);
1708
1709	while (!list_empty(&local_list)) {
1710		struct urb *urb;
1711
1712		urb = list_entry(local_list.next, struct urb, urb_list);
1713		list_del_init(&urb->urb_list);
1714		bh->completing_ep = urb->ep;
1715		__usb_hcd_giveback_urb(urb);
1716		bh->completing_ep = NULL;
1717	}
1718
1719	/* check if there are new URBs to giveback */
1720	spin_lock_irq(&bh->lock);
1721	if (!list_empty(&bh->head))
1722		goto restart;
1723	bh->running = false;
1724	spin_unlock_irq(&bh->lock);
1725}
1726
1727/**
1728 * usb_hcd_giveback_urb - return URB from HCD to device driver
1729 * @hcd: host controller returning the URB
1730 * @urb: urb being returned to the USB device driver.
1731 * @status: completion status code for the URB.
1732 * Context: in_interrupt()
1733 *
1734 * This hands the URB from HCD to its USB device driver, using its
1735 * completion function.  The HCD has freed all per-urb resources
1736 * (and is done using urb->hcpriv).  It also released all HCD locks;
1737 * the device driver won't cause problems if it frees, modifies,
1738 * or resubmits this URB.
1739 *
1740 * If @urb was unlinked, the value of @status will be overridden by
1741 * @urb->unlinked.  Erroneous short transfers are detected in case
1742 * the HCD hasn't checked for them.
1743 */
1744void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1745{
1746	struct giveback_urb_bh *bh;
1747	bool running, high_prio_bh;
1748
1749	/* pass status to tasklet via unlinked */
1750	if (likely(!urb->unlinked))
1751		urb->unlinked = status;
1752
1753	if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1754		__usb_hcd_giveback_urb(urb);
1755		return;
1756	}
1757
1758	if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1759		bh = &hcd->high_prio_bh;
1760		high_prio_bh = true;
1761	} else {
1762		bh = &hcd->low_prio_bh;
1763		high_prio_bh = false;
1764	}
1765
1766	spin_lock(&bh->lock);
1767	list_add_tail(&urb->urb_list, &bh->head);
1768	running = bh->running;
1769	spin_unlock(&bh->lock);
1770
1771	if (running)
1772		;
1773	else if (high_prio_bh)
1774		tasklet_hi_schedule(&bh->bh);
1775	else
1776		tasklet_schedule(&bh->bh);
1777}
1778EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1779
1780/*-------------------------------------------------------------------------*/
1781
1782/* Cancel all URBs pending on this endpoint and wait for the endpoint's
1783 * queue to drain completely.  The caller must first insure that no more
1784 * URBs can be submitted for this endpoint.
1785 */
1786void usb_hcd_flush_endpoint(struct usb_device *udev,
1787		struct usb_host_endpoint *ep)
1788{
1789	struct usb_hcd		*hcd;
1790	struct urb		*urb;
1791
1792	if (!ep)
1793		return;
1794	might_sleep();
1795	hcd = bus_to_hcd(udev->bus);
1796
1797	/* No more submits can occur */
1798	spin_lock_irq(&hcd_urb_list_lock);
1799rescan:
1800	list_for_each_entry (urb, &ep->urb_list, urb_list) {
1801		int	is_in;
1802
1803		if (urb->unlinked)
1804			continue;
1805		usb_get_urb (urb);
1806		is_in = usb_urb_dir_in(urb);
1807		spin_unlock(&hcd_urb_list_lock);
1808
1809		/* kick hcd */
1810		unlink1(hcd, urb, -ESHUTDOWN);
1811		dev_dbg (hcd->self.controller,
1812			"shutdown urb %p ep%d%s%s\n",
1813			urb, usb_endpoint_num(&ep->desc),
1814			is_in ? "in" : "out",
1815			({	char *s;
1816
1817				 switch (usb_endpoint_type(&ep->desc)) {
1818				 case USB_ENDPOINT_XFER_CONTROL:
1819					s = ""; break;
1820				 case USB_ENDPOINT_XFER_BULK:
1821					s = "-bulk"; break;
1822				 case USB_ENDPOINT_XFER_INT:
1823					s = "-intr"; break;
1824				 default:
1825					s = "-iso"; break;
1826				};
1827				s;
1828			}));
1829		usb_put_urb (urb);
1830
1831		/* list contents may have changed */
1832		spin_lock(&hcd_urb_list_lock);
1833		goto rescan;
1834	}
1835	spin_unlock_irq(&hcd_urb_list_lock);
1836
1837	/* Wait until the endpoint queue is completely empty */
1838	while (!list_empty (&ep->urb_list)) {
1839		spin_lock_irq(&hcd_urb_list_lock);
1840
1841		/* The list may have changed while we acquired the spinlock */
1842		urb = NULL;
1843		if (!list_empty (&ep->urb_list)) {
1844			urb = list_entry (ep->urb_list.prev, struct urb,
1845					urb_list);
1846			usb_get_urb (urb);
1847		}
1848		spin_unlock_irq(&hcd_urb_list_lock);
1849
1850		if (urb) {
1851			usb_kill_urb (urb);
1852			usb_put_urb (urb);
1853		}
1854	}
1855}
1856
1857/**
1858 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1859 *				the bus bandwidth
1860 * @udev: target &usb_device
1861 * @new_config: new configuration to install
1862 * @cur_alt: the current alternate interface setting
1863 * @new_alt: alternate interface setting that is being installed
1864 *
1865 * To change configurations, pass in the new configuration in new_config,
1866 * and pass NULL for cur_alt and new_alt.
1867 *
1868 * To reset a device's configuration (put the device in the ADDRESSED state),
1869 * pass in NULL for new_config, cur_alt, and new_alt.
1870 *
1871 * To change alternate interface settings, pass in NULL for new_config,
1872 * pass in the current alternate interface setting in cur_alt,
1873 * and pass in the new alternate interface setting in new_alt.
1874 *
1875 * Return: An error if the requested bandwidth change exceeds the
1876 * bus bandwidth or host controller internal resources.
1877 */
1878int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1879		struct usb_host_config *new_config,
1880		struct usb_host_interface *cur_alt,
1881		struct usb_host_interface *new_alt)
1882{
1883	int num_intfs, i, j;
1884	struct usb_host_interface *alt = NULL;
1885	int ret = 0;
1886	struct usb_hcd *hcd;
1887	struct usb_host_endpoint *ep;
1888
1889	hcd = bus_to_hcd(udev->bus);
1890	if (!hcd->driver->check_bandwidth)
1891		return 0;
1892
1893	/* Configuration is being removed - set configuration 0 */
1894	if (!new_config && !cur_alt) {
1895		for (i = 1; i < 16; ++i) {
1896			ep = udev->ep_out[i];
1897			if (ep)
1898				hcd->driver->drop_endpoint(hcd, udev, ep);
1899			ep = udev->ep_in[i];
1900			if (ep)
1901				hcd->driver->drop_endpoint(hcd, udev, ep);
1902		}
1903		hcd->driver->check_bandwidth(hcd, udev);
1904		return 0;
1905	}
1906	/* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1907	 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1908	 * of the bus.  There will always be bandwidth for endpoint 0, so it's
1909	 * ok to exclude it.
1910	 */
1911	if (new_config) {
1912		num_intfs = new_config->desc.bNumInterfaces;
1913		/* Remove endpoints (except endpoint 0, which is always on the
1914		 * schedule) from the old config from the schedule
1915		 */
1916		for (i = 1; i < 16; ++i) {
1917			ep = udev->ep_out[i];
1918			if (ep) {
1919				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1920				if (ret < 0)
1921					goto reset;
1922			}
1923			ep = udev->ep_in[i];
1924			if (ep) {
1925				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1926				if (ret < 0)
1927					goto reset;
1928			}
1929		}
1930		for (i = 0; i < num_intfs; ++i) {
1931			struct usb_host_interface *first_alt;
1932			int iface_num;
1933
1934			first_alt = &new_config->intf_cache[i]->altsetting[0];
1935			iface_num = first_alt->desc.bInterfaceNumber;
1936			/* Set up endpoints for alternate interface setting 0 */
1937			alt = usb_find_alt_setting(new_config, iface_num, 0);
1938			if (!alt)
1939				/* No alt setting 0? Pick the first setting. */
1940				alt = first_alt;
1941
1942			for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1943				ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1944				if (ret < 0)
1945					goto reset;
1946			}
1947		}
1948	}
1949	if (cur_alt && new_alt) {
1950		struct usb_interface *iface = usb_ifnum_to_if(udev,
1951				cur_alt->desc.bInterfaceNumber);
1952
1953		if (!iface)
1954			return -EINVAL;
1955		if (iface->resetting_device) {
1956			/*
1957			 * The USB core just reset the device, so the xHCI host
1958			 * and the device will think alt setting 0 is installed.
1959			 * However, the USB core will pass in the alternate
1960			 * setting installed before the reset as cur_alt.  Dig
1961			 * out the alternate setting 0 structure, or the first
1962			 * alternate setting if a broken device doesn't have alt
1963			 * setting 0.
1964			 */
1965			cur_alt = usb_altnum_to_altsetting(iface, 0);
1966			if (!cur_alt)
1967				cur_alt = &iface->altsetting[0];
1968		}
1969
1970		/* Drop all the endpoints in the current alt setting */
1971		for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1972			ret = hcd->driver->drop_endpoint(hcd, udev,
1973					&cur_alt->endpoint[i]);
1974			if (ret < 0)
1975				goto reset;
1976		}
1977		/* Add all the endpoints in the new alt setting */
1978		for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1979			ret = hcd->driver->add_endpoint(hcd, udev,
1980					&new_alt->endpoint[i]);
1981			if (ret < 0)
1982				goto reset;
1983		}
1984	}
1985	ret = hcd->driver->check_bandwidth(hcd, udev);
1986reset:
1987	if (ret < 0)
1988		hcd->driver->reset_bandwidth(hcd, udev);
1989	return ret;
1990}
1991
1992/* Disables the endpoint: synchronizes with the hcd to make sure all
1993 * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1994 * have been called previously.  Use for set_configuration, set_interface,
1995 * driver removal, physical disconnect.
1996 *
1997 * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1998 * type, maxpacket size, toggle, halt status, and scheduling.
1999 */
2000void usb_hcd_disable_endpoint(struct usb_device *udev,
2001		struct usb_host_endpoint *ep)
2002{
2003	struct usb_hcd		*hcd;
2004
2005	might_sleep();
2006	hcd = bus_to_hcd(udev->bus);
2007	if (hcd->driver->endpoint_disable)
2008		hcd->driver->endpoint_disable(hcd, ep);
2009}
2010
2011/**
2012 * usb_hcd_reset_endpoint - reset host endpoint state
2013 * @udev: USB device.
2014 * @ep:   the endpoint to reset.
2015 *
2016 * Resets any host endpoint state such as the toggle bit, sequence
2017 * number and current window.
2018 */
2019void usb_hcd_reset_endpoint(struct usb_device *udev,
2020			    struct usb_host_endpoint *ep)
2021{
2022	struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2023
2024	if (hcd->driver->endpoint_reset)
2025		hcd->driver->endpoint_reset(hcd, ep);
2026	else {
2027		int epnum = usb_endpoint_num(&ep->desc);
2028		int is_out = usb_endpoint_dir_out(&ep->desc);
2029		int is_control = usb_endpoint_xfer_control(&ep->desc);
2030
2031		usb_settoggle(udev, epnum, is_out, 0);
2032		if (is_control)
2033			usb_settoggle(udev, epnum, !is_out, 0);
2034	}
2035}
2036
2037/**
2038 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2039 * @interface:		alternate setting that includes all endpoints.
2040 * @eps:		array of endpoints that need streams.
2041 * @num_eps:		number of endpoints in the array.
2042 * @num_streams:	number of streams to allocate.
2043 * @mem_flags:		flags hcd should use to allocate memory.
2044 *
2045 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2046 * Drivers may queue multiple transfers to different stream IDs, which may
2047 * complete in a different order than they were queued.
2048 *
2049 * Return: On success, the number of allocated streams. On failure, a negative
2050 * error code.
2051 */
2052int usb_alloc_streams(struct usb_interface *interface,
2053		struct usb_host_endpoint **eps, unsigned int num_eps,
2054		unsigned int num_streams, gfp_t mem_flags)
2055{
2056	struct usb_hcd *hcd;
2057	struct usb_device *dev;
2058	int i, ret;
2059
2060	dev = interface_to_usbdev(interface);
2061	hcd = bus_to_hcd(dev->bus);
2062	if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2063		return -EINVAL;
2064	if (dev->speed != USB_SPEED_SUPER)
2065		return -EINVAL;
2066	if (dev->state < USB_STATE_CONFIGURED)
2067		return -ENODEV;
2068
2069	for (i = 0; i < num_eps; i++) {
2070		/* Streams only apply to bulk endpoints. */
2071		if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2072			return -EINVAL;
2073		/* Re-alloc is not allowed */
2074		if (eps[i]->streams)
2075			return -EINVAL;
2076	}
2077
2078	ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2079			num_streams, mem_flags);
2080	if (ret < 0)
2081		return ret;
2082
2083	for (i = 0; i < num_eps; i++)
2084		eps[i]->streams = ret;
2085
2086	return ret;
2087}
2088EXPORT_SYMBOL_GPL(usb_alloc_streams);
2089
2090/**
2091 * usb_free_streams - free bulk endpoint stream IDs.
2092 * @interface:	alternate setting that includes all endpoints.
2093 * @eps:	array of endpoints to remove streams from.
2094 * @num_eps:	number of endpoints in the array.
2095 * @mem_flags:	flags hcd should use to allocate memory.
2096 *
2097 * Reverts a group of bulk endpoints back to not using stream IDs.
2098 * Can fail if we are given bad arguments, or HCD is broken.
2099 *
2100 * Return: 0 on success. On failure, a negative error code.
2101 */
2102int usb_free_streams(struct usb_interface *interface,
2103		struct usb_host_endpoint **eps, unsigned int num_eps,
2104		gfp_t mem_flags)
2105{
2106	struct usb_hcd *hcd;
2107	struct usb_device *dev;
2108	int i, ret;
2109
2110	dev = interface_to_usbdev(interface);
2111	hcd = bus_to_hcd(dev->bus);
2112	if (dev->speed != USB_SPEED_SUPER)
2113		return -EINVAL;
2114
2115	/* Double-free is not allowed */
2116	for (i = 0; i < num_eps; i++)
2117		if (!eps[i] || !eps[i]->streams)
2118			return -EINVAL;
2119
2120	ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2121	if (ret < 0)
2122		return ret;
2123
2124	for (i = 0; i < num_eps; i++)
2125		eps[i]->streams = 0;
2126
2127	return ret;
2128}
2129EXPORT_SYMBOL_GPL(usb_free_streams);
2130
2131/* Protect against drivers that try to unlink URBs after the device
2132 * is gone, by waiting until all unlinks for @udev are finished.
2133 * Since we don't currently track URBs by device, simply wait until
2134 * nothing is running in the locked region of usb_hcd_unlink_urb().
2135 */
2136void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2137{
2138	spin_lock_irq(&hcd_urb_unlink_lock);
2139	spin_unlock_irq(&hcd_urb_unlink_lock);
2140}
2141
2142/*-------------------------------------------------------------------------*/
2143
2144/* called in any context */
2145int usb_hcd_get_frame_number (struct usb_device *udev)
2146{
2147	struct usb_hcd	*hcd = bus_to_hcd(udev->bus);
2148
2149	if (!HCD_RH_RUNNING(hcd))
2150		return -ESHUTDOWN;
2151	return hcd->driver->get_frame_number (hcd);
2152}
2153
2154/*-------------------------------------------------------------------------*/
2155
2156#ifdef	CONFIG_PM
2157
2158int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2159{
2160	struct usb_hcd	*hcd = container_of(rhdev->bus, struct usb_hcd, self);
2161	int		status;
2162	int		old_state = hcd->state;
2163
2164	dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2165			(PMSG_IS_AUTO(msg) ? "auto-" : ""),
2166			rhdev->do_remote_wakeup);
2167	if (HCD_DEAD(hcd)) {
2168		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2169		return 0;
2170	}
2171
2172	if (!hcd->driver->bus_suspend) {
2173		status = -ENOENT;
2174	} else {
2175		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2176		hcd->state = HC_STATE_QUIESCING;
2177		status = hcd->driver->bus_suspend(hcd);
2178	}
2179	if (status == 0) {
2180		usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2181		hcd->state = HC_STATE_SUSPENDED;
2182
2183		/* Did we race with a root-hub wakeup event? */
2184		if (rhdev->do_remote_wakeup) {
2185			char	buffer[6];
2186
2187			status = hcd->driver->hub_status_data(hcd, buffer);
2188			if (status != 0) {
2189				dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2190				hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2191				status = -EBUSY;
2192			}
2193		}
2194	} else {
2195		spin_lock_irq(&hcd_root_hub_lock);
2196		if (!HCD_DEAD(hcd)) {
2197			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2198			hcd->state = old_state;
2199		}
2200		spin_unlock_irq(&hcd_root_hub_lock);
2201		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2202				"suspend", status);
2203	}
2204	return status;
2205}
2206
2207int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2208{
2209	struct usb_hcd	*hcd = container_of(rhdev->bus, struct usb_hcd, self);
2210	int		status;
2211	int		old_state = hcd->state;
2212
2213	dev_dbg(&rhdev->dev, "usb %sresume\n",
2214			(PMSG_IS_AUTO(msg) ? "auto-" : ""));
2215	if (HCD_DEAD(hcd)) {
2216		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2217		return 0;
2218	}
2219	if (!hcd->driver->bus_resume)
2220		return -ENOENT;
2221	if (HCD_RH_RUNNING(hcd))
2222		return 0;
2223
2224	hcd->state = HC_STATE_RESUMING;
2225	status = hcd->driver->bus_resume(hcd);
2226	clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2227	if (status == 0) {
2228		struct usb_device *udev;
2229		int port1;
2230
2231		spin_lock_irq(&hcd_root_hub_lock);
2232		if (!HCD_DEAD(hcd)) {
2233			usb_set_device_state(rhdev, rhdev->actconfig
2234					? USB_STATE_CONFIGURED
2235					: USB_STATE_ADDRESS);
2236			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2237			hcd->state = HC_STATE_RUNNING;
2238		}
2239		spin_unlock_irq(&hcd_root_hub_lock);
2240
2241		/*
2242		 * Check whether any of the enabled ports on the root hub are
2243		 * unsuspended.  If they are then a TRSMRCY delay is needed
2244		 * (this is what the USB-2 spec calls a "global resume").
2245		 * Otherwise we can skip the delay.
2246		 */
2247		usb_hub_for_each_child(rhdev, port1, udev) {
2248			if (udev->state != USB_STATE_NOTATTACHED &&
2249					!udev->port_is_suspended) {
2250				usleep_range(10000, 11000);	/* TRSMRCY */
2251				break;
2252			}
2253		}
2254	} else {
2255		hcd->state = old_state;
2256		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2257				"resume", status);
2258		if (status != -ESHUTDOWN)
2259			usb_hc_died(hcd);
2260	}
2261	return status;
2262}
2263
2264/* Workqueue routine for root-hub remote wakeup */
2265static void hcd_resume_work(struct work_struct *work)
2266{
2267	struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2268	struct usb_device *udev = hcd->self.root_hub;
2269
2270	usb_remote_wakeup(udev);
2271}
2272
2273/**
2274 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2275 * @hcd: host controller for this root hub
2276 *
2277 * The USB host controller calls this function when its root hub is
2278 * suspended (with the remote wakeup feature enabled) and a remote
2279 * wakeup request is received.  The routine submits a workqueue request
2280 * to resume the root hub (that is, manage its downstream ports again).
2281 */
2282void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2283{
2284	unsigned long flags;
2285
2286	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2287	if (hcd->rh_registered) {
2288		set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2289		queue_work(pm_wq, &hcd->wakeup_work);
2290	}
2291	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2292}
2293EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2294
2295#endif	/* CONFIG_PM */
2296
2297/*-------------------------------------------------------------------------*/
2298
2299#ifdef	CONFIG_USB_OTG
2300
2301/**
2302 * usb_bus_start_enum - start immediate enumeration (for OTG)
2303 * @bus: the bus (must use hcd framework)
2304 * @port_num: 1-based number of port; usually bus->otg_port
2305 * Context: in_interrupt()
2306 *
2307 * Starts enumeration, with an immediate reset followed later by
2308 * hub_wq identifying and possibly configuring the device.
2309 * This is needed by OTG controller drivers, where it helps meet
2310 * HNP protocol timing requirements for starting a port reset.
2311 *
2312 * Return: 0 if successful.
2313 */
2314int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2315{
2316	struct usb_hcd		*hcd;
2317	int			status = -EOPNOTSUPP;
2318
2319	/* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2320	 * boards with root hubs hooked up to internal devices (instead of
2321	 * just the OTG port) may need more attention to resetting...
2322	 */
2323	hcd = container_of (bus, struct usb_hcd, self);
2324	if (port_num && hcd->driver->start_port_reset)
2325		status = hcd->driver->start_port_reset(hcd, port_num);
2326
2327	/* allocate hub_wq shortly after (first) root port reset finishes;
2328	 * it may issue others, until at least 50 msecs have passed.
2329	 */
2330	if (status == 0)
2331		mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2332	return status;
2333}
2334EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2335
2336#endif
2337
2338/*-------------------------------------------------------------------------*/
2339
2340/**
2341 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2342 * @irq: the IRQ being raised
2343 * @__hcd: pointer to the HCD whose IRQ is being signaled
2344 *
2345 * If the controller isn't HALTed, calls the driver's irq handler.
2346 * Checks whether the controller is now dead.
2347 *
2348 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2349 */
2350irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2351{
2352	struct usb_hcd		*hcd = __hcd;
2353	irqreturn_t		rc;
2354
2355	if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2356		rc = IRQ_NONE;
2357	else if (hcd->driver->irq(hcd) == IRQ_NONE)
2358		rc = IRQ_NONE;
2359	else
2360		rc = IRQ_HANDLED;
2361
2362	return rc;
2363}
2364EXPORT_SYMBOL_GPL(usb_hcd_irq);
2365
2366/*-------------------------------------------------------------------------*/
2367
2368/**
2369 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2370 * @hcd: pointer to the HCD representing the controller
2371 *
2372 * This is called by bus glue to report a USB host controller that died
2373 * while operations may still have been pending.  It's called automatically
2374 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2375 *
2376 * Only call this function with the primary HCD.
2377 */
2378void usb_hc_died (struct usb_hcd *hcd)
2379{
2380	unsigned long flags;
2381
2382	dev_err (hcd->self.controller, "HC died; cleaning up\n");
2383
2384	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2385	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2386	set_bit(HCD_FLAG_DEAD, &hcd->flags);
2387	if (hcd->rh_registered) {
2388		clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2389
2390		/* make hub_wq clean up old urbs and devices */
2391		usb_set_device_state (hcd->self.root_hub,
2392				USB_STATE_NOTATTACHED);
2393		usb_kick_hub_wq(hcd->self.root_hub);
2394	}
2395	if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2396		hcd = hcd->shared_hcd;
2397		if (hcd->rh_registered) {
2398			clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2399
2400			/* make hub_wq clean up old urbs and devices */
2401			usb_set_device_state(hcd->self.root_hub,
2402					USB_STATE_NOTATTACHED);
2403			usb_kick_hub_wq(hcd->self.root_hub);
2404		}
2405	}
2406	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2407	/* Make sure that the other roothub is also deallocated. */
2408}
2409EXPORT_SYMBOL_GPL (usb_hc_died);
2410
2411/*-------------------------------------------------------------------------*/
2412
2413static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2414{
2415
2416	spin_lock_init(&bh->lock);
2417	INIT_LIST_HEAD(&bh->head);
2418	tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2419}
2420
2421/**
2422 * usb_create_shared_hcd - create and initialize an HCD structure
2423 * @driver: HC driver that will use this hcd
2424 * @dev: device for this HC, stored in hcd->self.controller
2425 * @bus_name: value to store in hcd->self.bus_name
2426 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2427 *              PCI device.  Only allocate certain resources for the primary HCD
2428 * Context: !in_interrupt()
2429 *
2430 * Allocate a struct usb_hcd, with extra space at the end for the
2431 * HC driver's private data.  Initialize the generic members of the
2432 * hcd structure.
2433 *
2434 * Return: On success, a pointer to the created and initialized HCD structure.
2435 * On failure (e.g. if memory is unavailable), %NULL.
2436 */
2437struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2438		struct device *dev, const char *bus_name,
2439		struct usb_hcd *primary_hcd)
2440{
2441	struct usb_hcd *hcd;
2442
2443	hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2444	if (!hcd) {
2445		dev_dbg (dev, "hcd alloc failed\n");
2446		return NULL;
2447	}
2448	if (primary_hcd == NULL) {
2449		hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2450				GFP_KERNEL);
2451		if (!hcd->address0_mutex) {
2452			kfree(hcd);
2453			dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2454			return NULL;
2455		}
2456		mutex_init(hcd->address0_mutex);
2457		hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2458				GFP_KERNEL);
2459		if (!hcd->bandwidth_mutex) {
2460			kfree(hcd);
2461			dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2462			return NULL;
2463		}
2464		mutex_init(hcd->bandwidth_mutex);
2465		dev_set_drvdata(dev, hcd);
2466	} else {
2467		mutex_lock(&usb_port_peer_mutex);
2468		hcd->address0_mutex = primary_hcd->address0_mutex;
2469		hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2470		hcd->primary_hcd = primary_hcd;
2471		primary_hcd->primary_hcd = primary_hcd;
2472		hcd->shared_hcd = primary_hcd;
2473		primary_hcd->shared_hcd = hcd;
2474		mutex_unlock(&usb_port_peer_mutex);
2475	}
2476
2477	kref_init(&hcd->kref);
2478
2479	usb_bus_init(&hcd->self);
2480	hcd->self.controller = dev;
2481	hcd->self.bus_name = bus_name;
2482	hcd->self.uses_dma = (dev->dma_mask != NULL);
2483
2484	init_timer(&hcd->rh_timer);
2485	hcd->rh_timer.function = rh_timer_func;
2486	hcd->rh_timer.data = (unsigned long) hcd;
2487#ifdef CONFIG_PM
2488	INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2489#endif
2490
2491	hcd->driver = driver;
2492	hcd->speed = driver->flags & HCD_MASK;
2493	hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2494			"USB Host Controller";
2495	return hcd;
2496}
2497EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2498
2499/**
2500 * usb_create_hcd - create and initialize an HCD structure
2501 * @driver: HC driver that will use this hcd
2502 * @dev: device for this HC, stored in hcd->self.controller
2503 * @bus_name: value to store in hcd->self.bus_name
2504 * Context: !in_interrupt()
2505 *
2506 * Allocate a struct usb_hcd, with extra space at the end for the
2507 * HC driver's private data.  Initialize the generic members of the
2508 * hcd structure.
2509 *
2510 * Return: On success, a pointer to the created and initialized HCD
2511 * structure. On failure (e.g. if memory is unavailable), %NULL.
2512 */
2513struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2514		struct device *dev, const char *bus_name)
2515{
2516	return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2517}
2518EXPORT_SYMBOL_GPL(usb_create_hcd);
2519
2520/*
2521 * Roothubs that share one PCI device must also share the bandwidth mutex.
2522 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2523 * deallocated.
2524 *
2525 * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2526 * freed.  When hcd_release() is called for either hcd in a peer set
2527 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers to
2528 * block new peering attempts
2529 */
2530static void hcd_release(struct kref *kref)
2531{
2532	struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2533
2534	mutex_lock(&usb_port_peer_mutex);
2535	if (usb_hcd_is_primary_hcd(hcd)) {
2536		kfree(hcd->address0_mutex);
2537		kfree(hcd->bandwidth_mutex);
2538	}
2539	if (hcd->shared_hcd) {
2540		struct usb_hcd *peer = hcd->shared_hcd;
2541
2542		peer->shared_hcd = NULL;
2543		if (peer->primary_hcd == hcd)
2544			peer->primary_hcd = NULL;
2545	}
2546	mutex_unlock(&usb_port_peer_mutex);
2547	kfree(hcd);
2548}
2549
2550struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2551{
2552	if (hcd)
2553		kref_get (&hcd->kref);
2554	return hcd;
2555}
2556EXPORT_SYMBOL_GPL(usb_get_hcd);
2557
2558void usb_put_hcd (struct usb_hcd *hcd)
2559{
2560	if (hcd)
2561		kref_put (&hcd->kref, hcd_release);
2562}
2563EXPORT_SYMBOL_GPL(usb_put_hcd);
2564
2565int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2566{
2567	if (!hcd->primary_hcd)
2568		return 1;
2569	return hcd == hcd->primary_hcd;
2570}
2571EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2572
2573int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2574{
2575	if (!hcd->driver->find_raw_port_number)
2576		return port1;
2577
2578	return hcd->driver->find_raw_port_number(hcd, port1);
2579}
2580
2581static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2582		unsigned int irqnum, unsigned long irqflags)
2583{
2584	int retval;
2585
2586	if (hcd->driver->irq) {
2587
2588		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2589				hcd->driver->description, hcd->self.busnum);
2590		retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2591				hcd->irq_descr, hcd);
2592		if (retval != 0) {
2593			dev_err(hcd->self.controller,
2594					"request interrupt %d failed\n",
2595					irqnum);
2596			return retval;
2597		}
2598		hcd->irq = irqnum;
2599		dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2600				(hcd->driver->flags & HCD_MEMORY) ?
2601					"io mem" : "io base",
2602					(unsigned long long)hcd->rsrc_start);
2603	} else {
2604		hcd->irq = 0;
2605		if (hcd->rsrc_start)
2606			dev_info(hcd->self.controller, "%s 0x%08llx\n",
2607					(hcd->driver->flags & HCD_MEMORY) ?
2608					"io mem" : "io base",
2609					(unsigned long long)hcd->rsrc_start);
2610	}
2611	return 0;
2612}
2613
2614/*
2615 * Before we free this root hub, flush in-flight peering attempts
2616 * and disable peer lookups
2617 */
2618static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2619{
2620	struct usb_device *rhdev;
2621
2622	mutex_lock(&usb_port_peer_mutex);
2623	rhdev = hcd->self.root_hub;
2624	hcd->self.root_hub = NULL;
2625	mutex_unlock(&usb_port_peer_mutex);
2626	usb_put_dev(rhdev);
2627}
2628
2629/**
2630 * usb_add_hcd - finish generic HCD structure initialization and register
2631 * @hcd: the usb_hcd structure to initialize
2632 * @irqnum: Interrupt line to allocate
2633 * @irqflags: Interrupt type flags
2634 *
2635 * Finish the remaining parts of generic HCD initialization: allocate the
2636 * buffers of consistent memory, register the bus, request the IRQ line,
2637 * and call the driver's reset() and start() routines.
2638 */
2639int usb_add_hcd(struct usb_hcd *hcd,
2640		unsigned int irqnum, unsigned long irqflags)
2641{
2642	int retval;
2643	struct usb_device *rhdev;
2644
2645	if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->usb_phy) {
2646		struct usb_phy *phy = usb_get_phy_dev(hcd->self.controller, 0);
2647
2648		if (IS_ERR(phy)) {
2649			retval = PTR_ERR(phy);
2650			if (retval == -EPROBE_DEFER)
2651				return retval;
2652		} else {
2653			retval = usb_phy_init(phy);
2654			if (retval) {
2655				usb_put_phy(phy);
2656				return retval;
2657			}
2658			hcd->usb_phy = phy;
2659			hcd->remove_phy = 1;
2660		}
2661	}
2662
2663	if (IS_ENABLED(CONFIG_GENERIC_PHY) && !hcd->phy) {
2664		struct phy *phy = phy_get(hcd->self.controller, "usb");
2665
2666		if (IS_ERR(phy)) {
2667			retval = PTR_ERR(phy);
2668			if (retval == -EPROBE_DEFER)
2669				goto err_phy;
2670		} else {
2671			retval = phy_init(phy);
2672			if (retval) {
2673				phy_put(phy);
2674				goto err_phy;
2675			}
2676			retval = phy_power_on(phy);
2677			if (retval) {
2678				phy_exit(phy);
2679				phy_put(phy);
2680				goto err_phy;
2681			}
2682			hcd->phy = phy;
2683			hcd->remove_phy = 1;
2684		}
2685	}
2686
2687	dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2688
2689	/* Keep old behaviour if authorized_default is not in [0, 1]. */
2690	if (authorized_default < 0 || authorized_default > 1)
2691		hcd->authorized_default = hcd->wireless ? 0 : 1;
2692	else
2693		hcd->authorized_default = authorized_default;
2694	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2695
2696	/* HC is in reset state, but accessible.  Now do the one-time init,
2697	 * bottom up so that hcds can customize the root hubs before hub_wq
2698	 * starts talking to them.  (Note, bus id is assigned early too.)
2699	 */
2700	if ((retval = hcd_buffer_create(hcd)) != 0) {
2701		dev_dbg(hcd->self.controller, "pool alloc failed\n");
2702		goto err_create_buf;
2703	}
2704
2705	if ((retval = usb_register_bus(&hcd->self)) < 0)
2706		goto err_register_bus;
2707
2708	if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
2709		dev_err(hcd->self.controller, "unable to allocate root hub\n");
2710		retval = -ENOMEM;
2711		goto err_allocate_root_hub;
2712	}
2713	mutex_lock(&usb_port_peer_mutex);
2714	hcd->self.root_hub = rhdev;
2715	mutex_unlock(&usb_port_peer_mutex);
2716
2717	switch (hcd->speed) {
2718	case HCD_USB11:
2719		rhdev->speed = USB_SPEED_FULL;
2720		break;
2721	case HCD_USB2:
2722		rhdev->speed = USB_SPEED_HIGH;
2723		break;
2724	case HCD_USB25:
2725		rhdev->speed = USB_SPEED_WIRELESS;
2726		break;
2727	case HCD_USB3:
2728		rhdev->speed = USB_SPEED_SUPER;
2729		break;
2730	default:
2731		retval = -EINVAL;
2732		goto err_set_rh_speed;
2733	}
2734
2735	/* wakeup flag init defaults to "everything works" for root hubs,
2736	 * but drivers can override it in reset() if needed, along with
2737	 * recording the overall controller's system wakeup capability.
2738	 */
2739	device_set_wakeup_capable(&rhdev->dev, 1);
2740
2741	/* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2742	 * registered.  But since the controller can die at any time,
2743	 * let's initialize the flag before touching the hardware.
2744	 */
2745	set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2746
2747	/* "reset" is misnamed; its role is now one-time init. the controller
2748	 * should already have been reset (and boot firmware kicked off etc).
2749	 */
2750	if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
2751		dev_err(hcd->self.controller, "can't setup: %d\n", retval);
2752		goto err_hcd_driver_setup;
2753	}
2754	hcd->rh_pollable = 1;
2755
2756	/* NOTE: root hub and controller capabilities may not be the same */
2757	if (device_can_wakeup(hcd->self.controller)
2758			&& device_can_wakeup(&hcd->self.root_hub->dev))
2759		dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2760
2761	/* initialize tasklets */
2762	init_giveback_urb_bh(&hcd->high_prio_bh);
2763	init_giveback_urb_bh(&hcd->low_prio_bh);
2764
2765	/* enable irqs just before we start the controller,
2766	 * if the BIOS provides legacy PCI irqs.
2767	 */
2768	if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2769		retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2770		if (retval)
2771			goto err_request_irq;
2772	}
2773
2774	hcd->state = HC_STATE_RUNNING;
2775	retval = hcd->driver->start(hcd);
2776	if (retval < 0) {
2777		dev_err(hcd->self.controller, "startup error %d\n", retval);
2778		goto err_hcd_driver_start;
2779	}
2780
2781	/* starting here, usbcore will pay attention to this root hub */
2782	if ((retval = register_root_hub(hcd)) != 0)
2783		goto err_register_root_hub;
2784
2785	retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2786	if (retval < 0) {
2787		printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2788		       retval);
2789		goto error_create_attr_group;
2790	}
2791	if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2792		usb_hcd_poll_rh_status(hcd);
2793
2794	return retval;
2795
2796error_create_attr_group:
2797	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2798	if (HC_IS_RUNNING(hcd->state))
2799		hcd->state = HC_STATE_QUIESCING;
2800	spin_lock_irq(&hcd_root_hub_lock);
2801	hcd->rh_registered = 0;
2802	spin_unlock_irq(&hcd_root_hub_lock);
2803
2804#ifdef CONFIG_PM
2805	cancel_work_sync(&hcd->wakeup_work);
2806#endif
2807	mutex_lock(&usb_bus_list_lock);
2808	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2809	mutex_unlock(&usb_bus_list_lock);
2810err_register_root_hub:
2811	hcd->rh_pollable = 0;
2812	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2813	del_timer_sync(&hcd->rh_timer);
2814	hcd->driver->stop(hcd);
2815	hcd->state = HC_STATE_HALT;
2816	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2817	del_timer_sync(&hcd->rh_timer);
2818err_hcd_driver_start:
2819	if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2820		free_irq(irqnum, hcd);
2821err_request_irq:
2822err_hcd_driver_setup:
2823err_set_rh_speed:
2824	usb_put_invalidate_rhdev(hcd);
2825err_allocate_root_hub:
2826	usb_deregister_bus(&hcd->self);
2827err_register_bus:
2828	hcd_buffer_destroy(hcd);
2829err_create_buf:
2830	if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
2831		phy_power_off(hcd->phy);
2832		phy_exit(hcd->phy);
2833		phy_put(hcd->phy);
2834		hcd->phy = NULL;
2835	}
2836err_phy:
2837	if (hcd->remove_phy && hcd->usb_phy) {
2838		usb_phy_shutdown(hcd->usb_phy);
2839		usb_put_phy(hcd->usb_phy);
2840		hcd->usb_phy = NULL;
2841	}
2842	return retval;
2843}
2844EXPORT_SYMBOL_GPL(usb_add_hcd);
2845
2846/**
2847 * usb_remove_hcd - shutdown processing for generic HCDs
2848 * @hcd: the usb_hcd structure to remove
2849 * Context: !in_interrupt()
2850 *
2851 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2852 * invoking the HCD's stop() method.
2853 */
2854void usb_remove_hcd(struct usb_hcd *hcd)
2855{
2856	struct usb_device *rhdev = hcd->self.root_hub;
2857
2858	dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2859
2860	usb_get_dev(rhdev);
2861	sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2862
2863	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2864	if (HC_IS_RUNNING (hcd->state))
2865		hcd->state = HC_STATE_QUIESCING;
2866
2867	dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2868	spin_lock_irq (&hcd_root_hub_lock);
2869	hcd->rh_registered = 0;
2870	spin_unlock_irq (&hcd_root_hub_lock);
2871
2872#ifdef CONFIG_PM
2873	cancel_work_sync(&hcd->wakeup_work);
2874#endif
2875
2876	mutex_lock(&usb_bus_list_lock);
2877	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2878	mutex_unlock(&usb_bus_list_lock);
2879
2880	/*
2881	 * tasklet_kill() isn't needed here because:
2882	 * - driver's disconnect() called from usb_disconnect() should
2883	 *   make sure its URBs are completed during the disconnect()
2884	 *   callback
2885	 *
2886	 * - it is too late to run complete() here since driver may have
2887	 *   been removed already now
2888	 */
2889
2890	/* Prevent any more root-hub status calls from the timer.
2891	 * The HCD might still restart the timer (if a port status change
2892	 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2893	 * the hub_status_data() callback.
2894	 */
2895	hcd->rh_pollable = 0;
2896	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2897	del_timer_sync(&hcd->rh_timer);
2898
2899	hcd->driver->stop(hcd);
2900	hcd->state = HC_STATE_HALT;
2901
2902	/* In case the HCD restarted the timer, stop it again. */
2903	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2904	del_timer_sync(&hcd->rh_timer);
2905
2906	if (usb_hcd_is_primary_hcd(hcd)) {
2907		if (hcd->irq > 0)
2908			free_irq(hcd->irq, hcd);
2909	}
2910
2911	usb_deregister_bus(&hcd->self);
2912	hcd_buffer_destroy(hcd);
2913
2914	if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
2915		phy_power_off(hcd->phy);
2916		phy_exit(hcd->phy);
2917		phy_put(hcd->phy);
2918		hcd->phy = NULL;
2919	}
2920	if (hcd->remove_phy && hcd->usb_phy) {
2921		usb_phy_shutdown(hcd->usb_phy);
2922		usb_put_phy(hcd->usb_phy);
2923		hcd->usb_phy = NULL;
2924	}
2925
2926	usb_put_invalidate_rhdev(hcd);
2927}
2928EXPORT_SYMBOL_GPL(usb_remove_hcd);
2929
2930void
2931usb_hcd_platform_shutdown(struct platform_device *dev)
2932{
2933	struct usb_hcd *hcd = platform_get_drvdata(dev);
2934
2935	if (hcd->driver->shutdown)
2936		hcd->driver->shutdown(hcd);
2937}
2938EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2939
2940/*-------------------------------------------------------------------------*/
2941
2942#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2943
2944struct usb_mon_operations *mon_ops;
2945
2946/*
2947 * The registration is unlocked.
2948 * We do it this way because we do not want to lock in hot paths.
2949 *
2950 * Notice that the code is minimally error-proof. Because usbmon needs
2951 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2952 */
2953
2954int usb_mon_register (struct usb_mon_operations *ops)
2955{
2956
2957	if (mon_ops)
2958		return -EBUSY;
2959
2960	mon_ops = ops;
2961	mb();
2962	return 0;
2963}
2964EXPORT_SYMBOL_GPL (usb_mon_register);
2965
2966void usb_mon_deregister (void)
2967{
2968
2969	if (mon_ops == NULL) {
2970		printk(KERN_ERR "USB: monitor was not registered\n");
2971		return;
2972	}
2973	mon_ops = NULL;
2974	mb();
2975}
2976EXPORT_SYMBOL_GPL (usb_mon_deregister);
2977
2978#endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
2979