1/*
2 * zs.c: Serial port driver for IOASIC DECstations.
3 *
4 * Derived from drivers/sbus/char/sunserial.c by Paul Mackerras.
5 * Derived from drivers/macintosh/macserial.c by Harald Koerfgen.
6 *
7 * DECstation changes
8 * Copyright (C) 1998-2000 Harald Koerfgen
9 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
10 *
11 * For the rest of the code the original Copyright applies:
12 * Copyright (C) 1996 Paul Mackerras (Paul.Mackerras@cs.anu.edu.au)
13 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
14 *
15 *
16 * Note: for IOASIC systems the wiring is as follows:
17 *
18 * mouse/keyboard:
19 * DIN-7 MJ-4  signal        SCC
20 * 2     1     TxD       <-  A.TxD
21 * 3     4     RxD       ->  A.RxD
22 *
23 * EIA-232/EIA-423:
24 * DB-25 MMJ-6 signal        SCC
25 * 2     2     TxD       <-  B.TxD
26 * 3     5     RxD       ->  B.RxD
27 * 4           RTS       <- ~A.RTS
28 * 5           CTS       -> ~B.CTS
29 * 6     6     DSR       -> ~A.SYNC
30 * 8           CD        -> ~B.DCD
31 * 12          DSRS(DCE) -> ~A.CTS  (*)
32 * 15          TxC       ->  B.TxC
33 * 17          RxC       ->  B.RxC
34 * 20    1     DTR       <- ~A.DTR
35 * 22          RI        -> ~A.DCD
36 * 23          DSRS(DTE) <- ~B.RTS
37 *
38 * (*) EIA-232 defines the signal at this pin to be SCD, while DSRS(DCE)
39 *     is shared with DSRS(DTE) at pin 23.
40 *
41 * As you can immediately notice the wiring of the RTS, DTR and DSR signals
42 * is a bit odd.  This makes the handling of port B unnecessarily
43 * complicated and prevents the use of some automatic modes of operation.
44 */
45
46#if defined(CONFIG_SERIAL_ZS_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
47#define SUPPORT_SYSRQ
48#endif
49
50#include <linux/bug.h>
51#include <linux/console.h>
52#include <linux/delay.h>
53#include <linux/errno.h>
54#include <linux/init.h>
55#include <linux/interrupt.h>
56#include <linux/io.h>
57#include <linux/ioport.h>
58#include <linux/irqflags.h>
59#include <linux/kernel.h>
60#include <linux/module.h>
61#include <linux/major.h>
62#include <linux/serial.h>
63#include <linux/serial_core.h>
64#include <linux/spinlock.h>
65#include <linux/sysrq.h>
66#include <linux/tty.h>
67#include <linux/tty_flip.h>
68#include <linux/types.h>
69
70#include <linux/atomic.h>
71
72#include <asm/dec/interrupts.h>
73#include <asm/dec/ioasic_addrs.h>
74#include <asm/dec/system.h>
75
76#include "zs.h"
77
78
79MODULE_AUTHOR("Maciej W. Rozycki <macro@linux-mips.org>");
80MODULE_DESCRIPTION("DECstation Z85C30 serial driver");
81MODULE_LICENSE("GPL");
82
83
84static char zs_name[] __initdata = "DECstation Z85C30 serial driver version ";
85static char zs_version[] __initdata = "0.10";
86
87/*
88 * It would be nice to dynamically allocate everything that
89 * depends on ZS_NUM_SCCS, so we could support any number of
90 * Z85C30s, but for now...
91 */
92#define ZS_NUM_SCCS	2		/* Max # of ZS chips supported.  */
93#define ZS_NUM_CHAN	2		/* 2 channels per chip.  */
94#define ZS_CHAN_A	0		/* Index of the channel A.  */
95#define ZS_CHAN_B	1		/* Index of the channel B.  */
96#define ZS_CHAN_IO_SIZE 8		/* IOMEM space size.  */
97#define ZS_CHAN_IO_STRIDE 4		/* Register alignment.  */
98#define ZS_CHAN_IO_OFFSET 1		/* The SCC resides on the high byte
99					   of the 16-bit IOBUS.  */
100#define ZS_CLOCK        7372800 	/* Z85C30 PCLK input clock rate.  */
101
102#define to_zport(uport) container_of(uport, struct zs_port, port)
103
104struct zs_parms {
105	resource_size_t scc[ZS_NUM_SCCS];
106	int irq[ZS_NUM_SCCS];
107};
108
109static struct zs_scc zs_sccs[ZS_NUM_SCCS];
110
111static u8 zs_init_regs[ZS_NUM_REGS] __initdata = {
112	0,				/* write 0 */
113	PAR_SPEC,			/* write 1 */
114	0,				/* write 2 */
115	0,				/* write 3 */
116	X16CLK | SB1,			/* write 4 */
117	0,				/* write 5 */
118	0, 0, 0,			/* write 6, 7, 8 */
119	MIE | DLC | NV,			/* write 9 */
120	NRZ,				/* write 10 */
121	TCBR | RCBR,			/* write 11 */
122	0, 0,				/* BRG time constant, write 12 + 13 */
123	BRSRC | BRENABL,		/* write 14 */
124	0,				/* write 15 */
125};
126
127/*
128 * Debugging.
129 */
130#undef ZS_DEBUG_REGS
131
132
133/*
134 * Reading and writing Z85C30 registers.
135 */
136static void recovery_delay(void)
137{
138	udelay(2);
139}
140
141static u8 read_zsreg(struct zs_port *zport, int reg)
142{
143	void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET;
144	u8 retval;
145
146	if (reg != 0) {
147		writeb(reg & 0xf, control);
148		fast_iob();
149		recovery_delay();
150	}
151	retval = readb(control);
152	recovery_delay();
153	return retval;
154}
155
156static void write_zsreg(struct zs_port *zport, int reg, u8 value)
157{
158	void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET;
159
160	if (reg != 0) {
161		writeb(reg & 0xf, control);
162		fast_iob(); recovery_delay();
163	}
164	writeb(value, control);
165	fast_iob();
166	recovery_delay();
167	return;
168}
169
170static u8 read_zsdata(struct zs_port *zport)
171{
172	void __iomem *data = zport->port.membase +
173			     ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET;
174	u8 retval;
175
176	retval = readb(data);
177	recovery_delay();
178	return retval;
179}
180
181static void write_zsdata(struct zs_port *zport, u8 value)
182{
183	void __iomem *data = zport->port.membase +
184			     ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET;
185
186	writeb(value, data);
187	fast_iob();
188	recovery_delay();
189	return;
190}
191
192#ifdef ZS_DEBUG_REGS
193void zs_dump(void)
194{
195	struct zs_port *zport;
196	int i, j;
197
198	for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) {
199		zport = &zs_sccs[i / ZS_NUM_CHAN].zport[i % ZS_NUM_CHAN];
200
201		if (!zport->scc)
202			continue;
203
204		for (j = 0; j < 16; j++)
205			printk("W%-2d = 0x%02x\t", j, zport->regs[j]);
206		printk("\n");
207		for (j = 0; j < 16; j++)
208			printk("R%-2d = 0x%02x\t", j, read_zsreg(zport, j));
209		printk("\n\n");
210	}
211}
212#endif
213
214
215static void zs_spin_lock_cond_irq(spinlock_t *lock, int irq)
216{
217	if (irq)
218		spin_lock_irq(lock);
219	else
220		spin_lock(lock);
221}
222
223static void zs_spin_unlock_cond_irq(spinlock_t *lock, int irq)
224{
225	if (irq)
226		spin_unlock_irq(lock);
227	else
228		spin_unlock(lock);
229}
230
231static int zs_receive_drain(struct zs_port *zport)
232{
233	int loops = 10000;
234
235	while ((read_zsreg(zport, R0) & Rx_CH_AV) && --loops)
236		read_zsdata(zport);
237	return loops;
238}
239
240static int zs_transmit_drain(struct zs_port *zport, int irq)
241{
242	struct zs_scc *scc = zport->scc;
243	int loops = 10000;
244
245	while (!(read_zsreg(zport, R0) & Tx_BUF_EMP) && --loops) {
246		zs_spin_unlock_cond_irq(&scc->zlock, irq);
247		udelay(2);
248		zs_spin_lock_cond_irq(&scc->zlock, irq);
249	}
250	return loops;
251}
252
253static int zs_line_drain(struct zs_port *zport, int irq)
254{
255	struct zs_scc *scc = zport->scc;
256	int loops = 10000;
257
258	while (!(read_zsreg(zport, R1) & ALL_SNT) && --loops) {
259		zs_spin_unlock_cond_irq(&scc->zlock, irq);
260		udelay(2);
261		zs_spin_lock_cond_irq(&scc->zlock, irq);
262	}
263	return loops;
264}
265
266
267static void load_zsregs(struct zs_port *zport, u8 *regs, int irq)
268{
269	/* Let the current transmission finish.  */
270	zs_line_drain(zport, irq);
271	/* Load 'em up.  */
272	write_zsreg(zport, R3, regs[3] & ~RxENABLE);
273	write_zsreg(zport, R5, regs[5] & ~TxENAB);
274	write_zsreg(zport, R4, regs[4]);
275	write_zsreg(zport, R9, regs[9]);
276	write_zsreg(zport, R1, regs[1]);
277	write_zsreg(zport, R2, regs[2]);
278	write_zsreg(zport, R10, regs[10]);
279	write_zsreg(zport, R14, regs[14] & ~BRENABL);
280	write_zsreg(zport, R11, regs[11]);
281	write_zsreg(zport, R12, regs[12]);
282	write_zsreg(zport, R13, regs[13]);
283	write_zsreg(zport, R14, regs[14]);
284	write_zsreg(zport, R15, regs[15]);
285	if (regs[3] & RxENABLE)
286		write_zsreg(zport, R3, regs[3]);
287	if (regs[5] & TxENAB)
288		write_zsreg(zport, R5, regs[5]);
289	return;
290}
291
292
293/*
294 * Status handling routines.
295 */
296
297/*
298 * zs_tx_empty() -- get the transmitter empty status
299 *
300 * Purpose: Let user call ioctl() to get info when the UART physically
301 * 	    is emptied.  On bus types like RS485, the transmitter must
302 * 	    release the bus after transmitting.  This must be done when
303 * 	    the transmit shift register is empty, not be done when the
304 * 	    transmit holding register is empty.  This functionality
305 * 	    allows an RS485 driver to be written in user space.
306 */
307static unsigned int zs_tx_empty(struct uart_port *uport)
308{
309	struct zs_port *zport = to_zport(uport);
310	struct zs_scc *scc = zport->scc;
311	unsigned long flags;
312	u8 status;
313
314	spin_lock_irqsave(&scc->zlock, flags);
315	status = read_zsreg(zport, R1);
316	spin_unlock_irqrestore(&scc->zlock, flags);
317
318	return status & ALL_SNT ? TIOCSER_TEMT : 0;
319}
320
321static unsigned int zs_raw_get_ab_mctrl(struct zs_port *zport_a,
322					struct zs_port *zport_b)
323{
324	u8 status_a, status_b;
325	unsigned int mctrl;
326
327	status_a = read_zsreg(zport_a, R0);
328	status_b = read_zsreg(zport_b, R0);
329
330	mctrl = ((status_b & CTS) ? TIOCM_CTS : 0) |
331		((status_b & DCD) ? TIOCM_CAR : 0) |
332		((status_a & DCD) ? TIOCM_RNG : 0) |
333		((status_a & SYNC_HUNT) ? TIOCM_DSR : 0);
334
335	return mctrl;
336}
337
338static unsigned int zs_raw_get_mctrl(struct zs_port *zport)
339{
340	struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A];
341
342	return zport != zport_a ? zs_raw_get_ab_mctrl(zport_a, zport) : 0;
343}
344
345static unsigned int zs_raw_xor_mctrl(struct zs_port *zport)
346{
347	struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A];
348	unsigned int mmask, mctrl, delta;
349	u8 mask_a, mask_b;
350
351	if (zport == zport_a)
352		return 0;
353
354	mask_a = zport_a->regs[15];
355	mask_b = zport->regs[15];
356
357	mmask = ((mask_b & CTSIE) ? TIOCM_CTS : 0) |
358		((mask_b & DCDIE) ? TIOCM_CAR : 0) |
359		((mask_a & DCDIE) ? TIOCM_RNG : 0) |
360		((mask_a & SYNCIE) ? TIOCM_DSR : 0);
361
362	mctrl = zport->mctrl;
363	if (mmask) {
364		mctrl &= ~mmask;
365		mctrl |= zs_raw_get_ab_mctrl(zport_a, zport) & mmask;
366	}
367
368	delta = mctrl ^ zport->mctrl;
369	if (delta)
370		zport->mctrl = mctrl;
371
372	return delta;
373}
374
375static unsigned int zs_get_mctrl(struct uart_port *uport)
376{
377	struct zs_port *zport = to_zport(uport);
378	struct zs_scc *scc = zport->scc;
379	unsigned int mctrl;
380
381	spin_lock(&scc->zlock);
382	mctrl = zs_raw_get_mctrl(zport);
383	spin_unlock(&scc->zlock);
384
385	return mctrl;
386}
387
388static void zs_set_mctrl(struct uart_port *uport, unsigned int mctrl)
389{
390	struct zs_port *zport = to_zport(uport);
391	struct zs_scc *scc = zport->scc;
392	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
393	u8 oldloop, newloop;
394
395	spin_lock(&scc->zlock);
396	if (zport != zport_a) {
397		if (mctrl & TIOCM_DTR)
398			zport_a->regs[5] |= DTR;
399		else
400			zport_a->regs[5] &= ~DTR;
401		if (mctrl & TIOCM_RTS)
402			zport_a->regs[5] |= RTS;
403		else
404			zport_a->regs[5] &= ~RTS;
405		write_zsreg(zport_a, R5, zport_a->regs[5]);
406	}
407
408	/* Rarely modified, so don't poke at hardware unless necessary. */
409	oldloop = zport->regs[14];
410	newloop = oldloop;
411	if (mctrl & TIOCM_LOOP)
412		newloop |= LOOPBAK;
413	else
414		newloop &= ~LOOPBAK;
415	if (newloop != oldloop) {
416		zport->regs[14] = newloop;
417		write_zsreg(zport, R14, zport->regs[14]);
418	}
419	spin_unlock(&scc->zlock);
420}
421
422static void zs_raw_stop_tx(struct zs_port *zport)
423{
424	write_zsreg(zport, R0, RES_Tx_P);
425	zport->tx_stopped = 1;
426}
427
428static void zs_stop_tx(struct uart_port *uport)
429{
430	struct zs_port *zport = to_zport(uport);
431	struct zs_scc *scc = zport->scc;
432
433	spin_lock(&scc->zlock);
434	zs_raw_stop_tx(zport);
435	spin_unlock(&scc->zlock);
436}
437
438static void zs_raw_transmit_chars(struct zs_port *);
439
440static void zs_start_tx(struct uart_port *uport)
441{
442	struct zs_port *zport = to_zport(uport);
443	struct zs_scc *scc = zport->scc;
444
445	spin_lock(&scc->zlock);
446	if (zport->tx_stopped) {
447		zs_transmit_drain(zport, 0);
448		zport->tx_stopped = 0;
449		zs_raw_transmit_chars(zport);
450	}
451	spin_unlock(&scc->zlock);
452}
453
454static void zs_stop_rx(struct uart_port *uport)
455{
456	struct zs_port *zport = to_zport(uport);
457	struct zs_scc *scc = zport->scc;
458	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
459
460	spin_lock(&scc->zlock);
461	zport->regs[15] &= ~BRKIE;
462	zport->regs[1] &= ~(RxINT_MASK | TxINT_ENAB);
463	zport->regs[1] |= RxINT_DISAB;
464
465	if (zport != zport_a) {
466		/* A-side DCD tracks RI and SYNC tracks DSR.  */
467		zport_a->regs[15] &= ~(DCDIE | SYNCIE);
468		write_zsreg(zport_a, R15, zport_a->regs[15]);
469		if (!(zport_a->regs[15] & BRKIE)) {
470			zport_a->regs[1] &= ~EXT_INT_ENAB;
471			write_zsreg(zport_a, R1, zport_a->regs[1]);
472		}
473
474		/* This-side DCD tracks DCD and CTS tracks CTS.  */
475		zport->regs[15] &= ~(DCDIE | CTSIE);
476		zport->regs[1] &= ~EXT_INT_ENAB;
477	} else {
478		/* DCD tracks RI and SYNC tracks DSR for the B side.  */
479		if (!(zport->regs[15] & (DCDIE | SYNCIE)))
480			zport->regs[1] &= ~EXT_INT_ENAB;
481	}
482
483	write_zsreg(zport, R15, zport->regs[15]);
484	write_zsreg(zport, R1, zport->regs[1]);
485	spin_unlock(&scc->zlock);
486}
487
488static void zs_enable_ms(struct uart_port *uport)
489{
490	struct zs_port *zport = to_zport(uport);
491	struct zs_scc *scc = zport->scc;
492	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
493
494	if (zport == zport_a)
495		return;
496
497	spin_lock(&scc->zlock);
498
499	/* Clear Ext interrupts if not being handled already.  */
500	if (!(zport_a->regs[1] & EXT_INT_ENAB))
501		write_zsreg(zport_a, R0, RES_EXT_INT);
502
503	/* A-side DCD tracks RI and SYNC tracks DSR.  */
504	zport_a->regs[1] |= EXT_INT_ENAB;
505	zport_a->regs[15] |= DCDIE | SYNCIE;
506
507	/* This-side DCD tracks DCD and CTS tracks CTS.  */
508	zport->regs[15] |= DCDIE | CTSIE;
509
510	zs_raw_xor_mctrl(zport);
511
512	write_zsreg(zport_a, R1, zport_a->regs[1]);
513	write_zsreg(zport_a, R15, zport_a->regs[15]);
514	write_zsreg(zport, R15, zport->regs[15]);
515	spin_unlock(&scc->zlock);
516}
517
518static void zs_break_ctl(struct uart_port *uport, int break_state)
519{
520	struct zs_port *zport = to_zport(uport);
521	struct zs_scc *scc = zport->scc;
522	unsigned long flags;
523
524	spin_lock_irqsave(&scc->zlock, flags);
525	if (break_state == -1)
526		zport->regs[5] |= SND_BRK;
527	else
528		zport->regs[5] &= ~SND_BRK;
529	write_zsreg(zport, R5, zport->regs[5]);
530	spin_unlock_irqrestore(&scc->zlock, flags);
531}
532
533
534/*
535 * Interrupt handling routines.
536 */
537#define Rx_BRK 0x0100			/* BREAK event software flag.  */
538#define Rx_SYS 0x0200			/* SysRq event software flag.  */
539
540static void zs_receive_chars(struct zs_port *zport)
541{
542	struct uart_port *uport = &zport->port;
543	struct zs_scc *scc = zport->scc;
544	struct uart_icount *icount;
545	unsigned int avail, status, ch, flag;
546	int count;
547
548	for (count = 16; count; count--) {
549		spin_lock(&scc->zlock);
550		avail = read_zsreg(zport, R0) & Rx_CH_AV;
551		spin_unlock(&scc->zlock);
552		if (!avail)
553			break;
554
555		spin_lock(&scc->zlock);
556		status = read_zsreg(zport, R1) & (Rx_OVR | FRM_ERR | PAR_ERR);
557		ch = read_zsdata(zport);
558		spin_unlock(&scc->zlock);
559
560		flag = TTY_NORMAL;
561
562		icount = &uport->icount;
563		icount->rx++;
564
565		/* Handle the null char got when BREAK is removed.  */
566		if (!ch)
567			status |= zport->tty_break;
568		if (unlikely(status &
569			     (Rx_OVR | FRM_ERR | PAR_ERR | Rx_SYS | Rx_BRK))) {
570			zport->tty_break = 0;
571
572			/* Reset the error indication.  */
573			if (status & (Rx_OVR | FRM_ERR | PAR_ERR)) {
574				spin_lock(&scc->zlock);
575				write_zsreg(zport, R0, ERR_RES);
576				spin_unlock(&scc->zlock);
577			}
578
579			if (status & (Rx_SYS | Rx_BRK)) {
580				icount->brk++;
581				/* SysRq discards the null char.  */
582				if (status & Rx_SYS)
583					continue;
584			} else if (status & FRM_ERR)
585				icount->frame++;
586			else if (status & PAR_ERR)
587				icount->parity++;
588			if (status & Rx_OVR)
589				icount->overrun++;
590
591			status &= uport->read_status_mask;
592			if (status & Rx_BRK)
593				flag = TTY_BREAK;
594			else if (status & FRM_ERR)
595				flag = TTY_FRAME;
596			else if (status & PAR_ERR)
597				flag = TTY_PARITY;
598		}
599
600		if (uart_handle_sysrq_char(uport, ch))
601			continue;
602
603		uart_insert_char(uport, status, Rx_OVR, ch, flag);
604	}
605
606	tty_flip_buffer_push(&uport->state->port);
607}
608
609static void zs_raw_transmit_chars(struct zs_port *zport)
610{
611	struct circ_buf *xmit = &zport->port.state->xmit;
612
613	/* XON/XOFF chars.  */
614	if (zport->port.x_char) {
615		write_zsdata(zport, zport->port.x_char);
616		zport->port.icount.tx++;
617		zport->port.x_char = 0;
618		return;
619	}
620
621	/* If nothing to do or stopped or hardware stopped.  */
622	if (uart_circ_empty(xmit) || uart_tx_stopped(&zport->port)) {
623		zs_raw_stop_tx(zport);
624		return;
625	}
626
627	/* Send char.  */
628	write_zsdata(zport, xmit->buf[xmit->tail]);
629	xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
630	zport->port.icount.tx++;
631
632	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
633		uart_write_wakeup(&zport->port);
634
635	/* Are we are done?  */
636	if (uart_circ_empty(xmit))
637		zs_raw_stop_tx(zport);
638}
639
640static void zs_transmit_chars(struct zs_port *zport)
641{
642	struct zs_scc *scc = zport->scc;
643
644	spin_lock(&scc->zlock);
645	zs_raw_transmit_chars(zport);
646	spin_unlock(&scc->zlock);
647}
648
649static void zs_status_handle(struct zs_port *zport, struct zs_port *zport_a)
650{
651	struct uart_port *uport = &zport->port;
652	struct zs_scc *scc = zport->scc;
653	unsigned int delta;
654	u8 status, brk;
655
656	spin_lock(&scc->zlock);
657
658	/* Get status from Read Register 0.  */
659	status = read_zsreg(zport, R0);
660
661	if (zport->regs[15] & BRKIE) {
662		brk = status & BRK_ABRT;
663		if (brk && !zport->brk) {
664			spin_unlock(&scc->zlock);
665			if (uart_handle_break(uport))
666				zport->tty_break = Rx_SYS;
667			else
668				zport->tty_break = Rx_BRK;
669			spin_lock(&scc->zlock);
670		}
671		zport->brk = brk;
672	}
673
674	if (zport != zport_a) {
675		delta = zs_raw_xor_mctrl(zport);
676		spin_unlock(&scc->zlock);
677
678		if (delta & TIOCM_CTS)
679			uart_handle_cts_change(uport,
680					       zport->mctrl & TIOCM_CTS);
681		if (delta & TIOCM_CAR)
682			uart_handle_dcd_change(uport,
683					       zport->mctrl & TIOCM_CAR);
684		if (delta & TIOCM_RNG)
685			uport->icount.dsr++;
686		if (delta & TIOCM_DSR)
687			uport->icount.rng++;
688
689		if (delta)
690			wake_up_interruptible(&uport->state->port.delta_msr_wait);
691
692		spin_lock(&scc->zlock);
693	}
694
695	/* Clear the status condition...  */
696	write_zsreg(zport, R0, RES_EXT_INT);
697
698	spin_unlock(&scc->zlock);
699}
700
701/*
702 * This is the Z85C30 driver's generic interrupt routine.
703 */
704static irqreturn_t zs_interrupt(int irq, void *dev_id)
705{
706	struct zs_scc *scc = dev_id;
707	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
708	struct zs_port *zport_b = &scc->zport[ZS_CHAN_B];
709	irqreturn_t status = IRQ_NONE;
710	u8 zs_intreg;
711	int count;
712
713	/*
714	 * NOTE: The read register 3, which holds the irq status,
715	 *       does so for both channels on each chip.  Although
716	 *       the status value itself must be read from the A
717	 *       channel and is only valid when read from channel A.
718	 *       Yes... broken hardware...
719	 */
720	for (count = 16; count; count--) {
721		spin_lock(&scc->zlock);
722		zs_intreg = read_zsreg(zport_a, R3);
723		spin_unlock(&scc->zlock);
724		if (!zs_intreg)
725			break;
726
727		/*
728		 * We do not like losing characters, so we prioritise
729		 * interrupt sources a little bit differently than
730		 * the SCC would, was it allowed to.
731		 */
732		if (zs_intreg & CHBRxIP)
733			zs_receive_chars(zport_b);
734		if (zs_intreg & CHARxIP)
735			zs_receive_chars(zport_a);
736		if (zs_intreg & CHBEXT)
737			zs_status_handle(zport_b, zport_a);
738		if (zs_intreg & CHAEXT)
739			zs_status_handle(zport_a, zport_a);
740		if (zs_intreg & CHBTxIP)
741			zs_transmit_chars(zport_b);
742		if (zs_intreg & CHATxIP)
743			zs_transmit_chars(zport_a);
744
745		status = IRQ_HANDLED;
746	}
747
748	return status;
749}
750
751
752/*
753 * Finally, routines used to initialize the serial port.
754 */
755static int zs_startup(struct uart_port *uport)
756{
757	struct zs_port *zport = to_zport(uport);
758	struct zs_scc *scc = zport->scc;
759	unsigned long flags;
760	int irq_guard;
761	int ret;
762
763	irq_guard = atomic_add_return(1, &scc->irq_guard);
764	if (irq_guard == 1) {
765		ret = request_irq(zport->port.irq, zs_interrupt,
766				  IRQF_SHARED, "scc", scc);
767		if (ret) {
768			atomic_add(-1, &scc->irq_guard);
769			printk(KERN_ERR "zs: can't get irq %d\n",
770			       zport->port.irq);
771			return ret;
772		}
773	}
774
775	spin_lock_irqsave(&scc->zlock, flags);
776
777	/* Clear the receive FIFO.  */
778	zs_receive_drain(zport);
779
780	/* Clear the interrupt registers.  */
781	write_zsreg(zport, R0, ERR_RES);
782	write_zsreg(zport, R0, RES_Tx_P);
783	/* But Ext only if not being handled already.  */
784	if (!(zport->regs[1] & EXT_INT_ENAB))
785		write_zsreg(zport, R0, RES_EXT_INT);
786
787	/* Finally, enable sequencing and interrupts.  */
788	zport->regs[1] &= ~RxINT_MASK;
789	zport->regs[1] |= RxINT_ALL | TxINT_ENAB | EXT_INT_ENAB;
790	zport->regs[3] |= RxENABLE;
791	zport->regs[15] |= BRKIE;
792	write_zsreg(zport, R1, zport->regs[1]);
793	write_zsreg(zport, R3, zport->regs[3]);
794	write_zsreg(zport, R5, zport->regs[5]);
795	write_zsreg(zport, R15, zport->regs[15]);
796
797	/* Record the current state of RR0.  */
798	zport->mctrl = zs_raw_get_mctrl(zport);
799	zport->brk = read_zsreg(zport, R0) & BRK_ABRT;
800
801	zport->tx_stopped = 1;
802
803	spin_unlock_irqrestore(&scc->zlock, flags);
804
805	return 0;
806}
807
808static void zs_shutdown(struct uart_port *uport)
809{
810	struct zs_port *zport = to_zport(uport);
811	struct zs_scc *scc = zport->scc;
812	unsigned long flags;
813	int irq_guard;
814
815	spin_lock_irqsave(&scc->zlock, flags);
816
817	zport->regs[3] &= ~RxENABLE;
818	write_zsreg(zport, R5, zport->regs[5]);
819	write_zsreg(zport, R3, zport->regs[3]);
820
821	spin_unlock_irqrestore(&scc->zlock, flags);
822
823	irq_guard = atomic_add_return(-1, &scc->irq_guard);
824	if (!irq_guard)
825		free_irq(zport->port.irq, scc);
826}
827
828
829static void zs_reset(struct zs_port *zport)
830{
831	struct zs_scc *scc = zport->scc;
832	int irq;
833	unsigned long flags;
834
835	spin_lock_irqsave(&scc->zlock, flags);
836	irq = !irqs_disabled_flags(flags);
837	if (!scc->initialised) {
838		/* Reset the pointer first, just in case...  */
839		read_zsreg(zport, R0);
840		/* And let the current transmission finish.  */
841		zs_line_drain(zport, irq);
842		write_zsreg(zport, R9, FHWRES);
843		udelay(10);
844		write_zsreg(zport, R9, 0);
845		scc->initialised = 1;
846	}
847	load_zsregs(zport, zport->regs, irq);
848	spin_unlock_irqrestore(&scc->zlock, flags);
849}
850
851static void zs_set_termios(struct uart_port *uport, struct ktermios *termios,
852			   struct ktermios *old_termios)
853{
854	struct zs_port *zport = to_zport(uport);
855	struct zs_scc *scc = zport->scc;
856	struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
857	int irq;
858	unsigned int baud, brg;
859	unsigned long flags;
860
861	spin_lock_irqsave(&scc->zlock, flags);
862	irq = !irqs_disabled_flags(flags);
863
864	/* Byte size.  */
865	zport->regs[3] &= ~RxNBITS_MASK;
866	zport->regs[5] &= ~TxNBITS_MASK;
867	switch (termios->c_cflag & CSIZE) {
868	case CS5:
869		zport->regs[3] |= Rx5;
870		zport->regs[5] |= Tx5;
871		break;
872	case CS6:
873		zport->regs[3] |= Rx6;
874		zport->regs[5] |= Tx6;
875		break;
876	case CS7:
877		zport->regs[3] |= Rx7;
878		zport->regs[5] |= Tx7;
879		break;
880	case CS8:
881	default:
882		zport->regs[3] |= Rx8;
883		zport->regs[5] |= Tx8;
884		break;
885	}
886
887	/* Parity and stop bits.  */
888	zport->regs[4] &= ~(XCLK_MASK | SB_MASK | PAR_ENA | PAR_EVEN);
889	if (termios->c_cflag & CSTOPB)
890		zport->regs[4] |= SB2;
891	else
892		zport->regs[4] |= SB1;
893	if (termios->c_cflag & PARENB)
894		zport->regs[4] |= PAR_ENA;
895	if (!(termios->c_cflag & PARODD))
896		zport->regs[4] |= PAR_EVEN;
897	switch (zport->clk_mode) {
898	case 64:
899		zport->regs[4] |= X64CLK;
900		break;
901	case 32:
902		zport->regs[4] |= X32CLK;
903		break;
904	case 16:
905		zport->regs[4] |= X16CLK;
906		break;
907	case 1:
908		zport->regs[4] |= X1CLK;
909		break;
910	default:
911		BUG();
912	}
913
914	baud = uart_get_baud_rate(uport, termios, old_termios, 0,
915				  uport->uartclk / zport->clk_mode / 4);
916
917	brg = ZS_BPS_TO_BRG(baud, uport->uartclk / zport->clk_mode);
918	zport->regs[12] = brg & 0xff;
919	zport->regs[13] = (brg >> 8) & 0xff;
920
921	uart_update_timeout(uport, termios->c_cflag, baud);
922
923	uport->read_status_mask = Rx_OVR;
924	if (termios->c_iflag & INPCK)
925		uport->read_status_mask |= FRM_ERR | PAR_ERR;
926	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
927		uport->read_status_mask |= Rx_BRK;
928
929	uport->ignore_status_mask = 0;
930	if (termios->c_iflag & IGNPAR)
931		uport->ignore_status_mask |= FRM_ERR | PAR_ERR;
932	if (termios->c_iflag & IGNBRK) {
933		uport->ignore_status_mask |= Rx_BRK;
934		if (termios->c_iflag & IGNPAR)
935			uport->ignore_status_mask |= Rx_OVR;
936	}
937
938	if (termios->c_cflag & CREAD)
939		zport->regs[3] |= RxENABLE;
940	else
941		zport->regs[3] &= ~RxENABLE;
942
943	if (zport != zport_a) {
944		if (!(termios->c_cflag & CLOCAL)) {
945			zport->regs[15] |= DCDIE;
946		} else
947			zport->regs[15] &= ~DCDIE;
948		if (termios->c_cflag & CRTSCTS) {
949			zport->regs[15] |= CTSIE;
950		} else
951			zport->regs[15] &= ~CTSIE;
952		zs_raw_xor_mctrl(zport);
953	}
954
955	/* Load up the new values.  */
956	load_zsregs(zport, zport->regs, irq);
957
958	spin_unlock_irqrestore(&scc->zlock, flags);
959}
960
961/*
962 * Hack alert!
963 * Required solely so that the initial PROM-based console
964 * works undisturbed in parallel with this one.
965 */
966static void zs_pm(struct uart_port *uport, unsigned int state,
967		  unsigned int oldstate)
968{
969	struct zs_port *zport = to_zport(uport);
970
971	if (state < 3)
972		zport->regs[5] |= TxENAB;
973	else
974		zport->regs[5] &= ~TxENAB;
975	write_zsreg(zport, R5, zport->regs[5]);
976}
977
978
979static const char *zs_type(struct uart_port *uport)
980{
981	return "Z85C30 SCC";
982}
983
984static void zs_release_port(struct uart_port *uport)
985{
986	iounmap(uport->membase);
987	uport->membase = 0;
988	release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE);
989}
990
991static int zs_map_port(struct uart_port *uport)
992{
993	if (!uport->membase)
994		uport->membase = ioremap_nocache(uport->mapbase,
995						 ZS_CHAN_IO_SIZE);
996	if (!uport->membase) {
997		printk(KERN_ERR "zs: Cannot map MMIO\n");
998		return -ENOMEM;
999	}
1000	return 0;
1001}
1002
1003static int zs_request_port(struct uart_port *uport)
1004{
1005	int ret;
1006
1007	if (!request_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE, "scc")) {
1008		printk(KERN_ERR "zs: Unable to reserve MMIO resource\n");
1009		return -EBUSY;
1010	}
1011	ret = zs_map_port(uport);
1012	if (ret) {
1013		release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE);
1014		return ret;
1015	}
1016	return 0;
1017}
1018
1019static void zs_config_port(struct uart_port *uport, int flags)
1020{
1021	struct zs_port *zport = to_zport(uport);
1022
1023	if (flags & UART_CONFIG_TYPE) {
1024		if (zs_request_port(uport))
1025			return;
1026
1027		uport->type = PORT_ZS;
1028
1029		zs_reset(zport);
1030	}
1031}
1032
1033static int zs_verify_port(struct uart_port *uport, struct serial_struct *ser)
1034{
1035	struct zs_port *zport = to_zport(uport);
1036	int ret = 0;
1037
1038	if (ser->type != PORT_UNKNOWN && ser->type != PORT_ZS)
1039		ret = -EINVAL;
1040	if (ser->irq != uport->irq)
1041		ret = -EINVAL;
1042	if (ser->baud_base != uport->uartclk / zport->clk_mode / 4)
1043		ret = -EINVAL;
1044	return ret;
1045}
1046
1047
1048static struct uart_ops zs_ops = {
1049	.tx_empty	= zs_tx_empty,
1050	.set_mctrl	= zs_set_mctrl,
1051	.get_mctrl	= zs_get_mctrl,
1052	.stop_tx	= zs_stop_tx,
1053	.start_tx	= zs_start_tx,
1054	.stop_rx	= zs_stop_rx,
1055	.enable_ms	= zs_enable_ms,
1056	.break_ctl	= zs_break_ctl,
1057	.startup	= zs_startup,
1058	.shutdown	= zs_shutdown,
1059	.set_termios	= zs_set_termios,
1060	.pm		= zs_pm,
1061	.type		= zs_type,
1062	.release_port	= zs_release_port,
1063	.request_port	= zs_request_port,
1064	.config_port	= zs_config_port,
1065	.verify_port	= zs_verify_port,
1066};
1067
1068/*
1069 * Initialize Z85C30 port structures.
1070 */
1071static int __init zs_probe_sccs(void)
1072{
1073	static int probed;
1074	struct zs_parms zs_parms;
1075	int chip, side, irq;
1076	int n_chips = 0;
1077	int i;
1078
1079	if (probed)
1080		return 0;
1081
1082	irq = dec_interrupt[DEC_IRQ_SCC0];
1083	if (irq >= 0) {
1084		zs_parms.scc[n_chips] = IOASIC_SCC0;
1085		zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC0];
1086		n_chips++;
1087	}
1088	irq = dec_interrupt[DEC_IRQ_SCC1];
1089	if (irq >= 0) {
1090		zs_parms.scc[n_chips] = IOASIC_SCC1;
1091		zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC1];
1092		n_chips++;
1093	}
1094	if (!n_chips)
1095		return -ENXIO;
1096
1097	probed = 1;
1098
1099	for (chip = 0; chip < n_chips; chip++) {
1100		spin_lock_init(&zs_sccs[chip].zlock);
1101		for (side = 0; side < ZS_NUM_CHAN; side++) {
1102			struct zs_port *zport = &zs_sccs[chip].zport[side];
1103			struct uart_port *uport = &zport->port;
1104
1105			zport->scc	= &zs_sccs[chip];
1106			zport->clk_mode	= 16;
1107
1108			uport->irq	= zs_parms.irq[chip];
1109			uport->uartclk	= ZS_CLOCK;
1110			uport->fifosize	= 1;
1111			uport->iotype	= UPIO_MEM;
1112			uport->flags	= UPF_BOOT_AUTOCONF;
1113			uport->ops	= &zs_ops;
1114			uport->line	= chip * ZS_NUM_CHAN + side;
1115			uport->mapbase	= dec_kn_slot_base +
1116					  zs_parms.scc[chip] +
1117					  (side ^ ZS_CHAN_B) * ZS_CHAN_IO_SIZE;
1118
1119			for (i = 0; i < ZS_NUM_REGS; i++)
1120				zport->regs[i] = zs_init_regs[i];
1121		}
1122	}
1123
1124	return 0;
1125}
1126
1127
1128#ifdef CONFIG_SERIAL_ZS_CONSOLE
1129static void zs_console_putchar(struct uart_port *uport, int ch)
1130{
1131	struct zs_port *zport = to_zport(uport);
1132	struct zs_scc *scc = zport->scc;
1133	int irq;
1134	unsigned long flags;
1135
1136	spin_lock_irqsave(&scc->zlock, flags);
1137	irq = !irqs_disabled_flags(flags);
1138	if (zs_transmit_drain(zport, irq))
1139		write_zsdata(zport, ch);
1140	spin_unlock_irqrestore(&scc->zlock, flags);
1141}
1142
1143/*
1144 * Print a string to the serial port trying not to disturb
1145 * any possible real use of the port...
1146 */
1147static void zs_console_write(struct console *co, const char *s,
1148			     unsigned int count)
1149{
1150	int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN;
1151	struct zs_port *zport = &zs_sccs[chip].zport[side];
1152	struct zs_scc *scc = zport->scc;
1153	unsigned long flags;
1154	u8 txint, txenb;
1155	int irq;
1156
1157	/* Disable transmit interrupts and enable the transmitter. */
1158	spin_lock_irqsave(&scc->zlock, flags);
1159	txint = zport->regs[1];
1160	txenb = zport->regs[5];
1161	if (txint & TxINT_ENAB) {
1162		zport->regs[1] = txint & ~TxINT_ENAB;
1163		write_zsreg(zport, R1, zport->regs[1]);
1164	}
1165	if (!(txenb & TxENAB)) {
1166		zport->regs[5] = txenb | TxENAB;
1167		write_zsreg(zport, R5, zport->regs[5]);
1168	}
1169	spin_unlock_irqrestore(&scc->zlock, flags);
1170
1171	uart_console_write(&zport->port, s, count, zs_console_putchar);
1172
1173	/* Restore transmit interrupts and the transmitter enable. */
1174	spin_lock_irqsave(&scc->zlock, flags);
1175	irq = !irqs_disabled_flags(flags);
1176	zs_line_drain(zport, irq);
1177	if (!(txenb & TxENAB)) {
1178		zport->regs[5] &= ~TxENAB;
1179		write_zsreg(zport, R5, zport->regs[5]);
1180	}
1181	if (txint & TxINT_ENAB) {
1182		zport->regs[1] |= TxINT_ENAB;
1183		write_zsreg(zport, R1, zport->regs[1]);
1184	}
1185	spin_unlock_irqrestore(&scc->zlock, flags);
1186}
1187
1188/*
1189 * Setup serial console baud/bits/parity.  We do two things here:
1190 * - construct a cflag setting for the first uart_open()
1191 * - initialise the serial port
1192 * Return non-zero if we didn't find a serial port.
1193 */
1194static int __init zs_console_setup(struct console *co, char *options)
1195{
1196	int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN;
1197	struct zs_port *zport = &zs_sccs[chip].zport[side];
1198	struct uart_port *uport = &zport->port;
1199	int baud = 9600;
1200	int bits = 8;
1201	int parity = 'n';
1202	int flow = 'n';
1203	int ret;
1204
1205	ret = zs_map_port(uport);
1206	if (ret)
1207		return ret;
1208
1209	zs_reset(zport);
1210	zs_pm(uport, 0, -1);
1211
1212	if (options)
1213		uart_parse_options(options, &baud, &parity, &bits, &flow);
1214	return uart_set_options(uport, co, baud, parity, bits, flow);
1215}
1216
1217static struct uart_driver zs_reg;
1218static struct console zs_console = {
1219	.name	= "ttyS",
1220	.write	= zs_console_write,
1221	.device	= uart_console_device,
1222	.setup	= zs_console_setup,
1223	.flags	= CON_PRINTBUFFER,
1224	.index	= -1,
1225	.data	= &zs_reg,
1226};
1227
1228/*
1229 *	Register console.
1230 */
1231static int __init zs_serial_console_init(void)
1232{
1233	int ret;
1234
1235	ret = zs_probe_sccs();
1236	if (ret)
1237		return ret;
1238	register_console(&zs_console);
1239
1240	return 0;
1241}
1242
1243console_initcall(zs_serial_console_init);
1244
1245#define SERIAL_ZS_CONSOLE	&zs_console
1246#else
1247#define SERIAL_ZS_CONSOLE	NULL
1248#endif /* CONFIG_SERIAL_ZS_CONSOLE */
1249
1250static struct uart_driver zs_reg = {
1251	.owner			= THIS_MODULE,
1252	.driver_name		= "serial",
1253	.dev_name		= "ttyS",
1254	.major			= TTY_MAJOR,
1255	.minor			= 64,
1256	.nr			= ZS_NUM_SCCS * ZS_NUM_CHAN,
1257	.cons			= SERIAL_ZS_CONSOLE,
1258};
1259
1260/* zs_init inits the driver. */
1261static int __init zs_init(void)
1262{
1263	int i, ret;
1264
1265	pr_info("%s%s\n", zs_name, zs_version);
1266
1267	/* Find out how many Z85C30 SCCs we have.  */
1268	ret = zs_probe_sccs();
1269	if (ret)
1270		return ret;
1271
1272	ret = uart_register_driver(&zs_reg);
1273	if (ret)
1274		return ret;
1275
1276	for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) {
1277		struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN];
1278		struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN];
1279		struct uart_port *uport = &zport->port;
1280
1281		if (zport->scc)
1282			uart_add_one_port(&zs_reg, uport);
1283	}
1284
1285	return 0;
1286}
1287
1288static void __exit zs_exit(void)
1289{
1290	int i;
1291
1292	for (i = ZS_NUM_SCCS * ZS_NUM_CHAN - 1; i >= 0; i--) {
1293		struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN];
1294		struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN];
1295		struct uart_port *uport = &zport->port;
1296
1297		if (zport->scc)
1298			uart_remove_one_port(&zs_reg, uport);
1299	}
1300
1301	uart_unregister_driver(&zs_reg);
1302}
1303
1304module_init(zs_init);
1305module_exit(zs_exit);
1306