1/************************************************************************
2 * Copyright 2003 Digi International (www.digi.com)
3 *
4 * Copyright (C) 2004 IBM Corporation. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2, or (at your option)
9 * any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED; without even the
13 * implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
14 * PURPOSE.  See the GNU General Public License for more details.
15 *
16 * Contact Information:
17 * Scott H Kilau <Scott_Kilau@digi.com>
18 * Wendy Xiong   <wendyx@us.ibm.com>
19 *
20 ***********************************************************************/
21#include <linux/delay.h>	/* For udelay */
22#include <linux/serial_reg.h>	/* For the various UART offsets */
23#include <linux/tty.h>
24#include <linux/pci.h>
25#include <asm/io.h>
26
27#include "jsm.h"		/* Driver main header file */
28
29static u32 jsm_offset_table[8] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 };
30
31/*
32 * This function allows calls to ensure that all outstanding
33 * PCI writes have been completed, by doing a PCI read against
34 * a non-destructive, read-only location on the Neo card.
35 *
36 * In this case, we are reading the DVID (Read-only Device Identification)
37 * value of the Neo card.
38 */
39static inline void neo_pci_posting_flush(struct jsm_board *bd)
40{
41      readb(bd->re_map_membase + 0x8D);
42}
43
44static void neo_set_cts_flow_control(struct jsm_channel *ch)
45{
46	u8 ier, efr;
47	ier = readb(&ch->ch_neo_uart->ier);
48	efr = readb(&ch->ch_neo_uart->efr);
49
50	jsm_dbg(PARAM, &ch->ch_bd->pci_dev, "Setting CTSFLOW\n");
51
52	/* Turn on auto CTS flow control */
53	ier |= (UART_17158_IER_CTSDSR);
54	efr |= (UART_17158_EFR_ECB | UART_17158_EFR_CTSDSR);
55
56	/* Turn off auto Xon flow control */
57	efr &= ~(UART_17158_EFR_IXON);
58
59	/* Why? Becuz Exar's spec says we have to zero it out before setting it */
60	writeb(0, &ch->ch_neo_uart->efr);
61
62	/* Turn on UART enhanced bits */
63	writeb(efr, &ch->ch_neo_uart->efr);
64
65	/* Turn on table D, with 8 char hi/low watermarks */
66	writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_4DELAY), &ch->ch_neo_uart->fctr);
67
68	/* Feed the UART our trigger levels */
69	writeb(8, &ch->ch_neo_uart->tfifo);
70	ch->ch_t_tlevel = 8;
71
72	writeb(ier, &ch->ch_neo_uart->ier);
73}
74
75static void neo_set_rts_flow_control(struct jsm_channel *ch)
76{
77	u8 ier, efr;
78	ier = readb(&ch->ch_neo_uart->ier);
79	efr = readb(&ch->ch_neo_uart->efr);
80
81	jsm_dbg(PARAM, &ch->ch_bd->pci_dev, "Setting RTSFLOW\n");
82
83	/* Turn on auto RTS flow control */
84	ier |= (UART_17158_IER_RTSDTR);
85	efr |= (UART_17158_EFR_ECB | UART_17158_EFR_RTSDTR);
86
87	/* Turn off auto Xoff flow control */
88	ier &= ~(UART_17158_IER_XOFF);
89	efr &= ~(UART_17158_EFR_IXOFF);
90
91	/* Why? Becuz Exar's spec says we have to zero it out before setting it */
92	writeb(0, &ch->ch_neo_uart->efr);
93
94	/* Turn on UART enhanced bits */
95	writeb(efr, &ch->ch_neo_uart->efr);
96
97	writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_4DELAY), &ch->ch_neo_uart->fctr);
98	ch->ch_r_watermark = 4;
99
100	writeb(56, &ch->ch_neo_uart->rfifo);
101	ch->ch_r_tlevel = 56;
102
103	writeb(ier, &ch->ch_neo_uart->ier);
104
105	/*
106	 * From the Neo UART spec sheet:
107	 * The auto RTS/DTR function must be started by asserting
108	 * RTS/DTR# output pin (MCR bit-0 or 1 to logic 1 after
109	 * it is enabled.
110	 */
111	ch->ch_mostat |= (UART_MCR_RTS);
112}
113
114
115static void neo_set_ixon_flow_control(struct jsm_channel *ch)
116{
117	u8 ier, efr;
118	ier = readb(&ch->ch_neo_uart->ier);
119	efr = readb(&ch->ch_neo_uart->efr);
120
121	jsm_dbg(PARAM, &ch->ch_bd->pci_dev, "Setting IXON FLOW\n");
122
123	/* Turn off auto CTS flow control */
124	ier &= ~(UART_17158_IER_CTSDSR);
125	efr &= ~(UART_17158_EFR_CTSDSR);
126
127	/* Turn on auto Xon flow control */
128	efr |= (UART_17158_EFR_ECB | UART_17158_EFR_IXON);
129
130	/* Why? Becuz Exar's spec says we have to zero it out before setting it */
131	writeb(0, &ch->ch_neo_uart->efr);
132
133	/* Turn on UART enhanced bits */
134	writeb(efr, &ch->ch_neo_uart->efr);
135
136	writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
137	ch->ch_r_watermark = 4;
138
139	writeb(32, &ch->ch_neo_uart->rfifo);
140	ch->ch_r_tlevel = 32;
141
142	/* Tell UART what start/stop chars it should be looking for */
143	writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1);
144	writeb(0, &ch->ch_neo_uart->xonchar2);
145
146	writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1);
147	writeb(0, &ch->ch_neo_uart->xoffchar2);
148
149	writeb(ier, &ch->ch_neo_uart->ier);
150}
151
152static void neo_set_ixoff_flow_control(struct jsm_channel *ch)
153{
154	u8 ier, efr;
155	ier = readb(&ch->ch_neo_uart->ier);
156	efr = readb(&ch->ch_neo_uart->efr);
157
158	jsm_dbg(PARAM, &ch->ch_bd->pci_dev, "Setting IXOFF FLOW\n");
159
160	/* Turn off auto RTS flow control */
161	ier &= ~(UART_17158_IER_RTSDTR);
162	efr &= ~(UART_17158_EFR_RTSDTR);
163
164	/* Turn on auto Xoff flow control */
165	ier |= (UART_17158_IER_XOFF);
166	efr |= (UART_17158_EFR_ECB | UART_17158_EFR_IXOFF);
167
168	/* Why? Becuz Exar's spec says we have to zero it out before setting it */
169	writeb(0, &ch->ch_neo_uart->efr);
170
171	/* Turn on UART enhanced bits */
172	writeb(efr, &ch->ch_neo_uart->efr);
173
174	/* Turn on table D, with 8 char hi/low watermarks */
175	writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
176
177	writeb(8, &ch->ch_neo_uart->tfifo);
178	ch->ch_t_tlevel = 8;
179
180	/* Tell UART what start/stop chars it should be looking for */
181	writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1);
182	writeb(0, &ch->ch_neo_uart->xonchar2);
183
184	writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1);
185	writeb(0, &ch->ch_neo_uart->xoffchar2);
186
187	writeb(ier, &ch->ch_neo_uart->ier);
188}
189
190static void neo_set_no_input_flow_control(struct jsm_channel *ch)
191{
192	u8 ier, efr;
193	ier = readb(&ch->ch_neo_uart->ier);
194	efr = readb(&ch->ch_neo_uart->efr);
195
196	jsm_dbg(PARAM, &ch->ch_bd->pci_dev, "Unsetting Input FLOW\n");
197
198	/* Turn off auto RTS flow control */
199	ier &= ~(UART_17158_IER_RTSDTR);
200	efr &= ~(UART_17158_EFR_RTSDTR);
201
202	/* Turn off auto Xoff flow control */
203	ier &= ~(UART_17158_IER_XOFF);
204	if (ch->ch_c_iflag & IXON)
205		efr &= ~(UART_17158_EFR_IXOFF);
206	else
207		efr &= ~(UART_17158_EFR_ECB | UART_17158_EFR_IXOFF);
208
209	/* Why? Becuz Exar's spec says we have to zero it out before setting it */
210	writeb(0, &ch->ch_neo_uart->efr);
211
212	/* Turn on UART enhanced bits */
213	writeb(efr, &ch->ch_neo_uart->efr);
214
215	/* Turn on table D, with 8 char hi/low watermarks */
216	writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
217
218	ch->ch_r_watermark = 0;
219
220	writeb(16, &ch->ch_neo_uart->tfifo);
221	ch->ch_t_tlevel = 16;
222
223	writeb(16, &ch->ch_neo_uart->rfifo);
224	ch->ch_r_tlevel = 16;
225
226	writeb(ier, &ch->ch_neo_uart->ier);
227}
228
229static void neo_set_no_output_flow_control(struct jsm_channel *ch)
230{
231	u8 ier, efr;
232	ier = readb(&ch->ch_neo_uart->ier);
233	efr = readb(&ch->ch_neo_uart->efr);
234
235	jsm_dbg(PARAM, &ch->ch_bd->pci_dev, "Unsetting Output FLOW\n");
236
237	/* Turn off auto CTS flow control */
238	ier &= ~(UART_17158_IER_CTSDSR);
239	efr &= ~(UART_17158_EFR_CTSDSR);
240
241	/* Turn off auto Xon flow control */
242	if (ch->ch_c_iflag & IXOFF)
243		efr &= ~(UART_17158_EFR_IXON);
244	else
245		efr &= ~(UART_17158_EFR_ECB | UART_17158_EFR_IXON);
246
247	/* Why? Becuz Exar's spec says we have to zero it out before setting it */
248	writeb(0, &ch->ch_neo_uart->efr);
249
250	/* Turn on UART enhanced bits */
251	writeb(efr, &ch->ch_neo_uart->efr);
252
253	/* Turn on table D, with 8 char hi/low watermarks */
254	writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
255
256	ch->ch_r_watermark = 0;
257
258	writeb(16, &ch->ch_neo_uart->tfifo);
259	ch->ch_t_tlevel = 16;
260
261	writeb(16, &ch->ch_neo_uart->rfifo);
262	ch->ch_r_tlevel = 16;
263
264	writeb(ier, &ch->ch_neo_uart->ier);
265}
266
267static inline void neo_set_new_start_stop_chars(struct jsm_channel *ch)
268{
269
270	/* if hardware flow control is set, then skip this whole thing */
271	if (ch->ch_c_cflag & CRTSCTS)
272		return;
273
274	jsm_dbg(PARAM, &ch->ch_bd->pci_dev, "start\n");
275
276	/* Tell UART what start/stop chars it should be looking for */
277	writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1);
278	writeb(0, &ch->ch_neo_uart->xonchar2);
279
280	writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1);
281	writeb(0, &ch->ch_neo_uart->xoffchar2);
282}
283
284static void neo_copy_data_from_uart_to_queue(struct jsm_channel *ch)
285{
286	int qleft = 0;
287	u8 linestatus = 0;
288	u8 error_mask = 0;
289	int n = 0;
290	int total = 0;
291	u16 head;
292	u16 tail;
293
294	if (!ch)
295		return;
296
297	/* cache head and tail of queue */
298	head = ch->ch_r_head & RQUEUEMASK;
299	tail = ch->ch_r_tail & RQUEUEMASK;
300
301	/* Get our cached LSR */
302	linestatus = ch->ch_cached_lsr;
303	ch->ch_cached_lsr = 0;
304
305	/* Store how much space we have left in the queue */
306	if ((qleft = tail - head - 1) < 0)
307		qleft += RQUEUEMASK + 1;
308
309	/*
310	 * If the UART is not in FIFO mode, force the FIFO copy to
311	 * NOT be run, by setting total to 0.
312	 *
313	 * On the other hand, if the UART IS in FIFO mode, then ask
314	 * the UART to give us an approximation of data it has RX'ed.
315	 */
316	if (!(ch->ch_flags & CH_FIFO_ENABLED))
317		total = 0;
318	else {
319		total = readb(&ch->ch_neo_uart->rfifo);
320
321		/*
322		 * EXAR chip bug - RX FIFO COUNT - Fudge factor.
323		 *
324		 * This resolves a problem/bug with the Exar chip that sometimes
325		 * returns a bogus value in the rfifo register.
326		 * The count can be any where from 0-3 bytes "off".
327		 * Bizarre, but true.
328		 */
329		total -= 3;
330	}
331
332	/*
333	 * Finally, bound the copy to make sure we don't overflow
334	 * our own queue...
335	 * The byte by byte copy loop below this loop this will
336	 * deal with the queue overflow possibility.
337	 */
338	total = min(total, qleft);
339
340	while (total > 0) {
341		/*
342		 * Grab the linestatus register, we need to check
343		 * to see if there are any errors in the FIFO.
344		 */
345		linestatus = readb(&ch->ch_neo_uart->lsr);
346
347		/*
348		 * Break out if there is a FIFO error somewhere.
349		 * This will allow us to go byte by byte down below,
350		 * finding the exact location of the error.
351		 */
352		if (linestatus & UART_17158_RX_FIFO_DATA_ERROR)
353			break;
354
355		/* Make sure we don't go over the end of our queue */
356		n = min(((u32) total), (RQUEUESIZE - (u32) head));
357
358		/*
359		 * Cut down n even further if needed, this is to fix
360		 * a problem with memcpy_fromio() with the Neo on the
361		 * IBM pSeries platform.
362		 * 15 bytes max appears to be the magic number.
363		 */
364		n = min((u32) n, (u32) 12);
365
366		/*
367		 * Since we are grabbing the linestatus register, which
368		 * will reset some bits after our read, we need to ensure
369		 * we don't miss our TX FIFO emptys.
370		 */
371		if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR))
372			ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
373
374		linestatus = 0;
375
376		/* Copy data from uart to the queue */
377		memcpy_fromio(ch->ch_rqueue + head, &ch->ch_neo_uart->txrxburst, n);
378		/*
379		 * Since RX_FIFO_DATA_ERROR was 0, we are guaranteed
380		 * that all the data currently in the FIFO is free of
381		 * breaks and parity/frame/orun errors.
382		 */
383		memset(ch->ch_equeue + head, 0, n);
384
385		/* Add to and flip head if needed */
386		head = (head + n) & RQUEUEMASK;
387		total -= n;
388		qleft -= n;
389		ch->ch_rxcount += n;
390	}
391
392	/*
393	 * Create a mask to determine whether we should
394	 * insert the character (if any) into our queue.
395	 */
396	if (ch->ch_c_iflag & IGNBRK)
397		error_mask |= UART_LSR_BI;
398
399	/*
400	 * Now cleanup any leftover bytes still in the UART.
401	 * Also deal with any possible queue overflow here as well.
402	 */
403	while (1) {
404
405		/*
406		 * Its possible we have a linestatus from the loop above
407		 * this, so we "OR" on any extra bits.
408		 */
409		linestatus |= readb(&ch->ch_neo_uart->lsr);
410
411		/*
412		 * If the chip tells us there is no more data pending to
413		 * be read, we can then leave.
414		 * But before we do, cache the linestatus, just in case.
415		 */
416		if (!(linestatus & UART_LSR_DR)) {
417			ch->ch_cached_lsr = linestatus;
418			break;
419		}
420
421		/* No need to store this bit */
422		linestatus &= ~UART_LSR_DR;
423
424		/*
425		 * Since we are grabbing the linestatus register, which
426		 * will reset some bits after our read, we need to ensure
427		 * we don't miss our TX FIFO emptys.
428		 */
429		if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR)) {
430			linestatus &= ~(UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR);
431			ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
432		}
433
434		/*
435		 * Discard character if we are ignoring the error mask.
436		 */
437		if (linestatus & error_mask) {
438			u8 discard;
439			linestatus = 0;
440			memcpy_fromio(&discard, &ch->ch_neo_uart->txrxburst, 1);
441			continue;
442		}
443
444		/*
445		 * If our queue is full, we have no choice but to drop some data.
446		 * The assumption is that HWFLOW or SWFLOW should have stopped
447		 * things way way before we got to this point.
448		 *
449		 * I decided that I wanted to ditch the oldest data first,
450		 * I hope thats okay with everyone? Yes? Good.
451		 */
452		while (qleft < 1) {
453			jsm_dbg(READ, &ch->ch_bd->pci_dev,
454				"Queue full, dropping DATA:%x LSR:%x\n",
455				ch->ch_rqueue[tail], ch->ch_equeue[tail]);
456
457			ch->ch_r_tail = tail = (tail + 1) & RQUEUEMASK;
458			ch->ch_err_overrun++;
459			qleft++;
460		}
461
462		memcpy_fromio(ch->ch_rqueue + head, &ch->ch_neo_uart->txrxburst, 1);
463		ch->ch_equeue[head] = (u8) linestatus;
464
465		jsm_dbg(READ, &ch->ch_bd->pci_dev, "DATA/LSR pair: %x %x\n",
466			ch->ch_rqueue[head], ch->ch_equeue[head]);
467
468		/* Ditch any remaining linestatus value. */
469		linestatus = 0;
470
471		/* Add to and flip head if needed */
472		head = (head + 1) & RQUEUEMASK;
473
474		qleft--;
475		ch->ch_rxcount++;
476	}
477
478	/*
479	 * Write new final heads to channel structure.
480	 */
481	ch->ch_r_head = head & RQUEUEMASK;
482	ch->ch_e_head = head & EQUEUEMASK;
483	jsm_input(ch);
484}
485
486static void neo_copy_data_from_queue_to_uart(struct jsm_channel *ch)
487{
488	u16 head;
489	u16 tail;
490	int n;
491	int s;
492	int qlen;
493	u32 len_written = 0;
494	struct circ_buf *circ;
495
496	if (!ch)
497		return;
498
499	circ = &ch->uart_port.state->xmit;
500
501	/* No data to write to the UART */
502	if (uart_circ_empty(circ))
503		return;
504
505	/* If port is "stopped", don't send any data to the UART */
506	if ((ch->ch_flags & CH_STOP) || (ch->ch_flags & CH_BREAK_SENDING))
507		return;
508	/*
509	 * If FIFOs are disabled. Send data directly to txrx register
510	 */
511	if (!(ch->ch_flags & CH_FIFO_ENABLED)) {
512		u8 lsrbits = readb(&ch->ch_neo_uart->lsr);
513
514		ch->ch_cached_lsr |= lsrbits;
515		if (ch->ch_cached_lsr & UART_LSR_THRE) {
516			ch->ch_cached_lsr &= ~(UART_LSR_THRE);
517
518			writeb(circ->buf[circ->tail], &ch->ch_neo_uart->txrx);
519			jsm_dbg(WRITE, &ch->ch_bd->pci_dev,
520				"Tx data: %x\n", circ->buf[circ->tail]);
521			circ->tail = (circ->tail + 1) & (UART_XMIT_SIZE - 1);
522			ch->ch_txcount++;
523		}
524		return;
525	}
526
527	/*
528	 * We have to do it this way, because of the EXAR TXFIFO count bug.
529	 */
530	if (!(ch->ch_flags & (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM)))
531		return;
532
533	n = UART_17158_TX_FIFOSIZE - ch->ch_t_tlevel;
534
535	/* cache head and tail of queue */
536	head = circ->head & (UART_XMIT_SIZE - 1);
537	tail = circ->tail & (UART_XMIT_SIZE - 1);
538	qlen = uart_circ_chars_pending(circ);
539
540	/* Find minimum of the FIFO space, versus queue length */
541	n = min(n, qlen);
542
543	while (n > 0) {
544
545		s = ((head >= tail) ? head : UART_XMIT_SIZE) - tail;
546		s = min(s, n);
547
548		if (s <= 0)
549			break;
550
551		memcpy_toio(&ch->ch_neo_uart->txrxburst, circ->buf + tail, s);
552		/* Add and flip queue if needed */
553		tail = (tail + s) & (UART_XMIT_SIZE - 1);
554		n -= s;
555		ch->ch_txcount += s;
556		len_written += s;
557	}
558
559	/* Update the final tail */
560	circ->tail = tail & (UART_XMIT_SIZE - 1);
561
562	if (len_written >= ch->ch_t_tlevel)
563		ch->ch_flags &= ~(CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
564
565	if (uart_circ_empty(circ))
566		uart_write_wakeup(&ch->uart_port);
567}
568
569static void neo_parse_modem(struct jsm_channel *ch, u8 signals)
570{
571	u8 msignals = signals;
572
573	jsm_dbg(MSIGS, &ch->ch_bd->pci_dev,
574		"neo_parse_modem: port: %d msignals: %x\n",
575		ch->ch_portnum, msignals);
576
577	/* Scrub off lower bits. They signify delta's, which I don't care about */
578	/* Keep DDCD and DDSR though */
579	msignals &= 0xf8;
580
581	if (msignals & UART_MSR_DDCD)
582		uart_handle_dcd_change(&ch->uart_port, msignals & UART_MSR_DCD);
583	if (msignals & UART_MSR_DDSR)
584		uart_handle_cts_change(&ch->uart_port, msignals & UART_MSR_CTS);
585	if (msignals & UART_MSR_DCD)
586		ch->ch_mistat |= UART_MSR_DCD;
587	else
588		ch->ch_mistat &= ~UART_MSR_DCD;
589
590	if (msignals & UART_MSR_DSR)
591		ch->ch_mistat |= UART_MSR_DSR;
592	else
593		ch->ch_mistat &= ~UART_MSR_DSR;
594
595	if (msignals & UART_MSR_RI)
596		ch->ch_mistat |= UART_MSR_RI;
597	else
598		ch->ch_mistat &= ~UART_MSR_RI;
599
600	if (msignals & UART_MSR_CTS)
601		ch->ch_mistat |= UART_MSR_CTS;
602	else
603		ch->ch_mistat &= ~UART_MSR_CTS;
604
605	jsm_dbg(MSIGS, &ch->ch_bd->pci_dev,
606		"Port: %d DTR: %d RTS: %d CTS: %d DSR: %d " "RI: %d CD: %d\n",
607		ch->ch_portnum,
608		!!((ch->ch_mistat | ch->ch_mostat) & UART_MCR_DTR),
609		!!((ch->ch_mistat | ch->ch_mostat) & UART_MCR_RTS),
610		!!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_CTS),
611		!!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_DSR),
612		!!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_RI),
613		!!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_DCD));
614}
615
616/* Make the UART raise any of the output signals we want up */
617static void neo_assert_modem_signals(struct jsm_channel *ch)
618{
619	if (!ch)
620		return;
621
622	writeb(ch->ch_mostat, &ch->ch_neo_uart->mcr);
623
624	/* flush write operation */
625	neo_pci_posting_flush(ch->ch_bd);
626}
627
628/*
629 * Flush the WRITE FIFO on the Neo.
630 *
631 * NOTE: Channel lock MUST be held before calling this function!
632 */
633static void neo_flush_uart_write(struct jsm_channel *ch)
634{
635	u8 tmp = 0;
636	int i = 0;
637
638	if (!ch)
639		return;
640
641	writeb((UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_XMIT), &ch->ch_neo_uart->isr_fcr);
642
643	for (i = 0; i < 10; i++) {
644
645		/* Check to see if the UART feels it completely flushed the FIFO. */
646		tmp = readb(&ch->ch_neo_uart->isr_fcr);
647		if (tmp & UART_FCR_CLEAR_XMIT) {
648			jsm_dbg(IOCTL, &ch->ch_bd->pci_dev,
649				"Still flushing TX UART... i: %d\n", i);
650			udelay(10);
651		}
652		else
653			break;
654	}
655
656	ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
657}
658
659
660/*
661 * Flush the READ FIFO on the Neo.
662 *
663 * NOTE: Channel lock MUST be held before calling this function!
664 */
665static void neo_flush_uart_read(struct jsm_channel *ch)
666{
667	u8 tmp = 0;
668	int i = 0;
669
670	if (!ch)
671		return;
672
673	writeb((UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_RCVR), &ch->ch_neo_uart->isr_fcr);
674
675	for (i = 0; i < 10; i++) {
676
677		/* Check to see if the UART feels it completely flushed the FIFO. */
678		tmp = readb(&ch->ch_neo_uart->isr_fcr);
679		if (tmp & 2) {
680			jsm_dbg(IOCTL, &ch->ch_bd->pci_dev,
681				"Still flushing RX UART... i: %d\n", i);
682			udelay(10);
683		}
684		else
685			break;
686	}
687}
688
689/*
690 * No locks are assumed to be held when calling this function.
691 */
692static void neo_clear_break(struct jsm_channel *ch)
693{
694	unsigned long lock_flags;
695
696	spin_lock_irqsave(&ch->ch_lock, lock_flags);
697
698	/* Turn break off, and unset some variables */
699	if (ch->ch_flags & CH_BREAK_SENDING) {
700		u8 temp = readb(&ch->ch_neo_uart->lcr);
701		writeb((temp & ~UART_LCR_SBC), &ch->ch_neo_uart->lcr);
702
703		ch->ch_flags &= ~(CH_BREAK_SENDING);
704		jsm_dbg(IOCTL, &ch->ch_bd->pci_dev,
705			"clear break Finishing UART_LCR_SBC! finished: %lx\n",
706			jiffies);
707
708		/* flush write operation */
709		neo_pci_posting_flush(ch->ch_bd);
710	}
711	spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
712}
713
714/*
715 * Parse the ISR register.
716 */
717static inline void neo_parse_isr(struct jsm_board *brd, u32 port)
718{
719	struct jsm_channel *ch;
720	u8 isr;
721	u8 cause;
722	unsigned long lock_flags;
723
724	if (!brd)
725		return;
726
727	if (port >= brd->maxports)
728		return;
729
730	ch = brd->channels[port];
731	if (!ch)
732		return;
733
734	/* Here we try to figure out what caused the interrupt to happen */
735	while (1) {
736
737		isr = readb(&ch->ch_neo_uart->isr_fcr);
738
739		/* Bail if no pending interrupt */
740		if (isr & UART_IIR_NO_INT)
741			break;
742
743		/*
744		 * Yank off the upper 2 bits, which just show that the FIFO's are enabled.
745		 */
746		isr &= ~(UART_17158_IIR_FIFO_ENABLED);
747
748		jsm_dbg(INTR, &ch->ch_bd->pci_dev, "%s:%d isr: %x\n",
749			__FILE__, __LINE__, isr);
750
751		if (isr & (UART_17158_IIR_RDI_TIMEOUT | UART_IIR_RDI)) {
752			/* Read data from uart -> queue */
753			neo_copy_data_from_uart_to_queue(ch);
754
755			/* Call our tty layer to enforce queue flow control if needed. */
756			spin_lock_irqsave(&ch->ch_lock, lock_flags);
757			jsm_check_queue_flow_control(ch);
758			spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
759		}
760
761		if (isr & UART_IIR_THRI) {
762			/* Transfer data (if any) from Write Queue -> UART. */
763			spin_lock_irqsave(&ch->ch_lock, lock_flags);
764			ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
765			spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
766			neo_copy_data_from_queue_to_uart(ch);
767		}
768
769		if (isr & UART_17158_IIR_XONXOFF) {
770			cause = readb(&ch->ch_neo_uart->xoffchar1);
771
772			jsm_dbg(INTR, &ch->ch_bd->pci_dev,
773				"Port %d. Got ISR_XONXOFF: cause:%x\n",
774				port, cause);
775
776			/*
777			 * Since the UART detected either an XON or
778			 * XOFF match, we need to figure out which
779			 * one it was, so we can suspend or resume data flow.
780			 */
781			spin_lock_irqsave(&ch->ch_lock, lock_flags);
782			if (cause == UART_17158_XON_DETECT) {
783				/* Is output stopped right now, if so, resume it */
784				if (brd->channels[port]->ch_flags & CH_STOP) {
785					ch->ch_flags &= ~(CH_STOP);
786				}
787				jsm_dbg(INTR, &ch->ch_bd->pci_dev,
788					"Port %d. XON detected in incoming data\n",
789					port);
790			}
791			else if (cause == UART_17158_XOFF_DETECT) {
792				if (!(brd->channels[port]->ch_flags & CH_STOP)) {
793					ch->ch_flags |= CH_STOP;
794					jsm_dbg(INTR, &ch->ch_bd->pci_dev,
795						"Setting CH_STOP\n");
796				}
797				jsm_dbg(INTR, &ch->ch_bd->pci_dev,
798					"Port: %d. XOFF detected in incoming data\n",
799					port);
800			}
801			spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
802		}
803
804		if (isr & UART_17158_IIR_HWFLOW_STATE_CHANGE) {
805			/*
806			 * If we get here, this means the hardware is doing auto flow control.
807			 * Check to see whether RTS/DTR or CTS/DSR caused this interrupt.
808			 */
809			cause = readb(&ch->ch_neo_uart->mcr);
810
811			/* Which pin is doing auto flow? RTS or DTR? */
812			spin_lock_irqsave(&ch->ch_lock, lock_flags);
813			if ((cause & 0x4) == 0) {
814				if (cause & UART_MCR_RTS)
815					ch->ch_mostat |= UART_MCR_RTS;
816				else
817					ch->ch_mostat &= ~(UART_MCR_RTS);
818			} else {
819				if (cause & UART_MCR_DTR)
820					ch->ch_mostat |= UART_MCR_DTR;
821				else
822					ch->ch_mostat &= ~(UART_MCR_DTR);
823			}
824			spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
825		}
826
827		/* Parse any modem signal changes */
828		jsm_dbg(INTR, &ch->ch_bd->pci_dev,
829			"MOD_STAT: sending to parse_modem_sigs\n");
830		neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr));
831	}
832}
833
834static inline void neo_parse_lsr(struct jsm_board *brd, u32 port)
835{
836	struct jsm_channel *ch;
837	int linestatus;
838	unsigned long lock_flags;
839
840	if (!brd)
841		return;
842
843	if (port >= brd->maxports)
844		return;
845
846	ch = brd->channels[port];
847	if (!ch)
848		return;
849
850	linestatus = readb(&ch->ch_neo_uart->lsr);
851
852	jsm_dbg(INTR, &ch->ch_bd->pci_dev, "%s:%d port: %d linestatus: %x\n",
853		__FILE__, __LINE__, port, linestatus);
854
855	ch->ch_cached_lsr |= linestatus;
856
857	if (ch->ch_cached_lsr & UART_LSR_DR) {
858		/* Read data from uart -> queue */
859		neo_copy_data_from_uart_to_queue(ch);
860		spin_lock_irqsave(&ch->ch_lock, lock_flags);
861		jsm_check_queue_flow_control(ch);
862		spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
863	}
864
865	/*
866	 * This is a special flag. It indicates that at least 1
867	 * RX error (parity, framing, or break) has happened.
868	 * Mark this in our struct, which will tell me that I have
869	 *to do the special RX+LSR read for this FIFO load.
870	 */
871	if (linestatus & UART_17158_RX_FIFO_DATA_ERROR)
872		jsm_dbg(INTR, &ch->ch_bd->pci_dev,
873			"%s:%d Port: %d Got an RX error, need to parse LSR\n",
874			__FILE__, __LINE__, port);
875
876	/*
877	 * The next 3 tests should *NOT* happen, as the above test
878	 * should encapsulate all 3... At least, thats what Exar says.
879	 */
880
881	if (linestatus & UART_LSR_PE) {
882		ch->ch_err_parity++;
883		jsm_dbg(INTR, &ch->ch_bd->pci_dev, "%s:%d Port: %d. PAR ERR!\n",
884			__FILE__, __LINE__, port);
885	}
886
887	if (linestatus & UART_LSR_FE) {
888		ch->ch_err_frame++;
889		jsm_dbg(INTR, &ch->ch_bd->pci_dev, "%s:%d Port: %d. FRM ERR!\n",
890			__FILE__, __LINE__, port);
891	}
892
893	if (linestatus & UART_LSR_BI) {
894		ch->ch_err_break++;
895		jsm_dbg(INTR, &ch->ch_bd->pci_dev,
896			"%s:%d Port: %d. BRK INTR!\n",
897			__FILE__, __LINE__, port);
898	}
899
900	if (linestatus & UART_LSR_OE) {
901		/*
902		 * Rx Oruns. Exar says that an orun will NOT corrupt
903		 * the FIFO. It will just replace the holding register
904		 * with this new data byte. So basically just ignore this.
905		 * Probably we should eventually have an orun stat in our driver...
906		 */
907		ch->ch_err_overrun++;
908		jsm_dbg(INTR, &ch->ch_bd->pci_dev,
909			"%s:%d Port: %d. Rx Overrun!\n",
910			__FILE__, __LINE__, port);
911	}
912
913	if (linestatus & UART_LSR_THRE) {
914		spin_lock_irqsave(&ch->ch_lock, lock_flags);
915		ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
916		spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
917
918		/* Transfer data (if any) from Write Queue -> UART. */
919		neo_copy_data_from_queue_to_uart(ch);
920	}
921	else if (linestatus & UART_17158_TX_AND_FIFO_CLR) {
922		spin_lock_irqsave(&ch->ch_lock, lock_flags);
923		ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
924		spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
925
926		/* Transfer data (if any) from Write Queue -> UART. */
927		neo_copy_data_from_queue_to_uart(ch);
928	}
929}
930
931/*
932 * neo_param()
933 * Send any/all changes to the line to the UART.
934 */
935static void neo_param(struct jsm_channel *ch)
936{
937	u8 lcr = 0;
938	u8 uart_lcr, ier;
939	u32 baud;
940	int quot;
941	struct jsm_board *bd;
942
943	bd = ch->ch_bd;
944	if (!bd)
945		return;
946
947	/*
948	 * If baud rate is zero, flush queues, and set mval to drop DTR.
949	 */
950	if ((ch->ch_c_cflag & (CBAUD)) == 0) {
951		ch->ch_r_head = ch->ch_r_tail = 0;
952		ch->ch_e_head = ch->ch_e_tail = 0;
953
954		neo_flush_uart_write(ch);
955		neo_flush_uart_read(ch);
956
957		ch->ch_flags |= (CH_BAUD0);
958		ch->ch_mostat &= ~(UART_MCR_RTS | UART_MCR_DTR);
959		neo_assert_modem_signals(ch);
960		return;
961
962	} else {
963		int i;
964		unsigned int cflag;
965		static struct {
966			unsigned int rate;
967			unsigned int cflag;
968		} baud_rates[] = {
969			{ 921600, B921600 },
970			{ 460800, B460800 },
971			{ 230400, B230400 },
972			{ 115200, B115200 },
973			{  57600, B57600  },
974			{  38400, B38400  },
975			{  19200, B19200  },
976			{   9600, B9600   },
977			{   4800, B4800   },
978			{   2400, B2400   },
979			{   1200, B1200   },
980			{    600, B600    },
981			{    300, B300    },
982			{    200, B200    },
983			{    150, B150    },
984			{    134, B134    },
985			{    110, B110    },
986			{     75, B75     },
987			{     50, B50     },
988		};
989
990		cflag = C_BAUD(ch->uart_port.state->port.tty);
991		baud = 9600;
992		for (i = 0; i < ARRAY_SIZE(baud_rates); i++) {
993			if (baud_rates[i].cflag == cflag) {
994				baud = baud_rates[i].rate;
995				break;
996			}
997		}
998
999		if (ch->ch_flags & CH_BAUD0)
1000			ch->ch_flags &= ~(CH_BAUD0);
1001	}
1002
1003	if (ch->ch_c_cflag & PARENB)
1004		lcr |= UART_LCR_PARITY;
1005
1006	if (!(ch->ch_c_cflag & PARODD))
1007		lcr |= UART_LCR_EPAR;
1008
1009	/*
1010	 * Not all platforms support mark/space parity,
1011	 * so this will hide behind an ifdef.
1012	 */
1013#ifdef CMSPAR
1014	if (ch->ch_c_cflag & CMSPAR)
1015		lcr |= UART_LCR_SPAR;
1016#endif
1017
1018	if (ch->ch_c_cflag & CSTOPB)
1019		lcr |= UART_LCR_STOP;
1020
1021	switch (ch->ch_c_cflag & CSIZE) {
1022	case CS5:
1023		lcr |= UART_LCR_WLEN5;
1024		break;
1025	case CS6:
1026		lcr |= UART_LCR_WLEN6;
1027		break;
1028	case CS7:
1029		lcr |= UART_LCR_WLEN7;
1030		break;
1031	case CS8:
1032	default:
1033		lcr |= UART_LCR_WLEN8;
1034	break;
1035	}
1036
1037	ier = readb(&ch->ch_neo_uart->ier);
1038	uart_lcr = readb(&ch->ch_neo_uart->lcr);
1039
1040	quot = ch->ch_bd->bd_dividend / baud;
1041
1042	if (quot != 0) {
1043		writeb(UART_LCR_DLAB, &ch->ch_neo_uart->lcr);
1044		writeb((quot & 0xff), &ch->ch_neo_uart->txrx);
1045		writeb((quot >> 8), &ch->ch_neo_uart->ier);
1046		writeb(lcr, &ch->ch_neo_uart->lcr);
1047	}
1048
1049	if (uart_lcr != lcr)
1050		writeb(lcr, &ch->ch_neo_uart->lcr);
1051
1052	if (ch->ch_c_cflag & CREAD)
1053		ier |= (UART_IER_RDI | UART_IER_RLSI);
1054
1055	ier |= (UART_IER_THRI | UART_IER_MSI);
1056
1057	writeb(ier, &ch->ch_neo_uart->ier);
1058
1059	/* Set new start/stop chars */
1060	neo_set_new_start_stop_chars(ch);
1061
1062	if (ch->ch_c_cflag & CRTSCTS)
1063		neo_set_cts_flow_control(ch);
1064	else if (ch->ch_c_iflag & IXON) {
1065		/* If start/stop is set to disable, then we should disable flow control */
1066		if ((ch->ch_startc == __DISABLED_CHAR) || (ch->ch_stopc == __DISABLED_CHAR))
1067			neo_set_no_output_flow_control(ch);
1068		else
1069			neo_set_ixon_flow_control(ch);
1070	}
1071	else
1072		neo_set_no_output_flow_control(ch);
1073
1074	if (ch->ch_c_cflag & CRTSCTS)
1075		neo_set_rts_flow_control(ch);
1076	else if (ch->ch_c_iflag & IXOFF) {
1077		/* If start/stop is set to disable, then we should disable flow control */
1078		if ((ch->ch_startc == __DISABLED_CHAR) || (ch->ch_stopc == __DISABLED_CHAR))
1079			neo_set_no_input_flow_control(ch);
1080		else
1081			neo_set_ixoff_flow_control(ch);
1082	}
1083	else
1084		neo_set_no_input_flow_control(ch);
1085	/*
1086	 * Adjust the RX FIFO Trigger level if baud is less than 9600.
1087	 * Not exactly elegant, but this is needed because of the Exar chip's
1088	 * delay on firing off the RX FIFO interrupt on slower baud rates.
1089	 */
1090	if (baud < 9600) {
1091		writeb(1, &ch->ch_neo_uart->rfifo);
1092		ch->ch_r_tlevel = 1;
1093	}
1094
1095	neo_assert_modem_signals(ch);
1096
1097	/* Get current status of the modem signals now */
1098	neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr));
1099	return;
1100}
1101
1102/*
1103 * jsm_neo_intr()
1104 *
1105 * Neo specific interrupt handler.
1106 */
1107static irqreturn_t neo_intr(int irq, void *voidbrd)
1108{
1109	struct jsm_board *brd = voidbrd;
1110	struct jsm_channel *ch;
1111	int port = 0;
1112	int type = 0;
1113	int current_port;
1114	u32 tmp;
1115	u32 uart_poll;
1116	unsigned long lock_flags;
1117	unsigned long lock_flags2;
1118	int outofloop_count = 0;
1119
1120	/* Lock out the slow poller from running on this board. */
1121	spin_lock_irqsave(&brd->bd_intr_lock, lock_flags);
1122
1123	/*
1124	 * Read in "extended" IRQ information from the 32bit Neo register.
1125	 * Bits 0-7: What port triggered the interrupt.
1126	 * Bits 8-31: Each 3bits indicate what type of interrupt occurred.
1127	 */
1128	uart_poll = readl(brd->re_map_membase + UART_17158_POLL_ADDR_OFFSET);
1129
1130	jsm_dbg(INTR, &brd->pci_dev, "%s:%d uart_poll: %x\n",
1131		__FILE__, __LINE__, uart_poll);
1132
1133	if (!uart_poll) {
1134		jsm_dbg(INTR, &brd->pci_dev,
1135			"Kernel interrupted to me, but no pending interrupts...\n");
1136		spin_unlock_irqrestore(&brd->bd_intr_lock, lock_flags);
1137		return IRQ_NONE;
1138	}
1139
1140	/* At this point, we have at least SOMETHING to service, dig further... */
1141
1142	current_port = 0;
1143
1144	/* Loop on each port */
1145	while (((uart_poll & 0xff) != 0) && (outofloop_count < 0xff)){
1146
1147		tmp = uart_poll;
1148		outofloop_count++;
1149
1150		/* Check current port to see if it has interrupt pending */
1151		if ((tmp & jsm_offset_table[current_port]) != 0) {
1152			port = current_port;
1153			type = tmp >> (8 + (port * 3));
1154			type &= 0x7;
1155		} else {
1156			current_port++;
1157			continue;
1158		}
1159
1160		jsm_dbg(INTR, &brd->pci_dev, "%s:%d port: %x type: %x\n",
1161			__FILE__, __LINE__, port, type);
1162
1163		/* Remove this port + type from uart_poll */
1164		uart_poll &= ~(jsm_offset_table[port]);
1165
1166		if (!type) {
1167			/* If no type, just ignore it, and move onto next port */
1168			jsm_dbg(INTR, &brd->pci_dev,
1169				"Interrupt with no type! port: %d\n", port);
1170			continue;
1171		}
1172
1173		/* Switch on type of interrupt we have */
1174		switch (type) {
1175
1176		case UART_17158_RXRDY_TIMEOUT:
1177			/*
1178			 * RXRDY Time-out is cleared by reading data in the
1179			* RX FIFO until it falls below the trigger level.
1180			 */
1181
1182			/* Verify the port is in range. */
1183			if (port >= brd->nasync)
1184				continue;
1185
1186			ch = brd->channels[port];
1187			neo_copy_data_from_uart_to_queue(ch);
1188
1189			/* Call our tty layer to enforce queue flow control if needed. */
1190			spin_lock_irqsave(&ch->ch_lock, lock_flags2);
1191			jsm_check_queue_flow_control(ch);
1192			spin_unlock_irqrestore(&ch->ch_lock, lock_flags2);
1193
1194			continue;
1195
1196		case UART_17158_RX_LINE_STATUS:
1197			/*
1198			 * RXRDY and RX LINE Status (logic OR of LSR[4:1])
1199			 */
1200			neo_parse_lsr(brd, port);
1201			continue;
1202
1203		case UART_17158_TXRDY:
1204			/*
1205			 * TXRDY interrupt clears after reading ISR register for the UART channel.
1206			 */
1207
1208			/*
1209			 * Yes, this is odd...
1210			 * Why would I check EVERY possibility of type of
1211			 * interrupt, when we know its TXRDY???
1212			 * Becuz for some reason, even tho we got triggered for TXRDY,
1213			 * it seems to be occasionally wrong. Instead of TX, which
1214			 * it should be, I was getting things like RXDY too. Weird.
1215			 */
1216			neo_parse_isr(brd, port);
1217			continue;
1218
1219		case UART_17158_MSR:
1220			/*
1221			 * MSR or flow control was seen.
1222			 */
1223			neo_parse_isr(brd, port);
1224			continue;
1225
1226		default:
1227			/*
1228			 * The UART triggered us with a bogus interrupt type.
1229			 * It appears the Exar chip, when REALLY bogged down, will throw
1230			 * these once and awhile.
1231			 * Its harmless, just ignore it and move on.
1232			 */
1233			jsm_dbg(INTR, &brd->pci_dev,
1234				"%s:%d Unknown Interrupt type: %x\n",
1235				__FILE__, __LINE__, type);
1236			continue;
1237		}
1238	}
1239
1240	spin_unlock_irqrestore(&brd->bd_intr_lock, lock_flags);
1241
1242	jsm_dbg(INTR, &brd->pci_dev, "finish\n");
1243	return IRQ_HANDLED;
1244}
1245
1246/*
1247 * Neo specific way of turning off the receiver.
1248 * Used as a way to enforce queue flow control when in
1249 * hardware flow control mode.
1250 */
1251static void neo_disable_receiver(struct jsm_channel *ch)
1252{
1253	u8 tmp = readb(&ch->ch_neo_uart->ier);
1254	tmp &= ~(UART_IER_RDI);
1255	writeb(tmp, &ch->ch_neo_uart->ier);
1256
1257	/* flush write operation */
1258	neo_pci_posting_flush(ch->ch_bd);
1259}
1260
1261
1262/*
1263 * Neo specific way of turning on the receiver.
1264 * Used as a way to un-enforce queue flow control when in
1265 * hardware flow control mode.
1266 */
1267static void neo_enable_receiver(struct jsm_channel *ch)
1268{
1269	u8 tmp = readb(&ch->ch_neo_uart->ier);
1270	tmp |= (UART_IER_RDI);
1271	writeb(tmp, &ch->ch_neo_uart->ier);
1272
1273	/* flush write operation */
1274	neo_pci_posting_flush(ch->ch_bd);
1275}
1276
1277static void neo_send_start_character(struct jsm_channel *ch)
1278{
1279	if (!ch)
1280		return;
1281
1282	if (ch->ch_startc != __DISABLED_CHAR) {
1283		ch->ch_xon_sends++;
1284		writeb(ch->ch_startc, &ch->ch_neo_uart->txrx);
1285
1286		/* flush write operation */
1287		neo_pci_posting_flush(ch->ch_bd);
1288	}
1289}
1290
1291static void neo_send_stop_character(struct jsm_channel *ch)
1292{
1293	if (!ch)
1294		return;
1295
1296	if (ch->ch_stopc != __DISABLED_CHAR) {
1297		ch->ch_xoff_sends++;
1298		writeb(ch->ch_stopc, &ch->ch_neo_uart->txrx);
1299
1300		/* flush write operation */
1301		neo_pci_posting_flush(ch->ch_bd);
1302	}
1303}
1304
1305/*
1306 * neo_uart_init
1307 */
1308static void neo_uart_init(struct jsm_channel *ch)
1309{
1310	writeb(0, &ch->ch_neo_uart->ier);
1311	writeb(0, &ch->ch_neo_uart->efr);
1312	writeb(UART_EFR_ECB, &ch->ch_neo_uart->efr);
1313
1314	/* Clear out UART and FIFO */
1315	readb(&ch->ch_neo_uart->txrx);
1316	writeb((UART_FCR_ENABLE_FIFO|UART_FCR_CLEAR_RCVR|UART_FCR_CLEAR_XMIT), &ch->ch_neo_uart->isr_fcr);
1317	readb(&ch->ch_neo_uart->lsr);
1318	readb(&ch->ch_neo_uart->msr);
1319
1320	ch->ch_flags |= CH_FIFO_ENABLED;
1321
1322	/* Assert any signals we want up */
1323	writeb(ch->ch_mostat, &ch->ch_neo_uart->mcr);
1324}
1325
1326/*
1327 * Make the UART completely turn off.
1328 */
1329static void neo_uart_off(struct jsm_channel *ch)
1330{
1331	/* Turn off UART enhanced bits */
1332	writeb(0, &ch->ch_neo_uart->efr);
1333
1334	/* Stop all interrupts from occurring. */
1335	writeb(0, &ch->ch_neo_uart->ier);
1336}
1337
1338static u32 neo_get_uart_bytes_left(struct jsm_channel *ch)
1339{
1340	u8 left = 0;
1341	u8 lsr = readb(&ch->ch_neo_uart->lsr);
1342
1343	/* We must cache the LSR as some of the bits get reset once read... */
1344	ch->ch_cached_lsr |= lsr;
1345
1346	/* Determine whether the Transmitter is empty or not */
1347	if (!(lsr & UART_LSR_TEMT))
1348		left = 1;
1349	else {
1350		ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
1351		left = 0;
1352	}
1353
1354	return left;
1355}
1356
1357/* Channel lock MUST be held by the calling function! */
1358static void neo_send_break(struct jsm_channel *ch)
1359{
1360	/*
1361	 * Set the time we should stop sending the break.
1362	 * If we are already sending a break, toss away the existing
1363	 * time to stop, and use this new value instead.
1364	 */
1365
1366	/* Tell the UART to start sending the break */
1367	if (!(ch->ch_flags & CH_BREAK_SENDING)) {
1368		u8 temp = readb(&ch->ch_neo_uart->lcr);
1369		writeb((temp | UART_LCR_SBC), &ch->ch_neo_uart->lcr);
1370		ch->ch_flags |= (CH_BREAK_SENDING);
1371
1372		/* flush write operation */
1373		neo_pci_posting_flush(ch->ch_bd);
1374	}
1375}
1376
1377/*
1378 * neo_send_immediate_char.
1379 *
1380 * Sends a specific character as soon as possible to the UART,
1381 * jumping over any bytes that might be in the write queue.
1382 *
1383 * The channel lock MUST be held by the calling function.
1384 */
1385static void neo_send_immediate_char(struct jsm_channel *ch, unsigned char c)
1386{
1387	if (!ch)
1388		return;
1389
1390	writeb(c, &ch->ch_neo_uart->txrx);
1391
1392	/* flush write operation */
1393	neo_pci_posting_flush(ch->ch_bd);
1394}
1395
1396struct board_ops jsm_neo_ops = {
1397	.intr				= neo_intr,
1398	.uart_init			= neo_uart_init,
1399	.uart_off			= neo_uart_off,
1400	.param				= neo_param,
1401	.assert_modem_signals		= neo_assert_modem_signals,
1402	.flush_uart_write		= neo_flush_uart_write,
1403	.flush_uart_read		= neo_flush_uart_read,
1404	.disable_receiver		= neo_disable_receiver,
1405	.enable_receiver		= neo_enable_receiver,
1406	.send_break			= neo_send_break,
1407	.clear_break			= neo_clear_break,
1408	.send_start_character		= neo_send_start_character,
1409	.send_stop_character		= neo_send_stop_character,
1410	.copy_data_from_queue_to_uart	= neo_copy_data_from_queue_to_uart,
1411	.get_uart_bytes_left		= neo_get_uart_bytes_left,
1412	.send_immediate_char		= neo_send_immediate_char
1413};
1414