1/* ePAPR hypervisor byte channel device driver
2 *
3 * Copyright 2009-2011 Freescale Semiconductor, Inc.
4 *
5 * Author: Timur Tabi <timur@freescale.com>
6 *
7 * This file is licensed under the terms of the GNU General Public License
8 * version 2.  This program is licensed "as is" without any warranty of any
9 * kind, whether express or implied.
10 *
11 * This driver support three distinct interfaces, all of which are related to
12 * ePAPR hypervisor byte channels.
13 *
14 * 1) An early-console (udbg) driver.  This provides early console output
15 * through a byte channel.  The byte channel handle must be specified in a
16 * Kconfig option.
17 *
18 * 2) A normal console driver.  Output is sent to the byte channel designated
19 * for stdout in the device tree.  The console driver is for handling kernel
20 * printk calls.
21 *
22 * 3) A tty driver, which is used to handle user-space input and output.  The
23 * byte channel used for the console is designated as the default tty.
24 */
25
26#include <linux/module.h>
27#include <linux/init.h>
28#include <linux/slab.h>
29#include <linux/err.h>
30#include <linux/interrupt.h>
31#include <linux/fs.h>
32#include <linux/poll.h>
33#include <asm/epapr_hcalls.h>
34#include <linux/of.h>
35#include <linux/of_irq.h>
36#include <linux/platform_device.h>
37#include <linux/cdev.h>
38#include <linux/console.h>
39#include <linux/tty.h>
40#include <linux/tty_flip.h>
41#include <linux/circ_buf.h>
42#include <asm/udbg.h>
43
44/* The size of the transmit circular buffer.  This must be a power of two. */
45#define BUF_SIZE	2048
46
47/* Per-byte channel private data */
48struct ehv_bc_data {
49	struct device *dev;
50	struct tty_port port;
51	uint32_t handle;
52	unsigned int rx_irq;
53	unsigned int tx_irq;
54
55	spinlock_t lock;	/* lock for transmit buffer */
56	unsigned char buf[BUF_SIZE];	/* transmit circular buffer */
57	unsigned int head;	/* circular buffer head */
58	unsigned int tail;	/* circular buffer tail */
59
60	int tx_irq_enabled;	/* true == TX interrupt is enabled */
61};
62
63/* Array of byte channel objects */
64static struct ehv_bc_data *bcs;
65
66/* Byte channel handle for stdout (and stdin), taken from device tree */
67static unsigned int stdout_bc;
68
69/* Virtual IRQ for the byte channel handle for stdin, taken from device tree */
70static unsigned int stdout_irq;
71
72/**************************** SUPPORT FUNCTIONS ****************************/
73
74/*
75 * Enable the transmit interrupt
76 *
77 * Unlike a serial device, byte channels have no mechanism for disabling their
78 * own receive or transmit interrupts.  To emulate that feature, we toggle
79 * the IRQ in the kernel.
80 *
81 * We cannot just blindly call enable_irq() or disable_irq(), because these
82 * calls are reference counted.  This means that we cannot call enable_irq()
83 * if interrupts are already enabled.  This can happen in two situations:
84 *
85 * 1. The tty layer makes two back-to-back calls to ehv_bc_tty_write()
86 * 2. A transmit interrupt occurs while executing ehv_bc_tx_dequeue()
87 *
88 * To work around this, we keep a flag to tell us if the IRQ is enabled or not.
89 */
90static void enable_tx_interrupt(struct ehv_bc_data *bc)
91{
92	if (!bc->tx_irq_enabled) {
93		enable_irq(bc->tx_irq);
94		bc->tx_irq_enabled = 1;
95	}
96}
97
98static void disable_tx_interrupt(struct ehv_bc_data *bc)
99{
100	if (bc->tx_irq_enabled) {
101		disable_irq_nosync(bc->tx_irq);
102		bc->tx_irq_enabled = 0;
103	}
104}
105
106/*
107 * find the byte channel handle to use for the console
108 *
109 * The byte channel to be used for the console is specified via a "stdout"
110 * property in the /chosen node.
111 */
112static int find_console_handle(void)
113{
114	struct device_node *np = of_stdout;
115	const uint32_t *iprop;
116
117	/* We don't care what the aliased node is actually called.  We only
118	 * care if it's compatible with "epapr,hv-byte-channel", because that
119	 * indicates that it's a byte channel node.
120	 */
121	if (!np || !of_device_is_compatible(np, "epapr,hv-byte-channel"))
122		return 0;
123
124	stdout_irq = irq_of_parse_and_map(np, 0);
125	if (stdout_irq == NO_IRQ) {
126		pr_err("ehv-bc: no 'interrupts' property in %s node\n", np->full_name);
127		return 0;
128	}
129
130	/*
131	 * The 'hv-handle' property contains the handle for this byte channel.
132	 */
133	iprop = of_get_property(np, "hv-handle", NULL);
134	if (!iprop) {
135		pr_err("ehv-bc: no 'hv-handle' property in %s node\n",
136		       np->name);
137		return 0;
138	}
139	stdout_bc = be32_to_cpu(*iprop);
140	return 1;
141}
142
143/*************************** EARLY CONSOLE DRIVER ***************************/
144
145#ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC
146
147/*
148 * send a byte to a byte channel, wait if necessary
149 *
150 * This function sends a byte to a byte channel, and it waits and
151 * retries if the byte channel is full.  It returns if the character
152 * has been sent, or if some error has occurred.
153 *
154 */
155static void byte_channel_spin_send(const char data)
156{
157	int ret, count;
158
159	do {
160		count = 1;
161		ret = ev_byte_channel_send(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE,
162					   &count, &data);
163	} while (ret == EV_EAGAIN);
164}
165
166/*
167 * The udbg subsystem calls this function to display a single character.
168 * We convert CR to a CR/LF.
169 */
170static void ehv_bc_udbg_putc(char c)
171{
172	if (c == '\n')
173		byte_channel_spin_send('\r');
174
175	byte_channel_spin_send(c);
176}
177
178/*
179 * early console initialization
180 *
181 * PowerPC kernels support an early printk console, also known as udbg.
182 * This function must be called via the ppc_md.init_early function pointer.
183 * At this point, the device tree has been unflattened, so we can obtain the
184 * byte channel handle for stdout.
185 *
186 * We only support displaying of characters (putc).  We do not support
187 * keyboard input.
188 */
189void __init udbg_init_ehv_bc(void)
190{
191	unsigned int rx_count, tx_count;
192	unsigned int ret;
193
194	/* Verify the byte channel handle */
195	ret = ev_byte_channel_poll(CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE,
196				   &rx_count, &tx_count);
197	if (ret)
198		return;
199
200	udbg_putc = ehv_bc_udbg_putc;
201	register_early_udbg_console();
202
203	udbg_printf("ehv-bc: early console using byte channel handle %u\n",
204		    CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE);
205}
206
207#endif
208
209/****************************** CONSOLE DRIVER ******************************/
210
211static struct tty_driver *ehv_bc_driver;
212
213/*
214 * Byte channel console sending worker function.
215 *
216 * For consoles, if the output buffer is full, we should just spin until it
217 * clears.
218 */
219static int ehv_bc_console_byte_channel_send(unsigned int handle, const char *s,
220			     unsigned int count)
221{
222	unsigned int len;
223	int ret = 0;
224
225	while (count) {
226		len = min_t(unsigned int, count, EV_BYTE_CHANNEL_MAX_BYTES);
227		do {
228			ret = ev_byte_channel_send(handle, &len, s);
229		} while (ret == EV_EAGAIN);
230		count -= len;
231		s += len;
232	}
233
234	return ret;
235}
236
237/*
238 * write a string to the console
239 *
240 * This function gets called to write a string from the kernel, typically from
241 * a printk().  This function spins until all data is written.
242 *
243 * We copy the data to a temporary buffer because we need to insert a \r in
244 * front of every \n.  It's more efficient to copy the data to the buffer than
245 * it is to make multiple hcalls for each character or each newline.
246 */
247static void ehv_bc_console_write(struct console *co, const char *s,
248				 unsigned int count)
249{
250	char s2[EV_BYTE_CHANNEL_MAX_BYTES];
251	unsigned int i, j = 0;
252	char c;
253
254	for (i = 0; i < count; i++) {
255		c = *s++;
256
257		if (c == '\n')
258			s2[j++] = '\r';
259
260		s2[j++] = c;
261		if (j >= (EV_BYTE_CHANNEL_MAX_BYTES - 1)) {
262			if (ehv_bc_console_byte_channel_send(stdout_bc, s2, j))
263				return;
264			j = 0;
265		}
266	}
267
268	if (j)
269		ehv_bc_console_byte_channel_send(stdout_bc, s2, j);
270}
271
272/*
273 * When /dev/console is opened, the kernel iterates the console list looking
274 * for one with ->device and then calls that method. On success, it expects
275 * the passed-in int* to contain the minor number to use.
276 */
277static struct tty_driver *ehv_bc_console_device(struct console *co, int *index)
278{
279	*index = co->index;
280
281	return ehv_bc_driver;
282}
283
284static struct console ehv_bc_console = {
285	.name		= "ttyEHV",
286	.write		= ehv_bc_console_write,
287	.device		= ehv_bc_console_device,
288	.flags		= CON_PRINTBUFFER | CON_ENABLED,
289};
290
291/*
292 * Console initialization
293 *
294 * This is the first function that is called after the device tree is
295 * available, so here is where we determine the byte channel handle and IRQ for
296 * stdout/stdin, even though that information is used by the tty and character
297 * drivers.
298 */
299static int __init ehv_bc_console_init(void)
300{
301	if (!find_console_handle()) {
302		pr_debug("ehv-bc: stdout is not a byte channel\n");
303		return -ENODEV;
304	}
305
306#ifdef CONFIG_PPC_EARLY_DEBUG_EHV_BC
307	/* Print a friendly warning if the user chose the wrong byte channel
308	 * handle for udbg.
309	 */
310	if (stdout_bc != CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE)
311		pr_warn("ehv-bc: udbg handle %u is not the stdout handle\n",
312			CONFIG_PPC_EARLY_DEBUG_EHV_BC_HANDLE);
313#endif
314
315	/* add_preferred_console() must be called before register_console(),
316	   otherwise it won't work.  However, we don't want to enumerate all the
317	   byte channels here, either, since we only care about one. */
318
319	add_preferred_console(ehv_bc_console.name, ehv_bc_console.index, NULL);
320	register_console(&ehv_bc_console);
321
322	pr_info("ehv-bc: registered console driver for byte channel %u\n",
323		stdout_bc);
324
325	return 0;
326}
327console_initcall(ehv_bc_console_init);
328
329/******************************** TTY DRIVER ********************************/
330
331/*
332 * byte channel receive interupt handler
333 *
334 * This ISR is called whenever data is available on a byte channel.
335 */
336static irqreturn_t ehv_bc_tty_rx_isr(int irq, void *data)
337{
338	struct ehv_bc_data *bc = data;
339	unsigned int rx_count, tx_count, len;
340	int count;
341	char buffer[EV_BYTE_CHANNEL_MAX_BYTES];
342	int ret;
343
344	/* Find out how much data needs to be read, and then ask the TTY layer
345	 * if it can handle that much.  We want to ensure that every byte we
346	 * read from the byte channel will be accepted by the TTY layer.
347	 */
348	ev_byte_channel_poll(bc->handle, &rx_count, &tx_count);
349	count = tty_buffer_request_room(&bc->port, rx_count);
350
351	/* 'count' is the maximum amount of data the TTY layer can accept at
352	 * this time.  However, during testing, I was never able to get 'count'
353	 * to be less than 'rx_count'.  I'm not sure whether I'm calling it
354	 * correctly.
355	 */
356
357	while (count > 0) {
358		len = min_t(unsigned int, count, sizeof(buffer));
359
360		/* Read some data from the byte channel.  This function will
361		 * never return more than EV_BYTE_CHANNEL_MAX_BYTES bytes.
362		 */
363		ev_byte_channel_receive(bc->handle, &len, buffer);
364
365		/* 'len' is now the amount of data that's been received. 'len'
366		 * can't be zero, and most likely it's equal to one.
367		 */
368
369		/* Pass the received data to the tty layer. */
370		ret = tty_insert_flip_string(&bc->port, buffer, len);
371
372		/* 'ret' is the number of bytes that the TTY layer accepted.
373		 * If it's not equal to 'len', then it means the buffer is
374		 * full, which should never happen.  If it does happen, we can
375		 * exit gracefully, but we drop the last 'len - ret' characters
376		 * that we read from the byte channel.
377		 */
378		if (ret != len)
379			break;
380
381		count -= len;
382	}
383
384	/* Tell the tty layer that we're done. */
385	tty_flip_buffer_push(&bc->port);
386
387	return IRQ_HANDLED;
388}
389
390/*
391 * dequeue the transmit buffer to the hypervisor
392 *
393 * This function, which can be called in interrupt context, dequeues as much
394 * data as possible from the transmit buffer to the byte channel.
395 */
396static void ehv_bc_tx_dequeue(struct ehv_bc_data *bc)
397{
398	unsigned int count;
399	unsigned int len, ret;
400	unsigned long flags;
401
402	do {
403		spin_lock_irqsave(&bc->lock, flags);
404		len = min_t(unsigned int,
405			    CIRC_CNT_TO_END(bc->head, bc->tail, BUF_SIZE),
406			    EV_BYTE_CHANNEL_MAX_BYTES);
407
408		ret = ev_byte_channel_send(bc->handle, &len, bc->buf + bc->tail);
409
410		/* 'len' is valid only if the return code is 0 or EV_EAGAIN */
411		if (!ret || (ret == EV_EAGAIN))
412			bc->tail = (bc->tail + len) & (BUF_SIZE - 1);
413
414		count = CIRC_CNT(bc->head, bc->tail, BUF_SIZE);
415		spin_unlock_irqrestore(&bc->lock, flags);
416	} while (count && !ret);
417
418	spin_lock_irqsave(&bc->lock, flags);
419	if (CIRC_CNT(bc->head, bc->tail, BUF_SIZE))
420		/*
421		 * If we haven't emptied the buffer, then enable the TX IRQ.
422		 * We'll get an interrupt when there's more room in the
423		 * hypervisor's output buffer.
424		 */
425		enable_tx_interrupt(bc);
426	else
427		disable_tx_interrupt(bc);
428	spin_unlock_irqrestore(&bc->lock, flags);
429}
430
431/*
432 * byte channel transmit interupt handler
433 *
434 * This ISR is called whenever space becomes available for transmitting
435 * characters on a byte channel.
436 */
437static irqreturn_t ehv_bc_tty_tx_isr(int irq, void *data)
438{
439	struct ehv_bc_data *bc = data;
440
441	ehv_bc_tx_dequeue(bc);
442	tty_port_tty_wakeup(&bc->port);
443
444	return IRQ_HANDLED;
445}
446
447/*
448 * This function is called when the tty layer has data for us send.  We store
449 * the data first in a circular buffer, and then dequeue as much of that data
450 * as possible.
451 *
452 * We don't need to worry about whether there is enough room in the buffer for
453 * all the data.  The purpose of ehv_bc_tty_write_room() is to tell the tty
454 * layer how much data it can safely send to us.  We guarantee that
455 * ehv_bc_tty_write_room() will never lie, so the tty layer will never send us
456 * too much data.
457 */
458static int ehv_bc_tty_write(struct tty_struct *ttys, const unsigned char *s,
459			    int count)
460{
461	struct ehv_bc_data *bc = ttys->driver_data;
462	unsigned long flags;
463	unsigned int len;
464	unsigned int written = 0;
465
466	while (1) {
467		spin_lock_irqsave(&bc->lock, flags);
468		len = CIRC_SPACE_TO_END(bc->head, bc->tail, BUF_SIZE);
469		if (count < len)
470			len = count;
471		if (len) {
472			memcpy(bc->buf + bc->head, s, len);
473			bc->head = (bc->head + len) & (BUF_SIZE - 1);
474		}
475		spin_unlock_irqrestore(&bc->lock, flags);
476		if (!len)
477			break;
478
479		s += len;
480		count -= len;
481		written += len;
482	}
483
484	ehv_bc_tx_dequeue(bc);
485
486	return written;
487}
488
489/*
490 * This function can be called multiple times for a given tty_struct, which is
491 * why we initialize bc->ttys in ehv_bc_tty_port_activate() instead.
492 *
493 * The tty layer will still call this function even if the device was not
494 * registered (i.e. tty_register_device() was not called).  This happens
495 * because tty_register_device() is optional and some legacy drivers don't
496 * use it.  So we need to check for that.
497 */
498static int ehv_bc_tty_open(struct tty_struct *ttys, struct file *filp)
499{
500	struct ehv_bc_data *bc = &bcs[ttys->index];
501
502	if (!bc->dev)
503		return -ENODEV;
504
505	return tty_port_open(&bc->port, ttys, filp);
506}
507
508/*
509 * Amazingly, if ehv_bc_tty_open() returns an error code, the tty layer will
510 * still call this function to close the tty device.  So we can't assume that
511 * the tty port has been initialized.
512 */
513static void ehv_bc_tty_close(struct tty_struct *ttys, struct file *filp)
514{
515	struct ehv_bc_data *bc = &bcs[ttys->index];
516
517	if (bc->dev)
518		tty_port_close(&bc->port, ttys, filp);
519}
520
521/*
522 * Return the amount of space in the output buffer
523 *
524 * This is actually a contract between the driver and the tty layer outlining
525 * how much write room the driver can guarantee will be sent OR BUFFERED.  This
526 * driver MUST honor the return value.
527 */
528static int ehv_bc_tty_write_room(struct tty_struct *ttys)
529{
530	struct ehv_bc_data *bc = ttys->driver_data;
531	unsigned long flags;
532	int count;
533
534	spin_lock_irqsave(&bc->lock, flags);
535	count = CIRC_SPACE(bc->head, bc->tail, BUF_SIZE);
536	spin_unlock_irqrestore(&bc->lock, flags);
537
538	return count;
539}
540
541/*
542 * Stop sending data to the tty layer
543 *
544 * This function is called when the tty layer's input buffers are getting full,
545 * so the driver should stop sending it data.  The easiest way to do this is to
546 * disable the RX IRQ, which will prevent ehv_bc_tty_rx_isr() from being
547 * called.
548 *
549 * The hypervisor will continue to queue up any incoming data.  If there is any
550 * data in the queue when the RX interrupt is enabled, we'll immediately get an
551 * RX interrupt.
552 */
553static void ehv_bc_tty_throttle(struct tty_struct *ttys)
554{
555	struct ehv_bc_data *bc = ttys->driver_data;
556
557	disable_irq(bc->rx_irq);
558}
559
560/*
561 * Resume sending data to the tty layer
562 *
563 * This function is called after previously calling ehv_bc_tty_throttle().  The
564 * tty layer's input buffers now have more room, so the driver can resume
565 * sending it data.
566 */
567static void ehv_bc_tty_unthrottle(struct tty_struct *ttys)
568{
569	struct ehv_bc_data *bc = ttys->driver_data;
570
571	/* If there is any data in the queue when the RX interrupt is enabled,
572	 * we'll immediately get an RX interrupt.
573	 */
574	enable_irq(bc->rx_irq);
575}
576
577static void ehv_bc_tty_hangup(struct tty_struct *ttys)
578{
579	struct ehv_bc_data *bc = ttys->driver_data;
580
581	ehv_bc_tx_dequeue(bc);
582	tty_port_hangup(&bc->port);
583}
584
585/*
586 * TTY driver operations
587 *
588 * If we could ask the hypervisor how much data is still in the TX buffer, or
589 * at least how big the TX buffers are, then we could implement the
590 * .wait_until_sent and .chars_in_buffer functions.
591 */
592static const struct tty_operations ehv_bc_ops = {
593	.open		= ehv_bc_tty_open,
594	.close		= ehv_bc_tty_close,
595	.write		= ehv_bc_tty_write,
596	.write_room	= ehv_bc_tty_write_room,
597	.throttle	= ehv_bc_tty_throttle,
598	.unthrottle	= ehv_bc_tty_unthrottle,
599	.hangup		= ehv_bc_tty_hangup,
600};
601
602/*
603 * initialize the TTY port
604 *
605 * This function will only be called once, no matter how many times
606 * ehv_bc_tty_open() is called.  That's why we register the ISR here, and also
607 * why we initialize tty_struct-related variables here.
608 */
609static int ehv_bc_tty_port_activate(struct tty_port *port,
610				    struct tty_struct *ttys)
611{
612	struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port);
613	int ret;
614
615	ttys->driver_data = bc;
616
617	ret = request_irq(bc->rx_irq, ehv_bc_tty_rx_isr, 0, "ehv-bc", bc);
618	if (ret < 0) {
619		dev_err(bc->dev, "could not request rx irq %u (ret=%i)\n",
620		       bc->rx_irq, ret);
621		return ret;
622	}
623
624	/* request_irq also enables the IRQ */
625	bc->tx_irq_enabled = 1;
626
627	ret = request_irq(bc->tx_irq, ehv_bc_tty_tx_isr, 0, "ehv-bc", bc);
628	if (ret < 0) {
629		dev_err(bc->dev, "could not request tx irq %u (ret=%i)\n",
630		       bc->tx_irq, ret);
631		free_irq(bc->rx_irq, bc);
632		return ret;
633	}
634
635	/* The TX IRQ is enabled only when we can't write all the data to the
636	 * byte channel at once, so by default it's disabled.
637	 */
638	disable_tx_interrupt(bc);
639
640	return 0;
641}
642
643static void ehv_bc_tty_port_shutdown(struct tty_port *port)
644{
645	struct ehv_bc_data *bc = container_of(port, struct ehv_bc_data, port);
646
647	free_irq(bc->tx_irq, bc);
648	free_irq(bc->rx_irq, bc);
649}
650
651static const struct tty_port_operations ehv_bc_tty_port_ops = {
652	.activate = ehv_bc_tty_port_activate,
653	.shutdown = ehv_bc_tty_port_shutdown,
654};
655
656static int ehv_bc_tty_probe(struct platform_device *pdev)
657{
658	struct device_node *np = pdev->dev.of_node;
659	struct ehv_bc_data *bc;
660	const uint32_t *iprop;
661	unsigned int handle;
662	int ret;
663	static unsigned int index = 1;
664	unsigned int i;
665
666	iprop = of_get_property(np, "hv-handle", NULL);
667	if (!iprop) {
668		dev_err(&pdev->dev, "no 'hv-handle' property in %s node\n",
669			np->name);
670		return -ENODEV;
671	}
672
673	/* We already told the console layer that the index for the console
674	 * device is zero, so we need to make sure that we use that index when
675	 * we probe the console byte channel node.
676	 */
677	handle = be32_to_cpu(*iprop);
678	i = (handle == stdout_bc) ? 0 : index++;
679	bc = &bcs[i];
680
681	bc->handle = handle;
682	bc->head = 0;
683	bc->tail = 0;
684	spin_lock_init(&bc->lock);
685
686	bc->rx_irq = irq_of_parse_and_map(np, 0);
687	bc->tx_irq = irq_of_parse_and_map(np, 1);
688	if ((bc->rx_irq == NO_IRQ) || (bc->tx_irq == NO_IRQ)) {
689		dev_err(&pdev->dev, "no 'interrupts' property in %s node\n",
690			np->name);
691		ret = -ENODEV;
692		goto error;
693	}
694
695	tty_port_init(&bc->port);
696	bc->port.ops = &ehv_bc_tty_port_ops;
697
698	bc->dev = tty_port_register_device(&bc->port, ehv_bc_driver, i,
699			&pdev->dev);
700	if (IS_ERR(bc->dev)) {
701		ret = PTR_ERR(bc->dev);
702		dev_err(&pdev->dev, "could not register tty (ret=%i)\n", ret);
703		goto error;
704	}
705
706	dev_set_drvdata(&pdev->dev, bc);
707
708	dev_info(&pdev->dev, "registered /dev/%s%u for byte channel %u\n",
709		ehv_bc_driver->name, i, bc->handle);
710
711	return 0;
712
713error:
714	tty_port_destroy(&bc->port);
715	irq_dispose_mapping(bc->tx_irq);
716	irq_dispose_mapping(bc->rx_irq);
717
718	memset(bc, 0, sizeof(struct ehv_bc_data));
719	return ret;
720}
721
722static int ehv_bc_tty_remove(struct platform_device *pdev)
723{
724	struct ehv_bc_data *bc = dev_get_drvdata(&pdev->dev);
725
726	tty_unregister_device(ehv_bc_driver, bc - bcs);
727
728	tty_port_destroy(&bc->port);
729	irq_dispose_mapping(bc->tx_irq);
730	irq_dispose_mapping(bc->rx_irq);
731
732	return 0;
733}
734
735static const struct of_device_id ehv_bc_tty_of_ids[] = {
736	{ .compatible = "epapr,hv-byte-channel" },
737	{}
738};
739
740static struct platform_driver ehv_bc_tty_driver = {
741	.driver = {
742		.name = "ehv-bc",
743		.of_match_table = ehv_bc_tty_of_ids,
744	},
745	.probe		= ehv_bc_tty_probe,
746	.remove		= ehv_bc_tty_remove,
747};
748
749/**
750 * ehv_bc_init - ePAPR hypervisor byte channel driver initialization
751 *
752 * This function is called when this module is loaded.
753 */
754static int __init ehv_bc_init(void)
755{
756	struct device_node *np;
757	unsigned int count = 0; /* Number of elements in bcs[] */
758	int ret;
759
760	pr_info("ePAPR hypervisor byte channel driver\n");
761
762	/* Count the number of byte channels */
763	for_each_compatible_node(np, NULL, "epapr,hv-byte-channel")
764		count++;
765
766	if (!count)
767		return -ENODEV;
768
769	/* The array index of an element in bcs[] is the same as the tty index
770	 * for that element.  If you know the address of an element in the
771	 * array, then you can use pointer math (e.g. "bc - bcs") to get its
772	 * tty index.
773	 */
774	bcs = kzalloc(count * sizeof(struct ehv_bc_data), GFP_KERNEL);
775	if (!bcs)
776		return -ENOMEM;
777
778	ehv_bc_driver = alloc_tty_driver(count);
779	if (!ehv_bc_driver) {
780		ret = -ENOMEM;
781		goto error;
782	}
783
784	ehv_bc_driver->driver_name = "ehv-bc";
785	ehv_bc_driver->name = ehv_bc_console.name;
786	ehv_bc_driver->type = TTY_DRIVER_TYPE_CONSOLE;
787	ehv_bc_driver->subtype = SYSTEM_TYPE_CONSOLE;
788	ehv_bc_driver->init_termios = tty_std_termios;
789	ehv_bc_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
790	tty_set_operations(ehv_bc_driver, &ehv_bc_ops);
791
792	ret = tty_register_driver(ehv_bc_driver);
793	if (ret) {
794		pr_err("ehv-bc: could not register tty driver (ret=%i)\n", ret);
795		goto error;
796	}
797
798	ret = platform_driver_register(&ehv_bc_tty_driver);
799	if (ret) {
800		pr_err("ehv-bc: could not register platform driver (ret=%i)\n",
801		       ret);
802		goto error;
803	}
804
805	return 0;
806
807error:
808	if (ehv_bc_driver) {
809		tty_unregister_driver(ehv_bc_driver);
810		put_tty_driver(ehv_bc_driver);
811	}
812
813	kfree(bcs);
814
815	return ret;
816}
817
818
819/**
820 * ehv_bc_exit - ePAPR hypervisor byte channel driver termination
821 *
822 * This function is called when this driver is unloaded.
823 */
824static void __exit ehv_bc_exit(void)
825{
826	platform_driver_unregister(&ehv_bc_tty_driver);
827	tty_unregister_driver(ehv_bc_driver);
828	put_tty_driver(ehv_bc_driver);
829	kfree(bcs);
830}
831
832module_init(ehv_bc_init);
833module_exit(ehv_bc_exit);
834
835MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
836MODULE_DESCRIPTION("ePAPR hypervisor byte channel driver");
837MODULE_LICENSE("GPL v2");
838