• Home
  • History
  • Annotate
  • only in this directory
1/*
2 * TI Bandgap temperature sensor driver
3 *
4 * Copyright (C) 2011-2012 Texas Instruments Incorporated - http://www.ti.com/
5 * Author: J Keerthy <j-keerthy@ti.com>
6 * Author: Moiz Sonasath <m-sonasath@ti.com>
7 * Couple of fixes, DT and MFD adaptation:
8 *   Eduardo Valentin <eduardo.valentin@ti.com>
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * version 2 as published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
22 * 02110-1301 USA
23 *
24 */
25
26#include <linux/module.h>
27#include <linux/export.h>
28#include <linux/init.h>
29#include <linux/kernel.h>
30#include <linux/interrupt.h>
31#include <linux/clk.h>
32#include <linux/gpio.h>
33#include <linux/platform_device.h>
34#include <linux/err.h>
35#include <linux/types.h>
36#include <linux/spinlock.h>
37#include <linux/reboot.h>
38#include <linux/of_device.h>
39#include <linux/of_platform.h>
40#include <linux/of_irq.h>
41#include <linux/of_gpio.h>
42#include <linux/io.h>
43
44#include "ti-bandgap.h"
45
46/***   Helper functions to access registers and their bitfields   ***/
47
48/**
49 * ti_bandgap_readl() - simple read helper function
50 * @bgp: pointer to ti_bandgap structure
51 * @reg: desired register (offset) to be read
52 *
53 * Helper function to read bandgap registers. It uses the io remapped area.
54 * Return: the register value.
55 */
56static u32 ti_bandgap_readl(struct ti_bandgap *bgp, u32 reg)
57{
58	return readl(bgp->base + reg);
59}
60
61/**
62 * ti_bandgap_writel() - simple write helper function
63 * @bgp: pointer to ti_bandgap structure
64 * @val: desired register value to be written
65 * @reg: desired register (offset) to be written
66 *
67 * Helper function to write bandgap registers. It uses the io remapped area.
68 */
69static void ti_bandgap_writel(struct ti_bandgap *bgp, u32 val, u32 reg)
70{
71	writel(val, bgp->base + reg);
72}
73
74/**
75 * DOC: macro to update bits.
76 *
77 * RMW_BITS() - used to read, modify and update bandgap bitfields.
78 *            The value passed will be shifted.
79 */
80#define RMW_BITS(bgp, id, reg, mask, val)			\
81do {								\
82	struct temp_sensor_registers *t;			\
83	u32 r;							\
84								\
85	t = bgp->conf->sensors[(id)].registers;		\
86	r = ti_bandgap_readl(bgp, t->reg);			\
87	r &= ~t->mask;						\
88	r |= (val) << __ffs(t->mask);				\
89	ti_bandgap_writel(bgp, r, t->reg);			\
90} while (0)
91
92/***   Basic helper functions   ***/
93
94/**
95 * ti_bandgap_power() - controls the power state of a bandgap device
96 * @bgp: pointer to ti_bandgap structure
97 * @on: desired power state (1 - on, 0 - off)
98 *
99 * Used to power on/off a bandgap device instance. Only used on those
100 * that features tempsoff bit.
101 *
102 * Return: 0 on success, -ENOTSUPP if tempsoff is not supported.
103 */
104static int ti_bandgap_power(struct ti_bandgap *bgp, bool on)
105{
106	int i, ret = 0;
107
108	if (!TI_BANDGAP_HAS(bgp, POWER_SWITCH)) {
109		ret = -ENOTSUPP;
110		goto exit;
111	}
112
113	for (i = 0; i < bgp->conf->sensor_count; i++)
114		/* active on 0 */
115		RMW_BITS(bgp, i, temp_sensor_ctrl, bgap_tempsoff_mask, !on);
116
117exit:
118	return ret;
119}
120
121/**
122 * ti_errata814_bandgap_read_temp() - helper function to read dra7 sensor temperature
123 * @bgp: pointer to ti_bandgap structure
124 * @reg: desired register (offset) to be read
125 *
126 * Function to read dra7 bandgap sensor temperature. This is done separately
127 * so as to workaround the errata "Bandgap Temperature read Dtemp can be
128 * corrupted" - Errata ID: i814".
129 * Read accesses to registers listed below can be corrupted due to incorrect
130 * resynchronization between clock domains.
131 * Read access to registers below can be corrupted :
132 * CTRL_CORE_DTEMP_MPU/GPU/CORE/DSPEVE/IVA_n (n = 0 to 4)
133 * CTRL_CORE_TEMP_SENSOR_MPU/GPU/CORE/DSPEVE/IVA_n
134 *
135 * Return: the register value.
136 */
137static u32 ti_errata814_bandgap_read_temp(struct ti_bandgap *bgp,  u32 reg)
138{
139	u32 val1, val2;
140
141	val1 = ti_bandgap_readl(bgp, reg);
142	val2 = ti_bandgap_readl(bgp, reg);
143
144	/* If both times we read the same value then that is right */
145	if (val1 == val2)
146		return val1;
147
148	/* if val1 and val2 are different read it third time */
149	return ti_bandgap_readl(bgp, reg);
150}
151
152/**
153 * ti_bandgap_read_temp() - helper function to read sensor temperature
154 * @bgp: pointer to ti_bandgap structure
155 * @id: bandgap sensor id
156 *
157 * Function to concentrate the steps to read sensor temperature register.
158 * This function is desired because, depending on bandgap device version,
159 * it might be needed to freeze the bandgap state machine, before fetching
160 * the register value.
161 *
162 * Return: temperature in ADC values.
163 */
164static u32 ti_bandgap_read_temp(struct ti_bandgap *bgp, int id)
165{
166	struct temp_sensor_registers *tsr;
167	u32 temp, reg;
168
169	tsr = bgp->conf->sensors[id].registers;
170	reg = tsr->temp_sensor_ctrl;
171
172	if (TI_BANDGAP_HAS(bgp, FREEZE_BIT)) {
173		RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 1);
174		/*
175		 * In case we cannot read from cur_dtemp / dtemp_0,
176		 * then we read from the last valid temp read
177		 */
178		reg = tsr->ctrl_dtemp_1;
179	}
180
181	/* read temperature */
182	if (TI_BANDGAP_HAS(bgp, ERRATA_814))
183		temp = ti_errata814_bandgap_read_temp(bgp, reg);
184	else
185		temp = ti_bandgap_readl(bgp, reg);
186
187	temp &= tsr->bgap_dtemp_mask;
188
189	if (TI_BANDGAP_HAS(bgp, FREEZE_BIT))
190		RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 0);
191
192	return temp;
193}
194
195/***   IRQ handlers   ***/
196
197/**
198 * ti_bandgap_talert_irq_handler() - handles Temperature alert IRQs
199 * @irq: IRQ number
200 * @data: private data (struct ti_bandgap *)
201 *
202 * This is the Talert handler. Use it only if bandgap device features
203 * HAS(TALERT). This handler goes over all sensors and checks their
204 * conditions and acts accordingly. In case there are events pending,
205 * it will reset the event mask to wait for the opposite event (next event).
206 * Every time there is a new event, it will be reported to thermal layer.
207 *
208 * Return: IRQ_HANDLED
209 */
210static irqreturn_t ti_bandgap_talert_irq_handler(int irq, void *data)
211{
212	struct ti_bandgap *bgp = data;
213	struct temp_sensor_registers *tsr;
214	u32 t_hot = 0, t_cold = 0, ctrl;
215	int i;
216
217	spin_lock(&bgp->lock);
218	for (i = 0; i < bgp->conf->sensor_count; i++) {
219		tsr = bgp->conf->sensors[i].registers;
220		ctrl = ti_bandgap_readl(bgp, tsr->bgap_status);
221
222		/* Read the status of t_hot */
223		t_hot = ctrl & tsr->status_hot_mask;
224
225		/* Read the status of t_cold */
226		t_cold = ctrl & tsr->status_cold_mask;
227
228		if (!t_cold && !t_hot)
229			continue;
230
231		ctrl = ti_bandgap_readl(bgp, tsr->bgap_mask_ctrl);
232		/*
233		 * One TALERT interrupt: Two sources
234		 * If the interrupt is due to t_hot then mask t_hot and
235		 * and unmask t_cold else mask t_cold and unmask t_hot
236		 */
237		if (t_hot) {
238			ctrl &= ~tsr->mask_hot_mask;
239			ctrl |= tsr->mask_cold_mask;
240		} else if (t_cold) {
241			ctrl &= ~tsr->mask_cold_mask;
242			ctrl |= tsr->mask_hot_mask;
243		}
244
245		ti_bandgap_writel(bgp, ctrl, tsr->bgap_mask_ctrl);
246
247		dev_dbg(bgp->dev,
248			"%s: IRQ from %s sensor: hotevent %d coldevent %d\n",
249			__func__, bgp->conf->sensors[i].domain,
250			t_hot, t_cold);
251
252		/* report temperature to whom may concern */
253		if (bgp->conf->report_temperature)
254			bgp->conf->report_temperature(bgp, i);
255	}
256	spin_unlock(&bgp->lock);
257
258	return IRQ_HANDLED;
259}
260
261/**
262 * ti_bandgap_tshut_irq_handler() - handles Temperature shutdown signal
263 * @irq: IRQ number
264 * @data: private data (unused)
265 *
266 * This is the Tshut handler. Use it only if bandgap device features
267 * HAS(TSHUT). If any sensor fires the Tshut signal, we simply shutdown
268 * the system.
269 *
270 * Return: IRQ_HANDLED
271 */
272static irqreturn_t ti_bandgap_tshut_irq_handler(int irq, void *data)
273{
274	pr_emerg("%s: TSHUT temperature reached. Needs shut down...\n",
275		 __func__);
276
277	orderly_poweroff(true);
278
279	return IRQ_HANDLED;
280}
281
282/***   Helper functions which manipulate conversion ADC <-> mi Celsius   ***/
283
284/**
285 * ti_bandgap_adc_to_mcelsius() - converts an ADC value to mCelsius scale
286 * @bgp: struct ti_bandgap pointer
287 * @adc_val: value in ADC representation
288 * @t: address where to write the resulting temperature in mCelsius
289 *
290 * Simple conversion from ADC representation to mCelsius. In case the ADC value
291 * is out of the ADC conv table range, it returns -ERANGE, 0 on success.
292 * The conversion table is indexed by the ADC values.
293 *
294 * Return: 0 if conversion was successful, else -ERANGE in case the @adc_val
295 * argument is out of the ADC conv table range.
296 */
297static
298int ti_bandgap_adc_to_mcelsius(struct ti_bandgap *bgp, int adc_val, int *t)
299{
300	const struct ti_bandgap_data *conf = bgp->conf;
301	int ret = 0;
302
303	/* look up for temperature in the table and return the temperature */
304	if (adc_val < conf->adc_start_val || adc_val > conf->adc_end_val) {
305		ret = -ERANGE;
306		goto exit;
307	}
308
309	*t = bgp->conf->conv_table[adc_val - conf->adc_start_val];
310
311exit:
312	return ret;
313}
314
315/**
316 * ti_bandgap_mcelsius_to_adc() - converts a mCelsius value to ADC scale
317 * @bgp: struct ti_bandgap pointer
318 * @temp: value in mCelsius
319 * @adc: address where to write the resulting temperature in ADC representation
320 *
321 * Simple conversion from mCelsius to ADC values. In case the temp value
322 * is out of the ADC conv table range, it returns -ERANGE, 0 on success.
323 * The conversion table is indexed by the ADC values.
324 *
325 * Return: 0 if conversion was successful, else -ERANGE in case the @temp
326 * argument is out of the ADC conv table range.
327 */
328static
329int ti_bandgap_mcelsius_to_adc(struct ti_bandgap *bgp, long temp, int *adc)
330{
331	const struct ti_bandgap_data *conf = bgp->conf;
332	const int *conv_table = bgp->conf->conv_table;
333	int high, low, mid, ret = 0;
334
335	low = 0;
336	high = conf->adc_end_val - conf->adc_start_val;
337	mid = (high + low) / 2;
338
339	if (temp < conv_table[low] || temp > conv_table[high]) {
340		ret = -ERANGE;
341		goto exit;
342	}
343
344	while (low < high) {
345		if (temp < conv_table[mid])
346			high = mid - 1;
347		else
348			low = mid + 1;
349		mid = (low + high) / 2;
350	}
351
352	*adc = conf->adc_start_val + low;
353
354exit:
355	return ret;
356}
357
358/**
359 * ti_bandgap_add_hyst() - add hysteresis (in mCelsius) to an ADC value
360 * @bgp: struct ti_bandgap pointer
361 * @adc_val: temperature value in ADC representation
362 * @hyst_val: hysteresis value in mCelsius
363 * @sum: address where to write the resulting temperature (in ADC scale)
364 *
365 * Adds an hysteresis value (in mCelsius) to a ADC temperature value.
366 *
367 * Return: 0 on success, -ERANGE otherwise.
368 */
369static
370int ti_bandgap_add_hyst(struct ti_bandgap *bgp, int adc_val, int hyst_val,
371			u32 *sum)
372{
373	int temp, ret;
374
375	/*
376	 * Need to add in the mcelsius domain, so we have a temperature
377	 * the conv_table range
378	 */
379	ret = ti_bandgap_adc_to_mcelsius(bgp, adc_val, &temp);
380	if (ret < 0)
381		goto exit;
382
383	temp += hyst_val;
384
385	ret = ti_bandgap_mcelsius_to_adc(bgp, temp, sum);
386
387exit:
388	return ret;
389}
390
391/***   Helper functions handling device Alert/Shutdown signals   ***/
392
393/**
394 * ti_bandgap_unmask_interrupts() - unmasks the events of thot & tcold
395 * @bgp: struct ti_bandgap pointer
396 * @id: bandgap sensor id
397 * @t_hot: hot temperature value to trigger alert signal
398 * @t_cold: cold temperature value to trigger alert signal
399 *
400 * Checks the requested t_hot and t_cold values and configures the IRQ event
401 * masks accordingly. Call this function only if bandgap features HAS(TALERT).
402 */
403static void ti_bandgap_unmask_interrupts(struct ti_bandgap *bgp, int id,
404					 u32 t_hot, u32 t_cold)
405{
406	struct temp_sensor_registers *tsr;
407	u32 temp, reg_val;
408
409	/* Read the current on die temperature */
410	temp = ti_bandgap_read_temp(bgp, id);
411
412	tsr = bgp->conf->sensors[id].registers;
413	reg_val = ti_bandgap_readl(bgp, tsr->bgap_mask_ctrl);
414
415	if (temp < t_hot)
416		reg_val |= tsr->mask_hot_mask;
417	else
418		reg_val &= ~tsr->mask_hot_mask;
419
420	if (t_cold < temp)
421		reg_val |= tsr->mask_cold_mask;
422	else
423		reg_val &= ~tsr->mask_cold_mask;
424	ti_bandgap_writel(bgp, reg_val, tsr->bgap_mask_ctrl);
425}
426
427/**
428 * ti_bandgap_update_alert_threshold() - sequence to update thresholds
429 * @bgp: struct ti_bandgap pointer
430 * @id: bandgap sensor id
431 * @val: value (ADC) of a new threshold
432 * @hot: desired threshold to be updated. true if threshold hot, false if
433 *       threshold cold
434 *
435 * It will program the required thresholds (hot and cold) for TALERT signal.
436 * This function can be used to update t_hot or t_cold, depending on @hot value.
437 * It checks the resulting t_hot and t_cold values, based on the new passed @val
438 * and configures the thresholds so that t_hot is always greater than t_cold.
439 * Call this function only if bandgap features HAS(TALERT).
440 *
441 * Return: 0 if no error, else corresponding error
442 */
443static int ti_bandgap_update_alert_threshold(struct ti_bandgap *bgp, int id,
444					     int val, bool hot)
445{
446	struct temp_sensor_data *ts_data = bgp->conf->sensors[id].ts_data;
447	struct temp_sensor_registers *tsr;
448	u32 thresh_val, reg_val, t_hot, t_cold, ctrl;
449	int err = 0;
450
451	tsr = bgp->conf->sensors[id].registers;
452
453	/* obtain the current value */
454	thresh_val = ti_bandgap_readl(bgp, tsr->bgap_threshold);
455	t_cold = (thresh_val & tsr->threshold_tcold_mask) >>
456		__ffs(tsr->threshold_tcold_mask);
457	t_hot = (thresh_val & tsr->threshold_thot_mask) >>
458		__ffs(tsr->threshold_thot_mask);
459	if (hot)
460		t_hot = val;
461	else
462		t_cold = val;
463
464	if (t_cold > t_hot) {
465		if (hot)
466			err = ti_bandgap_add_hyst(bgp, t_hot,
467						  -ts_data->hyst_val,
468						  &t_cold);
469		else
470			err = ti_bandgap_add_hyst(bgp, t_cold,
471						  ts_data->hyst_val,
472						  &t_hot);
473	}
474
475	/* write the new threshold values */
476	reg_val = thresh_val &
477		  ~(tsr->threshold_thot_mask | tsr->threshold_tcold_mask);
478	reg_val |= (t_hot << __ffs(tsr->threshold_thot_mask)) |
479		   (t_cold << __ffs(tsr->threshold_tcold_mask));
480
481	/**
482	 * Errata i813:
483	 * Spurious Thermal Alert: Talert can happen randomly while the device
484	 * remains under the temperature limit defined for this event to trig.
485	 * This spurious event is caused by a incorrect re-synchronization
486	 * between clock domains. The comparison between configured threshold
487	 * and current temperature value can happen while the value is
488	 * transitioning (metastable), thus causing inappropriate event
489	 * generation. No spurious event occurs as long as the threshold value
490	 * stays unchanged. Spurious event can be generated while a thermal
491	 * alert threshold is modified in
492	 * CONTROL_BANDGAP_THRESHOLD_MPU/GPU/CORE/DSPEVE/IVA_n.
493	 */
494
495	if (TI_BANDGAP_HAS(bgp, ERRATA_813)) {
496		/* Mask t_hot and t_cold events at the IP Level */
497		ctrl = ti_bandgap_readl(bgp, tsr->bgap_mask_ctrl);
498
499		if (hot)
500			ctrl &= ~tsr->mask_hot_mask;
501		else
502			ctrl &= ~tsr->mask_cold_mask;
503
504		ti_bandgap_writel(bgp, ctrl, tsr->bgap_mask_ctrl);
505	}
506
507	/* Write the threshold value */
508	ti_bandgap_writel(bgp, reg_val, tsr->bgap_threshold);
509
510	if (TI_BANDGAP_HAS(bgp, ERRATA_813)) {
511		/* Unmask t_hot and t_cold events at the IP Level */
512		ctrl = ti_bandgap_readl(bgp, tsr->bgap_mask_ctrl);
513		if (hot)
514			ctrl |= tsr->mask_hot_mask;
515		else
516			ctrl |= tsr->mask_cold_mask;
517
518		ti_bandgap_writel(bgp, ctrl, tsr->bgap_mask_ctrl);
519	}
520
521	if (err) {
522		dev_err(bgp->dev, "failed to reprogram thot threshold\n");
523		err = -EIO;
524		goto exit;
525	}
526
527	ti_bandgap_unmask_interrupts(bgp, id, t_hot, t_cold);
528exit:
529	return err;
530}
531
532/**
533 * ti_bandgap_validate() - helper to check the sanity of a struct ti_bandgap
534 * @bgp: struct ti_bandgap pointer
535 * @id: bandgap sensor id
536 *
537 * Checks if the bandgap pointer is valid and if the sensor id is also
538 * applicable.
539 *
540 * Return: 0 if no errors, -EINVAL for invalid @bgp pointer or -ERANGE if
541 * @id cannot index @bgp sensors.
542 */
543static inline int ti_bandgap_validate(struct ti_bandgap *bgp, int id)
544{
545	int ret = 0;
546
547	if (!bgp || IS_ERR(bgp)) {
548		pr_err("%s: invalid bandgap pointer\n", __func__);
549		ret = -EINVAL;
550		goto exit;
551	}
552
553	if ((id < 0) || (id >= bgp->conf->sensor_count)) {
554		dev_err(bgp->dev, "%s: sensor id out of range (%d)\n",
555			__func__, id);
556		ret = -ERANGE;
557	}
558
559exit:
560	return ret;
561}
562
563/**
564 * _ti_bandgap_write_threshold() - helper to update TALERT t_cold or t_hot
565 * @bgp: struct ti_bandgap pointer
566 * @id: bandgap sensor id
567 * @val: value (mCelsius) of a new threshold
568 * @hot: desired threshold to be updated. true if threshold hot, false if
569 *       threshold cold
570 *
571 * It will update the required thresholds (hot and cold) for TALERT signal.
572 * This function can be used to update t_hot or t_cold, depending on @hot value.
573 * Validates the mCelsius range and update the requested threshold.
574 * Call this function only if bandgap features HAS(TALERT).
575 *
576 * Return: 0 if no error, else corresponding error value.
577 */
578static int _ti_bandgap_write_threshold(struct ti_bandgap *bgp, int id, int val,
579				       bool hot)
580{
581	struct temp_sensor_data *ts_data;
582	struct temp_sensor_registers *tsr;
583	u32 adc_val;
584	int ret;
585
586	ret = ti_bandgap_validate(bgp, id);
587	if (ret)
588		goto exit;
589
590	if (!TI_BANDGAP_HAS(bgp, TALERT)) {
591		ret = -ENOTSUPP;
592		goto exit;
593	}
594
595	ts_data = bgp->conf->sensors[id].ts_data;
596	tsr = bgp->conf->sensors[id].registers;
597	if (hot) {
598		if (val < ts_data->min_temp + ts_data->hyst_val)
599			ret = -EINVAL;
600	} else {
601		if (val > ts_data->max_temp + ts_data->hyst_val)
602			ret = -EINVAL;
603	}
604
605	if (ret)
606		goto exit;
607
608	ret = ti_bandgap_mcelsius_to_adc(bgp, val, &adc_val);
609	if (ret < 0)
610		goto exit;
611
612	spin_lock(&bgp->lock);
613	ret = ti_bandgap_update_alert_threshold(bgp, id, adc_val, hot);
614	spin_unlock(&bgp->lock);
615
616exit:
617	return ret;
618}
619
620/**
621 * _ti_bandgap_read_threshold() - helper to read TALERT t_cold or t_hot
622 * @bgp: struct ti_bandgap pointer
623 * @id: bandgap sensor id
624 * @val: value (mCelsius) of a threshold
625 * @hot: desired threshold to be read. true if threshold hot, false if
626 *       threshold cold
627 *
628 * It will fetch the required thresholds (hot and cold) for TALERT signal.
629 * This function can be used to read t_hot or t_cold, depending on @hot value.
630 * Call this function only if bandgap features HAS(TALERT).
631 *
632 * Return: 0 if no error, -ENOTSUPP if it has no TALERT support, or the
633 * corresponding error value if some operation fails.
634 */
635static int _ti_bandgap_read_threshold(struct ti_bandgap *bgp, int id,
636				      int *val, bool hot)
637{
638	struct temp_sensor_registers *tsr;
639	u32 temp, mask;
640	int ret = 0;
641
642	ret = ti_bandgap_validate(bgp, id);
643	if (ret)
644		goto exit;
645
646	if (!TI_BANDGAP_HAS(bgp, TALERT)) {
647		ret = -ENOTSUPP;
648		goto exit;
649	}
650
651	tsr = bgp->conf->sensors[id].registers;
652	if (hot)
653		mask = tsr->threshold_thot_mask;
654	else
655		mask = tsr->threshold_tcold_mask;
656
657	temp = ti_bandgap_readl(bgp, tsr->bgap_threshold);
658	temp = (temp & mask) >> __ffs(mask);
659	ret |= ti_bandgap_adc_to_mcelsius(bgp, temp, &temp);
660	if (ret) {
661		dev_err(bgp->dev, "failed to read thot\n");
662		ret = -EIO;
663		goto exit;
664	}
665
666	*val = temp;
667
668exit:
669	return ret;
670}
671
672/***   Exposed APIs   ***/
673
674/**
675 * ti_bandgap_read_thot() - reads sensor current thot
676 * @bgp: pointer to bandgap instance
677 * @id: sensor id
678 * @thot: resulting current thot value
679 *
680 * Return: 0 on success or the proper error code
681 */
682int ti_bandgap_read_thot(struct ti_bandgap *bgp, int id, int *thot)
683{
684	return _ti_bandgap_read_threshold(bgp, id, thot, true);
685}
686
687/**
688 * ti_bandgap_write_thot() - sets sensor current thot
689 * @bgp: pointer to bandgap instance
690 * @id: sensor id
691 * @val: desired thot value
692 *
693 * Return: 0 on success or the proper error code
694 */
695int ti_bandgap_write_thot(struct ti_bandgap *bgp, int id, int val)
696{
697	return _ti_bandgap_write_threshold(bgp, id, val, true);
698}
699
700/**
701 * ti_bandgap_read_tcold() - reads sensor current tcold
702 * @bgp: pointer to bandgap instance
703 * @id: sensor id
704 * @tcold: resulting current tcold value
705 *
706 * Return: 0 on success or the proper error code
707 */
708int ti_bandgap_read_tcold(struct ti_bandgap *bgp, int id, int *tcold)
709{
710	return _ti_bandgap_read_threshold(bgp, id, tcold, false);
711}
712
713/**
714 * ti_bandgap_write_tcold() - sets the sensor tcold
715 * @bgp: pointer to bandgap instance
716 * @id: sensor id
717 * @val: desired tcold value
718 *
719 * Return: 0 on success or the proper error code
720 */
721int ti_bandgap_write_tcold(struct ti_bandgap *bgp, int id, int val)
722{
723	return _ti_bandgap_write_threshold(bgp, id, val, false);
724}
725
726/**
727 * ti_bandgap_read_counter() - read the sensor counter
728 * @bgp: pointer to bandgap instance
729 * @id: sensor id
730 * @interval: resulting update interval in miliseconds
731 */
732static void ti_bandgap_read_counter(struct ti_bandgap *bgp, int id,
733				    int *interval)
734{
735	struct temp_sensor_registers *tsr;
736	int time;
737
738	tsr = bgp->conf->sensors[id].registers;
739	time = ti_bandgap_readl(bgp, tsr->bgap_counter);
740	time = (time & tsr->counter_mask) >>
741					__ffs(tsr->counter_mask);
742	time = time * 1000 / bgp->clk_rate;
743	*interval = time;
744}
745
746/**
747 * ti_bandgap_read_counter_delay() - read the sensor counter delay
748 * @bgp: pointer to bandgap instance
749 * @id: sensor id
750 * @interval: resulting update interval in miliseconds
751 */
752static void ti_bandgap_read_counter_delay(struct ti_bandgap *bgp, int id,
753					  int *interval)
754{
755	struct temp_sensor_registers *tsr;
756	int reg_val;
757
758	tsr = bgp->conf->sensors[id].registers;
759
760	reg_val = ti_bandgap_readl(bgp, tsr->bgap_mask_ctrl);
761	reg_val = (reg_val & tsr->mask_counter_delay_mask) >>
762				__ffs(tsr->mask_counter_delay_mask);
763	switch (reg_val) {
764	case 0:
765		*interval = 0;
766		break;
767	case 1:
768		*interval = 1;
769		break;
770	case 2:
771		*interval = 10;
772		break;
773	case 3:
774		*interval = 100;
775		break;
776	case 4:
777		*interval = 250;
778		break;
779	case 5:
780		*interval = 500;
781		break;
782	default:
783		dev_warn(bgp->dev, "Wrong counter delay value read from register %X",
784			 reg_val);
785	}
786}
787
788/**
789 * ti_bandgap_read_update_interval() - read the sensor update interval
790 * @bgp: pointer to bandgap instance
791 * @id: sensor id
792 * @interval: resulting update interval in miliseconds
793 *
794 * Return: 0 on success or the proper error code
795 */
796int ti_bandgap_read_update_interval(struct ti_bandgap *bgp, int id,
797				    int *interval)
798{
799	int ret = 0;
800
801	ret = ti_bandgap_validate(bgp, id);
802	if (ret)
803		goto exit;
804
805	if (!TI_BANDGAP_HAS(bgp, COUNTER) &&
806	    !TI_BANDGAP_HAS(bgp, COUNTER_DELAY)) {
807		ret = -ENOTSUPP;
808		goto exit;
809	}
810
811	if (TI_BANDGAP_HAS(bgp, COUNTER)) {
812		ti_bandgap_read_counter(bgp, id, interval);
813		goto exit;
814	}
815
816	ti_bandgap_read_counter_delay(bgp, id, interval);
817exit:
818	return ret;
819}
820
821/**
822 * ti_bandgap_write_counter_delay() - set the counter_delay
823 * @bgp: pointer to bandgap instance
824 * @id: sensor id
825 * @interval: desired update interval in miliseconds
826 *
827 * Return: 0 on success or the proper error code
828 */
829static int ti_bandgap_write_counter_delay(struct ti_bandgap *bgp, int id,
830					  u32 interval)
831{
832	int rval;
833
834	switch (interval) {
835	case 0: /* Immediate conversion */
836		rval = 0x0;
837		break;
838	case 1: /* Conversion after ever 1ms */
839		rval = 0x1;
840		break;
841	case 10: /* Conversion after ever 10ms */
842		rval = 0x2;
843		break;
844	case 100: /* Conversion after ever 100ms */
845		rval = 0x3;
846		break;
847	case 250: /* Conversion after ever 250ms */
848		rval = 0x4;
849		break;
850	case 500: /* Conversion after ever 500ms */
851		rval = 0x5;
852		break;
853	default:
854		dev_warn(bgp->dev, "Delay %d ms is not supported\n", interval);
855		return -EINVAL;
856	}
857
858	spin_lock(&bgp->lock);
859	RMW_BITS(bgp, id, bgap_mask_ctrl, mask_counter_delay_mask, rval);
860	spin_unlock(&bgp->lock);
861
862	return 0;
863}
864
865/**
866 * ti_bandgap_write_counter() - set the bandgap sensor counter
867 * @bgp: pointer to bandgap instance
868 * @id: sensor id
869 * @interval: desired update interval in miliseconds
870 */
871static void ti_bandgap_write_counter(struct ti_bandgap *bgp, int id,
872				     u32 interval)
873{
874	interval = interval * bgp->clk_rate / 1000;
875	spin_lock(&bgp->lock);
876	RMW_BITS(bgp, id, bgap_counter, counter_mask, interval);
877	spin_unlock(&bgp->lock);
878}
879
880/**
881 * ti_bandgap_write_update_interval() - set the update interval
882 * @bgp: pointer to bandgap instance
883 * @id: sensor id
884 * @interval: desired update interval in miliseconds
885 *
886 * Return: 0 on success or the proper error code
887 */
888int ti_bandgap_write_update_interval(struct ti_bandgap *bgp,
889				     int id, u32 interval)
890{
891	int ret = ti_bandgap_validate(bgp, id);
892	if (ret)
893		goto exit;
894
895	if (!TI_BANDGAP_HAS(bgp, COUNTER) &&
896	    !TI_BANDGAP_HAS(bgp, COUNTER_DELAY)) {
897		ret = -ENOTSUPP;
898		goto exit;
899	}
900
901	if (TI_BANDGAP_HAS(bgp, COUNTER)) {
902		ti_bandgap_write_counter(bgp, id, interval);
903		goto exit;
904	}
905
906	ret = ti_bandgap_write_counter_delay(bgp, id, interval);
907exit:
908	return ret;
909}
910
911/**
912 * ti_bandgap_read_temperature() - report current temperature
913 * @bgp: pointer to bandgap instance
914 * @id: sensor id
915 * @temperature: resulting temperature
916 *
917 * Return: 0 on success or the proper error code
918 */
919int ti_bandgap_read_temperature(struct ti_bandgap *bgp, int id,
920				int *temperature)
921{
922	u32 temp;
923	int ret;
924
925	ret = ti_bandgap_validate(bgp, id);
926	if (ret)
927		return ret;
928
929	spin_lock(&bgp->lock);
930	temp = ti_bandgap_read_temp(bgp, id);
931	spin_unlock(&bgp->lock);
932
933	ret |= ti_bandgap_adc_to_mcelsius(bgp, temp, &temp);
934	if (ret)
935		return -EIO;
936
937	*temperature = temp;
938
939	return 0;
940}
941
942/**
943 * ti_bandgap_set_sensor_data() - helper function to store thermal
944 * framework related data.
945 * @bgp: pointer to bandgap instance
946 * @id: sensor id
947 * @data: thermal framework related data to be stored
948 *
949 * Return: 0 on success or the proper error code
950 */
951int ti_bandgap_set_sensor_data(struct ti_bandgap *bgp, int id, void *data)
952{
953	int ret = ti_bandgap_validate(bgp, id);
954	if (ret)
955		return ret;
956
957	bgp->regval[id].data = data;
958
959	return 0;
960}
961
962/**
963 * ti_bandgap_get_sensor_data() - helper function to get thermal
964 * framework related data.
965 * @bgp: pointer to bandgap instance
966 * @id: sensor id
967 *
968 * Return: data stored by set function with sensor id on success or NULL
969 */
970void *ti_bandgap_get_sensor_data(struct ti_bandgap *bgp, int id)
971{
972	int ret = ti_bandgap_validate(bgp, id);
973	if (ret)
974		return ERR_PTR(ret);
975
976	return bgp->regval[id].data;
977}
978
979/***   Helper functions used during device initialization   ***/
980
981/**
982 * ti_bandgap_force_single_read() - executes 1 single ADC conversion
983 * @bgp: pointer to struct ti_bandgap
984 * @id: sensor id which it is desired to read 1 temperature
985 *
986 * Used to initialize the conversion state machine and set it to a valid
987 * state. Called during device initialization and context restore events.
988 *
989 * Return: 0
990 */
991static int
992ti_bandgap_force_single_read(struct ti_bandgap *bgp, int id)
993{
994	u32 temp = 0, counter = 1000;
995
996	/* Select single conversion mode */
997	if (TI_BANDGAP_HAS(bgp, MODE_CONFIG))
998		RMW_BITS(bgp, id, bgap_mode_ctrl, mode_ctrl_mask, 0);
999
1000	/* Start of Conversion = 1 */
1001	RMW_BITS(bgp, id, temp_sensor_ctrl, bgap_soc_mask, 1);
1002	/* Wait until DTEMP is updated */
1003	temp = ti_bandgap_read_temp(bgp, id);
1004
1005	while ((temp == 0) && --counter)
1006		temp = ti_bandgap_read_temp(bgp, id);
1007	/* REVISIT: Check correct condition for end of conversion */
1008
1009	/* Start of Conversion = 0 */
1010	RMW_BITS(bgp, id, temp_sensor_ctrl, bgap_soc_mask, 0);
1011
1012	return 0;
1013}
1014
1015/**
1016 * ti_bandgap_set_continous_mode() - One time enabling of continuous mode
1017 * @bgp: pointer to struct ti_bandgap
1018 *
1019 * Call this function only if HAS(MODE_CONFIG) is set. As this driver may
1020 * be used for junction temperature monitoring, it is desirable that the
1021 * sensors are operational all the time, so that alerts are generated
1022 * properly.
1023 *
1024 * Return: 0
1025 */
1026static int ti_bandgap_set_continuous_mode(struct ti_bandgap *bgp)
1027{
1028	int i;
1029
1030	for (i = 0; i < bgp->conf->sensor_count; i++) {
1031		/* Perform a single read just before enabling continuous */
1032		ti_bandgap_force_single_read(bgp, i);
1033		RMW_BITS(bgp, i, bgap_mode_ctrl, mode_ctrl_mask, 1);
1034	}
1035
1036	return 0;
1037}
1038
1039/**
1040 * ti_bandgap_get_trend() - To fetch the temperature trend of a sensor
1041 * @bgp: pointer to struct ti_bandgap
1042 * @id: id of the individual sensor
1043 * @trend: Pointer to trend.
1044 *
1045 * This function needs to be called to fetch the temperature trend of a
1046 * Particular sensor. The function computes the difference in temperature
1047 * w.r.t time. For the bandgaps with built in history buffer the temperatures
1048 * are read from the buffer and for those without the Buffer -ENOTSUPP is
1049 * returned.
1050 *
1051 * Return: 0 if no error, else return corresponding error. If no
1052 *		error then the trend value is passed on to trend parameter
1053 */
1054int ti_bandgap_get_trend(struct ti_bandgap *bgp, int id, int *trend)
1055{
1056	struct temp_sensor_registers *tsr;
1057	u32 temp1, temp2, reg1, reg2;
1058	int t1, t2, interval, ret = 0;
1059
1060	ret = ti_bandgap_validate(bgp, id);
1061	if (ret)
1062		goto exit;
1063
1064	if (!TI_BANDGAP_HAS(bgp, HISTORY_BUFFER) ||
1065	    !TI_BANDGAP_HAS(bgp, FREEZE_BIT)) {
1066		ret = -ENOTSUPP;
1067		goto exit;
1068	}
1069
1070	spin_lock(&bgp->lock);
1071
1072	tsr = bgp->conf->sensors[id].registers;
1073
1074	/* Freeze and read the last 2 valid readings */
1075	RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 1);
1076	reg1 = tsr->ctrl_dtemp_1;
1077	reg2 = tsr->ctrl_dtemp_2;
1078
1079	/* read temperature from history buffer */
1080	temp1 = ti_bandgap_readl(bgp, reg1);
1081	temp1 &= tsr->bgap_dtemp_mask;
1082
1083	temp2 = ti_bandgap_readl(bgp, reg2);
1084	temp2 &= tsr->bgap_dtemp_mask;
1085
1086	/* Convert from adc values to mCelsius temperature */
1087	ret = ti_bandgap_adc_to_mcelsius(bgp, temp1, &t1);
1088	if (ret)
1089		goto unfreeze;
1090
1091	ret = ti_bandgap_adc_to_mcelsius(bgp, temp2, &t2);
1092	if (ret)
1093		goto unfreeze;
1094
1095	/* Fetch the update interval */
1096	ret = ti_bandgap_read_update_interval(bgp, id, &interval);
1097	if (ret)
1098		goto unfreeze;
1099
1100	/* Set the interval to 1 ms if bandgap counter delay is not set */
1101	if (interval == 0)
1102		interval = 1;
1103
1104	*trend = (t1 - t2) / interval;
1105
1106	dev_dbg(bgp->dev, "The temperatures are t1 = %d and t2 = %d and trend =%d\n",
1107		t1, t2, *trend);
1108
1109unfreeze:
1110	RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 0);
1111	spin_unlock(&bgp->lock);
1112exit:
1113	return ret;
1114}
1115
1116/**
1117 * ti_bandgap_tshut_init() - setup and initialize tshut handling
1118 * @bgp: pointer to struct ti_bandgap
1119 * @pdev: pointer to device struct platform_device
1120 *
1121 * Call this function only in case the bandgap features HAS(TSHUT).
1122 * In this case, the driver needs to handle the TSHUT signal as an IRQ.
1123 * The IRQ is wired as a GPIO, and for this purpose, it is required
1124 * to specify which GPIO line is used. TSHUT IRQ is fired anytime
1125 * one of the bandgap sensors violates the TSHUT high/hot threshold.
1126 * And in that case, the system must go off.
1127 *
1128 * Return: 0 if no error, else error status
1129 */
1130static int ti_bandgap_tshut_init(struct ti_bandgap *bgp,
1131				 struct platform_device *pdev)
1132{
1133	int gpio_nr = bgp->tshut_gpio;
1134	int status;
1135
1136	/* Request for gpio_86 line */
1137	status = gpio_request(gpio_nr, "tshut");
1138	if (status < 0) {
1139		dev_err(bgp->dev, "Could not request for TSHUT GPIO:%i\n", 86);
1140		return status;
1141	}
1142	status = gpio_direction_input(gpio_nr);
1143	if (status) {
1144		dev_err(bgp->dev, "Cannot set input TSHUT GPIO %d\n", gpio_nr);
1145		return status;
1146	}
1147
1148	status = request_irq(gpio_to_irq(gpio_nr), ti_bandgap_tshut_irq_handler,
1149			     IRQF_TRIGGER_RISING, "tshut", NULL);
1150	if (status) {
1151		gpio_free(gpio_nr);
1152		dev_err(bgp->dev, "request irq failed for TSHUT");
1153	}
1154
1155	return 0;
1156}
1157
1158/**
1159 * ti_bandgap_alert_init() - setup and initialize talert handling
1160 * @bgp: pointer to struct ti_bandgap
1161 * @pdev: pointer to device struct platform_device
1162 *
1163 * Call this function only in case the bandgap features HAS(TALERT).
1164 * In this case, the driver needs to handle the TALERT signals as an IRQs.
1165 * TALERT is a normal IRQ and it is fired any time thresholds (hot or cold)
1166 * are violated. In these situation, the driver must reprogram the thresholds,
1167 * accordingly to specified policy.
1168 *
1169 * Return: 0 if no error, else return corresponding error.
1170 */
1171static int ti_bandgap_talert_init(struct ti_bandgap *bgp,
1172				  struct platform_device *pdev)
1173{
1174	int ret;
1175
1176	bgp->irq = platform_get_irq(pdev, 0);
1177	if (bgp->irq < 0) {
1178		dev_err(&pdev->dev, "get_irq failed\n");
1179		return bgp->irq;
1180	}
1181	ret = request_threaded_irq(bgp->irq, NULL,
1182				   ti_bandgap_talert_irq_handler,
1183				   IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
1184				   "talert", bgp);
1185	if (ret) {
1186		dev_err(&pdev->dev, "Request threaded irq failed.\n");
1187		return ret;
1188	}
1189
1190	return 0;
1191}
1192
1193static const struct of_device_id of_ti_bandgap_match[];
1194/**
1195 * ti_bandgap_build() - parse DT and setup a struct ti_bandgap
1196 * @pdev: pointer to device struct platform_device
1197 *
1198 * Used to read the device tree properties accordingly to the bandgap
1199 * matching version. Based on bandgap version and its capabilities it
1200 * will build a struct ti_bandgap out of the required DT entries.
1201 *
1202 * Return: valid bandgap structure if successful, else returns ERR_PTR
1203 * return value must be verified with IS_ERR.
1204 */
1205static struct ti_bandgap *ti_bandgap_build(struct platform_device *pdev)
1206{
1207	struct device_node *node = pdev->dev.of_node;
1208	const struct of_device_id *of_id;
1209	struct ti_bandgap *bgp;
1210	struct resource *res;
1211	int i;
1212
1213	/* just for the sake */
1214	if (!node) {
1215		dev_err(&pdev->dev, "no platform information available\n");
1216		return ERR_PTR(-EINVAL);
1217	}
1218
1219	bgp = devm_kzalloc(&pdev->dev, sizeof(*bgp), GFP_KERNEL);
1220	if (!bgp) {
1221		dev_err(&pdev->dev, "Unable to allocate mem for driver ref\n");
1222		return ERR_PTR(-ENOMEM);
1223	}
1224
1225	of_id = of_match_device(of_ti_bandgap_match, &pdev->dev);
1226	if (of_id)
1227		bgp->conf = of_id->data;
1228
1229	/* register shadow for context save and restore */
1230	bgp->regval = devm_kzalloc(&pdev->dev, sizeof(*bgp->regval) *
1231				   bgp->conf->sensor_count, GFP_KERNEL);
1232	if (!bgp->regval) {
1233		dev_err(&pdev->dev, "Unable to allocate mem for driver ref\n");
1234		return ERR_PTR(-ENOMEM);
1235	}
1236
1237	i = 0;
1238	do {
1239		void __iomem *chunk;
1240
1241		res = platform_get_resource(pdev, IORESOURCE_MEM, i);
1242		if (!res)
1243			break;
1244		chunk = devm_ioremap_resource(&pdev->dev, res);
1245		if (i == 0)
1246			bgp->base = chunk;
1247		if (IS_ERR(chunk))
1248			return ERR_CAST(chunk);
1249
1250		i++;
1251	} while (res);
1252
1253	if (TI_BANDGAP_HAS(bgp, TSHUT)) {
1254		bgp->tshut_gpio = of_get_gpio(node, 0);
1255		if (!gpio_is_valid(bgp->tshut_gpio)) {
1256			dev_err(&pdev->dev, "invalid gpio for tshut (%d)\n",
1257				bgp->tshut_gpio);
1258			return ERR_PTR(-EINVAL);
1259		}
1260	}
1261
1262	return bgp;
1263}
1264
1265/***   Device driver call backs   ***/
1266
1267static
1268int ti_bandgap_probe(struct platform_device *pdev)
1269{
1270	struct ti_bandgap *bgp;
1271	int clk_rate, ret = 0, i;
1272
1273	bgp = ti_bandgap_build(pdev);
1274	if (IS_ERR(bgp)) {
1275		dev_err(&pdev->dev, "failed to fetch platform data\n");
1276		return PTR_ERR(bgp);
1277	}
1278	bgp->dev = &pdev->dev;
1279
1280	if (TI_BANDGAP_HAS(bgp, TSHUT)) {
1281		ret = ti_bandgap_tshut_init(bgp, pdev);
1282		if (ret) {
1283			dev_err(&pdev->dev,
1284				"failed to initialize system tshut IRQ\n");
1285			return ret;
1286		}
1287	}
1288
1289	bgp->fclock = clk_get(NULL, bgp->conf->fclock_name);
1290	ret = IS_ERR(bgp->fclock);
1291	if (ret) {
1292		dev_err(&pdev->dev, "failed to request fclock reference\n");
1293		ret = PTR_ERR(bgp->fclock);
1294		goto free_irqs;
1295	}
1296
1297	bgp->div_clk = clk_get(NULL,  bgp->conf->div_ck_name);
1298	ret = IS_ERR(bgp->div_clk);
1299	if (ret) {
1300		dev_err(&pdev->dev,
1301			"failed to request div_ts_ck clock ref\n");
1302		ret = PTR_ERR(bgp->div_clk);
1303		goto free_irqs;
1304	}
1305
1306	for (i = 0; i < bgp->conf->sensor_count; i++) {
1307		struct temp_sensor_registers *tsr;
1308		u32 val;
1309
1310		tsr = bgp->conf->sensors[i].registers;
1311		/*
1312		 * check if the efuse has a non-zero value if not
1313		 * it is an untrimmed sample and the temperatures
1314		 * may not be accurate
1315		 */
1316		val = ti_bandgap_readl(bgp, tsr->bgap_efuse);
1317		if (ret || !val)
1318			dev_info(&pdev->dev,
1319				 "Non-trimmed BGAP, Temp not accurate\n");
1320	}
1321
1322	clk_rate = clk_round_rate(bgp->div_clk,
1323				  bgp->conf->sensors[0].ts_data->max_freq);
1324	if (clk_rate < bgp->conf->sensors[0].ts_data->min_freq ||
1325	    clk_rate <= 0) {
1326		ret = -ENODEV;
1327		dev_err(&pdev->dev, "wrong clock rate (%d)\n", clk_rate);
1328		goto put_clks;
1329	}
1330
1331	ret = clk_set_rate(bgp->div_clk, clk_rate);
1332	if (ret)
1333		dev_err(&pdev->dev, "Cannot re-set clock rate. Continuing\n");
1334
1335	bgp->clk_rate = clk_rate;
1336	if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
1337		clk_prepare_enable(bgp->fclock);
1338
1339
1340	spin_lock_init(&bgp->lock);
1341	bgp->dev = &pdev->dev;
1342	platform_set_drvdata(pdev, bgp);
1343
1344	ti_bandgap_power(bgp, true);
1345
1346	/* Set default counter to 1 for now */
1347	if (TI_BANDGAP_HAS(bgp, COUNTER))
1348		for (i = 0; i < bgp->conf->sensor_count; i++)
1349			RMW_BITS(bgp, i, bgap_counter, counter_mask, 1);
1350
1351	/* Set default thresholds for alert and shutdown */
1352	for (i = 0; i < bgp->conf->sensor_count; i++) {
1353		struct temp_sensor_data *ts_data;
1354
1355		ts_data = bgp->conf->sensors[i].ts_data;
1356
1357		if (TI_BANDGAP_HAS(bgp, TALERT)) {
1358			/* Set initial Talert thresholds */
1359			RMW_BITS(bgp, i, bgap_threshold,
1360				 threshold_tcold_mask, ts_data->t_cold);
1361			RMW_BITS(bgp, i, bgap_threshold,
1362				 threshold_thot_mask, ts_data->t_hot);
1363			/* Enable the alert events */
1364			RMW_BITS(bgp, i, bgap_mask_ctrl, mask_hot_mask, 1);
1365			RMW_BITS(bgp, i, bgap_mask_ctrl, mask_cold_mask, 1);
1366		}
1367
1368		if (TI_BANDGAP_HAS(bgp, TSHUT_CONFIG)) {
1369			/* Set initial Tshut thresholds */
1370			RMW_BITS(bgp, i, tshut_threshold,
1371				 tshut_hot_mask, ts_data->tshut_hot);
1372			RMW_BITS(bgp, i, tshut_threshold,
1373				 tshut_cold_mask, ts_data->tshut_cold);
1374		}
1375	}
1376
1377	if (TI_BANDGAP_HAS(bgp, MODE_CONFIG))
1378		ti_bandgap_set_continuous_mode(bgp);
1379
1380	/* Set .250 seconds time as default counter */
1381	if (TI_BANDGAP_HAS(bgp, COUNTER))
1382		for (i = 0; i < bgp->conf->sensor_count; i++)
1383			RMW_BITS(bgp, i, bgap_counter, counter_mask,
1384				 bgp->clk_rate / 4);
1385
1386	/* Every thing is good? Then expose the sensors */
1387	for (i = 0; i < bgp->conf->sensor_count; i++) {
1388		char *domain;
1389
1390		if (bgp->conf->sensors[i].register_cooling) {
1391			ret = bgp->conf->sensors[i].register_cooling(bgp, i);
1392			if (ret)
1393				goto remove_sensors;
1394		}
1395
1396		if (bgp->conf->expose_sensor) {
1397			domain = bgp->conf->sensors[i].domain;
1398			ret = bgp->conf->expose_sensor(bgp, i, domain);
1399			if (ret)
1400				goto remove_last_cooling;
1401		}
1402	}
1403
1404	/*
1405	 * Enable the Interrupts once everything is set. Otherwise irq handler
1406	 * might be called as soon as it is enabled where as rest of framework
1407	 * is still getting initialised.
1408	 */
1409	if (TI_BANDGAP_HAS(bgp, TALERT)) {
1410		ret = ti_bandgap_talert_init(bgp, pdev);
1411		if (ret) {
1412			dev_err(&pdev->dev, "failed to initialize Talert IRQ\n");
1413			i = bgp->conf->sensor_count;
1414			goto disable_clk;
1415		}
1416	}
1417
1418	return 0;
1419
1420remove_last_cooling:
1421	if (bgp->conf->sensors[i].unregister_cooling)
1422		bgp->conf->sensors[i].unregister_cooling(bgp, i);
1423remove_sensors:
1424	for (i--; i >= 0; i--) {
1425		if (bgp->conf->sensors[i].unregister_cooling)
1426			bgp->conf->sensors[i].unregister_cooling(bgp, i);
1427		if (bgp->conf->remove_sensor)
1428			bgp->conf->remove_sensor(bgp, i);
1429	}
1430	ti_bandgap_power(bgp, false);
1431disable_clk:
1432	if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
1433		clk_disable_unprepare(bgp->fclock);
1434put_clks:
1435	clk_put(bgp->fclock);
1436	clk_put(bgp->div_clk);
1437free_irqs:
1438	if (TI_BANDGAP_HAS(bgp, TSHUT)) {
1439		free_irq(gpio_to_irq(bgp->tshut_gpio), NULL);
1440		gpio_free(bgp->tshut_gpio);
1441	}
1442
1443	return ret;
1444}
1445
1446static
1447int ti_bandgap_remove(struct platform_device *pdev)
1448{
1449	struct ti_bandgap *bgp = platform_get_drvdata(pdev);
1450	int i;
1451
1452	/* First thing is to remove sensor interfaces */
1453	for (i = 0; i < bgp->conf->sensor_count; i++) {
1454		if (bgp->conf->sensors[i].unregister_cooling)
1455			bgp->conf->sensors[i].unregister_cooling(bgp, i);
1456
1457		if (bgp->conf->remove_sensor)
1458			bgp->conf->remove_sensor(bgp, i);
1459	}
1460
1461	ti_bandgap_power(bgp, false);
1462
1463	if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
1464		clk_disable_unprepare(bgp->fclock);
1465	clk_put(bgp->fclock);
1466	clk_put(bgp->div_clk);
1467
1468	if (TI_BANDGAP_HAS(bgp, TALERT))
1469		free_irq(bgp->irq, bgp);
1470
1471	if (TI_BANDGAP_HAS(bgp, TSHUT)) {
1472		free_irq(gpio_to_irq(bgp->tshut_gpio), NULL);
1473		gpio_free(bgp->tshut_gpio);
1474	}
1475
1476	return 0;
1477}
1478
1479#ifdef CONFIG_PM_SLEEP
1480static int ti_bandgap_save_ctxt(struct ti_bandgap *bgp)
1481{
1482	int i;
1483
1484	for (i = 0; i < bgp->conf->sensor_count; i++) {
1485		struct temp_sensor_registers *tsr;
1486		struct temp_sensor_regval *rval;
1487
1488		rval = &bgp->regval[i];
1489		tsr = bgp->conf->sensors[i].registers;
1490
1491		if (TI_BANDGAP_HAS(bgp, MODE_CONFIG))
1492			rval->bg_mode_ctrl = ti_bandgap_readl(bgp,
1493							tsr->bgap_mode_ctrl);
1494		if (TI_BANDGAP_HAS(bgp, COUNTER))
1495			rval->bg_counter = ti_bandgap_readl(bgp,
1496							tsr->bgap_counter);
1497		if (TI_BANDGAP_HAS(bgp, TALERT)) {
1498			rval->bg_threshold = ti_bandgap_readl(bgp,
1499							tsr->bgap_threshold);
1500			rval->bg_ctrl = ti_bandgap_readl(bgp,
1501						   tsr->bgap_mask_ctrl);
1502		}
1503
1504		if (TI_BANDGAP_HAS(bgp, TSHUT_CONFIG))
1505			rval->tshut_threshold = ti_bandgap_readl(bgp,
1506						   tsr->tshut_threshold);
1507	}
1508
1509	return 0;
1510}
1511
1512static int ti_bandgap_restore_ctxt(struct ti_bandgap *bgp)
1513{
1514	int i;
1515
1516	for (i = 0; i < bgp->conf->sensor_count; i++) {
1517		struct temp_sensor_registers *tsr;
1518		struct temp_sensor_regval *rval;
1519		u32 val = 0;
1520
1521		rval = &bgp->regval[i];
1522		tsr = bgp->conf->sensors[i].registers;
1523
1524		if (TI_BANDGAP_HAS(bgp, COUNTER))
1525			val = ti_bandgap_readl(bgp, tsr->bgap_counter);
1526
1527		if (TI_BANDGAP_HAS(bgp, TSHUT_CONFIG))
1528			ti_bandgap_writel(bgp, rval->tshut_threshold,
1529					  tsr->tshut_threshold);
1530		/* Force immediate temperature measurement and update
1531		 * of the DTEMP field
1532		 */
1533		ti_bandgap_force_single_read(bgp, i);
1534
1535		if (TI_BANDGAP_HAS(bgp, COUNTER))
1536			ti_bandgap_writel(bgp, rval->bg_counter,
1537					  tsr->bgap_counter);
1538		if (TI_BANDGAP_HAS(bgp, MODE_CONFIG))
1539			ti_bandgap_writel(bgp, rval->bg_mode_ctrl,
1540					  tsr->bgap_mode_ctrl);
1541		if (TI_BANDGAP_HAS(bgp, TALERT)) {
1542			ti_bandgap_writel(bgp, rval->bg_threshold,
1543					  tsr->bgap_threshold);
1544			ti_bandgap_writel(bgp, rval->bg_ctrl,
1545					  tsr->bgap_mask_ctrl);
1546		}
1547	}
1548
1549	return 0;
1550}
1551
1552static int ti_bandgap_suspend(struct device *dev)
1553{
1554	struct ti_bandgap *bgp = dev_get_drvdata(dev);
1555	int err;
1556
1557	err = ti_bandgap_save_ctxt(bgp);
1558	ti_bandgap_power(bgp, false);
1559
1560	if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
1561		clk_disable_unprepare(bgp->fclock);
1562
1563	return err;
1564}
1565
1566static int ti_bandgap_resume(struct device *dev)
1567{
1568	struct ti_bandgap *bgp = dev_get_drvdata(dev);
1569
1570	if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
1571		clk_prepare_enable(bgp->fclock);
1572
1573	ti_bandgap_power(bgp, true);
1574
1575	return ti_bandgap_restore_ctxt(bgp);
1576}
1577static SIMPLE_DEV_PM_OPS(ti_bandgap_dev_pm_ops, ti_bandgap_suspend,
1578			 ti_bandgap_resume);
1579
1580#define DEV_PM_OPS	(&ti_bandgap_dev_pm_ops)
1581#else
1582#define DEV_PM_OPS	NULL
1583#endif
1584
1585static const struct of_device_id of_ti_bandgap_match[] = {
1586#ifdef CONFIG_OMAP4_THERMAL
1587	{
1588		.compatible = "ti,omap4430-bandgap",
1589		.data = (void *)&omap4430_data,
1590	},
1591	{
1592		.compatible = "ti,omap4460-bandgap",
1593		.data = (void *)&omap4460_data,
1594	},
1595	{
1596		.compatible = "ti,omap4470-bandgap",
1597		.data = (void *)&omap4470_data,
1598	},
1599#endif
1600#ifdef CONFIG_OMAP5_THERMAL
1601	{
1602		.compatible = "ti,omap5430-bandgap",
1603		.data = (void *)&omap5430_data,
1604	},
1605#endif
1606#ifdef CONFIG_DRA752_THERMAL
1607	{
1608		.compatible = "ti,dra752-bandgap",
1609		.data = (void *)&dra752_data,
1610	},
1611#endif
1612	/* Sentinel */
1613	{ },
1614};
1615MODULE_DEVICE_TABLE(of, of_ti_bandgap_match);
1616
1617static struct platform_driver ti_bandgap_sensor_driver = {
1618	.probe = ti_bandgap_probe,
1619	.remove = ti_bandgap_remove,
1620	.driver = {
1621			.name = "ti-soc-thermal",
1622			.pm = DEV_PM_OPS,
1623			.of_match_table	= of_ti_bandgap_match,
1624	},
1625};
1626
1627module_platform_driver(ti_bandgap_sensor_driver);
1628
1629MODULE_DESCRIPTION("OMAP4+ bandgap temperature sensor driver");
1630MODULE_LICENSE("GPL v2");
1631MODULE_ALIAS("platform:ti-soc-thermal");
1632MODULE_AUTHOR("Texas Instrument Inc.");
1633