1/*
2 * Front panel driver for Linux
3 * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu>
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version
8 * 2 of the License, or (at your option) any later version.
9 *
10 * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
11 * connected to a parallel printer port.
12 *
13 * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
14 * serial module compatible with Samsung's KS0074. The pins may be connected in
15 * any combination, everything is programmable.
16 *
17 * The keypad consists in a matrix of push buttons connecting input pins to
18 * data output pins or to the ground. The combinations have to be hard-coded
19 * in the driver, though several profiles exist and adding new ones is easy.
20 *
21 * Several profiles are provided for commonly found LCD+keypad modules on the
22 * market, such as those found in Nexcom's appliances.
23 *
24 * FIXME:
25 *      - the initialization/deinitialization process is very dirty and should
26 *        be rewritten. It may even be buggy.
27 *
28 * TODO:
29 *	- document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
30 *      - make the LCD a part of a virtual screen of Vx*Vy
31 *	- make the inputs list smp-safe
32 *      - change the keyboard to a double mapping : signals -> key_id -> values
33 *        so that applications can change values without knowing signals
34 *
35 */
36
37#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
38
39#include <linux/module.h>
40
41#include <linux/types.h>
42#include <linux/errno.h>
43#include <linux/signal.h>
44#include <linux/sched.h>
45#include <linux/spinlock.h>
46#include <linux/interrupt.h>
47#include <linux/miscdevice.h>
48#include <linux/slab.h>
49#include <linux/ioport.h>
50#include <linux/fcntl.h>
51#include <linux/init.h>
52#include <linux/delay.h>
53#include <linux/kernel.h>
54#include <linux/ctype.h>
55#include <linux/parport.h>
56#include <linux/list.h>
57#include <linux/notifier.h>
58#include <linux/reboot.h>
59#include <generated/utsrelease.h>
60
61#include <linux/io.h>
62#include <linux/uaccess.h>
63
64#define LCD_MINOR		156
65#define KEYPAD_MINOR		185
66
67#define PANEL_VERSION		"0.9.5"
68
69#define LCD_MAXBYTES		256	/* max burst write */
70
71#define KEYPAD_BUFFER		64
72
73/* poll the keyboard this every second */
74#define INPUT_POLL_TIME		(HZ/50)
75/* a key starts to repeat after this times INPUT_POLL_TIME */
76#define KEYPAD_REP_START	(10)
77/* a key repeats this times INPUT_POLL_TIME */
78#define KEYPAD_REP_DELAY	(2)
79
80/* keep the light on this times INPUT_POLL_TIME for each flash */
81#define FLASH_LIGHT_TEMPO	(200)
82
83/* converts an r_str() input to an active high, bits string : 000BAOSE */
84#define PNL_PINPUT(a)		((((unsigned char)(a)) ^ 0x7F) >> 3)
85
86#define PNL_PBUSY		0x80	/* inverted input, active low */
87#define PNL_PACK		0x40	/* direct input, active low */
88#define PNL_POUTPA		0x20	/* direct input, active high */
89#define PNL_PSELECD		0x10	/* direct input, active high */
90#define PNL_PERRORP		0x08	/* direct input, active low */
91
92#define PNL_PBIDIR		0x20	/* bi-directional ports */
93/* high to read data in or-ed with data out */
94#define PNL_PINTEN		0x10
95#define PNL_PSELECP		0x08	/* inverted output, active low */
96#define PNL_PINITP		0x04	/* direct output, active low */
97#define PNL_PAUTOLF		0x02	/* inverted output, active low */
98#define PNL_PSTROBE		0x01	/* inverted output */
99
100#define PNL_PD0			0x01
101#define PNL_PD1			0x02
102#define PNL_PD2			0x04
103#define PNL_PD3			0x08
104#define PNL_PD4			0x10
105#define PNL_PD5			0x20
106#define PNL_PD6			0x40
107#define PNL_PD7			0x80
108
109#define PIN_NONE		0
110#define PIN_STROBE		1
111#define PIN_D0			2
112#define PIN_D1			3
113#define PIN_D2			4
114#define PIN_D3			5
115#define PIN_D4			6
116#define PIN_D5			7
117#define PIN_D6			8
118#define PIN_D7			9
119#define PIN_AUTOLF		14
120#define PIN_INITP		16
121#define PIN_SELECP		17
122#define PIN_NOT_SET		127
123
124#define LCD_FLAG_S		0x0001
125#define LCD_FLAG_ID		0x0002
126#define LCD_FLAG_B		0x0004	/* blink on */
127#define LCD_FLAG_C		0x0008	/* cursor on */
128#define LCD_FLAG_D		0x0010	/* display on */
129#define LCD_FLAG_F		0x0020	/* large font mode */
130#define LCD_FLAG_N		0x0040	/* 2-rows mode */
131#define LCD_FLAG_L		0x0080	/* backlight enabled */
132
133/* LCD commands */
134#define LCD_CMD_DISPLAY_CLEAR	0x01	/* Clear entire display */
135
136#define LCD_CMD_ENTRY_MODE	0x04	/* Set entry mode */
137#define LCD_CMD_CURSOR_INC	0x02	/* Increment cursor */
138
139#define LCD_CMD_DISPLAY_CTRL	0x08	/* Display control */
140#define LCD_CMD_DISPLAY_ON	0x04	/* Set display on */
141#define LCD_CMD_CURSOR_ON	0x02	/* Set cursor on */
142#define LCD_CMD_BLINK_ON	0x01	/* Set blink on */
143
144#define LCD_CMD_SHIFT		0x10	/* Shift cursor/display */
145#define LCD_CMD_DISPLAY_SHIFT	0x08	/* Shift display instead of cursor */
146#define LCD_CMD_SHIFT_RIGHT	0x04	/* Shift display/cursor to the right */
147
148#define LCD_CMD_FUNCTION_SET	0x20	/* Set function */
149#define LCD_CMD_DATA_LEN_8BITS	0x10	/* Set data length to 8 bits */
150#define LCD_CMD_TWO_LINES	0x08	/* Set to two display lines */
151#define LCD_CMD_FONT_5X10_DOTS	0x04	/* Set char font to 5x10 dots */
152
153#define LCD_CMD_SET_CGRAM_ADDR	0x40	/* Set char generator RAM address */
154
155#define LCD_CMD_SET_DDRAM_ADDR	0x80	/* Set display data RAM address */
156
157#define LCD_ESCAPE_LEN		24	/* max chars for LCD escape command */
158#define LCD_ESCAPE_CHAR	27	/* use char 27 for escape command */
159
160#define NOT_SET			-1
161
162/* macros to simplify use of the parallel port */
163#define r_ctr(x)        (parport_read_control((x)->port))
164#define r_dtr(x)        (parport_read_data((x)->port))
165#define r_str(x)        (parport_read_status((x)->port))
166#define w_ctr(x, y)     (parport_write_control((x)->port, (y)))
167#define w_dtr(x, y)     (parport_write_data((x)->port, (y)))
168
169/* this defines which bits are to be used and which ones to be ignored */
170/* logical or of the output bits involved in the scan matrix */
171static __u8 scan_mask_o;
172/* logical or of the input bits involved in the scan matrix */
173static __u8 scan_mask_i;
174
175typedef __u64 pmask_t;
176
177enum input_type {
178	INPUT_TYPE_STD,
179	INPUT_TYPE_KBD,
180};
181
182enum input_state {
183	INPUT_ST_LOW,
184	INPUT_ST_RISING,
185	INPUT_ST_HIGH,
186	INPUT_ST_FALLING,
187};
188
189struct logical_input {
190	struct list_head list;
191	pmask_t mask;
192	pmask_t value;
193	enum input_type type;
194	enum input_state state;
195	__u8 rise_time, fall_time;
196	__u8 rise_timer, fall_timer, high_timer;
197
198	union {
199		struct {	/* valid when type == INPUT_TYPE_STD */
200			void (*press_fct)(int);
201			void (*release_fct)(int);
202			int press_data;
203			int release_data;
204		} std;
205		struct {	/* valid when type == INPUT_TYPE_KBD */
206			/* strings can be non null-terminated */
207			char press_str[sizeof(void *) + sizeof(int)];
208			char repeat_str[sizeof(void *) + sizeof(int)];
209			char release_str[sizeof(void *) + sizeof(int)];
210		} kbd;
211	} u;
212};
213
214static LIST_HEAD(logical_inputs);	/* list of all defined logical inputs */
215
216/* physical contacts history
217 * Physical contacts are a 45 bits string of 9 groups of 5 bits each.
218 * The 8 lower groups correspond to output bits 0 to 7, and the 9th group
219 * corresponds to the ground.
220 * Within each group, bits are stored in the same order as read on the port :
221 * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
222 * So, each __u64 (or pmask_t) is represented like this :
223 * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
224 * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
225 */
226
227/* what has just been read from the I/O ports */
228static pmask_t phys_read;
229/* previous phys_read */
230static pmask_t phys_read_prev;
231/* stabilized phys_read (phys_read|phys_read_prev) */
232static pmask_t phys_curr;
233/* previous phys_curr */
234static pmask_t phys_prev;
235/* 0 means that at least one logical signal needs be computed */
236static char inputs_stable;
237
238/* these variables are specific to the keypad */
239static struct {
240	bool enabled;
241} keypad;
242
243static char keypad_buffer[KEYPAD_BUFFER];
244static int keypad_buflen;
245static int keypad_start;
246static char keypressed;
247static wait_queue_head_t keypad_read_wait;
248
249/* lcd-specific variables */
250static struct {
251	bool enabled;
252	bool initialized;
253	bool must_clear;
254
255	int height;
256	int width;
257	int bwidth;
258	int hwidth;
259	int charset;
260	int proto;
261	int light_tempo;
262
263	/* TODO: use union here? */
264	struct {
265		int e;
266		int rs;
267		int rw;
268		int cl;
269		int da;
270		int bl;
271	} pins;
272
273	/* contains the LCD config state */
274	unsigned long int flags;
275
276	/* Contains the LCD X and Y offset */
277	struct {
278		unsigned long int x;
279		unsigned long int y;
280	} addr;
281
282	/* Current escape sequence and it's length or -1 if outside */
283	struct {
284		char buf[LCD_ESCAPE_LEN + 1];
285		int len;
286	} esc_seq;
287} lcd;
288
289/* Needed only for init */
290static int selected_lcd_type = NOT_SET;
291
292/*
293 * Bit masks to convert LCD signals to parallel port outputs.
294 * _d_ are values for data port, _c_ are for control port.
295 * [0] = signal OFF, [1] = signal ON, [2] = mask
296 */
297#define BIT_CLR		0
298#define BIT_SET		1
299#define BIT_MSK		2
300#define BIT_STATES	3
301/*
302 * one entry for each bit on the LCD
303 */
304#define LCD_BIT_E	0
305#define LCD_BIT_RS	1
306#define LCD_BIT_RW	2
307#define LCD_BIT_BL	3
308#define LCD_BIT_CL	4
309#define LCD_BIT_DA	5
310#define LCD_BITS	6
311
312/*
313 * each bit can be either connected to a DATA or CTRL port
314 */
315#define LCD_PORT_C	0
316#define LCD_PORT_D	1
317#define LCD_PORTS	2
318
319static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];
320
321/*
322 * LCD protocols
323 */
324#define LCD_PROTO_PARALLEL      0
325#define LCD_PROTO_SERIAL        1
326#define LCD_PROTO_TI_DA8XX_LCD	2
327
328/*
329 * LCD character sets
330 */
331#define LCD_CHARSET_NORMAL      0
332#define LCD_CHARSET_KS0074      1
333
334/*
335 * LCD types
336 */
337#define LCD_TYPE_NONE		0
338#define LCD_TYPE_CUSTOM		1
339#define LCD_TYPE_OLD		2
340#define LCD_TYPE_KS0074		3
341#define LCD_TYPE_HANTRONIX	4
342#define LCD_TYPE_NEXCOM		5
343
344/*
345 * keypad types
346 */
347#define KEYPAD_TYPE_NONE	0
348#define KEYPAD_TYPE_OLD		1
349#define KEYPAD_TYPE_NEW		2
350#define KEYPAD_TYPE_NEXCOM	3
351
352/*
353 * panel profiles
354 */
355#define PANEL_PROFILE_CUSTOM	0
356#define PANEL_PROFILE_OLD	1
357#define PANEL_PROFILE_NEW	2
358#define PANEL_PROFILE_HANTRONIX	3
359#define PANEL_PROFILE_NEXCOM	4
360#define PANEL_PROFILE_LARGE	5
361
362/*
363 * Construct custom config from the kernel's configuration
364 */
365#define DEFAULT_PARPORT         0
366#define DEFAULT_PROFILE         PANEL_PROFILE_LARGE
367#define DEFAULT_KEYPAD_TYPE     KEYPAD_TYPE_OLD
368#define DEFAULT_LCD_TYPE        LCD_TYPE_OLD
369#define DEFAULT_LCD_HEIGHT      2
370#define DEFAULT_LCD_WIDTH       40
371#define DEFAULT_LCD_BWIDTH      40
372#define DEFAULT_LCD_HWIDTH      64
373#define DEFAULT_LCD_CHARSET     LCD_CHARSET_NORMAL
374#define DEFAULT_LCD_PROTO       LCD_PROTO_PARALLEL
375
376#define DEFAULT_LCD_PIN_E       PIN_AUTOLF
377#define DEFAULT_LCD_PIN_RS      PIN_SELECP
378#define DEFAULT_LCD_PIN_RW      PIN_INITP
379#define DEFAULT_LCD_PIN_SCL     PIN_STROBE
380#define DEFAULT_LCD_PIN_SDA     PIN_D0
381#define DEFAULT_LCD_PIN_BL      PIN_NOT_SET
382
383#ifdef CONFIG_PANEL_PARPORT
384#undef DEFAULT_PARPORT
385#define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
386#endif
387
388#ifdef CONFIG_PANEL_PROFILE
389#undef DEFAULT_PROFILE
390#define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
391#endif
392
393#if DEFAULT_PROFILE == 0	/* custom */
394#ifdef CONFIG_PANEL_KEYPAD
395#undef DEFAULT_KEYPAD_TYPE
396#define DEFAULT_KEYPAD_TYPE CONFIG_PANEL_KEYPAD
397#endif
398
399#ifdef CONFIG_PANEL_LCD
400#undef DEFAULT_LCD_TYPE
401#define DEFAULT_LCD_TYPE CONFIG_PANEL_LCD
402#endif
403
404#ifdef CONFIG_PANEL_LCD_HEIGHT
405#undef DEFAULT_LCD_HEIGHT
406#define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
407#endif
408
409#ifdef CONFIG_PANEL_LCD_WIDTH
410#undef DEFAULT_LCD_WIDTH
411#define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
412#endif
413
414#ifdef CONFIG_PANEL_LCD_BWIDTH
415#undef DEFAULT_LCD_BWIDTH
416#define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
417#endif
418
419#ifdef CONFIG_PANEL_LCD_HWIDTH
420#undef DEFAULT_LCD_HWIDTH
421#define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
422#endif
423
424#ifdef CONFIG_PANEL_LCD_CHARSET
425#undef DEFAULT_LCD_CHARSET
426#define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET
427#endif
428
429#ifdef CONFIG_PANEL_LCD_PROTO
430#undef DEFAULT_LCD_PROTO
431#define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
432#endif
433
434#ifdef CONFIG_PANEL_LCD_PIN_E
435#undef DEFAULT_LCD_PIN_E
436#define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
437#endif
438
439#ifdef CONFIG_PANEL_LCD_PIN_RS
440#undef DEFAULT_LCD_PIN_RS
441#define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
442#endif
443
444#ifdef CONFIG_PANEL_LCD_PIN_RW
445#undef DEFAULT_LCD_PIN_RW
446#define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
447#endif
448
449#ifdef CONFIG_PANEL_LCD_PIN_SCL
450#undef DEFAULT_LCD_PIN_SCL
451#define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
452#endif
453
454#ifdef CONFIG_PANEL_LCD_PIN_SDA
455#undef DEFAULT_LCD_PIN_SDA
456#define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
457#endif
458
459#ifdef CONFIG_PANEL_LCD_PIN_BL
460#undef DEFAULT_LCD_PIN_BL
461#define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
462#endif
463
464#endif /* DEFAULT_PROFILE == 0 */
465
466/* global variables */
467
468/* Device single-open policy control */
469static atomic_t lcd_available = ATOMIC_INIT(1);
470static atomic_t keypad_available = ATOMIC_INIT(1);
471
472static struct pardevice *pprt;
473
474static int keypad_initialized;
475
476static void (*lcd_write_cmd)(int);
477static void (*lcd_write_data)(int);
478static void (*lcd_clear_fast)(void);
479
480static DEFINE_SPINLOCK(pprt_lock);
481static struct timer_list scan_timer;
482
483MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver");
484
485static int parport = DEFAULT_PARPORT;
486module_param(parport, int, 0000);
487MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");
488
489static int profile = DEFAULT_PROFILE;
490module_param(profile, int, 0000);
491MODULE_PARM_DESC(profile,
492		 "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; "
493		 "4=16x2 nexcom; default=40x2, old kp");
494
495static int keypad_type = NOT_SET;
496module_param(keypad_type, int, 0000);
497MODULE_PARM_DESC(keypad_type,
498		 "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys");
499
500static int lcd_type = NOT_SET;
501module_param(lcd_type, int, 0000);
502MODULE_PARM_DESC(lcd_type,
503		 "LCD type: 0=none, 1=compiled-in, 2=old, 3=serial ks0074, 4=hantronix, 5=nexcom");
504
505static int lcd_height = NOT_SET;
506module_param(lcd_height, int, 0000);
507MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");
508
509static int lcd_width = NOT_SET;
510module_param(lcd_width, int, 0000);
511MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");
512
513static int lcd_bwidth = NOT_SET;	/* internal buffer width (usually 40) */
514module_param(lcd_bwidth, int, 0000);
515MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");
516
517static int lcd_hwidth = NOT_SET;	/* hardware buffer width (usually 64) */
518module_param(lcd_hwidth, int, 0000);
519MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");
520
521static int lcd_charset = NOT_SET;
522module_param(lcd_charset, int, 0000);
523MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");
524
525static int lcd_proto = NOT_SET;
526module_param(lcd_proto, int, 0000);
527MODULE_PARM_DESC(lcd_proto,
528		 "LCD communication: 0=parallel (//), 1=serial, 2=TI LCD Interface");
529
530/*
531 * These are the parallel port pins the LCD control signals are connected to.
532 * Set this to 0 if the signal is not used. Set it to its opposite value
533 * (negative) if the signal is negated. -MAXINT is used to indicate that the
534 * pin has not been explicitly specified.
535 *
536 * WARNING! no check will be performed about collisions with keypad !
537 */
538
539static int lcd_e_pin  = PIN_NOT_SET;
540module_param(lcd_e_pin, int, 0000);
541MODULE_PARM_DESC(lcd_e_pin,
542		 "# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)");
543
544static int lcd_rs_pin = PIN_NOT_SET;
545module_param(lcd_rs_pin, int, 0000);
546MODULE_PARM_DESC(lcd_rs_pin,
547		 "# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)");
548
549static int lcd_rw_pin = PIN_NOT_SET;
550module_param(lcd_rw_pin, int, 0000);
551MODULE_PARM_DESC(lcd_rw_pin,
552		 "# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)");
553
554static int lcd_cl_pin = PIN_NOT_SET;
555module_param(lcd_cl_pin, int, 0000);
556MODULE_PARM_DESC(lcd_cl_pin,
557		 "# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)");
558
559static int lcd_da_pin = PIN_NOT_SET;
560module_param(lcd_da_pin, int, 0000);
561MODULE_PARM_DESC(lcd_da_pin,
562		 "# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)");
563
564static int lcd_bl_pin = PIN_NOT_SET;
565module_param(lcd_bl_pin, int, 0000);
566MODULE_PARM_DESC(lcd_bl_pin,
567		 "# of the // port pin connected to LCD backlight, with polarity (-17..17)");
568
569/* Deprecated module parameters - consider not using them anymore */
570
571static int lcd_enabled = NOT_SET;
572module_param(lcd_enabled, int, 0000);
573MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");
574
575static int keypad_enabled = NOT_SET;
576module_param(keypad_enabled, int, 0000);
577MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");
578
579
580static const unsigned char *lcd_char_conv;
581
582/* for some LCD drivers (ks0074) we need a charset conversion table. */
583static const unsigned char lcd_char_conv_ks0074[256] = {
584	/*          0|8   1|9   2|A   3|B   4|C   5|D   6|E   7|F */
585	/* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
586	/* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
587	/* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
588	/* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
589	/* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
590	/* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
591	/* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
592	/* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
593	/* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
594	/* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
595	/* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
596	/* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
597	/* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
598	/* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
599	/* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
600	/* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
601	/* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
602	/* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
603	/* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
604	/* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
605	/* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
606	/* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
607	/* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
608	/* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
609	/* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
610	/* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
611	/* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
612	/* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
613	/* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
614	/* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
615	/* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
616	/* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
617};
618
619static const char old_keypad_profile[][4][9] = {
620	{"S0", "Left\n", "Left\n", ""},
621	{"S1", "Down\n", "Down\n", ""},
622	{"S2", "Up\n", "Up\n", ""},
623	{"S3", "Right\n", "Right\n", ""},
624	{"S4", "Esc\n", "Esc\n", ""},
625	{"S5", "Ret\n", "Ret\n", ""},
626	{"", "", "", ""}
627};
628
629/* signals, press, repeat, release */
630static const char new_keypad_profile[][4][9] = {
631	{"S0", "Left\n", "Left\n", ""},
632	{"S1", "Down\n", "Down\n", ""},
633	{"S2", "Up\n", "Up\n", ""},
634	{"S3", "Right\n", "Right\n", ""},
635	{"S4s5", "", "Esc\n", "Esc\n"},
636	{"s4S5", "", "Ret\n", "Ret\n"},
637	{"S4S5", "Help\n", "", ""},
638	/* add new signals above this line */
639	{"", "", "", ""}
640};
641
642/* signals, press, repeat, release */
643static const char nexcom_keypad_profile[][4][9] = {
644	{"a-p-e-", "Down\n", "Down\n", ""},
645	{"a-p-E-", "Ret\n", "Ret\n", ""},
646	{"a-P-E-", "Esc\n", "Esc\n", ""},
647	{"a-P-e-", "Up\n", "Up\n", ""},
648	/* add new signals above this line */
649	{"", "", "", ""}
650};
651
652static const char (*keypad_profile)[4][9] = old_keypad_profile;
653
654/* FIXME: this should be converted to a bit array containing signals states */
655static struct {
656	unsigned char e;  /* parallel LCD E (data latch on falling edge) */
657	unsigned char rs; /* parallel LCD RS  (0 = cmd, 1 = data) */
658	unsigned char rw; /* parallel LCD R/W (0 = W, 1 = R) */
659	unsigned char bl; /* parallel LCD backlight (0 = off, 1 = on) */
660	unsigned char cl; /* serial LCD clock (latch on rising edge) */
661	unsigned char da; /* serial LCD data */
662} bits;
663
664static void init_scan_timer(void);
665
666/* sets data port bits according to current signals values */
667static int set_data_bits(void)
668{
669	int val, bit;
670
671	val = r_dtr(pprt);
672	for (bit = 0; bit < LCD_BITS; bit++)
673		val &= lcd_bits[LCD_PORT_D][bit][BIT_MSK];
674
675	val |= lcd_bits[LCD_PORT_D][LCD_BIT_E][bits.e]
676	    | lcd_bits[LCD_PORT_D][LCD_BIT_RS][bits.rs]
677	    | lcd_bits[LCD_PORT_D][LCD_BIT_RW][bits.rw]
678	    | lcd_bits[LCD_PORT_D][LCD_BIT_BL][bits.bl]
679	    | lcd_bits[LCD_PORT_D][LCD_BIT_CL][bits.cl]
680	    | lcd_bits[LCD_PORT_D][LCD_BIT_DA][bits.da];
681
682	w_dtr(pprt, val);
683	return val;
684}
685
686/* sets ctrl port bits according to current signals values */
687static int set_ctrl_bits(void)
688{
689	int val, bit;
690
691	val = r_ctr(pprt);
692	for (bit = 0; bit < LCD_BITS; bit++)
693		val &= lcd_bits[LCD_PORT_C][bit][BIT_MSK];
694
695	val |= lcd_bits[LCD_PORT_C][LCD_BIT_E][bits.e]
696	    | lcd_bits[LCD_PORT_C][LCD_BIT_RS][bits.rs]
697	    | lcd_bits[LCD_PORT_C][LCD_BIT_RW][bits.rw]
698	    | lcd_bits[LCD_PORT_C][LCD_BIT_BL][bits.bl]
699	    | lcd_bits[LCD_PORT_C][LCD_BIT_CL][bits.cl]
700	    | lcd_bits[LCD_PORT_C][LCD_BIT_DA][bits.da];
701
702	w_ctr(pprt, val);
703	return val;
704}
705
706/* sets ctrl & data port bits according to current signals values */
707static void panel_set_bits(void)
708{
709	set_data_bits();
710	set_ctrl_bits();
711}
712
713/*
714 * Converts a parallel port pin (from -25 to 25) to data and control ports
715 * masks, and data and control port bits. The signal will be considered
716 * unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
717 *
718 * Result will be used this way :
719 *   out(dport, in(dport) & d_val[2] | d_val[signal_state])
720 *   out(cport, in(cport) & c_val[2] | c_val[signal_state])
721 */
722static void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
723{
724	int d_bit, c_bit, inv;
725
726	d_val[0] = 0;
727	c_val[0] = 0;
728	d_val[1] = 0;
729	c_val[1] = 0;
730	d_val[2] = 0xFF;
731	c_val[2] = 0xFF;
732
733	if (pin == 0)
734		return;
735
736	inv = (pin < 0);
737	if (inv)
738		pin = -pin;
739
740	d_bit = 0;
741	c_bit = 0;
742
743	switch (pin) {
744	case PIN_STROBE:	/* strobe, inverted */
745		c_bit = PNL_PSTROBE;
746		inv = !inv;
747		break;
748	case PIN_D0...PIN_D7:	/* D0 - D7 = 2 - 9 */
749		d_bit = 1 << (pin - 2);
750		break;
751	case PIN_AUTOLF:	/* autofeed, inverted */
752		c_bit = PNL_PAUTOLF;
753		inv = !inv;
754		break;
755	case PIN_INITP:		/* init, direct */
756		c_bit = PNL_PINITP;
757		break;
758	case PIN_SELECP:	/* select_in, inverted */
759		c_bit = PNL_PSELECP;
760		inv = !inv;
761		break;
762	default:		/* unknown pin, ignore */
763		break;
764	}
765
766	if (c_bit) {
767		c_val[2] &= ~c_bit;
768		c_val[!inv] = c_bit;
769	} else if (d_bit) {
770		d_val[2] &= ~d_bit;
771		d_val[!inv] = d_bit;
772	}
773}
774
775/* sleeps that many milliseconds with a reschedule */
776static void long_sleep(int ms)
777{
778	if (in_interrupt()) {
779		mdelay(ms);
780	} else {
781		__set_current_state(TASK_INTERRUPTIBLE);
782		schedule_timeout((ms * HZ + 999) / 1000);
783	}
784}
785
786/* send a serial byte to the LCD panel. The caller is responsible for locking
787   if needed. */
788static void lcd_send_serial(int byte)
789{
790	int bit;
791
792	/* the data bit is set on D0, and the clock on STROBE.
793	 * LCD reads D0 on STROBE's rising edge. */
794	for (bit = 0; bit < 8; bit++) {
795		bits.cl = BIT_CLR;	/* CLK low */
796		panel_set_bits();
797		bits.da = byte & 1;
798		panel_set_bits();
799		udelay(2);  /* maintain the data during 2 us before CLK up */
800		bits.cl = BIT_SET;	/* CLK high */
801		panel_set_bits();
802		udelay(1);  /* maintain the strobe during 1 us */
803		byte >>= 1;
804	}
805}
806
807/* turn the backlight on or off */
808static void lcd_backlight(int on)
809{
810	if (lcd.pins.bl == PIN_NONE)
811		return;
812
813	/* The backlight is activated by setting the AUTOFEED line to +5V  */
814	spin_lock_irq(&pprt_lock);
815	bits.bl = on;
816	panel_set_bits();
817	spin_unlock_irq(&pprt_lock);
818}
819
820/* send a command to the LCD panel in serial mode */
821static void lcd_write_cmd_s(int cmd)
822{
823	spin_lock_irq(&pprt_lock);
824	lcd_send_serial(0x1F);	/* R/W=W, RS=0 */
825	lcd_send_serial(cmd & 0x0F);
826	lcd_send_serial((cmd >> 4) & 0x0F);
827	udelay(40);		/* the shortest command takes at least 40 us */
828	spin_unlock_irq(&pprt_lock);
829}
830
831/* send data to the LCD panel in serial mode */
832static void lcd_write_data_s(int data)
833{
834	spin_lock_irq(&pprt_lock);
835	lcd_send_serial(0x5F);	/* R/W=W, RS=1 */
836	lcd_send_serial(data & 0x0F);
837	lcd_send_serial((data >> 4) & 0x0F);
838	udelay(40);		/* the shortest data takes at least 40 us */
839	spin_unlock_irq(&pprt_lock);
840}
841
842/* send a command to the LCD panel in 8 bits parallel mode */
843static void lcd_write_cmd_p8(int cmd)
844{
845	spin_lock_irq(&pprt_lock);
846	/* present the data to the data port */
847	w_dtr(pprt, cmd);
848	udelay(20);	/* maintain the data during 20 us before the strobe */
849
850	bits.e = BIT_SET;
851	bits.rs = BIT_CLR;
852	bits.rw = BIT_CLR;
853	set_ctrl_bits();
854
855	udelay(40);	/* maintain the strobe during 40 us */
856
857	bits.e = BIT_CLR;
858	set_ctrl_bits();
859
860	udelay(120);	/* the shortest command takes at least 120 us */
861	spin_unlock_irq(&pprt_lock);
862}
863
864/* send data to the LCD panel in 8 bits parallel mode */
865static void lcd_write_data_p8(int data)
866{
867	spin_lock_irq(&pprt_lock);
868	/* present the data to the data port */
869	w_dtr(pprt, data);
870	udelay(20);	/* maintain the data during 20 us before the strobe */
871
872	bits.e = BIT_SET;
873	bits.rs = BIT_SET;
874	bits.rw = BIT_CLR;
875	set_ctrl_bits();
876
877	udelay(40);	/* maintain the strobe during 40 us */
878
879	bits.e = BIT_CLR;
880	set_ctrl_bits();
881
882	udelay(45);	/* the shortest data takes at least 45 us */
883	spin_unlock_irq(&pprt_lock);
884}
885
886/* send a command to the TI LCD panel */
887static void lcd_write_cmd_tilcd(int cmd)
888{
889	spin_lock_irq(&pprt_lock);
890	/* present the data to the control port */
891	w_ctr(pprt, cmd);
892	udelay(60);
893	spin_unlock_irq(&pprt_lock);
894}
895
896/* send data to the TI LCD panel */
897static void lcd_write_data_tilcd(int data)
898{
899	spin_lock_irq(&pprt_lock);
900	/* present the data to the data port */
901	w_dtr(pprt, data);
902	udelay(60);
903	spin_unlock_irq(&pprt_lock);
904}
905
906static void lcd_gotoxy(void)
907{
908	lcd_write_cmd(LCD_CMD_SET_DDRAM_ADDR
909		      | (lcd.addr.y ? lcd.hwidth : 0)
910		      /* we force the cursor to stay at the end of the
911			 line if it wants to go farther */
912		      | ((lcd.addr.x < lcd.bwidth) ? lcd.addr.x &
913			 (lcd.hwidth - 1) : lcd.bwidth - 1));
914}
915
916static void lcd_print(char c)
917{
918	if (lcd.addr.x < lcd.bwidth) {
919		if (lcd_char_conv != NULL)
920			c = lcd_char_conv[(unsigned char)c];
921		lcd_write_data(c);
922		lcd.addr.x++;
923	}
924	/* prevents the cursor from wrapping onto the next line */
925	if (lcd.addr.x == lcd.bwidth)
926		lcd_gotoxy();
927}
928
929/* fills the display with spaces and resets X/Y */
930static void lcd_clear_fast_s(void)
931{
932	int pos;
933
934	lcd.addr.x = 0;
935	lcd.addr.y = 0;
936	lcd_gotoxy();
937
938	spin_lock_irq(&pprt_lock);
939	for (pos = 0; pos < lcd.height * lcd.hwidth; pos++) {
940		lcd_send_serial(0x5F);	/* R/W=W, RS=1 */
941		lcd_send_serial(' ' & 0x0F);
942		lcd_send_serial((' ' >> 4) & 0x0F);
943		udelay(40);	/* the shortest data takes at least 40 us */
944	}
945	spin_unlock_irq(&pprt_lock);
946
947	lcd.addr.x = 0;
948	lcd.addr.y = 0;
949	lcd_gotoxy();
950}
951
952/* fills the display with spaces and resets X/Y */
953static void lcd_clear_fast_p8(void)
954{
955	int pos;
956
957	lcd.addr.x = 0;
958	lcd.addr.y = 0;
959	lcd_gotoxy();
960
961	spin_lock_irq(&pprt_lock);
962	for (pos = 0; pos < lcd.height * lcd.hwidth; pos++) {
963		/* present the data to the data port */
964		w_dtr(pprt, ' ');
965
966		/* maintain the data during 20 us before the strobe */
967		udelay(20);
968
969		bits.e = BIT_SET;
970		bits.rs = BIT_SET;
971		bits.rw = BIT_CLR;
972		set_ctrl_bits();
973
974		/* maintain the strobe during 40 us */
975		udelay(40);
976
977		bits.e = BIT_CLR;
978		set_ctrl_bits();
979
980		/* the shortest data takes at least 45 us */
981		udelay(45);
982	}
983	spin_unlock_irq(&pprt_lock);
984
985	lcd.addr.x = 0;
986	lcd.addr.y = 0;
987	lcd_gotoxy();
988}
989
990/* fills the display with spaces and resets X/Y */
991static void lcd_clear_fast_tilcd(void)
992{
993	int pos;
994
995	lcd.addr.x = 0;
996	lcd.addr.y = 0;
997	lcd_gotoxy();
998
999	spin_lock_irq(&pprt_lock);
1000	for (pos = 0; pos < lcd.height * lcd.hwidth; pos++) {
1001		/* present the data to the data port */
1002		w_dtr(pprt, ' ');
1003		udelay(60);
1004	}
1005
1006	spin_unlock_irq(&pprt_lock);
1007
1008	lcd.addr.x = 0;
1009	lcd.addr.y = 0;
1010	lcd_gotoxy();
1011}
1012
1013/* clears the display and resets X/Y */
1014static void lcd_clear_display(void)
1015{
1016	lcd_write_cmd(LCD_CMD_DISPLAY_CLEAR);
1017	lcd.addr.x = 0;
1018	lcd.addr.y = 0;
1019	/* we must wait a few milliseconds (15) */
1020	long_sleep(15);
1021}
1022
1023static void lcd_init_display(void)
1024{
1025	lcd.flags = ((lcd.height > 1) ? LCD_FLAG_N : 0)
1026	    | LCD_FLAG_D | LCD_FLAG_C | LCD_FLAG_B;
1027
1028	long_sleep(20);		/* wait 20 ms after power-up for the paranoid */
1029
1030	/* 8bits, 1 line, small fonts; let's do it 3 times */
1031	lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS);
1032	long_sleep(10);
1033	lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS);
1034	long_sleep(10);
1035	lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS);
1036	long_sleep(10);
1037
1038	/* set font height and lines number */
1039	lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS
1040		      | ((lcd.flags & LCD_FLAG_F) ? LCD_CMD_FONT_5X10_DOTS : 0)
1041		      | ((lcd.flags & LCD_FLAG_N) ? LCD_CMD_TWO_LINES : 0)
1042	    );
1043	long_sleep(10);
1044
1045	/* display off, cursor off, blink off */
1046	lcd_write_cmd(LCD_CMD_DISPLAY_CTRL);
1047	long_sleep(10);
1048
1049	lcd_write_cmd(LCD_CMD_DISPLAY_CTRL	/* set display mode */
1050		      | ((lcd.flags & LCD_FLAG_D) ? LCD_CMD_DISPLAY_ON : 0)
1051		      | ((lcd.flags & LCD_FLAG_C) ? LCD_CMD_CURSOR_ON : 0)
1052		      | ((lcd.flags & LCD_FLAG_B) ? LCD_CMD_BLINK_ON : 0)
1053	    );
1054
1055	lcd_backlight((lcd.flags & LCD_FLAG_L) ? 1 : 0);
1056
1057	long_sleep(10);
1058
1059	/* entry mode set : increment, cursor shifting */
1060	lcd_write_cmd(LCD_CMD_ENTRY_MODE | LCD_CMD_CURSOR_INC);
1061
1062	lcd_clear_display();
1063}
1064
1065/*
1066 * These are the file operation function for user access to /dev/lcd
1067 * This function can also be called from inside the kernel, by
1068 * setting file and ppos to NULL.
1069 *
1070 */
1071
1072static inline int handle_lcd_special_code(void)
1073{
1074	/* LCD special codes */
1075
1076	int processed = 0;
1077
1078	char *esc = lcd.esc_seq.buf + 2;
1079	int oldflags = lcd.flags;
1080
1081	/* check for display mode flags */
1082	switch (*esc) {
1083	case 'D':	/* Display ON */
1084		lcd.flags |= LCD_FLAG_D;
1085		processed = 1;
1086		break;
1087	case 'd':	/* Display OFF */
1088		lcd.flags &= ~LCD_FLAG_D;
1089		processed = 1;
1090		break;
1091	case 'C':	/* Cursor ON */
1092		lcd.flags |= LCD_FLAG_C;
1093		processed = 1;
1094		break;
1095	case 'c':	/* Cursor OFF */
1096		lcd.flags &= ~LCD_FLAG_C;
1097		processed = 1;
1098		break;
1099	case 'B':	/* Blink ON */
1100		lcd.flags |= LCD_FLAG_B;
1101		processed = 1;
1102		break;
1103	case 'b':	/* Blink OFF */
1104		lcd.flags &= ~LCD_FLAG_B;
1105		processed = 1;
1106		break;
1107	case '+':	/* Back light ON */
1108		lcd.flags |= LCD_FLAG_L;
1109		processed = 1;
1110		break;
1111	case '-':	/* Back light OFF */
1112		lcd.flags &= ~LCD_FLAG_L;
1113		processed = 1;
1114		break;
1115	case '*':
1116		/* flash back light using the keypad timer */
1117		if (scan_timer.function != NULL) {
1118			if (lcd.light_tempo == 0
1119					&& ((lcd.flags & LCD_FLAG_L) == 0))
1120				lcd_backlight(1);
1121			lcd.light_tempo = FLASH_LIGHT_TEMPO;
1122		}
1123		processed = 1;
1124		break;
1125	case 'f':	/* Small Font */
1126		lcd.flags &= ~LCD_FLAG_F;
1127		processed = 1;
1128		break;
1129	case 'F':	/* Large Font */
1130		lcd.flags |= LCD_FLAG_F;
1131		processed = 1;
1132		break;
1133	case 'n':	/* One Line */
1134		lcd.flags &= ~LCD_FLAG_N;
1135		processed = 1;
1136		break;
1137	case 'N':	/* Two Lines */
1138		lcd.flags |= LCD_FLAG_N;
1139		break;
1140	case 'l':	/* Shift Cursor Left */
1141		if (lcd.addr.x > 0) {
1142			/* back one char if not at end of line */
1143			if (lcd.addr.x < lcd.bwidth)
1144				lcd_write_cmd(LCD_CMD_SHIFT);
1145			lcd.addr.x--;
1146		}
1147		processed = 1;
1148		break;
1149	case 'r':	/* shift cursor right */
1150		if (lcd.addr.x < lcd.width) {
1151			/* allow the cursor to pass the end of the line */
1152			if (lcd.addr.x < (lcd.bwidth - 1))
1153				lcd_write_cmd(LCD_CMD_SHIFT |
1154						LCD_CMD_SHIFT_RIGHT);
1155			lcd.addr.x++;
1156		}
1157		processed = 1;
1158		break;
1159	case 'L':	/* shift display left */
1160		lcd_write_cmd(LCD_CMD_SHIFT | LCD_CMD_DISPLAY_SHIFT);
1161		processed = 1;
1162		break;
1163	case 'R':	/* shift display right */
1164		lcd_write_cmd(LCD_CMD_SHIFT | LCD_CMD_DISPLAY_SHIFT |
1165				LCD_CMD_SHIFT_RIGHT);
1166		processed = 1;
1167		break;
1168	case 'k': {	/* kill end of line */
1169		int x;
1170
1171		for (x = lcd.addr.x; x < lcd.bwidth; x++)
1172			lcd_write_data(' ');
1173
1174		/* restore cursor position */
1175		lcd_gotoxy();
1176		processed = 1;
1177		break;
1178	}
1179	case 'I':	/* reinitialize display */
1180		lcd_init_display();
1181		processed = 1;
1182		break;
1183	case 'G': {
1184		/* Generator : LGcxxxxx...xx; must have <c> between '0'
1185		 * and '7', representing the numerical ASCII code of the
1186		 * redefined character, and <xx...xx> a sequence of 16
1187		 * hex digits representing 8 bytes for each character.
1188		 * Most LCDs will only use 5 lower bits of the 7 first
1189		 * bytes.
1190		 */
1191
1192		unsigned char cgbytes[8];
1193		unsigned char cgaddr;
1194		int cgoffset;
1195		int shift;
1196		char value;
1197		int addr;
1198
1199		if (strchr(esc, ';') == NULL)
1200			break;
1201
1202		esc++;
1203
1204		cgaddr = *(esc++) - '0';
1205		if (cgaddr > 7) {
1206			processed = 1;
1207			break;
1208		}
1209
1210		cgoffset = 0;
1211		shift = 0;
1212		value = 0;
1213		while (*esc && cgoffset < 8) {
1214			shift ^= 4;
1215			if (*esc >= '0' && *esc <= '9') {
1216				value |= (*esc - '0') << shift;
1217			} else if (*esc >= 'A' && *esc <= 'Z') {
1218				value |= (*esc - 'A' + 10) << shift;
1219			} else if (*esc >= 'a' && *esc <= 'z') {
1220				value |= (*esc - 'a' + 10) << shift;
1221			} else {
1222				esc++;
1223				continue;
1224			}
1225
1226			if (shift == 0) {
1227				cgbytes[cgoffset++] = value;
1228				value = 0;
1229			}
1230
1231			esc++;
1232		}
1233
1234		lcd_write_cmd(LCD_CMD_SET_CGRAM_ADDR | (cgaddr * 8));
1235		for (addr = 0; addr < cgoffset; addr++)
1236			lcd_write_data(cgbytes[addr]);
1237
1238		/* ensures that we stop writing to CGRAM */
1239		lcd_gotoxy();
1240		processed = 1;
1241		break;
1242	}
1243	case 'x':	/* gotoxy : LxXXX[yYYY]; */
1244	case 'y':	/* gotoxy : LyYYY[xXXX]; */
1245		if (strchr(esc, ';') == NULL)
1246			break;
1247
1248		while (*esc) {
1249			if (*esc == 'x') {
1250				esc++;
1251				if (kstrtoul(esc, 10, &lcd.addr.x) < 0)
1252					break;
1253			} else if (*esc == 'y') {
1254				esc++;
1255				if (kstrtoul(esc, 10, &lcd.addr.y) < 0)
1256					break;
1257			} else {
1258				break;
1259			}
1260		}
1261
1262		lcd_gotoxy();
1263		processed = 1;
1264		break;
1265	}
1266
1267	/* TODO: This indent party here got ugly, clean it! */
1268	/* Check whether one flag was changed */
1269	if (oldflags != lcd.flags) {
1270		/* check whether one of B,C,D flags were changed */
1271		if ((oldflags ^ lcd.flags) &
1272		    (LCD_FLAG_B | LCD_FLAG_C | LCD_FLAG_D))
1273			/* set display mode */
1274			lcd_write_cmd(LCD_CMD_DISPLAY_CTRL
1275				      | ((lcd.flags & LCD_FLAG_D)
1276						      ? LCD_CMD_DISPLAY_ON : 0)
1277				      | ((lcd.flags & LCD_FLAG_C)
1278						      ? LCD_CMD_CURSOR_ON : 0)
1279				      | ((lcd.flags & LCD_FLAG_B)
1280						      ? LCD_CMD_BLINK_ON : 0));
1281		/* check whether one of F,N flags was changed */
1282		else if ((oldflags ^ lcd.flags) & (LCD_FLAG_F | LCD_FLAG_N))
1283			lcd_write_cmd(LCD_CMD_FUNCTION_SET
1284				      | LCD_CMD_DATA_LEN_8BITS
1285				      | ((lcd.flags & LCD_FLAG_F)
1286						      ? LCD_CMD_TWO_LINES : 0)
1287				      | ((lcd.flags & LCD_FLAG_N)
1288						      ? LCD_CMD_FONT_5X10_DOTS
1289								      : 0));
1290		/* check whether L flag was changed */
1291		else if ((oldflags ^ lcd.flags) & (LCD_FLAG_L)) {
1292			if (lcd.flags & (LCD_FLAG_L))
1293				lcd_backlight(1);
1294			else if (lcd.light_tempo == 0)
1295				/* switch off the light only when the tempo
1296				   lighting is gone */
1297				lcd_backlight(0);
1298		}
1299	}
1300
1301	return processed;
1302}
1303
1304static void lcd_write_char(char c)
1305{
1306	/* first, we'll test if we're in escape mode */
1307	if ((c != '\n') && lcd.esc_seq.len >= 0) {
1308		/* yes, let's add this char to the buffer */
1309		lcd.esc_seq.buf[lcd.esc_seq.len++] = c;
1310		lcd.esc_seq.buf[lcd.esc_seq.len] = 0;
1311	} else {
1312		/* aborts any previous escape sequence */
1313		lcd.esc_seq.len = -1;
1314
1315		switch (c) {
1316		case LCD_ESCAPE_CHAR:
1317			/* start of an escape sequence */
1318			lcd.esc_seq.len = 0;
1319			lcd.esc_seq.buf[lcd.esc_seq.len] = 0;
1320			break;
1321		case '\b':
1322			/* go back one char and clear it */
1323			if (lcd.addr.x > 0) {
1324				/* check if we're not at the
1325				   end of the line */
1326				if (lcd.addr.x < lcd.bwidth)
1327					/* back one char */
1328					lcd_write_cmd(LCD_CMD_SHIFT);
1329				lcd.addr.x--;
1330			}
1331			/* replace with a space */
1332			lcd_write_data(' ');
1333			/* back one char again */
1334			lcd_write_cmd(LCD_CMD_SHIFT);
1335			break;
1336		case '\014':
1337			/* quickly clear the display */
1338			lcd_clear_fast();
1339			break;
1340		case '\n':
1341			/* flush the remainder of the current line and
1342			   go to the beginning of the next line */
1343			for (; lcd.addr.x < lcd.bwidth; lcd.addr.x++)
1344				lcd_write_data(' ');
1345			lcd.addr.x = 0;
1346			lcd.addr.y = (lcd.addr.y + 1) % lcd.height;
1347			lcd_gotoxy();
1348			break;
1349		case '\r':
1350			/* go to the beginning of the same line */
1351			lcd.addr.x = 0;
1352			lcd_gotoxy();
1353			break;
1354		case '\t':
1355			/* print a space instead of the tab */
1356			lcd_print(' ');
1357			break;
1358		default:
1359			/* simply print this char */
1360			lcd_print(c);
1361			break;
1362		}
1363	}
1364
1365	/* now we'll see if we're in an escape mode and if the current
1366	   escape sequence can be understood. */
1367	if (lcd.esc_seq.len >= 2) {
1368		int processed = 0;
1369
1370		if (!strcmp(lcd.esc_seq.buf, "[2J")) {
1371			/* clear the display */
1372			lcd_clear_fast();
1373			processed = 1;
1374		} else if (!strcmp(lcd.esc_seq.buf, "[H")) {
1375			/* cursor to home */
1376			lcd.addr.x = 0;
1377			lcd.addr.y = 0;
1378			lcd_gotoxy();
1379			processed = 1;
1380		}
1381		/* codes starting with ^[[L */
1382		else if ((lcd.esc_seq.len >= 3) &&
1383			 (lcd.esc_seq.buf[0] == '[') &&
1384			 (lcd.esc_seq.buf[1] == 'L')) {
1385			processed = handle_lcd_special_code();
1386		}
1387
1388		/* LCD special escape codes */
1389		/* flush the escape sequence if it's been processed
1390		   or if it is getting too long. */
1391		if (processed || (lcd.esc_seq.len >= LCD_ESCAPE_LEN))
1392			lcd.esc_seq.len = -1;
1393	} /* escape codes */
1394}
1395
1396static ssize_t lcd_write(struct file *file,
1397			 const char __user *buf, size_t count, loff_t *ppos)
1398{
1399	const char __user *tmp = buf;
1400	char c;
1401
1402	for (; count-- > 0; (*ppos)++, tmp++) {
1403		if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
1404			/* let's be a little nice with other processes
1405			   that need some CPU */
1406			schedule();
1407
1408		if (get_user(c, tmp))
1409			return -EFAULT;
1410
1411		lcd_write_char(c);
1412	}
1413
1414	return tmp - buf;
1415}
1416
1417static int lcd_open(struct inode *inode, struct file *file)
1418{
1419	if (!atomic_dec_and_test(&lcd_available))
1420		return -EBUSY;	/* open only once at a time */
1421
1422	if (file->f_mode & FMODE_READ)	/* device is write-only */
1423		return -EPERM;
1424
1425	if (lcd.must_clear) {
1426		lcd_clear_display();
1427		lcd.must_clear = false;
1428	}
1429	return nonseekable_open(inode, file);
1430}
1431
1432static int lcd_release(struct inode *inode, struct file *file)
1433{
1434	atomic_inc(&lcd_available);
1435	return 0;
1436}
1437
1438static const struct file_operations lcd_fops = {
1439	.write   = lcd_write,
1440	.open    = lcd_open,
1441	.release = lcd_release,
1442	.llseek  = no_llseek,
1443};
1444
1445static struct miscdevice lcd_dev = {
1446	.minor	= LCD_MINOR,
1447	.name	= "lcd",
1448	.fops	= &lcd_fops,
1449};
1450
1451/* public function usable from the kernel for any purpose */
1452static void panel_lcd_print(const char *s)
1453{
1454	const char *tmp = s;
1455	int count = strlen(s);
1456
1457	if (lcd.enabled && lcd.initialized) {
1458		for (; count-- > 0; tmp++) {
1459			if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
1460				/* let's be a little nice with other processes
1461				   that need some CPU */
1462				schedule();
1463
1464			lcd_write_char(*tmp);
1465		}
1466	}
1467}
1468
1469/* initialize the LCD driver */
1470static void lcd_init(void)
1471{
1472	switch (selected_lcd_type) {
1473	case LCD_TYPE_OLD:
1474		/* parallel mode, 8 bits */
1475		lcd.proto = LCD_PROTO_PARALLEL;
1476		lcd.charset = LCD_CHARSET_NORMAL;
1477		lcd.pins.e = PIN_STROBE;
1478		lcd.pins.rs = PIN_AUTOLF;
1479
1480		lcd.width = 40;
1481		lcd.bwidth = 40;
1482		lcd.hwidth = 64;
1483		lcd.height = 2;
1484		break;
1485	case LCD_TYPE_KS0074:
1486		/* serial mode, ks0074 */
1487		lcd.proto = LCD_PROTO_SERIAL;
1488		lcd.charset = LCD_CHARSET_KS0074;
1489		lcd.pins.bl = PIN_AUTOLF;
1490		lcd.pins.cl = PIN_STROBE;
1491		lcd.pins.da = PIN_D0;
1492
1493		lcd.width = 16;
1494		lcd.bwidth = 40;
1495		lcd.hwidth = 16;
1496		lcd.height = 2;
1497		break;
1498	case LCD_TYPE_NEXCOM:
1499		/* parallel mode, 8 bits, generic */
1500		lcd.proto = LCD_PROTO_PARALLEL;
1501		lcd.charset = LCD_CHARSET_NORMAL;
1502		lcd.pins.e = PIN_AUTOLF;
1503		lcd.pins.rs = PIN_SELECP;
1504		lcd.pins.rw = PIN_INITP;
1505
1506		lcd.width = 16;
1507		lcd.bwidth = 40;
1508		lcd.hwidth = 64;
1509		lcd.height = 2;
1510		break;
1511	case LCD_TYPE_CUSTOM:
1512		/* customer-defined */
1513		lcd.proto = DEFAULT_LCD_PROTO;
1514		lcd.charset = DEFAULT_LCD_CHARSET;
1515		/* default geometry will be set later */
1516		break;
1517	case LCD_TYPE_HANTRONIX:
1518		/* parallel mode, 8 bits, hantronix-like */
1519	default:
1520		lcd.proto = LCD_PROTO_PARALLEL;
1521		lcd.charset = LCD_CHARSET_NORMAL;
1522		lcd.pins.e = PIN_STROBE;
1523		lcd.pins.rs = PIN_SELECP;
1524
1525		lcd.width = 16;
1526		lcd.bwidth = 40;
1527		lcd.hwidth = 64;
1528		lcd.height = 2;
1529		break;
1530	}
1531
1532	/* Overwrite with module params set on loading */
1533	if (lcd_height != NOT_SET)
1534		lcd.height = lcd_height;
1535	if (lcd_width != NOT_SET)
1536		lcd.width = lcd_width;
1537	if (lcd_bwidth != NOT_SET)
1538		lcd.bwidth = lcd_bwidth;
1539	if (lcd_hwidth != NOT_SET)
1540		lcd.hwidth = lcd_hwidth;
1541	if (lcd_charset != NOT_SET)
1542		lcd.charset = lcd_charset;
1543	if (lcd_proto != NOT_SET)
1544		lcd.proto = lcd_proto;
1545	if (lcd_e_pin != PIN_NOT_SET)
1546		lcd.pins.e = lcd_e_pin;
1547	if (lcd_rs_pin != PIN_NOT_SET)
1548		lcd.pins.rs = lcd_rs_pin;
1549	if (lcd_rw_pin != PIN_NOT_SET)
1550		lcd.pins.rw = lcd_rw_pin;
1551	if (lcd_cl_pin != PIN_NOT_SET)
1552		lcd.pins.cl = lcd_cl_pin;
1553	if (lcd_da_pin != PIN_NOT_SET)
1554		lcd.pins.da = lcd_da_pin;
1555	if (lcd_bl_pin != PIN_NOT_SET)
1556		lcd.pins.bl = lcd_bl_pin;
1557
1558	/* this is used to catch wrong and default values */
1559	if (lcd.width <= 0)
1560		lcd.width = DEFAULT_LCD_WIDTH;
1561	if (lcd.bwidth <= 0)
1562		lcd.bwidth = DEFAULT_LCD_BWIDTH;
1563	if (lcd.hwidth <= 0)
1564		lcd.hwidth = DEFAULT_LCD_HWIDTH;
1565	if (lcd.height <= 0)
1566		lcd.height = DEFAULT_LCD_HEIGHT;
1567
1568	if (lcd.proto == LCD_PROTO_SERIAL) {	/* SERIAL */
1569		lcd_write_cmd = lcd_write_cmd_s;
1570		lcd_write_data = lcd_write_data_s;
1571		lcd_clear_fast = lcd_clear_fast_s;
1572
1573		if (lcd.pins.cl == PIN_NOT_SET)
1574			lcd.pins.cl = DEFAULT_LCD_PIN_SCL;
1575		if (lcd.pins.da == PIN_NOT_SET)
1576			lcd.pins.da = DEFAULT_LCD_PIN_SDA;
1577
1578	} else if (lcd.proto == LCD_PROTO_PARALLEL) {	/* PARALLEL */
1579		lcd_write_cmd = lcd_write_cmd_p8;
1580		lcd_write_data = lcd_write_data_p8;
1581		lcd_clear_fast = lcd_clear_fast_p8;
1582
1583		if (lcd.pins.e == PIN_NOT_SET)
1584			lcd.pins.e = DEFAULT_LCD_PIN_E;
1585		if (lcd.pins.rs == PIN_NOT_SET)
1586			lcd.pins.rs = DEFAULT_LCD_PIN_RS;
1587		if (lcd.pins.rw == PIN_NOT_SET)
1588			lcd.pins.rw = DEFAULT_LCD_PIN_RW;
1589	} else {
1590		lcd_write_cmd = lcd_write_cmd_tilcd;
1591		lcd_write_data = lcd_write_data_tilcd;
1592		lcd_clear_fast = lcd_clear_fast_tilcd;
1593	}
1594
1595	if (lcd.pins.bl == PIN_NOT_SET)
1596		lcd.pins.bl = DEFAULT_LCD_PIN_BL;
1597
1598	if (lcd.pins.e == PIN_NOT_SET)
1599		lcd.pins.e = PIN_NONE;
1600	if (lcd.pins.rs == PIN_NOT_SET)
1601		lcd.pins.rs = PIN_NONE;
1602	if (lcd.pins.rw == PIN_NOT_SET)
1603		lcd.pins.rw = PIN_NONE;
1604	if (lcd.pins.bl == PIN_NOT_SET)
1605		lcd.pins.bl = PIN_NONE;
1606	if (lcd.pins.cl == PIN_NOT_SET)
1607		lcd.pins.cl = PIN_NONE;
1608	if (lcd.pins.da == PIN_NOT_SET)
1609		lcd.pins.da = PIN_NONE;
1610
1611	if (lcd.charset == NOT_SET)
1612		lcd.charset = DEFAULT_LCD_CHARSET;
1613
1614	if (lcd.charset == LCD_CHARSET_KS0074)
1615		lcd_char_conv = lcd_char_conv_ks0074;
1616	else
1617		lcd_char_conv = NULL;
1618
1619	if (lcd.pins.bl != PIN_NONE)
1620		init_scan_timer();
1621
1622	pin_to_bits(lcd.pins.e, lcd_bits[LCD_PORT_D][LCD_BIT_E],
1623		    lcd_bits[LCD_PORT_C][LCD_BIT_E]);
1624	pin_to_bits(lcd.pins.rs, lcd_bits[LCD_PORT_D][LCD_BIT_RS],
1625		    lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
1626	pin_to_bits(lcd.pins.rw, lcd_bits[LCD_PORT_D][LCD_BIT_RW],
1627		    lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
1628	pin_to_bits(lcd.pins.bl, lcd_bits[LCD_PORT_D][LCD_BIT_BL],
1629		    lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
1630	pin_to_bits(lcd.pins.cl, lcd_bits[LCD_PORT_D][LCD_BIT_CL],
1631		    lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
1632	pin_to_bits(lcd.pins.da, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
1633		    lcd_bits[LCD_PORT_C][LCD_BIT_DA]);
1634
1635	/* before this line, we must NOT send anything to the display.
1636	 * Since lcd_init_display() needs to write data, we have to
1637	 * enable mark the LCD initialized just before. */
1638	lcd.initialized = true;
1639	lcd_init_display();
1640
1641	/* display a short message */
1642#ifdef CONFIG_PANEL_CHANGE_MESSAGE
1643#ifdef CONFIG_PANEL_BOOT_MESSAGE
1644	panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*" CONFIG_PANEL_BOOT_MESSAGE);
1645#endif
1646#else
1647	panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*Linux-" UTS_RELEASE "\nPanel-"
1648			PANEL_VERSION);
1649#endif
1650	lcd.addr.x = 0;
1651	lcd.addr.y = 0;
1652	/* clear the display on the next device opening */
1653	lcd.must_clear = true;
1654	lcd_gotoxy();
1655}
1656
1657/*
1658 * These are the file operation function for user access to /dev/keypad
1659 */
1660
1661static ssize_t keypad_read(struct file *file,
1662			   char __user *buf, size_t count, loff_t *ppos)
1663{
1664	unsigned i = *ppos;
1665	char __user *tmp = buf;
1666
1667	if (keypad_buflen == 0) {
1668		if (file->f_flags & O_NONBLOCK)
1669			return -EAGAIN;
1670
1671		if (wait_event_interruptible(keypad_read_wait,
1672					     keypad_buflen != 0))
1673			return -EINTR;
1674	}
1675
1676	for (; count-- > 0 && (keypad_buflen > 0);
1677	     ++i, ++tmp, --keypad_buflen) {
1678		put_user(keypad_buffer[keypad_start], tmp);
1679		keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
1680	}
1681	*ppos = i;
1682
1683	return tmp - buf;
1684}
1685
1686static int keypad_open(struct inode *inode, struct file *file)
1687{
1688	if (!atomic_dec_and_test(&keypad_available))
1689		return -EBUSY;	/* open only once at a time */
1690
1691	if (file->f_mode & FMODE_WRITE)	/* device is read-only */
1692		return -EPERM;
1693
1694	keypad_buflen = 0;	/* flush the buffer on opening */
1695	return 0;
1696}
1697
1698static int keypad_release(struct inode *inode, struct file *file)
1699{
1700	atomic_inc(&keypad_available);
1701	return 0;
1702}
1703
1704static const struct file_operations keypad_fops = {
1705	.read    = keypad_read,		/* read */
1706	.open    = keypad_open,		/* open */
1707	.release = keypad_release,	/* close */
1708	.llseek  = default_llseek,
1709};
1710
1711static struct miscdevice keypad_dev = {
1712	.minor	= KEYPAD_MINOR,
1713	.name	= "keypad",
1714	.fops	= &keypad_fops,
1715};
1716
1717static void keypad_send_key(const char *string, int max_len)
1718{
1719	/* send the key to the device only if a process is attached to it. */
1720	if (!atomic_read(&keypad_available)) {
1721		while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
1722			keypad_buffer[(keypad_start + keypad_buflen++) %
1723				      KEYPAD_BUFFER] = *string++;
1724		}
1725		wake_up_interruptible(&keypad_read_wait);
1726	}
1727}
1728
1729/* this function scans all the bits involving at least one logical signal,
1730 * and puts the results in the bitfield "phys_read" (one bit per established
1731 * contact), and sets "phys_read_prev" to "phys_read".
1732 *
1733 * Note: to debounce input signals, we will only consider as switched a signal
1734 * which is stable across 2 measures. Signals which are different between two
1735 * reads will be kept as they previously were in their logical form (phys_prev).
1736 * A signal which has just switched will have a 1 in
1737 * (phys_read ^ phys_read_prev).
1738 */
1739static void phys_scan_contacts(void)
1740{
1741	int bit, bitval;
1742	char oldval;
1743	char bitmask;
1744	char gndmask;
1745
1746	phys_prev = phys_curr;
1747	phys_read_prev = phys_read;
1748	phys_read = 0;		/* flush all signals */
1749
1750	/* keep track of old value, with all outputs disabled */
1751	oldval = r_dtr(pprt) | scan_mask_o;
1752	/* activate all keyboard outputs (active low) */
1753	w_dtr(pprt, oldval & ~scan_mask_o);
1754
1755	/* will have a 1 for each bit set to gnd */
1756	bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1757	/* disable all matrix signals */
1758	w_dtr(pprt, oldval);
1759
1760	/* now that all outputs are cleared, the only active input bits are
1761	 * directly connected to the ground
1762	 */
1763
1764	/* 1 for each grounded input */
1765	gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1766
1767	/* grounded inputs are signals 40-44 */
1768	phys_read |= (pmask_t) gndmask << 40;
1769
1770	if (bitmask != gndmask) {
1771		/* since clearing the outputs changed some inputs, we know
1772		 * that some input signals are currently tied to some outputs.
1773		 * So we'll scan them.
1774		 */
1775		for (bit = 0; bit < 8; bit++) {
1776			bitval = 1 << bit;
1777
1778			if (!(scan_mask_o & bitval))	/* skip unused bits */
1779				continue;
1780
1781			w_dtr(pprt, oldval & ~bitval);	/* enable this output */
1782			bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
1783			phys_read |= (pmask_t) bitmask << (5 * bit);
1784		}
1785		w_dtr(pprt, oldval);	/* disable all outputs */
1786	}
1787	/* this is easy: use old bits when they are flapping,
1788	 * use new ones when stable */
1789	phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) |
1790		    (phys_read & ~(phys_read ^ phys_read_prev));
1791}
1792
1793static inline int input_state_high(struct logical_input *input)
1794{
1795#if 0
1796	/* FIXME:
1797	 * this is an invalid test. It tries to catch
1798	 * transitions from single-key to multiple-key, but
1799	 * doesn't take into account the contacts polarity.
1800	 * The only solution to the problem is to parse keys
1801	 * from the most complex to the simplest combinations,
1802	 * and mark them as 'caught' once a combination
1803	 * matches, then unmatch it for all other ones.
1804	 */
1805
1806	/* try to catch dangerous transitions cases :
1807	 * someone adds a bit, so this signal was a false
1808	 * positive resulting from a transition. We should
1809	 * invalidate the signal immediately and not call the
1810	 * release function.
1811	 * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
1812	 */
1813	if (((phys_prev & input->mask) == input->value) &&
1814	    ((phys_curr & input->mask) >  input->value)) {
1815		input->state = INPUT_ST_LOW; /* invalidate */
1816		return 1;
1817	}
1818#endif
1819
1820	if ((phys_curr & input->mask) == input->value) {
1821		if ((input->type == INPUT_TYPE_STD) &&
1822		    (input->high_timer == 0)) {
1823			input->high_timer++;
1824			if (input->u.std.press_fct != NULL)
1825				input->u.std.press_fct(input->u.std.press_data);
1826		} else if (input->type == INPUT_TYPE_KBD) {
1827			/* will turn on the light */
1828			keypressed = 1;
1829
1830			if (input->high_timer == 0) {
1831				char *press_str = input->u.kbd.press_str;
1832
1833				if (press_str[0]) {
1834					int s = sizeof(input->u.kbd.press_str);
1835
1836					keypad_send_key(press_str, s);
1837				}
1838			}
1839
1840			if (input->u.kbd.repeat_str[0]) {
1841				char *repeat_str = input->u.kbd.repeat_str;
1842
1843				if (input->high_timer >= KEYPAD_REP_START) {
1844					int s = sizeof(input->u.kbd.repeat_str);
1845
1846					input->high_timer -= KEYPAD_REP_DELAY;
1847					keypad_send_key(repeat_str, s);
1848				}
1849				/* we will need to come back here soon */
1850				inputs_stable = 0;
1851			}
1852
1853			if (input->high_timer < 255)
1854				input->high_timer++;
1855		}
1856		return 1;
1857	}
1858
1859	/* else signal falling down. Let's fall through. */
1860	input->state = INPUT_ST_FALLING;
1861	input->fall_timer = 0;
1862
1863	return 0;
1864}
1865
1866static inline void input_state_falling(struct logical_input *input)
1867{
1868#if 0
1869	/* FIXME !!! same comment as in input_state_high */
1870	if (((phys_prev & input->mask) == input->value) &&
1871	    ((phys_curr & input->mask) >  input->value)) {
1872		input->state = INPUT_ST_LOW;	/* invalidate */
1873		return;
1874	}
1875#endif
1876
1877	if ((phys_curr & input->mask) == input->value) {
1878		if (input->type == INPUT_TYPE_KBD) {
1879			/* will turn on the light */
1880			keypressed = 1;
1881
1882			if (input->u.kbd.repeat_str[0]) {
1883				char *repeat_str = input->u.kbd.repeat_str;
1884
1885				if (input->high_timer >= KEYPAD_REP_START) {
1886					int s = sizeof(input->u.kbd.repeat_str);
1887
1888					input->high_timer -= KEYPAD_REP_DELAY;
1889					keypad_send_key(repeat_str, s);
1890				}
1891				/* we will need to come back here soon */
1892				inputs_stable = 0;
1893			}
1894
1895			if (input->high_timer < 255)
1896				input->high_timer++;
1897		}
1898		input->state = INPUT_ST_HIGH;
1899	} else if (input->fall_timer >= input->fall_time) {
1900		/* call release event */
1901		if (input->type == INPUT_TYPE_STD) {
1902			void (*release_fct)(int) = input->u.std.release_fct;
1903
1904			if (release_fct != NULL)
1905				release_fct(input->u.std.release_data);
1906		} else if (input->type == INPUT_TYPE_KBD) {
1907			char *release_str = input->u.kbd.release_str;
1908
1909			if (release_str[0]) {
1910				int s = sizeof(input->u.kbd.release_str);
1911
1912				keypad_send_key(release_str, s);
1913			}
1914		}
1915
1916		input->state = INPUT_ST_LOW;
1917	} else {
1918		input->fall_timer++;
1919		inputs_stable = 0;
1920	}
1921}
1922
1923static void panel_process_inputs(void)
1924{
1925	struct list_head *item;
1926	struct logical_input *input;
1927
1928	keypressed = 0;
1929	inputs_stable = 1;
1930	list_for_each(item, &logical_inputs) {
1931		input = list_entry(item, struct logical_input, list);
1932
1933		switch (input->state) {
1934		case INPUT_ST_LOW:
1935			if ((phys_curr & input->mask) != input->value)
1936				break;
1937			/* if all needed ones were already set previously,
1938			 * this means that this logical signal has been
1939			 * activated by the releasing of another combined
1940			 * signal, so we don't want to match.
1941			 * eg: AB -(release B)-> A -(release A)-> 0 :
1942			 *     don't match A.
1943			 */
1944			if ((phys_prev & input->mask) == input->value)
1945				break;
1946			input->rise_timer = 0;
1947			input->state = INPUT_ST_RISING;
1948			/* no break here, fall through */
1949		case INPUT_ST_RISING:
1950			if ((phys_curr & input->mask) != input->value) {
1951				input->state = INPUT_ST_LOW;
1952				break;
1953			}
1954			if (input->rise_timer < input->rise_time) {
1955				inputs_stable = 0;
1956				input->rise_timer++;
1957				break;
1958			}
1959			input->high_timer = 0;
1960			input->state = INPUT_ST_HIGH;
1961			/* no break here, fall through */
1962		case INPUT_ST_HIGH:
1963			if (input_state_high(input))
1964				break;
1965			/* no break here, fall through */
1966		case INPUT_ST_FALLING:
1967			input_state_falling(input);
1968		}
1969	}
1970}
1971
1972static void panel_scan_timer(void)
1973{
1974	if (keypad.enabled && keypad_initialized) {
1975		if (spin_trylock_irq(&pprt_lock)) {
1976			phys_scan_contacts();
1977
1978			/* no need for the parport anymore */
1979			spin_unlock_irq(&pprt_lock);
1980		}
1981
1982		if (!inputs_stable || phys_curr != phys_prev)
1983			panel_process_inputs();
1984	}
1985
1986	if (lcd.enabled && lcd.initialized) {
1987		if (keypressed) {
1988			if (lcd.light_tempo == 0
1989					&& ((lcd.flags & LCD_FLAG_L) == 0))
1990				lcd_backlight(1);
1991			lcd.light_tempo = FLASH_LIGHT_TEMPO;
1992		} else if (lcd.light_tempo > 0) {
1993			lcd.light_tempo--;
1994			if (lcd.light_tempo == 0
1995					&& ((lcd.flags & LCD_FLAG_L) == 0))
1996				lcd_backlight(0);
1997		}
1998	}
1999
2000	mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
2001}
2002
2003static void init_scan_timer(void)
2004{
2005	if (scan_timer.function != NULL)
2006		return;		/* already started */
2007
2008	setup_timer(&scan_timer, (void *)&panel_scan_timer, 0);
2009	scan_timer.expires = jiffies + INPUT_POLL_TIME;
2010	add_timer(&scan_timer);
2011}
2012
2013/* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
2014 * if <omask> or <imask> are non-null, they will be or'ed with the bits
2015 * corresponding to out and in bits respectively.
2016 * returns 1 if ok, 0 if error (in which case, nothing is written).
2017 */
2018static int input_name2mask(const char *name, pmask_t *mask, pmask_t *value,
2019			   char *imask, char *omask)
2020{
2021	static char sigtab[10] = "EeSsPpAaBb";
2022	char im, om;
2023	pmask_t m, v;
2024
2025	om = 0ULL;
2026	im = 0ULL;
2027	m = 0ULL;
2028	v = 0ULL;
2029	while (*name) {
2030		int in, out, bit, neg;
2031
2032		for (in = 0; (in < sizeof(sigtab)) && (sigtab[in] != *name);
2033		     in++)
2034			;
2035
2036		if (in >= sizeof(sigtab))
2037			return 0;	/* input name not found */
2038		neg = (in & 1);	/* odd (lower) names are negated */
2039		in >>= 1;
2040		im |= (1 << in);
2041
2042		name++;
2043		if (isdigit(*name)) {
2044			out = *name - '0';
2045			om |= (1 << out);
2046		} else if (*name == '-') {
2047			out = 8;
2048		} else {
2049			return 0;	/* unknown bit name */
2050		}
2051
2052		bit = (out * 5) + in;
2053
2054		m |= 1ULL << bit;
2055		if (!neg)
2056			v |= 1ULL << bit;
2057		name++;
2058	}
2059	*mask = m;
2060	*value = v;
2061	if (imask)
2062		*imask |= im;
2063	if (omask)
2064		*omask |= om;
2065	return 1;
2066}
2067
2068/* tries to bind a key to the signal name <name>. The key will send the
2069 * strings <press>, <repeat>, <release> for these respective events.
2070 * Returns the pointer to the new key if ok, NULL if the key could not be bound.
2071 */
2072static struct logical_input *panel_bind_key(const char *name, const char *press,
2073					    const char *repeat,
2074					    const char *release)
2075{
2076	struct logical_input *key;
2077
2078	key = kzalloc(sizeof(*key), GFP_KERNEL);
2079	if (!key)
2080		return NULL;
2081
2082	if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i,
2083			     &scan_mask_o)) {
2084		kfree(key);
2085		return NULL;
2086	}
2087
2088	key->type = INPUT_TYPE_KBD;
2089	key->state = INPUT_ST_LOW;
2090	key->rise_time = 1;
2091	key->fall_time = 1;
2092
2093	strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str));
2094	strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str));
2095	strncpy(key->u.kbd.release_str, release,
2096		sizeof(key->u.kbd.release_str));
2097	list_add(&key->list, &logical_inputs);
2098	return key;
2099}
2100
2101#if 0
2102/* tries to bind a callback function to the signal name <name>. The function
2103 * <press_fct> will be called with the <press_data> arg when the signal is
2104 * activated, and so on for <release_fct>/<release_data>
2105 * Returns the pointer to the new signal if ok, NULL if the signal could not
2106 * be bound.
2107 */
2108static struct logical_input *panel_bind_callback(char *name,
2109						 void (*press_fct)(int),
2110						 int press_data,
2111						 void (*release_fct)(int),
2112						 int release_data)
2113{
2114	struct logical_input *callback;
2115
2116	callback = kmalloc(sizeof(*callback), GFP_KERNEL);
2117	if (!callback)
2118		return NULL;
2119
2120	memset(callback, 0, sizeof(struct logical_input));
2121	if (!input_name2mask(name, &callback->mask, &callback->value,
2122			     &scan_mask_i, &scan_mask_o))
2123		return NULL;
2124
2125	callback->type = INPUT_TYPE_STD;
2126	callback->state = INPUT_ST_LOW;
2127	callback->rise_time = 1;
2128	callback->fall_time = 1;
2129	callback->u.std.press_fct = press_fct;
2130	callback->u.std.press_data = press_data;
2131	callback->u.std.release_fct = release_fct;
2132	callback->u.std.release_data = release_data;
2133	list_add(&callback->list, &logical_inputs);
2134	return callback;
2135}
2136#endif
2137
2138static void keypad_init(void)
2139{
2140	int keynum;
2141
2142	init_waitqueue_head(&keypad_read_wait);
2143	keypad_buflen = 0;	/* flushes any eventual noisy keystroke */
2144
2145	/* Let's create all known keys */
2146
2147	for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
2148		panel_bind_key(keypad_profile[keynum][0],
2149			       keypad_profile[keynum][1],
2150			       keypad_profile[keynum][2],
2151			       keypad_profile[keynum][3]);
2152	}
2153
2154	init_scan_timer();
2155	keypad_initialized = 1;
2156}
2157
2158/**************************************************/
2159/* device initialization                          */
2160/**************************************************/
2161
2162static int panel_notify_sys(struct notifier_block *this, unsigned long code,
2163			    void *unused)
2164{
2165	if (lcd.enabled && lcd.initialized) {
2166		switch (code) {
2167		case SYS_DOWN:
2168			panel_lcd_print
2169			    ("\x0cReloading\nSystem...\x1b[Lc\x1b[Lb\x1b[L+");
2170			break;
2171		case SYS_HALT:
2172			panel_lcd_print
2173			    ("\x0cSystem Halted.\x1b[Lc\x1b[Lb\x1b[L+");
2174			break;
2175		case SYS_POWER_OFF:
2176			panel_lcd_print("\x0cPower off.\x1b[Lc\x1b[Lb\x1b[L+");
2177			break;
2178		default:
2179			break;
2180		}
2181	}
2182	return NOTIFY_DONE;
2183}
2184
2185static struct notifier_block panel_notifier = {
2186	panel_notify_sys,
2187	NULL,
2188	0
2189};
2190
2191static void panel_attach(struct parport *port)
2192{
2193	if (port->number != parport)
2194		return;
2195
2196	if (pprt) {
2197		pr_err("%s: port->number=%d parport=%d, already registered!\n",
2198		       __func__, port->number, parport);
2199		return;
2200	}
2201
2202	pprt = parport_register_device(port, "panel", NULL, NULL,  /* pf, kf */
2203				       NULL,
2204				       /*PARPORT_DEV_EXCL */
2205				       0, (void *)&pprt);
2206	if (pprt == NULL) {
2207		pr_err("%s: port->number=%d parport=%d, parport_register_device() failed\n",
2208		       __func__, port->number, parport);
2209		return;
2210	}
2211
2212	if (parport_claim(pprt)) {
2213		pr_err("could not claim access to parport%d. Aborting.\n",
2214		       parport);
2215		goto err_unreg_device;
2216	}
2217
2218	/* must init LCD first, just in case an IRQ from the keypad is
2219	 * generated at keypad init
2220	 */
2221	if (lcd.enabled) {
2222		lcd_init();
2223		if (misc_register(&lcd_dev))
2224			goto err_unreg_device;
2225	}
2226
2227	if (keypad.enabled) {
2228		keypad_init();
2229		if (misc_register(&keypad_dev))
2230			goto err_lcd_unreg;
2231	}
2232	register_reboot_notifier(&panel_notifier);
2233	return;
2234
2235err_lcd_unreg:
2236	if (lcd.enabled)
2237		misc_deregister(&lcd_dev);
2238err_unreg_device:
2239	parport_unregister_device(pprt);
2240	pprt = NULL;
2241}
2242
2243static void panel_detach(struct parport *port)
2244{
2245	if (port->number != parport)
2246		return;
2247
2248	if (!pprt) {
2249		pr_err("%s: port->number=%d parport=%d, nothing to unregister.\n",
2250		       __func__, port->number, parport);
2251		return;
2252	}
2253
2254	unregister_reboot_notifier(&panel_notifier);
2255
2256	if (keypad.enabled && keypad_initialized) {
2257		misc_deregister(&keypad_dev);
2258		keypad_initialized = 0;
2259	}
2260
2261	if (lcd.enabled && lcd.initialized) {
2262		misc_deregister(&lcd_dev);
2263		lcd.initialized = false;
2264	}
2265
2266	parport_release(pprt);
2267	parport_unregister_device(pprt);
2268	pprt = NULL;
2269}
2270
2271static struct parport_driver panel_driver = {
2272	.name = "panel",
2273	.attach = panel_attach,
2274	.detach = panel_detach,
2275};
2276
2277/* init function */
2278static int __init panel_init_module(void)
2279{
2280	int selected_keypad_type = NOT_SET, err;
2281
2282	/* take care of an eventual profile */
2283	switch (profile) {
2284	case PANEL_PROFILE_CUSTOM:
2285		/* custom profile */
2286		selected_keypad_type = DEFAULT_KEYPAD_TYPE;
2287		selected_lcd_type = DEFAULT_LCD_TYPE;
2288		break;
2289	case PANEL_PROFILE_OLD:
2290		/* 8 bits, 2*16, old keypad */
2291		selected_keypad_type = KEYPAD_TYPE_OLD;
2292		selected_lcd_type = LCD_TYPE_OLD;
2293
2294		/* TODO: This two are a little hacky, sort it out later */
2295		if (lcd_width == NOT_SET)
2296			lcd_width = 16;
2297		if (lcd_hwidth == NOT_SET)
2298			lcd_hwidth = 16;
2299		break;
2300	case PANEL_PROFILE_NEW:
2301		/* serial, 2*16, new keypad */
2302		selected_keypad_type = KEYPAD_TYPE_NEW;
2303		selected_lcd_type = LCD_TYPE_KS0074;
2304		break;
2305	case PANEL_PROFILE_HANTRONIX:
2306		/* 8 bits, 2*16 hantronix-like, no keypad */
2307		selected_keypad_type = KEYPAD_TYPE_NONE;
2308		selected_lcd_type = LCD_TYPE_HANTRONIX;
2309		break;
2310	case PANEL_PROFILE_NEXCOM:
2311		/* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
2312		selected_keypad_type = KEYPAD_TYPE_NEXCOM;
2313		selected_lcd_type = LCD_TYPE_NEXCOM;
2314		break;
2315	case PANEL_PROFILE_LARGE:
2316		/* 8 bits, 2*40, old keypad */
2317		selected_keypad_type = KEYPAD_TYPE_OLD;
2318		selected_lcd_type = LCD_TYPE_OLD;
2319		break;
2320	}
2321
2322	/*
2323	 * Overwrite selection with module param values (both keypad and lcd),
2324	 * where the deprecated params have lower prio.
2325	 */
2326	if (keypad_enabled != NOT_SET)
2327		selected_keypad_type = keypad_enabled;
2328	if (keypad_type != NOT_SET)
2329		selected_keypad_type = keypad_type;
2330
2331	keypad.enabled = (selected_keypad_type > 0);
2332
2333	if (lcd_enabled != NOT_SET)
2334		selected_lcd_type = lcd_enabled;
2335	if (lcd_type != NOT_SET)
2336		selected_lcd_type = lcd_type;
2337
2338	lcd.enabled = (selected_lcd_type > 0);
2339
2340	if (lcd.enabled) {
2341		/*
2342		 * Init lcd struct with load-time values to preserve exact
2343		 * current functionality (at least for now).
2344		 */
2345		lcd.height = lcd_height;
2346		lcd.width = lcd_width;
2347		lcd.bwidth = lcd_bwidth;
2348		lcd.hwidth = lcd_hwidth;
2349		lcd.charset = lcd_charset;
2350		lcd.proto = lcd_proto;
2351		lcd.pins.e = lcd_e_pin;
2352		lcd.pins.rs = lcd_rs_pin;
2353		lcd.pins.rw = lcd_rw_pin;
2354		lcd.pins.cl = lcd_cl_pin;
2355		lcd.pins.da = lcd_da_pin;
2356		lcd.pins.bl = lcd_bl_pin;
2357
2358		/* Leave it for now, just in case */
2359		lcd.esc_seq.len = -1;
2360	}
2361
2362	switch (selected_keypad_type) {
2363	case KEYPAD_TYPE_OLD:
2364		keypad_profile = old_keypad_profile;
2365		break;
2366	case KEYPAD_TYPE_NEW:
2367		keypad_profile = new_keypad_profile;
2368		break;
2369	case KEYPAD_TYPE_NEXCOM:
2370		keypad_profile = nexcom_keypad_profile;
2371		break;
2372	default:
2373		keypad_profile = NULL;
2374		break;
2375	}
2376
2377	if (!lcd.enabled && !keypad.enabled) {
2378		/* no device enabled, let's exit */
2379		pr_err("driver version " PANEL_VERSION " disabled.\n");
2380		return -ENODEV;
2381	}
2382
2383	err = parport_register_driver(&panel_driver);
2384	if (err) {
2385		pr_err("could not register with parport. Aborting.\n");
2386		return err;
2387	}
2388
2389	if (pprt)
2390		pr_info("driver version " PANEL_VERSION
2391			" registered on parport%d (io=0x%lx).\n", parport,
2392			pprt->port->base);
2393	else
2394		pr_info("driver version " PANEL_VERSION
2395			" not yet registered\n");
2396	return 0;
2397}
2398
2399static void __exit panel_cleanup_module(void)
2400{
2401
2402	if (scan_timer.function != NULL)
2403		del_timer_sync(&scan_timer);
2404
2405	if (pprt != NULL) {
2406		if (keypad.enabled) {
2407			misc_deregister(&keypad_dev);
2408			keypad_initialized = 0;
2409		}
2410
2411		if (lcd.enabled) {
2412			panel_lcd_print("\x0cLCD driver " PANEL_VERSION
2413					"\nunloaded.\x1b[Lc\x1b[Lb\x1b[L-");
2414			misc_deregister(&lcd_dev);
2415			lcd.initialized = false;
2416		}
2417
2418		/* TODO: free all input signals */
2419		parport_release(pprt);
2420		parport_unregister_device(pprt);
2421		pprt = NULL;
2422	}
2423	parport_unregister_driver(&panel_driver);
2424}
2425
2426module_init(panel_init_module);
2427module_exit(panel_cleanup_module);
2428MODULE_AUTHOR("Willy Tarreau");
2429MODULE_LICENSE("GPL");
2430
2431/*
2432 * Local variables:
2433 *  c-indent-level: 4
2434 *  tab-width: 8
2435 * End:
2436 */
2437