1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2008 Cavium Networks
7 *
8 * Some parts of the code were originally released under BSD license:
9 *
10 * Copyright (c) 2003-2010 Cavium Networks (support@cavium.com). All rights
11 * reserved.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions are
15 * met:
16 *
17 * * Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 *
20 * * Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials provided
23 * with the distribution.
24 *
25 * * Neither the name of Cavium Networks nor the names of
26 * its contributors may be used to endorse or promote products
27 * derived from this software without specific prior written
28 * permission.
29 *
30 * This Software, including technical data, may be subject to U.S. export
31 * control laws, including the U.S. Export Administration Act and its associated
32 * regulations, and may be subject to export or import regulations in other
33 * countries.
34 *
35 * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
36 * AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR
37 * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
38 * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION
39 * OR DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
40 * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
41 * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
42 * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
43 * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR
44 * PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
45 */
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/init.h>
49 #include <linux/pci.h>
50 #include <linux/prefetch.h>
51 #include <linux/interrupt.h>
52 #include <linux/platform_device.h>
53 #include <linux/usb.h>
54
55 #include <linux/time.h>
56 #include <linux/delay.h>
57
58 #include <asm/octeon/cvmx.h>
59 #include <asm/octeon/cvmx-iob-defs.h>
60
61 #include <linux/usb/hcd.h>
62
63 #include <linux/err.h>
64
65 #include <asm/octeon/octeon.h>
66 #include <asm/octeon/cvmx-helper.h>
67 #include <asm/octeon/cvmx-sysinfo.h>
68 #include <asm/octeon/cvmx-helper-board.h>
69
70 #include "octeon-hcd.h"
71
72 /**
73 * enum cvmx_usb_speed - the possible USB device speeds
74 *
75 * @CVMX_USB_SPEED_HIGH: Device is operation at 480Mbps
76 * @CVMX_USB_SPEED_FULL: Device is operation at 12Mbps
77 * @CVMX_USB_SPEED_LOW: Device is operation at 1.5Mbps
78 */
79 enum cvmx_usb_speed {
80 CVMX_USB_SPEED_HIGH = 0,
81 CVMX_USB_SPEED_FULL = 1,
82 CVMX_USB_SPEED_LOW = 2,
83 };
84
85 /**
86 * enum cvmx_usb_transfer - the possible USB transfer types
87 *
88 * @CVMX_USB_TRANSFER_CONTROL: USB transfer type control for hub and status
89 * transfers
90 * @CVMX_USB_TRANSFER_ISOCHRONOUS: USB transfer type isochronous for low
91 * priority periodic transfers
92 * @CVMX_USB_TRANSFER_BULK: USB transfer type bulk for large low priority
93 * transfers
94 * @CVMX_USB_TRANSFER_INTERRUPT: USB transfer type interrupt for high priority
95 * periodic transfers
96 */
97 enum cvmx_usb_transfer {
98 CVMX_USB_TRANSFER_CONTROL = 0,
99 CVMX_USB_TRANSFER_ISOCHRONOUS = 1,
100 CVMX_USB_TRANSFER_BULK = 2,
101 CVMX_USB_TRANSFER_INTERRUPT = 3,
102 };
103
104 /**
105 * enum cvmx_usb_direction - the transfer directions
106 *
107 * @CVMX_USB_DIRECTION_OUT: Data is transferring from Octeon to the device/host
108 * @CVMX_USB_DIRECTION_IN: Data is transferring from the device/host to Octeon
109 */
110 enum cvmx_usb_direction {
111 CVMX_USB_DIRECTION_OUT,
112 CVMX_USB_DIRECTION_IN,
113 };
114
115 /**
116 * enum cvmx_usb_complete - possible callback function status codes
117 *
118 * @CVMX_USB_COMPLETE_SUCCESS: The transaction / operation finished without
119 * any errors
120 * @CVMX_USB_COMPLETE_SHORT: FIXME: This is currently not implemented
121 * @CVMX_USB_COMPLETE_CANCEL: The transaction was canceled while in flight
122 * by a user call to cvmx_usb_cancel
123 * @CVMX_USB_COMPLETE_ERROR: The transaction aborted with an unexpected
124 * error status
125 * @CVMX_USB_COMPLETE_STALL: The transaction received a USB STALL response
126 * from the device
127 * @CVMX_USB_COMPLETE_XACTERR: The transaction failed with an error from the
128 * device even after a number of retries
129 * @CVMX_USB_COMPLETE_DATATGLERR: The transaction failed with a data toggle
130 * error even after a number of retries
131 * @CVMX_USB_COMPLETE_BABBLEERR: The transaction failed with a babble error
132 * @CVMX_USB_COMPLETE_FRAMEERR: The transaction failed with a frame error
133 * even after a number of retries
134 */
135 enum cvmx_usb_complete {
136 CVMX_USB_COMPLETE_SUCCESS,
137 CVMX_USB_COMPLETE_SHORT,
138 CVMX_USB_COMPLETE_CANCEL,
139 CVMX_USB_COMPLETE_ERROR,
140 CVMX_USB_COMPLETE_STALL,
141 CVMX_USB_COMPLETE_XACTERR,
142 CVMX_USB_COMPLETE_DATATGLERR,
143 CVMX_USB_COMPLETE_BABBLEERR,
144 CVMX_USB_COMPLETE_FRAMEERR,
145 };
146
147 /**
148 * struct cvmx_usb_port_status - the USB port status information
149 *
150 * @port_enabled: 1 = Usb port is enabled, 0 = disabled
151 * @port_over_current: 1 = Over current detected, 0 = Over current not
152 * detected. Octeon doesn't support over current detection.
153 * @port_powered: 1 = Port power is being supplied to the device, 0 =
154 * power is off. Octeon doesn't support turning port power
155 * off.
156 * @port_speed: Current port speed.
157 * @connected: 1 = A device is connected to the port, 0 = No device is
158 * connected.
159 * @connect_change: 1 = Device connected state changed since the last set
160 * status call.
161 */
162 struct cvmx_usb_port_status {
163 uint32_t reserved : 25;
164 uint32_t port_enabled : 1;
165 uint32_t port_over_current : 1;
166 uint32_t port_powered : 1;
167 enum cvmx_usb_speed port_speed : 2;
168 uint32_t connected : 1;
169 uint32_t connect_change : 1;
170 };
171
172 /**
173 * struct cvmx_usb_iso_packet - descriptor for Isochronous packets
174 *
175 * @offset: This is the offset in bytes into the main buffer where this data
176 * is stored.
177 * @length: This is the length in bytes of the data.
178 * @status: This is the status of this individual packet transfer.
179 */
180 struct cvmx_usb_iso_packet {
181 int offset;
182 int length;
183 enum cvmx_usb_complete status;
184 };
185
186 /**
187 * enum cvmx_usb_initialize_flags - flags used by the initialization function
188 *
189 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI: The USB port uses a 12MHz crystal
190 * as clock source at USB_XO and
191 * USB_XI.
192 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND: The USB port uses 12/24/48MHz 2.5V
193 * board clock source at USB_XO.
194 * USB_XI should be tied to GND.
195 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK: Mask for clock speed field
196 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ: Speed of reference clock or
197 * crystal
198 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ: Speed of reference clock
199 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ: Speed of reference clock
200 * @CVMX_USB_INITIALIZE_FLAGS_NO_DMA: Disable DMA and used polled IO for
201 * data transfer use for the USB
202 */
203 enum cvmx_usb_initialize_flags {
204 CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI = 1 << 0,
205 CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND = 1 << 1,
206 CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK = 3 << 3,
207 CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ = 1 << 3,
208 CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ = 2 << 3,
209 CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ = 3 << 3,
210 /* Bits 3-4 used to encode the clock frequency */
211 CVMX_USB_INITIALIZE_FLAGS_NO_DMA = 1 << 5,
212 };
213
214 /**
215 * enum cvmx_usb_pipe_flags - internal flags for a pipe.
216 *
217 * @CVMX_USB_PIPE_FLAGS_SCHEDULED: Used internally to determine if a pipe is
218 * actively using hardware.
219 * @CVMX_USB_PIPE_FLAGS_NEED_PING: Used internally to determine if a high speed
220 * pipe is in the ping state.
221 */
222 enum cvmx_usb_pipe_flags {
223 CVMX_USB_PIPE_FLAGS_SCHEDULED = 1 << 17,
224 CVMX_USB_PIPE_FLAGS_NEED_PING = 1 << 18,
225 };
226
227 /* Maximum number of times to retry failed transactions */
228 #define MAX_RETRIES 3
229
230 /* Maximum number of hardware channels supported by the USB block */
231 #define MAX_CHANNELS 8
232
233 /*
234 * The low level hardware can transfer a maximum of this number of bytes in each
235 * transfer. The field is 19 bits wide
236 */
237 #define MAX_TRANSFER_BYTES ((1<<19)-1)
238
239 /*
240 * The low level hardware can transfer a maximum of this number of packets in
241 * each transfer. The field is 10 bits wide
242 */
243 #define MAX_TRANSFER_PACKETS ((1<<10)-1)
244
245 /**
246 * Logical transactions may take numerous low level
247 * transactions, especially when splits are concerned. This
248 * enum represents all of the possible stages a transaction can
249 * be in. Note that split completes are always even. This is so
250 * the NAK handler can backup to the previous low level
251 * transaction with a simple clearing of bit 0.
252 */
253 enum cvmx_usb_stage {
254 CVMX_USB_STAGE_NON_CONTROL,
255 CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE,
256 CVMX_USB_STAGE_SETUP,
257 CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE,
258 CVMX_USB_STAGE_DATA,
259 CVMX_USB_STAGE_DATA_SPLIT_COMPLETE,
260 CVMX_USB_STAGE_STATUS,
261 CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE,
262 };
263
264 /**
265 * struct cvmx_usb_transaction - describes each pending USB transaction
266 * regardless of type. These are linked together
267 * to form a list of pending requests for a pipe.
268 *
269 * @node: List node for transactions in the pipe.
270 * @type: Type of transaction, duplicated of the pipe.
271 * @flags: State flags for this transaction.
272 * @buffer: User's physical buffer address to read/write.
273 * @buffer_length: Size of the user's buffer in bytes.
274 * @control_header: For control transactions, physical address of the 8
275 * byte standard header.
276 * @iso_start_frame: For ISO transactions, the starting frame number.
277 * @iso_number_packets: For ISO transactions, the number of packets in the
278 * request.
279 * @iso_packets: For ISO transactions, the sub packets in the request.
280 * @actual_bytes: Actual bytes transfer for this transaction.
281 * @stage: For control transactions, the current stage.
282 * @urb: URB.
283 */
284 struct cvmx_usb_transaction {
285 struct list_head node;
286 enum cvmx_usb_transfer type;
287 uint64_t buffer;
288 int buffer_length;
289 uint64_t control_header;
290 int iso_start_frame;
291 int iso_number_packets;
292 struct cvmx_usb_iso_packet *iso_packets;
293 int xfersize;
294 int pktcnt;
295 int retries;
296 int actual_bytes;
297 enum cvmx_usb_stage stage;
298 struct urb *urb;
299 };
300
301 /**
302 * struct cvmx_usb_pipe - a pipe represents a virtual connection between Octeon
303 * and some USB device. It contains a list of pending
304 * request to the device.
305 *
306 * @node: List node for pipe list
307 * @next: Pipe after this one in the list
308 * @transactions: List of pending transactions
309 * @interval: For periodic pipes, the interval between packets in
310 * frames
311 * @next_tx_frame: The next frame this pipe is allowed to transmit on
312 * @flags: State flags for this pipe
313 * @device_speed: Speed of device connected to this pipe
314 * @transfer_type: Type of transaction supported by this pipe
315 * @transfer_dir: IN or OUT. Ignored for Control
316 * @multi_count: Max packet in a row for the device
317 * @max_packet: The device's maximum packet size in bytes
318 * @device_addr: USB device address at other end of pipe
319 * @endpoint_num: USB endpoint number at other end of pipe
320 * @hub_device_addr: Hub address this device is connected to
321 * @hub_port: Hub port this device is connected to
322 * @pid_toggle: This toggles between 0/1 on every packet send to track
323 * the data pid needed
324 * @channel: Hardware DMA channel for this pipe
325 * @split_sc_frame: The low order bits of the frame number the split
326 * complete should be sent on
327 */
328 struct cvmx_usb_pipe {
329 struct list_head node;
330 struct list_head transactions;
331 uint64_t interval;
332 uint64_t next_tx_frame;
333 enum cvmx_usb_pipe_flags flags;
334 enum cvmx_usb_speed device_speed;
335 enum cvmx_usb_transfer transfer_type;
336 enum cvmx_usb_direction transfer_dir;
337 int multi_count;
338 uint16_t max_packet;
339 uint8_t device_addr;
340 uint8_t endpoint_num;
341 uint8_t hub_device_addr;
342 uint8_t hub_port;
343 uint8_t pid_toggle;
344 uint8_t channel;
345 int8_t split_sc_frame;
346 };
347
348 struct cvmx_usb_tx_fifo {
349 struct {
350 int channel;
351 int size;
352 uint64_t address;
353 } entry[MAX_CHANNELS+1];
354 int head;
355 int tail;
356 };
357
358 /**
359 * struct cvmx_usb_state - the state of the USB block
360 *
361 * init_flags: Flags passed to initialize.
362 * index: Which USB block this is for.
363 * idle_hardware_channels: Bit set for every idle hardware channel.
364 * usbcx_hprt: Stored port status so we don't need to read a CSR to
365 * determine splits.
366 * pipe_for_channel: Map channels to pipes.
367 * pipe: Storage for pipes.
368 * indent: Used by debug output to indent functions.
369 * port_status: Last port status used for change notification.
370 * idle_pipes: List of open pipes that have no transactions.
371 * active_pipes: Active pipes indexed by transfer type.
372 * frame_number: Increments every SOF interrupt for time keeping.
373 * active_split: Points to the current active split, or NULL.
374 */
375 struct cvmx_usb_state {
376 int init_flags;
377 int index;
378 int idle_hardware_channels;
379 union cvmx_usbcx_hprt usbcx_hprt;
380 struct cvmx_usb_pipe *pipe_for_channel[MAX_CHANNELS];
381 int indent;
382 struct cvmx_usb_port_status port_status;
383 struct list_head idle_pipes;
384 struct list_head active_pipes[4];
385 uint64_t frame_number;
386 struct cvmx_usb_transaction *active_split;
387 struct cvmx_usb_tx_fifo periodic;
388 struct cvmx_usb_tx_fifo nonperiodic;
389 };
390
391 struct octeon_hcd {
392 spinlock_t lock;
393 struct cvmx_usb_state usb;
394 };
395
396 /* This macro spins on a register waiting for it to reach a condition. */
397 #define CVMX_WAIT_FOR_FIELD32(address, _union, cond, timeout_usec) \
398 ({int result; \
399 do { \
400 uint64_t done = cvmx_get_cycle() + (uint64_t)timeout_usec * \
401 octeon_get_clock_rate() / 1000000; \
402 union _union c; \
403 \
404 while (1) { \
405 c.u32 = cvmx_usb_read_csr32(usb, address); \
406 \
407 if (cond) { \
408 result = 0; \
409 break; \
410 } else if (cvmx_get_cycle() > done) { \
411 result = -1; \
412 break; \
413 } else \
414 cvmx_wait(100); \
415 } \
416 } while (0); \
417 result; })
418
419 /*
420 * This macro logically sets a single field in a CSR. It does the sequence
421 * read, modify, and write
422 */
423 #define USB_SET_FIELD32(address, _union, field, value) \
424 do { \
425 union _union c; \
426 \
427 c.u32 = cvmx_usb_read_csr32(usb, address); \
428 c.s.field = value; \
429 cvmx_usb_write_csr32(usb, address, c.u32); \
430 } while (0)
431
432 /* Returns the IO address to push/pop stuff data from the FIFOs */
433 #define USB_FIFO_ADDRESS(channel, usb_index) \
434 (CVMX_USBCX_GOTGCTL(usb_index) + ((channel)+1)*0x1000)
435
436 /**
437 * struct octeon_temp_buffer - a bounce buffer for USB transfers
438 * @orig_buffer: the original buffer passed by the USB stack
439 * @data: the newly allocated temporary buffer (excluding meta-data)
440 *
441 * Both the DMA engine and FIFO mode will always transfer full 32-bit words. If
442 * the buffer is too short, we need to allocate a temporary one, and this struct
443 * represents it.
444 */
445 struct octeon_temp_buffer {
446 void *orig_buffer;
447 u8 data[0];
448 };
449
cvmx_usb_to_octeon(struct cvmx_usb_state * p)450 static inline struct octeon_hcd *cvmx_usb_to_octeon(struct cvmx_usb_state *p)
451 {
452 return container_of(p, struct octeon_hcd, usb);
453 }
454
octeon_to_hcd(struct octeon_hcd * p)455 static inline struct usb_hcd *octeon_to_hcd(struct octeon_hcd *p)
456 {
457 return container_of((void *)p, struct usb_hcd, hcd_priv);
458 }
459
460 /**
461 * octeon_alloc_temp_buffer - allocate a temporary buffer for USB transfer
462 * (if needed)
463 * @urb: URB.
464 * @mem_flags: Memory allocation flags.
465 *
466 * This function allocates a temporary bounce buffer whenever it's needed
467 * due to HW limitations.
468 */
octeon_alloc_temp_buffer(struct urb * urb,gfp_t mem_flags)469 static int octeon_alloc_temp_buffer(struct urb *urb, gfp_t mem_flags)
470 {
471 struct octeon_temp_buffer *temp;
472
473 if (urb->num_sgs || urb->sg ||
474 (urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) ||
475 !(urb->transfer_buffer_length % sizeof(u32)))
476 return 0;
477
478 temp = kmalloc(ALIGN(urb->transfer_buffer_length, sizeof(u32)) +
479 sizeof(*temp), mem_flags);
480 if (!temp)
481 return -ENOMEM;
482
483 temp->orig_buffer = urb->transfer_buffer;
484 if (usb_urb_dir_out(urb))
485 memcpy(temp->data, urb->transfer_buffer,
486 urb->transfer_buffer_length);
487 urb->transfer_buffer = temp->data;
488 urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
489
490 return 0;
491 }
492
493 /**
494 * octeon_free_temp_buffer - free a temporary buffer used by USB transfers.
495 * @urb: URB.
496 *
497 * Frees a buffer allocated by octeon_alloc_temp_buffer().
498 */
octeon_free_temp_buffer(struct urb * urb)499 static void octeon_free_temp_buffer(struct urb *urb)
500 {
501 struct octeon_temp_buffer *temp;
502
503 if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
504 return;
505
506 temp = container_of(urb->transfer_buffer, struct octeon_temp_buffer,
507 data);
508 if (usb_urb_dir_in(urb))
509 memcpy(temp->orig_buffer, urb->transfer_buffer,
510 urb->actual_length);
511 urb->transfer_buffer = temp->orig_buffer;
512 urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
513 kfree(temp);
514 }
515
516 /**
517 * octeon_map_urb_for_dma - Octeon-specific map_urb_for_dma().
518 * @hcd: USB HCD structure.
519 * @urb: URB.
520 * @mem_flags: Memory allocation flags.
521 */
octeon_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)522 static int octeon_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
523 gfp_t mem_flags)
524 {
525 int ret;
526
527 ret = octeon_alloc_temp_buffer(urb, mem_flags);
528 if (ret)
529 return ret;
530
531 ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
532 if (ret)
533 octeon_free_temp_buffer(urb);
534
535 return ret;
536 }
537
538 /**
539 * octeon_unmap_urb_for_dma - Octeon-specific unmap_urb_for_dma()
540 * @hcd: USB HCD structure.
541 * @urb: URB.
542 */
octeon_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)543 static void octeon_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
544 {
545 usb_hcd_unmap_urb_for_dma(hcd, urb);
546 octeon_free_temp_buffer(urb);
547 }
548
549 /**
550 * Read a USB 32bit CSR. It performs the necessary address swizzle
551 * for 32bit CSRs and logs the value in a readable format if
552 * debugging is on.
553 *
554 * @usb: USB block this access is for
555 * @address: 64bit address to read
556 *
557 * Returns: Result of the read
558 */
cvmx_usb_read_csr32(struct cvmx_usb_state * usb,uint64_t address)559 static inline uint32_t cvmx_usb_read_csr32(struct cvmx_usb_state *usb,
560 uint64_t address)
561 {
562 uint32_t result = cvmx_read64_uint32(address ^ 4);
563 return result;
564 }
565
566
567 /**
568 * Write a USB 32bit CSR. It performs the necessary address
569 * swizzle for 32bit CSRs and logs the value in a readable format
570 * if debugging is on.
571 *
572 * @usb: USB block this access is for
573 * @address: 64bit address to write
574 * @value: Value to write
575 */
cvmx_usb_write_csr32(struct cvmx_usb_state * usb,uint64_t address,uint32_t value)576 static inline void cvmx_usb_write_csr32(struct cvmx_usb_state *usb,
577 uint64_t address, uint32_t value)
578 {
579 cvmx_write64_uint32(address ^ 4, value);
580 cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index));
581 }
582
583 /**
584 * Return non zero if this pipe connects to a non HIGH speed
585 * device through a high speed hub.
586 *
587 * @usb: USB block this access is for
588 * @pipe: Pipe to check
589 *
590 * Returns: Non zero if we need to do split transactions
591 */
cvmx_usb_pipe_needs_split(struct cvmx_usb_state * usb,struct cvmx_usb_pipe * pipe)592 static inline int cvmx_usb_pipe_needs_split(struct cvmx_usb_state *usb,
593 struct cvmx_usb_pipe *pipe)
594 {
595 return pipe->device_speed != CVMX_USB_SPEED_HIGH &&
596 usb->usbcx_hprt.s.prtspd == CVMX_USB_SPEED_HIGH;
597 }
598
599
600 /**
601 * Trivial utility function to return the correct PID for a pipe
602 *
603 * @pipe: pipe to check
604 *
605 * Returns: PID for pipe
606 */
cvmx_usb_get_data_pid(struct cvmx_usb_pipe * pipe)607 static inline int cvmx_usb_get_data_pid(struct cvmx_usb_pipe *pipe)
608 {
609 if (pipe->pid_toggle)
610 return 2; /* Data1 */
611 return 0; /* Data0 */
612 }
613
cvmx_fifo_setup(struct cvmx_usb_state * usb)614 static void cvmx_fifo_setup(struct cvmx_usb_state *usb)
615 {
616 union cvmx_usbcx_ghwcfg3 usbcx_ghwcfg3;
617 union cvmx_usbcx_gnptxfsiz npsiz;
618 union cvmx_usbcx_hptxfsiz psiz;
619
620 usbcx_ghwcfg3.u32 = cvmx_usb_read_csr32(usb,
621 CVMX_USBCX_GHWCFG3(usb->index));
622
623 /*
624 * Program the USBC_GRXFSIZ register to select the size of the receive
625 * FIFO (25%).
626 */
627 USB_SET_FIELD32(CVMX_USBCX_GRXFSIZ(usb->index), cvmx_usbcx_grxfsiz,
628 rxfdep, usbcx_ghwcfg3.s.dfifodepth / 4);
629
630 /*
631 * Program the USBC_GNPTXFSIZ register to select the size and the start
632 * address of the non-periodic transmit FIFO for nonperiodic
633 * transactions (50%).
634 */
635 npsiz.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_GNPTXFSIZ(usb->index));
636 npsiz.s.nptxfdep = usbcx_ghwcfg3.s.dfifodepth / 2;
637 npsiz.s.nptxfstaddr = usbcx_ghwcfg3.s.dfifodepth / 4;
638 cvmx_usb_write_csr32(usb, CVMX_USBCX_GNPTXFSIZ(usb->index), npsiz.u32);
639
640 /*
641 * Program the USBC_HPTXFSIZ register to select the size and start
642 * address of the periodic transmit FIFO for periodic transactions
643 * (25%).
644 */
645 psiz.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HPTXFSIZ(usb->index));
646 psiz.s.ptxfsize = usbcx_ghwcfg3.s.dfifodepth / 4;
647 psiz.s.ptxfstaddr = 3 * usbcx_ghwcfg3.s.dfifodepth / 4;
648 cvmx_usb_write_csr32(usb, CVMX_USBCX_HPTXFSIZ(usb->index), psiz.u32);
649
650 /* Flush all FIFOs */
651 USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
652 cvmx_usbcx_grstctl, txfnum, 0x10);
653 USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
654 cvmx_usbcx_grstctl, txfflsh, 1);
655 CVMX_WAIT_FOR_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
656 cvmx_usbcx_grstctl, c.s.txfflsh == 0, 100);
657 USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
658 cvmx_usbcx_grstctl, rxfflsh, 1);
659 CVMX_WAIT_FOR_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
660 cvmx_usbcx_grstctl, c.s.rxfflsh == 0, 100);
661 }
662
663 /**
664 * Shutdown a USB port after a call to cvmx_usb_initialize().
665 * The port should be disabled with all pipes closed when this
666 * function is called.
667 *
668 * @usb: USB device state populated by cvmx_usb_initialize().
669 *
670 * Returns: 0 or a negative error code.
671 */
cvmx_usb_shutdown(struct cvmx_usb_state * usb)672 static int cvmx_usb_shutdown(struct cvmx_usb_state *usb)
673 {
674 union cvmx_usbnx_clk_ctl usbn_clk_ctl;
675
676 /* Make sure all pipes are closed */
677 if (!list_empty(&usb->idle_pipes) ||
678 !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_ISOCHRONOUS]) ||
679 !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_INTERRUPT]) ||
680 !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_CONTROL]) ||
681 !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_BULK]))
682 return -EBUSY;
683
684 /* Disable the clocks and put them in power on reset */
685 usbn_clk_ctl.u64 = cvmx_read64_uint64(CVMX_USBNX_CLK_CTL(usb->index));
686 usbn_clk_ctl.s.enable = 1;
687 usbn_clk_ctl.s.por = 1;
688 usbn_clk_ctl.s.hclk_rst = 1;
689 usbn_clk_ctl.s.prst = 0;
690 usbn_clk_ctl.s.hrst = 0;
691 cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
692 return 0;
693 }
694
695 /**
696 * Initialize a USB port for use. This must be called before any
697 * other access to the Octeon USB port is made. The port starts
698 * off in the disabled state.
699 *
700 * @dev: Pointer to struct device for logging purposes.
701 * @usb: Pointer to struct cvmx_usb_state.
702 *
703 * Returns: 0 or a negative error code.
704 */
cvmx_usb_initialize(struct device * dev,struct cvmx_usb_state * usb)705 static int cvmx_usb_initialize(struct device *dev,
706 struct cvmx_usb_state *usb)
707 {
708 int channel;
709 int divisor;
710 int retries = 0;
711 union cvmx_usbcx_hcfg usbcx_hcfg;
712 union cvmx_usbnx_clk_ctl usbn_clk_ctl;
713 union cvmx_usbcx_gintsts usbc_gintsts;
714 union cvmx_usbcx_gahbcfg usbcx_gahbcfg;
715 union cvmx_usbcx_gintmsk usbcx_gintmsk;
716 union cvmx_usbcx_gusbcfg usbcx_gusbcfg;
717 union cvmx_usbnx_usbp_ctl_status usbn_usbp_ctl_status;
718
719 retry:
720 /*
721 * Power On Reset and PHY Initialization
722 *
723 * 1. Wait for DCOK to assert (nothing to do)
724 *
725 * 2a. Write USBN0/1_CLK_CTL[POR] = 1 and
726 * USBN0/1_CLK_CTL[HRST,PRST,HCLK_RST] = 0
727 */
728 usbn_clk_ctl.u64 = cvmx_read64_uint64(CVMX_USBNX_CLK_CTL(usb->index));
729 usbn_clk_ctl.s.por = 1;
730 usbn_clk_ctl.s.hrst = 0;
731 usbn_clk_ctl.s.prst = 0;
732 usbn_clk_ctl.s.hclk_rst = 0;
733 usbn_clk_ctl.s.enable = 0;
734 /*
735 * 2b. Select the USB reference clock/crystal parameters by writing
736 * appropriate values to USBN0/1_CLK_CTL[P_C_SEL, P_RTYPE, P_COM_ON]
737 */
738 if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND) {
739 /*
740 * The USB port uses 12/24/48MHz 2.5V board clock
741 * source at USB_XO. USB_XI should be tied to GND.
742 * Most Octeon evaluation boards require this setting
743 */
744 if (OCTEON_IS_MODEL(OCTEON_CN3XXX) ||
745 OCTEON_IS_MODEL(OCTEON_CN56XX) ||
746 OCTEON_IS_MODEL(OCTEON_CN50XX))
747 /* From CN56XX,CN50XX,CN31XX,CN30XX manuals */
748 usbn_clk_ctl.s.p_rtype = 2; /* p_rclk=1 & p_xenbn=0 */
749 else
750 /* From CN52XX manual */
751 usbn_clk_ctl.s.p_rtype = 1;
752
753 switch (usb->init_flags &
754 CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK) {
755 case CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ:
756 usbn_clk_ctl.s.p_c_sel = 0;
757 break;
758 case CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ:
759 usbn_clk_ctl.s.p_c_sel = 1;
760 break;
761 case CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ:
762 usbn_clk_ctl.s.p_c_sel = 2;
763 break;
764 }
765 } else {
766 /*
767 * The USB port uses a 12MHz crystal as clock source
768 * at USB_XO and USB_XI
769 */
770 if (OCTEON_IS_MODEL(OCTEON_CN3XXX))
771 /* From CN31XX,CN30XX manual */
772 usbn_clk_ctl.s.p_rtype = 3; /* p_rclk=1 & p_xenbn=1 */
773 else
774 /* From CN56XX,CN52XX,CN50XX manuals. */
775 usbn_clk_ctl.s.p_rtype = 0;
776
777 usbn_clk_ctl.s.p_c_sel = 0;
778 }
779 /*
780 * 2c. Select the HCLK via writing USBN0/1_CLK_CTL[DIVIDE, DIVIDE2] and
781 * setting USBN0/1_CLK_CTL[ENABLE] = 1. Divide the core clock down
782 * such that USB is as close as possible to 125Mhz
783 */
784 divisor = DIV_ROUND_UP(octeon_get_clock_rate(), 125000000);
785 /* Lower than 4 doesn't seem to work properly */
786 if (divisor < 4)
787 divisor = 4;
788 usbn_clk_ctl.s.divide = divisor;
789 usbn_clk_ctl.s.divide2 = 0;
790 cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
791
792 /* 2d. Write USBN0/1_CLK_CTL[HCLK_RST] = 1 */
793 usbn_clk_ctl.s.hclk_rst = 1;
794 cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
795 /* 2e. Wait 64 core-clock cycles for HCLK to stabilize */
796 cvmx_wait(64);
797 /*
798 * 3. Program the power-on reset field in the USBN clock-control
799 * register:
800 * USBN_CLK_CTL[POR] = 0
801 */
802 usbn_clk_ctl.s.por = 0;
803 cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
804 /* 4. Wait 1 ms for PHY clock to start */
805 mdelay(1);
806 /*
807 * 5. Program the Reset input from automatic test equipment field in the
808 * USBP control and status register:
809 * USBN_USBP_CTL_STATUS[ATE_RESET] = 1
810 */
811 usbn_usbp_ctl_status.u64 =
812 cvmx_read64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index));
813 usbn_usbp_ctl_status.s.ate_reset = 1;
814 cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index),
815 usbn_usbp_ctl_status.u64);
816 /* 6. Wait 10 cycles */
817 cvmx_wait(10);
818 /*
819 * 7. Clear ATE_RESET field in the USBN clock-control register:
820 * USBN_USBP_CTL_STATUS[ATE_RESET] = 0
821 */
822 usbn_usbp_ctl_status.s.ate_reset = 0;
823 cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index),
824 usbn_usbp_ctl_status.u64);
825 /*
826 * 8. Program the PHY reset field in the USBN clock-control register:
827 * USBN_CLK_CTL[PRST] = 1
828 */
829 usbn_clk_ctl.s.prst = 1;
830 cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
831 /*
832 * 9. Program the USBP control and status register to select host or
833 * device mode. USBN_USBP_CTL_STATUS[HST_MODE] = 0 for host, = 1 for
834 * device
835 */
836 usbn_usbp_ctl_status.s.hst_mode = 0;
837 cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index),
838 usbn_usbp_ctl_status.u64);
839 /* 10. Wait 1 us */
840 udelay(1);
841 /*
842 * 11. Program the hreset_n field in the USBN clock-control register:
843 * USBN_CLK_CTL[HRST] = 1
844 */
845 usbn_clk_ctl.s.hrst = 1;
846 cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
847 /* 12. Proceed to USB core initialization */
848 usbn_clk_ctl.s.enable = 1;
849 cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
850 udelay(1);
851
852 /*
853 * USB Core Initialization
854 *
855 * 1. Read USBC_GHWCFG1, USBC_GHWCFG2, USBC_GHWCFG3, USBC_GHWCFG4 to
856 * determine USB core configuration parameters.
857 *
858 * Nothing needed
859 *
860 * 2. Program the following fields in the global AHB configuration
861 * register (USBC_GAHBCFG)
862 * DMA mode, USBC_GAHBCFG[DMAEn]: 1 = DMA mode, 0 = slave mode
863 * Burst length, USBC_GAHBCFG[HBSTLEN] = 0
864 * Nonperiodic TxFIFO empty level (slave mode only),
865 * USBC_GAHBCFG[NPTXFEMPLVL]
866 * Periodic TxFIFO empty level (slave mode only),
867 * USBC_GAHBCFG[PTXFEMPLVL]
868 * Global interrupt mask, USBC_GAHBCFG[GLBLINTRMSK] = 1
869 */
870 usbcx_gahbcfg.u32 = 0;
871 usbcx_gahbcfg.s.dmaen = !(usb->init_flags &
872 CVMX_USB_INITIALIZE_FLAGS_NO_DMA);
873 usbcx_gahbcfg.s.hbstlen = 0;
874 usbcx_gahbcfg.s.nptxfemplvl = 1;
875 usbcx_gahbcfg.s.ptxfemplvl = 1;
876 usbcx_gahbcfg.s.glblintrmsk = 1;
877 cvmx_usb_write_csr32(usb, CVMX_USBCX_GAHBCFG(usb->index),
878 usbcx_gahbcfg.u32);
879
880 /*
881 * 3. Program the following fields in USBC_GUSBCFG register.
882 * HS/FS timeout calibration, USBC_GUSBCFG[TOUTCAL] = 0
883 * ULPI DDR select, USBC_GUSBCFG[DDRSEL] = 0
884 * USB turnaround time, USBC_GUSBCFG[USBTRDTIM] = 0x5
885 * PHY low-power clock select, USBC_GUSBCFG[PHYLPWRCLKSEL] = 0
886 */
887 usbcx_gusbcfg.u32 = cvmx_usb_read_csr32(usb,
888 CVMX_USBCX_GUSBCFG(usb->index));
889 usbcx_gusbcfg.s.toutcal = 0;
890 usbcx_gusbcfg.s.ddrsel = 0;
891 usbcx_gusbcfg.s.usbtrdtim = 0x5;
892 usbcx_gusbcfg.s.phylpwrclksel = 0;
893 cvmx_usb_write_csr32(usb, CVMX_USBCX_GUSBCFG(usb->index),
894 usbcx_gusbcfg.u32);
895
896 /*
897 * 4. The software must unmask the following bits in the USBC_GINTMSK
898 * register.
899 * OTG interrupt mask, USBC_GINTMSK[OTGINTMSK] = 1
900 * Mode mismatch interrupt mask, USBC_GINTMSK[MODEMISMSK] = 1
901 */
902 usbcx_gintmsk.u32 = cvmx_usb_read_csr32(usb,
903 CVMX_USBCX_GINTMSK(usb->index));
904 usbcx_gintmsk.s.otgintmsk = 1;
905 usbcx_gintmsk.s.modemismsk = 1;
906 usbcx_gintmsk.s.hchintmsk = 1;
907 usbcx_gintmsk.s.sofmsk = 0;
908 /* We need RX FIFO interrupts if we don't have DMA */
909 if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
910 usbcx_gintmsk.s.rxflvlmsk = 1;
911 cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTMSK(usb->index),
912 usbcx_gintmsk.u32);
913
914 /*
915 * Disable all channel interrupts. We'll enable them per channel later.
916 */
917 for (channel = 0; channel < 8; channel++)
918 cvmx_usb_write_csr32(usb,
919 CVMX_USBCX_HCINTMSKX(channel, usb->index),
920 0);
921
922 /*
923 * Host Port Initialization
924 *
925 * 1. Program the host-port interrupt-mask field to unmask,
926 * USBC_GINTMSK[PRTINT] = 1
927 */
928 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
929 cvmx_usbcx_gintmsk, prtintmsk, 1);
930 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
931 cvmx_usbcx_gintmsk, disconnintmsk, 1);
932
933 /*
934 * 2. Program the USBC_HCFG register to select full-speed host
935 * or high-speed host.
936 */
937 usbcx_hcfg.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HCFG(usb->index));
938 usbcx_hcfg.s.fslssupp = 0;
939 usbcx_hcfg.s.fslspclksel = 0;
940 cvmx_usb_write_csr32(usb, CVMX_USBCX_HCFG(usb->index), usbcx_hcfg.u32);
941
942 cvmx_fifo_setup(usb);
943
944 /*
945 * If the controller is getting port events right after the reset, it
946 * means the initialization failed. Try resetting the controller again
947 * in such case. This is seen to happen after cold boot on DSR-1000N.
948 */
949 usbc_gintsts.u32 = cvmx_usb_read_csr32(usb,
950 CVMX_USBCX_GINTSTS(usb->index));
951 cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTSTS(usb->index),
952 usbc_gintsts.u32);
953 dev_dbg(dev, "gintsts after reset: 0x%x\n", (int)usbc_gintsts.u32);
954 if (!usbc_gintsts.s.disconnint && !usbc_gintsts.s.prtint)
955 return 0;
956 if (retries++ >= 5)
957 return -EAGAIN;
958 dev_info(dev, "controller reset failed (gintsts=0x%x) - retrying\n",
959 (int)usbc_gintsts.u32);
960 msleep(50);
961 cvmx_usb_shutdown(usb);
962 msleep(50);
963 goto retry;
964 }
965
966 /**
967 * Reset a USB port. After this call succeeds, the USB port is
968 * online and servicing requests.
969 *
970 * @usb: USB device state populated by cvmx_usb_initialize().
971 */
cvmx_usb_reset_port(struct cvmx_usb_state * usb)972 static void cvmx_usb_reset_port(struct cvmx_usb_state *usb)
973 {
974 usb->usbcx_hprt.u32 = cvmx_usb_read_csr32(usb,
975 CVMX_USBCX_HPRT(usb->index));
976
977 /* Program the port reset bit to start the reset process */
978 USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt,
979 prtrst, 1);
980
981 /*
982 * Wait at least 50ms (high speed), or 10ms (full speed) for the reset
983 * process to complete.
984 */
985 mdelay(50);
986
987 /* Program the port reset bit to 0, USBC_HPRT[PRTRST] = 0 */
988 USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt,
989 prtrst, 0);
990
991 /*
992 * Read the port speed field to get the enumerated speed,
993 * USBC_HPRT[PRTSPD].
994 */
995 usb->usbcx_hprt.u32 = cvmx_usb_read_csr32(usb,
996 CVMX_USBCX_HPRT(usb->index));
997 }
998
999
1000 /**
1001 * Disable a USB port. After this call the USB port will not
1002 * generate data transfers and will not generate events.
1003 * Transactions in process will fail and call their
1004 * associated callbacks.
1005 *
1006 * @usb: USB device state populated by cvmx_usb_initialize().
1007 *
1008 * Returns: 0 or a negative error code.
1009 */
cvmx_usb_disable(struct cvmx_usb_state * usb)1010 static int cvmx_usb_disable(struct cvmx_usb_state *usb)
1011 {
1012 /* Disable the port */
1013 USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt,
1014 prtena, 1);
1015 return 0;
1016 }
1017
1018
1019 /**
1020 * Get the current state of the USB port. Use this call to
1021 * determine if the usb port has anything connected, is enabled,
1022 * or has some sort of error condition. The return value of this
1023 * call has "changed" bits to signal of the value of some fields
1024 * have changed between calls.
1025 *
1026 * @usb: USB device state populated by cvmx_usb_initialize().
1027 *
1028 * Returns: Port status information
1029 */
cvmx_usb_get_status(struct cvmx_usb_state * usb)1030 static struct cvmx_usb_port_status cvmx_usb_get_status(
1031 struct cvmx_usb_state *usb)
1032 {
1033 union cvmx_usbcx_hprt usbc_hprt;
1034 struct cvmx_usb_port_status result;
1035
1036 memset(&result, 0, sizeof(result));
1037
1038 usbc_hprt.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HPRT(usb->index));
1039 result.port_enabled = usbc_hprt.s.prtena;
1040 result.port_over_current = usbc_hprt.s.prtovrcurract;
1041 result.port_powered = usbc_hprt.s.prtpwr;
1042 result.port_speed = usbc_hprt.s.prtspd;
1043 result.connected = usbc_hprt.s.prtconnsts;
1044 result.connect_change =
1045 (result.connected != usb->port_status.connected);
1046
1047 return result;
1048 }
1049
1050 /**
1051 * Open a virtual pipe between the host and a USB device. A pipe
1052 * must be opened before data can be transferred between a device
1053 * and Octeon.
1054 *
1055 * @usb: USB device state populated by cvmx_usb_initialize().
1056 * @device_addr:
1057 * USB device address to open the pipe to
1058 * (0-127).
1059 * @endpoint_num:
1060 * USB endpoint number to open the pipe to
1061 * (0-15).
1062 * @device_speed:
1063 * The speed of the device the pipe is going
1064 * to. This must match the device's speed,
1065 * which may be different than the port speed.
1066 * @max_packet: The maximum packet length the device can
1067 * transmit/receive (low speed=0-8, full
1068 * speed=0-1023, high speed=0-1024). This value
1069 * comes from the standard endpoint descriptor
1070 * field wMaxPacketSize bits <10:0>.
1071 * @transfer_type:
1072 * The type of transfer this pipe is for.
1073 * @transfer_dir:
1074 * The direction the pipe is in. This is not
1075 * used for control pipes.
1076 * @interval: For ISOCHRONOUS and INTERRUPT transfers,
1077 * this is how often the transfer is scheduled
1078 * for. All other transfers should specify
1079 * zero. The units are in frames (8000/sec at
1080 * high speed, 1000/sec for full speed).
1081 * @multi_count:
1082 * For high speed devices, this is the maximum
1083 * allowed number of packet per microframe.
1084 * Specify zero for non high speed devices. This
1085 * value comes from the standard endpoint descriptor
1086 * field wMaxPacketSize bits <12:11>.
1087 * @hub_device_addr:
1088 * Hub device address this device is connected
1089 * to. Devices connected directly to Octeon
1090 * use zero. This is only used when the device
1091 * is full/low speed behind a high speed hub.
1092 * The address will be of the high speed hub,
1093 * not and full speed hubs after it.
1094 * @hub_port: Which port on the hub the device is
1095 * connected. Use zero for devices connected
1096 * directly to Octeon. Like hub_device_addr,
1097 * this is only used for full/low speed
1098 * devices behind a high speed hub.
1099 *
1100 * Returns: A non-NULL value is a pipe. NULL means an error.
1101 */
cvmx_usb_open_pipe(struct cvmx_usb_state * usb,int device_addr,int endpoint_num,enum cvmx_usb_speed device_speed,int max_packet,enum cvmx_usb_transfer transfer_type,enum cvmx_usb_direction transfer_dir,int interval,int multi_count,int hub_device_addr,int hub_port)1102 static struct cvmx_usb_pipe *cvmx_usb_open_pipe(struct cvmx_usb_state *usb,
1103 int device_addr,
1104 int endpoint_num,
1105 enum cvmx_usb_speed
1106 device_speed,
1107 int max_packet,
1108 enum cvmx_usb_transfer
1109 transfer_type,
1110 enum cvmx_usb_direction
1111 transfer_dir,
1112 int interval, int multi_count,
1113 int hub_device_addr,
1114 int hub_port)
1115 {
1116 struct cvmx_usb_pipe *pipe;
1117
1118 pipe = kzalloc(sizeof(*pipe), GFP_ATOMIC);
1119 if (!pipe)
1120 return NULL;
1121 if ((device_speed == CVMX_USB_SPEED_HIGH) &&
1122 (transfer_dir == CVMX_USB_DIRECTION_OUT) &&
1123 (transfer_type == CVMX_USB_TRANSFER_BULK))
1124 pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING;
1125 pipe->device_addr = device_addr;
1126 pipe->endpoint_num = endpoint_num;
1127 pipe->device_speed = device_speed;
1128 pipe->max_packet = max_packet;
1129 pipe->transfer_type = transfer_type;
1130 pipe->transfer_dir = transfer_dir;
1131 INIT_LIST_HEAD(&pipe->transactions);
1132
1133 /*
1134 * All pipes use interval to rate limit NAK processing. Force an
1135 * interval if one wasn't supplied
1136 */
1137 if (!interval)
1138 interval = 1;
1139 if (cvmx_usb_pipe_needs_split(usb, pipe)) {
1140 pipe->interval = interval*8;
1141 /* Force start splits to be schedule on uFrame 0 */
1142 pipe->next_tx_frame = ((usb->frame_number+7)&~7) +
1143 pipe->interval;
1144 } else {
1145 pipe->interval = interval;
1146 pipe->next_tx_frame = usb->frame_number + pipe->interval;
1147 }
1148 pipe->multi_count = multi_count;
1149 pipe->hub_device_addr = hub_device_addr;
1150 pipe->hub_port = hub_port;
1151 pipe->pid_toggle = 0;
1152 pipe->split_sc_frame = -1;
1153 list_add_tail(&pipe->node, &usb->idle_pipes);
1154
1155 /*
1156 * We don't need to tell the hardware about this pipe yet since
1157 * it doesn't have any submitted requests
1158 */
1159
1160 return pipe;
1161 }
1162
1163
1164 /**
1165 * Poll the RX FIFOs and remove data as needed. This function is only used
1166 * in non DMA mode. It is very important that this function be called quickly
1167 * enough to prevent FIFO overflow.
1168 *
1169 * @usb: USB device state populated by cvmx_usb_initialize().
1170 */
cvmx_usb_poll_rx_fifo(struct cvmx_usb_state * usb)1171 static void cvmx_usb_poll_rx_fifo(struct cvmx_usb_state *usb)
1172 {
1173 union cvmx_usbcx_grxstsph rx_status;
1174 int channel;
1175 int bytes;
1176 uint64_t address;
1177 uint32_t *ptr;
1178
1179 rx_status.u32 = cvmx_usb_read_csr32(usb,
1180 CVMX_USBCX_GRXSTSPH(usb->index));
1181 /* Only read data if IN data is there */
1182 if (rx_status.s.pktsts != 2)
1183 return;
1184 /* Check if no data is available */
1185 if (!rx_status.s.bcnt)
1186 return;
1187
1188 channel = rx_status.s.chnum;
1189 bytes = rx_status.s.bcnt;
1190 if (!bytes)
1191 return;
1192
1193 /* Get where the DMA engine would have written this data */
1194 address = cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index) +
1195 channel * 8);
1196
1197 ptr = cvmx_phys_to_ptr(address);
1198 cvmx_write64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index) + channel * 8,
1199 address + bytes);
1200
1201 /* Loop writing the FIFO data for this packet into memory */
1202 while (bytes > 0) {
1203 *ptr++ = cvmx_usb_read_csr32(usb,
1204 USB_FIFO_ADDRESS(channel, usb->index));
1205 bytes -= 4;
1206 }
1207 CVMX_SYNCW;
1208 }
1209
1210
1211 /**
1212 * Fill the TX hardware fifo with data out of the software
1213 * fifos
1214 *
1215 * @usb: USB device state populated by cvmx_usb_initialize().
1216 * @fifo: Software fifo to use
1217 * @available: Amount of space in the hardware fifo
1218 *
1219 * Returns: Non zero if the hardware fifo was too small and needs
1220 * to be serviced again.
1221 */
cvmx_usb_fill_tx_hw(struct cvmx_usb_state * usb,struct cvmx_usb_tx_fifo * fifo,int available)1222 static int cvmx_usb_fill_tx_hw(struct cvmx_usb_state *usb,
1223 struct cvmx_usb_tx_fifo *fifo, int available)
1224 {
1225 /*
1226 * We're done either when there isn't anymore space or the software FIFO
1227 * is empty
1228 */
1229 while (available && (fifo->head != fifo->tail)) {
1230 int i = fifo->tail;
1231 const uint32_t *ptr = cvmx_phys_to_ptr(fifo->entry[i].address);
1232 uint64_t csr_address = USB_FIFO_ADDRESS(fifo->entry[i].channel,
1233 usb->index) ^ 4;
1234 int words = available;
1235
1236 /* Limit the amount of data to waht the SW fifo has */
1237 if (fifo->entry[i].size <= available) {
1238 words = fifo->entry[i].size;
1239 fifo->tail++;
1240 if (fifo->tail > MAX_CHANNELS)
1241 fifo->tail = 0;
1242 }
1243
1244 /* Update the next locations and counts */
1245 available -= words;
1246 fifo->entry[i].address += words * 4;
1247 fifo->entry[i].size -= words;
1248
1249 /*
1250 * Write the HW fifo data. The read every three writes is due
1251 * to an errata on CN3XXX chips
1252 */
1253 while (words > 3) {
1254 cvmx_write64_uint32(csr_address, *ptr++);
1255 cvmx_write64_uint32(csr_address, *ptr++);
1256 cvmx_write64_uint32(csr_address, *ptr++);
1257 cvmx_read64_uint64(
1258 CVMX_USBNX_DMA0_INB_CHN0(usb->index));
1259 words -= 3;
1260 }
1261 cvmx_write64_uint32(csr_address, *ptr++);
1262 if (--words) {
1263 cvmx_write64_uint32(csr_address, *ptr++);
1264 if (--words)
1265 cvmx_write64_uint32(csr_address, *ptr++);
1266 }
1267 cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index));
1268 }
1269 return fifo->head != fifo->tail;
1270 }
1271
1272
1273 /**
1274 * Check the hardware FIFOs and fill them as needed
1275 *
1276 * @usb: USB device state populated by cvmx_usb_initialize().
1277 */
cvmx_usb_poll_tx_fifo(struct cvmx_usb_state * usb)1278 static void cvmx_usb_poll_tx_fifo(struct cvmx_usb_state *usb)
1279 {
1280 if (usb->periodic.head != usb->periodic.tail) {
1281 union cvmx_usbcx_hptxsts tx_status;
1282
1283 tx_status.u32 = cvmx_usb_read_csr32(usb,
1284 CVMX_USBCX_HPTXSTS(usb->index));
1285 if (cvmx_usb_fill_tx_hw(usb, &usb->periodic,
1286 tx_status.s.ptxfspcavail))
1287 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1288 cvmx_usbcx_gintmsk, ptxfempmsk, 1);
1289 else
1290 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1291 cvmx_usbcx_gintmsk, ptxfempmsk, 0);
1292 }
1293
1294 if (usb->nonperiodic.head != usb->nonperiodic.tail) {
1295 union cvmx_usbcx_gnptxsts tx_status;
1296
1297 tx_status.u32 = cvmx_usb_read_csr32(usb,
1298 CVMX_USBCX_GNPTXSTS(usb->index));
1299 if (cvmx_usb_fill_tx_hw(usb, &usb->nonperiodic,
1300 tx_status.s.nptxfspcavail))
1301 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1302 cvmx_usbcx_gintmsk, nptxfempmsk, 1);
1303 else
1304 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1305 cvmx_usbcx_gintmsk, nptxfempmsk, 0);
1306 }
1307 }
1308
1309
1310 /**
1311 * Fill the TX FIFO with an outgoing packet
1312 *
1313 * @usb: USB device state populated by cvmx_usb_initialize().
1314 * @channel: Channel number to get packet from
1315 */
cvmx_usb_fill_tx_fifo(struct cvmx_usb_state * usb,int channel)1316 static void cvmx_usb_fill_tx_fifo(struct cvmx_usb_state *usb, int channel)
1317 {
1318 union cvmx_usbcx_hccharx hcchar;
1319 union cvmx_usbcx_hcspltx usbc_hcsplt;
1320 union cvmx_usbcx_hctsizx usbc_hctsiz;
1321 struct cvmx_usb_tx_fifo *fifo;
1322
1323 /* We only need to fill data on outbound channels */
1324 hcchar.u32 = cvmx_usb_read_csr32(usb,
1325 CVMX_USBCX_HCCHARX(channel, usb->index));
1326 if (hcchar.s.epdir != CVMX_USB_DIRECTION_OUT)
1327 return;
1328
1329 /* OUT Splits only have data on the start and not the complete */
1330 usbc_hcsplt.u32 = cvmx_usb_read_csr32(usb,
1331 CVMX_USBCX_HCSPLTX(channel, usb->index));
1332 if (usbc_hcsplt.s.spltena && usbc_hcsplt.s.compsplt)
1333 return;
1334
1335 /*
1336 * Find out how many bytes we need to fill and convert it into 32bit
1337 * words.
1338 */
1339 usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb,
1340 CVMX_USBCX_HCTSIZX(channel, usb->index));
1341 if (!usbc_hctsiz.s.xfersize)
1342 return;
1343
1344 if ((hcchar.s.eptype == CVMX_USB_TRANSFER_INTERRUPT) ||
1345 (hcchar.s.eptype == CVMX_USB_TRANSFER_ISOCHRONOUS))
1346 fifo = &usb->periodic;
1347 else
1348 fifo = &usb->nonperiodic;
1349
1350 fifo->entry[fifo->head].channel = channel;
1351 fifo->entry[fifo->head].address =
1352 cvmx_read64_uint64(CVMX_USBNX_DMA0_OUTB_CHN0(usb->index) +
1353 channel * 8);
1354 fifo->entry[fifo->head].size = (usbc_hctsiz.s.xfersize+3)>>2;
1355 fifo->head++;
1356 if (fifo->head > MAX_CHANNELS)
1357 fifo->head = 0;
1358
1359 cvmx_usb_poll_tx_fifo(usb);
1360 }
1361
1362 /**
1363 * Perform channel specific setup for Control transactions. All
1364 * the generic stuff will already have been done in cvmx_usb_start_channel().
1365 *
1366 * @usb: USB device state populated by cvmx_usb_initialize().
1367 * @channel: Channel to setup
1368 * @pipe: Pipe for control transaction
1369 */
cvmx_usb_start_channel_control(struct cvmx_usb_state * usb,int channel,struct cvmx_usb_pipe * pipe)1370 static void cvmx_usb_start_channel_control(struct cvmx_usb_state *usb,
1371 int channel,
1372 struct cvmx_usb_pipe *pipe)
1373 {
1374 struct octeon_hcd *priv = cvmx_usb_to_octeon(usb);
1375 struct usb_hcd *hcd = octeon_to_hcd(priv);
1376 struct device *dev = hcd->self.controller;
1377 struct cvmx_usb_transaction *transaction =
1378 list_first_entry(&pipe->transactions, typeof(*transaction),
1379 node);
1380 struct usb_ctrlrequest *header =
1381 cvmx_phys_to_ptr(transaction->control_header);
1382 int bytes_to_transfer = transaction->buffer_length -
1383 transaction->actual_bytes;
1384 int packets_to_transfer;
1385 union cvmx_usbcx_hctsizx usbc_hctsiz;
1386
1387 usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb,
1388 CVMX_USBCX_HCTSIZX(channel, usb->index));
1389
1390 switch (transaction->stage) {
1391 case CVMX_USB_STAGE_NON_CONTROL:
1392 case CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE:
1393 dev_err(dev, "%s: ERROR - Non control stage\n", __func__);
1394 break;
1395 case CVMX_USB_STAGE_SETUP:
1396 usbc_hctsiz.s.pid = 3; /* Setup */
1397 bytes_to_transfer = sizeof(*header);
1398 /* All Control operations start with a setup going OUT */
1399 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1400 cvmx_usbcx_hccharx, epdir,
1401 CVMX_USB_DIRECTION_OUT);
1402 /*
1403 * Setup send the control header instead of the buffer data. The
1404 * buffer data will be used in the next stage
1405 */
1406 cvmx_write64_uint64(CVMX_USBNX_DMA0_OUTB_CHN0(usb->index) +
1407 channel * 8,
1408 transaction->control_header);
1409 break;
1410 case CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE:
1411 usbc_hctsiz.s.pid = 3; /* Setup */
1412 bytes_to_transfer = 0;
1413 /* All Control operations start with a setup going OUT */
1414 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1415 cvmx_usbcx_hccharx, epdir,
1416 CVMX_USB_DIRECTION_OUT);
1417
1418 USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index),
1419 cvmx_usbcx_hcspltx, compsplt, 1);
1420 break;
1421 case CVMX_USB_STAGE_DATA:
1422 usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1423 if (cvmx_usb_pipe_needs_split(usb, pipe)) {
1424 if (header->bRequestType & USB_DIR_IN)
1425 bytes_to_transfer = 0;
1426 else if (bytes_to_transfer > pipe->max_packet)
1427 bytes_to_transfer = pipe->max_packet;
1428 }
1429 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1430 cvmx_usbcx_hccharx, epdir,
1431 ((header->bRequestType & USB_DIR_IN) ?
1432 CVMX_USB_DIRECTION_IN :
1433 CVMX_USB_DIRECTION_OUT));
1434 break;
1435 case CVMX_USB_STAGE_DATA_SPLIT_COMPLETE:
1436 usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1437 if (!(header->bRequestType & USB_DIR_IN))
1438 bytes_to_transfer = 0;
1439 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1440 cvmx_usbcx_hccharx, epdir,
1441 ((header->bRequestType & USB_DIR_IN) ?
1442 CVMX_USB_DIRECTION_IN :
1443 CVMX_USB_DIRECTION_OUT));
1444 USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index),
1445 cvmx_usbcx_hcspltx, compsplt, 1);
1446 break;
1447 case CVMX_USB_STAGE_STATUS:
1448 usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1449 bytes_to_transfer = 0;
1450 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1451 cvmx_usbcx_hccharx, epdir,
1452 ((header->bRequestType & USB_DIR_IN) ?
1453 CVMX_USB_DIRECTION_OUT :
1454 CVMX_USB_DIRECTION_IN));
1455 break;
1456 case CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE:
1457 usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1458 bytes_to_transfer = 0;
1459 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1460 cvmx_usbcx_hccharx, epdir,
1461 ((header->bRequestType & USB_DIR_IN) ?
1462 CVMX_USB_DIRECTION_OUT :
1463 CVMX_USB_DIRECTION_IN));
1464 USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index),
1465 cvmx_usbcx_hcspltx, compsplt, 1);
1466 break;
1467 }
1468
1469 /*
1470 * Make sure the transfer never exceeds the byte limit of the hardware.
1471 * Further bytes will be sent as continued transactions
1472 */
1473 if (bytes_to_transfer > MAX_TRANSFER_BYTES) {
1474 /* Round MAX_TRANSFER_BYTES to a multiple of out packet size */
1475 bytes_to_transfer = MAX_TRANSFER_BYTES / pipe->max_packet;
1476 bytes_to_transfer *= pipe->max_packet;
1477 }
1478
1479 /*
1480 * Calculate the number of packets to transfer. If the length is zero
1481 * we still need to transfer one packet
1482 */
1483 packets_to_transfer = DIV_ROUND_UP(bytes_to_transfer,
1484 pipe->max_packet);
1485 if (packets_to_transfer == 0)
1486 packets_to_transfer = 1;
1487 else if ((packets_to_transfer > 1) &&
1488 (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)) {
1489 /*
1490 * Limit to one packet when not using DMA. Channels must be
1491 * restarted between every packet for IN transactions, so there
1492 * is no reason to do multiple packets in a row
1493 */
1494 packets_to_transfer = 1;
1495 bytes_to_transfer = packets_to_transfer * pipe->max_packet;
1496 } else if (packets_to_transfer > MAX_TRANSFER_PACKETS) {
1497 /*
1498 * Limit the number of packet and data transferred to what the
1499 * hardware can handle
1500 */
1501 packets_to_transfer = MAX_TRANSFER_PACKETS;
1502 bytes_to_transfer = packets_to_transfer * pipe->max_packet;
1503 }
1504
1505 usbc_hctsiz.s.xfersize = bytes_to_transfer;
1506 usbc_hctsiz.s.pktcnt = packets_to_transfer;
1507
1508 cvmx_usb_write_csr32(usb, CVMX_USBCX_HCTSIZX(channel, usb->index),
1509 usbc_hctsiz.u32);
1510 }
1511
1512
1513 /**
1514 * Start a channel to perform the pipe's head transaction
1515 *
1516 * @usb: USB device state populated by cvmx_usb_initialize().
1517 * @channel: Channel to setup
1518 * @pipe: Pipe to start
1519 */
cvmx_usb_start_channel(struct cvmx_usb_state * usb,int channel,struct cvmx_usb_pipe * pipe)1520 static void cvmx_usb_start_channel(struct cvmx_usb_state *usb, int channel,
1521 struct cvmx_usb_pipe *pipe)
1522 {
1523 struct cvmx_usb_transaction *transaction =
1524 list_first_entry(&pipe->transactions, typeof(*transaction),
1525 node);
1526
1527 /* Make sure all writes to the DMA region get flushed */
1528 CVMX_SYNCW;
1529
1530 /* Attach the channel to the pipe */
1531 usb->pipe_for_channel[channel] = pipe;
1532 pipe->channel = channel;
1533 pipe->flags |= CVMX_USB_PIPE_FLAGS_SCHEDULED;
1534
1535 /* Mark this channel as in use */
1536 usb->idle_hardware_channels &= ~(1<<channel);
1537
1538 /* Enable the channel interrupt bits */
1539 {
1540 union cvmx_usbcx_hcintx usbc_hcint;
1541 union cvmx_usbcx_hcintmskx usbc_hcintmsk;
1542 union cvmx_usbcx_haintmsk usbc_haintmsk;
1543
1544 /* Clear all channel status bits */
1545 usbc_hcint.u32 = cvmx_usb_read_csr32(usb,
1546 CVMX_USBCX_HCINTX(channel, usb->index));
1547
1548 cvmx_usb_write_csr32(usb,
1549 CVMX_USBCX_HCINTX(channel, usb->index),
1550 usbc_hcint.u32);
1551
1552 usbc_hcintmsk.u32 = 0;
1553 usbc_hcintmsk.s.chhltdmsk = 1;
1554 if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) {
1555 /*
1556 * Channels need these extra interrupts when we aren't
1557 * in DMA mode.
1558 */
1559 usbc_hcintmsk.s.datatglerrmsk = 1;
1560 usbc_hcintmsk.s.frmovrunmsk = 1;
1561 usbc_hcintmsk.s.bblerrmsk = 1;
1562 usbc_hcintmsk.s.xacterrmsk = 1;
1563 if (cvmx_usb_pipe_needs_split(usb, pipe)) {
1564 /*
1565 * Splits don't generate xfercompl, so we need
1566 * ACK and NYET.
1567 */
1568 usbc_hcintmsk.s.nyetmsk = 1;
1569 usbc_hcintmsk.s.ackmsk = 1;
1570 }
1571 usbc_hcintmsk.s.nakmsk = 1;
1572 usbc_hcintmsk.s.stallmsk = 1;
1573 usbc_hcintmsk.s.xfercomplmsk = 1;
1574 }
1575 cvmx_usb_write_csr32(usb,
1576 CVMX_USBCX_HCINTMSKX(channel, usb->index),
1577 usbc_hcintmsk.u32);
1578
1579 /* Enable the channel interrupt to propagate */
1580 usbc_haintmsk.u32 = cvmx_usb_read_csr32(usb,
1581 CVMX_USBCX_HAINTMSK(usb->index));
1582 usbc_haintmsk.s.haintmsk |= 1<<channel;
1583 cvmx_usb_write_csr32(usb, CVMX_USBCX_HAINTMSK(usb->index),
1584 usbc_haintmsk.u32);
1585 }
1586
1587 /* Setup the location the DMA engine uses. */
1588 {
1589 uint64_t reg;
1590 uint64_t dma_address = transaction->buffer +
1591 transaction->actual_bytes;
1592
1593 if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
1594 dma_address = transaction->buffer +
1595 transaction->iso_packets[0].offset +
1596 transaction->actual_bytes;
1597
1598 if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT)
1599 reg = CVMX_USBNX_DMA0_OUTB_CHN0(usb->index);
1600 else
1601 reg = CVMX_USBNX_DMA0_INB_CHN0(usb->index);
1602 cvmx_write64_uint64(reg + channel * 8, dma_address);
1603 }
1604
1605 /* Setup both the size of the transfer and the SPLIT characteristics */
1606 {
1607 union cvmx_usbcx_hcspltx usbc_hcsplt = {.u32 = 0};
1608 union cvmx_usbcx_hctsizx usbc_hctsiz = {.u32 = 0};
1609 int packets_to_transfer;
1610 int bytes_to_transfer = transaction->buffer_length -
1611 transaction->actual_bytes;
1612
1613 /*
1614 * ISOCHRONOUS transactions store each individual transfer size
1615 * in the packet structure, not the global buffer_length
1616 */
1617 if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
1618 bytes_to_transfer =
1619 transaction->iso_packets[0].length -
1620 transaction->actual_bytes;
1621
1622 /*
1623 * We need to do split transactions when we are talking to non
1624 * high speed devices that are behind a high speed hub
1625 */
1626 if (cvmx_usb_pipe_needs_split(usb, pipe)) {
1627 /*
1628 * On the start split phase (stage is even) record the
1629 * frame number we will need to send the split complete.
1630 * We only store the lower two bits since the time ahead
1631 * can only be two frames
1632 */
1633 if ((transaction->stage&1) == 0) {
1634 if (transaction->type == CVMX_USB_TRANSFER_BULK)
1635 pipe->split_sc_frame =
1636 (usb->frame_number + 1) & 0x7f;
1637 else
1638 pipe->split_sc_frame =
1639 (usb->frame_number + 2) & 0x7f;
1640 } else
1641 pipe->split_sc_frame = -1;
1642
1643 usbc_hcsplt.s.spltena = 1;
1644 usbc_hcsplt.s.hubaddr = pipe->hub_device_addr;
1645 usbc_hcsplt.s.prtaddr = pipe->hub_port;
1646 usbc_hcsplt.s.compsplt = (transaction->stage ==
1647 CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE);
1648
1649 /*
1650 * SPLIT transactions can only ever transmit one data
1651 * packet so limit the transfer size to the max packet
1652 * size
1653 */
1654 if (bytes_to_transfer > pipe->max_packet)
1655 bytes_to_transfer = pipe->max_packet;
1656
1657 /*
1658 * ISOCHRONOUS OUT splits are unique in that they limit
1659 * data transfers to 188 byte chunks representing the
1660 * begin/middle/end of the data or all
1661 */
1662 if (!usbc_hcsplt.s.compsplt &&
1663 (pipe->transfer_dir ==
1664 CVMX_USB_DIRECTION_OUT) &&
1665 (pipe->transfer_type ==
1666 CVMX_USB_TRANSFER_ISOCHRONOUS)) {
1667 /*
1668 * Clear the split complete frame number as
1669 * there isn't going to be a split complete
1670 */
1671 pipe->split_sc_frame = -1;
1672 /*
1673 * See if we've started this transfer and sent
1674 * data
1675 */
1676 if (transaction->actual_bytes == 0) {
1677 /*
1678 * Nothing sent yet, this is either a
1679 * begin or the entire payload
1680 */
1681 if (bytes_to_transfer <= 188)
1682 /* Entire payload in one go */
1683 usbc_hcsplt.s.xactpos = 3;
1684 else
1685 /* First part of payload */
1686 usbc_hcsplt.s.xactpos = 2;
1687 } else {
1688 /*
1689 * Continuing the previous data, we must
1690 * either be in the middle or at the end
1691 */
1692 if (bytes_to_transfer <= 188)
1693 /* End of payload */
1694 usbc_hcsplt.s.xactpos = 1;
1695 else
1696 /* Middle of payload */
1697 usbc_hcsplt.s.xactpos = 0;
1698 }
1699 /*
1700 * Again, the transfer size is limited to 188
1701 * bytes
1702 */
1703 if (bytes_to_transfer > 188)
1704 bytes_to_transfer = 188;
1705 }
1706 }
1707
1708 /*
1709 * Make sure the transfer never exceeds the byte limit of the
1710 * hardware. Further bytes will be sent as continued
1711 * transactions
1712 */
1713 if (bytes_to_transfer > MAX_TRANSFER_BYTES) {
1714 /*
1715 * Round MAX_TRANSFER_BYTES to a multiple of out packet
1716 * size
1717 */
1718 bytes_to_transfer = MAX_TRANSFER_BYTES /
1719 pipe->max_packet;
1720 bytes_to_transfer *= pipe->max_packet;
1721 }
1722
1723 /*
1724 * Calculate the number of packets to transfer. If the length is
1725 * zero we still need to transfer one packet
1726 */
1727 packets_to_transfer =
1728 DIV_ROUND_UP(bytes_to_transfer, pipe->max_packet);
1729 if (packets_to_transfer == 0)
1730 packets_to_transfer = 1;
1731 else if ((packets_to_transfer > 1) &&
1732 (usb->init_flags &
1733 CVMX_USB_INITIALIZE_FLAGS_NO_DMA)) {
1734 /*
1735 * Limit to one packet when not using DMA. Channels must
1736 * be restarted between every packet for IN
1737 * transactions, so there is no reason to do multiple
1738 * packets in a row
1739 */
1740 packets_to_transfer = 1;
1741 bytes_to_transfer = packets_to_transfer *
1742 pipe->max_packet;
1743 } else if (packets_to_transfer > MAX_TRANSFER_PACKETS) {
1744 /*
1745 * Limit the number of packet and data transferred to
1746 * what the hardware can handle
1747 */
1748 packets_to_transfer = MAX_TRANSFER_PACKETS;
1749 bytes_to_transfer = packets_to_transfer *
1750 pipe->max_packet;
1751 }
1752
1753 usbc_hctsiz.s.xfersize = bytes_to_transfer;
1754 usbc_hctsiz.s.pktcnt = packets_to_transfer;
1755
1756 /* Update the DATA0/DATA1 toggle */
1757 usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1758 /*
1759 * High speed pipes may need a hardware ping before they start
1760 */
1761 if (pipe->flags & CVMX_USB_PIPE_FLAGS_NEED_PING)
1762 usbc_hctsiz.s.dopng = 1;
1763
1764 cvmx_usb_write_csr32(usb,
1765 CVMX_USBCX_HCSPLTX(channel, usb->index),
1766 usbc_hcsplt.u32);
1767 cvmx_usb_write_csr32(usb,
1768 CVMX_USBCX_HCTSIZX(channel, usb->index),
1769 usbc_hctsiz.u32);
1770 }
1771
1772 /* Setup the Host Channel Characteristics Register */
1773 {
1774 union cvmx_usbcx_hccharx usbc_hcchar = {.u32 = 0};
1775
1776 /*
1777 * Set the startframe odd/even properly. This is only used for
1778 * periodic
1779 */
1780 usbc_hcchar.s.oddfrm = usb->frame_number&1;
1781
1782 /*
1783 * Set the number of back to back packets allowed by this
1784 * endpoint. Split transactions interpret "ec" as the number of
1785 * immediate retries of failure. These retries happen too
1786 * quickly, so we disable these entirely for splits
1787 */
1788 if (cvmx_usb_pipe_needs_split(usb, pipe))
1789 usbc_hcchar.s.ec = 1;
1790 else if (pipe->multi_count < 1)
1791 usbc_hcchar.s.ec = 1;
1792 else if (pipe->multi_count > 3)
1793 usbc_hcchar.s.ec = 3;
1794 else
1795 usbc_hcchar.s.ec = pipe->multi_count;
1796
1797 /* Set the rest of the endpoint specific settings */
1798 usbc_hcchar.s.devaddr = pipe->device_addr;
1799 usbc_hcchar.s.eptype = transaction->type;
1800 usbc_hcchar.s.lspddev =
1801 (pipe->device_speed == CVMX_USB_SPEED_LOW);
1802 usbc_hcchar.s.epdir = pipe->transfer_dir;
1803 usbc_hcchar.s.epnum = pipe->endpoint_num;
1804 usbc_hcchar.s.mps = pipe->max_packet;
1805 cvmx_usb_write_csr32(usb,
1806 CVMX_USBCX_HCCHARX(channel, usb->index),
1807 usbc_hcchar.u32);
1808 }
1809
1810 /* Do transaction type specific fixups as needed */
1811 switch (transaction->type) {
1812 case CVMX_USB_TRANSFER_CONTROL:
1813 cvmx_usb_start_channel_control(usb, channel, pipe);
1814 break;
1815 case CVMX_USB_TRANSFER_BULK:
1816 case CVMX_USB_TRANSFER_INTERRUPT:
1817 break;
1818 case CVMX_USB_TRANSFER_ISOCHRONOUS:
1819 if (!cvmx_usb_pipe_needs_split(usb, pipe)) {
1820 /*
1821 * ISO transactions require different PIDs depending on
1822 * direction and how many packets are needed
1823 */
1824 if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) {
1825 if (pipe->multi_count < 2) /* Need DATA0 */
1826 USB_SET_FIELD32(
1827 CVMX_USBCX_HCTSIZX(channel,
1828 usb->index),
1829 cvmx_usbcx_hctsizx, pid, 0);
1830 else /* Need MDATA */
1831 USB_SET_FIELD32(
1832 CVMX_USBCX_HCTSIZX(channel,
1833 usb->index),
1834 cvmx_usbcx_hctsizx, pid, 3);
1835 }
1836 }
1837 break;
1838 }
1839 {
1840 union cvmx_usbcx_hctsizx usbc_hctsiz = {.u32 =
1841 cvmx_usb_read_csr32(usb,
1842 CVMX_USBCX_HCTSIZX(channel, usb->index))};
1843 transaction->xfersize = usbc_hctsiz.s.xfersize;
1844 transaction->pktcnt = usbc_hctsiz.s.pktcnt;
1845 }
1846 /* Remeber when we start a split transaction */
1847 if (cvmx_usb_pipe_needs_split(usb, pipe))
1848 usb->active_split = transaction;
1849 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1850 cvmx_usbcx_hccharx, chena, 1);
1851 if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
1852 cvmx_usb_fill_tx_fifo(usb, channel);
1853 }
1854
1855
1856 /**
1857 * Find a pipe that is ready to be scheduled to hardware.
1858 * @usb: USB device state populated by cvmx_usb_initialize().
1859 * @list: Pipe list to search
1860 * @current_frame:
1861 * Frame counter to use as a time reference.
1862 *
1863 * Returns: Pipe or NULL if none are ready
1864 */
cvmx_usb_find_ready_pipe(struct cvmx_usb_state * usb,struct list_head * list,uint64_t current_frame)1865 static struct cvmx_usb_pipe *cvmx_usb_find_ready_pipe(
1866 struct cvmx_usb_state *usb,
1867 struct list_head *list,
1868 uint64_t current_frame)
1869 {
1870 struct cvmx_usb_pipe *pipe;
1871
1872 list_for_each_entry(pipe, list, node) {
1873 struct cvmx_usb_transaction *t =
1874 list_first_entry(&pipe->transactions, typeof(*t),
1875 node);
1876 if (!(pipe->flags & CVMX_USB_PIPE_FLAGS_SCHEDULED) && t &&
1877 (pipe->next_tx_frame <= current_frame) &&
1878 ((pipe->split_sc_frame == -1) ||
1879 ((((int)current_frame - (int)pipe->split_sc_frame)
1880 & 0x7f) < 0x40)) &&
1881 (!usb->active_split || (usb->active_split == t))) {
1882 prefetch(t);
1883 return pipe;
1884 }
1885 }
1886 return NULL;
1887 }
1888
1889
1890 /**
1891 * Called whenever a pipe might need to be scheduled to the
1892 * hardware.
1893 *
1894 * @usb: USB device state populated by cvmx_usb_initialize().
1895 * @is_sof: True if this schedule was called on a SOF interrupt.
1896 */
cvmx_usb_schedule(struct cvmx_usb_state * usb,int is_sof)1897 static void cvmx_usb_schedule(struct cvmx_usb_state *usb, int is_sof)
1898 {
1899 int channel;
1900 struct cvmx_usb_pipe *pipe;
1901 int need_sof;
1902 enum cvmx_usb_transfer ttype;
1903
1904 if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) {
1905 /*
1906 * Without DMA we need to be careful to not schedule something
1907 * at the end of a frame and cause an overrun.
1908 */
1909 union cvmx_usbcx_hfnum hfnum = {
1910 .u32 = cvmx_usb_read_csr32(usb,
1911 CVMX_USBCX_HFNUM(usb->index))
1912 };
1913
1914 union cvmx_usbcx_hfir hfir = {
1915 .u32 = cvmx_usb_read_csr32(usb,
1916 CVMX_USBCX_HFIR(usb->index))
1917 };
1918
1919 if (hfnum.s.frrem < hfir.s.frint/4)
1920 goto done;
1921 }
1922
1923 while (usb->idle_hardware_channels) {
1924 /* Find an idle channel */
1925 channel = __fls(usb->idle_hardware_channels);
1926 if (unlikely(channel > 7))
1927 break;
1928
1929 /* Find a pipe needing service */
1930 pipe = NULL;
1931 if (is_sof) {
1932 /*
1933 * Only process periodic pipes on SOF interrupts. This
1934 * way we are sure that the periodic data is sent in the
1935 * beginning of the frame
1936 */
1937 pipe = cvmx_usb_find_ready_pipe(usb,
1938 usb->active_pipes +
1939 CVMX_USB_TRANSFER_ISOCHRONOUS,
1940 usb->frame_number);
1941 if (likely(!pipe))
1942 pipe = cvmx_usb_find_ready_pipe(usb,
1943 usb->active_pipes +
1944 CVMX_USB_TRANSFER_INTERRUPT,
1945 usb->frame_number);
1946 }
1947 if (likely(!pipe)) {
1948 pipe = cvmx_usb_find_ready_pipe(usb,
1949 usb->active_pipes +
1950 CVMX_USB_TRANSFER_CONTROL,
1951 usb->frame_number);
1952 if (likely(!pipe))
1953 pipe = cvmx_usb_find_ready_pipe(usb,
1954 usb->active_pipes +
1955 CVMX_USB_TRANSFER_BULK,
1956 usb->frame_number);
1957 }
1958 if (!pipe)
1959 break;
1960
1961 cvmx_usb_start_channel(usb, channel, pipe);
1962 }
1963
1964 done:
1965 /*
1966 * Only enable SOF interrupts when we have transactions pending in the
1967 * future that might need to be scheduled
1968 */
1969 need_sof = 0;
1970 for (ttype = CVMX_USB_TRANSFER_CONTROL;
1971 ttype <= CVMX_USB_TRANSFER_INTERRUPT; ttype++) {
1972 list_for_each_entry(pipe, &usb->active_pipes[ttype], node) {
1973 if (pipe->next_tx_frame > usb->frame_number) {
1974 need_sof = 1;
1975 break;
1976 }
1977 }
1978 }
1979 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1980 cvmx_usbcx_gintmsk, sofmsk, need_sof);
1981 }
1982
octeon_usb_urb_complete_callback(struct cvmx_usb_state * usb,enum cvmx_usb_complete status,struct cvmx_usb_pipe * pipe,struct cvmx_usb_transaction * transaction,int bytes_transferred,struct urb * urb)1983 static void octeon_usb_urb_complete_callback(struct cvmx_usb_state *usb,
1984 enum cvmx_usb_complete status,
1985 struct cvmx_usb_pipe *pipe,
1986 struct cvmx_usb_transaction
1987 *transaction,
1988 int bytes_transferred,
1989 struct urb *urb)
1990 {
1991 struct octeon_hcd *priv = cvmx_usb_to_octeon(usb);
1992 struct usb_hcd *hcd = octeon_to_hcd(priv);
1993 struct device *dev = hcd->self.controller;
1994
1995 if (likely(status == CVMX_USB_COMPLETE_SUCCESS))
1996 urb->actual_length = bytes_transferred;
1997 else
1998 urb->actual_length = 0;
1999
2000 urb->hcpriv = NULL;
2001
2002 /* For Isochronous transactions we need to update the URB packet status
2003 list from data in our private copy */
2004 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
2005 int i;
2006 /*
2007 * The pointer to the private list is stored in the setup_packet
2008 * field.
2009 */
2010 struct cvmx_usb_iso_packet *iso_packet =
2011 (struct cvmx_usb_iso_packet *) urb->setup_packet;
2012 /* Recalculate the transfer size by adding up each packet */
2013 urb->actual_length = 0;
2014 for (i = 0; i < urb->number_of_packets; i++) {
2015 if (iso_packet[i].status ==
2016 CVMX_USB_COMPLETE_SUCCESS) {
2017 urb->iso_frame_desc[i].status = 0;
2018 urb->iso_frame_desc[i].actual_length =
2019 iso_packet[i].length;
2020 urb->actual_length +=
2021 urb->iso_frame_desc[i].actual_length;
2022 } else {
2023 dev_dbg(dev, "ISOCHRONOUS packet=%d of %d status=%d pipe=%p transaction=%p size=%d\n",
2024 i, urb->number_of_packets,
2025 iso_packet[i].status, pipe,
2026 transaction, iso_packet[i].length);
2027 urb->iso_frame_desc[i].status = -EREMOTEIO;
2028 }
2029 }
2030 /* Free the private list now that we don't need it anymore */
2031 kfree(iso_packet);
2032 urb->setup_packet = NULL;
2033 }
2034
2035 switch (status) {
2036 case CVMX_USB_COMPLETE_SUCCESS:
2037 urb->status = 0;
2038 break;
2039 case CVMX_USB_COMPLETE_CANCEL:
2040 if (urb->status == 0)
2041 urb->status = -ENOENT;
2042 break;
2043 case CVMX_USB_COMPLETE_STALL:
2044 dev_dbg(dev, "status=stall pipe=%p transaction=%p size=%d\n",
2045 pipe, transaction, bytes_transferred);
2046 urb->status = -EPIPE;
2047 break;
2048 case CVMX_USB_COMPLETE_BABBLEERR:
2049 dev_dbg(dev, "status=babble pipe=%p transaction=%p size=%d\n",
2050 pipe, transaction, bytes_transferred);
2051 urb->status = -EPIPE;
2052 break;
2053 case CVMX_USB_COMPLETE_SHORT:
2054 dev_dbg(dev, "status=short pipe=%p transaction=%p size=%d\n",
2055 pipe, transaction, bytes_transferred);
2056 urb->status = -EREMOTEIO;
2057 break;
2058 case CVMX_USB_COMPLETE_ERROR:
2059 case CVMX_USB_COMPLETE_XACTERR:
2060 case CVMX_USB_COMPLETE_DATATGLERR:
2061 case CVMX_USB_COMPLETE_FRAMEERR:
2062 dev_dbg(dev, "status=%d pipe=%p transaction=%p size=%d\n",
2063 status, pipe, transaction, bytes_transferred);
2064 urb->status = -EPROTO;
2065 break;
2066 }
2067 usb_hcd_unlink_urb_from_ep(octeon_to_hcd(priv), urb);
2068 spin_unlock(&priv->lock);
2069 usb_hcd_giveback_urb(octeon_to_hcd(priv), urb, urb->status);
2070 spin_lock(&priv->lock);
2071 }
2072
2073 /**
2074 * Signal the completion of a transaction and free it. The
2075 * transaction will be removed from the pipe transaction list.
2076 *
2077 * @usb: USB device state populated by cvmx_usb_initialize().
2078 * @pipe: Pipe the transaction is on
2079 * @transaction:
2080 * Transaction that completed
2081 * @complete_code:
2082 * Completion code
2083 */
cvmx_usb_perform_complete(struct cvmx_usb_state * usb,struct cvmx_usb_pipe * pipe,struct cvmx_usb_transaction * transaction,enum cvmx_usb_complete complete_code)2084 static void cvmx_usb_perform_complete(struct cvmx_usb_state *usb,
2085 struct cvmx_usb_pipe *pipe,
2086 struct cvmx_usb_transaction *transaction,
2087 enum cvmx_usb_complete complete_code)
2088 {
2089 /* If this was a split then clear our split in progress marker */
2090 if (usb->active_split == transaction)
2091 usb->active_split = NULL;
2092
2093 /*
2094 * Isochronous transactions need extra processing as they might not be
2095 * done after a single data transfer
2096 */
2097 if (unlikely(transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)) {
2098 /* Update the number of bytes transferred in this ISO packet */
2099 transaction->iso_packets[0].length = transaction->actual_bytes;
2100 transaction->iso_packets[0].status = complete_code;
2101
2102 /*
2103 * If there are more ISOs pending and we succeeded, schedule the
2104 * next one
2105 */
2106 if ((transaction->iso_number_packets > 1) &&
2107 (complete_code == CVMX_USB_COMPLETE_SUCCESS)) {
2108 /* No bytes transferred for this packet as of yet */
2109 transaction->actual_bytes = 0;
2110 /* One less ISO waiting to transfer */
2111 transaction->iso_number_packets--;
2112 /* Increment to the next location in our packet array */
2113 transaction->iso_packets++;
2114 transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
2115 return;
2116 }
2117 }
2118
2119 /* Remove the transaction from the pipe list */
2120 list_del(&transaction->node);
2121 if (list_empty(&pipe->transactions))
2122 list_move_tail(&pipe->node, &usb->idle_pipes);
2123 octeon_usb_urb_complete_callback(usb, complete_code, pipe,
2124 transaction,
2125 transaction->actual_bytes,
2126 transaction->urb);
2127 kfree(transaction);
2128 }
2129
2130
2131 /**
2132 * Submit a usb transaction to a pipe. Called for all types
2133 * of transactions.
2134 *
2135 * @usb:
2136 * @pipe: Which pipe to submit to.
2137 * @type: Transaction type
2138 * @buffer: User buffer for the transaction
2139 * @buffer_length:
2140 * User buffer's length in bytes
2141 * @control_header:
2142 * For control transactions, the 8 byte standard header
2143 * @iso_start_frame:
2144 * For ISO transactions, the start frame
2145 * @iso_number_packets:
2146 * For ISO, the number of packet in the transaction.
2147 * @iso_packets:
2148 * A description of each ISO packet
2149 * @urb: URB for the callback
2150 *
2151 * Returns: Transaction or NULL on failure.
2152 */
cvmx_usb_submit_transaction(struct cvmx_usb_state * usb,struct cvmx_usb_pipe * pipe,enum cvmx_usb_transfer type,uint64_t buffer,int buffer_length,uint64_t control_header,int iso_start_frame,int iso_number_packets,struct cvmx_usb_iso_packet * iso_packets,struct urb * urb)2153 static struct cvmx_usb_transaction *cvmx_usb_submit_transaction(
2154 struct cvmx_usb_state *usb,
2155 struct cvmx_usb_pipe *pipe,
2156 enum cvmx_usb_transfer type,
2157 uint64_t buffer,
2158 int buffer_length,
2159 uint64_t control_header,
2160 int iso_start_frame,
2161 int iso_number_packets,
2162 struct cvmx_usb_iso_packet *iso_packets,
2163 struct urb *urb)
2164 {
2165 struct cvmx_usb_transaction *transaction;
2166
2167 if (unlikely(pipe->transfer_type != type))
2168 return NULL;
2169
2170 transaction = kzalloc(sizeof(*transaction), GFP_ATOMIC);
2171 if (unlikely(!transaction))
2172 return NULL;
2173
2174 transaction->type = type;
2175 transaction->buffer = buffer;
2176 transaction->buffer_length = buffer_length;
2177 transaction->control_header = control_header;
2178 /* FIXME: This is not used, implement it. */
2179 transaction->iso_start_frame = iso_start_frame;
2180 transaction->iso_number_packets = iso_number_packets;
2181 transaction->iso_packets = iso_packets;
2182 transaction->urb = urb;
2183 if (transaction->type == CVMX_USB_TRANSFER_CONTROL)
2184 transaction->stage = CVMX_USB_STAGE_SETUP;
2185 else
2186 transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
2187
2188 if (!list_empty(&pipe->transactions)) {
2189 list_add_tail(&transaction->node, &pipe->transactions);
2190 } else {
2191 list_add_tail(&transaction->node, &pipe->transactions);
2192 list_move_tail(&pipe->node,
2193 &usb->active_pipes[pipe->transfer_type]);
2194
2195 /*
2196 * We may need to schedule the pipe if this was the head of the
2197 * pipe.
2198 */
2199 cvmx_usb_schedule(usb, 0);
2200 }
2201
2202 return transaction;
2203 }
2204
2205
2206 /**
2207 * Call to submit a USB Bulk transfer to a pipe.
2208 *
2209 * @usb: USB device state populated by cvmx_usb_initialize().
2210 * @pipe: Handle to the pipe for the transfer.
2211 * @urb: URB.
2212 *
2213 * Returns: A submitted transaction or NULL on failure.
2214 */
cvmx_usb_submit_bulk(struct cvmx_usb_state * usb,struct cvmx_usb_pipe * pipe,struct urb * urb)2215 static struct cvmx_usb_transaction *cvmx_usb_submit_bulk(
2216 struct cvmx_usb_state *usb,
2217 struct cvmx_usb_pipe *pipe,
2218 struct urb *urb)
2219 {
2220 return cvmx_usb_submit_transaction(usb, pipe, CVMX_USB_TRANSFER_BULK,
2221 urb->transfer_dma,
2222 urb->transfer_buffer_length,
2223 0, /* control_header */
2224 0, /* iso_start_frame */
2225 0, /* iso_number_packets */
2226 NULL, /* iso_packets */
2227 urb);
2228 }
2229
2230
2231 /**
2232 * Call to submit a USB Interrupt transfer to a pipe.
2233 *
2234 * @usb: USB device state populated by cvmx_usb_initialize().
2235 * @pipe: Handle to the pipe for the transfer.
2236 * @urb: URB returned when the callback is called.
2237 *
2238 * Returns: A submitted transaction or NULL on failure.
2239 */
cvmx_usb_submit_interrupt(struct cvmx_usb_state * usb,struct cvmx_usb_pipe * pipe,struct urb * urb)2240 static struct cvmx_usb_transaction *cvmx_usb_submit_interrupt(
2241 struct cvmx_usb_state *usb,
2242 struct cvmx_usb_pipe *pipe,
2243 struct urb *urb)
2244 {
2245 return cvmx_usb_submit_transaction(usb, pipe,
2246 CVMX_USB_TRANSFER_INTERRUPT,
2247 urb->transfer_dma,
2248 urb->transfer_buffer_length,
2249 0, /* control_header */
2250 0, /* iso_start_frame */
2251 0, /* iso_number_packets */
2252 NULL, /* iso_packets */
2253 urb);
2254 }
2255
2256
2257 /**
2258 * Call to submit a USB Control transfer to a pipe.
2259 *
2260 * @usb: USB device state populated by cvmx_usb_initialize().
2261 * @pipe: Handle to the pipe for the transfer.
2262 * @urb: URB.
2263 *
2264 * Returns: A submitted transaction or NULL on failure.
2265 */
cvmx_usb_submit_control(struct cvmx_usb_state * usb,struct cvmx_usb_pipe * pipe,struct urb * urb)2266 static struct cvmx_usb_transaction *cvmx_usb_submit_control(
2267 struct cvmx_usb_state *usb,
2268 struct cvmx_usb_pipe *pipe,
2269 struct urb *urb)
2270 {
2271 int buffer_length = urb->transfer_buffer_length;
2272 uint64_t control_header = urb->setup_dma;
2273 struct usb_ctrlrequest *header = cvmx_phys_to_ptr(control_header);
2274
2275 if ((header->bRequestType & USB_DIR_IN) == 0)
2276 buffer_length = le16_to_cpu(header->wLength);
2277
2278 return cvmx_usb_submit_transaction(usb, pipe,
2279 CVMX_USB_TRANSFER_CONTROL,
2280 urb->transfer_dma, buffer_length,
2281 control_header,
2282 0, /* iso_start_frame */
2283 0, /* iso_number_packets */
2284 NULL, /* iso_packets */
2285 urb);
2286 }
2287
2288
2289 /**
2290 * Call to submit a USB Isochronous transfer to a pipe.
2291 *
2292 * @usb: USB device state populated by cvmx_usb_initialize().
2293 * @pipe: Handle to the pipe for the transfer.
2294 * @urb: URB returned when the callback is called.
2295 *
2296 * Returns: A submitted transaction or NULL on failure.
2297 */
cvmx_usb_submit_isochronous(struct cvmx_usb_state * usb,struct cvmx_usb_pipe * pipe,struct urb * urb)2298 static struct cvmx_usb_transaction *cvmx_usb_submit_isochronous(
2299 struct cvmx_usb_state *usb,
2300 struct cvmx_usb_pipe *pipe,
2301 struct urb *urb)
2302 {
2303 struct cvmx_usb_iso_packet *packets;
2304
2305 packets = (struct cvmx_usb_iso_packet *) urb->setup_packet;
2306 return cvmx_usb_submit_transaction(usb, pipe,
2307 CVMX_USB_TRANSFER_ISOCHRONOUS,
2308 urb->transfer_dma,
2309 urb->transfer_buffer_length,
2310 0, /* control_header */
2311 urb->start_frame,
2312 urb->number_of_packets,
2313 packets, urb);
2314 }
2315
2316
2317 /**
2318 * Cancel one outstanding request in a pipe. Canceling a request
2319 * can fail if the transaction has already completed before cancel
2320 * is called. Even after a successful cancel call, it may take
2321 * a frame or two for the cvmx_usb_poll() function to call the
2322 * associated callback.
2323 *
2324 * @usb: USB device state populated by cvmx_usb_initialize().
2325 * @pipe: Pipe to cancel requests in.
2326 * @transaction: Transaction to cancel, returned by the submit function.
2327 *
2328 * Returns: 0 or a negative error code.
2329 */
cvmx_usb_cancel(struct cvmx_usb_state * usb,struct cvmx_usb_pipe * pipe,struct cvmx_usb_transaction * transaction)2330 static int cvmx_usb_cancel(struct cvmx_usb_state *usb,
2331 struct cvmx_usb_pipe *pipe,
2332 struct cvmx_usb_transaction *transaction)
2333 {
2334 /*
2335 * If the transaction is the HEAD of the queue and scheduled. We need to
2336 * treat it special
2337 */
2338 if (list_first_entry(&pipe->transactions, typeof(*transaction), node) ==
2339 transaction && (pipe->flags & CVMX_USB_PIPE_FLAGS_SCHEDULED)) {
2340 union cvmx_usbcx_hccharx usbc_hcchar;
2341
2342 usb->pipe_for_channel[pipe->channel] = NULL;
2343 pipe->flags &= ~CVMX_USB_PIPE_FLAGS_SCHEDULED;
2344
2345 CVMX_SYNCW;
2346
2347 usbc_hcchar.u32 = cvmx_usb_read_csr32(usb,
2348 CVMX_USBCX_HCCHARX(pipe->channel, usb->index));
2349 /*
2350 * If the channel isn't enabled then the transaction already
2351 * completed.
2352 */
2353 if (usbc_hcchar.s.chena) {
2354 usbc_hcchar.s.chdis = 1;
2355 cvmx_usb_write_csr32(usb,
2356 CVMX_USBCX_HCCHARX(pipe->channel,
2357 usb->index),
2358 usbc_hcchar.u32);
2359 }
2360 }
2361 cvmx_usb_perform_complete(usb, pipe, transaction,
2362 CVMX_USB_COMPLETE_CANCEL);
2363 return 0;
2364 }
2365
2366
2367 /**
2368 * Cancel all outstanding requests in a pipe. Logically all this
2369 * does is call cvmx_usb_cancel() in a loop.
2370 *
2371 * @usb: USB device state populated by cvmx_usb_initialize().
2372 * @pipe: Pipe to cancel requests in.
2373 *
2374 * Returns: 0 or a negative error code.
2375 */
cvmx_usb_cancel_all(struct cvmx_usb_state * usb,struct cvmx_usb_pipe * pipe)2376 static int cvmx_usb_cancel_all(struct cvmx_usb_state *usb,
2377 struct cvmx_usb_pipe *pipe)
2378 {
2379 struct cvmx_usb_transaction *transaction, *next;
2380
2381 /* Simply loop through and attempt to cancel each transaction */
2382 list_for_each_entry_safe(transaction, next, &pipe->transactions, node) {
2383 int result = cvmx_usb_cancel(usb, pipe, transaction);
2384
2385 if (unlikely(result != 0))
2386 return result;
2387 }
2388 return 0;
2389 }
2390
2391
2392 /**
2393 * Close a pipe created with cvmx_usb_open_pipe().
2394 *
2395 * @usb: USB device state populated by cvmx_usb_initialize().
2396 * @pipe: Pipe to close.
2397 *
2398 * Returns: 0 or a negative error code. EBUSY is returned if the pipe has
2399 * outstanding transfers.
2400 */
cvmx_usb_close_pipe(struct cvmx_usb_state * usb,struct cvmx_usb_pipe * pipe)2401 static int cvmx_usb_close_pipe(struct cvmx_usb_state *usb,
2402 struct cvmx_usb_pipe *pipe)
2403 {
2404 /* Fail if the pipe has pending transactions */
2405 if (!list_empty(&pipe->transactions))
2406 return -EBUSY;
2407
2408 list_del(&pipe->node);
2409 kfree(pipe);
2410
2411 return 0;
2412 }
2413
2414 /**
2415 * Get the current USB protocol level frame number. The frame
2416 * number is always in the range of 0-0x7ff.
2417 *
2418 * @usb: USB device state populated by cvmx_usb_initialize().
2419 *
2420 * Returns: USB frame number
2421 */
cvmx_usb_get_frame_number(struct cvmx_usb_state * usb)2422 static int cvmx_usb_get_frame_number(struct cvmx_usb_state *usb)
2423 {
2424 int frame_number;
2425 union cvmx_usbcx_hfnum usbc_hfnum;
2426
2427 usbc_hfnum.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HFNUM(usb->index));
2428 frame_number = usbc_hfnum.s.frnum;
2429
2430 return frame_number;
2431 }
2432
2433
2434 /**
2435 * Poll a channel for status
2436 *
2437 * @usb: USB device
2438 * @channel: Channel to poll
2439 *
2440 * Returns: Zero on success
2441 */
cvmx_usb_poll_channel(struct cvmx_usb_state * usb,int channel)2442 static int cvmx_usb_poll_channel(struct cvmx_usb_state *usb, int channel)
2443 {
2444 struct octeon_hcd *priv = cvmx_usb_to_octeon(usb);
2445 struct usb_hcd *hcd = octeon_to_hcd(priv);
2446 struct device *dev = hcd->self.controller;
2447 union cvmx_usbcx_hcintx usbc_hcint;
2448 union cvmx_usbcx_hctsizx usbc_hctsiz;
2449 union cvmx_usbcx_hccharx usbc_hcchar;
2450 struct cvmx_usb_pipe *pipe;
2451 struct cvmx_usb_transaction *transaction;
2452 int bytes_this_transfer;
2453 int bytes_in_last_packet;
2454 int packets_processed;
2455 int buffer_space_left;
2456
2457 /* Read the interrupt status bits for the channel */
2458 usbc_hcint.u32 = cvmx_usb_read_csr32(usb,
2459 CVMX_USBCX_HCINTX(channel, usb->index));
2460
2461 if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) {
2462 usbc_hcchar.u32 = cvmx_usb_read_csr32(usb,
2463 CVMX_USBCX_HCCHARX(channel, usb->index));
2464
2465 if (usbc_hcchar.s.chena && usbc_hcchar.s.chdis) {
2466 /*
2467 * There seems to be a bug in CN31XX which can cause
2468 * interrupt IN transfers to get stuck until we do a
2469 * write of HCCHARX without changing things
2470 */
2471 cvmx_usb_write_csr32(usb,
2472 CVMX_USBCX_HCCHARX(channel,
2473 usb->index),
2474 usbc_hcchar.u32);
2475 return 0;
2476 }
2477
2478 /*
2479 * In non DMA mode the channels don't halt themselves. We need
2480 * to manually disable channels that are left running
2481 */
2482 if (!usbc_hcint.s.chhltd) {
2483 if (usbc_hcchar.s.chena) {
2484 union cvmx_usbcx_hcintmskx hcintmsk;
2485 /* Disable all interrupts except CHHLTD */
2486 hcintmsk.u32 = 0;
2487 hcintmsk.s.chhltdmsk = 1;
2488 cvmx_usb_write_csr32(usb,
2489 CVMX_USBCX_HCINTMSKX(channel,
2490 usb->index),
2491 hcintmsk.u32);
2492 usbc_hcchar.s.chdis = 1;
2493 cvmx_usb_write_csr32(usb,
2494 CVMX_USBCX_HCCHARX(channel,
2495 usb->index),
2496 usbc_hcchar.u32);
2497 return 0;
2498 } else if (usbc_hcint.s.xfercompl) {
2499 /*
2500 * Successful IN/OUT with transfer complete.
2501 * Channel halt isn't needed.
2502 */
2503 } else {
2504 dev_err(dev, "USB%d: Channel %d interrupt without halt\n",
2505 usb->index, channel);
2506 return 0;
2507 }
2508 }
2509 } else {
2510 /*
2511 * There is are no interrupts that we need to process when the
2512 * channel is still running
2513 */
2514 if (!usbc_hcint.s.chhltd)
2515 return 0;
2516 }
2517
2518 /* Disable the channel interrupts now that it is done */
2519 cvmx_usb_write_csr32(usb, CVMX_USBCX_HCINTMSKX(channel, usb->index), 0);
2520 usb->idle_hardware_channels |= (1<<channel);
2521
2522 /* Make sure this channel is tied to a valid pipe */
2523 pipe = usb->pipe_for_channel[channel];
2524 prefetch(pipe);
2525 if (!pipe)
2526 return 0;
2527 transaction = list_first_entry(&pipe->transactions,
2528 typeof(*transaction),
2529 node);
2530 prefetch(transaction);
2531
2532 /*
2533 * Disconnect this pipe from the HW channel. Later the schedule
2534 * function will figure out which pipe needs to go
2535 */
2536 usb->pipe_for_channel[channel] = NULL;
2537 pipe->flags &= ~CVMX_USB_PIPE_FLAGS_SCHEDULED;
2538
2539 /*
2540 * Read the channel config info so we can figure out how much data
2541 * transferred
2542 */
2543 usbc_hcchar.u32 = cvmx_usb_read_csr32(usb,
2544 CVMX_USBCX_HCCHARX(channel, usb->index));
2545 usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb,
2546 CVMX_USBCX_HCTSIZX(channel, usb->index));
2547
2548 /*
2549 * Calculating the number of bytes successfully transferred is dependent
2550 * on the transfer direction
2551 */
2552 packets_processed = transaction->pktcnt - usbc_hctsiz.s.pktcnt;
2553 if (usbc_hcchar.s.epdir) {
2554 /*
2555 * IN transactions are easy. For every byte received the
2556 * hardware decrements xfersize. All we need to do is subtract
2557 * the current value of xfersize from its starting value and we
2558 * know how many bytes were written to the buffer
2559 */
2560 bytes_this_transfer = transaction->xfersize -
2561 usbc_hctsiz.s.xfersize;
2562 } else {
2563 /*
2564 * OUT transaction don't decrement xfersize. Instead pktcnt is
2565 * decremented on every successful packet send. The hardware
2566 * does this when it receives an ACK, or NYET. If it doesn't
2567 * receive one of these responses pktcnt doesn't change
2568 */
2569 bytes_this_transfer = packets_processed * usbc_hcchar.s.mps;
2570 /*
2571 * The last packet may not be a full transfer if we didn't have
2572 * enough data
2573 */
2574 if (bytes_this_transfer > transaction->xfersize)
2575 bytes_this_transfer = transaction->xfersize;
2576 }
2577 /* Figure out how many bytes were in the last packet of the transfer */
2578 if (packets_processed)
2579 bytes_in_last_packet = bytes_this_transfer -
2580 (packets_processed - 1) * usbc_hcchar.s.mps;
2581 else
2582 bytes_in_last_packet = bytes_this_transfer;
2583
2584 /*
2585 * As a special case, setup transactions output the setup header, not
2586 * the user's data. For this reason we don't count setup data as bytes
2587 * transferred
2588 */
2589 if ((transaction->stage == CVMX_USB_STAGE_SETUP) ||
2590 (transaction->stage == CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE))
2591 bytes_this_transfer = 0;
2592
2593 /*
2594 * Add the bytes transferred to the running total. It is important that
2595 * bytes_this_transfer doesn't count any data that needs to be
2596 * retransmitted
2597 */
2598 transaction->actual_bytes += bytes_this_transfer;
2599 if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
2600 buffer_space_left = transaction->iso_packets[0].length -
2601 transaction->actual_bytes;
2602 else
2603 buffer_space_left = transaction->buffer_length -
2604 transaction->actual_bytes;
2605
2606 /*
2607 * We need to remember the PID toggle state for the next transaction.
2608 * The hardware already updated it for the next transaction
2609 */
2610 pipe->pid_toggle = !(usbc_hctsiz.s.pid == 0);
2611
2612 /*
2613 * For high speed bulk out, assume the next transaction will need to do
2614 * a ping before proceeding. If this isn't true the ACK processing below
2615 * will clear this flag
2616 */
2617 if ((pipe->device_speed == CVMX_USB_SPEED_HIGH) &&
2618 (pipe->transfer_type == CVMX_USB_TRANSFER_BULK) &&
2619 (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT))
2620 pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING;
2621
2622 if (unlikely(WARN_ON_ONCE(bytes_this_transfer < 0))) {
2623 /*
2624 * In some rare cases the DMA engine seems to get stuck and
2625 * keeps substracting same byte count over and over again. In
2626 * such case we just need to fail every transaction.
2627 */
2628 cvmx_usb_perform_complete(usb, pipe, transaction,
2629 CVMX_USB_COMPLETE_ERROR);
2630 return 0;
2631 }
2632
2633 if (usbc_hcint.s.stall) {
2634 /*
2635 * STALL as a response means this transaction cannot be
2636 * completed because the device can't process transactions. Tell
2637 * the user. Any data that was transferred will be counted on
2638 * the actual bytes transferred
2639 */
2640 pipe->pid_toggle = 0;
2641 cvmx_usb_perform_complete(usb, pipe, transaction,
2642 CVMX_USB_COMPLETE_STALL);
2643 } else if (usbc_hcint.s.xacterr) {
2644 /*
2645 * XactErr as a response means the device signaled
2646 * something wrong with the transfer. For example, PID
2647 * toggle errors cause these.
2648 */
2649 cvmx_usb_perform_complete(usb, pipe, transaction,
2650 CVMX_USB_COMPLETE_XACTERR);
2651 } else if (usbc_hcint.s.bblerr) {
2652 /* Babble Error (BblErr) */
2653 cvmx_usb_perform_complete(usb, pipe, transaction,
2654 CVMX_USB_COMPLETE_BABBLEERR);
2655 } else if (usbc_hcint.s.datatglerr) {
2656 /* Data toggle error */
2657 cvmx_usb_perform_complete(usb, pipe, transaction,
2658 CVMX_USB_COMPLETE_DATATGLERR);
2659 } else if (usbc_hcint.s.nyet) {
2660 /*
2661 * NYET as a response is only allowed in three cases: as a
2662 * response to a ping, as a response to a split transaction, and
2663 * as a response to a bulk out. The ping case is handled by
2664 * hardware, so we only have splits and bulk out
2665 */
2666 if (!cvmx_usb_pipe_needs_split(usb, pipe)) {
2667 transaction->retries = 0;
2668 /*
2669 * If there is more data to go then we need to try
2670 * again. Otherwise this transaction is complete
2671 */
2672 if ((buffer_space_left == 0) ||
2673 (bytes_in_last_packet < pipe->max_packet))
2674 cvmx_usb_perform_complete(usb, pipe,
2675 transaction,
2676 CVMX_USB_COMPLETE_SUCCESS);
2677 } else {
2678 /*
2679 * Split transactions retry the split complete 4 times
2680 * then rewind to the start split and do the entire
2681 * transactions again
2682 */
2683 transaction->retries++;
2684 if ((transaction->retries & 0x3) == 0) {
2685 /*
2686 * Rewind to the beginning of the transaction by
2687 * anding off the split complete bit
2688 */
2689 transaction->stage &= ~1;
2690 pipe->split_sc_frame = -1;
2691 }
2692 }
2693 } else if (usbc_hcint.s.ack) {
2694 transaction->retries = 0;
2695 /*
2696 * The ACK bit can only be checked after the other error bits.
2697 * This is because a multi packet transfer may succeed in a
2698 * number of packets and then get a different response on the
2699 * last packet. In this case both ACK and the last response bit
2700 * will be set. If none of the other response bits is set, then
2701 * the last packet must have been an ACK
2702 *
2703 * Since we got an ACK, we know we don't need to do a ping on
2704 * this pipe
2705 */
2706 pipe->flags &= ~CVMX_USB_PIPE_FLAGS_NEED_PING;
2707
2708 switch (transaction->type) {
2709 case CVMX_USB_TRANSFER_CONTROL:
2710 switch (transaction->stage) {
2711 case CVMX_USB_STAGE_NON_CONTROL:
2712 case CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE:
2713 /* This should be impossible */
2714 cvmx_usb_perform_complete(usb, pipe,
2715 transaction, CVMX_USB_COMPLETE_ERROR);
2716 break;
2717 case CVMX_USB_STAGE_SETUP:
2718 pipe->pid_toggle = 1;
2719 if (cvmx_usb_pipe_needs_split(usb, pipe))
2720 transaction->stage =
2721 CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE;
2722 else {
2723 struct usb_ctrlrequest *header =
2724 cvmx_phys_to_ptr(transaction->control_header);
2725 if (header->wLength)
2726 transaction->stage =
2727 CVMX_USB_STAGE_DATA;
2728 else
2729 transaction->stage =
2730 CVMX_USB_STAGE_STATUS;
2731 }
2732 break;
2733 case CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE:
2734 {
2735 struct usb_ctrlrequest *header =
2736 cvmx_phys_to_ptr(transaction->control_header);
2737 if (header->wLength)
2738 transaction->stage =
2739 CVMX_USB_STAGE_DATA;
2740 else
2741 transaction->stage =
2742 CVMX_USB_STAGE_STATUS;
2743 }
2744 break;
2745 case CVMX_USB_STAGE_DATA:
2746 if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2747 transaction->stage =
2748 CVMX_USB_STAGE_DATA_SPLIT_COMPLETE;
2749 /*
2750 * For setup OUT data that are splits,
2751 * the hardware doesn't appear to count
2752 * transferred data. Here we manually
2753 * update the data transferred
2754 */
2755 if (!usbc_hcchar.s.epdir) {
2756 if (buffer_space_left < pipe->max_packet)
2757 transaction->actual_bytes +=
2758 buffer_space_left;
2759 else
2760 transaction->actual_bytes +=
2761 pipe->max_packet;
2762 }
2763 } else if ((buffer_space_left == 0) ||
2764 (bytes_in_last_packet <
2765 pipe->max_packet)) {
2766 pipe->pid_toggle = 1;
2767 transaction->stage =
2768 CVMX_USB_STAGE_STATUS;
2769 }
2770 break;
2771 case CVMX_USB_STAGE_DATA_SPLIT_COMPLETE:
2772 if ((buffer_space_left == 0) ||
2773 (bytes_in_last_packet <
2774 pipe->max_packet)) {
2775 pipe->pid_toggle = 1;
2776 transaction->stage =
2777 CVMX_USB_STAGE_STATUS;
2778 } else {
2779 transaction->stage =
2780 CVMX_USB_STAGE_DATA;
2781 }
2782 break;
2783 case CVMX_USB_STAGE_STATUS:
2784 if (cvmx_usb_pipe_needs_split(usb, pipe))
2785 transaction->stage =
2786 CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE;
2787 else
2788 cvmx_usb_perform_complete(usb, pipe,
2789 transaction,
2790 CVMX_USB_COMPLETE_SUCCESS);
2791 break;
2792 case CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE:
2793 cvmx_usb_perform_complete(usb, pipe,
2794 transaction,
2795 CVMX_USB_COMPLETE_SUCCESS);
2796 break;
2797 }
2798 break;
2799 case CVMX_USB_TRANSFER_BULK:
2800 case CVMX_USB_TRANSFER_INTERRUPT:
2801 /*
2802 * The only time a bulk transfer isn't complete when it
2803 * finishes with an ACK is during a split transaction.
2804 * For splits we need to continue the transfer if more
2805 * data is needed
2806 */
2807 if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2808 if (transaction->stage ==
2809 CVMX_USB_STAGE_NON_CONTROL)
2810 transaction->stage =
2811 CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE;
2812 else {
2813 if (buffer_space_left &&
2814 (bytes_in_last_packet ==
2815 pipe->max_packet))
2816 transaction->stage =
2817 CVMX_USB_STAGE_NON_CONTROL;
2818 else {
2819 if (transaction->type ==
2820 CVMX_USB_TRANSFER_INTERRUPT)
2821 pipe->next_tx_frame +=
2822 pipe->interval;
2823 cvmx_usb_perform_complete(
2824 usb,
2825 pipe,
2826 transaction,
2827 CVMX_USB_COMPLETE_SUCCESS);
2828 }
2829 }
2830 } else {
2831 if ((pipe->device_speed ==
2832 CVMX_USB_SPEED_HIGH) &&
2833 (pipe->transfer_type ==
2834 CVMX_USB_TRANSFER_BULK) &&
2835 (pipe->transfer_dir ==
2836 CVMX_USB_DIRECTION_OUT) &&
2837 (usbc_hcint.s.nak))
2838 pipe->flags |=
2839 CVMX_USB_PIPE_FLAGS_NEED_PING;
2840 if (!buffer_space_left ||
2841 (bytes_in_last_packet <
2842 pipe->max_packet)) {
2843 if (transaction->type ==
2844 CVMX_USB_TRANSFER_INTERRUPT)
2845 pipe->next_tx_frame +=
2846 pipe->interval;
2847 cvmx_usb_perform_complete(usb, pipe,
2848 transaction,
2849 CVMX_USB_COMPLETE_SUCCESS);
2850 }
2851 }
2852 break;
2853 case CVMX_USB_TRANSFER_ISOCHRONOUS:
2854 if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2855 /*
2856 * ISOCHRONOUS OUT splits don't require a
2857 * complete split stage. Instead they use a
2858 * sequence of begin OUT splits to transfer the
2859 * data 188 bytes at a time. Once the transfer
2860 * is complete, the pipe sleeps until the next
2861 * schedule interval
2862 */
2863 if (pipe->transfer_dir ==
2864 CVMX_USB_DIRECTION_OUT) {
2865 /*
2866 * If no space left or this wasn't a max
2867 * size packet then this transfer is
2868 * complete. Otherwise start it again to
2869 * send the next 188 bytes
2870 */
2871 if (!buffer_space_left ||
2872 (bytes_this_transfer < 188)) {
2873 pipe->next_tx_frame +=
2874 pipe->interval;
2875 cvmx_usb_perform_complete(usb,
2876 pipe, transaction,
2877 CVMX_USB_COMPLETE_SUCCESS);
2878 }
2879 } else {
2880 if (transaction->stage ==
2881 CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE) {
2882 /*
2883 * We are in the incoming data
2884 * phase. Keep getting data
2885 * until we run out of space or
2886 * get a small packet
2887 */
2888 if ((buffer_space_left == 0) ||
2889 (bytes_in_last_packet <
2890 pipe->max_packet)) {
2891 pipe->next_tx_frame +=
2892 pipe->interval;
2893 cvmx_usb_perform_complete(
2894 usb,
2895 pipe,
2896 transaction,
2897 CVMX_USB_COMPLETE_SUCCESS);
2898 }
2899 } else
2900 transaction->stage =
2901 CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE;
2902 }
2903 } else {
2904 pipe->next_tx_frame += pipe->interval;
2905 cvmx_usb_perform_complete(usb, pipe,
2906 transaction,
2907 CVMX_USB_COMPLETE_SUCCESS);
2908 }
2909 break;
2910 }
2911 } else if (usbc_hcint.s.nak) {
2912 /*
2913 * If this was a split then clear our split in progress marker.
2914 */
2915 if (usb->active_split == transaction)
2916 usb->active_split = NULL;
2917 /*
2918 * NAK as a response means the device couldn't accept the
2919 * transaction, but it should be retried in the future. Rewind
2920 * to the beginning of the transaction by anding off the split
2921 * complete bit. Retry in the next interval
2922 */
2923 transaction->retries = 0;
2924 transaction->stage &= ~1;
2925 pipe->next_tx_frame += pipe->interval;
2926 if (pipe->next_tx_frame < usb->frame_number)
2927 pipe->next_tx_frame = usb->frame_number +
2928 pipe->interval -
2929 (usb->frame_number - pipe->next_tx_frame) %
2930 pipe->interval;
2931 } else {
2932 struct cvmx_usb_port_status port;
2933
2934 port = cvmx_usb_get_status(usb);
2935 if (port.port_enabled) {
2936 /* We'll retry the exact same transaction again */
2937 transaction->retries++;
2938 } else {
2939 /*
2940 * We get channel halted interrupts with no result bits
2941 * sets when the cable is unplugged
2942 */
2943 cvmx_usb_perform_complete(usb, pipe, transaction,
2944 CVMX_USB_COMPLETE_ERROR);
2945 }
2946 }
2947 return 0;
2948 }
2949
octeon_usb_port_callback(struct cvmx_usb_state * usb)2950 static void octeon_usb_port_callback(struct cvmx_usb_state *usb)
2951 {
2952 struct octeon_hcd *priv = cvmx_usb_to_octeon(usb);
2953
2954 spin_unlock(&priv->lock);
2955 usb_hcd_poll_rh_status(octeon_to_hcd(priv));
2956 spin_lock(&priv->lock);
2957 }
2958
2959 /**
2960 * Poll the USB block for status and call all needed callback
2961 * handlers. This function is meant to be called in the interrupt
2962 * handler for the USB controller. It can also be called
2963 * periodically in a loop for non-interrupt based operation.
2964 *
2965 * @usb: USB device state populated by cvmx_usb_initialize().
2966 *
2967 * Returns: 0 or a negative error code.
2968 */
cvmx_usb_poll(struct cvmx_usb_state * usb)2969 static int cvmx_usb_poll(struct cvmx_usb_state *usb)
2970 {
2971 union cvmx_usbcx_hfnum usbc_hfnum;
2972 union cvmx_usbcx_gintsts usbc_gintsts;
2973
2974 prefetch_range(usb, sizeof(*usb));
2975
2976 /* Update the frame counter */
2977 usbc_hfnum.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HFNUM(usb->index));
2978 if ((usb->frame_number&0x3fff) > usbc_hfnum.s.frnum)
2979 usb->frame_number += 0x4000;
2980 usb->frame_number &= ~0x3fffull;
2981 usb->frame_number |= usbc_hfnum.s.frnum;
2982
2983 /* Read the pending interrupts */
2984 usbc_gintsts.u32 = cvmx_usb_read_csr32(usb,
2985 CVMX_USBCX_GINTSTS(usb->index));
2986
2987 /* Clear the interrupts now that we know about them */
2988 cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTSTS(usb->index),
2989 usbc_gintsts.u32);
2990
2991 if (usbc_gintsts.s.rxflvl) {
2992 /*
2993 * RxFIFO Non-Empty (RxFLvl)
2994 * Indicates that there is at least one packet pending to be
2995 * read from the RxFIFO.
2996 *
2997 * In DMA mode this is handled by hardware
2998 */
2999 if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
3000 cvmx_usb_poll_rx_fifo(usb);
3001 }
3002 if (usbc_gintsts.s.ptxfemp || usbc_gintsts.s.nptxfemp) {
3003 /* Fill the Tx FIFOs when not in DMA mode */
3004 if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
3005 cvmx_usb_poll_tx_fifo(usb);
3006 }
3007 if (usbc_gintsts.s.disconnint || usbc_gintsts.s.prtint) {
3008 union cvmx_usbcx_hprt usbc_hprt;
3009 /*
3010 * Disconnect Detected Interrupt (DisconnInt)
3011 * Asserted when a device disconnect is detected.
3012 *
3013 * Host Port Interrupt (PrtInt)
3014 * The core sets this bit to indicate a change in port status of
3015 * one of the O2P USB core ports in Host mode. The application
3016 * must read the Host Port Control and Status (HPRT) register to
3017 * determine the exact event that caused this interrupt. The
3018 * application must clear the appropriate status bit in the Host
3019 * Port Control and Status register to clear this bit.
3020 *
3021 * Call the user's port callback
3022 */
3023 octeon_usb_port_callback(usb);
3024 /* Clear the port change bits */
3025 usbc_hprt.u32 = cvmx_usb_read_csr32(usb,
3026 CVMX_USBCX_HPRT(usb->index));
3027 usbc_hprt.s.prtena = 0;
3028 cvmx_usb_write_csr32(usb, CVMX_USBCX_HPRT(usb->index),
3029 usbc_hprt.u32);
3030 }
3031 if (usbc_gintsts.s.hchint) {
3032 /*
3033 * Host Channels Interrupt (HChInt)
3034 * The core sets this bit to indicate that an interrupt is
3035 * pending on one of the channels of the core (in Host mode).
3036 * The application must read the Host All Channels Interrupt
3037 * (HAINT) register to determine the exact number of the channel
3038 * on which the interrupt occurred, and then read the
3039 * corresponding Host Channel-n Interrupt (HCINTn) register to
3040 * determine the exact cause of the interrupt. The application
3041 * must clear the appropriate status bit in the HCINTn register
3042 * to clear this bit.
3043 */
3044 union cvmx_usbcx_haint usbc_haint;
3045
3046 usbc_haint.u32 = cvmx_usb_read_csr32(usb,
3047 CVMX_USBCX_HAINT(usb->index));
3048 while (usbc_haint.u32) {
3049 int channel;
3050
3051 channel = __fls(usbc_haint.u32);
3052 cvmx_usb_poll_channel(usb, channel);
3053 usbc_haint.u32 ^= 1<<channel;
3054 }
3055 }
3056
3057 cvmx_usb_schedule(usb, usbc_gintsts.s.sof);
3058
3059 return 0;
3060 }
3061
3062 /* convert between an HCD pointer and the corresponding struct octeon_hcd */
hcd_to_octeon(struct usb_hcd * hcd)3063 static inline struct octeon_hcd *hcd_to_octeon(struct usb_hcd *hcd)
3064 {
3065 return (struct octeon_hcd *)(hcd->hcd_priv);
3066 }
3067
octeon_usb_irq(struct usb_hcd * hcd)3068 static irqreturn_t octeon_usb_irq(struct usb_hcd *hcd)
3069 {
3070 struct octeon_hcd *priv = hcd_to_octeon(hcd);
3071 unsigned long flags;
3072
3073 spin_lock_irqsave(&priv->lock, flags);
3074 cvmx_usb_poll(&priv->usb);
3075 spin_unlock_irqrestore(&priv->lock, flags);
3076 return IRQ_HANDLED;
3077 }
3078
octeon_usb_start(struct usb_hcd * hcd)3079 static int octeon_usb_start(struct usb_hcd *hcd)
3080 {
3081 hcd->state = HC_STATE_RUNNING;
3082 return 0;
3083 }
3084
octeon_usb_stop(struct usb_hcd * hcd)3085 static void octeon_usb_stop(struct usb_hcd *hcd)
3086 {
3087 hcd->state = HC_STATE_HALT;
3088 }
3089
octeon_usb_get_frame_number(struct usb_hcd * hcd)3090 static int octeon_usb_get_frame_number(struct usb_hcd *hcd)
3091 {
3092 struct octeon_hcd *priv = hcd_to_octeon(hcd);
3093
3094 return cvmx_usb_get_frame_number(&priv->usb);
3095 }
3096
octeon_usb_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)3097 static int octeon_usb_urb_enqueue(struct usb_hcd *hcd,
3098 struct urb *urb,
3099 gfp_t mem_flags)
3100 {
3101 struct octeon_hcd *priv = hcd_to_octeon(hcd);
3102 struct device *dev = hcd->self.controller;
3103 struct cvmx_usb_transaction *transaction = NULL;
3104 struct cvmx_usb_pipe *pipe;
3105 unsigned long flags;
3106 struct cvmx_usb_iso_packet *iso_packet;
3107 struct usb_host_endpoint *ep = urb->ep;
3108 int rc;
3109
3110 urb->status = 0;
3111 spin_lock_irqsave(&priv->lock, flags);
3112
3113 rc = usb_hcd_link_urb_to_ep(hcd, urb);
3114 if (rc) {
3115 spin_unlock_irqrestore(&priv->lock, flags);
3116 return rc;
3117 }
3118
3119 if (!ep->hcpriv) {
3120 enum cvmx_usb_transfer transfer_type;
3121 enum cvmx_usb_speed speed;
3122 int split_device = 0;
3123 int split_port = 0;
3124
3125 switch (usb_pipetype(urb->pipe)) {
3126 case PIPE_ISOCHRONOUS:
3127 transfer_type = CVMX_USB_TRANSFER_ISOCHRONOUS;
3128 break;
3129 case PIPE_INTERRUPT:
3130 transfer_type = CVMX_USB_TRANSFER_INTERRUPT;
3131 break;
3132 case PIPE_CONTROL:
3133 transfer_type = CVMX_USB_TRANSFER_CONTROL;
3134 break;
3135 default:
3136 transfer_type = CVMX_USB_TRANSFER_BULK;
3137 break;
3138 }
3139 switch (urb->dev->speed) {
3140 case USB_SPEED_LOW:
3141 speed = CVMX_USB_SPEED_LOW;
3142 break;
3143 case USB_SPEED_FULL:
3144 speed = CVMX_USB_SPEED_FULL;
3145 break;
3146 default:
3147 speed = CVMX_USB_SPEED_HIGH;
3148 break;
3149 }
3150 /*
3151 * For slow devices on high speed ports we need to find the hub
3152 * that does the speed translation so we know where to send the
3153 * split transactions.
3154 */
3155 if (speed != CVMX_USB_SPEED_HIGH) {
3156 /*
3157 * Start at this device and work our way up the usb
3158 * tree.
3159 */
3160 struct usb_device *dev = urb->dev;
3161
3162 while (dev->parent) {
3163 /*
3164 * If our parent is high speed then he'll
3165 * receive the splits.
3166 */
3167 if (dev->parent->speed == USB_SPEED_HIGH) {
3168 split_device = dev->parent->devnum;
3169 split_port = dev->portnum;
3170 break;
3171 }
3172 /*
3173 * Move up the tree one level. If we make it all
3174 * the way up the tree, then the port must not
3175 * be in high speed mode and we don't need a
3176 * split.
3177 */
3178 dev = dev->parent;
3179 }
3180 }
3181 pipe = cvmx_usb_open_pipe(&priv->usb, usb_pipedevice(urb->pipe),
3182 usb_pipeendpoint(urb->pipe), speed,
3183 le16_to_cpu(ep->desc.wMaxPacketSize)
3184 & 0x7ff,
3185 transfer_type,
3186 usb_pipein(urb->pipe) ?
3187 CVMX_USB_DIRECTION_IN :
3188 CVMX_USB_DIRECTION_OUT,
3189 urb->interval,
3190 (le16_to_cpu(ep->desc.wMaxPacketSize)
3191 >> 11) & 0x3,
3192 split_device, split_port);
3193 if (!pipe) {
3194 usb_hcd_unlink_urb_from_ep(hcd, urb);
3195 spin_unlock_irqrestore(&priv->lock, flags);
3196 dev_dbg(dev, "Failed to create pipe\n");
3197 return -ENOMEM;
3198 }
3199 ep->hcpriv = pipe;
3200 } else {
3201 pipe = ep->hcpriv;
3202 }
3203
3204 switch (usb_pipetype(urb->pipe)) {
3205 case PIPE_ISOCHRONOUS:
3206 dev_dbg(dev, "Submit isochronous to %d.%d\n",
3207 usb_pipedevice(urb->pipe),
3208 usb_pipeendpoint(urb->pipe));
3209 /*
3210 * Allocate a structure to use for our private list of
3211 * isochronous packets.
3212 */
3213 iso_packet = kmalloc(urb->number_of_packets *
3214 sizeof(struct cvmx_usb_iso_packet),
3215 GFP_ATOMIC);
3216 if (iso_packet) {
3217 int i;
3218 /* Fill the list with the data from the URB */
3219 for (i = 0; i < urb->number_of_packets; i++) {
3220 iso_packet[i].offset =
3221 urb->iso_frame_desc[i].offset;
3222 iso_packet[i].length =
3223 urb->iso_frame_desc[i].length;
3224 iso_packet[i].status =
3225 CVMX_USB_COMPLETE_ERROR;
3226 }
3227 /*
3228 * Store a pointer to the list in the URB setup_packet
3229 * field. We know this currently isn't being used and
3230 * this saves us a bunch of logic.
3231 */
3232 urb->setup_packet = (char *)iso_packet;
3233 transaction = cvmx_usb_submit_isochronous(&priv->usb,
3234 pipe, urb);
3235 /*
3236 * If submit failed we need to free our private packet
3237 * list.
3238 */
3239 if (!transaction) {
3240 urb->setup_packet = NULL;
3241 kfree(iso_packet);
3242 }
3243 }
3244 break;
3245 case PIPE_INTERRUPT:
3246 dev_dbg(dev, "Submit interrupt to %d.%d\n",
3247 usb_pipedevice(urb->pipe),
3248 usb_pipeendpoint(urb->pipe));
3249 transaction = cvmx_usb_submit_interrupt(&priv->usb, pipe, urb);
3250 break;
3251 case PIPE_CONTROL:
3252 dev_dbg(dev, "Submit control to %d.%d\n",
3253 usb_pipedevice(urb->pipe),
3254 usb_pipeendpoint(urb->pipe));
3255 transaction = cvmx_usb_submit_control(&priv->usb, pipe, urb);
3256 break;
3257 case PIPE_BULK:
3258 dev_dbg(dev, "Submit bulk to %d.%d\n",
3259 usb_pipedevice(urb->pipe),
3260 usb_pipeendpoint(urb->pipe));
3261 transaction = cvmx_usb_submit_bulk(&priv->usb, pipe, urb);
3262 break;
3263 }
3264 if (!transaction) {
3265 usb_hcd_unlink_urb_from_ep(hcd, urb);
3266 spin_unlock_irqrestore(&priv->lock, flags);
3267 dev_dbg(dev, "Failed to submit\n");
3268 return -ENOMEM;
3269 }
3270 urb->hcpriv = transaction;
3271 spin_unlock_irqrestore(&priv->lock, flags);
3272 return 0;
3273 }
3274
octeon_usb_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)3275 static int octeon_usb_urb_dequeue(struct usb_hcd *hcd,
3276 struct urb *urb,
3277 int status)
3278 {
3279 struct octeon_hcd *priv = hcd_to_octeon(hcd);
3280 unsigned long flags;
3281 int rc;
3282
3283 if (!urb->dev)
3284 return -EINVAL;
3285
3286 spin_lock_irqsave(&priv->lock, flags);
3287
3288 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
3289 if (rc)
3290 goto out;
3291
3292 urb->status = status;
3293 cvmx_usb_cancel(&priv->usb, urb->ep->hcpriv, urb->hcpriv);
3294
3295 out:
3296 spin_unlock_irqrestore(&priv->lock, flags);
3297
3298 return rc;
3299 }
3300
octeon_usb_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * ep)3301 static void octeon_usb_endpoint_disable(struct usb_hcd *hcd,
3302 struct usb_host_endpoint *ep)
3303 {
3304 struct device *dev = hcd->self.controller;
3305
3306 if (ep->hcpriv) {
3307 struct octeon_hcd *priv = hcd_to_octeon(hcd);
3308 struct cvmx_usb_pipe *pipe = ep->hcpriv;
3309 unsigned long flags;
3310
3311 spin_lock_irqsave(&priv->lock, flags);
3312 cvmx_usb_cancel_all(&priv->usb, pipe);
3313 if (cvmx_usb_close_pipe(&priv->usb, pipe))
3314 dev_dbg(dev, "Closing pipe %p failed\n", pipe);
3315 spin_unlock_irqrestore(&priv->lock, flags);
3316 ep->hcpriv = NULL;
3317 }
3318 }
3319
octeon_usb_hub_status_data(struct usb_hcd * hcd,char * buf)3320 static int octeon_usb_hub_status_data(struct usb_hcd *hcd, char *buf)
3321 {
3322 struct octeon_hcd *priv = hcd_to_octeon(hcd);
3323 struct cvmx_usb_port_status port_status;
3324 unsigned long flags;
3325
3326 spin_lock_irqsave(&priv->lock, flags);
3327 port_status = cvmx_usb_get_status(&priv->usb);
3328 spin_unlock_irqrestore(&priv->lock, flags);
3329 buf[0] = 0;
3330 buf[0] = port_status.connect_change << 1;
3331
3332 return buf[0] != 0;
3333 }
3334
octeon_usb_hub_control(struct usb_hcd * hcd,u16 typeReq,u16 wValue,u16 wIndex,char * buf,u16 wLength)3335 static int octeon_usb_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
3336 u16 wIndex, char *buf, u16 wLength)
3337 {
3338 struct octeon_hcd *priv = hcd_to_octeon(hcd);
3339 struct device *dev = hcd->self.controller;
3340 struct cvmx_usb_port_status usb_port_status;
3341 struct cvmx_usb_state *usb = &priv->usb;
3342 int port_status;
3343 struct usb_hub_descriptor *desc;
3344 unsigned long flags;
3345
3346 switch (typeReq) {
3347 case ClearHubFeature:
3348 dev_dbg(dev, "ClearHubFeature\n");
3349 switch (wValue) {
3350 case C_HUB_LOCAL_POWER:
3351 case C_HUB_OVER_CURRENT:
3352 /* Nothing required here */
3353 break;
3354 default:
3355 return -EINVAL;
3356 }
3357 break;
3358 case ClearPortFeature:
3359 dev_dbg(dev, "ClearPortFeature\n");
3360 if (wIndex != 1) {
3361 dev_dbg(dev, " INVALID\n");
3362 return -EINVAL;
3363 }
3364
3365 switch (wValue) {
3366 case USB_PORT_FEAT_ENABLE:
3367 dev_dbg(dev, " ENABLE\n");
3368 spin_lock_irqsave(&priv->lock, flags);
3369 cvmx_usb_disable(&priv->usb);
3370 spin_unlock_irqrestore(&priv->lock, flags);
3371 break;
3372 case USB_PORT_FEAT_SUSPEND:
3373 dev_dbg(dev, " SUSPEND\n");
3374 /* Not supported on Octeon */
3375 break;
3376 case USB_PORT_FEAT_POWER:
3377 dev_dbg(dev, " POWER\n");
3378 /* Not supported on Octeon */
3379 break;
3380 case USB_PORT_FEAT_INDICATOR:
3381 dev_dbg(dev, " INDICATOR\n");
3382 /* Port inidicator not supported */
3383 break;
3384 case USB_PORT_FEAT_C_CONNECTION:
3385 dev_dbg(dev, " C_CONNECTION\n");
3386 /* Clears drivers internal connect status change flag */
3387 spin_lock_irqsave(&priv->lock, flags);
3388 priv->usb.port_status =
3389 cvmx_usb_get_status(&priv->usb);
3390 spin_unlock_irqrestore(&priv->lock, flags);
3391 break;
3392 case USB_PORT_FEAT_C_RESET:
3393 dev_dbg(dev, " C_RESET\n");
3394 /*
3395 * Clears the driver's internal Port Reset Change flag.
3396 */
3397 spin_lock_irqsave(&priv->lock, flags);
3398 priv->usb.port_status =
3399 cvmx_usb_get_status(&priv->usb);
3400 spin_unlock_irqrestore(&priv->lock, flags);
3401 break;
3402 case USB_PORT_FEAT_C_ENABLE:
3403 dev_dbg(dev, " C_ENABLE\n");
3404 /*
3405 * Clears the driver's internal Port Enable/Disable
3406 * Change flag.
3407 */
3408 spin_lock_irqsave(&priv->lock, flags);
3409 priv->usb.port_status =
3410 cvmx_usb_get_status(&priv->usb);
3411 spin_unlock_irqrestore(&priv->lock, flags);
3412 break;
3413 case USB_PORT_FEAT_C_SUSPEND:
3414 dev_dbg(dev, " C_SUSPEND\n");
3415 /*
3416 * Clears the driver's internal Port Suspend Change
3417 * flag, which is set when resume signaling on the host
3418 * port is complete.
3419 */
3420 break;
3421 case USB_PORT_FEAT_C_OVER_CURRENT:
3422 dev_dbg(dev, " C_OVER_CURRENT\n");
3423 /* Clears the driver's overcurrent Change flag */
3424 spin_lock_irqsave(&priv->lock, flags);
3425 priv->usb.port_status =
3426 cvmx_usb_get_status(&priv->usb);
3427 spin_unlock_irqrestore(&priv->lock, flags);
3428 break;
3429 default:
3430 dev_dbg(dev, " UNKNOWN\n");
3431 return -EINVAL;
3432 }
3433 break;
3434 case GetHubDescriptor:
3435 dev_dbg(dev, "GetHubDescriptor\n");
3436 desc = (struct usb_hub_descriptor *)buf;
3437 desc->bDescLength = 9;
3438 desc->bDescriptorType = 0x29;
3439 desc->bNbrPorts = 1;
3440 desc->wHubCharacteristics = cpu_to_le16(0x08);
3441 desc->bPwrOn2PwrGood = 1;
3442 desc->bHubContrCurrent = 0;
3443 desc->u.hs.DeviceRemovable[0] = 0;
3444 desc->u.hs.DeviceRemovable[1] = 0xff;
3445 break;
3446 case GetHubStatus:
3447 dev_dbg(dev, "GetHubStatus\n");
3448 *(__le32 *) buf = 0;
3449 break;
3450 case GetPortStatus:
3451 dev_dbg(dev, "GetPortStatus\n");
3452 if (wIndex != 1) {
3453 dev_dbg(dev, " INVALID\n");
3454 return -EINVAL;
3455 }
3456
3457 spin_lock_irqsave(&priv->lock, flags);
3458 usb_port_status = cvmx_usb_get_status(&priv->usb);
3459 spin_unlock_irqrestore(&priv->lock, flags);
3460 port_status = 0;
3461
3462 if (usb_port_status.connect_change) {
3463 port_status |= (1 << USB_PORT_FEAT_C_CONNECTION);
3464 dev_dbg(dev, " C_CONNECTION\n");
3465 }
3466
3467 if (usb_port_status.port_enabled) {
3468 port_status |= (1 << USB_PORT_FEAT_C_ENABLE);
3469 dev_dbg(dev, " C_ENABLE\n");
3470 }
3471
3472 if (usb_port_status.connected) {
3473 port_status |= (1 << USB_PORT_FEAT_CONNECTION);
3474 dev_dbg(dev, " CONNECTION\n");
3475 }
3476
3477 if (usb_port_status.port_enabled) {
3478 port_status |= (1 << USB_PORT_FEAT_ENABLE);
3479 dev_dbg(dev, " ENABLE\n");
3480 }
3481
3482 if (usb_port_status.port_over_current) {
3483 port_status |= (1 << USB_PORT_FEAT_OVER_CURRENT);
3484 dev_dbg(dev, " OVER_CURRENT\n");
3485 }
3486
3487 if (usb_port_status.port_powered) {
3488 port_status |= (1 << USB_PORT_FEAT_POWER);
3489 dev_dbg(dev, " POWER\n");
3490 }
3491
3492 if (usb_port_status.port_speed == CVMX_USB_SPEED_HIGH) {
3493 port_status |= USB_PORT_STAT_HIGH_SPEED;
3494 dev_dbg(dev, " HIGHSPEED\n");
3495 } else if (usb_port_status.port_speed == CVMX_USB_SPEED_LOW) {
3496 port_status |= (1 << USB_PORT_FEAT_LOWSPEED);
3497 dev_dbg(dev, " LOWSPEED\n");
3498 }
3499
3500 *((__le32 *) buf) = cpu_to_le32(port_status);
3501 break;
3502 case SetHubFeature:
3503 dev_dbg(dev, "SetHubFeature\n");
3504 /* No HUB features supported */
3505 break;
3506 case SetPortFeature:
3507 dev_dbg(dev, "SetPortFeature\n");
3508 if (wIndex != 1) {
3509 dev_dbg(dev, " INVALID\n");
3510 return -EINVAL;
3511 }
3512
3513 switch (wValue) {
3514 case USB_PORT_FEAT_SUSPEND:
3515 dev_dbg(dev, " SUSPEND\n");
3516 return -EINVAL;
3517 case USB_PORT_FEAT_POWER:
3518 dev_dbg(dev, " POWER\n");
3519 /*
3520 * Program the port power bit to drive VBUS on the USB.
3521 */
3522 spin_lock_irqsave(&priv->lock, flags);
3523 USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index),
3524 cvmx_usbcx_hprt, prtpwr, 1);
3525 spin_unlock_irqrestore(&priv->lock, flags);
3526 return 0;
3527 case USB_PORT_FEAT_RESET:
3528 dev_dbg(dev, " RESET\n");
3529 spin_lock_irqsave(&priv->lock, flags);
3530 cvmx_usb_reset_port(&priv->usb);
3531 spin_unlock_irqrestore(&priv->lock, flags);
3532 return 0;
3533 case USB_PORT_FEAT_INDICATOR:
3534 dev_dbg(dev, " INDICATOR\n");
3535 /* Not supported */
3536 break;
3537 default:
3538 dev_dbg(dev, " UNKNOWN\n");
3539 return -EINVAL;
3540 }
3541 break;
3542 default:
3543 dev_dbg(dev, "Unknown root hub request\n");
3544 return -EINVAL;
3545 }
3546 return 0;
3547 }
3548
3549 static const struct hc_driver octeon_hc_driver = {
3550 .description = "Octeon USB",
3551 .product_desc = "Octeon Host Controller",
3552 .hcd_priv_size = sizeof(struct octeon_hcd),
3553 .irq = octeon_usb_irq,
3554 .flags = HCD_MEMORY | HCD_USB2,
3555 .start = octeon_usb_start,
3556 .stop = octeon_usb_stop,
3557 .urb_enqueue = octeon_usb_urb_enqueue,
3558 .urb_dequeue = octeon_usb_urb_dequeue,
3559 .endpoint_disable = octeon_usb_endpoint_disable,
3560 .get_frame_number = octeon_usb_get_frame_number,
3561 .hub_status_data = octeon_usb_hub_status_data,
3562 .hub_control = octeon_usb_hub_control,
3563 .map_urb_for_dma = octeon_map_urb_for_dma,
3564 .unmap_urb_for_dma = octeon_unmap_urb_for_dma,
3565 };
3566
octeon_usb_probe(struct platform_device * pdev)3567 static int octeon_usb_probe(struct platform_device *pdev)
3568 {
3569 int status;
3570 int initialize_flags;
3571 int usb_num;
3572 struct resource *res_mem;
3573 struct device_node *usbn_node;
3574 int irq = platform_get_irq(pdev, 0);
3575 struct device *dev = &pdev->dev;
3576 struct octeon_hcd *priv;
3577 struct usb_hcd *hcd;
3578 u32 clock_rate = 48000000;
3579 bool is_crystal_clock = false;
3580 const char *clock_type;
3581 int i;
3582
3583 if (dev->of_node == NULL) {
3584 dev_err(dev, "Error: empty of_node\n");
3585 return -ENXIO;
3586 }
3587 usbn_node = dev->of_node->parent;
3588
3589 i = of_property_read_u32(usbn_node,
3590 "refclk-frequency", &clock_rate);
3591 if (i) {
3592 dev_err(dev, "No USBN \"refclk-frequency\"\n");
3593 return -ENXIO;
3594 }
3595 switch (clock_rate) {
3596 case 12000000:
3597 initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ;
3598 break;
3599 case 24000000:
3600 initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ;
3601 break;
3602 case 48000000:
3603 initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ;
3604 break;
3605 default:
3606 dev_err(dev, "Illebal USBN \"refclk-frequency\" %u\n",
3607 clock_rate);
3608 return -ENXIO;
3609
3610 }
3611
3612 i = of_property_read_string(usbn_node,
3613 "refclk-type", &clock_type);
3614
3615 if (!i && strcmp("crystal", clock_type) == 0)
3616 is_crystal_clock = true;
3617
3618 if (is_crystal_clock)
3619 initialize_flags |= CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI;
3620 else
3621 initialize_flags |= CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND;
3622
3623 res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3624 if (res_mem == NULL) {
3625 dev_err(dev, "found no memory resource\n");
3626 return -ENXIO;
3627 }
3628 usb_num = (res_mem->start >> 44) & 1;
3629
3630 if (irq < 0) {
3631 /* Defective device tree, but we know how to fix it. */
3632 irq_hw_number_t hwirq = usb_num ? (1 << 6) + 17 : 56;
3633
3634 irq = irq_create_mapping(NULL, hwirq);
3635 }
3636
3637 /*
3638 * Set the DMA mask to 64bits so we get buffers already translated for
3639 * DMA.
3640 */
3641 dev->coherent_dma_mask = ~0;
3642 dev->dma_mask = &dev->coherent_dma_mask;
3643
3644 /*
3645 * Only cn52XX and cn56XX have DWC_OTG USB hardware and the
3646 * IOB priority registers. Under heavy network load USB
3647 * hardware can be starved by the IOB causing a crash. Give
3648 * it a priority boost if it has been waiting more than 400
3649 * cycles to avoid this situation.
3650 *
3651 * Testing indicates that a cnt_val of 8192 is not sufficient,
3652 * but no failures are seen with 4096. We choose a value of
3653 * 400 to give a safety factor of 10.
3654 */
3655 if (OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN56XX)) {
3656 union cvmx_iob_n2c_l2c_pri_cnt pri_cnt;
3657
3658 pri_cnt.u64 = 0;
3659 pri_cnt.s.cnt_enb = 1;
3660 pri_cnt.s.cnt_val = 400;
3661 cvmx_write_csr(CVMX_IOB_N2C_L2C_PRI_CNT, pri_cnt.u64);
3662 }
3663
3664 hcd = usb_create_hcd(&octeon_hc_driver, dev, dev_name(dev));
3665 if (!hcd) {
3666 dev_dbg(dev, "Failed to allocate memory for HCD\n");
3667 return -1;
3668 }
3669 hcd->uses_new_polling = 1;
3670 priv = (struct octeon_hcd *)hcd->hcd_priv;
3671
3672 spin_lock_init(&priv->lock);
3673
3674 priv->usb.init_flags = initialize_flags;
3675
3676 /* Initialize the USB state structure */
3677 priv->usb.index = usb_num;
3678 INIT_LIST_HEAD(&priv->usb.idle_pipes);
3679 for (i = 0; i < ARRAY_SIZE(priv->usb.active_pipes); i++)
3680 INIT_LIST_HEAD(&priv->usb.active_pipes[i]);
3681
3682 /* Due to an errata, CN31XX doesn't support DMA */
3683 if (OCTEON_IS_MODEL(OCTEON_CN31XX)) {
3684 priv->usb.init_flags |= CVMX_USB_INITIALIZE_FLAGS_NO_DMA;
3685 /* Only use one channel with non DMA */
3686 priv->usb.idle_hardware_channels = 0x1;
3687 } else if (OCTEON_IS_MODEL(OCTEON_CN5XXX)) {
3688 /* CN5XXX have an errata with channel 3 */
3689 priv->usb.idle_hardware_channels = 0xf7;
3690 } else {
3691 priv->usb.idle_hardware_channels = 0xff;
3692 }
3693
3694 status = cvmx_usb_initialize(dev, &priv->usb);
3695 if (status) {
3696 dev_dbg(dev, "USB initialization failed with %d\n", status);
3697 kfree(hcd);
3698 return -1;
3699 }
3700
3701 status = usb_add_hcd(hcd, irq, 0);
3702 if (status) {
3703 dev_dbg(dev, "USB add HCD failed with %d\n", status);
3704 kfree(hcd);
3705 return -1;
3706 }
3707 device_wakeup_enable(hcd->self.controller);
3708
3709 dev_info(dev, "Registered HCD for port %d on irq %d\n", usb_num, irq);
3710
3711 return 0;
3712 }
3713
octeon_usb_remove(struct platform_device * pdev)3714 static int octeon_usb_remove(struct platform_device *pdev)
3715 {
3716 int status;
3717 struct device *dev = &pdev->dev;
3718 struct usb_hcd *hcd = dev_get_drvdata(dev);
3719 struct octeon_hcd *priv = hcd_to_octeon(hcd);
3720 unsigned long flags;
3721
3722 usb_remove_hcd(hcd);
3723 spin_lock_irqsave(&priv->lock, flags);
3724 status = cvmx_usb_shutdown(&priv->usb);
3725 spin_unlock_irqrestore(&priv->lock, flags);
3726 if (status)
3727 dev_dbg(dev, "USB shutdown failed with %d\n", status);
3728
3729 kfree(hcd);
3730
3731 return 0;
3732 }
3733
3734 static const struct of_device_id octeon_usb_match[] = {
3735 {
3736 .compatible = "cavium,octeon-5750-usbc",
3737 },
3738 {},
3739 };
3740
3741 static struct platform_driver octeon_usb_driver = {
3742 .driver = {
3743 .name = "OcteonUSB",
3744 .of_match_table = octeon_usb_match,
3745 },
3746 .probe = octeon_usb_probe,
3747 .remove = octeon_usb_remove,
3748 };
3749
octeon_usb_driver_init(void)3750 static int __init octeon_usb_driver_init(void)
3751 {
3752 if (usb_disabled())
3753 return 0;
3754
3755 return platform_driver_register(&octeon_usb_driver);
3756 }
3757 module_init(octeon_usb_driver_init);
3758
octeon_usb_driver_exit(void)3759 static void __exit octeon_usb_driver_exit(void)
3760 {
3761 if (usb_disabled())
3762 return;
3763
3764 platform_driver_unregister(&octeon_usb_driver);
3765 }
3766 module_exit(octeon_usb_driver_exit);
3767
3768 MODULE_LICENSE("GPL");
3769 MODULE_AUTHOR("Cavium, Inc. <support@cavium.com>");
3770 MODULE_DESCRIPTION("Cavium Inc. OCTEON USB Host driver.");
3771