1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2008 Cavium Networks
7  *
8  * Some parts of the code were originally released under BSD license:
9  *
10  * Copyright (c) 2003-2010 Cavium Networks (support@cavium.com). All rights
11  * reserved.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions are
15  * met:
16  *
17  *   * Redistributions of source code must retain the above copyright
18  *     notice, this list of conditions and the following disclaimer.
19  *
20  *   * Redistributions in binary form must reproduce the above
21  *     copyright notice, this list of conditions and the following
22  *     disclaimer in the documentation and/or other materials provided
23  *     with the distribution.
24  *
25  *   * Neither the name of Cavium Networks nor the names of
26  *     its contributors may be used to endorse or promote products
27  *     derived from this software without specific prior written
28  *     permission.
29  *
30  * This Software, including technical data, may be subject to U.S. export
31  * control laws, including the U.S. Export Administration Act and its associated
32  * regulations, and may be subject to export or import regulations in other
33  * countries.
34  *
35  * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
36  * AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR
37  * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
38  * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION
39  * OR DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
40  * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
41  * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
42  * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
43  * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR
44  * PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
45  */
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/init.h>
49 #include <linux/pci.h>
50 #include <linux/prefetch.h>
51 #include <linux/interrupt.h>
52 #include <linux/platform_device.h>
53 #include <linux/usb.h>
54 
55 #include <linux/time.h>
56 #include <linux/delay.h>
57 
58 #include <asm/octeon/cvmx.h>
59 #include <asm/octeon/cvmx-iob-defs.h>
60 
61 #include <linux/usb/hcd.h>
62 
63 #include <linux/err.h>
64 
65 #include <asm/octeon/octeon.h>
66 #include <asm/octeon/cvmx-helper.h>
67 #include <asm/octeon/cvmx-sysinfo.h>
68 #include <asm/octeon/cvmx-helper-board.h>
69 
70 #include "octeon-hcd.h"
71 
72 /**
73  * enum cvmx_usb_speed - the possible USB device speeds
74  *
75  * @CVMX_USB_SPEED_HIGH: Device is operation at 480Mbps
76  * @CVMX_USB_SPEED_FULL: Device is operation at 12Mbps
77  * @CVMX_USB_SPEED_LOW:  Device is operation at 1.5Mbps
78  */
79 enum cvmx_usb_speed {
80 	CVMX_USB_SPEED_HIGH = 0,
81 	CVMX_USB_SPEED_FULL = 1,
82 	CVMX_USB_SPEED_LOW = 2,
83 };
84 
85 /**
86  * enum cvmx_usb_transfer - the possible USB transfer types
87  *
88  * @CVMX_USB_TRANSFER_CONTROL:	   USB transfer type control for hub and status
89  *				   transfers
90  * @CVMX_USB_TRANSFER_ISOCHRONOUS: USB transfer type isochronous for low
91  *				   priority periodic transfers
92  * @CVMX_USB_TRANSFER_BULK:	   USB transfer type bulk for large low priority
93  *				   transfers
94  * @CVMX_USB_TRANSFER_INTERRUPT:   USB transfer type interrupt for high priority
95  *				   periodic transfers
96  */
97 enum cvmx_usb_transfer {
98 	CVMX_USB_TRANSFER_CONTROL = 0,
99 	CVMX_USB_TRANSFER_ISOCHRONOUS = 1,
100 	CVMX_USB_TRANSFER_BULK = 2,
101 	CVMX_USB_TRANSFER_INTERRUPT = 3,
102 };
103 
104 /**
105  * enum cvmx_usb_direction - the transfer directions
106  *
107  * @CVMX_USB_DIRECTION_OUT: Data is transferring from Octeon to the device/host
108  * @CVMX_USB_DIRECTION_IN:  Data is transferring from the device/host to Octeon
109  */
110 enum cvmx_usb_direction {
111 	CVMX_USB_DIRECTION_OUT,
112 	CVMX_USB_DIRECTION_IN,
113 };
114 
115 /**
116  * enum cvmx_usb_complete - possible callback function status codes
117  *
118  * @CVMX_USB_COMPLETE_SUCCESS:	  The transaction / operation finished without
119  *				  any errors
120  * @CVMX_USB_COMPLETE_SHORT:	  FIXME: This is currently not implemented
121  * @CVMX_USB_COMPLETE_CANCEL:	  The transaction was canceled while in flight
122  *				  by a user call to cvmx_usb_cancel
123  * @CVMX_USB_COMPLETE_ERROR:	  The transaction aborted with an unexpected
124  *				  error status
125  * @CVMX_USB_COMPLETE_STALL:	  The transaction received a USB STALL response
126  *				  from the device
127  * @CVMX_USB_COMPLETE_XACTERR:	  The transaction failed with an error from the
128  *				  device even after a number of retries
129  * @CVMX_USB_COMPLETE_DATATGLERR: The transaction failed with a data toggle
130  *				  error even after a number of retries
131  * @CVMX_USB_COMPLETE_BABBLEERR:  The transaction failed with a babble error
132  * @CVMX_USB_COMPLETE_FRAMEERR:	  The transaction failed with a frame error
133  *				  even after a number of retries
134  */
135 enum cvmx_usb_complete {
136 	CVMX_USB_COMPLETE_SUCCESS,
137 	CVMX_USB_COMPLETE_SHORT,
138 	CVMX_USB_COMPLETE_CANCEL,
139 	CVMX_USB_COMPLETE_ERROR,
140 	CVMX_USB_COMPLETE_STALL,
141 	CVMX_USB_COMPLETE_XACTERR,
142 	CVMX_USB_COMPLETE_DATATGLERR,
143 	CVMX_USB_COMPLETE_BABBLEERR,
144 	CVMX_USB_COMPLETE_FRAMEERR,
145 };
146 
147 /**
148  * struct cvmx_usb_port_status - the USB port status information
149  *
150  * @port_enabled:	1 = Usb port is enabled, 0 = disabled
151  * @port_over_current:	1 = Over current detected, 0 = Over current not
152  *			detected. Octeon doesn't support over current detection.
153  * @port_powered:	1 = Port power is being supplied to the device, 0 =
154  *			power is off. Octeon doesn't support turning port power
155  *			off.
156  * @port_speed:		Current port speed.
157  * @connected:		1 = A device is connected to the port, 0 = No device is
158  *			connected.
159  * @connect_change:	1 = Device connected state changed since the last set
160  *			status call.
161  */
162 struct cvmx_usb_port_status {
163 	uint32_t reserved		: 25;
164 	uint32_t port_enabled		: 1;
165 	uint32_t port_over_current	: 1;
166 	uint32_t port_powered		: 1;
167 	enum cvmx_usb_speed port_speed	: 2;
168 	uint32_t connected		: 1;
169 	uint32_t connect_change		: 1;
170 };
171 
172 /**
173  * struct cvmx_usb_iso_packet - descriptor for Isochronous packets
174  *
175  * @offset:	This is the offset in bytes into the main buffer where this data
176  *		is stored.
177  * @length:	This is the length in bytes of the data.
178  * @status:	This is the status of this individual packet transfer.
179  */
180 struct cvmx_usb_iso_packet {
181 	int offset;
182 	int length;
183 	enum cvmx_usb_complete status;
184 };
185 
186 /**
187  * enum cvmx_usb_initialize_flags - flags used by the initialization function
188  *
189  * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI:    The USB port uses a 12MHz crystal
190  *					      as clock source at USB_XO and
191  *					      USB_XI.
192  * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND:   The USB port uses 12/24/48MHz 2.5V
193  *					      board clock source at USB_XO.
194  *					      USB_XI should be tied to GND.
195  * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK: Mask for clock speed field
196  * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ:    Speed of reference clock or
197  *					      crystal
198  * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ:    Speed of reference clock
199  * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ:    Speed of reference clock
200  * @CVMX_USB_INITIALIZE_FLAGS_NO_DMA:	      Disable DMA and used polled IO for
201  *					      data transfer use for the USB
202  */
203 enum cvmx_usb_initialize_flags {
204 	CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI		= 1 << 0,
205 	CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND		= 1 << 1,
206 	CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK	= 3 << 3,
207 	CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ		= 1 << 3,
208 	CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ		= 2 << 3,
209 	CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ		= 3 << 3,
210 	/* Bits 3-4 used to encode the clock frequency */
211 	CVMX_USB_INITIALIZE_FLAGS_NO_DMA		= 1 << 5,
212 };
213 
214 /**
215  * enum cvmx_usb_pipe_flags - internal flags for a pipe.
216  *
217  * @CVMX_USB_PIPE_FLAGS_SCHEDULED: Used internally to determine if a pipe is
218  *				   actively using hardware.
219  * @CVMX_USB_PIPE_FLAGS_NEED_PING: Used internally to determine if a high speed
220  *				   pipe is in the ping state.
221  */
222 enum cvmx_usb_pipe_flags {
223 	CVMX_USB_PIPE_FLAGS_SCHEDULED	= 1 << 17,
224 	CVMX_USB_PIPE_FLAGS_NEED_PING	= 1 << 18,
225 };
226 
227 /* Maximum number of times to retry failed transactions */
228 #define MAX_RETRIES		3
229 
230 /* Maximum number of hardware channels supported by the USB block */
231 #define MAX_CHANNELS		8
232 
233 /*
234  * The low level hardware can transfer a maximum of this number of bytes in each
235  * transfer. The field is 19 bits wide
236  */
237 #define MAX_TRANSFER_BYTES	((1<<19)-1)
238 
239 /*
240  * The low level hardware can transfer a maximum of this number of packets in
241  * each transfer. The field is 10 bits wide
242  */
243 #define MAX_TRANSFER_PACKETS	((1<<10)-1)
244 
245 /**
246  * Logical transactions may take numerous low level
247  * transactions, especially when splits are concerned. This
248  * enum represents all of the possible stages a transaction can
249  * be in. Note that split completes are always even. This is so
250  * the NAK handler can backup to the previous low level
251  * transaction with a simple clearing of bit 0.
252  */
253 enum cvmx_usb_stage {
254 	CVMX_USB_STAGE_NON_CONTROL,
255 	CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE,
256 	CVMX_USB_STAGE_SETUP,
257 	CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE,
258 	CVMX_USB_STAGE_DATA,
259 	CVMX_USB_STAGE_DATA_SPLIT_COMPLETE,
260 	CVMX_USB_STAGE_STATUS,
261 	CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE,
262 };
263 
264 /**
265  * struct cvmx_usb_transaction - describes each pending USB transaction
266  *				 regardless of type. These are linked together
267  *				 to form a list of pending requests for a pipe.
268  *
269  * @node:		List node for transactions in the pipe.
270  * @type:		Type of transaction, duplicated of the pipe.
271  * @flags:		State flags for this transaction.
272  * @buffer:		User's physical buffer address to read/write.
273  * @buffer_length:	Size of the user's buffer in bytes.
274  * @control_header:	For control transactions, physical address of the 8
275  *			byte standard header.
276  * @iso_start_frame:	For ISO transactions, the starting frame number.
277  * @iso_number_packets:	For ISO transactions, the number of packets in the
278  *			request.
279  * @iso_packets:	For ISO transactions, the sub packets in the request.
280  * @actual_bytes:	Actual bytes transfer for this transaction.
281  * @stage:		For control transactions, the current stage.
282  * @urb:		URB.
283  */
284 struct cvmx_usb_transaction {
285 	struct list_head node;
286 	enum cvmx_usb_transfer type;
287 	uint64_t buffer;
288 	int buffer_length;
289 	uint64_t control_header;
290 	int iso_start_frame;
291 	int iso_number_packets;
292 	struct cvmx_usb_iso_packet *iso_packets;
293 	int xfersize;
294 	int pktcnt;
295 	int retries;
296 	int actual_bytes;
297 	enum cvmx_usb_stage stage;
298 	struct urb *urb;
299 };
300 
301 /**
302  * struct cvmx_usb_pipe - a pipe represents a virtual connection between Octeon
303  *			  and some USB device. It contains a list of pending
304  *			  request to the device.
305  *
306  * @node:		List node for pipe list
307  * @next:		Pipe after this one in the list
308  * @transactions:	List of pending transactions
309  * @interval:		For periodic pipes, the interval between packets in
310  *			frames
311  * @next_tx_frame:	The next frame this pipe is allowed to transmit on
312  * @flags:		State flags for this pipe
313  * @device_speed:	Speed of device connected to this pipe
314  * @transfer_type:	Type of transaction supported by this pipe
315  * @transfer_dir:	IN or OUT. Ignored for Control
316  * @multi_count:	Max packet in a row for the device
317  * @max_packet:		The device's maximum packet size in bytes
318  * @device_addr:	USB device address at other end of pipe
319  * @endpoint_num:	USB endpoint number at other end of pipe
320  * @hub_device_addr:	Hub address this device is connected to
321  * @hub_port:		Hub port this device is connected to
322  * @pid_toggle:		This toggles between 0/1 on every packet send to track
323  *			the data pid needed
324  * @channel:		Hardware DMA channel for this pipe
325  * @split_sc_frame:	The low order bits of the frame number the split
326  *			complete should be sent on
327  */
328 struct cvmx_usb_pipe {
329 	struct list_head node;
330 	struct list_head transactions;
331 	uint64_t interval;
332 	uint64_t next_tx_frame;
333 	enum cvmx_usb_pipe_flags flags;
334 	enum cvmx_usb_speed device_speed;
335 	enum cvmx_usb_transfer transfer_type;
336 	enum cvmx_usb_direction transfer_dir;
337 	int multi_count;
338 	uint16_t max_packet;
339 	uint8_t device_addr;
340 	uint8_t endpoint_num;
341 	uint8_t hub_device_addr;
342 	uint8_t hub_port;
343 	uint8_t pid_toggle;
344 	uint8_t channel;
345 	int8_t split_sc_frame;
346 };
347 
348 struct cvmx_usb_tx_fifo {
349 	struct {
350 		int channel;
351 		int size;
352 		uint64_t address;
353 	} entry[MAX_CHANNELS+1];
354 	int head;
355 	int tail;
356 };
357 
358 /**
359  * struct cvmx_usb_state - the state of the USB block
360  *
361  * init_flags:		   Flags passed to initialize.
362  * index:		   Which USB block this is for.
363  * idle_hardware_channels: Bit set for every idle hardware channel.
364  * usbcx_hprt:		   Stored port status so we don't need to read a CSR to
365  *			   determine splits.
366  * pipe_for_channel:	   Map channels to pipes.
367  * pipe:		   Storage for pipes.
368  * indent:		   Used by debug output to indent functions.
369  * port_status:		   Last port status used for change notification.
370  * idle_pipes:		   List of open pipes that have no transactions.
371  * active_pipes:	   Active pipes indexed by transfer type.
372  * frame_number:	   Increments every SOF interrupt for time keeping.
373  * active_split:	   Points to the current active split, or NULL.
374  */
375 struct cvmx_usb_state {
376 	int init_flags;
377 	int index;
378 	int idle_hardware_channels;
379 	union cvmx_usbcx_hprt usbcx_hprt;
380 	struct cvmx_usb_pipe *pipe_for_channel[MAX_CHANNELS];
381 	int indent;
382 	struct cvmx_usb_port_status port_status;
383 	struct list_head idle_pipes;
384 	struct list_head active_pipes[4];
385 	uint64_t frame_number;
386 	struct cvmx_usb_transaction *active_split;
387 	struct cvmx_usb_tx_fifo periodic;
388 	struct cvmx_usb_tx_fifo nonperiodic;
389 };
390 
391 struct octeon_hcd {
392 	spinlock_t lock;
393 	struct cvmx_usb_state usb;
394 };
395 
396 /* This macro spins on a register waiting for it to reach a condition. */
397 #define CVMX_WAIT_FOR_FIELD32(address, _union, cond, timeout_usec)	    \
398 	({int result;							    \
399 	do {								    \
400 		uint64_t done = cvmx_get_cycle() + (uint64_t)timeout_usec * \
401 			octeon_get_clock_rate() / 1000000;		    \
402 		union _union c;						    \
403 									    \
404 		while (1) {						    \
405 			c.u32 = cvmx_usb_read_csr32(usb, address);	    \
406 									    \
407 			if (cond) {					    \
408 				result = 0;				    \
409 				break;					    \
410 			} else if (cvmx_get_cycle() > done) {		    \
411 				result = -1;				    \
412 				break;					    \
413 			} else						    \
414 				cvmx_wait(100);				    \
415 		}							    \
416 	} while (0);							    \
417 	result; })
418 
419 /*
420  * This macro logically sets a single field in a CSR. It does the sequence
421  * read, modify, and write
422  */
423 #define USB_SET_FIELD32(address, _union, field, value)		\
424 	do {							\
425 		union _union c;					\
426 								\
427 		c.u32 = cvmx_usb_read_csr32(usb, address);	\
428 		c.s.field = value;				\
429 		cvmx_usb_write_csr32(usb, address, c.u32);	\
430 	} while (0)
431 
432 /* Returns the IO address to push/pop stuff data from the FIFOs */
433 #define USB_FIFO_ADDRESS(channel, usb_index) \
434 	(CVMX_USBCX_GOTGCTL(usb_index) + ((channel)+1)*0x1000)
435 
436 /**
437  * struct octeon_temp_buffer - a bounce buffer for USB transfers
438  * @orig_buffer: the original buffer passed by the USB stack
439  * @data:	 the newly allocated temporary buffer (excluding meta-data)
440  *
441  * Both the DMA engine and FIFO mode will always transfer full 32-bit words. If
442  * the buffer is too short, we need to allocate a temporary one, and this struct
443  * represents it.
444  */
445 struct octeon_temp_buffer {
446 	void *orig_buffer;
447 	u8 data[0];
448 };
449 
cvmx_usb_to_octeon(struct cvmx_usb_state * p)450 static inline struct octeon_hcd *cvmx_usb_to_octeon(struct cvmx_usb_state *p)
451 {
452 	return container_of(p, struct octeon_hcd, usb);
453 }
454 
octeon_to_hcd(struct octeon_hcd * p)455 static inline struct usb_hcd *octeon_to_hcd(struct octeon_hcd *p)
456 {
457 	return container_of((void *)p, struct usb_hcd, hcd_priv);
458 }
459 
460 /**
461  * octeon_alloc_temp_buffer - allocate a temporary buffer for USB transfer
462  *                            (if needed)
463  * @urb:	URB.
464  * @mem_flags:	Memory allocation flags.
465  *
466  * This function allocates a temporary bounce buffer whenever it's needed
467  * due to HW limitations.
468  */
octeon_alloc_temp_buffer(struct urb * urb,gfp_t mem_flags)469 static int octeon_alloc_temp_buffer(struct urb *urb, gfp_t mem_flags)
470 {
471 	struct octeon_temp_buffer *temp;
472 
473 	if (urb->num_sgs || urb->sg ||
474 	    (urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) ||
475 	    !(urb->transfer_buffer_length % sizeof(u32)))
476 		return 0;
477 
478 	temp = kmalloc(ALIGN(urb->transfer_buffer_length, sizeof(u32)) +
479 		       sizeof(*temp), mem_flags);
480 	if (!temp)
481 		return -ENOMEM;
482 
483 	temp->orig_buffer = urb->transfer_buffer;
484 	if (usb_urb_dir_out(urb))
485 		memcpy(temp->data, urb->transfer_buffer,
486 		       urb->transfer_buffer_length);
487 	urb->transfer_buffer = temp->data;
488 	urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
489 
490 	return 0;
491 }
492 
493 /**
494  * octeon_free_temp_buffer - free a temporary buffer used by USB transfers.
495  * @urb: URB.
496  *
497  * Frees a buffer allocated by octeon_alloc_temp_buffer().
498  */
octeon_free_temp_buffer(struct urb * urb)499 static void octeon_free_temp_buffer(struct urb *urb)
500 {
501 	struct octeon_temp_buffer *temp;
502 
503 	if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
504 		return;
505 
506 	temp = container_of(urb->transfer_buffer, struct octeon_temp_buffer,
507 			    data);
508 	if (usb_urb_dir_in(urb))
509 		memcpy(temp->orig_buffer, urb->transfer_buffer,
510 		       urb->actual_length);
511 	urb->transfer_buffer = temp->orig_buffer;
512 	urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
513 	kfree(temp);
514 }
515 
516 /**
517  * octeon_map_urb_for_dma - Octeon-specific map_urb_for_dma().
518  * @hcd:	USB HCD structure.
519  * @urb:	URB.
520  * @mem_flags:	Memory allocation flags.
521  */
octeon_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)522 static int octeon_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
523 				  gfp_t mem_flags)
524 {
525 	int ret;
526 
527 	ret = octeon_alloc_temp_buffer(urb, mem_flags);
528 	if (ret)
529 		return ret;
530 
531 	ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
532 	if (ret)
533 		octeon_free_temp_buffer(urb);
534 
535 	return ret;
536 }
537 
538 /**
539  * octeon_unmap_urb_for_dma - Octeon-specific unmap_urb_for_dma()
540  * @hcd:	USB HCD structure.
541  * @urb:	URB.
542  */
octeon_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)543 static void octeon_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
544 {
545 	usb_hcd_unmap_urb_for_dma(hcd, urb);
546 	octeon_free_temp_buffer(urb);
547 }
548 
549 /**
550  * Read a USB 32bit CSR. It performs the necessary address swizzle
551  * for 32bit CSRs and logs the value in a readable format if
552  * debugging is on.
553  *
554  * @usb:     USB block this access is for
555  * @address: 64bit address to read
556  *
557  * Returns: Result of the read
558  */
cvmx_usb_read_csr32(struct cvmx_usb_state * usb,uint64_t address)559 static inline uint32_t cvmx_usb_read_csr32(struct cvmx_usb_state *usb,
560 					   uint64_t address)
561 {
562 	uint32_t result = cvmx_read64_uint32(address ^ 4);
563 	return result;
564 }
565 
566 
567 /**
568  * Write a USB 32bit CSR. It performs the necessary address
569  * swizzle for 32bit CSRs and logs the value in a readable format
570  * if debugging is on.
571  *
572  * @usb:     USB block this access is for
573  * @address: 64bit address to write
574  * @value:   Value to write
575  */
cvmx_usb_write_csr32(struct cvmx_usb_state * usb,uint64_t address,uint32_t value)576 static inline void cvmx_usb_write_csr32(struct cvmx_usb_state *usb,
577 					uint64_t address, uint32_t value)
578 {
579 	cvmx_write64_uint32(address ^ 4, value);
580 	cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index));
581 }
582 
583 /**
584  * Return non zero if this pipe connects to a non HIGH speed
585  * device through a high speed hub.
586  *
587  * @usb:    USB block this access is for
588  * @pipe:   Pipe to check
589  *
590  * Returns: Non zero if we need to do split transactions
591  */
cvmx_usb_pipe_needs_split(struct cvmx_usb_state * usb,struct cvmx_usb_pipe * pipe)592 static inline int cvmx_usb_pipe_needs_split(struct cvmx_usb_state *usb,
593 					    struct cvmx_usb_pipe *pipe)
594 {
595 	return pipe->device_speed != CVMX_USB_SPEED_HIGH &&
596 	       usb->usbcx_hprt.s.prtspd == CVMX_USB_SPEED_HIGH;
597 }
598 
599 
600 /**
601  * Trivial utility function to return the correct PID for a pipe
602  *
603  * @pipe:   pipe to check
604  *
605  * Returns: PID for pipe
606  */
cvmx_usb_get_data_pid(struct cvmx_usb_pipe * pipe)607 static inline int cvmx_usb_get_data_pid(struct cvmx_usb_pipe *pipe)
608 {
609 	if (pipe->pid_toggle)
610 		return 2; /* Data1 */
611 	return 0; /* Data0 */
612 }
613 
cvmx_fifo_setup(struct cvmx_usb_state * usb)614 static void cvmx_fifo_setup(struct cvmx_usb_state *usb)
615 {
616 	union cvmx_usbcx_ghwcfg3 usbcx_ghwcfg3;
617 	union cvmx_usbcx_gnptxfsiz npsiz;
618 	union cvmx_usbcx_hptxfsiz psiz;
619 
620 	usbcx_ghwcfg3.u32 = cvmx_usb_read_csr32(usb,
621 						CVMX_USBCX_GHWCFG3(usb->index));
622 
623 	/*
624 	 * Program the USBC_GRXFSIZ register to select the size of the receive
625 	 * FIFO (25%).
626 	 */
627 	USB_SET_FIELD32(CVMX_USBCX_GRXFSIZ(usb->index), cvmx_usbcx_grxfsiz,
628 			rxfdep, usbcx_ghwcfg3.s.dfifodepth / 4);
629 
630 	/*
631 	 * Program the USBC_GNPTXFSIZ register to select the size and the start
632 	 * address of the non-periodic transmit FIFO for nonperiodic
633 	 * transactions (50%).
634 	 */
635 	npsiz.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_GNPTXFSIZ(usb->index));
636 	npsiz.s.nptxfdep = usbcx_ghwcfg3.s.dfifodepth / 2;
637 	npsiz.s.nptxfstaddr = usbcx_ghwcfg3.s.dfifodepth / 4;
638 	cvmx_usb_write_csr32(usb, CVMX_USBCX_GNPTXFSIZ(usb->index), npsiz.u32);
639 
640 	/*
641 	 * Program the USBC_HPTXFSIZ register to select the size and start
642 	 * address of the periodic transmit FIFO for periodic transactions
643 	 * (25%).
644 	 */
645 	psiz.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HPTXFSIZ(usb->index));
646 	psiz.s.ptxfsize = usbcx_ghwcfg3.s.dfifodepth / 4;
647 	psiz.s.ptxfstaddr = 3 * usbcx_ghwcfg3.s.dfifodepth / 4;
648 	cvmx_usb_write_csr32(usb, CVMX_USBCX_HPTXFSIZ(usb->index), psiz.u32);
649 
650 	/* Flush all FIFOs */
651 	USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
652 			cvmx_usbcx_grstctl, txfnum, 0x10);
653 	USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
654 			cvmx_usbcx_grstctl, txfflsh, 1);
655 	CVMX_WAIT_FOR_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
656 			      cvmx_usbcx_grstctl, c.s.txfflsh == 0, 100);
657 	USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
658 			cvmx_usbcx_grstctl, rxfflsh, 1);
659 	CVMX_WAIT_FOR_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
660 			      cvmx_usbcx_grstctl, c.s.rxfflsh == 0, 100);
661 }
662 
663 /**
664  * Shutdown a USB port after a call to cvmx_usb_initialize().
665  * The port should be disabled with all pipes closed when this
666  * function is called.
667  *
668  * @usb: USB device state populated by cvmx_usb_initialize().
669  *
670  * Returns: 0 or a negative error code.
671  */
cvmx_usb_shutdown(struct cvmx_usb_state * usb)672 static int cvmx_usb_shutdown(struct cvmx_usb_state *usb)
673 {
674 	union cvmx_usbnx_clk_ctl usbn_clk_ctl;
675 
676 	/* Make sure all pipes are closed */
677 	if (!list_empty(&usb->idle_pipes) ||
678 	    !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_ISOCHRONOUS]) ||
679 	    !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_INTERRUPT]) ||
680 	    !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_CONTROL]) ||
681 	    !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_BULK]))
682 		return -EBUSY;
683 
684 	/* Disable the clocks and put them in power on reset */
685 	usbn_clk_ctl.u64 = cvmx_read64_uint64(CVMX_USBNX_CLK_CTL(usb->index));
686 	usbn_clk_ctl.s.enable = 1;
687 	usbn_clk_ctl.s.por = 1;
688 	usbn_clk_ctl.s.hclk_rst = 1;
689 	usbn_clk_ctl.s.prst = 0;
690 	usbn_clk_ctl.s.hrst = 0;
691 	cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
692 	return 0;
693 }
694 
695 /**
696  * Initialize a USB port for use. This must be called before any
697  * other access to the Octeon USB port is made. The port starts
698  * off in the disabled state.
699  *
700  * @dev:	 Pointer to struct device for logging purposes.
701  * @usb:	 Pointer to struct cvmx_usb_state.
702  *
703  * Returns: 0 or a negative error code.
704  */
cvmx_usb_initialize(struct device * dev,struct cvmx_usb_state * usb)705 static int cvmx_usb_initialize(struct device *dev,
706 			       struct cvmx_usb_state *usb)
707 {
708 	int channel;
709 	int divisor;
710 	int retries = 0;
711 	union cvmx_usbcx_hcfg usbcx_hcfg;
712 	union cvmx_usbnx_clk_ctl usbn_clk_ctl;
713 	union cvmx_usbcx_gintsts usbc_gintsts;
714 	union cvmx_usbcx_gahbcfg usbcx_gahbcfg;
715 	union cvmx_usbcx_gintmsk usbcx_gintmsk;
716 	union cvmx_usbcx_gusbcfg usbcx_gusbcfg;
717 	union cvmx_usbnx_usbp_ctl_status usbn_usbp_ctl_status;
718 
719 retry:
720 	/*
721 	 * Power On Reset and PHY Initialization
722 	 *
723 	 * 1. Wait for DCOK to assert (nothing to do)
724 	 *
725 	 * 2a. Write USBN0/1_CLK_CTL[POR] = 1 and
726 	 *     USBN0/1_CLK_CTL[HRST,PRST,HCLK_RST] = 0
727 	 */
728 	usbn_clk_ctl.u64 = cvmx_read64_uint64(CVMX_USBNX_CLK_CTL(usb->index));
729 	usbn_clk_ctl.s.por = 1;
730 	usbn_clk_ctl.s.hrst = 0;
731 	usbn_clk_ctl.s.prst = 0;
732 	usbn_clk_ctl.s.hclk_rst = 0;
733 	usbn_clk_ctl.s.enable = 0;
734 	/*
735 	 * 2b. Select the USB reference clock/crystal parameters by writing
736 	 *     appropriate values to USBN0/1_CLK_CTL[P_C_SEL, P_RTYPE, P_COM_ON]
737 	 */
738 	if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND) {
739 		/*
740 		 * The USB port uses 12/24/48MHz 2.5V board clock
741 		 * source at USB_XO. USB_XI should be tied to GND.
742 		 * Most Octeon evaluation boards require this setting
743 		 */
744 		if (OCTEON_IS_MODEL(OCTEON_CN3XXX) ||
745 		    OCTEON_IS_MODEL(OCTEON_CN56XX) ||
746 		    OCTEON_IS_MODEL(OCTEON_CN50XX))
747 			/* From CN56XX,CN50XX,CN31XX,CN30XX manuals */
748 			usbn_clk_ctl.s.p_rtype = 2; /* p_rclk=1 & p_xenbn=0 */
749 		else
750 			/* From CN52XX manual */
751 			usbn_clk_ctl.s.p_rtype = 1;
752 
753 		switch (usb->init_flags &
754 			CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK) {
755 		case CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ:
756 			usbn_clk_ctl.s.p_c_sel = 0;
757 			break;
758 		case CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ:
759 			usbn_clk_ctl.s.p_c_sel = 1;
760 			break;
761 		case CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ:
762 			usbn_clk_ctl.s.p_c_sel = 2;
763 			break;
764 		}
765 	} else {
766 		/*
767 		 * The USB port uses a 12MHz crystal as clock source
768 		 * at USB_XO and USB_XI
769 		 */
770 		if (OCTEON_IS_MODEL(OCTEON_CN3XXX))
771 			/* From CN31XX,CN30XX manual */
772 			usbn_clk_ctl.s.p_rtype = 3; /* p_rclk=1 & p_xenbn=1 */
773 		else
774 			/* From CN56XX,CN52XX,CN50XX manuals. */
775 			usbn_clk_ctl.s.p_rtype = 0;
776 
777 		usbn_clk_ctl.s.p_c_sel = 0;
778 	}
779 	/*
780 	 * 2c. Select the HCLK via writing USBN0/1_CLK_CTL[DIVIDE, DIVIDE2] and
781 	 *     setting USBN0/1_CLK_CTL[ENABLE] = 1. Divide the core clock down
782 	 *     such that USB is as close as possible to 125Mhz
783 	 */
784 	divisor = DIV_ROUND_UP(octeon_get_clock_rate(), 125000000);
785 	/* Lower than 4 doesn't seem to work properly */
786 	if (divisor < 4)
787 		divisor = 4;
788 	usbn_clk_ctl.s.divide = divisor;
789 	usbn_clk_ctl.s.divide2 = 0;
790 	cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
791 
792 	/* 2d. Write USBN0/1_CLK_CTL[HCLK_RST] = 1 */
793 	usbn_clk_ctl.s.hclk_rst = 1;
794 	cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
795 	/* 2e.  Wait 64 core-clock cycles for HCLK to stabilize */
796 	cvmx_wait(64);
797 	/*
798 	 * 3. Program the power-on reset field in the USBN clock-control
799 	 *    register:
800 	 *    USBN_CLK_CTL[POR] = 0
801 	 */
802 	usbn_clk_ctl.s.por = 0;
803 	cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
804 	/* 4. Wait 1 ms for PHY clock to start */
805 	mdelay(1);
806 	/*
807 	 * 5. Program the Reset input from automatic test equipment field in the
808 	 *    USBP control and status register:
809 	 *    USBN_USBP_CTL_STATUS[ATE_RESET] = 1
810 	 */
811 	usbn_usbp_ctl_status.u64 =
812 		cvmx_read64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index));
813 	usbn_usbp_ctl_status.s.ate_reset = 1;
814 	cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index),
815 			    usbn_usbp_ctl_status.u64);
816 	/* 6. Wait 10 cycles */
817 	cvmx_wait(10);
818 	/*
819 	 * 7. Clear ATE_RESET field in the USBN clock-control register:
820 	 *    USBN_USBP_CTL_STATUS[ATE_RESET] = 0
821 	 */
822 	usbn_usbp_ctl_status.s.ate_reset = 0;
823 	cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index),
824 			    usbn_usbp_ctl_status.u64);
825 	/*
826 	 * 8. Program the PHY reset field in the USBN clock-control register:
827 	 *    USBN_CLK_CTL[PRST] = 1
828 	 */
829 	usbn_clk_ctl.s.prst = 1;
830 	cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
831 	/*
832 	 * 9. Program the USBP control and status register to select host or
833 	 *    device mode. USBN_USBP_CTL_STATUS[HST_MODE] = 0 for host, = 1 for
834 	 *    device
835 	 */
836 	usbn_usbp_ctl_status.s.hst_mode = 0;
837 	cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index),
838 			    usbn_usbp_ctl_status.u64);
839 	/* 10. Wait 1 us */
840 	udelay(1);
841 	/*
842 	 * 11. Program the hreset_n field in the USBN clock-control register:
843 	 *     USBN_CLK_CTL[HRST] = 1
844 	 */
845 	usbn_clk_ctl.s.hrst = 1;
846 	cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
847 	/* 12. Proceed to USB core initialization */
848 	usbn_clk_ctl.s.enable = 1;
849 	cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
850 	udelay(1);
851 
852 	/*
853 	 * USB Core Initialization
854 	 *
855 	 * 1. Read USBC_GHWCFG1, USBC_GHWCFG2, USBC_GHWCFG3, USBC_GHWCFG4 to
856 	 *    determine USB core configuration parameters.
857 	 *
858 	 *    Nothing needed
859 	 *
860 	 * 2. Program the following fields in the global AHB configuration
861 	 *    register (USBC_GAHBCFG)
862 	 *    DMA mode, USBC_GAHBCFG[DMAEn]: 1 = DMA mode, 0 = slave mode
863 	 *    Burst length, USBC_GAHBCFG[HBSTLEN] = 0
864 	 *    Nonperiodic TxFIFO empty level (slave mode only),
865 	 *    USBC_GAHBCFG[NPTXFEMPLVL]
866 	 *    Periodic TxFIFO empty level (slave mode only),
867 	 *    USBC_GAHBCFG[PTXFEMPLVL]
868 	 *    Global interrupt mask, USBC_GAHBCFG[GLBLINTRMSK] = 1
869 	 */
870 	usbcx_gahbcfg.u32 = 0;
871 	usbcx_gahbcfg.s.dmaen = !(usb->init_flags &
872 				  CVMX_USB_INITIALIZE_FLAGS_NO_DMA);
873 	usbcx_gahbcfg.s.hbstlen = 0;
874 	usbcx_gahbcfg.s.nptxfemplvl = 1;
875 	usbcx_gahbcfg.s.ptxfemplvl = 1;
876 	usbcx_gahbcfg.s.glblintrmsk = 1;
877 	cvmx_usb_write_csr32(usb, CVMX_USBCX_GAHBCFG(usb->index),
878 			     usbcx_gahbcfg.u32);
879 
880 	/*
881 	 * 3. Program the following fields in USBC_GUSBCFG register.
882 	 *    HS/FS timeout calibration, USBC_GUSBCFG[TOUTCAL] = 0
883 	 *    ULPI DDR select, USBC_GUSBCFG[DDRSEL] = 0
884 	 *    USB turnaround time, USBC_GUSBCFG[USBTRDTIM] = 0x5
885 	 *    PHY low-power clock select, USBC_GUSBCFG[PHYLPWRCLKSEL] = 0
886 	 */
887 	usbcx_gusbcfg.u32 = cvmx_usb_read_csr32(usb,
888 						CVMX_USBCX_GUSBCFG(usb->index));
889 	usbcx_gusbcfg.s.toutcal = 0;
890 	usbcx_gusbcfg.s.ddrsel = 0;
891 	usbcx_gusbcfg.s.usbtrdtim = 0x5;
892 	usbcx_gusbcfg.s.phylpwrclksel = 0;
893 	cvmx_usb_write_csr32(usb, CVMX_USBCX_GUSBCFG(usb->index),
894 			     usbcx_gusbcfg.u32);
895 
896 	/*
897 	 * 4. The software must unmask the following bits in the USBC_GINTMSK
898 	 *    register.
899 	 *    OTG interrupt mask, USBC_GINTMSK[OTGINTMSK] = 1
900 	 *    Mode mismatch interrupt mask, USBC_GINTMSK[MODEMISMSK] = 1
901 	 */
902 	usbcx_gintmsk.u32 = cvmx_usb_read_csr32(usb,
903 						CVMX_USBCX_GINTMSK(usb->index));
904 	usbcx_gintmsk.s.otgintmsk = 1;
905 	usbcx_gintmsk.s.modemismsk = 1;
906 	usbcx_gintmsk.s.hchintmsk = 1;
907 	usbcx_gintmsk.s.sofmsk = 0;
908 	/* We need RX FIFO interrupts if we don't have DMA */
909 	if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
910 		usbcx_gintmsk.s.rxflvlmsk = 1;
911 	cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTMSK(usb->index),
912 			     usbcx_gintmsk.u32);
913 
914 	/*
915 	 * Disable all channel interrupts. We'll enable them per channel later.
916 	 */
917 	for (channel = 0; channel < 8; channel++)
918 		cvmx_usb_write_csr32(usb,
919 				     CVMX_USBCX_HCINTMSKX(channel, usb->index),
920 				     0);
921 
922 	/*
923 	 * Host Port Initialization
924 	 *
925 	 * 1. Program the host-port interrupt-mask field to unmask,
926 	 *    USBC_GINTMSK[PRTINT] = 1
927 	 */
928 	USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
929 			cvmx_usbcx_gintmsk, prtintmsk, 1);
930 	USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
931 			cvmx_usbcx_gintmsk, disconnintmsk, 1);
932 
933 	/*
934 	 * 2. Program the USBC_HCFG register to select full-speed host
935 	 *    or high-speed host.
936 	 */
937 	usbcx_hcfg.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HCFG(usb->index));
938 	usbcx_hcfg.s.fslssupp = 0;
939 	usbcx_hcfg.s.fslspclksel = 0;
940 	cvmx_usb_write_csr32(usb, CVMX_USBCX_HCFG(usb->index), usbcx_hcfg.u32);
941 
942 	cvmx_fifo_setup(usb);
943 
944 	/*
945 	 * If the controller is getting port events right after the reset, it
946 	 * means the initialization failed. Try resetting the controller again
947 	 * in such case. This is seen to happen after cold boot on DSR-1000N.
948 	 */
949 	usbc_gintsts.u32 = cvmx_usb_read_csr32(usb,
950 					       CVMX_USBCX_GINTSTS(usb->index));
951 	cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTSTS(usb->index),
952 			     usbc_gintsts.u32);
953 	dev_dbg(dev, "gintsts after reset: 0x%x\n", (int)usbc_gintsts.u32);
954 	if (!usbc_gintsts.s.disconnint && !usbc_gintsts.s.prtint)
955 		return 0;
956 	if (retries++ >= 5)
957 		return -EAGAIN;
958 	dev_info(dev, "controller reset failed (gintsts=0x%x) - retrying\n",
959 		 (int)usbc_gintsts.u32);
960 	msleep(50);
961 	cvmx_usb_shutdown(usb);
962 	msleep(50);
963 	goto retry;
964 }
965 
966 /**
967  * Reset a USB port. After this call succeeds, the USB port is
968  * online and servicing requests.
969  *
970  * @usb: USB device state populated by cvmx_usb_initialize().
971  */
cvmx_usb_reset_port(struct cvmx_usb_state * usb)972 static void cvmx_usb_reset_port(struct cvmx_usb_state *usb)
973 {
974 	usb->usbcx_hprt.u32 = cvmx_usb_read_csr32(usb,
975 						  CVMX_USBCX_HPRT(usb->index));
976 
977 	/* Program the port reset bit to start the reset process */
978 	USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt,
979 			prtrst, 1);
980 
981 	/*
982 	 * Wait at least 50ms (high speed), or 10ms (full speed) for the reset
983 	 * process to complete.
984 	 */
985 	mdelay(50);
986 
987 	/* Program the port reset bit to 0, USBC_HPRT[PRTRST] = 0 */
988 	USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt,
989 			prtrst, 0);
990 
991 	/*
992 	 * Read the port speed field to get the enumerated speed,
993 	 * USBC_HPRT[PRTSPD].
994 	 */
995 	usb->usbcx_hprt.u32 = cvmx_usb_read_csr32(usb,
996 						  CVMX_USBCX_HPRT(usb->index));
997 }
998 
999 
1000 /**
1001  * Disable a USB port. After this call the USB port will not
1002  * generate data transfers and will not generate events.
1003  * Transactions in process will fail and call their
1004  * associated callbacks.
1005  *
1006  * @usb: USB device state populated by cvmx_usb_initialize().
1007  *
1008  * Returns: 0 or a negative error code.
1009  */
cvmx_usb_disable(struct cvmx_usb_state * usb)1010 static int cvmx_usb_disable(struct cvmx_usb_state *usb)
1011 {
1012 	/* Disable the port */
1013 	USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt,
1014 			prtena, 1);
1015 	return 0;
1016 }
1017 
1018 
1019 /**
1020  * Get the current state of the USB port. Use this call to
1021  * determine if the usb port has anything connected, is enabled,
1022  * or has some sort of error condition. The return value of this
1023  * call has "changed" bits to signal of the value of some fields
1024  * have changed between calls.
1025  *
1026  * @usb: USB device state populated by cvmx_usb_initialize().
1027  *
1028  * Returns: Port status information
1029  */
cvmx_usb_get_status(struct cvmx_usb_state * usb)1030 static struct cvmx_usb_port_status cvmx_usb_get_status(
1031 		struct cvmx_usb_state *usb)
1032 {
1033 	union cvmx_usbcx_hprt usbc_hprt;
1034 	struct cvmx_usb_port_status result;
1035 
1036 	memset(&result, 0, sizeof(result));
1037 
1038 	usbc_hprt.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HPRT(usb->index));
1039 	result.port_enabled = usbc_hprt.s.prtena;
1040 	result.port_over_current = usbc_hprt.s.prtovrcurract;
1041 	result.port_powered = usbc_hprt.s.prtpwr;
1042 	result.port_speed = usbc_hprt.s.prtspd;
1043 	result.connected = usbc_hprt.s.prtconnsts;
1044 	result.connect_change =
1045 		(result.connected != usb->port_status.connected);
1046 
1047 	return result;
1048 }
1049 
1050 /**
1051  * Open a virtual pipe between the host and a USB device. A pipe
1052  * must be opened before data can be transferred between a device
1053  * and Octeon.
1054  *
1055  * @usb:	     USB device state populated by cvmx_usb_initialize().
1056  * @device_addr:
1057  *		     USB device address to open the pipe to
1058  *		     (0-127).
1059  * @endpoint_num:
1060  *		     USB endpoint number to open the pipe to
1061  *		     (0-15).
1062  * @device_speed:
1063  *		     The speed of the device the pipe is going
1064  *		     to. This must match the device's speed,
1065  *		     which may be different than the port speed.
1066  * @max_packet:	     The maximum packet length the device can
1067  *		     transmit/receive (low speed=0-8, full
1068  *		     speed=0-1023, high speed=0-1024). This value
1069  *		     comes from the standard endpoint descriptor
1070  *		     field wMaxPacketSize bits <10:0>.
1071  * @transfer_type:
1072  *		     The type of transfer this pipe is for.
1073  * @transfer_dir:
1074  *		     The direction the pipe is in. This is not
1075  *		     used for control pipes.
1076  * @interval:	     For ISOCHRONOUS and INTERRUPT transfers,
1077  *		     this is how often the transfer is scheduled
1078  *		     for. All other transfers should specify
1079  *		     zero. The units are in frames (8000/sec at
1080  *		     high speed, 1000/sec for full speed).
1081  * @multi_count:
1082  *		     For high speed devices, this is the maximum
1083  *		     allowed number of packet per microframe.
1084  *		     Specify zero for non high speed devices. This
1085  *		     value comes from the standard endpoint descriptor
1086  *		     field wMaxPacketSize bits <12:11>.
1087  * @hub_device_addr:
1088  *		     Hub device address this device is connected
1089  *		     to. Devices connected directly to Octeon
1090  *		     use zero. This is only used when the device
1091  *		     is full/low speed behind a high speed hub.
1092  *		     The address will be of the high speed hub,
1093  *		     not and full speed hubs after it.
1094  * @hub_port:	     Which port on the hub the device is
1095  *		     connected. Use zero for devices connected
1096  *		     directly to Octeon. Like hub_device_addr,
1097  *		     this is only used for full/low speed
1098  *		     devices behind a high speed hub.
1099  *
1100  * Returns: A non-NULL value is a pipe. NULL means an error.
1101  */
cvmx_usb_open_pipe(struct cvmx_usb_state * usb,int device_addr,int endpoint_num,enum cvmx_usb_speed device_speed,int max_packet,enum cvmx_usb_transfer transfer_type,enum cvmx_usb_direction transfer_dir,int interval,int multi_count,int hub_device_addr,int hub_port)1102 static struct cvmx_usb_pipe *cvmx_usb_open_pipe(struct cvmx_usb_state *usb,
1103 						int device_addr,
1104 						int endpoint_num,
1105 						enum cvmx_usb_speed
1106 							device_speed,
1107 						int max_packet,
1108 						enum cvmx_usb_transfer
1109 							transfer_type,
1110 						enum cvmx_usb_direction
1111 							transfer_dir,
1112 						int interval, int multi_count,
1113 						int hub_device_addr,
1114 						int hub_port)
1115 {
1116 	struct cvmx_usb_pipe *pipe;
1117 
1118 	pipe = kzalloc(sizeof(*pipe), GFP_ATOMIC);
1119 	if (!pipe)
1120 		return NULL;
1121 	if ((device_speed == CVMX_USB_SPEED_HIGH) &&
1122 		(transfer_dir == CVMX_USB_DIRECTION_OUT) &&
1123 		(transfer_type == CVMX_USB_TRANSFER_BULK))
1124 		pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING;
1125 	pipe->device_addr = device_addr;
1126 	pipe->endpoint_num = endpoint_num;
1127 	pipe->device_speed = device_speed;
1128 	pipe->max_packet = max_packet;
1129 	pipe->transfer_type = transfer_type;
1130 	pipe->transfer_dir = transfer_dir;
1131 	INIT_LIST_HEAD(&pipe->transactions);
1132 
1133 	/*
1134 	 * All pipes use interval to rate limit NAK processing. Force an
1135 	 * interval if one wasn't supplied
1136 	 */
1137 	if (!interval)
1138 		interval = 1;
1139 	if (cvmx_usb_pipe_needs_split(usb, pipe)) {
1140 		pipe->interval = interval*8;
1141 		/* Force start splits to be schedule on uFrame 0 */
1142 		pipe->next_tx_frame = ((usb->frame_number+7)&~7) +
1143 					pipe->interval;
1144 	} else {
1145 		pipe->interval = interval;
1146 		pipe->next_tx_frame = usb->frame_number + pipe->interval;
1147 	}
1148 	pipe->multi_count = multi_count;
1149 	pipe->hub_device_addr = hub_device_addr;
1150 	pipe->hub_port = hub_port;
1151 	pipe->pid_toggle = 0;
1152 	pipe->split_sc_frame = -1;
1153 	list_add_tail(&pipe->node, &usb->idle_pipes);
1154 
1155 	/*
1156 	 * We don't need to tell the hardware about this pipe yet since
1157 	 * it doesn't have any submitted requests
1158 	 */
1159 
1160 	return pipe;
1161 }
1162 
1163 
1164 /**
1165  * Poll the RX FIFOs and remove data as needed. This function is only used
1166  * in non DMA mode. It is very important that this function be called quickly
1167  * enough to prevent FIFO overflow.
1168  *
1169  * @usb:	USB device state populated by cvmx_usb_initialize().
1170  */
cvmx_usb_poll_rx_fifo(struct cvmx_usb_state * usb)1171 static void cvmx_usb_poll_rx_fifo(struct cvmx_usb_state *usb)
1172 {
1173 	union cvmx_usbcx_grxstsph rx_status;
1174 	int channel;
1175 	int bytes;
1176 	uint64_t address;
1177 	uint32_t *ptr;
1178 
1179 	rx_status.u32 = cvmx_usb_read_csr32(usb,
1180 					    CVMX_USBCX_GRXSTSPH(usb->index));
1181 	/* Only read data if IN data is there */
1182 	if (rx_status.s.pktsts != 2)
1183 		return;
1184 	/* Check if no data is available */
1185 	if (!rx_status.s.bcnt)
1186 		return;
1187 
1188 	channel = rx_status.s.chnum;
1189 	bytes = rx_status.s.bcnt;
1190 	if (!bytes)
1191 		return;
1192 
1193 	/* Get where the DMA engine would have written this data */
1194 	address = cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index) +
1195 				     channel * 8);
1196 
1197 	ptr = cvmx_phys_to_ptr(address);
1198 	cvmx_write64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index) + channel * 8,
1199 			    address + bytes);
1200 
1201 	/* Loop writing the FIFO data for this packet into memory */
1202 	while (bytes > 0) {
1203 		*ptr++ = cvmx_usb_read_csr32(usb,
1204 					USB_FIFO_ADDRESS(channel, usb->index));
1205 		bytes -= 4;
1206 	}
1207 	CVMX_SYNCW;
1208 }
1209 
1210 
1211 /**
1212  * Fill the TX hardware fifo with data out of the software
1213  * fifos
1214  *
1215  * @usb:	    USB device state populated by cvmx_usb_initialize().
1216  * @fifo:	    Software fifo to use
1217  * @available:	    Amount of space in the hardware fifo
1218  *
1219  * Returns: Non zero if the hardware fifo was too small and needs
1220  *	    to be serviced again.
1221  */
cvmx_usb_fill_tx_hw(struct cvmx_usb_state * usb,struct cvmx_usb_tx_fifo * fifo,int available)1222 static int cvmx_usb_fill_tx_hw(struct cvmx_usb_state *usb,
1223 			       struct cvmx_usb_tx_fifo *fifo, int available)
1224 {
1225 	/*
1226 	 * We're done either when there isn't anymore space or the software FIFO
1227 	 * is empty
1228 	 */
1229 	while (available && (fifo->head != fifo->tail)) {
1230 		int i = fifo->tail;
1231 		const uint32_t *ptr = cvmx_phys_to_ptr(fifo->entry[i].address);
1232 		uint64_t csr_address = USB_FIFO_ADDRESS(fifo->entry[i].channel,
1233 							usb->index) ^ 4;
1234 		int words = available;
1235 
1236 		/* Limit the amount of data to waht the SW fifo has */
1237 		if (fifo->entry[i].size <= available) {
1238 			words = fifo->entry[i].size;
1239 			fifo->tail++;
1240 			if (fifo->tail > MAX_CHANNELS)
1241 				fifo->tail = 0;
1242 		}
1243 
1244 		/* Update the next locations and counts */
1245 		available -= words;
1246 		fifo->entry[i].address += words * 4;
1247 		fifo->entry[i].size -= words;
1248 
1249 		/*
1250 		 * Write the HW fifo data. The read every three writes is due
1251 		 * to an errata on CN3XXX chips
1252 		 */
1253 		while (words > 3) {
1254 			cvmx_write64_uint32(csr_address, *ptr++);
1255 			cvmx_write64_uint32(csr_address, *ptr++);
1256 			cvmx_write64_uint32(csr_address, *ptr++);
1257 			cvmx_read64_uint64(
1258 					CVMX_USBNX_DMA0_INB_CHN0(usb->index));
1259 			words -= 3;
1260 		}
1261 		cvmx_write64_uint32(csr_address, *ptr++);
1262 		if (--words) {
1263 			cvmx_write64_uint32(csr_address, *ptr++);
1264 			if (--words)
1265 				cvmx_write64_uint32(csr_address, *ptr++);
1266 		}
1267 		cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index));
1268 	}
1269 	return fifo->head != fifo->tail;
1270 }
1271 
1272 
1273 /**
1274  * Check the hardware FIFOs and fill them as needed
1275  *
1276  * @usb:	USB device state populated by cvmx_usb_initialize().
1277  */
cvmx_usb_poll_tx_fifo(struct cvmx_usb_state * usb)1278 static void cvmx_usb_poll_tx_fifo(struct cvmx_usb_state *usb)
1279 {
1280 	if (usb->periodic.head != usb->periodic.tail) {
1281 		union cvmx_usbcx_hptxsts tx_status;
1282 
1283 		tx_status.u32 = cvmx_usb_read_csr32(usb,
1284 					CVMX_USBCX_HPTXSTS(usb->index));
1285 		if (cvmx_usb_fill_tx_hw(usb, &usb->periodic,
1286 					tx_status.s.ptxfspcavail))
1287 			USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1288 					cvmx_usbcx_gintmsk, ptxfempmsk, 1);
1289 		else
1290 			USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1291 					cvmx_usbcx_gintmsk, ptxfempmsk, 0);
1292 	}
1293 
1294 	if (usb->nonperiodic.head != usb->nonperiodic.tail) {
1295 		union cvmx_usbcx_gnptxsts tx_status;
1296 
1297 		tx_status.u32 = cvmx_usb_read_csr32(usb,
1298 					CVMX_USBCX_GNPTXSTS(usb->index));
1299 		if (cvmx_usb_fill_tx_hw(usb, &usb->nonperiodic,
1300 					tx_status.s.nptxfspcavail))
1301 			USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1302 					cvmx_usbcx_gintmsk, nptxfempmsk, 1);
1303 		else
1304 			USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1305 					cvmx_usbcx_gintmsk, nptxfempmsk, 0);
1306 	}
1307 }
1308 
1309 
1310 /**
1311  * Fill the TX FIFO with an outgoing packet
1312  *
1313  * @usb:	  USB device state populated by cvmx_usb_initialize().
1314  * @channel:	  Channel number to get packet from
1315  */
cvmx_usb_fill_tx_fifo(struct cvmx_usb_state * usb,int channel)1316 static void cvmx_usb_fill_tx_fifo(struct cvmx_usb_state *usb, int channel)
1317 {
1318 	union cvmx_usbcx_hccharx hcchar;
1319 	union cvmx_usbcx_hcspltx usbc_hcsplt;
1320 	union cvmx_usbcx_hctsizx usbc_hctsiz;
1321 	struct cvmx_usb_tx_fifo *fifo;
1322 
1323 	/* We only need to fill data on outbound channels */
1324 	hcchar.u32 = cvmx_usb_read_csr32(usb,
1325 			CVMX_USBCX_HCCHARX(channel, usb->index));
1326 	if (hcchar.s.epdir != CVMX_USB_DIRECTION_OUT)
1327 		return;
1328 
1329 	/* OUT Splits only have data on the start and not the complete */
1330 	usbc_hcsplt.u32 = cvmx_usb_read_csr32(usb,
1331 				CVMX_USBCX_HCSPLTX(channel, usb->index));
1332 	if (usbc_hcsplt.s.spltena && usbc_hcsplt.s.compsplt)
1333 		return;
1334 
1335 	/*
1336 	 * Find out how many bytes we need to fill and convert it into 32bit
1337 	 * words.
1338 	 */
1339 	usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb,
1340 				CVMX_USBCX_HCTSIZX(channel, usb->index));
1341 	if (!usbc_hctsiz.s.xfersize)
1342 		return;
1343 
1344 	if ((hcchar.s.eptype == CVMX_USB_TRANSFER_INTERRUPT) ||
1345 		(hcchar.s.eptype == CVMX_USB_TRANSFER_ISOCHRONOUS))
1346 		fifo = &usb->periodic;
1347 	else
1348 		fifo = &usb->nonperiodic;
1349 
1350 	fifo->entry[fifo->head].channel = channel;
1351 	fifo->entry[fifo->head].address =
1352 		cvmx_read64_uint64(CVMX_USBNX_DMA0_OUTB_CHN0(usb->index) +
1353 				   channel * 8);
1354 	fifo->entry[fifo->head].size = (usbc_hctsiz.s.xfersize+3)>>2;
1355 	fifo->head++;
1356 	if (fifo->head > MAX_CHANNELS)
1357 		fifo->head = 0;
1358 
1359 	cvmx_usb_poll_tx_fifo(usb);
1360 }
1361 
1362 /**
1363  * Perform channel specific setup for Control transactions. All
1364  * the generic stuff will already have been done in cvmx_usb_start_channel().
1365  *
1366  * @usb:	  USB device state populated by cvmx_usb_initialize().
1367  * @channel:	  Channel to setup
1368  * @pipe:	  Pipe for control transaction
1369  */
cvmx_usb_start_channel_control(struct cvmx_usb_state * usb,int channel,struct cvmx_usb_pipe * pipe)1370 static void cvmx_usb_start_channel_control(struct cvmx_usb_state *usb,
1371 					   int channel,
1372 					   struct cvmx_usb_pipe *pipe)
1373 {
1374 	struct octeon_hcd *priv = cvmx_usb_to_octeon(usb);
1375 	struct usb_hcd *hcd = octeon_to_hcd(priv);
1376 	struct device *dev = hcd->self.controller;
1377 	struct cvmx_usb_transaction *transaction =
1378 		list_first_entry(&pipe->transactions, typeof(*transaction),
1379 				 node);
1380 	struct usb_ctrlrequest *header =
1381 		cvmx_phys_to_ptr(transaction->control_header);
1382 	int bytes_to_transfer = transaction->buffer_length -
1383 		transaction->actual_bytes;
1384 	int packets_to_transfer;
1385 	union cvmx_usbcx_hctsizx usbc_hctsiz;
1386 
1387 	usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb,
1388 				CVMX_USBCX_HCTSIZX(channel, usb->index));
1389 
1390 	switch (transaction->stage) {
1391 	case CVMX_USB_STAGE_NON_CONTROL:
1392 	case CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE:
1393 		dev_err(dev, "%s: ERROR - Non control stage\n", __func__);
1394 		break;
1395 	case CVMX_USB_STAGE_SETUP:
1396 		usbc_hctsiz.s.pid = 3; /* Setup */
1397 		bytes_to_transfer = sizeof(*header);
1398 		/* All Control operations start with a setup going OUT */
1399 		USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1400 				cvmx_usbcx_hccharx, epdir,
1401 				CVMX_USB_DIRECTION_OUT);
1402 		/*
1403 		 * Setup send the control header instead of the buffer data. The
1404 		 * buffer data will be used in the next stage
1405 		 */
1406 		cvmx_write64_uint64(CVMX_USBNX_DMA0_OUTB_CHN0(usb->index) +
1407 					channel * 8,
1408 				    transaction->control_header);
1409 		break;
1410 	case CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE:
1411 		usbc_hctsiz.s.pid = 3; /* Setup */
1412 		bytes_to_transfer = 0;
1413 		/* All Control operations start with a setup going OUT */
1414 		USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1415 				cvmx_usbcx_hccharx, epdir,
1416 				CVMX_USB_DIRECTION_OUT);
1417 
1418 		USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index),
1419 				cvmx_usbcx_hcspltx, compsplt, 1);
1420 		break;
1421 	case CVMX_USB_STAGE_DATA:
1422 		usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1423 		if (cvmx_usb_pipe_needs_split(usb, pipe)) {
1424 			if (header->bRequestType & USB_DIR_IN)
1425 				bytes_to_transfer = 0;
1426 			else if (bytes_to_transfer > pipe->max_packet)
1427 				bytes_to_transfer = pipe->max_packet;
1428 		}
1429 		USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1430 				cvmx_usbcx_hccharx, epdir,
1431 				((header->bRequestType & USB_DIR_IN) ?
1432 					CVMX_USB_DIRECTION_IN :
1433 					CVMX_USB_DIRECTION_OUT));
1434 		break;
1435 	case CVMX_USB_STAGE_DATA_SPLIT_COMPLETE:
1436 		usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1437 		if (!(header->bRequestType & USB_DIR_IN))
1438 			bytes_to_transfer = 0;
1439 		USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1440 				cvmx_usbcx_hccharx, epdir,
1441 				((header->bRequestType & USB_DIR_IN) ?
1442 					CVMX_USB_DIRECTION_IN :
1443 					CVMX_USB_DIRECTION_OUT));
1444 		USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index),
1445 				cvmx_usbcx_hcspltx, compsplt, 1);
1446 		break;
1447 	case CVMX_USB_STAGE_STATUS:
1448 		usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1449 		bytes_to_transfer = 0;
1450 		USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1451 				cvmx_usbcx_hccharx, epdir,
1452 				((header->bRequestType & USB_DIR_IN) ?
1453 					CVMX_USB_DIRECTION_OUT :
1454 					CVMX_USB_DIRECTION_IN));
1455 		break;
1456 	case CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE:
1457 		usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1458 		bytes_to_transfer = 0;
1459 		USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1460 				cvmx_usbcx_hccharx, epdir,
1461 				((header->bRequestType & USB_DIR_IN) ?
1462 					CVMX_USB_DIRECTION_OUT :
1463 					CVMX_USB_DIRECTION_IN));
1464 		USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index),
1465 				cvmx_usbcx_hcspltx, compsplt, 1);
1466 		break;
1467 	}
1468 
1469 	/*
1470 	 * Make sure the transfer never exceeds the byte limit of the hardware.
1471 	 * Further bytes will be sent as continued transactions
1472 	 */
1473 	if (bytes_to_transfer > MAX_TRANSFER_BYTES) {
1474 		/* Round MAX_TRANSFER_BYTES to a multiple of out packet size */
1475 		bytes_to_transfer = MAX_TRANSFER_BYTES / pipe->max_packet;
1476 		bytes_to_transfer *= pipe->max_packet;
1477 	}
1478 
1479 	/*
1480 	 * Calculate the number of packets to transfer. If the length is zero
1481 	 * we still need to transfer one packet
1482 	 */
1483 	packets_to_transfer = DIV_ROUND_UP(bytes_to_transfer,
1484 					   pipe->max_packet);
1485 	if (packets_to_transfer == 0)
1486 		packets_to_transfer = 1;
1487 	else if ((packets_to_transfer > 1) &&
1488 			(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)) {
1489 		/*
1490 		 * Limit to one packet when not using DMA. Channels must be
1491 		 * restarted between every packet for IN transactions, so there
1492 		 * is no reason to do multiple packets in a row
1493 		 */
1494 		packets_to_transfer = 1;
1495 		bytes_to_transfer = packets_to_transfer * pipe->max_packet;
1496 	} else if (packets_to_transfer > MAX_TRANSFER_PACKETS) {
1497 		/*
1498 		 * Limit the number of packet and data transferred to what the
1499 		 * hardware can handle
1500 		 */
1501 		packets_to_transfer = MAX_TRANSFER_PACKETS;
1502 		bytes_to_transfer = packets_to_transfer * pipe->max_packet;
1503 	}
1504 
1505 	usbc_hctsiz.s.xfersize = bytes_to_transfer;
1506 	usbc_hctsiz.s.pktcnt = packets_to_transfer;
1507 
1508 	cvmx_usb_write_csr32(usb, CVMX_USBCX_HCTSIZX(channel, usb->index),
1509 			     usbc_hctsiz.u32);
1510 }
1511 
1512 
1513 /**
1514  * Start a channel to perform the pipe's head transaction
1515  *
1516  * @usb:	  USB device state populated by cvmx_usb_initialize().
1517  * @channel:	  Channel to setup
1518  * @pipe:	  Pipe to start
1519  */
cvmx_usb_start_channel(struct cvmx_usb_state * usb,int channel,struct cvmx_usb_pipe * pipe)1520 static void cvmx_usb_start_channel(struct cvmx_usb_state *usb, int channel,
1521 				   struct cvmx_usb_pipe *pipe)
1522 {
1523 	struct cvmx_usb_transaction *transaction =
1524 		list_first_entry(&pipe->transactions, typeof(*transaction),
1525 				 node);
1526 
1527 	/* Make sure all writes to the DMA region get flushed */
1528 	CVMX_SYNCW;
1529 
1530 	/* Attach the channel to the pipe */
1531 	usb->pipe_for_channel[channel] = pipe;
1532 	pipe->channel = channel;
1533 	pipe->flags |= CVMX_USB_PIPE_FLAGS_SCHEDULED;
1534 
1535 	/* Mark this channel as in use */
1536 	usb->idle_hardware_channels &= ~(1<<channel);
1537 
1538 	/* Enable the channel interrupt bits */
1539 	{
1540 		union cvmx_usbcx_hcintx usbc_hcint;
1541 		union cvmx_usbcx_hcintmskx usbc_hcintmsk;
1542 		union cvmx_usbcx_haintmsk usbc_haintmsk;
1543 
1544 		/* Clear all channel status bits */
1545 		usbc_hcint.u32 = cvmx_usb_read_csr32(usb,
1546 					CVMX_USBCX_HCINTX(channel, usb->index));
1547 
1548 		cvmx_usb_write_csr32(usb,
1549 				     CVMX_USBCX_HCINTX(channel, usb->index),
1550 				     usbc_hcint.u32);
1551 
1552 		usbc_hcintmsk.u32 = 0;
1553 		usbc_hcintmsk.s.chhltdmsk = 1;
1554 		if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) {
1555 			/*
1556 			 * Channels need these extra interrupts when we aren't
1557 			 * in DMA mode.
1558 			 */
1559 			usbc_hcintmsk.s.datatglerrmsk = 1;
1560 			usbc_hcintmsk.s.frmovrunmsk = 1;
1561 			usbc_hcintmsk.s.bblerrmsk = 1;
1562 			usbc_hcintmsk.s.xacterrmsk = 1;
1563 			if (cvmx_usb_pipe_needs_split(usb, pipe)) {
1564 				/*
1565 				 * Splits don't generate xfercompl, so we need
1566 				 * ACK and NYET.
1567 				 */
1568 				usbc_hcintmsk.s.nyetmsk = 1;
1569 				usbc_hcintmsk.s.ackmsk = 1;
1570 			}
1571 			usbc_hcintmsk.s.nakmsk = 1;
1572 			usbc_hcintmsk.s.stallmsk = 1;
1573 			usbc_hcintmsk.s.xfercomplmsk = 1;
1574 		}
1575 		cvmx_usb_write_csr32(usb,
1576 				CVMX_USBCX_HCINTMSKX(channel, usb->index),
1577 				usbc_hcintmsk.u32);
1578 
1579 		/* Enable the channel interrupt to propagate */
1580 		usbc_haintmsk.u32 = cvmx_usb_read_csr32(usb,
1581 					CVMX_USBCX_HAINTMSK(usb->index));
1582 		usbc_haintmsk.s.haintmsk |= 1<<channel;
1583 		cvmx_usb_write_csr32(usb, CVMX_USBCX_HAINTMSK(usb->index),
1584 				     usbc_haintmsk.u32);
1585 	}
1586 
1587 	/* Setup the location the DMA engine uses. */
1588 	{
1589 		uint64_t reg;
1590 		uint64_t dma_address = transaction->buffer +
1591 					transaction->actual_bytes;
1592 
1593 		if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
1594 			dma_address = transaction->buffer +
1595 					transaction->iso_packets[0].offset +
1596 					transaction->actual_bytes;
1597 
1598 		if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT)
1599 			reg = CVMX_USBNX_DMA0_OUTB_CHN0(usb->index);
1600 		else
1601 			reg = CVMX_USBNX_DMA0_INB_CHN0(usb->index);
1602 		cvmx_write64_uint64(reg + channel * 8, dma_address);
1603 	}
1604 
1605 	/* Setup both the size of the transfer and the SPLIT characteristics */
1606 	{
1607 		union cvmx_usbcx_hcspltx usbc_hcsplt = {.u32 = 0};
1608 		union cvmx_usbcx_hctsizx usbc_hctsiz = {.u32 = 0};
1609 		int packets_to_transfer;
1610 		int bytes_to_transfer = transaction->buffer_length -
1611 			transaction->actual_bytes;
1612 
1613 		/*
1614 		 * ISOCHRONOUS transactions store each individual transfer size
1615 		 * in the packet structure, not the global buffer_length
1616 		 */
1617 		if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
1618 			bytes_to_transfer =
1619 				transaction->iso_packets[0].length -
1620 				transaction->actual_bytes;
1621 
1622 		/*
1623 		 * We need to do split transactions when we are talking to non
1624 		 * high speed devices that are behind a high speed hub
1625 		 */
1626 		if (cvmx_usb_pipe_needs_split(usb, pipe)) {
1627 			/*
1628 			 * On the start split phase (stage is even) record the
1629 			 * frame number we will need to send the split complete.
1630 			 * We only store the lower two bits since the time ahead
1631 			 * can only be two frames
1632 			 */
1633 			if ((transaction->stage&1) == 0) {
1634 				if (transaction->type == CVMX_USB_TRANSFER_BULK)
1635 					pipe->split_sc_frame =
1636 						(usb->frame_number + 1) & 0x7f;
1637 				else
1638 					pipe->split_sc_frame =
1639 						(usb->frame_number + 2) & 0x7f;
1640 			} else
1641 				pipe->split_sc_frame = -1;
1642 
1643 			usbc_hcsplt.s.spltena = 1;
1644 			usbc_hcsplt.s.hubaddr = pipe->hub_device_addr;
1645 			usbc_hcsplt.s.prtaddr = pipe->hub_port;
1646 			usbc_hcsplt.s.compsplt = (transaction->stage ==
1647 				CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE);
1648 
1649 			/*
1650 			 * SPLIT transactions can only ever transmit one data
1651 			 * packet so limit the transfer size to the max packet
1652 			 * size
1653 			 */
1654 			if (bytes_to_transfer > pipe->max_packet)
1655 				bytes_to_transfer = pipe->max_packet;
1656 
1657 			/*
1658 			 * ISOCHRONOUS OUT splits are unique in that they limit
1659 			 * data transfers to 188 byte chunks representing the
1660 			 * begin/middle/end of the data or all
1661 			 */
1662 			if (!usbc_hcsplt.s.compsplt &&
1663 				(pipe->transfer_dir ==
1664 				 CVMX_USB_DIRECTION_OUT) &&
1665 				(pipe->transfer_type ==
1666 				 CVMX_USB_TRANSFER_ISOCHRONOUS)) {
1667 				/*
1668 				 * Clear the split complete frame number as
1669 				 * there isn't going to be a split complete
1670 				 */
1671 				pipe->split_sc_frame = -1;
1672 				/*
1673 				 * See if we've started this transfer and sent
1674 				 * data
1675 				 */
1676 				if (transaction->actual_bytes == 0) {
1677 					/*
1678 					 * Nothing sent yet, this is either a
1679 					 * begin or the entire payload
1680 					 */
1681 					if (bytes_to_transfer <= 188)
1682 						/* Entire payload in one go */
1683 						usbc_hcsplt.s.xactpos = 3;
1684 					else
1685 						/* First part of payload */
1686 						usbc_hcsplt.s.xactpos = 2;
1687 				} else {
1688 					/*
1689 					 * Continuing the previous data, we must
1690 					 * either be in the middle or at the end
1691 					 */
1692 					if (bytes_to_transfer <= 188)
1693 						/* End of payload */
1694 						usbc_hcsplt.s.xactpos = 1;
1695 					else
1696 						/* Middle of payload */
1697 						usbc_hcsplt.s.xactpos = 0;
1698 				}
1699 				/*
1700 				 * Again, the transfer size is limited to 188
1701 				 * bytes
1702 				 */
1703 				if (bytes_to_transfer > 188)
1704 					bytes_to_transfer = 188;
1705 			}
1706 		}
1707 
1708 		/*
1709 		 * Make sure the transfer never exceeds the byte limit of the
1710 		 * hardware. Further bytes will be sent as continued
1711 		 * transactions
1712 		 */
1713 		if (bytes_to_transfer > MAX_TRANSFER_BYTES) {
1714 			/*
1715 			 * Round MAX_TRANSFER_BYTES to a multiple of out packet
1716 			 * size
1717 			 */
1718 			bytes_to_transfer = MAX_TRANSFER_BYTES /
1719 				pipe->max_packet;
1720 			bytes_to_transfer *= pipe->max_packet;
1721 		}
1722 
1723 		/*
1724 		 * Calculate the number of packets to transfer. If the length is
1725 		 * zero we still need to transfer one packet
1726 		 */
1727 		packets_to_transfer =
1728 			DIV_ROUND_UP(bytes_to_transfer, pipe->max_packet);
1729 		if (packets_to_transfer == 0)
1730 			packets_to_transfer = 1;
1731 		else if ((packets_to_transfer > 1) &&
1732 				(usb->init_flags &
1733 				 CVMX_USB_INITIALIZE_FLAGS_NO_DMA)) {
1734 			/*
1735 			 * Limit to one packet when not using DMA. Channels must
1736 			 * be restarted between every packet for IN
1737 			 * transactions, so there is no reason to do multiple
1738 			 * packets in a row
1739 			 */
1740 			packets_to_transfer = 1;
1741 			bytes_to_transfer = packets_to_transfer *
1742 				pipe->max_packet;
1743 		} else if (packets_to_transfer > MAX_TRANSFER_PACKETS) {
1744 			/*
1745 			 * Limit the number of packet and data transferred to
1746 			 * what the hardware can handle
1747 			 */
1748 			packets_to_transfer = MAX_TRANSFER_PACKETS;
1749 			bytes_to_transfer = packets_to_transfer *
1750 				pipe->max_packet;
1751 		}
1752 
1753 		usbc_hctsiz.s.xfersize = bytes_to_transfer;
1754 		usbc_hctsiz.s.pktcnt = packets_to_transfer;
1755 
1756 		/* Update the DATA0/DATA1 toggle */
1757 		usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1758 		/*
1759 		 * High speed pipes may need a hardware ping before they start
1760 		 */
1761 		if (pipe->flags & CVMX_USB_PIPE_FLAGS_NEED_PING)
1762 			usbc_hctsiz.s.dopng = 1;
1763 
1764 		cvmx_usb_write_csr32(usb,
1765 				     CVMX_USBCX_HCSPLTX(channel, usb->index),
1766 				     usbc_hcsplt.u32);
1767 		cvmx_usb_write_csr32(usb,
1768 				     CVMX_USBCX_HCTSIZX(channel, usb->index),
1769 				     usbc_hctsiz.u32);
1770 	}
1771 
1772 	/* Setup the Host Channel Characteristics Register */
1773 	{
1774 		union cvmx_usbcx_hccharx usbc_hcchar = {.u32 = 0};
1775 
1776 		/*
1777 		 * Set the startframe odd/even properly. This is only used for
1778 		 * periodic
1779 		 */
1780 		usbc_hcchar.s.oddfrm = usb->frame_number&1;
1781 
1782 		/*
1783 		 * Set the number of back to back packets allowed by this
1784 		 * endpoint. Split transactions interpret "ec" as the number of
1785 		 * immediate retries of failure. These retries happen too
1786 		 * quickly, so we disable these entirely for splits
1787 		 */
1788 		if (cvmx_usb_pipe_needs_split(usb, pipe))
1789 			usbc_hcchar.s.ec = 1;
1790 		else if (pipe->multi_count < 1)
1791 			usbc_hcchar.s.ec = 1;
1792 		else if (pipe->multi_count > 3)
1793 			usbc_hcchar.s.ec = 3;
1794 		else
1795 			usbc_hcchar.s.ec = pipe->multi_count;
1796 
1797 		/* Set the rest of the endpoint specific settings */
1798 		usbc_hcchar.s.devaddr = pipe->device_addr;
1799 		usbc_hcchar.s.eptype = transaction->type;
1800 		usbc_hcchar.s.lspddev =
1801 			(pipe->device_speed == CVMX_USB_SPEED_LOW);
1802 		usbc_hcchar.s.epdir = pipe->transfer_dir;
1803 		usbc_hcchar.s.epnum = pipe->endpoint_num;
1804 		usbc_hcchar.s.mps = pipe->max_packet;
1805 		cvmx_usb_write_csr32(usb,
1806 				     CVMX_USBCX_HCCHARX(channel, usb->index),
1807 				     usbc_hcchar.u32);
1808 	}
1809 
1810 	/* Do transaction type specific fixups as needed */
1811 	switch (transaction->type) {
1812 	case CVMX_USB_TRANSFER_CONTROL:
1813 		cvmx_usb_start_channel_control(usb, channel, pipe);
1814 		break;
1815 	case CVMX_USB_TRANSFER_BULK:
1816 	case CVMX_USB_TRANSFER_INTERRUPT:
1817 		break;
1818 	case CVMX_USB_TRANSFER_ISOCHRONOUS:
1819 		if (!cvmx_usb_pipe_needs_split(usb, pipe)) {
1820 			/*
1821 			 * ISO transactions require different PIDs depending on
1822 			 * direction and how many packets are needed
1823 			 */
1824 			if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) {
1825 				if (pipe->multi_count < 2) /* Need DATA0 */
1826 					USB_SET_FIELD32(
1827 						CVMX_USBCX_HCTSIZX(channel,
1828 								   usb->index),
1829 						cvmx_usbcx_hctsizx, pid, 0);
1830 				else /* Need MDATA */
1831 					USB_SET_FIELD32(
1832 						CVMX_USBCX_HCTSIZX(channel,
1833 								   usb->index),
1834 						cvmx_usbcx_hctsizx, pid, 3);
1835 			}
1836 		}
1837 		break;
1838 	}
1839 	{
1840 		union cvmx_usbcx_hctsizx usbc_hctsiz = {.u32 =
1841 			cvmx_usb_read_csr32(usb,
1842 				CVMX_USBCX_HCTSIZX(channel, usb->index))};
1843 		transaction->xfersize = usbc_hctsiz.s.xfersize;
1844 		transaction->pktcnt = usbc_hctsiz.s.pktcnt;
1845 	}
1846 	/* Remeber when we start a split transaction */
1847 	if (cvmx_usb_pipe_needs_split(usb, pipe))
1848 		usb->active_split = transaction;
1849 	USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1850 			cvmx_usbcx_hccharx, chena, 1);
1851 	if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
1852 		cvmx_usb_fill_tx_fifo(usb, channel);
1853 }
1854 
1855 
1856 /**
1857  * Find a pipe that is ready to be scheduled to hardware.
1858  * @usb:	 USB device state populated by cvmx_usb_initialize().
1859  * @list:	 Pipe list to search
1860  * @current_frame:
1861  *		 Frame counter to use as a time reference.
1862  *
1863  * Returns: Pipe or NULL if none are ready
1864  */
cvmx_usb_find_ready_pipe(struct cvmx_usb_state * usb,struct list_head * list,uint64_t current_frame)1865 static struct cvmx_usb_pipe *cvmx_usb_find_ready_pipe(
1866 		struct cvmx_usb_state *usb,
1867 		struct list_head *list,
1868 		uint64_t current_frame)
1869 {
1870 	struct cvmx_usb_pipe *pipe;
1871 
1872 	list_for_each_entry(pipe, list, node) {
1873 		struct cvmx_usb_transaction *t =
1874 			list_first_entry(&pipe->transactions, typeof(*t),
1875 					 node);
1876 		if (!(pipe->flags & CVMX_USB_PIPE_FLAGS_SCHEDULED) && t &&
1877 			(pipe->next_tx_frame <= current_frame) &&
1878 			((pipe->split_sc_frame == -1) ||
1879 			 ((((int)current_frame - (int)pipe->split_sc_frame)
1880 			   & 0x7f) < 0x40)) &&
1881 			(!usb->active_split || (usb->active_split == t))) {
1882 			prefetch(t);
1883 			return pipe;
1884 		}
1885 	}
1886 	return NULL;
1887 }
1888 
1889 
1890 /**
1891  * Called whenever a pipe might need to be scheduled to the
1892  * hardware.
1893  *
1894  * @usb:	 USB device state populated by cvmx_usb_initialize().
1895  * @is_sof:	 True if this schedule was called on a SOF interrupt.
1896  */
cvmx_usb_schedule(struct cvmx_usb_state * usb,int is_sof)1897 static void cvmx_usb_schedule(struct cvmx_usb_state *usb, int is_sof)
1898 {
1899 	int channel;
1900 	struct cvmx_usb_pipe *pipe;
1901 	int need_sof;
1902 	enum cvmx_usb_transfer ttype;
1903 
1904 	if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) {
1905 		/*
1906 		 * Without DMA we need to be careful to not schedule something
1907 		 * at the end of a frame and cause an overrun.
1908 		 */
1909 		union cvmx_usbcx_hfnum hfnum = {
1910 			.u32 = cvmx_usb_read_csr32(usb,
1911 						CVMX_USBCX_HFNUM(usb->index))
1912 		};
1913 
1914 		union cvmx_usbcx_hfir hfir = {
1915 			.u32 = cvmx_usb_read_csr32(usb,
1916 						CVMX_USBCX_HFIR(usb->index))
1917 		};
1918 
1919 		if (hfnum.s.frrem < hfir.s.frint/4)
1920 			goto done;
1921 	}
1922 
1923 	while (usb->idle_hardware_channels) {
1924 		/* Find an idle channel */
1925 		channel = __fls(usb->idle_hardware_channels);
1926 		if (unlikely(channel > 7))
1927 			break;
1928 
1929 		/* Find a pipe needing service */
1930 		pipe = NULL;
1931 		if (is_sof) {
1932 			/*
1933 			 * Only process periodic pipes on SOF interrupts. This
1934 			 * way we are sure that the periodic data is sent in the
1935 			 * beginning of the frame
1936 			 */
1937 			pipe = cvmx_usb_find_ready_pipe(usb,
1938 					usb->active_pipes +
1939 					CVMX_USB_TRANSFER_ISOCHRONOUS,
1940 					usb->frame_number);
1941 			if (likely(!pipe))
1942 				pipe = cvmx_usb_find_ready_pipe(usb,
1943 						usb->active_pipes +
1944 						CVMX_USB_TRANSFER_INTERRUPT,
1945 						usb->frame_number);
1946 		}
1947 		if (likely(!pipe)) {
1948 			pipe = cvmx_usb_find_ready_pipe(usb,
1949 					usb->active_pipes +
1950 					CVMX_USB_TRANSFER_CONTROL,
1951 					usb->frame_number);
1952 			if (likely(!pipe))
1953 				pipe = cvmx_usb_find_ready_pipe(usb,
1954 						usb->active_pipes +
1955 						CVMX_USB_TRANSFER_BULK,
1956 						usb->frame_number);
1957 		}
1958 		if (!pipe)
1959 			break;
1960 
1961 		cvmx_usb_start_channel(usb, channel, pipe);
1962 	}
1963 
1964 done:
1965 	/*
1966 	 * Only enable SOF interrupts when we have transactions pending in the
1967 	 * future that might need to be scheduled
1968 	 */
1969 	need_sof = 0;
1970 	for (ttype = CVMX_USB_TRANSFER_CONTROL;
1971 			ttype <= CVMX_USB_TRANSFER_INTERRUPT; ttype++) {
1972 		list_for_each_entry(pipe, &usb->active_pipes[ttype], node) {
1973 			if (pipe->next_tx_frame > usb->frame_number) {
1974 				need_sof = 1;
1975 				break;
1976 			}
1977 		}
1978 	}
1979 	USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1980 			cvmx_usbcx_gintmsk, sofmsk, need_sof);
1981 }
1982 
octeon_usb_urb_complete_callback(struct cvmx_usb_state * usb,enum cvmx_usb_complete status,struct cvmx_usb_pipe * pipe,struct cvmx_usb_transaction * transaction,int bytes_transferred,struct urb * urb)1983 static void octeon_usb_urb_complete_callback(struct cvmx_usb_state *usb,
1984 					     enum cvmx_usb_complete status,
1985 					     struct cvmx_usb_pipe *pipe,
1986 					     struct cvmx_usb_transaction
1987 						*transaction,
1988 					     int bytes_transferred,
1989 					     struct urb *urb)
1990 {
1991 	struct octeon_hcd *priv = cvmx_usb_to_octeon(usb);
1992 	struct usb_hcd *hcd = octeon_to_hcd(priv);
1993 	struct device *dev = hcd->self.controller;
1994 
1995 	if (likely(status == CVMX_USB_COMPLETE_SUCCESS))
1996 		urb->actual_length = bytes_transferred;
1997 	else
1998 		urb->actual_length = 0;
1999 
2000 	urb->hcpriv = NULL;
2001 
2002 	/* For Isochronous transactions we need to update the URB packet status
2003 	   list from data in our private copy */
2004 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
2005 		int i;
2006 		/*
2007 		 * The pointer to the private list is stored in the setup_packet
2008 		 * field.
2009 		 */
2010 		struct cvmx_usb_iso_packet *iso_packet =
2011 			(struct cvmx_usb_iso_packet *) urb->setup_packet;
2012 		/* Recalculate the transfer size by adding up each packet */
2013 		urb->actual_length = 0;
2014 		for (i = 0; i < urb->number_of_packets; i++) {
2015 			if (iso_packet[i].status ==
2016 					CVMX_USB_COMPLETE_SUCCESS) {
2017 				urb->iso_frame_desc[i].status = 0;
2018 				urb->iso_frame_desc[i].actual_length =
2019 					iso_packet[i].length;
2020 				urb->actual_length +=
2021 					urb->iso_frame_desc[i].actual_length;
2022 			} else {
2023 				dev_dbg(dev, "ISOCHRONOUS packet=%d of %d status=%d pipe=%p transaction=%p size=%d\n",
2024 					i, urb->number_of_packets,
2025 					iso_packet[i].status, pipe,
2026 					transaction, iso_packet[i].length);
2027 				urb->iso_frame_desc[i].status = -EREMOTEIO;
2028 			}
2029 		}
2030 		/* Free the private list now that we don't need it anymore */
2031 		kfree(iso_packet);
2032 		urb->setup_packet = NULL;
2033 	}
2034 
2035 	switch (status) {
2036 	case CVMX_USB_COMPLETE_SUCCESS:
2037 		urb->status = 0;
2038 		break;
2039 	case CVMX_USB_COMPLETE_CANCEL:
2040 		if (urb->status == 0)
2041 			urb->status = -ENOENT;
2042 		break;
2043 	case CVMX_USB_COMPLETE_STALL:
2044 		dev_dbg(dev, "status=stall pipe=%p transaction=%p size=%d\n",
2045 			pipe, transaction, bytes_transferred);
2046 		urb->status = -EPIPE;
2047 		break;
2048 	case CVMX_USB_COMPLETE_BABBLEERR:
2049 		dev_dbg(dev, "status=babble pipe=%p transaction=%p size=%d\n",
2050 			pipe, transaction, bytes_transferred);
2051 		urb->status = -EPIPE;
2052 		break;
2053 	case CVMX_USB_COMPLETE_SHORT:
2054 		dev_dbg(dev, "status=short pipe=%p transaction=%p size=%d\n",
2055 			pipe, transaction, bytes_transferred);
2056 		urb->status = -EREMOTEIO;
2057 		break;
2058 	case CVMX_USB_COMPLETE_ERROR:
2059 	case CVMX_USB_COMPLETE_XACTERR:
2060 	case CVMX_USB_COMPLETE_DATATGLERR:
2061 	case CVMX_USB_COMPLETE_FRAMEERR:
2062 		dev_dbg(dev, "status=%d pipe=%p transaction=%p size=%d\n",
2063 			status, pipe, transaction, bytes_transferred);
2064 		urb->status = -EPROTO;
2065 		break;
2066 	}
2067 	usb_hcd_unlink_urb_from_ep(octeon_to_hcd(priv), urb);
2068 	spin_unlock(&priv->lock);
2069 	usb_hcd_giveback_urb(octeon_to_hcd(priv), urb, urb->status);
2070 	spin_lock(&priv->lock);
2071 }
2072 
2073 /**
2074  * Signal the completion of a transaction and free it. The
2075  * transaction will be removed from the pipe transaction list.
2076  *
2077  * @usb:	 USB device state populated by cvmx_usb_initialize().
2078  * @pipe:	 Pipe the transaction is on
2079  * @transaction:
2080  *		 Transaction that completed
2081  * @complete_code:
2082  *		 Completion code
2083  */
cvmx_usb_perform_complete(struct cvmx_usb_state * usb,struct cvmx_usb_pipe * pipe,struct cvmx_usb_transaction * transaction,enum cvmx_usb_complete complete_code)2084 static void cvmx_usb_perform_complete(struct cvmx_usb_state *usb,
2085 				      struct cvmx_usb_pipe *pipe,
2086 				      struct cvmx_usb_transaction *transaction,
2087 				      enum cvmx_usb_complete complete_code)
2088 {
2089 	/* If this was a split then clear our split in progress marker */
2090 	if (usb->active_split == transaction)
2091 		usb->active_split = NULL;
2092 
2093 	/*
2094 	 * Isochronous transactions need extra processing as they might not be
2095 	 * done after a single data transfer
2096 	 */
2097 	if (unlikely(transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)) {
2098 		/* Update the number of bytes transferred in this ISO packet */
2099 		transaction->iso_packets[0].length = transaction->actual_bytes;
2100 		transaction->iso_packets[0].status = complete_code;
2101 
2102 		/*
2103 		 * If there are more ISOs pending and we succeeded, schedule the
2104 		 * next one
2105 		 */
2106 		if ((transaction->iso_number_packets > 1) &&
2107 			(complete_code == CVMX_USB_COMPLETE_SUCCESS)) {
2108 			/* No bytes transferred for this packet as of yet */
2109 			transaction->actual_bytes = 0;
2110 			/* One less ISO waiting to transfer */
2111 			transaction->iso_number_packets--;
2112 			/* Increment to the next location in our packet array */
2113 			transaction->iso_packets++;
2114 			transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
2115 			return;
2116 		}
2117 	}
2118 
2119 	/* Remove the transaction from the pipe list */
2120 	list_del(&transaction->node);
2121 	if (list_empty(&pipe->transactions))
2122 		list_move_tail(&pipe->node, &usb->idle_pipes);
2123 	octeon_usb_urb_complete_callback(usb, complete_code, pipe,
2124 					 transaction,
2125 					 transaction->actual_bytes,
2126 					 transaction->urb);
2127 	kfree(transaction);
2128 }
2129 
2130 
2131 /**
2132  * Submit a usb transaction to a pipe. Called for all types
2133  * of transactions.
2134  *
2135  * @usb:
2136  * @pipe:	    Which pipe to submit to.
2137  * @type:	    Transaction type
2138  * @buffer:	    User buffer for the transaction
2139  * @buffer_length:
2140  *		    User buffer's length in bytes
2141  * @control_header:
2142  *		    For control transactions, the 8 byte standard header
2143  * @iso_start_frame:
2144  *		    For ISO transactions, the start frame
2145  * @iso_number_packets:
2146  *		    For ISO, the number of packet in the transaction.
2147  * @iso_packets:
2148  *		    A description of each ISO packet
2149  * @urb:	    URB for the callback
2150  *
2151  * Returns: Transaction or NULL on failure.
2152  */
cvmx_usb_submit_transaction(struct cvmx_usb_state * usb,struct cvmx_usb_pipe * pipe,enum cvmx_usb_transfer type,uint64_t buffer,int buffer_length,uint64_t control_header,int iso_start_frame,int iso_number_packets,struct cvmx_usb_iso_packet * iso_packets,struct urb * urb)2153 static struct cvmx_usb_transaction *cvmx_usb_submit_transaction(
2154 				struct cvmx_usb_state *usb,
2155 				struct cvmx_usb_pipe *pipe,
2156 				enum cvmx_usb_transfer type,
2157 				uint64_t buffer,
2158 				int buffer_length,
2159 				uint64_t control_header,
2160 				int iso_start_frame,
2161 				int iso_number_packets,
2162 				struct cvmx_usb_iso_packet *iso_packets,
2163 				struct urb *urb)
2164 {
2165 	struct cvmx_usb_transaction *transaction;
2166 
2167 	if (unlikely(pipe->transfer_type != type))
2168 		return NULL;
2169 
2170 	transaction = kzalloc(sizeof(*transaction), GFP_ATOMIC);
2171 	if (unlikely(!transaction))
2172 		return NULL;
2173 
2174 	transaction->type = type;
2175 	transaction->buffer = buffer;
2176 	transaction->buffer_length = buffer_length;
2177 	transaction->control_header = control_header;
2178 	/* FIXME: This is not used, implement it. */
2179 	transaction->iso_start_frame = iso_start_frame;
2180 	transaction->iso_number_packets = iso_number_packets;
2181 	transaction->iso_packets = iso_packets;
2182 	transaction->urb = urb;
2183 	if (transaction->type == CVMX_USB_TRANSFER_CONTROL)
2184 		transaction->stage = CVMX_USB_STAGE_SETUP;
2185 	else
2186 		transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
2187 
2188 	if (!list_empty(&pipe->transactions)) {
2189 		list_add_tail(&transaction->node, &pipe->transactions);
2190 	} else {
2191 		list_add_tail(&transaction->node, &pipe->transactions);
2192 		list_move_tail(&pipe->node,
2193 			       &usb->active_pipes[pipe->transfer_type]);
2194 
2195 		/*
2196 		 * We may need to schedule the pipe if this was the head of the
2197 		 * pipe.
2198 		 */
2199 		cvmx_usb_schedule(usb, 0);
2200 	}
2201 
2202 	return transaction;
2203 }
2204 
2205 
2206 /**
2207  * Call to submit a USB Bulk transfer to a pipe.
2208  *
2209  * @usb:	    USB device state populated by cvmx_usb_initialize().
2210  * @pipe:	    Handle to the pipe for the transfer.
2211  * @urb:	    URB.
2212  *
2213  * Returns: A submitted transaction or NULL on failure.
2214  */
cvmx_usb_submit_bulk(struct cvmx_usb_state * usb,struct cvmx_usb_pipe * pipe,struct urb * urb)2215 static struct cvmx_usb_transaction *cvmx_usb_submit_bulk(
2216 						struct cvmx_usb_state *usb,
2217 						struct cvmx_usb_pipe *pipe,
2218 						struct urb *urb)
2219 {
2220 	return cvmx_usb_submit_transaction(usb, pipe, CVMX_USB_TRANSFER_BULK,
2221 					   urb->transfer_dma,
2222 					   urb->transfer_buffer_length,
2223 					   0, /* control_header */
2224 					   0, /* iso_start_frame */
2225 					   0, /* iso_number_packets */
2226 					   NULL, /* iso_packets */
2227 					   urb);
2228 }
2229 
2230 
2231 /**
2232  * Call to submit a USB Interrupt transfer to a pipe.
2233  *
2234  * @usb:	    USB device state populated by cvmx_usb_initialize().
2235  * @pipe:	    Handle to the pipe for the transfer.
2236  * @urb:	    URB returned when the callback is called.
2237  *
2238  * Returns: A submitted transaction or NULL on failure.
2239  */
cvmx_usb_submit_interrupt(struct cvmx_usb_state * usb,struct cvmx_usb_pipe * pipe,struct urb * urb)2240 static struct cvmx_usb_transaction *cvmx_usb_submit_interrupt(
2241 						struct cvmx_usb_state *usb,
2242 						struct cvmx_usb_pipe *pipe,
2243 						struct urb *urb)
2244 {
2245 	return cvmx_usb_submit_transaction(usb, pipe,
2246 					   CVMX_USB_TRANSFER_INTERRUPT,
2247 					   urb->transfer_dma,
2248 					   urb->transfer_buffer_length,
2249 					   0, /* control_header */
2250 					   0, /* iso_start_frame */
2251 					   0, /* iso_number_packets */
2252 					   NULL, /* iso_packets */
2253 					   urb);
2254 }
2255 
2256 
2257 /**
2258  * Call to submit a USB Control transfer to a pipe.
2259  *
2260  * @usb:	    USB device state populated by cvmx_usb_initialize().
2261  * @pipe:	    Handle to the pipe for the transfer.
2262  * @urb:	    URB.
2263  *
2264  * Returns: A submitted transaction or NULL on failure.
2265  */
cvmx_usb_submit_control(struct cvmx_usb_state * usb,struct cvmx_usb_pipe * pipe,struct urb * urb)2266 static struct cvmx_usb_transaction *cvmx_usb_submit_control(
2267 						struct cvmx_usb_state *usb,
2268 						struct cvmx_usb_pipe *pipe,
2269 						struct urb *urb)
2270 {
2271 	int buffer_length = urb->transfer_buffer_length;
2272 	uint64_t control_header = urb->setup_dma;
2273 	struct usb_ctrlrequest *header = cvmx_phys_to_ptr(control_header);
2274 
2275 	if ((header->bRequestType & USB_DIR_IN) == 0)
2276 		buffer_length = le16_to_cpu(header->wLength);
2277 
2278 	return cvmx_usb_submit_transaction(usb, pipe,
2279 					   CVMX_USB_TRANSFER_CONTROL,
2280 					   urb->transfer_dma, buffer_length,
2281 					   control_header,
2282 					   0, /* iso_start_frame */
2283 					   0, /* iso_number_packets */
2284 					   NULL, /* iso_packets */
2285 					   urb);
2286 }
2287 
2288 
2289 /**
2290  * Call to submit a USB Isochronous transfer to a pipe.
2291  *
2292  * @usb:	    USB device state populated by cvmx_usb_initialize().
2293  * @pipe:	    Handle to the pipe for the transfer.
2294  * @urb:	    URB returned when the callback is called.
2295  *
2296  * Returns: A submitted transaction or NULL on failure.
2297  */
cvmx_usb_submit_isochronous(struct cvmx_usb_state * usb,struct cvmx_usb_pipe * pipe,struct urb * urb)2298 static struct cvmx_usb_transaction *cvmx_usb_submit_isochronous(
2299 						struct cvmx_usb_state *usb,
2300 						struct cvmx_usb_pipe *pipe,
2301 						struct urb *urb)
2302 {
2303 	struct cvmx_usb_iso_packet *packets;
2304 
2305 	packets = (struct cvmx_usb_iso_packet *) urb->setup_packet;
2306 	return cvmx_usb_submit_transaction(usb, pipe,
2307 					   CVMX_USB_TRANSFER_ISOCHRONOUS,
2308 					   urb->transfer_dma,
2309 					   urb->transfer_buffer_length,
2310 					   0, /* control_header */
2311 					   urb->start_frame,
2312 					   urb->number_of_packets,
2313 					   packets, urb);
2314 }
2315 
2316 
2317 /**
2318  * Cancel one outstanding request in a pipe. Canceling a request
2319  * can fail if the transaction has already completed before cancel
2320  * is called. Even after a successful cancel call, it may take
2321  * a frame or two for the cvmx_usb_poll() function to call the
2322  * associated callback.
2323  *
2324  * @usb:	 USB device state populated by cvmx_usb_initialize().
2325  * @pipe:	 Pipe to cancel requests in.
2326  * @transaction: Transaction to cancel, returned by the submit function.
2327  *
2328  * Returns: 0 or a negative error code.
2329  */
cvmx_usb_cancel(struct cvmx_usb_state * usb,struct cvmx_usb_pipe * pipe,struct cvmx_usb_transaction * transaction)2330 static int cvmx_usb_cancel(struct cvmx_usb_state *usb,
2331 			   struct cvmx_usb_pipe *pipe,
2332 			   struct cvmx_usb_transaction *transaction)
2333 {
2334 	/*
2335 	 * If the transaction is the HEAD of the queue and scheduled. We need to
2336 	 * treat it special
2337 	 */
2338 	if (list_first_entry(&pipe->transactions, typeof(*transaction), node) ==
2339 	    transaction && (pipe->flags & CVMX_USB_PIPE_FLAGS_SCHEDULED)) {
2340 		union cvmx_usbcx_hccharx usbc_hcchar;
2341 
2342 		usb->pipe_for_channel[pipe->channel] = NULL;
2343 		pipe->flags &= ~CVMX_USB_PIPE_FLAGS_SCHEDULED;
2344 
2345 		CVMX_SYNCW;
2346 
2347 		usbc_hcchar.u32 = cvmx_usb_read_csr32(usb,
2348 				CVMX_USBCX_HCCHARX(pipe->channel, usb->index));
2349 		/*
2350 		 * If the channel isn't enabled then the transaction already
2351 		 * completed.
2352 		 */
2353 		if (usbc_hcchar.s.chena) {
2354 			usbc_hcchar.s.chdis = 1;
2355 			cvmx_usb_write_csr32(usb,
2356 					CVMX_USBCX_HCCHARX(pipe->channel,
2357 						usb->index),
2358 					usbc_hcchar.u32);
2359 		}
2360 	}
2361 	cvmx_usb_perform_complete(usb, pipe, transaction,
2362 				  CVMX_USB_COMPLETE_CANCEL);
2363 	return 0;
2364 }
2365 
2366 
2367 /**
2368  * Cancel all outstanding requests in a pipe. Logically all this
2369  * does is call cvmx_usb_cancel() in a loop.
2370  *
2371  * @usb:	 USB device state populated by cvmx_usb_initialize().
2372  * @pipe:	 Pipe to cancel requests in.
2373  *
2374  * Returns: 0 or a negative error code.
2375  */
cvmx_usb_cancel_all(struct cvmx_usb_state * usb,struct cvmx_usb_pipe * pipe)2376 static int cvmx_usb_cancel_all(struct cvmx_usb_state *usb,
2377 			       struct cvmx_usb_pipe *pipe)
2378 {
2379 	struct cvmx_usb_transaction *transaction, *next;
2380 
2381 	/* Simply loop through and attempt to cancel each transaction */
2382 	list_for_each_entry_safe(transaction, next, &pipe->transactions, node) {
2383 		int result = cvmx_usb_cancel(usb, pipe, transaction);
2384 
2385 		if (unlikely(result != 0))
2386 			return result;
2387 	}
2388 	return 0;
2389 }
2390 
2391 
2392 /**
2393  * Close a pipe created with cvmx_usb_open_pipe().
2394  *
2395  * @usb:	 USB device state populated by cvmx_usb_initialize().
2396  * @pipe:	 Pipe to close.
2397  *
2398  * Returns: 0 or a negative error code. EBUSY is returned if the pipe has
2399  *	    outstanding transfers.
2400  */
cvmx_usb_close_pipe(struct cvmx_usb_state * usb,struct cvmx_usb_pipe * pipe)2401 static int cvmx_usb_close_pipe(struct cvmx_usb_state *usb,
2402 			       struct cvmx_usb_pipe *pipe)
2403 {
2404 	/* Fail if the pipe has pending transactions */
2405 	if (!list_empty(&pipe->transactions))
2406 		return -EBUSY;
2407 
2408 	list_del(&pipe->node);
2409 	kfree(pipe);
2410 
2411 	return 0;
2412 }
2413 
2414 /**
2415  * Get the current USB protocol level frame number. The frame
2416  * number is always in the range of 0-0x7ff.
2417  *
2418  * @usb: USB device state populated by cvmx_usb_initialize().
2419  *
2420  * Returns: USB frame number
2421  */
cvmx_usb_get_frame_number(struct cvmx_usb_state * usb)2422 static int cvmx_usb_get_frame_number(struct cvmx_usb_state *usb)
2423 {
2424 	int frame_number;
2425 	union cvmx_usbcx_hfnum usbc_hfnum;
2426 
2427 	usbc_hfnum.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HFNUM(usb->index));
2428 	frame_number = usbc_hfnum.s.frnum;
2429 
2430 	return frame_number;
2431 }
2432 
2433 
2434 /**
2435  * Poll a channel for status
2436  *
2437  * @usb:     USB device
2438  * @channel: Channel to poll
2439  *
2440  * Returns: Zero on success
2441  */
cvmx_usb_poll_channel(struct cvmx_usb_state * usb,int channel)2442 static int cvmx_usb_poll_channel(struct cvmx_usb_state *usb, int channel)
2443 {
2444 	struct octeon_hcd *priv = cvmx_usb_to_octeon(usb);
2445 	struct usb_hcd *hcd = octeon_to_hcd(priv);
2446 	struct device *dev = hcd->self.controller;
2447 	union cvmx_usbcx_hcintx usbc_hcint;
2448 	union cvmx_usbcx_hctsizx usbc_hctsiz;
2449 	union cvmx_usbcx_hccharx usbc_hcchar;
2450 	struct cvmx_usb_pipe *pipe;
2451 	struct cvmx_usb_transaction *transaction;
2452 	int bytes_this_transfer;
2453 	int bytes_in_last_packet;
2454 	int packets_processed;
2455 	int buffer_space_left;
2456 
2457 	/* Read the interrupt status bits for the channel */
2458 	usbc_hcint.u32 = cvmx_usb_read_csr32(usb,
2459 				CVMX_USBCX_HCINTX(channel, usb->index));
2460 
2461 	if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) {
2462 		usbc_hcchar.u32 = cvmx_usb_read_csr32(usb,
2463 				CVMX_USBCX_HCCHARX(channel, usb->index));
2464 
2465 		if (usbc_hcchar.s.chena && usbc_hcchar.s.chdis) {
2466 			/*
2467 			 * There seems to be a bug in CN31XX which can cause
2468 			 * interrupt IN transfers to get stuck until we do a
2469 			 * write of HCCHARX without changing things
2470 			 */
2471 			cvmx_usb_write_csr32(usb,
2472 					CVMX_USBCX_HCCHARX(channel,
2473 							   usb->index),
2474 					usbc_hcchar.u32);
2475 			return 0;
2476 		}
2477 
2478 		/*
2479 		 * In non DMA mode the channels don't halt themselves. We need
2480 		 * to manually disable channels that are left running
2481 		 */
2482 		if (!usbc_hcint.s.chhltd) {
2483 			if (usbc_hcchar.s.chena) {
2484 				union cvmx_usbcx_hcintmskx hcintmsk;
2485 				/* Disable all interrupts except CHHLTD */
2486 				hcintmsk.u32 = 0;
2487 				hcintmsk.s.chhltdmsk = 1;
2488 				cvmx_usb_write_csr32(usb,
2489 						CVMX_USBCX_HCINTMSKX(channel,
2490 							usb->index),
2491 						hcintmsk.u32);
2492 				usbc_hcchar.s.chdis = 1;
2493 				cvmx_usb_write_csr32(usb,
2494 						CVMX_USBCX_HCCHARX(channel,
2495 							usb->index),
2496 						usbc_hcchar.u32);
2497 				return 0;
2498 			} else if (usbc_hcint.s.xfercompl) {
2499 				/*
2500 				 * Successful IN/OUT with transfer complete.
2501 				 * Channel halt isn't needed.
2502 				 */
2503 			} else {
2504 				dev_err(dev, "USB%d: Channel %d interrupt without halt\n",
2505 					usb->index, channel);
2506 				return 0;
2507 			}
2508 		}
2509 	} else {
2510 		/*
2511 		 * There is are no interrupts that we need to process when the
2512 		 * channel is still running
2513 		 */
2514 		if (!usbc_hcint.s.chhltd)
2515 			return 0;
2516 	}
2517 
2518 	/* Disable the channel interrupts now that it is done */
2519 	cvmx_usb_write_csr32(usb, CVMX_USBCX_HCINTMSKX(channel, usb->index), 0);
2520 	usb->idle_hardware_channels |= (1<<channel);
2521 
2522 	/* Make sure this channel is tied to a valid pipe */
2523 	pipe = usb->pipe_for_channel[channel];
2524 	prefetch(pipe);
2525 	if (!pipe)
2526 		return 0;
2527 	transaction = list_first_entry(&pipe->transactions,
2528 				       typeof(*transaction),
2529 				       node);
2530 	prefetch(transaction);
2531 
2532 	/*
2533 	 * Disconnect this pipe from the HW channel. Later the schedule
2534 	 * function will figure out which pipe needs to go
2535 	 */
2536 	usb->pipe_for_channel[channel] = NULL;
2537 	pipe->flags &= ~CVMX_USB_PIPE_FLAGS_SCHEDULED;
2538 
2539 	/*
2540 	 * Read the channel config info so we can figure out how much data
2541 	 * transferred
2542 	 */
2543 	usbc_hcchar.u32 = cvmx_usb_read_csr32(usb,
2544 			CVMX_USBCX_HCCHARX(channel, usb->index));
2545 	usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb,
2546 			CVMX_USBCX_HCTSIZX(channel, usb->index));
2547 
2548 	/*
2549 	 * Calculating the number of bytes successfully transferred is dependent
2550 	 * on the transfer direction
2551 	 */
2552 	packets_processed = transaction->pktcnt - usbc_hctsiz.s.pktcnt;
2553 	if (usbc_hcchar.s.epdir) {
2554 		/*
2555 		 * IN transactions are easy. For every byte received the
2556 		 * hardware decrements xfersize. All we need to do is subtract
2557 		 * the current value of xfersize from its starting value and we
2558 		 * know how many bytes were written to the buffer
2559 		 */
2560 		bytes_this_transfer = transaction->xfersize -
2561 			usbc_hctsiz.s.xfersize;
2562 	} else {
2563 		/*
2564 		 * OUT transaction don't decrement xfersize. Instead pktcnt is
2565 		 * decremented on every successful packet send. The hardware
2566 		 * does this when it receives an ACK, or NYET. If it doesn't
2567 		 * receive one of these responses pktcnt doesn't change
2568 		 */
2569 		bytes_this_transfer = packets_processed * usbc_hcchar.s.mps;
2570 		/*
2571 		 * The last packet may not be a full transfer if we didn't have
2572 		 * enough data
2573 		 */
2574 		if (bytes_this_transfer > transaction->xfersize)
2575 			bytes_this_transfer = transaction->xfersize;
2576 	}
2577 	/* Figure out how many bytes were in the last packet of the transfer */
2578 	if (packets_processed)
2579 		bytes_in_last_packet = bytes_this_transfer -
2580 			(packets_processed - 1) * usbc_hcchar.s.mps;
2581 	else
2582 		bytes_in_last_packet = bytes_this_transfer;
2583 
2584 	/*
2585 	 * As a special case, setup transactions output the setup header, not
2586 	 * the user's data. For this reason we don't count setup data as bytes
2587 	 * transferred
2588 	 */
2589 	if ((transaction->stage == CVMX_USB_STAGE_SETUP) ||
2590 		(transaction->stage == CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE))
2591 		bytes_this_transfer = 0;
2592 
2593 	/*
2594 	 * Add the bytes transferred to the running total. It is important that
2595 	 * bytes_this_transfer doesn't count any data that needs to be
2596 	 * retransmitted
2597 	 */
2598 	transaction->actual_bytes += bytes_this_transfer;
2599 	if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
2600 		buffer_space_left = transaction->iso_packets[0].length -
2601 			transaction->actual_bytes;
2602 	else
2603 		buffer_space_left = transaction->buffer_length -
2604 			transaction->actual_bytes;
2605 
2606 	/*
2607 	 * We need to remember the PID toggle state for the next transaction.
2608 	 * The hardware already updated it for the next transaction
2609 	 */
2610 	pipe->pid_toggle = !(usbc_hctsiz.s.pid == 0);
2611 
2612 	/*
2613 	 * For high speed bulk out, assume the next transaction will need to do
2614 	 * a ping before proceeding. If this isn't true the ACK processing below
2615 	 * will clear this flag
2616 	 */
2617 	if ((pipe->device_speed == CVMX_USB_SPEED_HIGH) &&
2618 		(pipe->transfer_type == CVMX_USB_TRANSFER_BULK) &&
2619 		(pipe->transfer_dir == CVMX_USB_DIRECTION_OUT))
2620 		pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING;
2621 
2622 	if (unlikely(WARN_ON_ONCE(bytes_this_transfer < 0))) {
2623 		/*
2624 		 * In some rare cases the DMA engine seems to get stuck and
2625 		 * keeps substracting same byte count over and over again. In
2626 		 * such case we just need to fail every transaction.
2627 		 */
2628 		cvmx_usb_perform_complete(usb, pipe, transaction,
2629 					  CVMX_USB_COMPLETE_ERROR);
2630 		return 0;
2631 	}
2632 
2633 	if (usbc_hcint.s.stall) {
2634 		/*
2635 		 * STALL as a response means this transaction cannot be
2636 		 * completed because the device can't process transactions. Tell
2637 		 * the user. Any data that was transferred will be counted on
2638 		 * the actual bytes transferred
2639 		 */
2640 		pipe->pid_toggle = 0;
2641 		cvmx_usb_perform_complete(usb, pipe, transaction,
2642 					  CVMX_USB_COMPLETE_STALL);
2643 	} else if (usbc_hcint.s.xacterr) {
2644 		/*
2645 		 * XactErr as a response means the device signaled
2646 		 * something wrong with the transfer. For example, PID
2647 		 * toggle errors cause these.
2648 		 */
2649 		cvmx_usb_perform_complete(usb, pipe, transaction,
2650 					  CVMX_USB_COMPLETE_XACTERR);
2651 	} else if (usbc_hcint.s.bblerr) {
2652 		/* Babble Error (BblErr) */
2653 		cvmx_usb_perform_complete(usb, pipe, transaction,
2654 					  CVMX_USB_COMPLETE_BABBLEERR);
2655 	} else if (usbc_hcint.s.datatglerr) {
2656 		/* Data toggle error */
2657 		cvmx_usb_perform_complete(usb, pipe, transaction,
2658 					  CVMX_USB_COMPLETE_DATATGLERR);
2659 	} else if (usbc_hcint.s.nyet) {
2660 		/*
2661 		 * NYET as a response is only allowed in three cases: as a
2662 		 * response to a ping, as a response to a split transaction, and
2663 		 * as a response to a bulk out. The ping case is handled by
2664 		 * hardware, so we only have splits and bulk out
2665 		 */
2666 		if (!cvmx_usb_pipe_needs_split(usb, pipe)) {
2667 			transaction->retries = 0;
2668 			/*
2669 			 * If there is more data to go then we need to try
2670 			 * again. Otherwise this transaction is complete
2671 			 */
2672 			if ((buffer_space_left == 0) ||
2673 				(bytes_in_last_packet < pipe->max_packet))
2674 				cvmx_usb_perform_complete(usb, pipe,
2675 						transaction,
2676 						CVMX_USB_COMPLETE_SUCCESS);
2677 		} else {
2678 			/*
2679 			 * Split transactions retry the split complete 4 times
2680 			 * then rewind to the start split and do the entire
2681 			 * transactions again
2682 			 */
2683 			transaction->retries++;
2684 			if ((transaction->retries & 0x3) == 0) {
2685 				/*
2686 				 * Rewind to the beginning of the transaction by
2687 				 * anding off the split complete bit
2688 				 */
2689 				transaction->stage &= ~1;
2690 				pipe->split_sc_frame = -1;
2691 			}
2692 		}
2693 	} else if (usbc_hcint.s.ack) {
2694 		transaction->retries = 0;
2695 		/*
2696 		 * The ACK bit can only be checked after the other error bits.
2697 		 * This is because a multi packet transfer may succeed in a
2698 		 * number of packets and then get a different response on the
2699 		 * last packet. In this case both ACK and the last response bit
2700 		 * will be set. If none of the other response bits is set, then
2701 		 * the last packet must have been an ACK
2702 		 *
2703 		 * Since we got an ACK, we know we don't need to do a ping on
2704 		 * this pipe
2705 		 */
2706 		pipe->flags &= ~CVMX_USB_PIPE_FLAGS_NEED_PING;
2707 
2708 		switch (transaction->type) {
2709 		case CVMX_USB_TRANSFER_CONTROL:
2710 			switch (transaction->stage) {
2711 			case CVMX_USB_STAGE_NON_CONTROL:
2712 			case CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE:
2713 				/* This should be impossible */
2714 				cvmx_usb_perform_complete(usb, pipe,
2715 					transaction, CVMX_USB_COMPLETE_ERROR);
2716 				break;
2717 			case CVMX_USB_STAGE_SETUP:
2718 				pipe->pid_toggle = 1;
2719 				if (cvmx_usb_pipe_needs_split(usb, pipe))
2720 					transaction->stage =
2721 						CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE;
2722 				else {
2723 					struct usb_ctrlrequest *header =
2724 						cvmx_phys_to_ptr(transaction->control_header);
2725 					if (header->wLength)
2726 						transaction->stage =
2727 							CVMX_USB_STAGE_DATA;
2728 					else
2729 						transaction->stage =
2730 							CVMX_USB_STAGE_STATUS;
2731 				}
2732 				break;
2733 			case CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE:
2734 				{
2735 					struct usb_ctrlrequest *header =
2736 						cvmx_phys_to_ptr(transaction->control_header);
2737 					if (header->wLength)
2738 						transaction->stage =
2739 							CVMX_USB_STAGE_DATA;
2740 					else
2741 						transaction->stage =
2742 							CVMX_USB_STAGE_STATUS;
2743 				}
2744 				break;
2745 			case CVMX_USB_STAGE_DATA:
2746 				if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2747 					transaction->stage =
2748 						CVMX_USB_STAGE_DATA_SPLIT_COMPLETE;
2749 					/*
2750 					 * For setup OUT data that are splits,
2751 					 * the hardware doesn't appear to count
2752 					 * transferred data. Here we manually
2753 					 * update the data transferred
2754 					 */
2755 					if (!usbc_hcchar.s.epdir) {
2756 						if (buffer_space_left < pipe->max_packet)
2757 							transaction->actual_bytes +=
2758 								buffer_space_left;
2759 						else
2760 							transaction->actual_bytes +=
2761 								pipe->max_packet;
2762 					}
2763 				} else if ((buffer_space_left == 0) ||
2764 						(bytes_in_last_packet <
2765 						 pipe->max_packet)) {
2766 					pipe->pid_toggle = 1;
2767 					transaction->stage =
2768 						CVMX_USB_STAGE_STATUS;
2769 				}
2770 				break;
2771 			case CVMX_USB_STAGE_DATA_SPLIT_COMPLETE:
2772 				if ((buffer_space_left == 0) ||
2773 						(bytes_in_last_packet <
2774 						 pipe->max_packet)) {
2775 					pipe->pid_toggle = 1;
2776 					transaction->stage =
2777 						CVMX_USB_STAGE_STATUS;
2778 				} else {
2779 					transaction->stage =
2780 						CVMX_USB_STAGE_DATA;
2781 				}
2782 				break;
2783 			case CVMX_USB_STAGE_STATUS:
2784 				if (cvmx_usb_pipe_needs_split(usb, pipe))
2785 					transaction->stage =
2786 						CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE;
2787 				else
2788 					cvmx_usb_perform_complete(usb, pipe,
2789 						transaction,
2790 						CVMX_USB_COMPLETE_SUCCESS);
2791 				break;
2792 			case CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE:
2793 				cvmx_usb_perform_complete(usb, pipe,
2794 						transaction,
2795 						CVMX_USB_COMPLETE_SUCCESS);
2796 				break;
2797 			}
2798 			break;
2799 		case CVMX_USB_TRANSFER_BULK:
2800 		case CVMX_USB_TRANSFER_INTERRUPT:
2801 			/*
2802 			 * The only time a bulk transfer isn't complete when it
2803 			 * finishes with an ACK is during a split transaction.
2804 			 * For splits we need to continue the transfer if more
2805 			 * data is needed
2806 			 */
2807 			if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2808 				if (transaction->stage ==
2809 						CVMX_USB_STAGE_NON_CONTROL)
2810 					transaction->stage =
2811 						CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE;
2812 				else {
2813 					if (buffer_space_left &&
2814 						(bytes_in_last_packet ==
2815 						 pipe->max_packet))
2816 						transaction->stage =
2817 							CVMX_USB_STAGE_NON_CONTROL;
2818 					else {
2819 						if (transaction->type ==
2820 							CVMX_USB_TRANSFER_INTERRUPT)
2821 							pipe->next_tx_frame +=
2822 								pipe->interval;
2823 							cvmx_usb_perform_complete(
2824 								usb,
2825 								pipe,
2826 								transaction,
2827 								CVMX_USB_COMPLETE_SUCCESS);
2828 					}
2829 				}
2830 			} else {
2831 				if ((pipe->device_speed ==
2832 					CVMX_USB_SPEED_HIGH) &&
2833 				    (pipe->transfer_type ==
2834 				     CVMX_USB_TRANSFER_BULK) &&
2835 				    (pipe->transfer_dir ==
2836 				     CVMX_USB_DIRECTION_OUT) &&
2837 				    (usbc_hcint.s.nak))
2838 					pipe->flags |=
2839 						CVMX_USB_PIPE_FLAGS_NEED_PING;
2840 				if (!buffer_space_left ||
2841 					(bytes_in_last_packet <
2842 					 pipe->max_packet)) {
2843 					if (transaction->type ==
2844 						CVMX_USB_TRANSFER_INTERRUPT)
2845 						pipe->next_tx_frame +=
2846 							pipe->interval;
2847 					cvmx_usb_perform_complete(usb, pipe,
2848 						transaction,
2849 						CVMX_USB_COMPLETE_SUCCESS);
2850 				}
2851 			}
2852 			break;
2853 		case CVMX_USB_TRANSFER_ISOCHRONOUS:
2854 			if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2855 				/*
2856 				 * ISOCHRONOUS OUT splits don't require a
2857 				 * complete split stage. Instead they use a
2858 				 * sequence of begin OUT splits to transfer the
2859 				 * data 188 bytes at a time. Once the transfer
2860 				 * is complete, the pipe sleeps until the next
2861 				 * schedule interval
2862 				 */
2863 				if (pipe->transfer_dir ==
2864 					CVMX_USB_DIRECTION_OUT) {
2865 					/*
2866 					 * If no space left or this wasn't a max
2867 					 * size packet then this transfer is
2868 					 * complete. Otherwise start it again to
2869 					 * send the next 188 bytes
2870 					 */
2871 					if (!buffer_space_left ||
2872 						(bytes_this_transfer < 188)) {
2873 						pipe->next_tx_frame +=
2874 							pipe->interval;
2875 						cvmx_usb_perform_complete(usb,
2876 							pipe, transaction,
2877 							CVMX_USB_COMPLETE_SUCCESS);
2878 					}
2879 				} else {
2880 					if (transaction->stage ==
2881 						CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE) {
2882 						/*
2883 						 * We are in the incoming data
2884 						 * phase. Keep getting data
2885 						 * until we run out of space or
2886 						 * get a small packet
2887 						 */
2888 						if ((buffer_space_left == 0) ||
2889 							(bytes_in_last_packet <
2890 							 pipe->max_packet)) {
2891 							pipe->next_tx_frame +=
2892 								pipe->interval;
2893 							cvmx_usb_perform_complete(
2894 								usb,
2895 								pipe,
2896 								transaction,
2897 								CVMX_USB_COMPLETE_SUCCESS);
2898 						}
2899 					} else
2900 						transaction->stage =
2901 							CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE;
2902 				}
2903 			} else {
2904 				pipe->next_tx_frame += pipe->interval;
2905 				cvmx_usb_perform_complete(usb, pipe,
2906 						transaction,
2907 						CVMX_USB_COMPLETE_SUCCESS);
2908 			}
2909 			break;
2910 		}
2911 	} else if (usbc_hcint.s.nak) {
2912 		/*
2913 		 * If this was a split then clear our split in progress marker.
2914 		 */
2915 		if (usb->active_split == transaction)
2916 			usb->active_split = NULL;
2917 		/*
2918 		 * NAK as a response means the device couldn't accept the
2919 		 * transaction, but it should be retried in the future. Rewind
2920 		 * to the beginning of the transaction by anding off the split
2921 		 * complete bit. Retry in the next interval
2922 		 */
2923 		transaction->retries = 0;
2924 		transaction->stage &= ~1;
2925 		pipe->next_tx_frame += pipe->interval;
2926 		if (pipe->next_tx_frame < usb->frame_number)
2927 			pipe->next_tx_frame = usb->frame_number +
2928 				pipe->interval -
2929 				(usb->frame_number - pipe->next_tx_frame) %
2930 				pipe->interval;
2931 	} else {
2932 		struct cvmx_usb_port_status port;
2933 
2934 		port = cvmx_usb_get_status(usb);
2935 		if (port.port_enabled) {
2936 			/* We'll retry the exact same transaction again */
2937 			transaction->retries++;
2938 		} else {
2939 			/*
2940 			 * We get channel halted interrupts with no result bits
2941 			 * sets when the cable is unplugged
2942 			 */
2943 			cvmx_usb_perform_complete(usb, pipe, transaction,
2944 					CVMX_USB_COMPLETE_ERROR);
2945 		}
2946 	}
2947 	return 0;
2948 }
2949 
octeon_usb_port_callback(struct cvmx_usb_state * usb)2950 static void octeon_usb_port_callback(struct cvmx_usb_state *usb)
2951 {
2952 	struct octeon_hcd *priv = cvmx_usb_to_octeon(usb);
2953 
2954 	spin_unlock(&priv->lock);
2955 	usb_hcd_poll_rh_status(octeon_to_hcd(priv));
2956 	spin_lock(&priv->lock);
2957 }
2958 
2959 /**
2960  * Poll the USB block for status and call all needed callback
2961  * handlers. This function is meant to be called in the interrupt
2962  * handler for the USB controller. It can also be called
2963  * periodically in a loop for non-interrupt based operation.
2964  *
2965  * @usb: USB device state populated by cvmx_usb_initialize().
2966  *
2967  * Returns: 0 or a negative error code.
2968  */
cvmx_usb_poll(struct cvmx_usb_state * usb)2969 static int cvmx_usb_poll(struct cvmx_usb_state *usb)
2970 {
2971 	union cvmx_usbcx_hfnum usbc_hfnum;
2972 	union cvmx_usbcx_gintsts usbc_gintsts;
2973 
2974 	prefetch_range(usb, sizeof(*usb));
2975 
2976 	/* Update the frame counter */
2977 	usbc_hfnum.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HFNUM(usb->index));
2978 	if ((usb->frame_number&0x3fff) > usbc_hfnum.s.frnum)
2979 		usb->frame_number += 0x4000;
2980 	usb->frame_number &= ~0x3fffull;
2981 	usb->frame_number |= usbc_hfnum.s.frnum;
2982 
2983 	/* Read the pending interrupts */
2984 	usbc_gintsts.u32 = cvmx_usb_read_csr32(usb,
2985 					       CVMX_USBCX_GINTSTS(usb->index));
2986 
2987 	/* Clear the interrupts now that we know about them */
2988 	cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTSTS(usb->index),
2989 			     usbc_gintsts.u32);
2990 
2991 	if (usbc_gintsts.s.rxflvl) {
2992 		/*
2993 		 * RxFIFO Non-Empty (RxFLvl)
2994 		 * Indicates that there is at least one packet pending to be
2995 		 * read from the RxFIFO.
2996 		 *
2997 		 * In DMA mode this is handled by hardware
2998 		 */
2999 		if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
3000 			cvmx_usb_poll_rx_fifo(usb);
3001 	}
3002 	if (usbc_gintsts.s.ptxfemp || usbc_gintsts.s.nptxfemp) {
3003 		/* Fill the Tx FIFOs when not in DMA mode */
3004 		if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
3005 			cvmx_usb_poll_tx_fifo(usb);
3006 	}
3007 	if (usbc_gintsts.s.disconnint || usbc_gintsts.s.prtint) {
3008 		union cvmx_usbcx_hprt usbc_hprt;
3009 		/*
3010 		 * Disconnect Detected Interrupt (DisconnInt)
3011 		 * Asserted when a device disconnect is detected.
3012 		 *
3013 		 * Host Port Interrupt (PrtInt)
3014 		 * The core sets this bit to indicate a change in port status of
3015 		 * one of the O2P USB core ports in Host mode. The application
3016 		 * must read the Host Port Control and Status (HPRT) register to
3017 		 * determine the exact event that caused this interrupt. The
3018 		 * application must clear the appropriate status bit in the Host
3019 		 * Port Control and Status register to clear this bit.
3020 		 *
3021 		 * Call the user's port callback
3022 		 */
3023 		octeon_usb_port_callback(usb);
3024 		/* Clear the port change bits */
3025 		usbc_hprt.u32 = cvmx_usb_read_csr32(usb,
3026 					CVMX_USBCX_HPRT(usb->index));
3027 		usbc_hprt.s.prtena = 0;
3028 		cvmx_usb_write_csr32(usb, CVMX_USBCX_HPRT(usb->index),
3029 				     usbc_hprt.u32);
3030 	}
3031 	if (usbc_gintsts.s.hchint) {
3032 		/*
3033 		 * Host Channels Interrupt (HChInt)
3034 		 * The core sets this bit to indicate that an interrupt is
3035 		 * pending on one of the channels of the core (in Host mode).
3036 		 * The application must read the Host All Channels Interrupt
3037 		 * (HAINT) register to determine the exact number of the channel
3038 		 * on which the interrupt occurred, and then read the
3039 		 * corresponding Host Channel-n Interrupt (HCINTn) register to
3040 		 * determine the exact cause of the interrupt. The application
3041 		 * must clear the appropriate status bit in the HCINTn register
3042 		 * to clear this bit.
3043 		 */
3044 		union cvmx_usbcx_haint usbc_haint;
3045 
3046 		usbc_haint.u32 = cvmx_usb_read_csr32(usb,
3047 					CVMX_USBCX_HAINT(usb->index));
3048 		while (usbc_haint.u32) {
3049 			int channel;
3050 
3051 			channel = __fls(usbc_haint.u32);
3052 			cvmx_usb_poll_channel(usb, channel);
3053 			usbc_haint.u32 ^= 1<<channel;
3054 		}
3055 	}
3056 
3057 	cvmx_usb_schedule(usb, usbc_gintsts.s.sof);
3058 
3059 	return 0;
3060 }
3061 
3062 /* convert between an HCD pointer and the corresponding struct octeon_hcd */
hcd_to_octeon(struct usb_hcd * hcd)3063 static inline struct octeon_hcd *hcd_to_octeon(struct usb_hcd *hcd)
3064 {
3065 	return (struct octeon_hcd *)(hcd->hcd_priv);
3066 }
3067 
octeon_usb_irq(struct usb_hcd * hcd)3068 static irqreturn_t octeon_usb_irq(struct usb_hcd *hcd)
3069 {
3070 	struct octeon_hcd *priv = hcd_to_octeon(hcd);
3071 	unsigned long flags;
3072 
3073 	spin_lock_irqsave(&priv->lock, flags);
3074 	cvmx_usb_poll(&priv->usb);
3075 	spin_unlock_irqrestore(&priv->lock, flags);
3076 	return IRQ_HANDLED;
3077 }
3078 
octeon_usb_start(struct usb_hcd * hcd)3079 static int octeon_usb_start(struct usb_hcd *hcd)
3080 {
3081 	hcd->state = HC_STATE_RUNNING;
3082 	return 0;
3083 }
3084 
octeon_usb_stop(struct usb_hcd * hcd)3085 static void octeon_usb_stop(struct usb_hcd *hcd)
3086 {
3087 	hcd->state = HC_STATE_HALT;
3088 }
3089 
octeon_usb_get_frame_number(struct usb_hcd * hcd)3090 static int octeon_usb_get_frame_number(struct usb_hcd *hcd)
3091 {
3092 	struct octeon_hcd *priv = hcd_to_octeon(hcd);
3093 
3094 	return cvmx_usb_get_frame_number(&priv->usb);
3095 }
3096 
octeon_usb_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)3097 static int octeon_usb_urb_enqueue(struct usb_hcd *hcd,
3098 				  struct urb *urb,
3099 				  gfp_t mem_flags)
3100 {
3101 	struct octeon_hcd *priv = hcd_to_octeon(hcd);
3102 	struct device *dev = hcd->self.controller;
3103 	struct cvmx_usb_transaction *transaction = NULL;
3104 	struct cvmx_usb_pipe *pipe;
3105 	unsigned long flags;
3106 	struct cvmx_usb_iso_packet *iso_packet;
3107 	struct usb_host_endpoint *ep = urb->ep;
3108 	int rc;
3109 
3110 	urb->status = 0;
3111 	spin_lock_irqsave(&priv->lock, flags);
3112 
3113 	rc = usb_hcd_link_urb_to_ep(hcd, urb);
3114 	if (rc) {
3115 		spin_unlock_irqrestore(&priv->lock, flags);
3116 		return rc;
3117 	}
3118 
3119 	if (!ep->hcpriv) {
3120 		enum cvmx_usb_transfer transfer_type;
3121 		enum cvmx_usb_speed speed;
3122 		int split_device = 0;
3123 		int split_port = 0;
3124 
3125 		switch (usb_pipetype(urb->pipe)) {
3126 		case PIPE_ISOCHRONOUS:
3127 			transfer_type = CVMX_USB_TRANSFER_ISOCHRONOUS;
3128 			break;
3129 		case PIPE_INTERRUPT:
3130 			transfer_type = CVMX_USB_TRANSFER_INTERRUPT;
3131 			break;
3132 		case PIPE_CONTROL:
3133 			transfer_type = CVMX_USB_TRANSFER_CONTROL;
3134 			break;
3135 		default:
3136 			transfer_type = CVMX_USB_TRANSFER_BULK;
3137 			break;
3138 		}
3139 		switch (urb->dev->speed) {
3140 		case USB_SPEED_LOW:
3141 			speed = CVMX_USB_SPEED_LOW;
3142 			break;
3143 		case USB_SPEED_FULL:
3144 			speed = CVMX_USB_SPEED_FULL;
3145 			break;
3146 		default:
3147 			speed = CVMX_USB_SPEED_HIGH;
3148 			break;
3149 		}
3150 		/*
3151 		 * For slow devices on high speed ports we need to find the hub
3152 		 * that does the speed translation so we know where to send the
3153 		 * split transactions.
3154 		 */
3155 		if (speed != CVMX_USB_SPEED_HIGH) {
3156 			/*
3157 			 * Start at this device and work our way up the usb
3158 			 * tree.
3159 			 */
3160 			struct usb_device *dev = urb->dev;
3161 
3162 			while (dev->parent) {
3163 				/*
3164 				 * If our parent is high speed then he'll
3165 				 * receive the splits.
3166 				 */
3167 				if (dev->parent->speed == USB_SPEED_HIGH) {
3168 					split_device = dev->parent->devnum;
3169 					split_port = dev->portnum;
3170 					break;
3171 				}
3172 				/*
3173 				 * Move up the tree one level. If we make it all
3174 				 * the way up the tree, then the port must not
3175 				 * be in high speed mode and we don't need a
3176 				 * split.
3177 				 */
3178 				dev = dev->parent;
3179 			}
3180 		}
3181 		pipe = cvmx_usb_open_pipe(&priv->usb, usb_pipedevice(urb->pipe),
3182 					  usb_pipeendpoint(urb->pipe), speed,
3183 					  le16_to_cpu(ep->desc.wMaxPacketSize)
3184 					  & 0x7ff,
3185 					  transfer_type,
3186 					  usb_pipein(urb->pipe) ?
3187 						CVMX_USB_DIRECTION_IN :
3188 						CVMX_USB_DIRECTION_OUT,
3189 					  urb->interval,
3190 					  (le16_to_cpu(ep->desc.wMaxPacketSize)
3191 					   >> 11) & 0x3,
3192 					  split_device, split_port);
3193 		if (!pipe) {
3194 			usb_hcd_unlink_urb_from_ep(hcd, urb);
3195 			spin_unlock_irqrestore(&priv->lock, flags);
3196 			dev_dbg(dev, "Failed to create pipe\n");
3197 			return -ENOMEM;
3198 		}
3199 		ep->hcpriv = pipe;
3200 	} else {
3201 		pipe = ep->hcpriv;
3202 	}
3203 
3204 	switch (usb_pipetype(urb->pipe)) {
3205 	case PIPE_ISOCHRONOUS:
3206 		dev_dbg(dev, "Submit isochronous to %d.%d\n",
3207 			usb_pipedevice(urb->pipe),
3208 			usb_pipeendpoint(urb->pipe));
3209 		/*
3210 		 * Allocate a structure to use for our private list of
3211 		 * isochronous packets.
3212 		 */
3213 		iso_packet = kmalloc(urb->number_of_packets *
3214 				     sizeof(struct cvmx_usb_iso_packet),
3215 				     GFP_ATOMIC);
3216 		if (iso_packet) {
3217 			int i;
3218 			/* Fill the list with the data from the URB */
3219 			for (i = 0; i < urb->number_of_packets; i++) {
3220 				iso_packet[i].offset =
3221 					urb->iso_frame_desc[i].offset;
3222 				iso_packet[i].length =
3223 					urb->iso_frame_desc[i].length;
3224 				iso_packet[i].status =
3225 					CVMX_USB_COMPLETE_ERROR;
3226 			}
3227 			/*
3228 			 * Store a pointer to the list in the URB setup_packet
3229 			 * field. We know this currently isn't being used and
3230 			 * this saves us a bunch of logic.
3231 			 */
3232 			urb->setup_packet = (char *)iso_packet;
3233 			transaction = cvmx_usb_submit_isochronous(&priv->usb,
3234 								  pipe, urb);
3235 			/*
3236 			 * If submit failed we need to free our private packet
3237 			 * list.
3238 			 */
3239 			if (!transaction) {
3240 				urb->setup_packet = NULL;
3241 				kfree(iso_packet);
3242 			}
3243 		}
3244 		break;
3245 	case PIPE_INTERRUPT:
3246 		dev_dbg(dev, "Submit interrupt to %d.%d\n",
3247 			usb_pipedevice(urb->pipe),
3248 			usb_pipeendpoint(urb->pipe));
3249 		transaction = cvmx_usb_submit_interrupt(&priv->usb, pipe, urb);
3250 		break;
3251 	case PIPE_CONTROL:
3252 		dev_dbg(dev, "Submit control to %d.%d\n",
3253 			usb_pipedevice(urb->pipe),
3254 			usb_pipeendpoint(urb->pipe));
3255 		transaction = cvmx_usb_submit_control(&priv->usb, pipe, urb);
3256 		break;
3257 	case PIPE_BULK:
3258 		dev_dbg(dev, "Submit bulk to %d.%d\n",
3259 			usb_pipedevice(urb->pipe),
3260 			usb_pipeendpoint(urb->pipe));
3261 		transaction = cvmx_usb_submit_bulk(&priv->usb, pipe, urb);
3262 		break;
3263 	}
3264 	if (!transaction) {
3265 		usb_hcd_unlink_urb_from_ep(hcd, urb);
3266 		spin_unlock_irqrestore(&priv->lock, flags);
3267 		dev_dbg(dev, "Failed to submit\n");
3268 		return -ENOMEM;
3269 	}
3270 	urb->hcpriv = transaction;
3271 	spin_unlock_irqrestore(&priv->lock, flags);
3272 	return 0;
3273 }
3274 
octeon_usb_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)3275 static int octeon_usb_urb_dequeue(struct usb_hcd *hcd,
3276 				  struct urb *urb,
3277 				  int status)
3278 {
3279 	struct octeon_hcd *priv = hcd_to_octeon(hcd);
3280 	unsigned long flags;
3281 	int rc;
3282 
3283 	if (!urb->dev)
3284 		return -EINVAL;
3285 
3286 	spin_lock_irqsave(&priv->lock, flags);
3287 
3288 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
3289 	if (rc)
3290 		goto out;
3291 
3292 	urb->status = status;
3293 	cvmx_usb_cancel(&priv->usb, urb->ep->hcpriv, urb->hcpriv);
3294 
3295 out:
3296 	spin_unlock_irqrestore(&priv->lock, flags);
3297 
3298 	return rc;
3299 }
3300 
octeon_usb_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * ep)3301 static void octeon_usb_endpoint_disable(struct usb_hcd *hcd,
3302 					struct usb_host_endpoint *ep)
3303 {
3304 	struct device *dev = hcd->self.controller;
3305 
3306 	if (ep->hcpriv) {
3307 		struct octeon_hcd *priv = hcd_to_octeon(hcd);
3308 		struct cvmx_usb_pipe *pipe = ep->hcpriv;
3309 		unsigned long flags;
3310 
3311 		spin_lock_irqsave(&priv->lock, flags);
3312 		cvmx_usb_cancel_all(&priv->usb, pipe);
3313 		if (cvmx_usb_close_pipe(&priv->usb, pipe))
3314 			dev_dbg(dev, "Closing pipe %p failed\n", pipe);
3315 		spin_unlock_irqrestore(&priv->lock, flags);
3316 		ep->hcpriv = NULL;
3317 	}
3318 }
3319 
octeon_usb_hub_status_data(struct usb_hcd * hcd,char * buf)3320 static int octeon_usb_hub_status_data(struct usb_hcd *hcd, char *buf)
3321 {
3322 	struct octeon_hcd *priv = hcd_to_octeon(hcd);
3323 	struct cvmx_usb_port_status port_status;
3324 	unsigned long flags;
3325 
3326 	spin_lock_irqsave(&priv->lock, flags);
3327 	port_status = cvmx_usb_get_status(&priv->usb);
3328 	spin_unlock_irqrestore(&priv->lock, flags);
3329 	buf[0] = 0;
3330 	buf[0] = port_status.connect_change << 1;
3331 
3332 	return buf[0] != 0;
3333 }
3334 
octeon_usb_hub_control(struct usb_hcd * hcd,u16 typeReq,u16 wValue,u16 wIndex,char * buf,u16 wLength)3335 static int octeon_usb_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
3336 				u16 wIndex, char *buf, u16 wLength)
3337 {
3338 	struct octeon_hcd *priv = hcd_to_octeon(hcd);
3339 	struct device *dev = hcd->self.controller;
3340 	struct cvmx_usb_port_status usb_port_status;
3341 	struct cvmx_usb_state *usb = &priv->usb;
3342 	int port_status;
3343 	struct usb_hub_descriptor *desc;
3344 	unsigned long flags;
3345 
3346 	switch (typeReq) {
3347 	case ClearHubFeature:
3348 		dev_dbg(dev, "ClearHubFeature\n");
3349 		switch (wValue) {
3350 		case C_HUB_LOCAL_POWER:
3351 		case C_HUB_OVER_CURRENT:
3352 			/* Nothing required here */
3353 			break;
3354 		default:
3355 			return -EINVAL;
3356 		}
3357 		break;
3358 	case ClearPortFeature:
3359 		dev_dbg(dev, "ClearPortFeature\n");
3360 		if (wIndex != 1) {
3361 			dev_dbg(dev, " INVALID\n");
3362 			return -EINVAL;
3363 		}
3364 
3365 		switch (wValue) {
3366 		case USB_PORT_FEAT_ENABLE:
3367 			dev_dbg(dev, " ENABLE\n");
3368 			spin_lock_irqsave(&priv->lock, flags);
3369 			cvmx_usb_disable(&priv->usb);
3370 			spin_unlock_irqrestore(&priv->lock, flags);
3371 			break;
3372 		case USB_PORT_FEAT_SUSPEND:
3373 			dev_dbg(dev, " SUSPEND\n");
3374 			/* Not supported on Octeon */
3375 			break;
3376 		case USB_PORT_FEAT_POWER:
3377 			dev_dbg(dev, " POWER\n");
3378 			/* Not supported on Octeon */
3379 			break;
3380 		case USB_PORT_FEAT_INDICATOR:
3381 			dev_dbg(dev, " INDICATOR\n");
3382 			/* Port inidicator not supported */
3383 			break;
3384 		case USB_PORT_FEAT_C_CONNECTION:
3385 			dev_dbg(dev, " C_CONNECTION\n");
3386 			/* Clears drivers internal connect status change flag */
3387 			spin_lock_irqsave(&priv->lock, flags);
3388 			priv->usb.port_status =
3389 				cvmx_usb_get_status(&priv->usb);
3390 			spin_unlock_irqrestore(&priv->lock, flags);
3391 			break;
3392 		case USB_PORT_FEAT_C_RESET:
3393 			dev_dbg(dev, " C_RESET\n");
3394 			/*
3395 			 * Clears the driver's internal Port Reset Change flag.
3396 			 */
3397 			spin_lock_irqsave(&priv->lock, flags);
3398 			priv->usb.port_status =
3399 				cvmx_usb_get_status(&priv->usb);
3400 			spin_unlock_irqrestore(&priv->lock, flags);
3401 			break;
3402 		case USB_PORT_FEAT_C_ENABLE:
3403 			dev_dbg(dev, " C_ENABLE\n");
3404 			/*
3405 			 * Clears the driver's internal Port Enable/Disable
3406 			 * Change flag.
3407 			 */
3408 			spin_lock_irqsave(&priv->lock, flags);
3409 			priv->usb.port_status =
3410 				cvmx_usb_get_status(&priv->usb);
3411 			spin_unlock_irqrestore(&priv->lock, flags);
3412 			break;
3413 		case USB_PORT_FEAT_C_SUSPEND:
3414 			dev_dbg(dev, " C_SUSPEND\n");
3415 			/*
3416 			 * Clears the driver's internal Port Suspend Change
3417 			 * flag, which is set when resume signaling on the host
3418 			 * port is complete.
3419 			 */
3420 			break;
3421 		case USB_PORT_FEAT_C_OVER_CURRENT:
3422 			dev_dbg(dev, " C_OVER_CURRENT\n");
3423 			/* Clears the driver's overcurrent Change flag */
3424 			spin_lock_irqsave(&priv->lock, flags);
3425 			priv->usb.port_status =
3426 				cvmx_usb_get_status(&priv->usb);
3427 			spin_unlock_irqrestore(&priv->lock, flags);
3428 			break;
3429 		default:
3430 			dev_dbg(dev, " UNKNOWN\n");
3431 			return -EINVAL;
3432 		}
3433 		break;
3434 	case GetHubDescriptor:
3435 		dev_dbg(dev, "GetHubDescriptor\n");
3436 		desc = (struct usb_hub_descriptor *)buf;
3437 		desc->bDescLength = 9;
3438 		desc->bDescriptorType = 0x29;
3439 		desc->bNbrPorts = 1;
3440 		desc->wHubCharacteristics = cpu_to_le16(0x08);
3441 		desc->bPwrOn2PwrGood = 1;
3442 		desc->bHubContrCurrent = 0;
3443 		desc->u.hs.DeviceRemovable[0] = 0;
3444 		desc->u.hs.DeviceRemovable[1] = 0xff;
3445 		break;
3446 	case GetHubStatus:
3447 		dev_dbg(dev, "GetHubStatus\n");
3448 		*(__le32 *) buf = 0;
3449 		break;
3450 	case GetPortStatus:
3451 		dev_dbg(dev, "GetPortStatus\n");
3452 		if (wIndex != 1) {
3453 			dev_dbg(dev, " INVALID\n");
3454 			return -EINVAL;
3455 		}
3456 
3457 		spin_lock_irqsave(&priv->lock, flags);
3458 		usb_port_status = cvmx_usb_get_status(&priv->usb);
3459 		spin_unlock_irqrestore(&priv->lock, flags);
3460 		port_status = 0;
3461 
3462 		if (usb_port_status.connect_change) {
3463 			port_status |= (1 << USB_PORT_FEAT_C_CONNECTION);
3464 			dev_dbg(dev, " C_CONNECTION\n");
3465 		}
3466 
3467 		if (usb_port_status.port_enabled) {
3468 			port_status |= (1 << USB_PORT_FEAT_C_ENABLE);
3469 			dev_dbg(dev, " C_ENABLE\n");
3470 		}
3471 
3472 		if (usb_port_status.connected) {
3473 			port_status |= (1 << USB_PORT_FEAT_CONNECTION);
3474 			dev_dbg(dev, " CONNECTION\n");
3475 		}
3476 
3477 		if (usb_port_status.port_enabled) {
3478 			port_status |= (1 << USB_PORT_FEAT_ENABLE);
3479 			dev_dbg(dev, " ENABLE\n");
3480 		}
3481 
3482 		if (usb_port_status.port_over_current) {
3483 			port_status |= (1 << USB_PORT_FEAT_OVER_CURRENT);
3484 			dev_dbg(dev, " OVER_CURRENT\n");
3485 		}
3486 
3487 		if (usb_port_status.port_powered) {
3488 			port_status |= (1 << USB_PORT_FEAT_POWER);
3489 			dev_dbg(dev, " POWER\n");
3490 		}
3491 
3492 		if (usb_port_status.port_speed == CVMX_USB_SPEED_HIGH) {
3493 			port_status |= USB_PORT_STAT_HIGH_SPEED;
3494 			dev_dbg(dev, " HIGHSPEED\n");
3495 		} else if (usb_port_status.port_speed == CVMX_USB_SPEED_LOW) {
3496 			port_status |= (1 << USB_PORT_FEAT_LOWSPEED);
3497 			dev_dbg(dev, " LOWSPEED\n");
3498 		}
3499 
3500 		*((__le32 *) buf) = cpu_to_le32(port_status);
3501 		break;
3502 	case SetHubFeature:
3503 		dev_dbg(dev, "SetHubFeature\n");
3504 		/* No HUB features supported */
3505 		break;
3506 	case SetPortFeature:
3507 		dev_dbg(dev, "SetPortFeature\n");
3508 		if (wIndex != 1) {
3509 			dev_dbg(dev, " INVALID\n");
3510 			return -EINVAL;
3511 		}
3512 
3513 		switch (wValue) {
3514 		case USB_PORT_FEAT_SUSPEND:
3515 			dev_dbg(dev, " SUSPEND\n");
3516 			return -EINVAL;
3517 		case USB_PORT_FEAT_POWER:
3518 			dev_dbg(dev, " POWER\n");
3519 			/*
3520 			 * Program the port power bit to drive VBUS on the USB.
3521 			 */
3522 			spin_lock_irqsave(&priv->lock, flags);
3523 			USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index),
3524 					cvmx_usbcx_hprt, prtpwr, 1);
3525 			spin_unlock_irqrestore(&priv->lock, flags);
3526 			return 0;
3527 		case USB_PORT_FEAT_RESET:
3528 			dev_dbg(dev, " RESET\n");
3529 			spin_lock_irqsave(&priv->lock, flags);
3530 			cvmx_usb_reset_port(&priv->usb);
3531 			spin_unlock_irqrestore(&priv->lock, flags);
3532 			return 0;
3533 		case USB_PORT_FEAT_INDICATOR:
3534 			dev_dbg(dev, " INDICATOR\n");
3535 			/* Not supported */
3536 			break;
3537 		default:
3538 			dev_dbg(dev, " UNKNOWN\n");
3539 			return -EINVAL;
3540 		}
3541 		break;
3542 	default:
3543 		dev_dbg(dev, "Unknown root hub request\n");
3544 		return -EINVAL;
3545 	}
3546 	return 0;
3547 }
3548 
3549 static const struct hc_driver octeon_hc_driver = {
3550 	.description		= "Octeon USB",
3551 	.product_desc		= "Octeon Host Controller",
3552 	.hcd_priv_size		= sizeof(struct octeon_hcd),
3553 	.irq			= octeon_usb_irq,
3554 	.flags			= HCD_MEMORY | HCD_USB2,
3555 	.start			= octeon_usb_start,
3556 	.stop			= octeon_usb_stop,
3557 	.urb_enqueue		= octeon_usb_urb_enqueue,
3558 	.urb_dequeue		= octeon_usb_urb_dequeue,
3559 	.endpoint_disable	= octeon_usb_endpoint_disable,
3560 	.get_frame_number	= octeon_usb_get_frame_number,
3561 	.hub_status_data	= octeon_usb_hub_status_data,
3562 	.hub_control		= octeon_usb_hub_control,
3563 	.map_urb_for_dma	= octeon_map_urb_for_dma,
3564 	.unmap_urb_for_dma	= octeon_unmap_urb_for_dma,
3565 };
3566 
octeon_usb_probe(struct platform_device * pdev)3567 static int octeon_usb_probe(struct platform_device *pdev)
3568 {
3569 	int status;
3570 	int initialize_flags;
3571 	int usb_num;
3572 	struct resource *res_mem;
3573 	struct device_node *usbn_node;
3574 	int irq = platform_get_irq(pdev, 0);
3575 	struct device *dev = &pdev->dev;
3576 	struct octeon_hcd *priv;
3577 	struct usb_hcd *hcd;
3578 	u32 clock_rate = 48000000;
3579 	bool is_crystal_clock = false;
3580 	const char *clock_type;
3581 	int i;
3582 
3583 	if (dev->of_node == NULL) {
3584 		dev_err(dev, "Error: empty of_node\n");
3585 		return -ENXIO;
3586 	}
3587 	usbn_node = dev->of_node->parent;
3588 
3589 	i = of_property_read_u32(usbn_node,
3590 				 "refclk-frequency", &clock_rate);
3591 	if (i) {
3592 		dev_err(dev, "No USBN \"refclk-frequency\"\n");
3593 		return -ENXIO;
3594 	}
3595 	switch (clock_rate) {
3596 	case 12000000:
3597 		initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ;
3598 		break;
3599 	case 24000000:
3600 		initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ;
3601 		break;
3602 	case 48000000:
3603 		initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ;
3604 		break;
3605 	default:
3606 		dev_err(dev, "Illebal USBN \"refclk-frequency\" %u\n",
3607 				clock_rate);
3608 		return -ENXIO;
3609 
3610 	}
3611 
3612 	i = of_property_read_string(usbn_node,
3613 				    "refclk-type", &clock_type);
3614 
3615 	if (!i && strcmp("crystal", clock_type) == 0)
3616 		is_crystal_clock = true;
3617 
3618 	if (is_crystal_clock)
3619 		initialize_flags |= CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI;
3620 	else
3621 		initialize_flags |= CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND;
3622 
3623 	res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3624 	if (res_mem == NULL) {
3625 		dev_err(dev, "found no memory resource\n");
3626 		return -ENXIO;
3627 	}
3628 	usb_num = (res_mem->start >> 44) & 1;
3629 
3630 	if (irq < 0) {
3631 		/* Defective device tree, but we know how to fix it. */
3632 		irq_hw_number_t hwirq = usb_num ? (1 << 6) + 17 : 56;
3633 
3634 		irq = irq_create_mapping(NULL, hwirq);
3635 	}
3636 
3637 	/*
3638 	 * Set the DMA mask to 64bits so we get buffers already translated for
3639 	 * DMA.
3640 	 */
3641 	dev->coherent_dma_mask = ~0;
3642 	dev->dma_mask = &dev->coherent_dma_mask;
3643 
3644 	/*
3645 	 * Only cn52XX and cn56XX have DWC_OTG USB hardware and the
3646 	 * IOB priority registers.  Under heavy network load USB
3647 	 * hardware can be starved by the IOB causing a crash.  Give
3648 	 * it a priority boost if it has been waiting more than 400
3649 	 * cycles to avoid this situation.
3650 	 *
3651 	 * Testing indicates that a cnt_val of 8192 is not sufficient,
3652 	 * but no failures are seen with 4096.  We choose a value of
3653 	 * 400 to give a safety factor of 10.
3654 	 */
3655 	if (OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN56XX)) {
3656 		union cvmx_iob_n2c_l2c_pri_cnt pri_cnt;
3657 
3658 		pri_cnt.u64 = 0;
3659 		pri_cnt.s.cnt_enb = 1;
3660 		pri_cnt.s.cnt_val = 400;
3661 		cvmx_write_csr(CVMX_IOB_N2C_L2C_PRI_CNT, pri_cnt.u64);
3662 	}
3663 
3664 	hcd = usb_create_hcd(&octeon_hc_driver, dev, dev_name(dev));
3665 	if (!hcd) {
3666 		dev_dbg(dev, "Failed to allocate memory for HCD\n");
3667 		return -1;
3668 	}
3669 	hcd->uses_new_polling = 1;
3670 	priv = (struct octeon_hcd *)hcd->hcd_priv;
3671 
3672 	spin_lock_init(&priv->lock);
3673 
3674 	priv->usb.init_flags = initialize_flags;
3675 
3676 	/* Initialize the USB state structure */
3677 	priv->usb.index = usb_num;
3678 	INIT_LIST_HEAD(&priv->usb.idle_pipes);
3679 	for (i = 0; i < ARRAY_SIZE(priv->usb.active_pipes); i++)
3680 		INIT_LIST_HEAD(&priv->usb.active_pipes[i]);
3681 
3682 	/* Due to an errata, CN31XX doesn't support DMA */
3683 	if (OCTEON_IS_MODEL(OCTEON_CN31XX)) {
3684 		priv->usb.init_flags |= CVMX_USB_INITIALIZE_FLAGS_NO_DMA;
3685 		/* Only use one channel with non DMA */
3686 		priv->usb.idle_hardware_channels = 0x1;
3687 	} else if (OCTEON_IS_MODEL(OCTEON_CN5XXX)) {
3688 		/* CN5XXX have an errata with channel 3 */
3689 		priv->usb.idle_hardware_channels = 0xf7;
3690 	} else {
3691 		priv->usb.idle_hardware_channels = 0xff;
3692 	}
3693 
3694 	status = cvmx_usb_initialize(dev, &priv->usb);
3695 	if (status) {
3696 		dev_dbg(dev, "USB initialization failed with %d\n", status);
3697 		kfree(hcd);
3698 		return -1;
3699 	}
3700 
3701 	status = usb_add_hcd(hcd, irq, 0);
3702 	if (status) {
3703 		dev_dbg(dev, "USB add HCD failed with %d\n", status);
3704 		kfree(hcd);
3705 		return -1;
3706 	}
3707 	device_wakeup_enable(hcd->self.controller);
3708 
3709 	dev_info(dev, "Registered HCD for port %d on irq %d\n", usb_num, irq);
3710 
3711 	return 0;
3712 }
3713 
octeon_usb_remove(struct platform_device * pdev)3714 static int octeon_usb_remove(struct platform_device *pdev)
3715 {
3716 	int status;
3717 	struct device *dev = &pdev->dev;
3718 	struct usb_hcd *hcd = dev_get_drvdata(dev);
3719 	struct octeon_hcd *priv = hcd_to_octeon(hcd);
3720 	unsigned long flags;
3721 
3722 	usb_remove_hcd(hcd);
3723 	spin_lock_irqsave(&priv->lock, flags);
3724 	status = cvmx_usb_shutdown(&priv->usb);
3725 	spin_unlock_irqrestore(&priv->lock, flags);
3726 	if (status)
3727 		dev_dbg(dev, "USB shutdown failed with %d\n", status);
3728 
3729 	kfree(hcd);
3730 
3731 	return 0;
3732 }
3733 
3734 static const struct of_device_id octeon_usb_match[] = {
3735 	{
3736 		.compatible = "cavium,octeon-5750-usbc",
3737 	},
3738 	{},
3739 };
3740 
3741 static struct platform_driver octeon_usb_driver = {
3742 	.driver = {
3743 		.name       = "OcteonUSB",
3744 		.of_match_table = octeon_usb_match,
3745 	},
3746 	.probe      = octeon_usb_probe,
3747 	.remove     = octeon_usb_remove,
3748 };
3749 
octeon_usb_driver_init(void)3750 static int __init octeon_usb_driver_init(void)
3751 {
3752 	if (usb_disabled())
3753 		return 0;
3754 
3755 	return platform_driver_register(&octeon_usb_driver);
3756 }
3757 module_init(octeon_usb_driver_init);
3758 
octeon_usb_driver_exit(void)3759 static void __exit octeon_usb_driver_exit(void)
3760 {
3761 	if (usb_disabled())
3762 		return;
3763 
3764 	platform_driver_unregister(&octeon_usb_driver);
3765 }
3766 module_exit(octeon_usb_driver_exit);
3767 
3768 MODULE_LICENSE("GPL");
3769 MODULE_AUTHOR("Cavium, Inc. <support@cavium.com>");
3770 MODULE_DESCRIPTION("Cavium Inc. OCTEON USB Host driver.");
3771