1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License.  See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2008 Cavium Networks
7 *
8 * Some parts of the code were originally released under BSD license:
9 *
10 * Copyright (c) 2003-2010 Cavium Networks (support@cavium.com). All rights
11 * reserved.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions are
15 * met:
16 *
17 *   * Redistributions of source code must retain the above copyright
18 *     notice, this list of conditions and the following disclaimer.
19 *
20 *   * Redistributions in binary form must reproduce the above
21 *     copyright notice, this list of conditions and the following
22 *     disclaimer in the documentation and/or other materials provided
23 *     with the distribution.
24 *
25 *   * Neither the name of Cavium Networks nor the names of
26 *     its contributors may be used to endorse or promote products
27 *     derived from this software without specific prior written
28 *     permission.
29 *
30 * This Software, including technical data, may be subject to U.S. export
31 * control laws, including the U.S. Export Administration Act and its associated
32 * regulations, and may be subject to export or import regulations in other
33 * countries.
34 *
35 * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
36 * AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR
37 * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
38 * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION
39 * OR DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
40 * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
41 * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
42 * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
43 * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR
44 * PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
45 */
46#include <linux/kernel.h>
47#include <linux/module.h>
48#include <linux/init.h>
49#include <linux/pci.h>
50#include <linux/prefetch.h>
51#include <linux/interrupt.h>
52#include <linux/platform_device.h>
53#include <linux/usb.h>
54
55#include <linux/time.h>
56#include <linux/delay.h>
57
58#include <asm/octeon/cvmx.h>
59#include <asm/octeon/cvmx-iob-defs.h>
60
61#include <linux/usb/hcd.h>
62
63#include <linux/err.h>
64
65#include <asm/octeon/octeon.h>
66#include <asm/octeon/cvmx-helper.h>
67#include <asm/octeon/cvmx-sysinfo.h>
68#include <asm/octeon/cvmx-helper-board.h>
69
70#include "octeon-hcd.h"
71
72/**
73 * enum cvmx_usb_speed - the possible USB device speeds
74 *
75 * @CVMX_USB_SPEED_HIGH: Device is operation at 480Mbps
76 * @CVMX_USB_SPEED_FULL: Device is operation at 12Mbps
77 * @CVMX_USB_SPEED_LOW:  Device is operation at 1.5Mbps
78 */
79enum cvmx_usb_speed {
80	CVMX_USB_SPEED_HIGH = 0,
81	CVMX_USB_SPEED_FULL = 1,
82	CVMX_USB_SPEED_LOW = 2,
83};
84
85/**
86 * enum cvmx_usb_transfer - the possible USB transfer types
87 *
88 * @CVMX_USB_TRANSFER_CONTROL:	   USB transfer type control for hub and status
89 *				   transfers
90 * @CVMX_USB_TRANSFER_ISOCHRONOUS: USB transfer type isochronous for low
91 *				   priority periodic transfers
92 * @CVMX_USB_TRANSFER_BULK:	   USB transfer type bulk for large low priority
93 *				   transfers
94 * @CVMX_USB_TRANSFER_INTERRUPT:   USB transfer type interrupt for high priority
95 *				   periodic transfers
96 */
97enum cvmx_usb_transfer {
98	CVMX_USB_TRANSFER_CONTROL = 0,
99	CVMX_USB_TRANSFER_ISOCHRONOUS = 1,
100	CVMX_USB_TRANSFER_BULK = 2,
101	CVMX_USB_TRANSFER_INTERRUPT = 3,
102};
103
104/**
105 * enum cvmx_usb_direction - the transfer directions
106 *
107 * @CVMX_USB_DIRECTION_OUT: Data is transferring from Octeon to the device/host
108 * @CVMX_USB_DIRECTION_IN:  Data is transferring from the device/host to Octeon
109 */
110enum cvmx_usb_direction {
111	CVMX_USB_DIRECTION_OUT,
112	CVMX_USB_DIRECTION_IN,
113};
114
115/**
116 * enum cvmx_usb_complete - possible callback function status codes
117 *
118 * @CVMX_USB_COMPLETE_SUCCESS:	  The transaction / operation finished without
119 *				  any errors
120 * @CVMX_USB_COMPLETE_SHORT:	  FIXME: This is currently not implemented
121 * @CVMX_USB_COMPLETE_CANCEL:	  The transaction was canceled while in flight
122 *				  by a user call to cvmx_usb_cancel
123 * @CVMX_USB_COMPLETE_ERROR:	  The transaction aborted with an unexpected
124 *				  error status
125 * @CVMX_USB_COMPLETE_STALL:	  The transaction received a USB STALL response
126 *				  from the device
127 * @CVMX_USB_COMPLETE_XACTERR:	  The transaction failed with an error from the
128 *				  device even after a number of retries
129 * @CVMX_USB_COMPLETE_DATATGLERR: The transaction failed with a data toggle
130 *				  error even after a number of retries
131 * @CVMX_USB_COMPLETE_BABBLEERR:  The transaction failed with a babble error
132 * @CVMX_USB_COMPLETE_FRAMEERR:	  The transaction failed with a frame error
133 *				  even after a number of retries
134 */
135enum cvmx_usb_complete {
136	CVMX_USB_COMPLETE_SUCCESS,
137	CVMX_USB_COMPLETE_SHORT,
138	CVMX_USB_COMPLETE_CANCEL,
139	CVMX_USB_COMPLETE_ERROR,
140	CVMX_USB_COMPLETE_STALL,
141	CVMX_USB_COMPLETE_XACTERR,
142	CVMX_USB_COMPLETE_DATATGLERR,
143	CVMX_USB_COMPLETE_BABBLEERR,
144	CVMX_USB_COMPLETE_FRAMEERR,
145};
146
147/**
148 * struct cvmx_usb_port_status - the USB port status information
149 *
150 * @port_enabled:	1 = Usb port is enabled, 0 = disabled
151 * @port_over_current:	1 = Over current detected, 0 = Over current not
152 *			detected. Octeon doesn't support over current detection.
153 * @port_powered:	1 = Port power is being supplied to the device, 0 =
154 *			power is off. Octeon doesn't support turning port power
155 *			off.
156 * @port_speed:		Current port speed.
157 * @connected:		1 = A device is connected to the port, 0 = No device is
158 *			connected.
159 * @connect_change:	1 = Device connected state changed since the last set
160 *			status call.
161 */
162struct cvmx_usb_port_status {
163	uint32_t reserved		: 25;
164	uint32_t port_enabled		: 1;
165	uint32_t port_over_current	: 1;
166	uint32_t port_powered		: 1;
167	enum cvmx_usb_speed port_speed	: 2;
168	uint32_t connected		: 1;
169	uint32_t connect_change		: 1;
170};
171
172/**
173 * struct cvmx_usb_iso_packet - descriptor for Isochronous packets
174 *
175 * @offset:	This is the offset in bytes into the main buffer where this data
176 *		is stored.
177 * @length:	This is the length in bytes of the data.
178 * @status:	This is the status of this individual packet transfer.
179 */
180struct cvmx_usb_iso_packet {
181	int offset;
182	int length;
183	enum cvmx_usb_complete status;
184};
185
186/**
187 * enum cvmx_usb_initialize_flags - flags used by the initialization function
188 *
189 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI:    The USB port uses a 12MHz crystal
190 *					      as clock source at USB_XO and
191 *					      USB_XI.
192 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND:   The USB port uses 12/24/48MHz 2.5V
193 *					      board clock source at USB_XO.
194 *					      USB_XI should be tied to GND.
195 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK: Mask for clock speed field
196 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ:    Speed of reference clock or
197 *					      crystal
198 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ:    Speed of reference clock
199 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ:    Speed of reference clock
200 * @CVMX_USB_INITIALIZE_FLAGS_NO_DMA:	      Disable DMA and used polled IO for
201 *					      data transfer use for the USB
202 */
203enum cvmx_usb_initialize_flags {
204	CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI		= 1 << 0,
205	CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND		= 1 << 1,
206	CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK	= 3 << 3,
207	CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ		= 1 << 3,
208	CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ		= 2 << 3,
209	CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ		= 3 << 3,
210	/* Bits 3-4 used to encode the clock frequency */
211	CVMX_USB_INITIALIZE_FLAGS_NO_DMA		= 1 << 5,
212};
213
214/**
215 * enum cvmx_usb_pipe_flags - internal flags for a pipe.
216 *
217 * @CVMX_USB_PIPE_FLAGS_SCHEDULED: Used internally to determine if a pipe is
218 *				   actively using hardware.
219 * @CVMX_USB_PIPE_FLAGS_NEED_PING: Used internally to determine if a high speed
220 *				   pipe is in the ping state.
221 */
222enum cvmx_usb_pipe_flags {
223	CVMX_USB_PIPE_FLAGS_SCHEDULED	= 1 << 17,
224	CVMX_USB_PIPE_FLAGS_NEED_PING	= 1 << 18,
225};
226
227/* Maximum number of times to retry failed transactions */
228#define MAX_RETRIES		3
229
230/* Maximum number of hardware channels supported by the USB block */
231#define MAX_CHANNELS		8
232
233/*
234 * The low level hardware can transfer a maximum of this number of bytes in each
235 * transfer. The field is 19 bits wide
236 */
237#define MAX_TRANSFER_BYTES	((1<<19)-1)
238
239/*
240 * The low level hardware can transfer a maximum of this number of packets in
241 * each transfer. The field is 10 bits wide
242 */
243#define MAX_TRANSFER_PACKETS	((1<<10)-1)
244
245/**
246 * Logical transactions may take numerous low level
247 * transactions, especially when splits are concerned. This
248 * enum represents all of the possible stages a transaction can
249 * be in. Note that split completes are always even. This is so
250 * the NAK handler can backup to the previous low level
251 * transaction with a simple clearing of bit 0.
252 */
253enum cvmx_usb_stage {
254	CVMX_USB_STAGE_NON_CONTROL,
255	CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE,
256	CVMX_USB_STAGE_SETUP,
257	CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE,
258	CVMX_USB_STAGE_DATA,
259	CVMX_USB_STAGE_DATA_SPLIT_COMPLETE,
260	CVMX_USB_STAGE_STATUS,
261	CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE,
262};
263
264/**
265 * struct cvmx_usb_transaction - describes each pending USB transaction
266 *				 regardless of type. These are linked together
267 *				 to form a list of pending requests for a pipe.
268 *
269 * @node:		List node for transactions in the pipe.
270 * @type:		Type of transaction, duplicated of the pipe.
271 * @flags:		State flags for this transaction.
272 * @buffer:		User's physical buffer address to read/write.
273 * @buffer_length:	Size of the user's buffer in bytes.
274 * @control_header:	For control transactions, physical address of the 8
275 *			byte standard header.
276 * @iso_start_frame:	For ISO transactions, the starting frame number.
277 * @iso_number_packets:	For ISO transactions, the number of packets in the
278 *			request.
279 * @iso_packets:	For ISO transactions, the sub packets in the request.
280 * @actual_bytes:	Actual bytes transfer for this transaction.
281 * @stage:		For control transactions, the current stage.
282 * @urb:		URB.
283 */
284struct cvmx_usb_transaction {
285	struct list_head node;
286	enum cvmx_usb_transfer type;
287	uint64_t buffer;
288	int buffer_length;
289	uint64_t control_header;
290	int iso_start_frame;
291	int iso_number_packets;
292	struct cvmx_usb_iso_packet *iso_packets;
293	int xfersize;
294	int pktcnt;
295	int retries;
296	int actual_bytes;
297	enum cvmx_usb_stage stage;
298	struct urb *urb;
299};
300
301/**
302 * struct cvmx_usb_pipe - a pipe represents a virtual connection between Octeon
303 *			  and some USB device. It contains a list of pending
304 *			  request to the device.
305 *
306 * @node:		List node for pipe list
307 * @next:		Pipe after this one in the list
308 * @transactions:	List of pending transactions
309 * @interval:		For periodic pipes, the interval between packets in
310 *			frames
311 * @next_tx_frame:	The next frame this pipe is allowed to transmit on
312 * @flags:		State flags for this pipe
313 * @device_speed:	Speed of device connected to this pipe
314 * @transfer_type:	Type of transaction supported by this pipe
315 * @transfer_dir:	IN or OUT. Ignored for Control
316 * @multi_count:	Max packet in a row for the device
317 * @max_packet:		The device's maximum packet size in bytes
318 * @device_addr:	USB device address at other end of pipe
319 * @endpoint_num:	USB endpoint number at other end of pipe
320 * @hub_device_addr:	Hub address this device is connected to
321 * @hub_port:		Hub port this device is connected to
322 * @pid_toggle:		This toggles between 0/1 on every packet send to track
323 *			the data pid needed
324 * @channel:		Hardware DMA channel for this pipe
325 * @split_sc_frame:	The low order bits of the frame number the split
326 *			complete should be sent on
327 */
328struct cvmx_usb_pipe {
329	struct list_head node;
330	struct list_head transactions;
331	uint64_t interval;
332	uint64_t next_tx_frame;
333	enum cvmx_usb_pipe_flags flags;
334	enum cvmx_usb_speed device_speed;
335	enum cvmx_usb_transfer transfer_type;
336	enum cvmx_usb_direction transfer_dir;
337	int multi_count;
338	uint16_t max_packet;
339	uint8_t device_addr;
340	uint8_t endpoint_num;
341	uint8_t hub_device_addr;
342	uint8_t hub_port;
343	uint8_t pid_toggle;
344	uint8_t channel;
345	int8_t split_sc_frame;
346};
347
348struct cvmx_usb_tx_fifo {
349	struct {
350		int channel;
351		int size;
352		uint64_t address;
353	} entry[MAX_CHANNELS+1];
354	int head;
355	int tail;
356};
357
358/**
359 * struct cvmx_usb_state - the state of the USB block
360 *
361 * init_flags:		   Flags passed to initialize.
362 * index:		   Which USB block this is for.
363 * idle_hardware_channels: Bit set for every idle hardware channel.
364 * usbcx_hprt:		   Stored port status so we don't need to read a CSR to
365 *			   determine splits.
366 * pipe_for_channel:	   Map channels to pipes.
367 * pipe:		   Storage for pipes.
368 * indent:		   Used by debug output to indent functions.
369 * port_status:		   Last port status used for change notification.
370 * idle_pipes:		   List of open pipes that have no transactions.
371 * active_pipes:	   Active pipes indexed by transfer type.
372 * frame_number:	   Increments every SOF interrupt for time keeping.
373 * active_split:	   Points to the current active split, or NULL.
374 */
375struct cvmx_usb_state {
376	int init_flags;
377	int index;
378	int idle_hardware_channels;
379	union cvmx_usbcx_hprt usbcx_hprt;
380	struct cvmx_usb_pipe *pipe_for_channel[MAX_CHANNELS];
381	int indent;
382	struct cvmx_usb_port_status port_status;
383	struct list_head idle_pipes;
384	struct list_head active_pipes[4];
385	uint64_t frame_number;
386	struct cvmx_usb_transaction *active_split;
387	struct cvmx_usb_tx_fifo periodic;
388	struct cvmx_usb_tx_fifo nonperiodic;
389};
390
391struct octeon_hcd {
392	spinlock_t lock;
393	struct cvmx_usb_state usb;
394};
395
396/* This macro spins on a register waiting for it to reach a condition. */
397#define CVMX_WAIT_FOR_FIELD32(address, _union, cond, timeout_usec)	    \
398	({int result;							    \
399	do {								    \
400		uint64_t done = cvmx_get_cycle() + (uint64_t)timeout_usec * \
401			octeon_get_clock_rate() / 1000000;		    \
402		union _union c;						    \
403									    \
404		while (1) {						    \
405			c.u32 = cvmx_usb_read_csr32(usb, address);	    \
406									    \
407			if (cond) {					    \
408				result = 0;				    \
409				break;					    \
410			} else if (cvmx_get_cycle() > done) {		    \
411				result = -1;				    \
412				break;					    \
413			} else						    \
414				cvmx_wait(100);				    \
415		}							    \
416	} while (0);							    \
417	result; })
418
419/*
420 * This macro logically sets a single field in a CSR. It does the sequence
421 * read, modify, and write
422 */
423#define USB_SET_FIELD32(address, _union, field, value)		\
424	do {							\
425		union _union c;					\
426								\
427		c.u32 = cvmx_usb_read_csr32(usb, address);	\
428		c.s.field = value;				\
429		cvmx_usb_write_csr32(usb, address, c.u32);	\
430	} while (0)
431
432/* Returns the IO address to push/pop stuff data from the FIFOs */
433#define USB_FIFO_ADDRESS(channel, usb_index) \
434	(CVMX_USBCX_GOTGCTL(usb_index) + ((channel)+1)*0x1000)
435
436/**
437 * struct octeon_temp_buffer - a bounce buffer for USB transfers
438 * @orig_buffer: the original buffer passed by the USB stack
439 * @data:	 the newly allocated temporary buffer (excluding meta-data)
440 *
441 * Both the DMA engine and FIFO mode will always transfer full 32-bit words. If
442 * the buffer is too short, we need to allocate a temporary one, and this struct
443 * represents it.
444 */
445struct octeon_temp_buffer {
446	void *orig_buffer;
447	u8 data[0];
448};
449
450static inline struct octeon_hcd *cvmx_usb_to_octeon(struct cvmx_usb_state *p)
451{
452	return container_of(p, struct octeon_hcd, usb);
453}
454
455static inline struct usb_hcd *octeon_to_hcd(struct octeon_hcd *p)
456{
457	return container_of((void *)p, struct usb_hcd, hcd_priv);
458}
459
460/**
461 * octeon_alloc_temp_buffer - allocate a temporary buffer for USB transfer
462 *                            (if needed)
463 * @urb:	URB.
464 * @mem_flags:	Memory allocation flags.
465 *
466 * This function allocates a temporary bounce buffer whenever it's needed
467 * due to HW limitations.
468 */
469static int octeon_alloc_temp_buffer(struct urb *urb, gfp_t mem_flags)
470{
471	struct octeon_temp_buffer *temp;
472
473	if (urb->num_sgs || urb->sg ||
474	    (urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) ||
475	    !(urb->transfer_buffer_length % sizeof(u32)))
476		return 0;
477
478	temp = kmalloc(ALIGN(urb->transfer_buffer_length, sizeof(u32)) +
479		       sizeof(*temp), mem_flags);
480	if (!temp)
481		return -ENOMEM;
482
483	temp->orig_buffer = urb->transfer_buffer;
484	if (usb_urb_dir_out(urb))
485		memcpy(temp->data, urb->transfer_buffer,
486		       urb->transfer_buffer_length);
487	urb->transfer_buffer = temp->data;
488	urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
489
490	return 0;
491}
492
493/**
494 * octeon_free_temp_buffer - free a temporary buffer used by USB transfers.
495 * @urb: URB.
496 *
497 * Frees a buffer allocated by octeon_alloc_temp_buffer().
498 */
499static void octeon_free_temp_buffer(struct urb *urb)
500{
501	struct octeon_temp_buffer *temp;
502
503	if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
504		return;
505
506	temp = container_of(urb->transfer_buffer, struct octeon_temp_buffer,
507			    data);
508	if (usb_urb_dir_in(urb))
509		memcpy(temp->orig_buffer, urb->transfer_buffer,
510		       urb->actual_length);
511	urb->transfer_buffer = temp->orig_buffer;
512	urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
513	kfree(temp);
514}
515
516/**
517 * octeon_map_urb_for_dma - Octeon-specific map_urb_for_dma().
518 * @hcd:	USB HCD structure.
519 * @urb:	URB.
520 * @mem_flags:	Memory allocation flags.
521 */
522static int octeon_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
523				  gfp_t mem_flags)
524{
525	int ret;
526
527	ret = octeon_alloc_temp_buffer(urb, mem_flags);
528	if (ret)
529		return ret;
530
531	ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
532	if (ret)
533		octeon_free_temp_buffer(urb);
534
535	return ret;
536}
537
538/**
539 * octeon_unmap_urb_for_dma - Octeon-specific unmap_urb_for_dma()
540 * @hcd:	USB HCD structure.
541 * @urb:	URB.
542 */
543static void octeon_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
544{
545	usb_hcd_unmap_urb_for_dma(hcd, urb);
546	octeon_free_temp_buffer(urb);
547}
548
549/**
550 * Read a USB 32bit CSR. It performs the necessary address swizzle
551 * for 32bit CSRs and logs the value in a readable format if
552 * debugging is on.
553 *
554 * @usb:     USB block this access is for
555 * @address: 64bit address to read
556 *
557 * Returns: Result of the read
558 */
559static inline uint32_t cvmx_usb_read_csr32(struct cvmx_usb_state *usb,
560					   uint64_t address)
561{
562	uint32_t result = cvmx_read64_uint32(address ^ 4);
563	return result;
564}
565
566
567/**
568 * Write a USB 32bit CSR. It performs the necessary address
569 * swizzle for 32bit CSRs and logs the value in a readable format
570 * if debugging is on.
571 *
572 * @usb:     USB block this access is for
573 * @address: 64bit address to write
574 * @value:   Value to write
575 */
576static inline void cvmx_usb_write_csr32(struct cvmx_usb_state *usb,
577					uint64_t address, uint32_t value)
578{
579	cvmx_write64_uint32(address ^ 4, value);
580	cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index));
581}
582
583/**
584 * Return non zero if this pipe connects to a non HIGH speed
585 * device through a high speed hub.
586 *
587 * @usb:    USB block this access is for
588 * @pipe:   Pipe to check
589 *
590 * Returns: Non zero if we need to do split transactions
591 */
592static inline int cvmx_usb_pipe_needs_split(struct cvmx_usb_state *usb,
593					    struct cvmx_usb_pipe *pipe)
594{
595	return pipe->device_speed != CVMX_USB_SPEED_HIGH &&
596	       usb->usbcx_hprt.s.prtspd == CVMX_USB_SPEED_HIGH;
597}
598
599
600/**
601 * Trivial utility function to return the correct PID for a pipe
602 *
603 * @pipe:   pipe to check
604 *
605 * Returns: PID for pipe
606 */
607static inline int cvmx_usb_get_data_pid(struct cvmx_usb_pipe *pipe)
608{
609	if (pipe->pid_toggle)
610		return 2; /* Data1 */
611	return 0; /* Data0 */
612}
613
614static void cvmx_fifo_setup(struct cvmx_usb_state *usb)
615{
616	union cvmx_usbcx_ghwcfg3 usbcx_ghwcfg3;
617	union cvmx_usbcx_gnptxfsiz npsiz;
618	union cvmx_usbcx_hptxfsiz psiz;
619
620	usbcx_ghwcfg3.u32 = cvmx_usb_read_csr32(usb,
621						CVMX_USBCX_GHWCFG3(usb->index));
622
623	/*
624	 * Program the USBC_GRXFSIZ register to select the size of the receive
625	 * FIFO (25%).
626	 */
627	USB_SET_FIELD32(CVMX_USBCX_GRXFSIZ(usb->index), cvmx_usbcx_grxfsiz,
628			rxfdep, usbcx_ghwcfg3.s.dfifodepth / 4);
629
630	/*
631	 * Program the USBC_GNPTXFSIZ register to select the size and the start
632	 * address of the non-periodic transmit FIFO for nonperiodic
633	 * transactions (50%).
634	 */
635	npsiz.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_GNPTXFSIZ(usb->index));
636	npsiz.s.nptxfdep = usbcx_ghwcfg3.s.dfifodepth / 2;
637	npsiz.s.nptxfstaddr = usbcx_ghwcfg3.s.dfifodepth / 4;
638	cvmx_usb_write_csr32(usb, CVMX_USBCX_GNPTXFSIZ(usb->index), npsiz.u32);
639
640	/*
641	 * Program the USBC_HPTXFSIZ register to select the size and start
642	 * address of the periodic transmit FIFO for periodic transactions
643	 * (25%).
644	 */
645	psiz.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HPTXFSIZ(usb->index));
646	psiz.s.ptxfsize = usbcx_ghwcfg3.s.dfifodepth / 4;
647	psiz.s.ptxfstaddr = 3 * usbcx_ghwcfg3.s.dfifodepth / 4;
648	cvmx_usb_write_csr32(usb, CVMX_USBCX_HPTXFSIZ(usb->index), psiz.u32);
649
650	/* Flush all FIFOs */
651	USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
652			cvmx_usbcx_grstctl, txfnum, 0x10);
653	USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
654			cvmx_usbcx_grstctl, txfflsh, 1);
655	CVMX_WAIT_FOR_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
656			      cvmx_usbcx_grstctl, c.s.txfflsh == 0, 100);
657	USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
658			cvmx_usbcx_grstctl, rxfflsh, 1);
659	CVMX_WAIT_FOR_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
660			      cvmx_usbcx_grstctl, c.s.rxfflsh == 0, 100);
661}
662
663/**
664 * Shutdown a USB port after a call to cvmx_usb_initialize().
665 * The port should be disabled with all pipes closed when this
666 * function is called.
667 *
668 * @usb: USB device state populated by cvmx_usb_initialize().
669 *
670 * Returns: 0 or a negative error code.
671 */
672static int cvmx_usb_shutdown(struct cvmx_usb_state *usb)
673{
674	union cvmx_usbnx_clk_ctl usbn_clk_ctl;
675
676	/* Make sure all pipes are closed */
677	if (!list_empty(&usb->idle_pipes) ||
678	    !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_ISOCHRONOUS]) ||
679	    !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_INTERRUPT]) ||
680	    !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_CONTROL]) ||
681	    !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_BULK]))
682		return -EBUSY;
683
684	/* Disable the clocks and put them in power on reset */
685	usbn_clk_ctl.u64 = cvmx_read64_uint64(CVMX_USBNX_CLK_CTL(usb->index));
686	usbn_clk_ctl.s.enable = 1;
687	usbn_clk_ctl.s.por = 1;
688	usbn_clk_ctl.s.hclk_rst = 1;
689	usbn_clk_ctl.s.prst = 0;
690	usbn_clk_ctl.s.hrst = 0;
691	cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
692	return 0;
693}
694
695/**
696 * Initialize a USB port for use. This must be called before any
697 * other access to the Octeon USB port is made. The port starts
698 * off in the disabled state.
699 *
700 * @dev:	 Pointer to struct device for logging purposes.
701 * @usb:	 Pointer to struct cvmx_usb_state.
702 *
703 * Returns: 0 or a negative error code.
704 */
705static int cvmx_usb_initialize(struct device *dev,
706			       struct cvmx_usb_state *usb)
707{
708	int channel;
709	int divisor;
710	int retries = 0;
711	union cvmx_usbcx_hcfg usbcx_hcfg;
712	union cvmx_usbnx_clk_ctl usbn_clk_ctl;
713	union cvmx_usbcx_gintsts usbc_gintsts;
714	union cvmx_usbcx_gahbcfg usbcx_gahbcfg;
715	union cvmx_usbcx_gintmsk usbcx_gintmsk;
716	union cvmx_usbcx_gusbcfg usbcx_gusbcfg;
717	union cvmx_usbnx_usbp_ctl_status usbn_usbp_ctl_status;
718
719retry:
720	/*
721	 * Power On Reset and PHY Initialization
722	 *
723	 * 1. Wait for DCOK to assert (nothing to do)
724	 *
725	 * 2a. Write USBN0/1_CLK_CTL[POR] = 1 and
726	 *     USBN0/1_CLK_CTL[HRST,PRST,HCLK_RST] = 0
727	 */
728	usbn_clk_ctl.u64 = cvmx_read64_uint64(CVMX_USBNX_CLK_CTL(usb->index));
729	usbn_clk_ctl.s.por = 1;
730	usbn_clk_ctl.s.hrst = 0;
731	usbn_clk_ctl.s.prst = 0;
732	usbn_clk_ctl.s.hclk_rst = 0;
733	usbn_clk_ctl.s.enable = 0;
734	/*
735	 * 2b. Select the USB reference clock/crystal parameters by writing
736	 *     appropriate values to USBN0/1_CLK_CTL[P_C_SEL, P_RTYPE, P_COM_ON]
737	 */
738	if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND) {
739		/*
740		 * The USB port uses 12/24/48MHz 2.5V board clock
741		 * source at USB_XO. USB_XI should be tied to GND.
742		 * Most Octeon evaluation boards require this setting
743		 */
744		if (OCTEON_IS_MODEL(OCTEON_CN3XXX) ||
745		    OCTEON_IS_MODEL(OCTEON_CN56XX) ||
746		    OCTEON_IS_MODEL(OCTEON_CN50XX))
747			/* From CN56XX,CN50XX,CN31XX,CN30XX manuals */
748			usbn_clk_ctl.s.p_rtype = 2; /* p_rclk=1 & p_xenbn=0 */
749		else
750			/* From CN52XX manual */
751			usbn_clk_ctl.s.p_rtype = 1;
752
753		switch (usb->init_flags &
754			CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK) {
755		case CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ:
756			usbn_clk_ctl.s.p_c_sel = 0;
757			break;
758		case CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ:
759			usbn_clk_ctl.s.p_c_sel = 1;
760			break;
761		case CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ:
762			usbn_clk_ctl.s.p_c_sel = 2;
763			break;
764		}
765	} else {
766		/*
767		 * The USB port uses a 12MHz crystal as clock source
768		 * at USB_XO and USB_XI
769		 */
770		if (OCTEON_IS_MODEL(OCTEON_CN3XXX))
771			/* From CN31XX,CN30XX manual */
772			usbn_clk_ctl.s.p_rtype = 3; /* p_rclk=1 & p_xenbn=1 */
773		else
774			/* From CN56XX,CN52XX,CN50XX manuals. */
775			usbn_clk_ctl.s.p_rtype = 0;
776
777		usbn_clk_ctl.s.p_c_sel = 0;
778	}
779	/*
780	 * 2c. Select the HCLK via writing USBN0/1_CLK_CTL[DIVIDE, DIVIDE2] and
781	 *     setting USBN0/1_CLK_CTL[ENABLE] = 1. Divide the core clock down
782	 *     such that USB is as close as possible to 125Mhz
783	 */
784	divisor = DIV_ROUND_UP(octeon_get_clock_rate(), 125000000);
785	/* Lower than 4 doesn't seem to work properly */
786	if (divisor < 4)
787		divisor = 4;
788	usbn_clk_ctl.s.divide = divisor;
789	usbn_clk_ctl.s.divide2 = 0;
790	cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
791
792	/* 2d. Write USBN0/1_CLK_CTL[HCLK_RST] = 1 */
793	usbn_clk_ctl.s.hclk_rst = 1;
794	cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
795	/* 2e.  Wait 64 core-clock cycles for HCLK to stabilize */
796	cvmx_wait(64);
797	/*
798	 * 3. Program the power-on reset field in the USBN clock-control
799	 *    register:
800	 *    USBN_CLK_CTL[POR] = 0
801	 */
802	usbn_clk_ctl.s.por = 0;
803	cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
804	/* 4. Wait 1 ms for PHY clock to start */
805	mdelay(1);
806	/*
807	 * 5. Program the Reset input from automatic test equipment field in the
808	 *    USBP control and status register:
809	 *    USBN_USBP_CTL_STATUS[ATE_RESET] = 1
810	 */
811	usbn_usbp_ctl_status.u64 =
812		cvmx_read64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index));
813	usbn_usbp_ctl_status.s.ate_reset = 1;
814	cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index),
815			    usbn_usbp_ctl_status.u64);
816	/* 6. Wait 10 cycles */
817	cvmx_wait(10);
818	/*
819	 * 7. Clear ATE_RESET field in the USBN clock-control register:
820	 *    USBN_USBP_CTL_STATUS[ATE_RESET] = 0
821	 */
822	usbn_usbp_ctl_status.s.ate_reset = 0;
823	cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index),
824			    usbn_usbp_ctl_status.u64);
825	/*
826	 * 8. Program the PHY reset field in the USBN clock-control register:
827	 *    USBN_CLK_CTL[PRST] = 1
828	 */
829	usbn_clk_ctl.s.prst = 1;
830	cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
831	/*
832	 * 9. Program the USBP control and status register to select host or
833	 *    device mode. USBN_USBP_CTL_STATUS[HST_MODE] = 0 for host, = 1 for
834	 *    device
835	 */
836	usbn_usbp_ctl_status.s.hst_mode = 0;
837	cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index),
838			    usbn_usbp_ctl_status.u64);
839	/* 10. Wait 1 us */
840	udelay(1);
841	/*
842	 * 11. Program the hreset_n field in the USBN clock-control register:
843	 *     USBN_CLK_CTL[HRST] = 1
844	 */
845	usbn_clk_ctl.s.hrst = 1;
846	cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
847	/* 12. Proceed to USB core initialization */
848	usbn_clk_ctl.s.enable = 1;
849	cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
850	udelay(1);
851
852	/*
853	 * USB Core Initialization
854	 *
855	 * 1. Read USBC_GHWCFG1, USBC_GHWCFG2, USBC_GHWCFG3, USBC_GHWCFG4 to
856	 *    determine USB core configuration parameters.
857	 *
858	 *    Nothing needed
859	 *
860	 * 2. Program the following fields in the global AHB configuration
861	 *    register (USBC_GAHBCFG)
862	 *    DMA mode, USBC_GAHBCFG[DMAEn]: 1 = DMA mode, 0 = slave mode
863	 *    Burst length, USBC_GAHBCFG[HBSTLEN] = 0
864	 *    Nonperiodic TxFIFO empty level (slave mode only),
865	 *    USBC_GAHBCFG[NPTXFEMPLVL]
866	 *    Periodic TxFIFO empty level (slave mode only),
867	 *    USBC_GAHBCFG[PTXFEMPLVL]
868	 *    Global interrupt mask, USBC_GAHBCFG[GLBLINTRMSK] = 1
869	 */
870	usbcx_gahbcfg.u32 = 0;
871	usbcx_gahbcfg.s.dmaen = !(usb->init_flags &
872				  CVMX_USB_INITIALIZE_FLAGS_NO_DMA);
873	usbcx_gahbcfg.s.hbstlen = 0;
874	usbcx_gahbcfg.s.nptxfemplvl = 1;
875	usbcx_gahbcfg.s.ptxfemplvl = 1;
876	usbcx_gahbcfg.s.glblintrmsk = 1;
877	cvmx_usb_write_csr32(usb, CVMX_USBCX_GAHBCFG(usb->index),
878			     usbcx_gahbcfg.u32);
879
880	/*
881	 * 3. Program the following fields in USBC_GUSBCFG register.
882	 *    HS/FS timeout calibration, USBC_GUSBCFG[TOUTCAL] = 0
883	 *    ULPI DDR select, USBC_GUSBCFG[DDRSEL] = 0
884	 *    USB turnaround time, USBC_GUSBCFG[USBTRDTIM] = 0x5
885	 *    PHY low-power clock select, USBC_GUSBCFG[PHYLPWRCLKSEL] = 0
886	 */
887	usbcx_gusbcfg.u32 = cvmx_usb_read_csr32(usb,
888						CVMX_USBCX_GUSBCFG(usb->index));
889	usbcx_gusbcfg.s.toutcal = 0;
890	usbcx_gusbcfg.s.ddrsel = 0;
891	usbcx_gusbcfg.s.usbtrdtim = 0x5;
892	usbcx_gusbcfg.s.phylpwrclksel = 0;
893	cvmx_usb_write_csr32(usb, CVMX_USBCX_GUSBCFG(usb->index),
894			     usbcx_gusbcfg.u32);
895
896	/*
897	 * 4. The software must unmask the following bits in the USBC_GINTMSK
898	 *    register.
899	 *    OTG interrupt mask, USBC_GINTMSK[OTGINTMSK] = 1
900	 *    Mode mismatch interrupt mask, USBC_GINTMSK[MODEMISMSK] = 1
901	 */
902	usbcx_gintmsk.u32 = cvmx_usb_read_csr32(usb,
903						CVMX_USBCX_GINTMSK(usb->index));
904	usbcx_gintmsk.s.otgintmsk = 1;
905	usbcx_gintmsk.s.modemismsk = 1;
906	usbcx_gintmsk.s.hchintmsk = 1;
907	usbcx_gintmsk.s.sofmsk = 0;
908	/* We need RX FIFO interrupts if we don't have DMA */
909	if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
910		usbcx_gintmsk.s.rxflvlmsk = 1;
911	cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTMSK(usb->index),
912			     usbcx_gintmsk.u32);
913
914	/*
915	 * Disable all channel interrupts. We'll enable them per channel later.
916	 */
917	for (channel = 0; channel < 8; channel++)
918		cvmx_usb_write_csr32(usb,
919				     CVMX_USBCX_HCINTMSKX(channel, usb->index),
920				     0);
921
922	/*
923	 * Host Port Initialization
924	 *
925	 * 1. Program the host-port interrupt-mask field to unmask,
926	 *    USBC_GINTMSK[PRTINT] = 1
927	 */
928	USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
929			cvmx_usbcx_gintmsk, prtintmsk, 1);
930	USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
931			cvmx_usbcx_gintmsk, disconnintmsk, 1);
932
933	/*
934	 * 2. Program the USBC_HCFG register to select full-speed host
935	 *    or high-speed host.
936	 */
937	usbcx_hcfg.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HCFG(usb->index));
938	usbcx_hcfg.s.fslssupp = 0;
939	usbcx_hcfg.s.fslspclksel = 0;
940	cvmx_usb_write_csr32(usb, CVMX_USBCX_HCFG(usb->index), usbcx_hcfg.u32);
941
942	cvmx_fifo_setup(usb);
943
944	/*
945	 * If the controller is getting port events right after the reset, it
946	 * means the initialization failed. Try resetting the controller again
947	 * in such case. This is seen to happen after cold boot on DSR-1000N.
948	 */
949	usbc_gintsts.u32 = cvmx_usb_read_csr32(usb,
950					       CVMX_USBCX_GINTSTS(usb->index));
951	cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTSTS(usb->index),
952			     usbc_gintsts.u32);
953	dev_dbg(dev, "gintsts after reset: 0x%x\n", (int)usbc_gintsts.u32);
954	if (!usbc_gintsts.s.disconnint && !usbc_gintsts.s.prtint)
955		return 0;
956	if (retries++ >= 5)
957		return -EAGAIN;
958	dev_info(dev, "controller reset failed (gintsts=0x%x) - retrying\n",
959		 (int)usbc_gintsts.u32);
960	msleep(50);
961	cvmx_usb_shutdown(usb);
962	msleep(50);
963	goto retry;
964}
965
966/**
967 * Reset a USB port. After this call succeeds, the USB port is
968 * online and servicing requests.
969 *
970 * @usb: USB device state populated by cvmx_usb_initialize().
971 */
972static void cvmx_usb_reset_port(struct cvmx_usb_state *usb)
973{
974	usb->usbcx_hprt.u32 = cvmx_usb_read_csr32(usb,
975						  CVMX_USBCX_HPRT(usb->index));
976
977	/* Program the port reset bit to start the reset process */
978	USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt,
979			prtrst, 1);
980
981	/*
982	 * Wait at least 50ms (high speed), or 10ms (full speed) for the reset
983	 * process to complete.
984	 */
985	mdelay(50);
986
987	/* Program the port reset bit to 0, USBC_HPRT[PRTRST] = 0 */
988	USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt,
989			prtrst, 0);
990
991	/*
992	 * Read the port speed field to get the enumerated speed,
993	 * USBC_HPRT[PRTSPD].
994	 */
995	usb->usbcx_hprt.u32 = cvmx_usb_read_csr32(usb,
996						  CVMX_USBCX_HPRT(usb->index));
997}
998
999
1000/**
1001 * Disable a USB port. After this call the USB port will not
1002 * generate data transfers and will not generate events.
1003 * Transactions in process will fail and call their
1004 * associated callbacks.
1005 *
1006 * @usb: USB device state populated by cvmx_usb_initialize().
1007 *
1008 * Returns: 0 or a negative error code.
1009 */
1010static int cvmx_usb_disable(struct cvmx_usb_state *usb)
1011{
1012	/* Disable the port */
1013	USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt,
1014			prtena, 1);
1015	return 0;
1016}
1017
1018
1019/**
1020 * Get the current state of the USB port. Use this call to
1021 * determine if the usb port has anything connected, is enabled,
1022 * or has some sort of error condition. The return value of this
1023 * call has "changed" bits to signal of the value of some fields
1024 * have changed between calls.
1025 *
1026 * @usb: USB device state populated by cvmx_usb_initialize().
1027 *
1028 * Returns: Port status information
1029 */
1030static struct cvmx_usb_port_status cvmx_usb_get_status(
1031		struct cvmx_usb_state *usb)
1032{
1033	union cvmx_usbcx_hprt usbc_hprt;
1034	struct cvmx_usb_port_status result;
1035
1036	memset(&result, 0, sizeof(result));
1037
1038	usbc_hprt.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HPRT(usb->index));
1039	result.port_enabled = usbc_hprt.s.prtena;
1040	result.port_over_current = usbc_hprt.s.prtovrcurract;
1041	result.port_powered = usbc_hprt.s.prtpwr;
1042	result.port_speed = usbc_hprt.s.prtspd;
1043	result.connected = usbc_hprt.s.prtconnsts;
1044	result.connect_change =
1045		(result.connected != usb->port_status.connected);
1046
1047	return result;
1048}
1049
1050/**
1051 * Open a virtual pipe between the host and a USB device. A pipe
1052 * must be opened before data can be transferred between a device
1053 * and Octeon.
1054 *
1055 * @usb:	     USB device state populated by cvmx_usb_initialize().
1056 * @device_addr:
1057 *		     USB device address to open the pipe to
1058 *		     (0-127).
1059 * @endpoint_num:
1060 *		     USB endpoint number to open the pipe to
1061 *		     (0-15).
1062 * @device_speed:
1063 *		     The speed of the device the pipe is going
1064 *		     to. This must match the device's speed,
1065 *		     which may be different than the port speed.
1066 * @max_packet:	     The maximum packet length the device can
1067 *		     transmit/receive (low speed=0-8, full
1068 *		     speed=0-1023, high speed=0-1024). This value
1069 *		     comes from the standard endpoint descriptor
1070 *		     field wMaxPacketSize bits <10:0>.
1071 * @transfer_type:
1072 *		     The type of transfer this pipe is for.
1073 * @transfer_dir:
1074 *		     The direction the pipe is in. This is not
1075 *		     used for control pipes.
1076 * @interval:	     For ISOCHRONOUS and INTERRUPT transfers,
1077 *		     this is how often the transfer is scheduled
1078 *		     for. All other transfers should specify
1079 *		     zero. The units are in frames (8000/sec at
1080 *		     high speed, 1000/sec for full speed).
1081 * @multi_count:
1082 *		     For high speed devices, this is the maximum
1083 *		     allowed number of packet per microframe.
1084 *		     Specify zero for non high speed devices. This
1085 *		     value comes from the standard endpoint descriptor
1086 *		     field wMaxPacketSize bits <12:11>.
1087 * @hub_device_addr:
1088 *		     Hub device address this device is connected
1089 *		     to. Devices connected directly to Octeon
1090 *		     use zero. This is only used when the device
1091 *		     is full/low speed behind a high speed hub.
1092 *		     The address will be of the high speed hub,
1093 *		     not and full speed hubs after it.
1094 * @hub_port:	     Which port on the hub the device is
1095 *		     connected. Use zero for devices connected
1096 *		     directly to Octeon. Like hub_device_addr,
1097 *		     this is only used for full/low speed
1098 *		     devices behind a high speed hub.
1099 *
1100 * Returns: A non-NULL value is a pipe. NULL means an error.
1101 */
1102static struct cvmx_usb_pipe *cvmx_usb_open_pipe(struct cvmx_usb_state *usb,
1103						int device_addr,
1104						int endpoint_num,
1105						enum cvmx_usb_speed
1106							device_speed,
1107						int max_packet,
1108						enum cvmx_usb_transfer
1109							transfer_type,
1110						enum cvmx_usb_direction
1111							transfer_dir,
1112						int interval, int multi_count,
1113						int hub_device_addr,
1114						int hub_port)
1115{
1116	struct cvmx_usb_pipe *pipe;
1117
1118	pipe = kzalloc(sizeof(*pipe), GFP_ATOMIC);
1119	if (!pipe)
1120		return NULL;
1121	if ((device_speed == CVMX_USB_SPEED_HIGH) &&
1122		(transfer_dir == CVMX_USB_DIRECTION_OUT) &&
1123		(transfer_type == CVMX_USB_TRANSFER_BULK))
1124		pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING;
1125	pipe->device_addr = device_addr;
1126	pipe->endpoint_num = endpoint_num;
1127	pipe->device_speed = device_speed;
1128	pipe->max_packet = max_packet;
1129	pipe->transfer_type = transfer_type;
1130	pipe->transfer_dir = transfer_dir;
1131	INIT_LIST_HEAD(&pipe->transactions);
1132
1133	/*
1134	 * All pipes use interval to rate limit NAK processing. Force an
1135	 * interval if one wasn't supplied
1136	 */
1137	if (!interval)
1138		interval = 1;
1139	if (cvmx_usb_pipe_needs_split(usb, pipe)) {
1140		pipe->interval = interval*8;
1141		/* Force start splits to be schedule on uFrame 0 */
1142		pipe->next_tx_frame = ((usb->frame_number+7)&~7) +
1143					pipe->interval;
1144	} else {
1145		pipe->interval = interval;
1146		pipe->next_tx_frame = usb->frame_number + pipe->interval;
1147	}
1148	pipe->multi_count = multi_count;
1149	pipe->hub_device_addr = hub_device_addr;
1150	pipe->hub_port = hub_port;
1151	pipe->pid_toggle = 0;
1152	pipe->split_sc_frame = -1;
1153	list_add_tail(&pipe->node, &usb->idle_pipes);
1154
1155	/*
1156	 * We don't need to tell the hardware about this pipe yet since
1157	 * it doesn't have any submitted requests
1158	 */
1159
1160	return pipe;
1161}
1162
1163
1164/**
1165 * Poll the RX FIFOs and remove data as needed. This function is only used
1166 * in non DMA mode. It is very important that this function be called quickly
1167 * enough to prevent FIFO overflow.
1168 *
1169 * @usb:	USB device state populated by cvmx_usb_initialize().
1170 */
1171static void cvmx_usb_poll_rx_fifo(struct cvmx_usb_state *usb)
1172{
1173	union cvmx_usbcx_grxstsph rx_status;
1174	int channel;
1175	int bytes;
1176	uint64_t address;
1177	uint32_t *ptr;
1178
1179	rx_status.u32 = cvmx_usb_read_csr32(usb,
1180					    CVMX_USBCX_GRXSTSPH(usb->index));
1181	/* Only read data if IN data is there */
1182	if (rx_status.s.pktsts != 2)
1183		return;
1184	/* Check if no data is available */
1185	if (!rx_status.s.bcnt)
1186		return;
1187
1188	channel = rx_status.s.chnum;
1189	bytes = rx_status.s.bcnt;
1190	if (!bytes)
1191		return;
1192
1193	/* Get where the DMA engine would have written this data */
1194	address = cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index) +
1195				     channel * 8);
1196
1197	ptr = cvmx_phys_to_ptr(address);
1198	cvmx_write64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index) + channel * 8,
1199			    address + bytes);
1200
1201	/* Loop writing the FIFO data for this packet into memory */
1202	while (bytes > 0) {
1203		*ptr++ = cvmx_usb_read_csr32(usb,
1204					USB_FIFO_ADDRESS(channel, usb->index));
1205		bytes -= 4;
1206	}
1207	CVMX_SYNCW;
1208}
1209
1210
1211/**
1212 * Fill the TX hardware fifo with data out of the software
1213 * fifos
1214 *
1215 * @usb:	    USB device state populated by cvmx_usb_initialize().
1216 * @fifo:	    Software fifo to use
1217 * @available:	    Amount of space in the hardware fifo
1218 *
1219 * Returns: Non zero if the hardware fifo was too small and needs
1220 *	    to be serviced again.
1221 */
1222static int cvmx_usb_fill_tx_hw(struct cvmx_usb_state *usb,
1223			       struct cvmx_usb_tx_fifo *fifo, int available)
1224{
1225	/*
1226	 * We're done either when there isn't anymore space or the software FIFO
1227	 * is empty
1228	 */
1229	while (available && (fifo->head != fifo->tail)) {
1230		int i = fifo->tail;
1231		const uint32_t *ptr = cvmx_phys_to_ptr(fifo->entry[i].address);
1232		uint64_t csr_address = USB_FIFO_ADDRESS(fifo->entry[i].channel,
1233							usb->index) ^ 4;
1234		int words = available;
1235
1236		/* Limit the amount of data to waht the SW fifo has */
1237		if (fifo->entry[i].size <= available) {
1238			words = fifo->entry[i].size;
1239			fifo->tail++;
1240			if (fifo->tail > MAX_CHANNELS)
1241				fifo->tail = 0;
1242		}
1243
1244		/* Update the next locations and counts */
1245		available -= words;
1246		fifo->entry[i].address += words * 4;
1247		fifo->entry[i].size -= words;
1248
1249		/*
1250		 * Write the HW fifo data. The read every three writes is due
1251		 * to an errata on CN3XXX chips
1252		 */
1253		while (words > 3) {
1254			cvmx_write64_uint32(csr_address, *ptr++);
1255			cvmx_write64_uint32(csr_address, *ptr++);
1256			cvmx_write64_uint32(csr_address, *ptr++);
1257			cvmx_read64_uint64(
1258					CVMX_USBNX_DMA0_INB_CHN0(usb->index));
1259			words -= 3;
1260		}
1261		cvmx_write64_uint32(csr_address, *ptr++);
1262		if (--words) {
1263			cvmx_write64_uint32(csr_address, *ptr++);
1264			if (--words)
1265				cvmx_write64_uint32(csr_address, *ptr++);
1266		}
1267		cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index));
1268	}
1269	return fifo->head != fifo->tail;
1270}
1271
1272
1273/**
1274 * Check the hardware FIFOs and fill them as needed
1275 *
1276 * @usb:	USB device state populated by cvmx_usb_initialize().
1277 */
1278static void cvmx_usb_poll_tx_fifo(struct cvmx_usb_state *usb)
1279{
1280	if (usb->periodic.head != usb->periodic.tail) {
1281		union cvmx_usbcx_hptxsts tx_status;
1282
1283		tx_status.u32 = cvmx_usb_read_csr32(usb,
1284					CVMX_USBCX_HPTXSTS(usb->index));
1285		if (cvmx_usb_fill_tx_hw(usb, &usb->periodic,
1286					tx_status.s.ptxfspcavail))
1287			USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1288					cvmx_usbcx_gintmsk, ptxfempmsk, 1);
1289		else
1290			USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1291					cvmx_usbcx_gintmsk, ptxfempmsk, 0);
1292	}
1293
1294	if (usb->nonperiodic.head != usb->nonperiodic.tail) {
1295		union cvmx_usbcx_gnptxsts tx_status;
1296
1297		tx_status.u32 = cvmx_usb_read_csr32(usb,
1298					CVMX_USBCX_GNPTXSTS(usb->index));
1299		if (cvmx_usb_fill_tx_hw(usb, &usb->nonperiodic,
1300					tx_status.s.nptxfspcavail))
1301			USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1302					cvmx_usbcx_gintmsk, nptxfempmsk, 1);
1303		else
1304			USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1305					cvmx_usbcx_gintmsk, nptxfempmsk, 0);
1306	}
1307}
1308
1309
1310/**
1311 * Fill the TX FIFO with an outgoing packet
1312 *
1313 * @usb:	  USB device state populated by cvmx_usb_initialize().
1314 * @channel:	  Channel number to get packet from
1315 */
1316static void cvmx_usb_fill_tx_fifo(struct cvmx_usb_state *usb, int channel)
1317{
1318	union cvmx_usbcx_hccharx hcchar;
1319	union cvmx_usbcx_hcspltx usbc_hcsplt;
1320	union cvmx_usbcx_hctsizx usbc_hctsiz;
1321	struct cvmx_usb_tx_fifo *fifo;
1322
1323	/* We only need to fill data on outbound channels */
1324	hcchar.u32 = cvmx_usb_read_csr32(usb,
1325			CVMX_USBCX_HCCHARX(channel, usb->index));
1326	if (hcchar.s.epdir != CVMX_USB_DIRECTION_OUT)
1327		return;
1328
1329	/* OUT Splits only have data on the start and not the complete */
1330	usbc_hcsplt.u32 = cvmx_usb_read_csr32(usb,
1331				CVMX_USBCX_HCSPLTX(channel, usb->index));
1332	if (usbc_hcsplt.s.spltena && usbc_hcsplt.s.compsplt)
1333		return;
1334
1335	/*
1336	 * Find out how many bytes we need to fill and convert it into 32bit
1337	 * words.
1338	 */
1339	usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb,
1340				CVMX_USBCX_HCTSIZX(channel, usb->index));
1341	if (!usbc_hctsiz.s.xfersize)
1342		return;
1343
1344	if ((hcchar.s.eptype == CVMX_USB_TRANSFER_INTERRUPT) ||
1345		(hcchar.s.eptype == CVMX_USB_TRANSFER_ISOCHRONOUS))
1346		fifo = &usb->periodic;
1347	else
1348		fifo = &usb->nonperiodic;
1349
1350	fifo->entry[fifo->head].channel = channel;
1351	fifo->entry[fifo->head].address =
1352		cvmx_read64_uint64(CVMX_USBNX_DMA0_OUTB_CHN0(usb->index) +
1353				   channel * 8);
1354	fifo->entry[fifo->head].size = (usbc_hctsiz.s.xfersize+3)>>2;
1355	fifo->head++;
1356	if (fifo->head > MAX_CHANNELS)
1357		fifo->head = 0;
1358
1359	cvmx_usb_poll_tx_fifo(usb);
1360}
1361
1362/**
1363 * Perform channel specific setup for Control transactions. All
1364 * the generic stuff will already have been done in cvmx_usb_start_channel().
1365 *
1366 * @usb:	  USB device state populated by cvmx_usb_initialize().
1367 * @channel:	  Channel to setup
1368 * @pipe:	  Pipe for control transaction
1369 */
1370static void cvmx_usb_start_channel_control(struct cvmx_usb_state *usb,
1371					   int channel,
1372					   struct cvmx_usb_pipe *pipe)
1373{
1374	struct octeon_hcd *priv = cvmx_usb_to_octeon(usb);
1375	struct usb_hcd *hcd = octeon_to_hcd(priv);
1376	struct device *dev = hcd->self.controller;
1377	struct cvmx_usb_transaction *transaction =
1378		list_first_entry(&pipe->transactions, typeof(*transaction),
1379				 node);
1380	struct usb_ctrlrequest *header =
1381		cvmx_phys_to_ptr(transaction->control_header);
1382	int bytes_to_transfer = transaction->buffer_length -
1383		transaction->actual_bytes;
1384	int packets_to_transfer;
1385	union cvmx_usbcx_hctsizx usbc_hctsiz;
1386
1387	usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb,
1388				CVMX_USBCX_HCTSIZX(channel, usb->index));
1389
1390	switch (transaction->stage) {
1391	case CVMX_USB_STAGE_NON_CONTROL:
1392	case CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE:
1393		dev_err(dev, "%s: ERROR - Non control stage\n", __func__);
1394		break;
1395	case CVMX_USB_STAGE_SETUP:
1396		usbc_hctsiz.s.pid = 3; /* Setup */
1397		bytes_to_transfer = sizeof(*header);
1398		/* All Control operations start with a setup going OUT */
1399		USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1400				cvmx_usbcx_hccharx, epdir,
1401				CVMX_USB_DIRECTION_OUT);
1402		/*
1403		 * Setup send the control header instead of the buffer data. The
1404		 * buffer data will be used in the next stage
1405		 */
1406		cvmx_write64_uint64(CVMX_USBNX_DMA0_OUTB_CHN0(usb->index) +
1407					channel * 8,
1408				    transaction->control_header);
1409		break;
1410	case CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE:
1411		usbc_hctsiz.s.pid = 3; /* Setup */
1412		bytes_to_transfer = 0;
1413		/* All Control operations start with a setup going OUT */
1414		USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1415				cvmx_usbcx_hccharx, epdir,
1416				CVMX_USB_DIRECTION_OUT);
1417
1418		USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index),
1419				cvmx_usbcx_hcspltx, compsplt, 1);
1420		break;
1421	case CVMX_USB_STAGE_DATA:
1422		usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1423		if (cvmx_usb_pipe_needs_split(usb, pipe)) {
1424			if (header->bRequestType & USB_DIR_IN)
1425				bytes_to_transfer = 0;
1426			else if (bytes_to_transfer > pipe->max_packet)
1427				bytes_to_transfer = pipe->max_packet;
1428		}
1429		USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1430				cvmx_usbcx_hccharx, epdir,
1431				((header->bRequestType & USB_DIR_IN) ?
1432					CVMX_USB_DIRECTION_IN :
1433					CVMX_USB_DIRECTION_OUT));
1434		break;
1435	case CVMX_USB_STAGE_DATA_SPLIT_COMPLETE:
1436		usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1437		if (!(header->bRequestType & USB_DIR_IN))
1438			bytes_to_transfer = 0;
1439		USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1440				cvmx_usbcx_hccharx, epdir,
1441				((header->bRequestType & USB_DIR_IN) ?
1442					CVMX_USB_DIRECTION_IN :
1443					CVMX_USB_DIRECTION_OUT));
1444		USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index),
1445				cvmx_usbcx_hcspltx, compsplt, 1);
1446		break;
1447	case CVMX_USB_STAGE_STATUS:
1448		usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1449		bytes_to_transfer = 0;
1450		USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1451				cvmx_usbcx_hccharx, epdir,
1452				((header->bRequestType & USB_DIR_IN) ?
1453					CVMX_USB_DIRECTION_OUT :
1454					CVMX_USB_DIRECTION_IN));
1455		break;
1456	case CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE:
1457		usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1458		bytes_to_transfer = 0;
1459		USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1460				cvmx_usbcx_hccharx, epdir,
1461				((header->bRequestType & USB_DIR_IN) ?
1462					CVMX_USB_DIRECTION_OUT :
1463					CVMX_USB_DIRECTION_IN));
1464		USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index),
1465				cvmx_usbcx_hcspltx, compsplt, 1);
1466		break;
1467	}
1468
1469	/*
1470	 * Make sure the transfer never exceeds the byte limit of the hardware.
1471	 * Further bytes will be sent as continued transactions
1472	 */
1473	if (bytes_to_transfer > MAX_TRANSFER_BYTES) {
1474		/* Round MAX_TRANSFER_BYTES to a multiple of out packet size */
1475		bytes_to_transfer = MAX_TRANSFER_BYTES / pipe->max_packet;
1476		bytes_to_transfer *= pipe->max_packet;
1477	}
1478
1479	/*
1480	 * Calculate the number of packets to transfer. If the length is zero
1481	 * we still need to transfer one packet
1482	 */
1483	packets_to_transfer = DIV_ROUND_UP(bytes_to_transfer,
1484					   pipe->max_packet);
1485	if (packets_to_transfer == 0)
1486		packets_to_transfer = 1;
1487	else if ((packets_to_transfer > 1) &&
1488			(usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)) {
1489		/*
1490		 * Limit to one packet when not using DMA. Channels must be
1491		 * restarted between every packet for IN transactions, so there
1492		 * is no reason to do multiple packets in a row
1493		 */
1494		packets_to_transfer = 1;
1495		bytes_to_transfer = packets_to_transfer * pipe->max_packet;
1496	} else if (packets_to_transfer > MAX_TRANSFER_PACKETS) {
1497		/*
1498		 * Limit the number of packet and data transferred to what the
1499		 * hardware can handle
1500		 */
1501		packets_to_transfer = MAX_TRANSFER_PACKETS;
1502		bytes_to_transfer = packets_to_transfer * pipe->max_packet;
1503	}
1504
1505	usbc_hctsiz.s.xfersize = bytes_to_transfer;
1506	usbc_hctsiz.s.pktcnt = packets_to_transfer;
1507
1508	cvmx_usb_write_csr32(usb, CVMX_USBCX_HCTSIZX(channel, usb->index),
1509			     usbc_hctsiz.u32);
1510}
1511
1512
1513/**
1514 * Start a channel to perform the pipe's head transaction
1515 *
1516 * @usb:	  USB device state populated by cvmx_usb_initialize().
1517 * @channel:	  Channel to setup
1518 * @pipe:	  Pipe to start
1519 */
1520static void cvmx_usb_start_channel(struct cvmx_usb_state *usb, int channel,
1521				   struct cvmx_usb_pipe *pipe)
1522{
1523	struct cvmx_usb_transaction *transaction =
1524		list_first_entry(&pipe->transactions, typeof(*transaction),
1525				 node);
1526
1527	/* Make sure all writes to the DMA region get flushed */
1528	CVMX_SYNCW;
1529
1530	/* Attach the channel to the pipe */
1531	usb->pipe_for_channel[channel] = pipe;
1532	pipe->channel = channel;
1533	pipe->flags |= CVMX_USB_PIPE_FLAGS_SCHEDULED;
1534
1535	/* Mark this channel as in use */
1536	usb->idle_hardware_channels &= ~(1<<channel);
1537
1538	/* Enable the channel interrupt bits */
1539	{
1540		union cvmx_usbcx_hcintx usbc_hcint;
1541		union cvmx_usbcx_hcintmskx usbc_hcintmsk;
1542		union cvmx_usbcx_haintmsk usbc_haintmsk;
1543
1544		/* Clear all channel status bits */
1545		usbc_hcint.u32 = cvmx_usb_read_csr32(usb,
1546					CVMX_USBCX_HCINTX(channel, usb->index));
1547
1548		cvmx_usb_write_csr32(usb,
1549				     CVMX_USBCX_HCINTX(channel, usb->index),
1550				     usbc_hcint.u32);
1551
1552		usbc_hcintmsk.u32 = 0;
1553		usbc_hcintmsk.s.chhltdmsk = 1;
1554		if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) {
1555			/*
1556			 * Channels need these extra interrupts when we aren't
1557			 * in DMA mode.
1558			 */
1559			usbc_hcintmsk.s.datatglerrmsk = 1;
1560			usbc_hcintmsk.s.frmovrunmsk = 1;
1561			usbc_hcintmsk.s.bblerrmsk = 1;
1562			usbc_hcintmsk.s.xacterrmsk = 1;
1563			if (cvmx_usb_pipe_needs_split(usb, pipe)) {
1564				/*
1565				 * Splits don't generate xfercompl, so we need
1566				 * ACK and NYET.
1567				 */
1568				usbc_hcintmsk.s.nyetmsk = 1;
1569				usbc_hcintmsk.s.ackmsk = 1;
1570			}
1571			usbc_hcintmsk.s.nakmsk = 1;
1572			usbc_hcintmsk.s.stallmsk = 1;
1573			usbc_hcintmsk.s.xfercomplmsk = 1;
1574		}
1575		cvmx_usb_write_csr32(usb,
1576				CVMX_USBCX_HCINTMSKX(channel, usb->index),
1577				usbc_hcintmsk.u32);
1578
1579		/* Enable the channel interrupt to propagate */
1580		usbc_haintmsk.u32 = cvmx_usb_read_csr32(usb,
1581					CVMX_USBCX_HAINTMSK(usb->index));
1582		usbc_haintmsk.s.haintmsk |= 1<<channel;
1583		cvmx_usb_write_csr32(usb, CVMX_USBCX_HAINTMSK(usb->index),
1584				     usbc_haintmsk.u32);
1585	}
1586
1587	/* Setup the location the DMA engine uses. */
1588	{
1589		uint64_t reg;
1590		uint64_t dma_address = transaction->buffer +
1591					transaction->actual_bytes;
1592
1593		if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
1594			dma_address = transaction->buffer +
1595					transaction->iso_packets[0].offset +
1596					transaction->actual_bytes;
1597
1598		if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT)
1599			reg = CVMX_USBNX_DMA0_OUTB_CHN0(usb->index);
1600		else
1601			reg = CVMX_USBNX_DMA0_INB_CHN0(usb->index);
1602		cvmx_write64_uint64(reg + channel * 8, dma_address);
1603	}
1604
1605	/* Setup both the size of the transfer and the SPLIT characteristics */
1606	{
1607		union cvmx_usbcx_hcspltx usbc_hcsplt = {.u32 = 0};
1608		union cvmx_usbcx_hctsizx usbc_hctsiz = {.u32 = 0};
1609		int packets_to_transfer;
1610		int bytes_to_transfer = transaction->buffer_length -
1611			transaction->actual_bytes;
1612
1613		/*
1614		 * ISOCHRONOUS transactions store each individual transfer size
1615		 * in the packet structure, not the global buffer_length
1616		 */
1617		if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
1618			bytes_to_transfer =
1619				transaction->iso_packets[0].length -
1620				transaction->actual_bytes;
1621
1622		/*
1623		 * We need to do split transactions when we are talking to non
1624		 * high speed devices that are behind a high speed hub
1625		 */
1626		if (cvmx_usb_pipe_needs_split(usb, pipe)) {
1627			/*
1628			 * On the start split phase (stage is even) record the
1629			 * frame number we will need to send the split complete.
1630			 * We only store the lower two bits since the time ahead
1631			 * can only be two frames
1632			 */
1633			if ((transaction->stage&1) == 0) {
1634				if (transaction->type == CVMX_USB_TRANSFER_BULK)
1635					pipe->split_sc_frame =
1636						(usb->frame_number + 1) & 0x7f;
1637				else
1638					pipe->split_sc_frame =
1639						(usb->frame_number + 2) & 0x7f;
1640			} else
1641				pipe->split_sc_frame = -1;
1642
1643			usbc_hcsplt.s.spltena = 1;
1644			usbc_hcsplt.s.hubaddr = pipe->hub_device_addr;
1645			usbc_hcsplt.s.prtaddr = pipe->hub_port;
1646			usbc_hcsplt.s.compsplt = (transaction->stage ==
1647				CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE);
1648
1649			/*
1650			 * SPLIT transactions can only ever transmit one data
1651			 * packet so limit the transfer size to the max packet
1652			 * size
1653			 */
1654			if (bytes_to_transfer > pipe->max_packet)
1655				bytes_to_transfer = pipe->max_packet;
1656
1657			/*
1658			 * ISOCHRONOUS OUT splits are unique in that they limit
1659			 * data transfers to 188 byte chunks representing the
1660			 * begin/middle/end of the data or all
1661			 */
1662			if (!usbc_hcsplt.s.compsplt &&
1663				(pipe->transfer_dir ==
1664				 CVMX_USB_DIRECTION_OUT) &&
1665				(pipe->transfer_type ==
1666				 CVMX_USB_TRANSFER_ISOCHRONOUS)) {
1667				/*
1668				 * Clear the split complete frame number as
1669				 * there isn't going to be a split complete
1670				 */
1671				pipe->split_sc_frame = -1;
1672				/*
1673				 * See if we've started this transfer and sent
1674				 * data
1675				 */
1676				if (transaction->actual_bytes == 0) {
1677					/*
1678					 * Nothing sent yet, this is either a
1679					 * begin or the entire payload
1680					 */
1681					if (bytes_to_transfer <= 188)
1682						/* Entire payload in one go */
1683						usbc_hcsplt.s.xactpos = 3;
1684					else
1685						/* First part of payload */
1686						usbc_hcsplt.s.xactpos = 2;
1687				} else {
1688					/*
1689					 * Continuing the previous data, we must
1690					 * either be in the middle or at the end
1691					 */
1692					if (bytes_to_transfer <= 188)
1693						/* End of payload */
1694						usbc_hcsplt.s.xactpos = 1;
1695					else
1696						/* Middle of payload */
1697						usbc_hcsplt.s.xactpos = 0;
1698				}
1699				/*
1700				 * Again, the transfer size is limited to 188
1701				 * bytes
1702				 */
1703				if (bytes_to_transfer > 188)
1704					bytes_to_transfer = 188;
1705			}
1706		}
1707
1708		/*
1709		 * Make sure the transfer never exceeds the byte limit of the
1710		 * hardware. Further bytes will be sent as continued
1711		 * transactions
1712		 */
1713		if (bytes_to_transfer > MAX_TRANSFER_BYTES) {
1714			/*
1715			 * Round MAX_TRANSFER_BYTES to a multiple of out packet
1716			 * size
1717			 */
1718			bytes_to_transfer = MAX_TRANSFER_BYTES /
1719				pipe->max_packet;
1720			bytes_to_transfer *= pipe->max_packet;
1721		}
1722
1723		/*
1724		 * Calculate the number of packets to transfer. If the length is
1725		 * zero we still need to transfer one packet
1726		 */
1727		packets_to_transfer =
1728			DIV_ROUND_UP(bytes_to_transfer, pipe->max_packet);
1729		if (packets_to_transfer == 0)
1730			packets_to_transfer = 1;
1731		else if ((packets_to_transfer > 1) &&
1732				(usb->init_flags &
1733				 CVMX_USB_INITIALIZE_FLAGS_NO_DMA)) {
1734			/*
1735			 * Limit to one packet when not using DMA. Channels must
1736			 * be restarted between every packet for IN
1737			 * transactions, so there is no reason to do multiple
1738			 * packets in a row
1739			 */
1740			packets_to_transfer = 1;
1741			bytes_to_transfer = packets_to_transfer *
1742				pipe->max_packet;
1743		} else if (packets_to_transfer > MAX_TRANSFER_PACKETS) {
1744			/*
1745			 * Limit the number of packet and data transferred to
1746			 * what the hardware can handle
1747			 */
1748			packets_to_transfer = MAX_TRANSFER_PACKETS;
1749			bytes_to_transfer = packets_to_transfer *
1750				pipe->max_packet;
1751		}
1752
1753		usbc_hctsiz.s.xfersize = bytes_to_transfer;
1754		usbc_hctsiz.s.pktcnt = packets_to_transfer;
1755
1756		/* Update the DATA0/DATA1 toggle */
1757		usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1758		/*
1759		 * High speed pipes may need a hardware ping before they start
1760		 */
1761		if (pipe->flags & CVMX_USB_PIPE_FLAGS_NEED_PING)
1762			usbc_hctsiz.s.dopng = 1;
1763
1764		cvmx_usb_write_csr32(usb,
1765				     CVMX_USBCX_HCSPLTX(channel, usb->index),
1766				     usbc_hcsplt.u32);
1767		cvmx_usb_write_csr32(usb,
1768				     CVMX_USBCX_HCTSIZX(channel, usb->index),
1769				     usbc_hctsiz.u32);
1770	}
1771
1772	/* Setup the Host Channel Characteristics Register */
1773	{
1774		union cvmx_usbcx_hccharx usbc_hcchar = {.u32 = 0};
1775
1776		/*
1777		 * Set the startframe odd/even properly. This is only used for
1778		 * periodic
1779		 */
1780		usbc_hcchar.s.oddfrm = usb->frame_number&1;
1781
1782		/*
1783		 * Set the number of back to back packets allowed by this
1784		 * endpoint. Split transactions interpret "ec" as the number of
1785		 * immediate retries of failure. These retries happen too
1786		 * quickly, so we disable these entirely for splits
1787		 */
1788		if (cvmx_usb_pipe_needs_split(usb, pipe))
1789			usbc_hcchar.s.ec = 1;
1790		else if (pipe->multi_count < 1)
1791			usbc_hcchar.s.ec = 1;
1792		else if (pipe->multi_count > 3)
1793			usbc_hcchar.s.ec = 3;
1794		else
1795			usbc_hcchar.s.ec = pipe->multi_count;
1796
1797		/* Set the rest of the endpoint specific settings */
1798		usbc_hcchar.s.devaddr = pipe->device_addr;
1799		usbc_hcchar.s.eptype = transaction->type;
1800		usbc_hcchar.s.lspddev =
1801			(pipe->device_speed == CVMX_USB_SPEED_LOW);
1802		usbc_hcchar.s.epdir = pipe->transfer_dir;
1803		usbc_hcchar.s.epnum = pipe->endpoint_num;
1804		usbc_hcchar.s.mps = pipe->max_packet;
1805		cvmx_usb_write_csr32(usb,
1806				     CVMX_USBCX_HCCHARX(channel, usb->index),
1807				     usbc_hcchar.u32);
1808	}
1809
1810	/* Do transaction type specific fixups as needed */
1811	switch (transaction->type) {
1812	case CVMX_USB_TRANSFER_CONTROL:
1813		cvmx_usb_start_channel_control(usb, channel, pipe);
1814		break;
1815	case CVMX_USB_TRANSFER_BULK:
1816	case CVMX_USB_TRANSFER_INTERRUPT:
1817		break;
1818	case CVMX_USB_TRANSFER_ISOCHRONOUS:
1819		if (!cvmx_usb_pipe_needs_split(usb, pipe)) {
1820			/*
1821			 * ISO transactions require different PIDs depending on
1822			 * direction and how many packets are needed
1823			 */
1824			if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) {
1825				if (pipe->multi_count < 2) /* Need DATA0 */
1826					USB_SET_FIELD32(
1827						CVMX_USBCX_HCTSIZX(channel,
1828								   usb->index),
1829						cvmx_usbcx_hctsizx, pid, 0);
1830				else /* Need MDATA */
1831					USB_SET_FIELD32(
1832						CVMX_USBCX_HCTSIZX(channel,
1833								   usb->index),
1834						cvmx_usbcx_hctsizx, pid, 3);
1835			}
1836		}
1837		break;
1838	}
1839	{
1840		union cvmx_usbcx_hctsizx usbc_hctsiz = {.u32 =
1841			cvmx_usb_read_csr32(usb,
1842				CVMX_USBCX_HCTSIZX(channel, usb->index))};
1843		transaction->xfersize = usbc_hctsiz.s.xfersize;
1844		transaction->pktcnt = usbc_hctsiz.s.pktcnt;
1845	}
1846	/* Remeber when we start a split transaction */
1847	if (cvmx_usb_pipe_needs_split(usb, pipe))
1848		usb->active_split = transaction;
1849	USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1850			cvmx_usbcx_hccharx, chena, 1);
1851	if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
1852		cvmx_usb_fill_tx_fifo(usb, channel);
1853}
1854
1855
1856/**
1857 * Find a pipe that is ready to be scheduled to hardware.
1858 * @usb:	 USB device state populated by cvmx_usb_initialize().
1859 * @list:	 Pipe list to search
1860 * @current_frame:
1861 *		 Frame counter to use as a time reference.
1862 *
1863 * Returns: Pipe or NULL if none are ready
1864 */
1865static struct cvmx_usb_pipe *cvmx_usb_find_ready_pipe(
1866		struct cvmx_usb_state *usb,
1867		struct list_head *list,
1868		uint64_t current_frame)
1869{
1870	struct cvmx_usb_pipe *pipe;
1871
1872	list_for_each_entry(pipe, list, node) {
1873		struct cvmx_usb_transaction *t =
1874			list_first_entry(&pipe->transactions, typeof(*t),
1875					 node);
1876		if (!(pipe->flags & CVMX_USB_PIPE_FLAGS_SCHEDULED) && t &&
1877			(pipe->next_tx_frame <= current_frame) &&
1878			((pipe->split_sc_frame == -1) ||
1879			 ((((int)current_frame - (int)pipe->split_sc_frame)
1880			   & 0x7f) < 0x40)) &&
1881			(!usb->active_split || (usb->active_split == t))) {
1882			prefetch(t);
1883			return pipe;
1884		}
1885	}
1886	return NULL;
1887}
1888
1889
1890/**
1891 * Called whenever a pipe might need to be scheduled to the
1892 * hardware.
1893 *
1894 * @usb:	 USB device state populated by cvmx_usb_initialize().
1895 * @is_sof:	 True if this schedule was called on a SOF interrupt.
1896 */
1897static void cvmx_usb_schedule(struct cvmx_usb_state *usb, int is_sof)
1898{
1899	int channel;
1900	struct cvmx_usb_pipe *pipe;
1901	int need_sof;
1902	enum cvmx_usb_transfer ttype;
1903
1904	if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) {
1905		/*
1906		 * Without DMA we need to be careful to not schedule something
1907		 * at the end of a frame and cause an overrun.
1908		 */
1909		union cvmx_usbcx_hfnum hfnum = {
1910			.u32 = cvmx_usb_read_csr32(usb,
1911						CVMX_USBCX_HFNUM(usb->index))
1912		};
1913
1914		union cvmx_usbcx_hfir hfir = {
1915			.u32 = cvmx_usb_read_csr32(usb,
1916						CVMX_USBCX_HFIR(usb->index))
1917		};
1918
1919		if (hfnum.s.frrem < hfir.s.frint/4)
1920			goto done;
1921	}
1922
1923	while (usb->idle_hardware_channels) {
1924		/* Find an idle channel */
1925		channel = __fls(usb->idle_hardware_channels);
1926		if (unlikely(channel > 7))
1927			break;
1928
1929		/* Find a pipe needing service */
1930		pipe = NULL;
1931		if (is_sof) {
1932			/*
1933			 * Only process periodic pipes on SOF interrupts. This
1934			 * way we are sure that the periodic data is sent in the
1935			 * beginning of the frame
1936			 */
1937			pipe = cvmx_usb_find_ready_pipe(usb,
1938					usb->active_pipes +
1939					CVMX_USB_TRANSFER_ISOCHRONOUS,
1940					usb->frame_number);
1941			if (likely(!pipe))
1942				pipe = cvmx_usb_find_ready_pipe(usb,
1943						usb->active_pipes +
1944						CVMX_USB_TRANSFER_INTERRUPT,
1945						usb->frame_number);
1946		}
1947		if (likely(!pipe)) {
1948			pipe = cvmx_usb_find_ready_pipe(usb,
1949					usb->active_pipes +
1950					CVMX_USB_TRANSFER_CONTROL,
1951					usb->frame_number);
1952			if (likely(!pipe))
1953				pipe = cvmx_usb_find_ready_pipe(usb,
1954						usb->active_pipes +
1955						CVMX_USB_TRANSFER_BULK,
1956						usb->frame_number);
1957		}
1958		if (!pipe)
1959			break;
1960
1961		cvmx_usb_start_channel(usb, channel, pipe);
1962	}
1963
1964done:
1965	/*
1966	 * Only enable SOF interrupts when we have transactions pending in the
1967	 * future that might need to be scheduled
1968	 */
1969	need_sof = 0;
1970	for (ttype = CVMX_USB_TRANSFER_CONTROL;
1971			ttype <= CVMX_USB_TRANSFER_INTERRUPT; ttype++) {
1972		list_for_each_entry(pipe, &usb->active_pipes[ttype], node) {
1973			if (pipe->next_tx_frame > usb->frame_number) {
1974				need_sof = 1;
1975				break;
1976			}
1977		}
1978	}
1979	USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1980			cvmx_usbcx_gintmsk, sofmsk, need_sof);
1981}
1982
1983static void octeon_usb_urb_complete_callback(struct cvmx_usb_state *usb,
1984					     enum cvmx_usb_complete status,
1985					     struct cvmx_usb_pipe *pipe,
1986					     struct cvmx_usb_transaction
1987						*transaction,
1988					     int bytes_transferred,
1989					     struct urb *urb)
1990{
1991	struct octeon_hcd *priv = cvmx_usb_to_octeon(usb);
1992	struct usb_hcd *hcd = octeon_to_hcd(priv);
1993	struct device *dev = hcd->self.controller;
1994
1995	if (likely(status == CVMX_USB_COMPLETE_SUCCESS))
1996		urb->actual_length = bytes_transferred;
1997	else
1998		urb->actual_length = 0;
1999
2000	urb->hcpriv = NULL;
2001
2002	/* For Isochronous transactions we need to update the URB packet status
2003	   list from data in our private copy */
2004	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
2005		int i;
2006		/*
2007		 * The pointer to the private list is stored in the setup_packet
2008		 * field.
2009		 */
2010		struct cvmx_usb_iso_packet *iso_packet =
2011			(struct cvmx_usb_iso_packet *) urb->setup_packet;
2012		/* Recalculate the transfer size by adding up each packet */
2013		urb->actual_length = 0;
2014		for (i = 0; i < urb->number_of_packets; i++) {
2015			if (iso_packet[i].status ==
2016					CVMX_USB_COMPLETE_SUCCESS) {
2017				urb->iso_frame_desc[i].status = 0;
2018				urb->iso_frame_desc[i].actual_length =
2019					iso_packet[i].length;
2020				urb->actual_length +=
2021					urb->iso_frame_desc[i].actual_length;
2022			} else {
2023				dev_dbg(dev, "ISOCHRONOUS packet=%d of %d status=%d pipe=%p transaction=%p size=%d\n",
2024					i, urb->number_of_packets,
2025					iso_packet[i].status, pipe,
2026					transaction, iso_packet[i].length);
2027				urb->iso_frame_desc[i].status = -EREMOTEIO;
2028			}
2029		}
2030		/* Free the private list now that we don't need it anymore */
2031		kfree(iso_packet);
2032		urb->setup_packet = NULL;
2033	}
2034
2035	switch (status) {
2036	case CVMX_USB_COMPLETE_SUCCESS:
2037		urb->status = 0;
2038		break;
2039	case CVMX_USB_COMPLETE_CANCEL:
2040		if (urb->status == 0)
2041			urb->status = -ENOENT;
2042		break;
2043	case CVMX_USB_COMPLETE_STALL:
2044		dev_dbg(dev, "status=stall pipe=%p transaction=%p size=%d\n",
2045			pipe, transaction, bytes_transferred);
2046		urb->status = -EPIPE;
2047		break;
2048	case CVMX_USB_COMPLETE_BABBLEERR:
2049		dev_dbg(dev, "status=babble pipe=%p transaction=%p size=%d\n",
2050			pipe, transaction, bytes_transferred);
2051		urb->status = -EPIPE;
2052		break;
2053	case CVMX_USB_COMPLETE_SHORT:
2054		dev_dbg(dev, "status=short pipe=%p transaction=%p size=%d\n",
2055			pipe, transaction, bytes_transferred);
2056		urb->status = -EREMOTEIO;
2057		break;
2058	case CVMX_USB_COMPLETE_ERROR:
2059	case CVMX_USB_COMPLETE_XACTERR:
2060	case CVMX_USB_COMPLETE_DATATGLERR:
2061	case CVMX_USB_COMPLETE_FRAMEERR:
2062		dev_dbg(dev, "status=%d pipe=%p transaction=%p size=%d\n",
2063			status, pipe, transaction, bytes_transferred);
2064		urb->status = -EPROTO;
2065		break;
2066	}
2067	usb_hcd_unlink_urb_from_ep(octeon_to_hcd(priv), urb);
2068	spin_unlock(&priv->lock);
2069	usb_hcd_giveback_urb(octeon_to_hcd(priv), urb, urb->status);
2070	spin_lock(&priv->lock);
2071}
2072
2073/**
2074 * Signal the completion of a transaction and free it. The
2075 * transaction will be removed from the pipe transaction list.
2076 *
2077 * @usb:	 USB device state populated by cvmx_usb_initialize().
2078 * @pipe:	 Pipe the transaction is on
2079 * @transaction:
2080 *		 Transaction that completed
2081 * @complete_code:
2082 *		 Completion code
2083 */
2084static void cvmx_usb_perform_complete(struct cvmx_usb_state *usb,
2085				      struct cvmx_usb_pipe *pipe,
2086				      struct cvmx_usb_transaction *transaction,
2087				      enum cvmx_usb_complete complete_code)
2088{
2089	/* If this was a split then clear our split in progress marker */
2090	if (usb->active_split == transaction)
2091		usb->active_split = NULL;
2092
2093	/*
2094	 * Isochronous transactions need extra processing as they might not be
2095	 * done after a single data transfer
2096	 */
2097	if (unlikely(transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)) {
2098		/* Update the number of bytes transferred in this ISO packet */
2099		transaction->iso_packets[0].length = transaction->actual_bytes;
2100		transaction->iso_packets[0].status = complete_code;
2101
2102		/*
2103		 * If there are more ISOs pending and we succeeded, schedule the
2104		 * next one
2105		 */
2106		if ((transaction->iso_number_packets > 1) &&
2107			(complete_code == CVMX_USB_COMPLETE_SUCCESS)) {
2108			/* No bytes transferred for this packet as of yet */
2109			transaction->actual_bytes = 0;
2110			/* One less ISO waiting to transfer */
2111			transaction->iso_number_packets--;
2112			/* Increment to the next location in our packet array */
2113			transaction->iso_packets++;
2114			transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
2115			return;
2116		}
2117	}
2118
2119	/* Remove the transaction from the pipe list */
2120	list_del(&transaction->node);
2121	if (list_empty(&pipe->transactions))
2122		list_move_tail(&pipe->node, &usb->idle_pipes);
2123	octeon_usb_urb_complete_callback(usb, complete_code, pipe,
2124					 transaction,
2125					 transaction->actual_bytes,
2126					 transaction->urb);
2127	kfree(transaction);
2128}
2129
2130
2131/**
2132 * Submit a usb transaction to a pipe. Called for all types
2133 * of transactions.
2134 *
2135 * @usb:
2136 * @pipe:	    Which pipe to submit to.
2137 * @type:	    Transaction type
2138 * @buffer:	    User buffer for the transaction
2139 * @buffer_length:
2140 *		    User buffer's length in bytes
2141 * @control_header:
2142 *		    For control transactions, the 8 byte standard header
2143 * @iso_start_frame:
2144 *		    For ISO transactions, the start frame
2145 * @iso_number_packets:
2146 *		    For ISO, the number of packet in the transaction.
2147 * @iso_packets:
2148 *		    A description of each ISO packet
2149 * @urb:	    URB for the callback
2150 *
2151 * Returns: Transaction or NULL on failure.
2152 */
2153static struct cvmx_usb_transaction *cvmx_usb_submit_transaction(
2154				struct cvmx_usb_state *usb,
2155				struct cvmx_usb_pipe *pipe,
2156				enum cvmx_usb_transfer type,
2157				uint64_t buffer,
2158				int buffer_length,
2159				uint64_t control_header,
2160				int iso_start_frame,
2161				int iso_number_packets,
2162				struct cvmx_usb_iso_packet *iso_packets,
2163				struct urb *urb)
2164{
2165	struct cvmx_usb_transaction *transaction;
2166
2167	if (unlikely(pipe->transfer_type != type))
2168		return NULL;
2169
2170	transaction = kzalloc(sizeof(*transaction), GFP_ATOMIC);
2171	if (unlikely(!transaction))
2172		return NULL;
2173
2174	transaction->type = type;
2175	transaction->buffer = buffer;
2176	transaction->buffer_length = buffer_length;
2177	transaction->control_header = control_header;
2178	/* FIXME: This is not used, implement it. */
2179	transaction->iso_start_frame = iso_start_frame;
2180	transaction->iso_number_packets = iso_number_packets;
2181	transaction->iso_packets = iso_packets;
2182	transaction->urb = urb;
2183	if (transaction->type == CVMX_USB_TRANSFER_CONTROL)
2184		transaction->stage = CVMX_USB_STAGE_SETUP;
2185	else
2186		transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
2187
2188	if (!list_empty(&pipe->transactions)) {
2189		list_add_tail(&transaction->node, &pipe->transactions);
2190	} else {
2191		list_add_tail(&transaction->node, &pipe->transactions);
2192		list_move_tail(&pipe->node,
2193			       &usb->active_pipes[pipe->transfer_type]);
2194
2195		/*
2196		 * We may need to schedule the pipe if this was the head of the
2197		 * pipe.
2198		 */
2199		cvmx_usb_schedule(usb, 0);
2200	}
2201
2202	return transaction;
2203}
2204
2205
2206/**
2207 * Call to submit a USB Bulk transfer to a pipe.
2208 *
2209 * @usb:	    USB device state populated by cvmx_usb_initialize().
2210 * @pipe:	    Handle to the pipe for the transfer.
2211 * @urb:	    URB.
2212 *
2213 * Returns: A submitted transaction or NULL on failure.
2214 */
2215static struct cvmx_usb_transaction *cvmx_usb_submit_bulk(
2216						struct cvmx_usb_state *usb,
2217						struct cvmx_usb_pipe *pipe,
2218						struct urb *urb)
2219{
2220	return cvmx_usb_submit_transaction(usb, pipe, CVMX_USB_TRANSFER_BULK,
2221					   urb->transfer_dma,
2222					   urb->transfer_buffer_length,
2223					   0, /* control_header */
2224					   0, /* iso_start_frame */
2225					   0, /* iso_number_packets */
2226					   NULL, /* iso_packets */
2227					   urb);
2228}
2229
2230
2231/**
2232 * Call to submit a USB Interrupt transfer to a pipe.
2233 *
2234 * @usb:	    USB device state populated by cvmx_usb_initialize().
2235 * @pipe:	    Handle to the pipe for the transfer.
2236 * @urb:	    URB returned when the callback is called.
2237 *
2238 * Returns: A submitted transaction or NULL on failure.
2239 */
2240static struct cvmx_usb_transaction *cvmx_usb_submit_interrupt(
2241						struct cvmx_usb_state *usb,
2242						struct cvmx_usb_pipe *pipe,
2243						struct urb *urb)
2244{
2245	return cvmx_usb_submit_transaction(usb, pipe,
2246					   CVMX_USB_TRANSFER_INTERRUPT,
2247					   urb->transfer_dma,
2248					   urb->transfer_buffer_length,
2249					   0, /* control_header */
2250					   0, /* iso_start_frame */
2251					   0, /* iso_number_packets */
2252					   NULL, /* iso_packets */
2253					   urb);
2254}
2255
2256
2257/**
2258 * Call to submit a USB Control transfer to a pipe.
2259 *
2260 * @usb:	    USB device state populated by cvmx_usb_initialize().
2261 * @pipe:	    Handle to the pipe for the transfer.
2262 * @urb:	    URB.
2263 *
2264 * Returns: A submitted transaction or NULL on failure.
2265 */
2266static struct cvmx_usb_transaction *cvmx_usb_submit_control(
2267						struct cvmx_usb_state *usb,
2268						struct cvmx_usb_pipe *pipe,
2269						struct urb *urb)
2270{
2271	int buffer_length = urb->transfer_buffer_length;
2272	uint64_t control_header = urb->setup_dma;
2273	struct usb_ctrlrequest *header = cvmx_phys_to_ptr(control_header);
2274
2275	if ((header->bRequestType & USB_DIR_IN) == 0)
2276		buffer_length = le16_to_cpu(header->wLength);
2277
2278	return cvmx_usb_submit_transaction(usb, pipe,
2279					   CVMX_USB_TRANSFER_CONTROL,
2280					   urb->transfer_dma, buffer_length,
2281					   control_header,
2282					   0, /* iso_start_frame */
2283					   0, /* iso_number_packets */
2284					   NULL, /* iso_packets */
2285					   urb);
2286}
2287
2288
2289/**
2290 * Call to submit a USB Isochronous transfer to a pipe.
2291 *
2292 * @usb:	    USB device state populated by cvmx_usb_initialize().
2293 * @pipe:	    Handle to the pipe for the transfer.
2294 * @urb:	    URB returned when the callback is called.
2295 *
2296 * Returns: A submitted transaction or NULL on failure.
2297 */
2298static struct cvmx_usb_transaction *cvmx_usb_submit_isochronous(
2299						struct cvmx_usb_state *usb,
2300						struct cvmx_usb_pipe *pipe,
2301						struct urb *urb)
2302{
2303	struct cvmx_usb_iso_packet *packets;
2304
2305	packets = (struct cvmx_usb_iso_packet *) urb->setup_packet;
2306	return cvmx_usb_submit_transaction(usb, pipe,
2307					   CVMX_USB_TRANSFER_ISOCHRONOUS,
2308					   urb->transfer_dma,
2309					   urb->transfer_buffer_length,
2310					   0, /* control_header */
2311					   urb->start_frame,
2312					   urb->number_of_packets,
2313					   packets, urb);
2314}
2315
2316
2317/**
2318 * Cancel one outstanding request in a pipe. Canceling a request
2319 * can fail if the transaction has already completed before cancel
2320 * is called. Even after a successful cancel call, it may take
2321 * a frame or two for the cvmx_usb_poll() function to call the
2322 * associated callback.
2323 *
2324 * @usb:	 USB device state populated by cvmx_usb_initialize().
2325 * @pipe:	 Pipe to cancel requests in.
2326 * @transaction: Transaction to cancel, returned by the submit function.
2327 *
2328 * Returns: 0 or a negative error code.
2329 */
2330static int cvmx_usb_cancel(struct cvmx_usb_state *usb,
2331			   struct cvmx_usb_pipe *pipe,
2332			   struct cvmx_usb_transaction *transaction)
2333{
2334	/*
2335	 * If the transaction is the HEAD of the queue and scheduled. We need to
2336	 * treat it special
2337	 */
2338	if (list_first_entry(&pipe->transactions, typeof(*transaction), node) ==
2339	    transaction && (pipe->flags & CVMX_USB_PIPE_FLAGS_SCHEDULED)) {
2340		union cvmx_usbcx_hccharx usbc_hcchar;
2341
2342		usb->pipe_for_channel[pipe->channel] = NULL;
2343		pipe->flags &= ~CVMX_USB_PIPE_FLAGS_SCHEDULED;
2344
2345		CVMX_SYNCW;
2346
2347		usbc_hcchar.u32 = cvmx_usb_read_csr32(usb,
2348				CVMX_USBCX_HCCHARX(pipe->channel, usb->index));
2349		/*
2350		 * If the channel isn't enabled then the transaction already
2351		 * completed.
2352		 */
2353		if (usbc_hcchar.s.chena) {
2354			usbc_hcchar.s.chdis = 1;
2355			cvmx_usb_write_csr32(usb,
2356					CVMX_USBCX_HCCHARX(pipe->channel,
2357						usb->index),
2358					usbc_hcchar.u32);
2359		}
2360	}
2361	cvmx_usb_perform_complete(usb, pipe, transaction,
2362				  CVMX_USB_COMPLETE_CANCEL);
2363	return 0;
2364}
2365
2366
2367/**
2368 * Cancel all outstanding requests in a pipe. Logically all this
2369 * does is call cvmx_usb_cancel() in a loop.
2370 *
2371 * @usb:	 USB device state populated by cvmx_usb_initialize().
2372 * @pipe:	 Pipe to cancel requests in.
2373 *
2374 * Returns: 0 or a negative error code.
2375 */
2376static int cvmx_usb_cancel_all(struct cvmx_usb_state *usb,
2377			       struct cvmx_usb_pipe *pipe)
2378{
2379	struct cvmx_usb_transaction *transaction, *next;
2380
2381	/* Simply loop through and attempt to cancel each transaction */
2382	list_for_each_entry_safe(transaction, next, &pipe->transactions, node) {
2383		int result = cvmx_usb_cancel(usb, pipe, transaction);
2384
2385		if (unlikely(result != 0))
2386			return result;
2387	}
2388	return 0;
2389}
2390
2391
2392/**
2393 * Close a pipe created with cvmx_usb_open_pipe().
2394 *
2395 * @usb:	 USB device state populated by cvmx_usb_initialize().
2396 * @pipe:	 Pipe to close.
2397 *
2398 * Returns: 0 or a negative error code. EBUSY is returned if the pipe has
2399 *	    outstanding transfers.
2400 */
2401static int cvmx_usb_close_pipe(struct cvmx_usb_state *usb,
2402			       struct cvmx_usb_pipe *pipe)
2403{
2404	/* Fail if the pipe has pending transactions */
2405	if (!list_empty(&pipe->transactions))
2406		return -EBUSY;
2407
2408	list_del(&pipe->node);
2409	kfree(pipe);
2410
2411	return 0;
2412}
2413
2414/**
2415 * Get the current USB protocol level frame number. The frame
2416 * number is always in the range of 0-0x7ff.
2417 *
2418 * @usb: USB device state populated by cvmx_usb_initialize().
2419 *
2420 * Returns: USB frame number
2421 */
2422static int cvmx_usb_get_frame_number(struct cvmx_usb_state *usb)
2423{
2424	int frame_number;
2425	union cvmx_usbcx_hfnum usbc_hfnum;
2426
2427	usbc_hfnum.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HFNUM(usb->index));
2428	frame_number = usbc_hfnum.s.frnum;
2429
2430	return frame_number;
2431}
2432
2433
2434/**
2435 * Poll a channel for status
2436 *
2437 * @usb:     USB device
2438 * @channel: Channel to poll
2439 *
2440 * Returns: Zero on success
2441 */
2442static int cvmx_usb_poll_channel(struct cvmx_usb_state *usb, int channel)
2443{
2444	struct octeon_hcd *priv = cvmx_usb_to_octeon(usb);
2445	struct usb_hcd *hcd = octeon_to_hcd(priv);
2446	struct device *dev = hcd->self.controller;
2447	union cvmx_usbcx_hcintx usbc_hcint;
2448	union cvmx_usbcx_hctsizx usbc_hctsiz;
2449	union cvmx_usbcx_hccharx usbc_hcchar;
2450	struct cvmx_usb_pipe *pipe;
2451	struct cvmx_usb_transaction *transaction;
2452	int bytes_this_transfer;
2453	int bytes_in_last_packet;
2454	int packets_processed;
2455	int buffer_space_left;
2456
2457	/* Read the interrupt status bits for the channel */
2458	usbc_hcint.u32 = cvmx_usb_read_csr32(usb,
2459				CVMX_USBCX_HCINTX(channel, usb->index));
2460
2461	if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) {
2462		usbc_hcchar.u32 = cvmx_usb_read_csr32(usb,
2463				CVMX_USBCX_HCCHARX(channel, usb->index));
2464
2465		if (usbc_hcchar.s.chena && usbc_hcchar.s.chdis) {
2466			/*
2467			 * There seems to be a bug in CN31XX which can cause
2468			 * interrupt IN transfers to get stuck until we do a
2469			 * write of HCCHARX without changing things
2470			 */
2471			cvmx_usb_write_csr32(usb,
2472					CVMX_USBCX_HCCHARX(channel,
2473							   usb->index),
2474					usbc_hcchar.u32);
2475			return 0;
2476		}
2477
2478		/*
2479		 * In non DMA mode the channels don't halt themselves. We need
2480		 * to manually disable channels that are left running
2481		 */
2482		if (!usbc_hcint.s.chhltd) {
2483			if (usbc_hcchar.s.chena) {
2484				union cvmx_usbcx_hcintmskx hcintmsk;
2485				/* Disable all interrupts except CHHLTD */
2486				hcintmsk.u32 = 0;
2487				hcintmsk.s.chhltdmsk = 1;
2488				cvmx_usb_write_csr32(usb,
2489						CVMX_USBCX_HCINTMSKX(channel,
2490							usb->index),
2491						hcintmsk.u32);
2492				usbc_hcchar.s.chdis = 1;
2493				cvmx_usb_write_csr32(usb,
2494						CVMX_USBCX_HCCHARX(channel,
2495							usb->index),
2496						usbc_hcchar.u32);
2497				return 0;
2498			} else if (usbc_hcint.s.xfercompl) {
2499				/*
2500				 * Successful IN/OUT with transfer complete.
2501				 * Channel halt isn't needed.
2502				 */
2503			} else {
2504				dev_err(dev, "USB%d: Channel %d interrupt without halt\n",
2505					usb->index, channel);
2506				return 0;
2507			}
2508		}
2509	} else {
2510		/*
2511		 * There is are no interrupts that we need to process when the
2512		 * channel is still running
2513		 */
2514		if (!usbc_hcint.s.chhltd)
2515			return 0;
2516	}
2517
2518	/* Disable the channel interrupts now that it is done */
2519	cvmx_usb_write_csr32(usb, CVMX_USBCX_HCINTMSKX(channel, usb->index), 0);
2520	usb->idle_hardware_channels |= (1<<channel);
2521
2522	/* Make sure this channel is tied to a valid pipe */
2523	pipe = usb->pipe_for_channel[channel];
2524	prefetch(pipe);
2525	if (!pipe)
2526		return 0;
2527	transaction = list_first_entry(&pipe->transactions,
2528				       typeof(*transaction),
2529				       node);
2530	prefetch(transaction);
2531
2532	/*
2533	 * Disconnect this pipe from the HW channel. Later the schedule
2534	 * function will figure out which pipe needs to go
2535	 */
2536	usb->pipe_for_channel[channel] = NULL;
2537	pipe->flags &= ~CVMX_USB_PIPE_FLAGS_SCHEDULED;
2538
2539	/*
2540	 * Read the channel config info so we can figure out how much data
2541	 * transferred
2542	 */
2543	usbc_hcchar.u32 = cvmx_usb_read_csr32(usb,
2544			CVMX_USBCX_HCCHARX(channel, usb->index));
2545	usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb,
2546			CVMX_USBCX_HCTSIZX(channel, usb->index));
2547
2548	/*
2549	 * Calculating the number of bytes successfully transferred is dependent
2550	 * on the transfer direction
2551	 */
2552	packets_processed = transaction->pktcnt - usbc_hctsiz.s.pktcnt;
2553	if (usbc_hcchar.s.epdir) {
2554		/*
2555		 * IN transactions are easy. For every byte received the
2556		 * hardware decrements xfersize. All we need to do is subtract
2557		 * the current value of xfersize from its starting value and we
2558		 * know how many bytes were written to the buffer
2559		 */
2560		bytes_this_transfer = transaction->xfersize -
2561			usbc_hctsiz.s.xfersize;
2562	} else {
2563		/*
2564		 * OUT transaction don't decrement xfersize. Instead pktcnt is
2565		 * decremented on every successful packet send. The hardware
2566		 * does this when it receives an ACK, or NYET. If it doesn't
2567		 * receive one of these responses pktcnt doesn't change
2568		 */
2569		bytes_this_transfer = packets_processed * usbc_hcchar.s.mps;
2570		/*
2571		 * The last packet may not be a full transfer if we didn't have
2572		 * enough data
2573		 */
2574		if (bytes_this_transfer > transaction->xfersize)
2575			bytes_this_transfer = transaction->xfersize;
2576	}
2577	/* Figure out how many bytes were in the last packet of the transfer */
2578	if (packets_processed)
2579		bytes_in_last_packet = bytes_this_transfer -
2580			(packets_processed - 1) * usbc_hcchar.s.mps;
2581	else
2582		bytes_in_last_packet = bytes_this_transfer;
2583
2584	/*
2585	 * As a special case, setup transactions output the setup header, not
2586	 * the user's data. For this reason we don't count setup data as bytes
2587	 * transferred
2588	 */
2589	if ((transaction->stage == CVMX_USB_STAGE_SETUP) ||
2590		(transaction->stage == CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE))
2591		bytes_this_transfer = 0;
2592
2593	/*
2594	 * Add the bytes transferred to the running total. It is important that
2595	 * bytes_this_transfer doesn't count any data that needs to be
2596	 * retransmitted
2597	 */
2598	transaction->actual_bytes += bytes_this_transfer;
2599	if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
2600		buffer_space_left = transaction->iso_packets[0].length -
2601			transaction->actual_bytes;
2602	else
2603		buffer_space_left = transaction->buffer_length -
2604			transaction->actual_bytes;
2605
2606	/*
2607	 * We need to remember the PID toggle state for the next transaction.
2608	 * The hardware already updated it for the next transaction
2609	 */
2610	pipe->pid_toggle = !(usbc_hctsiz.s.pid == 0);
2611
2612	/*
2613	 * For high speed bulk out, assume the next transaction will need to do
2614	 * a ping before proceeding. If this isn't true the ACK processing below
2615	 * will clear this flag
2616	 */
2617	if ((pipe->device_speed == CVMX_USB_SPEED_HIGH) &&
2618		(pipe->transfer_type == CVMX_USB_TRANSFER_BULK) &&
2619		(pipe->transfer_dir == CVMX_USB_DIRECTION_OUT))
2620		pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING;
2621
2622	if (unlikely(WARN_ON_ONCE(bytes_this_transfer < 0))) {
2623		/*
2624		 * In some rare cases the DMA engine seems to get stuck and
2625		 * keeps substracting same byte count over and over again. In
2626		 * such case we just need to fail every transaction.
2627		 */
2628		cvmx_usb_perform_complete(usb, pipe, transaction,
2629					  CVMX_USB_COMPLETE_ERROR);
2630		return 0;
2631	}
2632
2633	if (usbc_hcint.s.stall) {
2634		/*
2635		 * STALL as a response means this transaction cannot be
2636		 * completed because the device can't process transactions. Tell
2637		 * the user. Any data that was transferred will be counted on
2638		 * the actual bytes transferred
2639		 */
2640		pipe->pid_toggle = 0;
2641		cvmx_usb_perform_complete(usb, pipe, transaction,
2642					  CVMX_USB_COMPLETE_STALL);
2643	} else if (usbc_hcint.s.xacterr) {
2644		/*
2645		 * XactErr as a response means the device signaled
2646		 * something wrong with the transfer. For example, PID
2647		 * toggle errors cause these.
2648		 */
2649		cvmx_usb_perform_complete(usb, pipe, transaction,
2650					  CVMX_USB_COMPLETE_XACTERR);
2651	} else if (usbc_hcint.s.bblerr) {
2652		/* Babble Error (BblErr) */
2653		cvmx_usb_perform_complete(usb, pipe, transaction,
2654					  CVMX_USB_COMPLETE_BABBLEERR);
2655	} else if (usbc_hcint.s.datatglerr) {
2656		/* Data toggle error */
2657		cvmx_usb_perform_complete(usb, pipe, transaction,
2658					  CVMX_USB_COMPLETE_DATATGLERR);
2659	} else if (usbc_hcint.s.nyet) {
2660		/*
2661		 * NYET as a response is only allowed in three cases: as a
2662		 * response to a ping, as a response to a split transaction, and
2663		 * as a response to a bulk out. The ping case is handled by
2664		 * hardware, so we only have splits and bulk out
2665		 */
2666		if (!cvmx_usb_pipe_needs_split(usb, pipe)) {
2667			transaction->retries = 0;
2668			/*
2669			 * If there is more data to go then we need to try
2670			 * again. Otherwise this transaction is complete
2671			 */
2672			if ((buffer_space_left == 0) ||
2673				(bytes_in_last_packet < pipe->max_packet))
2674				cvmx_usb_perform_complete(usb, pipe,
2675						transaction,
2676						CVMX_USB_COMPLETE_SUCCESS);
2677		} else {
2678			/*
2679			 * Split transactions retry the split complete 4 times
2680			 * then rewind to the start split and do the entire
2681			 * transactions again
2682			 */
2683			transaction->retries++;
2684			if ((transaction->retries & 0x3) == 0) {
2685				/*
2686				 * Rewind to the beginning of the transaction by
2687				 * anding off the split complete bit
2688				 */
2689				transaction->stage &= ~1;
2690				pipe->split_sc_frame = -1;
2691			}
2692		}
2693	} else if (usbc_hcint.s.ack) {
2694		transaction->retries = 0;
2695		/*
2696		 * The ACK bit can only be checked after the other error bits.
2697		 * This is because a multi packet transfer may succeed in a
2698		 * number of packets and then get a different response on the
2699		 * last packet. In this case both ACK and the last response bit
2700		 * will be set. If none of the other response bits is set, then
2701		 * the last packet must have been an ACK
2702		 *
2703		 * Since we got an ACK, we know we don't need to do a ping on
2704		 * this pipe
2705		 */
2706		pipe->flags &= ~CVMX_USB_PIPE_FLAGS_NEED_PING;
2707
2708		switch (transaction->type) {
2709		case CVMX_USB_TRANSFER_CONTROL:
2710			switch (transaction->stage) {
2711			case CVMX_USB_STAGE_NON_CONTROL:
2712			case CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE:
2713				/* This should be impossible */
2714				cvmx_usb_perform_complete(usb, pipe,
2715					transaction, CVMX_USB_COMPLETE_ERROR);
2716				break;
2717			case CVMX_USB_STAGE_SETUP:
2718				pipe->pid_toggle = 1;
2719				if (cvmx_usb_pipe_needs_split(usb, pipe))
2720					transaction->stage =
2721						CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE;
2722				else {
2723					struct usb_ctrlrequest *header =
2724						cvmx_phys_to_ptr(transaction->control_header);
2725					if (header->wLength)
2726						transaction->stage =
2727							CVMX_USB_STAGE_DATA;
2728					else
2729						transaction->stage =
2730							CVMX_USB_STAGE_STATUS;
2731				}
2732				break;
2733			case CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE:
2734				{
2735					struct usb_ctrlrequest *header =
2736						cvmx_phys_to_ptr(transaction->control_header);
2737					if (header->wLength)
2738						transaction->stage =
2739							CVMX_USB_STAGE_DATA;
2740					else
2741						transaction->stage =
2742							CVMX_USB_STAGE_STATUS;
2743				}
2744				break;
2745			case CVMX_USB_STAGE_DATA:
2746				if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2747					transaction->stage =
2748						CVMX_USB_STAGE_DATA_SPLIT_COMPLETE;
2749					/*
2750					 * For setup OUT data that are splits,
2751					 * the hardware doesn't appear to count
2752					 * transferred data. Here we manually
2753					 * update the data transferred
2754					 */
2755					if (!usbc_hcchar.s.epdir) {
2756						if (buffer_space_left < pipe->max_packet)
2757							transaction->actual_bytes +=
2758								buffer_space_left;
2759						else
2760							transaction->actual_bytes +=
2761								pipe->max_packet;
2762					}
2763				} else if ((buffer_space_left == 0) ||
2764						(bytes_in_last_packet <
2765						 pipe->max_packet)) {
2766					pipe->pid_toggle = 1;
2767					transaction->stage =
2768						CVMX_USB_STAGE_STATUS;
2769				}
2770				break;
2771			case CVMX_USB_STAGE_DATA_SPLIT_COMPLETE:
2772				if ((buffer_space_left == 0) ||
2773						(bytes_in_last_packet <
2774						 pipe->max_packet)) {
2775					pipe->pid_toggle = 1;
2776					transaction->stage =
2777						CVMX_USB_STAGE_STATUS;
2778				} else {
2779					transaction->stage =
2780						CVMX_USB_STAGE_DATA;
2781				}
2782				break;
2783			case CVMX_USB_STAGE_STATUS:
2784				if (cvmx_usb_pipe_needs_split(usb, pipe))
2785					transaction->stage =
2786						CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE;
2787				else
2788					cvmx_usb_perform_complete(usb, pipe,
2789						transaction,
2790						CVMX_USB_COMPLETE_SUCCESS);
2791				break;
2792			case CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE:
2793				cvmx_usb_perform_complete(usb, pipe,
2794						transaction,
2795						CVMX_USB_COMPLETE_SUCCESS);
2796				break;
2797			}
2798			break;
2799		case CVMX_USB_TRANSFER_BULK:
2800		case CVMX_USB_TRANSFER_INTERRUPT:
2801			/*
2802			 * The only time a bulk transfer isn't complete when it
2803			 * finishes with an ACK is during a split transaction.
2804			 * For splits we need to continue the transfer if more
2805			 * data is needed
2806			 */
2807			if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2808				if (transaction->stage ==
2809						CVMX_USB_STAGE_NON_CONTROL)
2810					transaction->stage =
2811						CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE;
2812				else {
2813					if (buffer_space_left &&
2814						(bytes_in_last_packet ==
2815						 pipe->max_packet))
2816						transaction->stage =
2817							CVMX_USB_STAGE_NON_CONTROL;
2818					else {
2819						if (transaction->type ==
2820							CVMX_USB_TRANSFER_INTERRUPT)
2821							pipe->next_tx_frame +=
2822								pipe->interval;
2823							cvmx_usb_perform_complete(
2824								usb,
2825								pipe,
2826								transaction,
2827								CVMX_USB_COMPLETE_SUCCESS);
2828					}
2829				}
2830			} else {
2831				if ((pipe->device_speed ==
2832					CVMX_USB_SPEED_HIGH) &&
2833				    (pipe->transfer_type ==
2834				     CVMX_USB_TRANSFER_BULK) &&
2835				    (pipe->transfer_dir ==
2836				     CVMX_USB_DIRECTION_OUT) &&
2837				    (usbc_hcint.s.nak))
2838					pipe->flags |=
2839						CVMX_USB_PIPE_FLAGS_NEED_PING;
2840				if (!buffer_space_left ||
2841					(bytes_in_last_packet <
2842					 pipe->max_packet)) {
2843					if (transaction->type ==
2844						CVMX_USB_TRANSFER_INTERRUPT)
2845						pipe->next_tx_frame +=
2846							pipe->interval;
2847					cvmx_usb_perform_complete(usb, pipe,
2848						transaction,
2849						CVMX_USB_COMPLETE_SUCCESS);
2850				}
2851			}
2852			break;
2853		case CVMX_USB_TRANSFER_ISOCHRONOUS:
2854			if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2855				/*
2856				 * ISOCHRONOUS OUT splits don't require a
2857				 * complete split stage. Instead they use a
2858				 * sequence of begin OUT splits to transfer the
2859				 * data 188 bytes at a time. Once the transfer
2860				 * is complete, the pipe sleeps until the next
2861				 * schedule interval
2862				 */
2863				if (pipe->transfer_dir ==
2864					CVMX_USB_DIRECTION_OUT) {
2865					/*
2866					 * If no space left or this wasn't a max
2867					 * size packet then this transfer is
2868					 * complete. Otherwise start it again to
2869					 * send the next 188 bytes
2870					 */
2871					if (!buffer_space_left ||
2872						(bytes_this_transfer < 188)) {
2873						pipe->next_tx_frame +=
2874							pipe->interval;
2875						cvmx_usb_perform_complete(usb,
2876							pipe, transaction,
2877							CVMX_USB_COMPLETE_SUCCESS);
2878					}
2879				} else {
2880					if (transaction->stage ==
2881						CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE) {
2882						/*
2883						 * We are in the incoming data
2884						 * phase. Keep getting data
2885						 * until we run out of space or
2886						 * get a small packet
2887						 */
2888						if ((buffer_space_left == 0) ||
2889							(bytes_in_last_packet <
2890							 pipe->max_packet)) {
2891							pipe->next_tx_frame +=
2892								pipe->interval;
2893							cvmx_usb_perform_complete(
2894								usb,
2895								pipe,
2896								transaction,
2897								CVMX_USB_COMPLETE_SUCCESS);
2898						}
2899					} else
2900						transaction->stage =
2901							CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE;
2902				}
2903			} else {
2904				pipe->next_tx_frame += pipe->interval;
2905				cvmx_usb_perform_complete(usb, pipe,
2906						transaction,
2907						CVMX_USB_COMPLETE_SUCCESS);
2908			}
2909			break;
2910		}
2911	} else if (usbc_hcint.s.nak) {
2912		/*
2913		 * If this was a split then clear our split in progress marker.
2914		 */
2915		if (usb->active_split == transaction)
2916			usb->active_split = NULL;
2917		/*
2918		 * NAK as a response means the device couldn't accept the
2919		 * transaction, but it should be retried in the future. Rewind
2920		 * to the beginning of the transaction by anding off the split
2921		 * complete bit. Retry in the next interval
2922		 */
2923		transaction->retries = 0;
2924		transaction->stage &= ~1;
2925		pipe->next_tx_frame += pipe->interval;
2926		if (pipe->next_tx_frame < usb->frame_number)
2927			pipe->next_tx_frame = usb->frame_number +
2928				pipe->interval -
2929				(usb->frame_number - pipe->next_tx_frame) %
2930				pipe->interval;
2931	} else {
2932		struct cvmx_usb_port_status port;
2933
2934		port = cvmx_usb_get_status(usb);
2935		if (port.port_enabled) {
2936			/* We'll retry the exact same transaction again */
2937			transaction->retries++;
2938		} else {
2939			/*
2940			 * We get channel halted interrupts with no result bits
2941			 * sets when the cable is unplugged
2942			 */
2943			cvmx_usb_perform_complete(usb, pipe, transaction,
2944					CVMX_USB_COMPLETE_ERROR);
2945		}
2946	}
2947	return 0;
2948}
2949
2950static void octeon_usb_port_callback(struct cvmx_usb_state *usb)
2951{
2952	struct octeon_hcd *priv = cvmx_usb_to_octeon(usb);
2953
2954	spin_unlock(&priv->lock);
2955	usb_hcd_poll_rh_status(octeon_to_hcd(priv));
2956	spin_lock(&priv->lock);
2957}
2958
2959/**
2960 * Poll the USB block for status and call all needed callback
2961 * handlers. This function is meant to be called in the interrupt
2962 * handler for the USB controller. It can also be called
2963 * periodically in a loop for non-interrupt based operation.
2964 *
2965 * @usb: USB device state populated by cvmx_usb_initialize().
2966 *
2967 * Returns: 0 or a negative error code.
2968 */
2969static int cvmx_usb_poll(struct cvmx_usb_state *usb)
2970{
2971	union cvmx_usbcx_hfnum usbc_hfnum;
2972	union cvmx_usbcx_gintsts usbc_gintsts;
2973
2974	prefetch_range(usb, sizeof(*usb));
2975
2976	/* Update the frame counter */
2977	usbc_hfnum.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HFNUM(usb->index));
2978	if ((usb->frame_number&0x3fff) > usbc_hfnum.s.frnum)
2979		usb->frame_number += 0x4000;
2980	usb->frame_number &= ~0x3fffull;
2981	usb->frame_number |= usbc_hfnum.s.frnum;
2982
2983	/* Read the pending interrupts */
2984	usbc_gintsts.u32 = cvmx_usb_read_csr32(usb,
2985					       CVMX_USBCX_GINTSTS(usb->index));
2986
2987	/* Clear the interrupts now that we know about them */
2988	cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTSTS(usb->index),
2989			     usbc_gintsts.u32);
2990
2991	if (usbc_gintsts.s.rxflvl) {
2992		/*
2993		 * RxFIFO Non-Empty (RxFLvl)
2994		 * Indicates that there is at least one packet pending to be
2995		 * read from the RxFIFO.
2996		 *
2997		 * In DMA mode this is handled by hardware
2998		 */
2999		if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
3000			cvmx_usb_poll_rx_fifo(usb);
3001	}
3002	if (usbc_gintsts.s.ptxfemp || usbc_gintsts.s.nptxfemp) {
3003		/* Fill the Tx FIFOs when not in DMA mode */
3004		if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
3005			cvmx_usb_poll_tx_fifo(usb);
3006	}
3007	if (usbc_gintsts.s.disconnint || usbc_gintsts.s.prtint) {
3008		union cvmx_usbcx_hprt usbc_hprt;
3009		/*
3010		 * Disconnect Detected Interrupt (DisconnInt)
3011		 * Asserted when a device disconnect is detected.
3012		 *
3013		 * Host Port Interrupt (PrtInt)
3014		 * The core sets this bit to indicate a change in port status of
3015		 * one of the O2P USB core ports in Host mode. The application
3016		 * must read the Host Port Control and Status (HPRT) register to
3017		 * determine the exact event that caused this interrupt. The
3018		 * application must clear the appropriate status bit in the Host
3019		 * Port Control and Status register to clear this bit.
3020		 *
3021		 * Call the user's port callback
3022		 */
3023		octeon_usb_port_callback(usb);
3024		/* Clear the port change bits */
3025		usbc_hprt.u32 = cvmx_usb_read_csr32(usb,
3026					CVMX_USBCX_HPRT(usb->index));
3027		usbc_hprt.s.prtena = 0;
3028		cvmx_usb_write_csr32(usb, CVMX_USBCX_HPRT(usb->index),
3029				     usbc_hprt.u32);
3030	}
3031	if (usbc_gintsts.s.hchint) {
3032		/*
3033		 * Host Channels Interrupt (HChInt)
3034		 * The core sets this bit to indicate that an interrupt is
3035		 * pending on one of the channels of the core (in Host mode).
3036		 * The application must read the Host All Channels Interrupt
3037		 * (HAINT) register to determine the exact number of the channel
3038		 * on which the interrupt occurred, and then read the
3039		 * corresponding Host Channel-n Interrupt (HCINTn) register to
3040		 * determine the exact cause of the interrupt. The application
3041		 * must clear the appropriate status bit in the HCINTn register
3042		 * to clear this bit.
3043		 */
3044		union cvmx_usbcx_haint usbc_haint;
3045
3046		usbc_haint.u32 = cvmx_usb_read_csr32(usb,
3047					CVMX_USBCX_HAINT(usb->index));
3048		while (usbc_haint.u32) {
3049			int channel;
3050
3051			channel = __fls(usbc_haint.u32);
3052			cvmx_usb_poll_channel(usb, channel);
3053			usbc_haint.u32 ^= 1<<channel;
3054		}
3055	}
3056
3057	cvmx_usb_schedule(usb, usbc_gintsts.s.sof);
3058
3059	return 0;
3060}
3061
3062/* convert between an HCD pointer and the corresponding struct octeon_hcd */
3063static inline struct octeon_hcd *hcd_to_octeon(struct usb_hcd *hcd)
3064{
3065	return (struct octeon_hcd *)(hcd->hcd_priv);
3066}
3067
3068static irqreturn_t octeon_usb_irq(struct usb_hcd *hcd)
3069{
3070	struct octeon_hcd *priv = hcd_to_octeon(hcd);
3071	unsigned long flags;
3072
3073	spin_lock_irqsave(&priv->lock, flags);
3074	cvmx_usb_poll(&priv->usb);
3075	spin_unlock_irqrestore(&priv->lock, flags);
3076	return IRQ_HANDLED;
3077}
3078
3079static int octeon_usb_start(struct usb_hcd *hcd)
3080{
3081	hcd->state = HC_STATE_RUNNING;
3082	return 0;
3083}
3084
3085static void octeon_usb_stop(struct usb_hcd *hcd)
3086{
3087	hcd->state = HC_STATE_HALT;
3088}
3089
3090static int octeon_usb_get_frame_number(struct usb_hcd *hcd)
3091{
3092	struct octeon_hcd *priv = hcd_to_octeon(hcd);
3093
3094	return cvmx_usb_get_frame_number(&priv->usb);
3095}
3096
3097static int octeon_usb_urb_enqueue(struct usb_hcd *hcd,
3098				  struct urb *urb,
3099				  gfp_t mem_flags)
3100{
3101	struct octeon_hcd *priv = hcd_to_octeon(hcd);
3102	struct device *dev = hcd->self.controller;
3103	struct cvmx_usb_transaction *transaction = NULL;
3104	struct cvmx_usb_pipe *pipe;
3105	unsigned long flags;
3106	struct cvmx_usb_iso_packet *iso_packet;
3107	struct usb_host_endpoint *ep = urb->ep;
3108	int rc;
3109
3110	urb->status = 0;
3111	spin_lock_irqsave(&priv->lock, flags);
3112
3113	rc = usb_hcd_link_urb_to_ep(hcd, urb);
3114	if (rc) {
3115		spin_unlock_irqrestore(&priv->lock, flags);
3116		return rc;
3117	}
3118
3119	if (!ep->hcpriv) {
3120		enum cvmx_usb_transfer transfer_type;
3121		enum cvmx_usb_speed speed;
3122		int split_device = 0;
3123		int split_port = 0;
3124
3125		switch (usb_pipetype(urb->pipe)) {
3126		case PIPE_ISOCHRONOUS:
3127			transfer_type = CVMX_USB_TRANSFER_ISOCHRONOUS;
3128			break;
3129		case PIPE_INTERRUPT:
3130			transfer_type = CVMX_USB_TRANSFER_INTERRUPT;
3131			break;
3132		case PIPE_CONTROL:
3133			transfer_type = CVMX_USB_TRANSFER_CONTROL;
3134			break;
3135		default:
3136			transfer_type = CVMX_USB_TRANSFER_BULK;
3137			break;
3138		}
3139		switch (urb->dev->speed) {
3140		case USB_SPEED_LOW:
3141			speed = CVMX_USB_SPEED_LOW;
3142			break;
3143		case USB_SPEED_FULL:
3144			speed = CVMX_USB_SPEED_FULL;
3145			break;
3146		default:
3147			speed = CVMX_USB_SPEED_HIGH;
3148			break;
3149		}
3150		/*
3151		 * For slow devices on high speed ports we need to find the hub
3152		 * that does the speed translation so we know where to send the
3153		 * split transactions.
3154		 */
3155		if (speed != CVMX_USB_SPEED_HIGH) {
3156			/*
3157			 * Start at this device and work our way up the usb
3158			 * tree.
3159			 */
3160			struct usb_device *dev = urb->dev;
3161
3162			while (dev->parent) {
3163				/*
3164				 * If our parent is high speed then he'll
3165				 * receive the splits.
3166				 */
3167				if (dev->parent->speed == USB_SPEED_HIGH) {
3168					split_device = dev->parent->devnum;
3169					split_port = dev->portnum;
3170					break;
3171				}
3172				/*
3173				 * Move up the tree one level. If we make it all
3174				 * the way up the tree, then the port must not
3175				 * be in high speed mode and we don't need a
3176				 * split.
3177				 */
3178				dev = dev->parent;
3179			}
3180		}
3181		pipe = cvmx_usb_open_pipe(&priv->usb, usb_pipedevice(urb->pipe),
3182					  usb_pipeendpoint(urb->pipe), speed,
3183					  le16_to_cpu(ep->desc.wMaxPacketSize)
3184					  & 0x7ff,
3185					  transfer_type,
3186					  usb_pipein(urb->pipe) ?
3187						CVMX_USB_DIRECTION_IN :
3188						CVMX_USB_DIRECTION_OUT,
3189					  urb->interval,
3190					  (le16_to_cpu(ep->desc.wMaxPacketSize)
3191					   >> 11) & 0x3,
3192					  split_device, split_port);
3193		if (!pipe) {
3194			usb_hcd_unlink_urb_from_ep(hcd, urb);
3195			spin_unlock_irqrestore(&priv->lock, flags);
3196			dev_dbg(dev, "Failed to create pipe\n");
3197			return -ENOMEM;
3198		}
3199		ep->hcpriv = pipe;
3200	} else {
3201		pipe = ep->hcpriv;
3202	}
3203
3204	switch (usb_pipetype(urb->pipe)) {
3205	case PIPE_ISOCHRONOUS:
3206		dev_dbg(dev, "Submit isochronous to %d.%d\n",
3207			usb_pipedevice(urb->pipe),
3208			usb_pipeendpoint(urb->pipe));
3209		/*
3210		 * Allocate a structure to use for our private list of
3211		 * isochronous packets.
3212		 */
3213		iso_packet = kmalloc(urb->number_of_packets *
3214				     sizeof(struct cvmx_usb_iso_packet),
3215				     GFP_ATOMIC);
3216		if (iso_packet) {
3217			int i;
3218			/* Fill the list with the data from the URB */
3219			for (i = 0; i < urb->number_of_packets; i++) {
3220				iso_packet[i].offset =
3221					urb->iso_frame_desc[i].offset;
3222				iso_packet[i].length =
3223					urb->iso_frame_desc[i].length;
3224				iso_packet[i].status =
3225					CVMX_USB_COMPLETE_ERROR;
3226			}
3227			/*
3228			 * Store a pointer to the list in the URB setup_packet
3229			 * field. We know this currently isn't being used and
3230			 * this saves us a bunch of logic.
3231			 */
3232			urb->setup_packet = (char *)iso_packet;
3233			transaction = cvmx_usb_submit_isochronous(&priv->usb,
3234								  pipe, urb);
3235			/*
3236			 * If submit failed we need to free our private packet
3237			 * list.
3238			 */
3239			if (!transaction) {
3240				urb->setup_packet = NULL;
3241				kfree(iso_packet);
3242			}
3243		}
3244		break;
3245	case PIPE_INTERRUPT:
3246		dev_dbg(dev, "Submit interrupt to %d.%d\n",
3247			usb_pipedevice(urb->pipe),
3248			usb_pipeendpoint(urb->pipe));
3249		transaction = cvmx_usb_submit_interrupt(&priv->usb, pipe, urb);
3250		break;
3251	case PIPE_CONTROL:
3252		dev_dbg(dev, "Submit control to %d.%d\n",
3253			usb_pipedevice(urb->pipe),
3254			usb_pipeendpoint(urb->pipe));
3255		transaction = cvmx_usb_submit_control(&priv->usb, pipe, urb);
3256		break;
3257	case PIPE_BULK:
3258		dev_dbg(dev, "Submit bulk to %d.%d\n",
3259			usb_pipedevice(urb->pipe),
3260			usb_pipeendpoint(urb->pipe));
3261		transaction = cvmx_usb_submit_bulk(&priv->usb, pipe, urb);
3262		break;
3263	}
3264	if (!transaction) {
3265		usb_hcd_unlink_urb_from_ep(hcd, urb);
3266		spin_unlock_irqrestore(&priv->lock, flags);
3267		dev_dbg(dev, "Failed to submit\n");
3268		return -ENOMEM;
3269	}
3270	urb->hcpriv = transaction;
3271	spin_unlock_irqrestore(&priv->lock, flags);
3272	return 0;
3273}
3274
3275static int octeon_usb_urb_dequeue(struct usb_hcd *hcd,
3276				  struct urb *urb,
3277				  int status)
3278{
3279	struct octeon_hcd *priv = hcd_to_octeon(hcd);
3280	unsigned long flags;
3281	int rc;
3282
3283	if (!urb->dev)
3284		return -EINVAL;
3285
3286	spin_lock_irqsave(&priv->lock, flags);
3287
3288	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
3289	if (rc)
3290		goto out;
3291
3292	urb->status = status;
3293	cvmx_usb_cancel(&priv->usb, urb->ep->hcpriv, urb->hcpriv);
3294
3295out:
3296	spin_unlock_irqrestore(&priv->lock, flags);
3297
3298	return rc;
3299}
3300
3301static void octeon_usb_endpoint_disable(struct usb_hcd *hcd,
3302					struct usb_host_endpoint *ep)
3303{
3304	struct device *dev = hcd->self.controller;
3305
3306	if (ep->hcpriv) {
3307		struct octeon_hcd *priv = hcd_to_octeon(hcd);
3308		struct cvmx_usb_pipe *pipe = ep->hcpriv;
3309		unsigned long flags;
3310
3311		spin_lock_irqsave(&priv->lock, flags);
3312		cvmx_usb_cancel_all(&priv->usb, pipe);
3313		if (cvmx_usb_close_pipe(&priv->usb, pipe))
3314			dev_dbg(dev, "Closing pipe %p failed\n", pipe);
3315		spin_unlock_irqrestore(&priv->lock, flags);
3316		ep->hcpriv = NULL;
3317	}
3318}
3319
3320static int octeon_usb_hub_status_data(struct usb_hcd *hcd, char *buf)
3321{
3322	struct octeon_hcd *priv = hcd_to_octeon(hcd);
3323	struct cvmx_usb_port_status port_status;
3324	unsigned long flags;
3325
3326	spin_lock_irqsave(&priv->lock, flags);
3327	port_status = cvmx_usb_get_status(&priv->usb);
3328	spin_unlock_irqrestore(&priv->lock, flags);
3329	buf[0] = 0;
3330	buf[0] = port_status.connect_change << 1;
3331
3332	return buf[0] != 0;
3333}
3334
3335static int octeon_usb_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
3336				u16 wIndex, char *buf, u16 wLength)
3337{
3338	struct octeon_hcd *priv = hcd_to_octeon(hcd);
3339	struct device *dev = hcd->self.controller;
3340	struct cvmx_usb_port_status usb_port_status;
3341	struct cvmx_usb_state *usb = &priv->usb;
3342	int port_status;
3343	struct usb_hub_descriptor *desc;
3344	unsigned long flags;
3345
3346	switch (typeReq) {
3347	case ClearHubFeature:
3348		dev_dbg(dev, "ClearHubFeature\n");
3349		switch (wValue) {
3350		case C_HUB_LOCAL_POWER:
3351		case C_HUB_OVER_CURRENT:
3352			/* Nothing required here */
3353			break;
3354		default:
3355			return -EINVAL;
3356		}
3357		break;
3358	case ClearPortFeature:
3359		dev_dbg(dev, "ClearPortFeature\n");
3360		if (wIndex != 1) {
3361			dev_dbg(dev, " INVALID\n");
3362			return -EINVAL;
3363		}
3364
3365		switch (wValue) {
3366		case USB_PORT_FEAT_ENABLE:
3367			dev_dbg(dev, " ENABLE\n");
3368			spin_lock_irqsave(&priv->lock, flags);
3369			cvmx_usb_disable(&priv->usb);
3370			spin_unlock_irqrestore(&priv->lock, flags);
3371			break;
3372		case USB_PORT_FEAT_SUSPEND:
3373			dev_dbg(dev, " SUSPEND\n");
3374			/* Not supported on Octeon */
3375			break;
3376		case USB_PORT_FEAT_POWER:
3377			dev_dbg(dev, " POWER\n");
3378			/* Not supported on Octeon */
3379			break;
3380		case USB_PORT_FEAT_INDICATOR:
3381			dev_dbg(dev, " INDICATOR\n");
3382			/* Port inidicator not supported */
3383			break;
3384		case USB_PORT_FEAT_C_CONNECTION:
3385			dev_dbg(dev, " C_CONNECTION\n");
3386			/* Clears drivers internal connect status change flag */
3387			spin_lock_irqsave(&priv->lock, flags);
3388			priv->usb.port_status =
3389				cvmx_usb_get_status(&priv->usb);
3390			spin_unlock_irqrestore(&priv->lock, flags);
3391			break;
3392		case USB_PORT_FEAT_C_RESET:
3393			dev_dbg(dev, " C_RESET\n");
3394			/*
3395			 * Clears the driver's internal Port Reset Change flag.
3396			 */
3397			spin_lock_irqsave(&priv->lock, flags);
3398			priv->usb.port_status =
3399				cvmx_usb_get_status(&priv->usb);
3400			spin_unlock_irqrestore(&priv->lock, flags);
3401			break;
3402		case USB_PORT_FEAT_C_ENABLE:
3403			dev_dbg(dev, " C_ENABLE\n");
3404			/*
3405			 * Clears the driver's internal Port Enable/Disable
3406			 * Change flag.
3407			 */
3408			spin_lock_irqsave(&priv->lock, flags);
3409			priv->usb.port_status =
3410				cvmx_usb_get_status(&priv->usb);
3411			spin_unlock_irqrestore(&priv->lock, flags);
3412			break;
3413		case USB_PORT_FEAT_C_SUSPEND:
3414			dev_dbg(dev, " C_SUSPEND\n");
3415			/*
3416			 * Clears the driver's internal Port Suspend Change
3417			 * flag, which is set when resume signaling on the host
3418			 * port is complete.
3419			 */
3420			break;
3421		case USB_PORT_FEAT_C_OVER_CURRENT:
3422			dev_dbg(dev, " C_OVER_CURRENT\n");
3423			/* Clears the driver's overcurrent Change flag */
3424			spin_lock_irqsave(&priv->lock, flags);
3425			priv->usb.port_status =
3426				cvmx_usb_get_status(&priv->usb);
3427			spin_unlock_irqrestore(&priv->lock, flags);
3428			break;
3429		default:
3430			dev_dbg(dev, " UNKNOWN\n");
3431			return -EINVAL;
3432		}
3433		break;
3434	case GetHubDescriptor:
3435		dev_dbg(dev, "GetHubDescriptor\n");
3436		desc = (struct usb_hub_descriptor *)buf;
3437		desc->bDescLength = 9;
3438		desc->bDescriptorType = 0x29;
3439		desc->bNbrPorts = 1;
3440		desc->wHubCharacteristics = cpu_to_le16(0x08);
3441		desc->bPwrOn2PwrGood = 1;
3442		desc->bHubContrCurrent = 0;
3443		desc->u.hs.DeviceRemovable[0] = 0;
3444		desc->u.hs.DeviceRemovable[1] = 0xff;
3445		break;
3446	case GetHubStatus:
3447		dev_dbg(dev, "GetHubStatus\n");
3448		*(__le32 *) buf = 0;
3449		break;
3450	case GetPortStatus:
3451		dev_dbg(dev, "GetPortStatus\n");
3452		if (wIndex != 1) {
3453			dev_dbg(dev, " INVALID\n");
3454			return -EINVAL;
3455		}
3456
3457		spin_lock_irqsave(&priv->lock, flags);
3458		usb_port_status = cvmx_usb_get_status(&priv->usb);
3459		spin_unlock_irqrestore(&priv->lock, flags);
3460		port_status = 0;
3461
3462		if (usb_port_status.connect_change) {
3463			port_status |= (1 << USB_PORT_FEAT_C_CONNECTION);
3464			dev_dbg(dev, " C_CONNECTION\n");
3465		}
3466
3467		if (usb_port_status.port_enabled) {
3468			port_status |= (1 << USB_PORT_FEAT_C_ENABLE);
3469			dev_dbg(dev, " C_ENABLE\n");
3470		}
3471
3472		if (usb_port_status.connected) {
3473			port_status |= (1 << USB_PORT_FEAT_CONNECTION);
3474			dev_dbg(dev, " CONNECTION\n");
3475		}
3476
3477		if (usb_port_status.port_enabled) {
3478			port_status |= (1 << USB_PORT_FEAT_ENABLE);
3479			dev_dbg(dev, " ENABLE\n");
3480		}
3481
3482		if (usb_port_status.port_over_current) {
3483			port_status |= (1 << USB_PORT_FEAT_OVER_CURRENT);
3484			dev_dbg(dev, " OVER_CURRENT\n");
3485		}
3486
3487		if (usb_port_status.port_powered) {
3488			port_status |= (1 << USB_PORT_FEAT_POWER);
3489			dev_dbg(dev, " POWER\n");
3490		}
3491
3492		if (usb_port_status.port_speed == CVMX_USB_SPEED_HIGH) {
3493			port_status |= USB_PORT_STAT_HIGH_SPEED;
3494			dev_dbg(dev, " HIGHSPEED\n");
3495		} else if (usb_port_status.port_speed == CVMX_USB_SPEED_LOW) {
3496			port_status |= (1 << USB_PORT_FEAT_LOWSPEED);
3497			dev_dbg(dev, " LOWSPEED\n");
3498		}
3499
3500		*((__le32 *) buf) = cpu_to_le32(port_status);
3501		break;
3502	case SetHubFeature:
3503		dev_dbg(dev, "SetHubFeature\n");
3504		/* No HUB features supported */
3505		break;
3506	case SetPortFeature:
3507		dev_dbg(dev, "SetPortFeature\n");
3508		if (wIndex != 1) {
3509			dev_dbg(dev, " INVALID\n");
3510			return -EINVAL;
3511		}
3512
3513		switch (wValue) {
3514		case USB_PORT_FEAT_SUSPEND:
3515			dev_dbg(dev, " SUSPEND\n");
3516			return -EINVAL;
3517		case USB_PORT_FEAT_POWER:
3518			dev_dbg(dev, " POWER\n");
3519			/*
3520			 * Program the port power bit to drive VBUS on the USB.
3521			 */
3522			spin_lock_irqsave(&priv->lock, flags);
3523			USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index),
3524					cvmx_usbcx_hprt, prtpwr, 1);
3525			spin_unlock_irqrestore(&priv->lock, flags);
3526			return 0;
3527		case USB_PORT_FEAT_RESET:
3528			dev_dbg(dev, " RESET\n");
3529			spin_lock_irqsave(&priv->lock, flags);
3530			cvmx_usb_reset_port(&priv->usb);
3531			spin_unlock_irqrestore(&priv->lock, flags);
3532			return 0;
3533		case USB_PORT_FEAT_INDICATOR:
3534			dev_dbg(dev, " INDICATOR\n");
3535			/* Not supported */
3536			break;
3537		default:
3538			dev_dbg(dev, " UNKNOWN\n");
3539			return -EINVAL;
3540		}
3541		break;
3542	default:
3543		dev_dbg(dev, "Unknown root hub request\n");
3544		return -EINVAL;
3545	}
3546	return 0;
3547}
3548
3549static const struct hc_driver octeon_hc_driver = {
3550	.description		= "Octeon USB",
3551	.product_desc		= "Octeon Host Controller",
3552	.hcd_priv_size		= sizeof(struct octeon_hcd),
3553	.irq			= octeon_usb_irq,
3554	.flags			= HCD_MEMORY | HCD_USB2,
3555	.start			= octeon_usb_start,
3556	.stop			= octeon_usb_stop,
3557	.urb_enqueue		= octeon_usb_urb_enqueue,
3558	.urb_dequeue		= octeon_usb_urb_dequeue,
3559	.endpoint_disable	= octeon_usb_endpoint_disable,
3560	.get_frame_number	= octeon_usb_get_frame_number,
3561	.hub_status_data	= octeon_usb_hub_status_data,
3562	.hub_control		= octeon_usb_hub_control,
3563	.map_urb_for_dma	= octeon_map_urb_for_dma,
3564	.unmap_urb_for_dma	= octeon_unmap_urb_for_dma,
3565};
3566
3567static int octeon_usb_probe(struct platform_device *pdev)
3568{
3569	int status;
3570	int initialize_flags;
3571	int usb_num;
3572	struct resource *res_mem;
3573	struct device_node *usbn_node;
3574	int irq = platform_get_irq(pdev, 0);
3575	struct device *dev = &pdev->dev;
3576	struct octeon_hcd *priv;
3577	struct usb_hcd *hcd;
3578	u32 clock_rate = 48000000;
3579	bool is_crystal_clock = false;
3580	const char *clock_type;
3581	int i;
3582
3583	if (dev->of_node == NULL) {
3584		dev_err(dev, "Error: empty of_node\n");
3585		return -ENXIO;
3586	}
3587	usbn_node = dev->of_node->parent;
3588
3589	i = of_property_read_u32(usbn_node,
3590				 "refclk-frequency", &clock_rate);
3591	if (i) {
3592		dev_err(dev, "No USBN \"refclk-frequency\"\n");
3593		return -ENXIO;
3594	}
3595	switch (clock_rate) {
3596	case 12000000:
3597		initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ;
3598		break;
3599	case 24000000:
3600		initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ;
3601		break;
3602	case 48000000:
3603		initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ;
3604		break;
3605	default:
3606		dev_err(dev, "Illebal USBN \"refclk-frequency\" %u\n",
3607				clock_rate);
3608		return -ENXIO;
3609
3610	}
3611
3612	i = of_property_read_string(usbn_node,
3613				    "refclk-type", &clock_type);
3614
3615	if (!i && strcmp("crystal", clock_type) == 0)
3616		is_crystal_clock = true;
3617
3618	if (is_crystal_clock)
3619		initialize_flags |= CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI;
3620	else
3621		initialize_flags |= CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND;
3622
3623	res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3624	if (res_mem == NULL) {
3625		dev_err(dev, "found no memory resource\n");
3626		return -ENXIO;
3627	}
3628	usb_num = (res_mem->start >> 44) & 1;
3629
3630	if (irq < 0) {
3631		/* Defective device tree, but we know how to fix it. */
3632		irq_hw_number_t hwirq = usb_num ? (1 << 6) + 17 : 56;
3633
3634		irq = irq_create_mapping(NULL, hwirq);
3635	}
3636
3637	/*
3638	 * Set the DMA mask to 64bits so we get buffers already translated for
3639	 * DMA.
3640	 */
3641	dev->coherent_dma_mask = ~0;
3642	dev->dma_mask = &dev->coherent_dma_mask;
3643
3644	/*
3645	 * Only cn52XX and cn56XX have DWC_OTG USB hardware and the
3646	 * IOB priority registers.  Under heavy network load USB
3647	 * hardware can be starved by the IOB causing a crash.  Give
3648	 * it a priority boost if it has been waiting more than 400
3649	 * cycles to avoid this situation.
3650	 *
3651	 * Testing indicates that a cnt_val of 8192 is not sufficient,
3652	 * but no failures are seen with 4096.  We choose a value of
3653	 * 400 to give a safety factor of 10.
3654	 */
3655	if (OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN56XX)) {
3656		union cvmx_iob_n2c_l2c_pri_cnt pri_cnt;
3657
3658		pri_cnt.u64 = 0;
3659		pri_cnt.s.cnt_enb = 1;
3660		pri_cnt.s.cnt_val = 400;
3661		cvmx_write_csr(CVMX_IOB_N2C_L2C_PRI_CNT, pri_cnt.u64);
3662	}
3663
3664	hcd = usb_create_hcd(&octeon_hc_driver, dev, dev_name(dev));
3665	if (!hcd) {
3666		dev_dbg(dev, "Failed to allocate memory for HCD\n");
3667		return -1;
3668	}
3669	hcd->uses_new_polling = 1;
3670	priv = (struct octeon_hcd *)hcd->hcd_priv;
3671
3672	spin_lock_init(&priv->lock);
3673
3674	priv->usb.init_flags = initialize_flags;
3675
3676	/* Initialize the USB state structure */
3677	priv->usb.index = usb_num;
3678	INIT_LIST_HEAD(&priv->usb.idle_pipes);
3679	for (i = 0; i < ARRAY_SIZE(priv->usb.active_pipes); i++)
3680		INIT_LIST_HEAD(&priv->usb.active_pipes[i]);
3681
3682	/* Due to an errata, CN31XX doesn't support DMA */
3683	if (OCTEON_IS_MODEL(OCTEON_CN31XX)) {
3684		priv->usb.init_flags |= CVMX_USB_INITIALIZE_FLAGS_NO_DMA;
3685		/* Only use one channel with non DMA */
3686		priv->usb.idle_hardware_channels = 0x1;
3687	} else if (OCTEON_IS_MODEL(OCTEON_CN5XXX)) {
3688		/* CN5XXX have an errata with channel 3 */
3689		priv->usb.idle_hardware_channels = 0xf7;
3690	} else {
3691		priv->usb.idle_hardware_channels = 0xff;
3692	}
3693
3694	status = cvmx_usb_initialize(dev, &priv->usb);
3695	if (status) {
3696		dev_dbg(dev, "USB initialization failed with %d\n", status);
3697		kfree(hcd);
3698		return -1;
3699	}
3700
3701	status = usb_add_hcd(hcd, irq, 0);
3702	if (status) {
3703		dev_dbg(dev, "USB add HCD failed with %d\n", status);
3704		kfree(hcd);
3705		return -1;
3706	}
3707	device_wakeup_enable(hcd->self.controller);
3708
3709	dev_info(dev, "Registered HCD for port %d on irq %d\n", usb_num, irq);
3710
3711	return 0;
3712}
3713
3714static int octeon_usb_remove(struct platform_device *pdev)
3715{
3716	int status;
3717	struct device *dev = &pdev->dev;
3718	struct usb_hcd *hcd = dev_get_drvdata(dev);
3719	struct octeon_hcd *priv = hcd_to_octeon(hcd);
3720	unsigned long flags;
3721
3722	usb_remove_hcd(hcd);
3723	spin_lock_irqsave(&priv->lock, flags);
3724	status = cvmx_usb_shutdown(&priv->usb);
3725	spin_unlock_irqrestore(&priv->lock, flags);
3726	if (status)
3727		dev_dbg(dev, "USB shutdown failed with %d\n", status);
3728
3729	kfree(hcd);
3730
3731	return 0;
3732}
3733
3734static const struct of_device_id octeon_usb_match[] = {
3735	{
3736		.compatible = "cavium,octeon-5750-usbc",
3737	},
3738	{},
3739};
3740
3741static struct platform_driver octeon_usb_driver = {
3742	.driver = {
3743		.name       = "OcteonUSB",
3744		.of_match_table = octeon_usb_match,
3745	},
3746	.probe      = octeon_usb_probe,
3747	.remove     = octeon_usb_remove,
3748};
3749
3750static int __init octeon_usb_driver_init(void)
3751{
3752	if (usb_disabled())
3753		return 0;
3754
3755	return platform_driver_register(&octeon_usb_driver);
3756}
3757module_init(octeon_usb_driver_init);
3758
3759static void __exit octeon_usb_driver_exit(void)
3760{
3761	if (usb_disabled())
3762		return;
3763
3764	platform_driver_unregister(&octeon_usb_driver);
3765}
3766module_exit(octeon_usb_driver_exit);
3767
3768MODULE_LICENSE("GPL");
3769MODULE_AUTHOR("Cavium, Inc. <support@cavium.com>");
3770MODULE_DESCRIPTION("Cavium Inc. OCTEON USB Host driver.");
3771