1 /*
2  * Freescale i.MX28 LRADC driver
3  *
4  * Copyright (c) 2012 DENX Software Engineering, GmbH.
5  * Marek Vasut <marex@denx.de>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15  * GNU General Public License for more details.
16  */
17 
18 #include <linux/err.h>
19 #include <linux/interrupt.h>
20 #include <linux/device.h>
21 #include <linux/kernel.h>
22 #include <linux/slab.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/sysfs.h>
26 #include <linux/list.h>
27 #include <linux/io.h>
28 #include <linux/module.h>
29 #include <linux/platform_device.h>
30 #include <linux/spinlock.h>
31 #include <linux/wait.h>
32 #include <linux/sched.h>
33 #include <linux/stmp_device.h>
34 #include <linux/bitops.h>
35 #include <linux/completion.h>
36 #include <linux/delay.h>
37 #include <linux/input.h>
38 #include <linux/clk.h>
39 
40 #include <linux/iio/iio.h>
41 #include <linux/iio/sysfs.h>
42 #include <linux/iio/buffer.h>
43 #include <linux/iio/trigger.h>
44 #include <linux/iio/trigger_consumer.h>
45 #include <linux/iio/triggered_buffer.h>
46 
47 #define DRIVER_NAME		"mxs-lradc"
48 
49 #define LRADC_MAX_DELAY_CHANS	4
50 #define LRADC_MAX_MAPPED_CHANS	8
51 #define LRADC_MAX_TOTAL_CHANS	16
52 
53 #define LRADC_DELAY_TIMER_HZ	2000
54 
55 /*
56  * Make this runtime configurable if necessary. Currently, if the buffered mode
57  * is enabled, the LRADC takes LRADC_DELAY_TIMER_LOOP samples of data before
58  * triggering IRQ. The sampling happens every (LRADC_DELAY_TIMER_PER / 2000)
59  * seconds. The result is that the samples arrive every 500mS.
60  */
61 #define LRADC_DELAY_TIMER_PER	200
62 #define LRADC_DELAY_TIMER_LOOP	5
63 
64 /*
65  * Once the pen touches the touchscreen, the touchscreen switches from
66  * IRQ-driven mode to polling mode to prevent interrupt storm. The polling
67  * is realized by worker thread, which is called every 20 or so milliseconds.
68  * This gives the touchscreen enough fluence and does not strain the system
69  * too much.
70  */
71 #define LRADC_TS_SAMPLE_DELAY_MS	5
72 
73 /*
74  * The LRADC reads the following amount of samples from each touchscreen
75  * channel and the driver then computes avarage of these.
76  */
77 #define LRADC_TS_SAMPLE_AMOUNT		4
78 
79 enum mxs_lradc_id {
80 	IMX23_LRADC,
81 	IMX28_LRADC,
82 };
83 
84 static const char * const mx23_lradc_irq_names[] = {
85 	"mxs-lradc-touchscreen",
86 	"mxs-lradc-channel0",
87 	"mxs-lradc-channel1",
88 	"mxs-lradc-channel2",
89 	"mxs-lradc-channel3",
90 	"mxs-lradc-channel4",
91 	"mxs-lradc-channel5",
92 	"mxs-lradc-channel6",
93 	"mxs-lradc-channel7",
94 };
95 
96 static const char * const mx28_lradc_irq_names[] = {
97 	"mxs-lradc-touchscreen",
98 	"mxs-lradc-thresh0",
99 	"mxs-lradc-thresh1",
100 	"mxs-lradc-channel0",
101 	"mxs-lradc-channel1",
102 	"mxs-lradc-channel2",
103 	"mxs-lradc-channel3",
104 	"mxs-lradc-channel4",
105 	"mxs-lradc-channel5",
106 	"mxs-lradc-channel6",
107 	"mxs-lradc-channel7",
108 	"mxs-lradc-button0",
109 	"mxs-lradc-button1",
110 };
111 
112 struct mxs_lradc_of_config {
113 	const int		irq_count;
114 	const char * const	*irq_name;
115 	const uint32_t		*vref_mv;
116 };
117 
118 #define VREF_MV_BASE 1850
119 
120 static const uint32_t mx23_vref_mv[LRADC_MAX_TOTAL_CHANS] = {
121 	VREF_MV_BASE,		/* CH0 */
122 	VREF_MV_BASE,		/* CH1 */
123 	VREF_MV_BASE,		/* CH2 */
124 	VREF_MV_BASE,		/* CH3 */
125 	VREF_MV_BASE,		/* CH4 */
126 	VREF_MV_BASE,		/* CH5 */
127 	VREF_MV_BASE * 2,	/* CH6 VDDIO */
128 	VREF_MV_BASE * 4,	/* CH7 VBATT */
129 	VREF_MV_BASE,		/* CH8 Temp sense 0 */
130 	VREF_MV_BASE,		/* CH9 Temp sense 1 */
131 	VREF_MV_BASE,		/* CH10 */
132 	VREF_MV_BASE,		/* CH11 */
133 	VREF_MV_BASE,		/* CH12 USB_DP */
134 	VREF_MV_BASE,		/* CH13 USB_DN */
135 	VREF_MV_BASE,		/* CH14 VBG */
136 	VREF_MV_BASE * 4,	/* CH15 VDD5V */
137 };
138 
139 static const uint32_t mx28_vref_mv[LRADC_MAX_TOTAL_CHANS] = {
140 	VREF_MV_BASE,		/* CH0 */
141 	VREF_MV_BASE,		/* CH1 */
142 	VREF_MV_BASE,		/* CH2 */
143 	VREF_MV_BASE,		/* CH3 */
144 	VREF_MV_BASE,		/* CH4 */
145 	VREF_MV_BASE,		/* CH5 */
146 	VREF_MV_BASE,		/* CH6 */
147 	VREF_MV_BASE * 4,	/* CH7 VBATT */
148 	VREF_MV_BASE,		/* CH8 Temp sense 0 */
149 	VREF_MV_BASE,		/* CH9 Temp sense 1 */
150 	VREF_MV_BASE * 2,	/* CH10 VDDIO */
151 	VREF_MV_BASE,		/* CH11 VTH */
152 	VREF_MV_BASE * 2,	/* CH12 VDDA */
153 	VREF_MV_BASE,		/* CH13 VDDD */
154 	VREF_MV_BASE,		/* CH14 VBG */
155 	VREF_MV_BASE * 4,	/* CH15 VDD5V */
156 };
157 
158 static const struct mxs_lradc_of_config mxs_lradc_of_config[] = {
159 	[IMX23_LRADC] = {
160 		.irq_count	= ARRAY_SIZE(mx23_lradc_irq_names),
161 		.irq_name	= mx23_lradc_irq_names,
162 		.vref_mv	= mx23_vref_mv,
163 	},
164 	[IMX28_LRADC] = {
165 		.irq_count	= ARRAY_SIZE(mx28_lradc_irq_names),
166 		.irq_name	= mx28_lradc_irq_names,
167 		.vref_mv	= mx28_vref_mv,
168 	},
169 };
170 
171 enum mxs_lradc_ts {
172 	MXS_LRADC_TOUCHSCREEN_NONE = 0,
173 	MXS_LRADC_TOUCHSCREEN_4WIRE,
174 	MXS_LRADC_TOUCHSCREEN_5WIRE,
175 };
176 
177 /*
178  * Touchscreen handling
179  */
180 enum lradc_ts_plate {
181 	LRADC_TOUCH = 0,
182 	LRADC_SAMPLE_X,
183 	LRADC_SAMPLE_Y,
184 	LRADC_SAMPLE_PRESSURE,
185 	LRADC_SAMPLE_VALID,
186 };
187 
188 enum mxs_lradc_divbytwo {
189 	MXS_LRADC_DIV_DISABLED = 0,
190 	MXS_LRADC_DIV_ENABLED,
191 };
192 
193 struct mxs_lradc_scale {
194 	unsigned int		integer;
195 	unsigned int		nano;
196 };
197 
198 struct mxs_lradc {
199 	struct device		*dev;
200 	void __iomem		*base;
201 	int			irq[13];
202 
203 	struct clk		*clk;
204 
205 	uint32_t		*buffer;
206 	struct iio_trigger	*trig;
207 
208 	struct mutex		lock;
209 
210 	struct completion	completion;
211 
212 	const uint32_t		*vref_mv;
213 	struct mxs_lradc_scale	scale_avail[LRADC_MAX_TOTAL_CHANS][2];
214 	unsigned long		is_divided;
215 
216 	/*
217 	 * When the touchscreen is enabled, we give it two private virtual
218 	 * channels: #6 and #7. This means that only 6 virtual channels (instead
219 	 * of 8) will be available for buffered capture.
220 	 */
221 #define TOUCHSCREEN_VCHANNEL1		7
222 #define TOUCHSCREEN_VCHANNEL2		6
223 #define BUFFER_VCHANS_LIMITED		0x3f
224 #define BUFFER_VCHANS_ALL		0xff
225 	u8			buffer_vchans;
226 
227 	/*
228 	 * Furthermore, certain LRADC channels are shared between touchscreen
229 	 * and/or touch-buttons and generic LRADC block. Therefore when using
230 	 * either of these, these channels are not available for the regular
231 	 * sampling. The shared channels are as follows:
232 	 *
233 	 * CH0 -- Touch button #0
234 	 * CH1 -- Touch button #1
235 	 * CH2 -- Touch screen XPUL
236 	 * CH3 -- Touch screen YPLL
237 	 * CH4 -- Touch screen XNUL
238 	 * CH5 -- Touch screen YNLR
239 	 * CH6 -- Touch screen WIPER (5-wire only)
240 	 *
241 	 * The bitfields below represents which parts of the LRADC block are
242 	 * switched into special mode of operation. These channels can not
243 	 * be sampled as regular LRADC channels. The driver will refuse any
244 	 * attempt to sample these channels.
245 	 */
246 #define CHAN_MASK_TOUCHBUTTON		(BIT(1) | BIT(0))
247 #define CHAN_MASK_TOUCHSCREEN_4WIRE	(0xf << 2)
248 #define CHAN_MASK_TOUCHSCREEN_5WIRE	(0x1f << 2)
249 	enum mxs_lradc_ts	use_touchscreen;
250 	bool			use_touchbutton;
251 
252 	struct input_dev	*ts_input;
253 
254 	enum mxs_lradc_id	soc;
255 	enum lradc_ts_plate	cur_plate; /* statemachine */
256 	bool			ts_valid;
257 	unsigned		ts_x_pos;
258 	unsigned		ts_y_pos;
259 	unsigned		ts_pressure;
260 
261 	/* handle touchscreen's physical behaviour */
262 	/* samples per coordinate */
263 	unsigned		over_sample_cnt;
264 	/* time clocks between samples */
265 	unsigned		over_sample_delay;
266 	/* time in clocks to wait after the plates where switched */
267 	unsigned		settling_delay;
268 };
269 
270 #define	LRADC_CTRL0				0x00
271 # define LRADC_CTRL0_MX28_TOUCH_DETECT_ENABLE	BIT(23)
272 # define LRADC_CTRL0_MX28_TOUCH_SCREEN_TYPE	BIT(22)
273 # define LRADC_CTRL0_MX28_YNNSW	/* YM */	BIT(21)
274 # define LRADC_CTRL0_MX28_YPNSW	/* YP */	BIT(20)
275 # define LRADC_CTRL0_MX28_YPPSW	/* YP */	BIT(19)
276 # define LRADC_CTRL0_MX28_XNNSW	/* XM */	BIT(18)
277 # define LRADC_CTRL0_MX28_XNPSW	/* XM */	BIT(17)
278 # define LRADC_CTRL0_MX28_XPPSW	/* XP */	BIT(16)
279 
280 # define LRADC_CTRL0_MX23_TOUCH_DETECT_ENABLE	BIT(20)
281 # define LRADC_CTRL0_MX23_YM			BIT(19)
282 # define LRADC_CTRL0_MX23_XM			BIT(18)
283 # define LRADC_CTRL0_MX23_YP			BIT(17)
284 # define LRADC_CTRL0_MX23_XP			BIT(16)
285 
286 # define LRADC_CTRL0_MX28_PLATE_MASK \
287 		(LRADC_CTRL0_MX28_TOUCH_DETECT_ENABLE | \
288 		LRADC_CTRL0_MX28_YNNSW | LRADC_CTRL0_MX28_YPNSW | \
289 		LRADC_CTRL0_MX28_YPPSW | LRADC_CTRL0_MX28_XNNSW | \
290 		LRADC_CTRL0_MX28_XNPSW | LRADC_CTRL0_MX28_XPPSW)
291 
292 # define LRADC_CTRL0_MX23_PLATE_MASK \
293 		(LRADC_CTRL0_MX23_TOUCH_DETECT_ENABLE | \
294 		LRADC_CTRL0_MX23_YM | LRADC_CTRL0_MX23_XM | \
295 		LRADC_CTRL0_MX23_YP | LRADC_CTRL0_MX23_XP)
296 
297 #define	LRADC_CTRL1				0x10
298 #define	LRADC_CTRL1_TOUCH_DETECT_IRQ_EN		BIT(24)
299 #define	LRADC_CTRL1_LRADC_IRQ_EN(n)		(1 << ((n) + 16))
300 #define	LRADC_CTRL1_MX28_LRADC_IRQ_EN_MASK	(0x1fff << 16)
301 #define	LRADC_CTRL1_MX23_LRADC_IRQ_EN_MASK	(0x01ff << 16)
302 #define	LRADC_CTRL1_LRADC_IRQ_EN_OFFSET		16
303 #define	LRADC_CTRL1_TOUCH_DETECT_IRQ		BIT(8)
304 #define	LRADC_CTRL1_LRADC_IRQ(n)		(1 << (n))
305 #define	LRADC_CTRL1_MX28_LRADC_IRQ_MASK		0x1fff
306 #define	LRADC_CTRL1_MX23_LRADC_IRQ_MASK		0x01ff
307 #define	LRADC_CTRL1_LRADC_IRQ_OFFSET		0
308 
309 #define	LRADC_CTRL2				0x20
310 #define	LRADC_CTRL2_DIVIDE_BY_TWO_OFFSET	24
311 #define	LRADC_CTRL2_TEMPSENSE_PWD		BIT(15)
312 
313 #define	LRADC_STATUS				0x40
314 #define	LRADC_STATUS_TOUCH_DETECT_RAW		BIT(0)
315 
316 #define	LRADC_CH(n)				(0x50 + (0x10 * (n)))
317 #define	LRADC_CH_ACCUMULATE			BIT(29)
318 #define	LRADC_CH_NUM_SAMPLES_MASK		(0x1f << 24)
319 #define	LRADC_CH_NUM_SAMPLES_OFFSET		24
320 #define	LRADC_CH_NUM_SAMPLES(x) \
321 				((x) << LRADC_CH_NUM_SAMPLES_OFFSET)
322 #define	LRADC_CH_VALUE_MASK			0x3ffff
323 #define	LRADC_CH_VALUE_OFFSET			0
324 
325 #define	LRADC_DELAY(n)				(0xd0 + (0x10 * (n)))
326 #define	LRADC_DELAY_TRIGGER_LRADCS_MASK		(0xff << 24)
327 #define	LRADC_DELAY_TRIGGER_LRADCS_OFFSET	24
328 #define	LRADC_DELAY_TRIGGER(x) \
329 				(((x) << LRADC_DELAY_TRIGGER_LRADCS_OFFSET) & \
330 				LRADC_DELAY_TRIGGER_LRADCS_MASK)
331 #define	LRADC_DELAY_KICK			(1 << 20)
332 #define	LRADC_DELAY_TRIGGER_DELAYS_MASK		(0xf << 16)
333 #define	LRADC_DELAY_TRIGGER_DELAYS_OFFSET	16
334 #define	LRADC_DELAY_TRIGGER_DELAYS(x) \
335 				(((x) << LRADC_DELAY_TRIGGER_DELAYS_OFFSET) & \
336 				LRADC_DELAY_TRIGGER_DELAYS_MASK)
337 #define	LRADC_DELAY_LOOP_COUNT_MASK		(0x1f << 11)
338 #define	LRADC_DELAY_LOOP_COUNT_OFFSET		11
339 #define	LRADC_DELAY_LOOP(x) \
340 				(((x) << LRADC_DELAY_LOOP_COUNT_OFFSET) & \
341 				LRADC_DELAY_LOOP_COUNT_MASK)
342 #define	LRADC_DELAY_DELAY_MASK			0x7ff
343 #define	LRADC_DELAY_DELAY_OFFSET		0
344 #define	LRADC_DELAY_DELAY(x) \
345 				(((x) << LRADC_DELAY_DELAY_OFFSET) & \
346 				LRADC_DELAY_DELAY_MASK)
347 
348 #define	LRADC_CTRL4				0x140
349 #define	LRADC_CTRL4_LRADCSELECT_MASK(n)		(0xf << ((n) * 4))
350 #define	LRADC_CTRL4_LRADCSELECT_OFFSET(n)	((n) * 4)
351 #define	LRADC_CTRL4_LRADCSELECT(n, x) \
352 				(((x) << LRADC_CTRL4_LRADCSELECT_OFFSET(n)) & \
353 				LRADC_CTRL4_LRADCSELECT_MASK(n))
354 
355 #define LRADC_RESOLUTION			12
356 #define LRADC_SINGLE_SAMPLE_MASK		((1 << LRADC_RESOLUTION) - 1)
357 
mxs_lradc_reg_set(struct mxs_lradc * lradc,u32 val,u32 reg)358 static void mxs_lradc_reg_set(struct mxs_lradc *lradc, u32 val, u32 reg)
359 {
360 	writel(val, lradc->base + reg + STMP_OFFSET_REG_SET);
361 }
362 
mxs_lradc_reg_clear(struct mxs_lradc * lradc,u32 val,u32 reg)363 static void mxs_lradc_reg_clear(struct mxs_lradc *lradc, u32 val, u32 reg)
364 {
365 	writel(val, lradc->base + reg + STMP_OFFSET_REG_CLR);
366 }
367 
mxs_lradc_reg_wrt(struct mxs_lradc * lradc,u32 val,u32 reg)368 static void mxs_lradc_reg_wrt(struct mxs_lradc *lradc, u32 val, u32 reg)
369 {
370 	writel(val, lradc->base + reg);
371 }
372 
mxs_lradc_plate_mask(struct mxs_lradc * lradc)373 static u32 mxs_lradc_plate_mask(struct mxs_lradc *lradc)
374 {
375 	if (lradc->soc == IMX23_LRADC)
376 		return LRADC_CTRL0_MX23_PLATE_MASK;
377 	return LRADC_CTRL0_MX28_PLATE_MASK;
378 }
379 
mxs_lradc_irq_en_mask(struct mxs_lradc * lradc)380 static u32 mxs_lradc_irq_en_mask(struct mxs_lradc *lradc)
381 {
382 	if (lradc->soc == IMX23_LRADC)
383 		return LRADC_CTRL1_MX23_LRADC_IRQ_EN_MASK;
384 	return LRADC_CTRL1_MX28_LRADC_IRQ_EN_MASK;
385 }
386 
mxs_lradc_irq_mask(struct mxs_lradc * lradc)387 static u32 mxs_lradc_irq_mask(struct mxs_lradc *lradc)
388 {
389 	if (lradc->soc == IMX23_LRADC)
390 		return LRADC_CTRL1_MX23_LRADC_IRQ_MASK;
391 	return LRADC_CTRL1_MX28_LRADC_IRQ_MASK;
392 }
393 
mxs_lradc_touch_detect_bit(struct mxs_lradc * lradc)394 static u32 mxs_lradc_touch_detect_bit(struct mxs_lradc *lradc)
395 {
396 	if (lradc->soc == IMX23_LRADC)
397 		return LRADC_CTRL0_MX23_TOUCH_DETECT_ENABLE;
398 	return LRADC_CTRL0_MX28_TOUCH_DETECT_ENABLE;
399 }
400 
mxs_lradc_drive_x_plate(struct mxs_lradc * lradc)401 static u32 mxs_lradc_drive_x_plate(struct mxs_lradc *lradc)
402 {
403 	if (lradc->soc == IMX23_LRADC)
404 		return LRADC_CTRL0_MX23_XP | LRADC_CTRL0_MX23_XM;
405 	return LRADC_CTRL0_MX28_XPPSW | LRADC_CTRL0_MX28_XNNSW;
406 }
407 
mxs_lradc_drive_y_plate(struct mxs_lradc * lradc)408 static u32 mxs_lradc_drive_y_plate(struct mxs_lradc *lradc)
409 {
410 	if (lradc->soc == IMX23_LRADC)
411 		return LRADC_CTRL0_MX23_YP | LRADC_CTRL0_MX23_YM;
412 	return LRADC_CTRL0_MX28_YPPSW | LRADC_CTRL0_MX28_YNNSW;
413 }
414 
mxs_lradc_drive_pressure(struct mxs_lradc * lradc)415 static u32 mxs_lradc_drive_pressure(struct mxs_lradc *lradc)
416 {
417 	if (lradc->soc == IMX23_LRADC)
418 		return LRADC_CTRL0_MX23_YP | LRADC_CTRL0_MX23_XM;
419 	return LRADC_CTRL0_MX28_YPPSW | LRADC_CTRL0_MX28_XNNSW;
420 }
421 
mxs_lradc_check_touch_event(struct mxs_lradc * lradc)422 static bool mxs_lradc_check_touch_event(struct mxs_lradc *lradc)
423 {
424 	return !!(readl(lradc->base + LRADC_STATUS) &
425 					LRADC_STATUS_TOUCH_DETECT_RAW);
426 }
427 
mxs_lradc_map_channel(struct mxs_lradc * lradc,unsigned vch,unsigned ch)428 static void mxs_lradc_map_channel(struct mxs_lradc *lradc, unsigned vch,
429 				  unsigned ch)
430 {
431 	mxs_lradc_reg_clear(lradc, LRADC_CTRL4_LRADCSELECT_MASK(vch),
432 				LRADC_CTRL4);
433 	mxs_lradc_reg_set(lradc, LRADC_CTRL4_LRADCSELECT(vch, ch), LRADC_CTRL4);
434 }
435 
mxs_lradc_setup_ts_channel(struct mxs_lradc * lradc,unsigned ch)436 static void mxs_lradc_setup_ts_channel(struct mxs_lradc *lradc, unsigned ch)
437 {
438 	/*
439 	 * prepare for oversampling conversion
440 	 *
441 	 * from the datasheet:
442 	 * "The ACCUMULATE bit in the appropriate channel register
443 	 * HW_LRADC_CHn must be set to 1 if NUM_SAMPLES is greater then 0;
444 	 * otherwise, the IRQs will not fire."
445 	 */
446 	mxs_lradc_reg_wrt(lradc, LRADC_CH_ACCUMULATE |
447 			LRADC_CH_NUM_SAMPLES(lradc->over_sample_cnt - 1),
448 			LRADC_CH(ch));
449 
450 	/* from the datasheet:
451 	 * "Software must clear this register in preparation for a
452 	 * multi-cycle accumulation.
453 	 */
454 	mxs_lradc_reg_clear(lradc, LRADC_CH_VALUE_MASK, LRADC_CH(ch));
455 
456 	/*
457 	 * prepare the delay/loop unit according to the oversampling count
458 	 *
459 	 * from the datasheet:
460 	 * "The DELAY fields in HW_LRADC_DELAY0, HW_LRADC_DELAY1,
461 	 * HW_LRADC_DELAY2, and HW_LRADC_DELAY3 must be non-zero; otherwise,
462 	 * the LRADC will not trigger the delay group."
463 	 */
464 	mxs_lradc_reg_wrt(lradc, LRADC_DELAY_TRIGGER(1 << ch) |
465 		LRADC_DELAY_TRIGGER_DELAYS(0) |
466 		LRADC_DELAY_LOOP(lradc->over_sample_cnt - 1) |
467 		LRADC_DELAY_DELAY(lradc->over_sample_delay - 1),
468 			LRADC_DELAY(3));
469 
470 	mxs_lradc_reg_clear(lradc, LRADC_CTRL1_LRADC_IRQ(ch), LRADC_CTRL1);
471 
472 	/*
473 	 * after changing the touchscreen plates setting
474 	 * the signals need some initial time to settle. Start the
475 	 * SoC's delay unit and start the conversion later
476 	 * and automatically.
477 	 */
478 	mxs_lradc_reg_wrt(lradc,
479 		LRADC_DELAY_TRIGGER(0) | /* don't trigger ADC */
480 		LRADC_DELAY_TRIGGER_DELAYS(BIT(3)) | /* trigger DELAY unit#3 */
481 		LRADC_DELAY_KICK |
482 		LRADC_DELAY_DELAY(lradc->settling_delay),
483 			LRADC_DELAY(2));
484 }
485 
486 /*
487  * Pressure detection is special:
488  * We want to do both required measurements for the pressure detection in
489  * one turn. Use the hardware features to chain both conversions and let the
490  * hardware report one interrupt if both conversions are done
491  */
mxs_lradc_setup_ts_pressure(struct mxs_lradc * lradc,unsigned ch1,unsigned ch2)492 static void mxs_lradc_setup_ts_pressure(struct mxs_lradc *lradc, unsigned ch1,
493 							unsigned ch2)
494 {
495 	u32 reg;
496 
497 	/*
498 	 * prepare for oversampling conversion
499 	 *
500 	 * from the datasheet:
501 	 * "The ACCUMULATE bit in the appropriate channel register
502 	 * HW_LRADC_CHn must be set to 1 if NUM_SAMPLES is greater then 0;
503 	 * otherwise, the IRQs will not fire."
504 	 */
505 	reg = LRADC_CH_ACCUMULATE |
506 		LRADC_CH_NUM_SAMPLES(lradc->over_sample_cnt - 1);
507 	mxs_lradc_reg_wrt(lradc, reg, LRADC_CH(ch1));
508 	mxs_lradc_reg_wrt(lradc, reg, LRADC_CH(ch2));
509 
510 	/* from the datasheet:
511 	 * "Software must clear this register in preparation for a
512 	 * multi-cycle accumulation.
513 	 */
514 	mxs_lradc_reg_clear(lradc, LRADC_CH_VALUE_MASK, LRADC_CH(ch1));
515 	mxs_lradc_reg_clear(lradc, LRADC_CH_VALUE_MASK, LRADC_CH(ch2));
516 
517 	/* prepare the delay/loop unit according to the oversampling count */
518 	mxs_lradc_reg_wrt(lradc, LRADC_DELAY_TRIGGER(1 << ch1) |
519 		LRADC_DELAY_TRIGGER(1 << ch2) | /* start both channels */
520 		LRADC_DELAY_TRIGGER_DELAYS(0) |
521 		LRADC_DELAY_LOOP(lradc->over_sample_cnt - 1) |
522 		LRADC_DELAY_DELAY(lradc->over_sample_delay - 1),
523 					LRADC_DELAY(3));
524 
525 	mxs_lradc_reg_clear(lradc, LRADC_CTRL1_LRADC_IRQ(ch2), LRADC_CTRL1);
526 
527 	/*
528 	 * after changing the touchscreen plates setting
529 	 * the signals need some initial time to settle. Start the
530 	 * SoC's delay unit and start the conversion later
531 	 * and automatically.
532 	 */
533 	mxs_lradc_reg_wrt(lradc,
534 		LRADC_DELAY_TRIGGER(0) | /* don't trigger ADC */
535 		LRADC_DELAY_TRIGGER_DELAYS(BIT(3)) | /* trigger DELAY unit#3 */
536 		LRADC_DELAY_KICK |
537 		LRADC_DELAY_DELAY(lradc->settling_delay), LRADC_DELAY(2));
538 }
539 
mxs_lradc_read_raw_channel(struct mxs_lradc * lradc,unsigned channel)540 static unsigned mxs_lradc_read_raw_channel(struct mxs_lradc *lradc,
541 							unsigned channel)
542 {
543 	u32 reg;
544 	unsigned num_samples, val;
545 
546 	reg = readl(lradc->base + LRADC_CH(channel));
547 	if (reg & LRADC_CH_ACCUMULATE)
548 		num_samples = lradc->over_sample_cnt;
549 	else
550 		num_samples = 1;
551 
552 	val = (reg & LRADC_CH_VALUE_MASK) >> LRADC_CH_VALUE_OFFSET;
553 	return val / num_samples;
554 }
555 
mxs_lradc_read_ts_pressure(struct mxs_lradc * lradc,unsigned ch1,unsigned ch2)556 static unsigned mxs_lradc_read_ts_pressure(struct mxs_lradc *lradc,
557 						unsigned ch1, unsigned ch2)
558 {
559 	u32 reg, mask;
560 	unsigned pressure, m1, m2;
561 
562 	mask = LRADC_CTRL1_LRADC_IRQ(ch1) | LRADC_CTRL1_LRADC_IRQ(ch2);
563 	reg = readl(lradc->base + LRADC_CTRL1) & mask;
564 
565 	while (reg != mask) {
566 		reg = readl(lradc->base + LRADC_CTRL1) & mask;
567 		dev_dbg(lradc->dev, "One channel is still busy: %X\n", reg);
568 	}
569 
570 	m1 = mxs_lradc_read_raw_channel(lradc, ch1);
571 	m2 = mxs_lradc_read_raw_channel(lradc, ch2);
572 
573 	if (m2 == 0) {
574 		dev_warn(lradc->dev, "Cannot calculate pressure\n");
575 		return 1 << (LRADC_RESOLUTION - 1);
576 	}
577 
578 	/* simply scale the value from 0 ... max ADC resolution */
579 	pressure = m1;
580 	pressure *= (1 << LRADC_RESOLUTION);
581 	pressure /= m2;
582 
583 	dev_dbg(lradc->dev, "Pressure = %u\n", pressure);
584 	return pressure;
585 }
586 
587 #define TS_CH_XP 2
588 #define TS_CH_YP 3
589 #define TS_CH_XM 4
590 #define TS_CH_YM 5
591 
592 /*
593  * YP(open)--+-------------+
594  *           |             |--+
595  *           |             |  |
596  *    YM(-)--+-------------+  |
597  *             +--------------+
598  *             |              |
599  *         XP(weak+)        XM(open)
600  *
601  * "weak+" means 200k Ohm VDDIO
602  * (-) means GND
603  */
mxs_lradc_setup_touch_detection(struct mxs_lradc * lradc)604 static void mxs_lradc_setup_touch_detection(struct mxs_lradc *lradc)
605 {
606 	/*
607 	 * In order to detect a touch event the 'touch detect enable' bit
608 	 * enables:
609 	 *  - a weak pullup to the X+ connector
610 	 *  - a strong ground at the Y- connector
611 	 */
612 	mxs_lradc_reg_clear(lradc, mxs_lradc_plate_mask(lradc), LRADC_CTRL0);
613 	mxs_lradc_reg_set(lradc, mxs_lradc_touch_detect_bit(lradc),
614 				LRADC_CTRL0);
615 }
616 
617 /*
618  * YP(meas)--+-------------+
619  *           |             |--+
620  *           |             |  |
621  * YM(open)--+-------------+  |
622  *             +--------------+
623  *             |              |
624  *           XP(+)          XM(-)
625  *
626  * (+) means here 1.85 V
627  * (-) means here GND
628  */
mxs_lradc_prepare_x_pos(struct mxs_lradc * lradc)629 static void mxs_lradc_prepare_x_pos(struct mxs_lradc *lradc)
630 {
631 	mxs_lradc_reg_clear(lradc, mxs_lradc_plate_mask(lradc), LRADC_CTRL0);
632 	mxs_lradc_reg_set(lradc, mxs_lradc_drive_x_plate(lradc), LRADC_CTRL0);
633 
634 	lradc->cur_plate = LRADC_SAMPLE_X;
635 	mxs_lradc_map_channel(lradc, TOUCHSCREEN_VCHANNEL1, TS_CH_YP);
636 	mxs_lradc_setup_ts_channel(lradc, TOUCHSCREEN_VCHANNEL1);
637 }
638 
639 /*
640  *   YP(+)--+-------------+
641  *          |             |--+
642  *          |             |  |
643  *   YM(-)--+-------------+  |
644  *            +--------------+
645  *            |              |
646  *         XP(open)        XM(meas)
647  *
648  * (+) means here 1.85 V
649  * (-) means here GND
650  */
mxs_lradc_prepare_y_pos(struct mxs_lradc * lradc)651 static void mxs_lradc_prepare_y_pos(struct mxs_lradc *lradc)
652 {
653 	mxs_lradc_reg_clear(lradc, mxs_lradc_plate_mask(lradc), LRADC_CTRL0);
654 	mxs_lradc_reg_set(lradc, mxs_lradc_drive_y_plate(lradc), LRADC_CTRL0);
655 
656 	lradc->cur_plate = LRADC_SAMPLE_Y;
657 	mxs_lradc_map_channel(lradc, TOUCHSCREEN_VCHANNEL1, TS_CH_XM);
658 	mxs_lradc_setup_ts_channel(lradc, TOUCHSCREEN_VCHANNEL1);
659 }
660 
661 /*
662  *    YP(+)--+-------------+
663  *           |             |--+
664  *           |             |  |
665  * YM(meas)--+-------------+  |
666  *             +--------------+
667  *             |              |
668  *          XP(meas)        XM(-)
669  *
670  * (+) means here 1.85 V
671  * (-) means here GND
672  */
mxs_lradc_prepare_pressure(struct mxs_lradc * lradc)673 static void mxs_lradc_prepare_pressure(struct mxs_lradc *lradc)
674 {
675 	mxs_lradc_reg_clear(lradc, mxs_lradc_plate_mask(lradc), LRADC_CTRL0);
676 	mxs_lradc_reg_set(lradc, mxs_lradc_drive_pressure(lradc), LRADC_CTRL0);
677 
678 	lradc->cur_plate = LRADC_SAMPLE_PRESSURE;
679 	mxs_lradc_map_channel(lradc, TOUCHSCREEN_VCHANNEL1, TS_CH_YM);
680 	mxs_lradc_map_channel(lradc, TOUCHSCREEN_VCHANNEL2, TS_CH_XP);
681 	mxs_lradc_setup_ts_pressure(lradc, TOUCHSCREEN_VCHANNEL2,
682 						TOUCHSCREEN_VCHANNEL1);
683 }
684 
mxs_lradc_enable_touch_detection(struct mxs_lradc * lradc)685 static void mxs_lradc_enable_touch_detection(struct mxs_lradc *lradc)
686 {
687 	mxs_lradc_setup_touch_detection(lradc);
688 
689 	lradc->cur_plate = LRADC_TOUCH;
690 	mxs_lradc_reg_clear(lradc, LRADC_CTRL1_TOUCH_DETECT_IRQ |
691 				LRADC_CTRL1_TOUCH_DETECT_IRQ_EN, LRADC_CTRL1);
692 	mxs_lradc_reg_set(lradc, LRADC_CTRL1_TOUCH_DETECT_IRQ_EN, LRADC_CTRL1);
693 }
694 
mxs_lradc_start_touch_event(struct mxs_lradc * lradc)695 static void mxs_lradc_start_touch_event(struct mxs_lradc *lradc)
696 {
697 	mxs_lradc_reg_clear(lradc, LRADC_CTRL1_TOUCH_DETECT_IRQ_EN,
698 				LRADC_CTRL1);
699 	mxs_lradc_reg_set(lradc,
700 		LRADC_CTRL1_LRADC_IRQ_EN(TOUCHSCREEN_VCHANNEL1), LRADC_CTRL1);
701 	/*
702 	 * start with the Y-pos, because it uses nearly the same plate
703 	 * settings like the touch detection
704 	 */
705 	mxs_lradc_prepare_y_pos(lradc);
706 }
707 
mxs_lradc_report_ts_event(struct mxs_lradc * lradc)708 static void mxs_lradc_report_ts_event(struct mxs_lradc *lradc)
709 {
710 	input_report_abs(lradc->ts_input, ABS_X, lradc->ts_x_pos);
711 	input_report_abs(lradc->ts_input, ABS_Y, lradc->ts_y_pos);
712 	input_report_abs(lradc->ts_input, ABS_PRESSURE, lradc->ts_pressure);
713 	input_report_key(lradc->ts_input, BTN_TOUCH, 1);
714 	input_sync(lradc->ts_input);
715 }
716 
mxs_lradc_complete_touch_event(struct mxs_lradc * lradc)717 static void mxs_lradc_complete_touch_event(struct mxs_lradc *lradc)
718 {
719 	mxs_lradc_setup_touch_detection(lradc);
720 	lradc->cur_plate = LRADC_SAMPLE_VALID;
721 	/*
722 	 * start a dummy conversion to burn time to settle the signals
723 	 * note: we are not interested in the conversion's value
724 	 */
725 	mxs_lradc_reg_wrt(lradc, 0, LRADC_CH(TOUCHSCREEN_VCHANNEL1));
726 	mxs_lradc_reg_clear(lradc,
727 		LRADC_CTRL1_LRADC_IRQ(TOUCHSCREEN_VCHANNEL1) |
728 		LRADC_CTRL1_LRADC_IRQ(TOUCHSCREEN_VCHANNEL2), LRADC_CTRL1);
729 	mxs_lradc_reg_wrt(lradc,
730 		LRADC_DELAY_TRIGGER(1 << TOUCHSCREEN_VCHANNEL1) |
731 		LRADC_DELAY_KICK | LRADC_DELAY_DELAY(10), /* waste 5 ms */
732 			LRADC_DELAY(2));
733 }
734 
735 /*
736  * in order to avoid false measurements, report only samples where
737  * the surface is still touched after the position measurement
738  */
mxs_lradc_finish_touch_event(struct mxs_lradc * lradc,bool valid)739 static void mxs_lradc_finish_touch_event(struct mxs_lradc *lradc, bool valid)
740 {
741 	/* if it is still touched, report the sample */
742 	if (valid && mxs_lradc_check_touch_event(lradc)) {
743 		lradc->ts_valid = true;
744 		mxs_lradc_report_ts_event(lradc);
745 	}
746 
747 	/* if it is even still touched, continue with the next measurement */
748 	if (mxs_lradc_check_touch_event(lradc)) {
749 		mxs_lradc_prepare_y_pos(lradc);
750 		return;
751 	}
752 
753 	if (lradc->ts_valid) {
754 		/* signal the release */
755 		lradc->ts_valid = false;
756 		input_report_key(lradc->ts_input, BTN_TOUCH, 0);
757 		input_sync(lradc->ts_input);
758 	}
759 
760 	/* if it is released, wait for the next touch via IRQ */
761 	lradc->cur_plate = LRADC_TOUCH;
762 	mxs_lradc_reg_wrt(lradc, 0, LRADC_DELAY(2));
763 	mxs_lradc_reg_wrt(lradc, 0, LRADC_DELAY(3));
764 	mxs_lradc_reg_clear(lradc, LRADC_CTRL1_TOUCH_DETECT_IRQ |
765 		LRADC_CTRL1_LRADC_IRQ_EN(TOUCHSCREEN_VCHANNEL1) |
766 		LRADC_CTRL1_LRADC_IRQ(TOUCHSCREEN_VCHANNEL1), LRADC_CTRL1);
767 	mxs_lradc_reg_set(lradc, LRADC_CTRL1_TOUCH_DETECT_IRQ_EN, LRADC_CTRL1);
768 }
769 
770 /* touchscreen's state machine */
mxs_lradc_handle_touch(struct mxs_lradc * lradc)771 static void mxs_lradc_handle_touch(struct mxs_lradc *lradc)
772 {
773 	switch (lradc->cur_plate) {
774 	case LRADC_TOUCH:
775 		if (mxs_lradc_check_touch_event(lradc))
776 			mxs_lradc_start_touch_event(lradc);
777 		mxs_lradc_reg_clear(lradc, LRADC_CTRL1_TOUCH_DETECT_IRQ,
778 					LRADC_CTRL1);
779 		return;
780 
781 	case LRADC_SAMPLE_Y:
782 		lradc->ts_y_pos = mxs_lradc_read_raw_channel(lradc,
783 							TOUCHSCREEN_VCHANNEL1);
784 		mxs_lradc_prepare_x_pos(lradc);
785 		return;
786 
787 	case LRADC_SAMPLE_X:
788 		lradc->ts_x_pos = mxs_lradc_read_raw_channel(lradc,
789 							TOUCHSCREEN_VCHANNEL1);
790 		mxs_lradc_prepare_pressure(lradc);
791 		return;
792 
793 	case LRADC_SAMPLE_PRESSURE:
794 		lradc->ts_pressure = mxs_lradc_read_ts_pressure(lradc,
795 							TOUCHSCREEN_VCHANNEL2,
796 							TOUCHSCREEN_VCHANNEL1);
797 		mxs_lradc_complete_touch_event(lradc);
798 		return;
799 
800 	case LRADC_SAMPLE_VALID:
801 		mxs_lradc_finish_touch_event(lradc, 1);
802 		break;
803 	}
804 }
805 
806 /*
807  * Raw I/O operations
808  */
mxs_lradc_read_single(struct iio_dev * iio_dev,int chan,int * val)809 static int mxs_lradc_read_single(struct iio_dev *iio_dev, int chan, int *val)
810 {
811 	struct mxs_lradc *lradc = iio_priv(iio_dev);
812 	int ret;
813 
814 	/*
815 	 * See if there is no buffered operation in progess. If there is, simply
816 	 * bail out. This can be improved to support both buffered and raw IO at
817 	 * the same time, yet the code becomes horribly complicated. Therefore I
818 	 * applied KISS principle here.
819 	 */
820 	ret = mutex_trylock(&lradc->lock);
821 	if (!ret)
822 		return -EBUSY;
823 
824 	reinit_completion(&lradc->completion);
825 
826 	/*
827 	 * No buffered operation in progress, map the channel and trigger it.
828 	 * Virtual channel 0 is always used here as the others are always not
829 	 * used if doing raw sampling.
830 	 */
831 	if (lradc->soc == IMX28_LRADC)
832 		mxs_lradc_reg_clear(lradc, LRADC_CTRL1_LRADC_IRQ_EN(0),
833 			LRADC_CTRL1);
834 	mxs_lradc_reg_clear(lradc, 0x1, LRADC_CTRL0);
835 
836 	/* Enable / disable the divider per requirement */
837 	if (test_bit(chan, &lradc->is_divided))
838 		mxs_lradc_reg_set(lradc, 1 << LRADC_CTRL2_DIVIDE_BY_TWO_OFFSET,
839 			LRADC_CTRL2);
840 	else
841 		mxs_lradc_reg_clear(lradc,
842 			1 << LRADC_CTRL2_DIVIDE_BY_TWO_OFFSET, LRADC_CTRL2);
843 
844 	/* Clean the slot's previous content, then set new one. */
845 	mxs_lradc_reg_clear(lradc, LRADC_CTRL4_LRADCSELECT_MASK(0),
846 			LRADC_CTRL4);
847 	mxs_lradc_reg_set(lradc, chan, LRADC_CTRL4);
848 
849 	mxs_lradc_reg_wrt(lradc, 0, LRADC_CH(0));
850 
851 	/* Enable the IRQ and start sampling the channel. */
852 	mxs_lradc_reg_set(lradc, LRADC_CTRL1_LRADC_IRQ_EN(0), LRADC_CTRL1);
853 	mxs_lradc_reg_set(lradc, BIT(0), LRADC_CTRL0);
854 
855 	/* Wait for completion on the channel, 1 second max. */
856 	ret = wait_for_completion_killable_timeout(&lradc->completion, HZ);
857 	if (!ret)
858 		ret = -ETIMEDOUT;
859 	if (ret < 0)
860 		goto err;
861 
862 	/* Read the data. */
863 	*val = readl(lradc->base + LRADC_CH(0)) & LRADC_CH_VALUE_MASK;
864 	ret = IIO_VAL_INT;
865 
866 err:
867 	mxs_lradc_reg_clear(lradc, LRADC_CTRL1_LRADC_IRQ_EN(0), LRADC_CTRL1);
868 
869 	mutex_unlock(&lradc->lock);
870 
871 	return ret;
872 }
873 
mxs_lradc_read_temp(struct iio_dev * iio_dev,int * val)874 static int mxs_lradc_read_temp(struct iio_dev *iio_dev, int *val)
875 {
876 	int ret, min, max;
877 
878 	ret = mxs_lradc_read_single(iio_dev, 8, &min);
879 	if (ret != IIO_VAL_INT)
880 		return ret;
881 
882 	ret = mxs_lradc_read_single(iio_dev, 9, &max);
883 	if (ret != IIO_VAL_INT)
884 		return ret;
885 
886 	*val = max - min;
887 
888 	return IIO_VAL_INT;
889 }
890 
mxs_lradc_read_raw(struct iio_dev * iio_dev,const struct iio_chan_spec * chan,int * val,int * val2,long m)891 static int mxs_lradc_read_raw(struct iio_dev *iio_dev,
892 			const struct iio_chan_spec *chan,
893 			int *val, int *val2, long m)
894 {
895 	struct mxs_lradc *lradc = iio_priv(iio_dev);
896 
897 	switch (m) {
898 	case IIO_CHAN_INFO_RAW:
899 		if (chan->type == IIO_TEMP)
900 			return mxs_lradc_read_temp(iio_dev, val);
901 
902 		return mxs_lradc_read_single(iio_dev, chan->channel, val);
903 
904 	case IIO_CHAN_INFO_SCALE:
905 		if (chan->type == IIO_TEMP) {
906 			/* From the datasheet, we have to multiply by 1.012 and
907 			 * divide by 4
908 			 */
909 			*val = 0;
910 			*val2 = 253000;
911 			return IIO_VAL_INT_PLUS_MICRO;
912 		}
913 
914 		*val = lradc->vref_mv[chan->channel];
915 		*val2 = chan->scan_type.realbits -
916 			test_bit(chan->channel, &lradc->is_divided);
917 		return IIO_VAL_FRACTIONAL_LOG2;
918 
919 	case IIO_CHAN_INFO_OFFSET:
920 		if (chan->type == IIO_TEMP) {
921 			/* The calculated value from the ADC is in Kelvin, we
922 			 * want Celsius for hwmon so the offset is -273.15
923 			 * The offset is applied before scaling so it is
924 			 * actually -213.15 * 4 / 1.012 = -1079.644268
925 			 */
926 			*val = -1079;
927 			*val2 = 644268;
928 
929 			return IIO_VAL_INT_PLUS_MICRO;
930 		}
931 
932 		return -EINVAL;
933 
934 	default:
935 		break;
936 	}
937 
938 	return -EINVAL;
939 }
940 
mxs_lradc_write_raw(struct iio_dev * iio_dev,const struct iio_chan_spec * chan,int val,int val2,long m)941 static int mxs_lradc_write_raw(struct iio_dev *iio_dev,
942 			       const struct iio_chan_spec *chan,
943 			       int val, int val2, long m)
944 {
945 	struct mxs_lradc *lradc = iio_priv(iio_dev);
946 	struct mxs_lradc_scale *scale_avail =
947 			lradc->scale_avail[chan->channel];
948 	int ret;
949 
950 	ret = mutex_trylock(&lradc->lock);
951 	if (!ret)
952 		return -EBUSY;
953 
954 	switch (m) {
955 	case IIO_CHAN_INFO_SCALE:
956 		ret = -EINVAL;
957 		if (val == scale_avail[MXS_LRADC_DIV_DISABLED].integer &&
958 		    val2 == scale_avail[MXS_LRADC_DIV_DISABLED].nano) {
959 			/* divider by two disabled */
960 			clear_bit(chan->channel, &lradc->is_divided);
961 			ret = 0;
962 		} else if (val == scale_avail[MXS_LRADC_DIV_ENABLED].integer &&
963 			   val2 == scale_avail[MXS_LRADC_DIV_ENABLED].nano) {
964 			/* divider by two enabled */
965 			set_bit(chan->channel, &lradc->is_divided);
966 			ret = 0;
967 		}
968 
969 		break;
970 	default:
971 		ret = -EINVAL;
972 		break;
973 	}
974 
975 	mutex_unlock(&lradc->lock);
976 
977 	return ret;
978 }
979 
mxs_lradc_write_raw_get_fmt(struct iio_dev * iio_dev,const struct iio_chan_spec * chan,long m)980 static int mxs_lradc_write_raw_get_fmt(struct iio_dev *iio_dev,
981 				       const struct iio_chan_spec *chan,
982 				       long m)
983 {
984 	return IIO_VAL_INT_PLUS_NANO;
985 }
986 
mxs_lradc_show_scale_available_ch(struct device * dev,struct device_attribute * attr,char * buf,int ch)987 static ssize_t mxs_lradc_show_scale_available_ch(struct device *dev,
988 		struct device_attribute *attr,
989 		char *buf,
990 		int ch)
991 {
992 	struct iio_dev *iio = dev_to_iio_dev(dev);
993 	struct mxs_lradc *lradc = iio_priv(iio);
994 	int i, len = 0;
995 
996 	for (i = 0; i < ARRAY_SIZE(lradc->scale_avail[ch]); i++)
997 		len += sprintf(buf + len, "%u.%09u ",
998 			       lradc->scale_avail[ch][i].integer,
999 			       lradc->scale_avail[ch][i].nano);
1000 
1001 	len += sprintf(buf + len, "\n");
1002 
1003 	return len;
1004 }
1005 
mxs_lradc_show_scale_available(struct device * dev,struct device_attribute * attr,char * buf)1006 static ssize_t mxs_lradc_show_scale_available(struct device *dev,
1007 		struct device_attribute *attr,
1008 		char *buf)
1009 {
1010 	struct iio_dev_attr *iio_attr = to_iio_dev_attr(attr);
1011 
1012 	return mxs_lradc_show_scale_available_ch(dev, attr, buf,
1013 						 iio_attr->address);
1014 }
1015 
1016 #define SHOW_SCALE_AVAILABLE_ATTR(ch)					\
1017 static IIO_DEVICE_ATTR(in_voltage##ch##_scale_available, S_IRUGO,	\
1018 		       mxs_lradc_show_scale_available, NULL, ch)
1019 
1020 SHOW_SCALE_AVAILABLE_ATTR(0);
1021 SHOW_SCALE_AVAILABLE_ATTR(1);
1022 SHOW_SCALE_AVAILABLE_ATTR(2);
1023 SHOW_SCALE_AVAILABLE_ATTR(3);
1024 SHOW_SCALE_AVAILABLE_ATTR(4);
1025 SHOW_SCALE_AVAILABLE_ATTR(5);
1026 SHOW_SCALE_AVAILABLE_ATTR(6);
1027 SHOW_SCALE_AVAILABLE_ATTR(7);
1028 SHOW_SCALE_AVAILABLE_ATTR(10);
1029 SHOW_SCALE_AVAILABLE_ATTR(11);
1030 SHOW_SCALE_AVAILABLE_ATTR(12);
1031 SHOW_SCALE_AVAILABLE_ATTR(13);
1032 SHOW_SCALE_AVAILABLE_ATTR(14);
1033 SHOW_SCALE_AVAILABLE_ATTR(15);
1034 
1035 static struct attribute *mxs_lradc_attributes[] = {
1036 	&iio_dev_attr_in_voltage0_scale_available.dev_attr.attr,
1037 	&iio_dev_attr_in_voltage1_scale_available.dev_attr.attr,
1038 	&iio_dev_attr_in_voltage2_scale_available.dev_attr.attr,
1039 	&iio_dev_attr_in_voltage3_scale_available.dev_attr.attr,
1040 	&iio_dev_attr_in_voltage4_scale_available.dev_attr.attr,
1041 	&iio_dev_attr_in_voltage5_scale_available.dev_attr.attr,
1042 	&iio_dev_attr_in_voltage6_scale_available.dev_attr.attr,
1043 	&iio_dev_attr_in_voltage7_scale_available.dev_attr.attr,
1044 	&iio_dev_attr_in_voltage10_scale_available.dev_attr.attr,
1045 	&iio_dev_attr_in_voltage11_scale_available.dev_attr.attr,
1046 	&iio_dev_attr_in_voltage12_scale_available.dev_attr.attr,
1047 	&iio_dev_attr_in_voltage13_scale_available.dev_attr.attr,
1048 	&iio_dev_attr_in_voltage14_scale_available.dev_attr.attr,
1049 	&iio_dev_attr_in_voltage15_scale_available.dev_attr.attr,
1050 	NULL
1051 };
1052 
1053 static const struct attribute_group mxs_lradc_attribute_group = {
1054 	.attrs = mxs_lradc_attributes,
1055 };
1056 
1057 static const struct iio_info mxs_lradc_iio_info = {
1058 	.driver_module		= THIS_MODULE,
1059 	.read_raw		= mxs_lradc_read_raw,
1060 	.write_raw		= mxs_lradc_write_raw,
1061 	.write_raw_get_fmt	= mxs_lradc_write_raw_get_fmt,
1062 	.attrs			= &mxs_lradc_attribute_group,
1063 };
1064 
mxs_lradc_ts_open(struct input_dev * dev)1065 static int mxs_lradc_ts_open(struct input_dev *dev)
1066 {
1067 	struct mxs_lradc *lradc = input_get_drvdata(dev);
1068 
1069 	/* Enable the touch-detect circuitry. */
1070 	mxs_lradc_enable_touch_detection(lradc);
1071 
1072 	return 0;
1073 }
1074 
mxs_lradc_disable_ts(struct mxs_lradc * lradc)1075 static void mxs_lradc_disable_ts(struct mxs_lradc *lradc)
1076 {
1077 	/* stop all interrupts from firing */
1078 	mxs_lradc_reg_clear(lradc, LRADC_CTRL1_TOUCH_DETECT_IRQ_EN |
1079 		LRADC_CTRL1_LRADC_IRQ_EN(TOUCHSCREEN_VCHANNEL1) |
1080 		LRADC_CTRL1_LRADC_IRQ_EN(TOUCHSCREEN_VCHANNEL2), LRADC_CTRL1);
1081 
1082 	/* Power-down touchscreen touch-detect circuitry. */
1083 	mxs_lradc_reg_clear(lradc, mxs_lradc_plate_mask(lradc), LRADC_CTRL0);
1084 }
1085 
mxs_lradc_ts_close(struct input_dev * dev)1086 static void mxs_lradc_ts_close(struct input_dev *dev)
1087 {
1088 	struct mxs_lradc *lradc = input_get_drvdata(dev);
1089 
1090 	mxs_lradc_disable_ts(lradc);
1091 }
1092 
mxs_lradc_ts_register(struct mxs_lradc * lradc)1093 static int mxs_lradc_ts_register(struct mxs_lradc *lradc)
1094 {
1095 	struct input_dev *input;
1096 	struct device *dev = lradc->dev;
1097 	int ret;
1098 
1099 	if (!lradc->use_touchscreen)
1100 		return 0;
1101 
1102 	input = input_allocate_device();
1103 	if (!input)
1104 		return -ENOMEM;
1105 
1106 	input->name = DRIVER_NAME;
1107 	input->id.bustype = BUS_HOST;
1108 	input->dev.parent = dev;
1109 	input->open = mxs_lradc_ts_open;
1110 	input->close = mxs_lradc_ts_close;
1111 
1112 	__set_bit(EV_ABS, input->evbit);
1113 	__set_bit(EV_KEY, input->evbit);
1114 	__set_bit(BTN_TOUCH, input->keybit);
1115 	input_set_abs_params(input, ABS_X, 0, LRADC_SINGLE_SAMPLE_MASK, 0, 0);
1116 	input_set_abs_params(input, ABS_Y, 0, LRADC_SINGLE_SAMPLE_MASK, 0, 0);
1117 	input_set_abs_params(input, ABS_PRESSURE, 0, LRADC_SINGLE_SAMPLE_MASK,
1118 			     0, 0);
1119 
1120 	lradc->ts_input = input;
1121 	input_set_drvdata(input, lradc);
1122 	ret = input_register_device(input);
1123 	if (ret)
1124 		input_free_device(lradc->ts_input);
1125 
1126 	return ret;
1127 }
1128 
mxs_lradc_ts_unregister(struct mxs_lradc * lradc)1129 static void mxs_lradc_ts_unregister(struct mxs_lradc *lradc)
1130 {
1131 	if (!lradc->use_touchscreen)
1132 		return;
1133 
1134 	mxs_lradc_disable_ts(lradc);
1135 	input_unregister_device(lradc->ts_input);
1136 }
1137 
1138 /*
1139  * IRQ Handling
1140  */
mxs_lradc_handle_irq(int irq,void * data)1141 static irqreturn_t mxs_lradc_handle_irq(int irq, void *data)
1142 {
1143 	struct iio_dev *iio = data;
1144 	struct mxs_lradc *lradc = iio_priv(iio);
1145 	unsigned long reg = readl(lradc->base + LRADC_CTRL1);
1146 	uint32_t clr_irq = mxs_lradc_irq_mask(lradc);
1147 	const uint32_t ts_irq_mask =
1148 		LRADC_CTRL1_TOUCH_DETECT_IRQ |
1149 		LRADC_CTRL1_LRADC_IRQ(TOUCHSCREEN_VCHANNEL1) |
1150 		LRADC_CTRL1_LRADC_IRQ(TOUCHSCREEN_VCHANNEL2);
1151 
1152 	if (!(reg & mxs_lradc_irq_mask(lradc)))
1153 		return IRQ_NONE;
1154 
1155 	if (lradc->use_touchscreen && (reg & ts_irq_mask)) {
1156 		mxs_lradc_handle_touch(lradc);
1157 
1158 		/* Make sure we don't clear the next conversion's interrupt. */
1159 		clr_irq &= ~(LRADC_CTRL1_LRADC_IRQ(TOUCHSCREEN_VCHANNEL1) |
1160 				LRADC_CTRL1_LRADC_IRQ(TOUCHSCREEN_VCHANNEL2));
1161 	}
1162 
1163 	if (iio_buffer_enabled(iio)) {
1164 		if (reg & lradc->buffer_vchans)
1165 			iio_trigger_poll(iio->trig);
1166 	} else if (reg & LRADC_CTRL1_LRADC_IRQ(0)) {
1167 		complete(&lradc->completion);
1168 	}
1169 
1170 	mxs_lradc_reg_clear(lradc, reg & clr_irq, LRADC_CTRL1);
1171 
1172 	return IRQ_HANDLED;
1173 }
1174 
1175 /*
1176  * Trigger handling
1177  */
mxs_lradc_trigger_handler(int irq,void * p)1178 static irqreturn_t mxs_lradc_trigger_handler(int irq, void *p)
1179 {
1180 	struct iio_poll_func *pf = p;
1181 	struct iio_dev *iio = pf->indio_dev;
1182 	struct mxs_lradc *lradc = iio_priv(iio);
1183 	const uint32_t chan_value = LRADC_CH_ACCUMULATE |
1184 		((LRADC_DELAY_TIMER_LOOP - 1) << LRADC_CH_NUM_SAMPLES_OFFSET);
1185 	unsigned int i, j = 0;
1186 
1187 	for_each_set_bit(i, iio->active_scan_mask, LRADC_MAX_TOTAL_CHANS) {
1188 		lradc->buffer[j] = readl(lradc->base + LRADC_CH(j));
1189 		mxs_lradc_reg_wrt(lradc, chan_value, LRADC_CH(j));
1190 		lradc->buffer[j] &= LRADC_CH_VALUE_MASK;
1191 		lradc->buffer[j] /= LRADC_DELAY_TIMER_LOOP;
1192 		j++;
1193 	}
1194 
1195 	iio_push_to_buffers_with_timestamp(iio, lradc->buffer, pf->timestamp);
1196 
1197 	iio_trigger_notify_done(iio->trig);
1198 
1199 	return IRQ_HANDLED;
1200 }
1201 
mxs_lradc_configure_trigger(struct iio_trigger * trig,bool state)1202 static int mxs_lradc_configure_trigger(struct iio_trigger *trig, bool state)
1203 {
1204 	struct iio_dev *iio = iio_trigger_get_drvdata(trig);
1205 	struct mxs_lradc *lradc = iio_priv(iio);
1206 	const uint32_t st = state ? STMP_OFFSET_REG_SET : STMP_OFFSET_REG_CLR;
1207 
1208 	mxs_lradc_reg_wrt(lradc, LRADC_DELAY_KICK, LRADC_DELAY(0) + st);
1209 
1210 	return 0;
1211 }
1212 
1213 static const struct iio_trigger_ops mxs_lradc_trigger_ops = {
1214 	.owner = THIS_MODULE,
1215 	.set_trigger_state = &mxs_lradc_configure_trigger,
1216 };
1217 
mxs_lradc_trigger_init(struct iio_dev * iio)1218 static int mxs_lradc_trigger_init(struct iio_dev *iio)
1219 {
1220 	int ret;
1221 	struct iio_trigger *trig;
1222 	struct mxs_lradc *lradc = iio_priv(iio);
1223 
1224 	trig = iio_trigger_alloc("%s-dev%i", iio->name, iio->id);
1225 	if (trig == NULL)
1226 		return -ENOMEM;
1227 
1228 	trig->dev.parent = lradc->dev;
1229 	iio_trigger_set_drvdata(trig, iio);
1230 	trig->ops = &mxs_lradc_trigger_ops;
1231 
1232 	ret = iio_trigger_register(trig);
1233 	if (ret) {
1234 		iio_trigger_free(trig);
1235 		return ret;
1236 	}
1237 
1238 	lradc->trig = trig;
1239 
1240 	return 0;
1241 }
1242 
mxs_lradc_trigger_remove(struct iio_dev * iio)1243 static void mxs_lradc_trigger_remove(struct iio_dev *iio)
1244 {
1245 	struct mxs_lradc *lradc = iio_priv(iio);
1246 
1247 	iio_trigger_unregister(lradc->trig);
1248 	iio_trigger_free(lradc->trig);
1249 }
1250 
mxs_lradc_buffer_preenable(struct iio_dev * iio)1251 static int mxs_lradc_buffer_preenable(struct iio_dev *iio)
1252 {
1253 	struct mxs_lradc *lradc = iio_priv(iio);
1254 	int ret = 0, chan, ofs = 0;
1255 	unsigned long enable = 0;
1256 	uint32_t ctrl4_set = 0;
1257 	uint32_t ctrl4_clr = 0;
1258 	uint32_t ctrl1_irq = 0;
1259 	const uint32_t chan_value = LRADC_CH_ACCUMULATE |
1260 		((LRADC_DELAY_TIMER_LOOP - 1) << LRADC_CH_NUM_SAMPLES_OFFSET);
1261 	const int len = bitmap_weight(iio->active_scan_mask,
1262 			LRADC_MAX_TOTAL_CHANS);
1263 
1264 	if (!len)
1265 		return -EINVAL;
1266 
1267 	/*
1268 	 * Lock the driver so raw access can not be done during buffered
1269 	 * operation. This simplifies the code a lot.
1270 	 */
1271 	ret = mutex_trylock(&lradc->lock);
1272 	if (!ret)
1273 		return -EBUSY;
1274 
1275 	lradc->buffer = kmalloc_array(len, sizeof(*lradc->buffer), GFP_KERNEL);
1276 	if (!lradc->buffer) {
1277 		ret = -ENOMEM;
1278 		goto err_mem;
1279 	}
1280 
1281 	if (lradc->soc == IMX28_LRADC)
1282 		mxs_lradc_reg_clear(lradc,
1283 			lradc->buffer_vchans << LRADC_CTRL1_LRADC_IRQ_EN_OFFSET,
1284 			LRADC_CTRL1);
1285 	mxs_lradc_reg_clear(lradc, lradc->buffer_vchans, LRADC_CTRL0);
1286 
1287 	for_each_set_bit(chan, iio->active_scan_mask, LRADC_MAX_TOTAL_CHANS) {
1288 		ctrl4_set |= chan << LRADC_CTRL4_LRADCSELECT_OFFSET(ofs);
1289 		ctrl4_clr |= LRADC_CTRL4_LRADCSELECT_MASK(ofs);
1290 		ctrl1_irq |= LRADC_CTRL1_LRADC_IRQ_EN(ofs);
1291 		mxs_lradc_reg_wrt(lradc, chan_value, LRADC_CH(ofs));
1292 		bitmap_set(&enable, ofs, 1);
1293 		ofs++;
1294 	}
1295 
1296 	mxs_lradc_reg_clear(lradc, LRADC_DELAY_TRIGGER_LRADCS_MASK |
1297 					LRADC_DELAY_KICK, LRADC_DELAY(0));
1298 	mxs_lradc_reg_clear(lradc, ctrl4_clr, LRADC_CTRL4);
1299 	mxs_lradc_reg_set(lradc, ctrl4_set, LRADC_CTRL4);
1300 	mxs_lradc_reg_set(lradc, ctrl1_irq, LRADC_CTRL1);
1301 	mxs_lradc_reg_set(lradc, enable << LRADC_DELAY_TRIGGER_LRADCS_OFFSET,
1302 					LRADC_DELAY(0));
1303 
1304 	return 0;
1305 
1306 err_mem:
1307 	mutex_unlock(&lradc->lock);
1308 	return ret;
1309 }
1310 
mxs_lradc_buffer_postdisable(struct iio_dev * iio)1311 static int mxs_lradc_buffer_postdisable(struct iio_dev *iio)
1312 {
1313 	struct mxs_lradc *lradc = iio_priv(iio);
1314 
1315 	mxs_lradc_reg_clear(lradc, LRADC_DELAY_TRIGGER_LRADCS_MASK |
1316 					LRADC_DELAY_KICK, LRADC_DELAY(0));
1317 
1318 	mxs_lradc_reg_clear(lradc, lradc->buffer_vchans, LRADC_CTRL0);
1319 	if (lradc->soc == IMX28_LRADC)
1320 		mxs_lradc_reg_clear(lradc,
1321 			lradc->buffer_vchans << LRADC_CTRL1_LRADC_IRQ_EN_OFFSET,
1322 			LRADC_CTRL1);
1323 
1324 	kfree(lradc->buffer);
1325 	mutex_unlock(&lradc->lock);
1326 
1327 	return 0;
1328 }
1329 
mxs_lradc_validate_scan_mask(struct iio_dev * iio,const unsigned long * mask)1330 static bool mxs_lradc_validate_scan_mask(struct iio_dev *iio,
1331 					const unsigned long *mask)
1332 {
1333 	struct mxs_lradc *lradc = iio_priv(iio);
1334 	const int map_chans = bitmap_weight(mask, LRADC_MAX_TOTAL_CHANS);
1335 	int rsvd_chans = 0;
1336 	unsigned long rsvd_mask = 0;
1337 
1338 	if (lradc->use_touchbutton)
1339 		rsvd_mask |= CHAN_MASK_TOUCHBUTTON;
1340 	if (lradc->use_touchscreen == MXS_LRADC_TOUCHSCREEN_4WIRE)
1341 		rsvd_mask |= CHAN_MASK_TOUCHSCREEN_4WIRE;
1342 	if (lradc->use_touchscreen == MXS_LRADC_TOUCHSCREEN_5WIRE)
1343 		rsvd_mask |= CHAN_MASK_TOUCHSCREEN_5WIRE;
1344 
1345 	if (lradc->use_touchbutton)
1346 		rsvd_chans++;
1347 	if (lradc->use_touchscreen)
1348 		rsvd_chans += 2;
1349 
1350 	/* Test for attempts to map channels with special mode of operation. */
1351 	if (bitmap_intersects(mask, &rsvd_mask, LRADC_MAX_TOTAL_CHANS))
1352 		return false;
1353 
1354 	/* Test for attempts to map more channels then available slots. */
1355 	if (map_chans + rsvd_chans > LRADC_MAX_MAPPED_CHANS)
1356 		return false;
1357 
1358 	return true;
1359 }
1360 
1361 static const struct iio_buffer_setup_ops mxs_lradc_buffer_ops = {
1362 	.preenable = &mxs_lradc_buffer_preenable,
1363 	.postenable = &iio_triggered_buffer_postenable,
1364 	.predisable = &iio_triggered_buffer_predisable,
1365 	.postdisable = &mxs_lradc_buffer_postdisable,
1366 	.validate_scan_mask = &mxs_lradc_validate_scan_mask,
1367 };
1368 
1369 /*
1370  * Driver initialization
1371  */
1372 
1373 #define MXS_ADC_CHAN(idx, chan_type) {				\
1374 	.type = (chan_type),					\
1375 	.indexed = 1,						\
1376 	.scan_index = (idx),					\
1377 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
1378 			      BIT(IIO_CHAN_INFO_SCALE),		\
1379 	.channel = (idx),					\
1380 	.address = (idx),					\
1381 	.scan_type = {						\
1382 		.sign = 'u',					\
1383 		.realbits = LRADC_RESOLUTION,			\
1384 		.storagebits = 32,				\
1385 	},							\
1386 }
1387 
1388 static const struct iio_chan_spec mxs_lradc_chan_spec[] = {
1389 	MXS_ADC_CHAN(0, IIO_VOLTAGE),
1390 	MXS_ADC_CHAN(1, IIO_VOLTAGE),
1391 	MXS_ADC_CHAN(2, IIO_VOLTAGE),
1392 	MXS_ADC_CHAN(3, IIO_VOLTAGE),
1393 	MXS_ADC_CHAN(4, IIO_VOLTAGE),
1394 	MXS_ADC_CHAN(5, IIO_VOLTAGE),
1395 	MXS_ADC_CHAN(6, IIO_VOLTAGE),
1396 	MXS_ADC_CHAN(7, IIO_VOLTAGE),	/* VBATT */
1397 	/* Combined Temperature sensors */
1398 	{
1399 		.type = IIO_TEMP,
1400 		.indexed = 1,
1401 		.scan_index = 8,
1402 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
1403 				      BIT(IIO_CHAN_INFO_OFFSET) |
1404 				      BIT(IIO_CHAN_INFO_SCALE),
1405 		.channel = 8,
1406 		.scan_type = {.sign = 'u', .realbits = 18, .storagebits = 32,},
1407 	},
1408 	/* Hidden channel to keep indexes */
1409 	{
1410 		.type = IIO_TEMP,
1411 		.indexed = 1,
1412 		.scan_index = -1,
1413 		.channel = 9,
1414 	},
1415 	MXS_ADC_CHAN(10, IIO_VOLTAGE),	/* VDDIO */
1416 	MXS_ADC_CHAN(11, IIO_VOLTAGE),	/* VTH */
1417 	MXS_ADC_CHAN(12, IIO_VOLTAGE),	/* VDDA */
1418 	MXS_ADC_CHAN(13, IIO_VOLTAGE),	/* VDDD */
1419 	MXS_ADC_CHAN(14, IIO_VOLTAGE),	/* VBG */
1420 	MXS_ADC_CHAN(15, IIO_VOLTAGE),	/* VDD5V */
1421 };
1422 
mxs_lradc_hw_init(struct mxs_lradc * lradc)1423 static int mxs_lradc_hw_init(struct mxs_lradc *lradc)
1424 {
1425 	/* The ADC always uses DELAY CHANNEL 0. */
1426 	const uint32_t adc_cfg =
1427 		(1 << (LRADC_DELAY_TRIGGER_DELAYS_OFFSET + 0)) |
1428 		(LRADC_DELAY_TIMER_PER << LRADC_DELAY_DELAY_OFFSET);
1429 
1430 	int ret = stmp_reset_block(lradc->base);
1431 
1432 	if (ret)
1433 		return ret;
1434 
1435 	/* Configure DELAY CHANNEL 0 for generic ADC sampling. */
1436 	mxs_lradc_reg_wrt(lradc, adc_cfg, LRADC_DELAY(0));
1437 
1438 	/* Disable remaining DELAY CHANNELs */
1439 	mxs_lradc_reg_wrt(lradc, 0, LRADC_DELAY(1));
1440 	mxs_lradc_reg_wrt(lradc, 0, LRADC_DELAY(2));
1441 	mxs_lradc_reg_wrt(lradc, 0, LRADC_DELAY(3));
1442 
1443 	/* Configure the touchscreen type */
1444 	if (lradc->soc == IMX28_LRADC) {
1445 		mxs_lradc_reg_clear(lradc, LRADC_CTRL0_MX28_TOUCH_SCREEN_TYPE,
1446 							LRADC_CTRL0);
1447 
1448 	if (lradc->use_touchscreen == MXS_LRADC_TOUCHSCREEN_5WIRE)
1449 		mxs_lradc_reg_set(lradc, LRADC_CTRL0_MX28_TOUCH_SCREEN_TYPE,
1450 				LRADC_CTRL0);
1451 	}
1452 
1453 	/* Start internal temperature sensing. */
1454 	mxs_lradc_reg_wrt(lradc, 0, LRADC_CTRL2);
1455 
1456 	return 0;
1457 }
1458 
mxs_lradc_hw_stop(struct mxs_lradc * lradc)1459 static void mxs_lradc_hw_stop(struct mxs_lradc *lradc)
1460 {
1461 	int i;
1462 
1463 	mxs_lradc_reg_clear(lradc, mxs_lradc_irq_en_mask(lradc), LRADC_CTRL1);
1464 
1465 	for (i = 0; i < LRADC_MAX_DELAY_CHANS; i++)
1466 		mxs_lradc_reg_wrt(lradc, 0, LRADC_DELAY(i));
1467 }
1468 
1469 static const struct of_device_id mxs_lradc_dt_ids[] = {
1470 	{ .compatible = "fsl,imx23-lradc", .data = (void *)IMX23_LRADC, },
1471 	{ .compatible = "fsl,imx28-lradc", .data = (void *)IMX28_LRADC, },
1472 	{ /* sentinel */ }
1473 };
1474 MODULE_DEVICE_TABLE(of, mxs_lradc_dt_ids);
1475 
mxs_lradc_probe_touchscreen(struct mxs_lradc * lradc,struct device_node * lradc_node)1476 static int mxs_lradc_probe_touchscreen(struct mxs_lradc *lradc,
1477 						struct device_node *lradc_node)
1478 {
1479 	int ret;
1480 	u32 ts_wires = 0, adapt;
1481 
1482 	ret = of_property_read_u32(lradc_node, "fsl,lradc-touchscreen-wires",
1483 				&ts_wires);
1484 	if (ret)
1485 		return -ENODEV; /* touchscreen feature disabled */
1486 
1487 	switch (ts_wires) {
1488 	case 4:
1489 		lradc->use_touchscreen = MXS_LRADC_TOUCHSCREEN_4WIRE;
1490 		break;
1491 	case 5:
1492 		if (lradc->soc == IMX28_LRADC) {
1493 			lradc->use_touchscreen = MXS_LRADC_TOUCHSCREEN_5WIRE;
1494 			break;
1495 		}
1496 		/* fall through an error message for i.MX23 */
1497 	default:
1498 		dev_err(lradc->dev,
1499 			"Unsupported number of touchscreen wires (%d)\n",
1500 			ts_wires);
1501 		return -EINVAL;
1502 	}
1503 
1504 	if (of_property_read_u32(lradc_node, "fsl,ave-ctrl", &adapt)) {
1505 		lradc->over_sample_cnt = 4;
1506 	} else {
1507 		if (adapt < 1 || adapt > 32) {
1508 			dev_err(lradc->dev, "Invalid sample count (%u)\n",
1509 				adapt);
1510 			return -EINVAL;
1511 		}
1512 		lradc->over_sample_cnt = adapt;
1513 	}
1514 
1515 	if (of_property_read_u32(lradc_node, "fsl,ave-delay", &adapt)) {
1516 		lradc->over_sample_delay = 2;
1517 	} else {
1518 		if (adapt < 2 || adapt > LRADC_DELAY_DELAY_MASK + 1) {
1519 			dev_err(lradc->dev, "Invalid sample delay (%u)\n",
1520 				adapt);
1521 			return -EINVAL;
1522 		}
1523 		lradc->over_sample_delay = adapt;
1524 	}
1525 
1526 	if (of_property_read_u32(lradc_node, "fsl,settling", &adapt)) {
1527 		lradc->settling_delay = 10;
1528 	} else {
1529 		if (adapt < 1 || adapt > LRADC_DELAY_DELAY_MASK) {
1530 			dev_err(lradc->dev, "Invalid settling delay (%u)\n",
1531 				adapt);
1532 			return -EINVAL;
1533 		}
1534 		lradc->settling_delay = adapt;
1535 	}
1536 
1537 	return 0;
1538 }
1539 
mxs_lradc_probe(struct platform_device * pdev)1540 static int mxs_lradc_probe(struct platform_device *pdev)
1541 {
1542 	const struct of_device_id *of_id =
1543 		of_match_device(mxs_lradc_dt_ids, &pdev->dev);
1544 	const struct mxs_lradc_of_config *of_cfg =
1545 		&mxs_lradc_of_config[(enum mxs_lradc_id)of_id->data];
1546 	struct device *dev = &pdev->dev;
1547 	struct device_node *node = dev->of_node;
1548 	struct mxs_lradc *lradc;
1549 	struct iio_dev *iio;
1550 	struct resource *iores;
1551 	int ret = 0, touch_ret;
1552 	int i, s;
1553 	uint64_t scale_uv;
1554 
1555 	/* Allocate the IIO device. */
1556 	iio = devm_iio_device_alloc(dev, sizeof(*lradc));
1557 	if (!iio) {
1558 		dev_err(dev, "Failed to allocate IIO device\n");
1559 		return -ENOMEM;
1560 	}
1561 
1562 	lradc = iio_priv(iio);
1563 	lradc->soc = (enum mxs_lradc_id)of_id->data;
1564 
1565 	/* Grab the memory area */
1566 	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1567 	lradc->dev = &pdev->dev;
1568 	lradc->base = devm_ioremap_resource(dev, iores);
1569 	if (IS_ERR(lradc->base))
1570 		return PTR_ERR(lradc->base);
1571 
1572 	lradc->clk = devm_clk_get(&pdev->dev, NULL);
1573 	if (IS_ERR(lradc->clk)) {
1574 		dev_err(dev, "Failed to get the delay unit clock\n");
1575 		return PTR_ERR(lradc->clk);
1576 	}
1577 	ret = clk_prepare_enable(lradc->clk);
1578 	if (ret != 0) {
1579 		dev_err(dev, "Failed to enable the delay unit clock\n");
1580 		return ret;
1581 	}
1582 
1583 	touch_ret = mxs_lradc_probe_touchscreen(lradc, node);
1584 
1585 	if (touch_ret == 0)
1586 		lradc->buffer_vchans = BUFFER_VCHANS_LIMITED;
1587 	else
1588 		lradc->buffer_vchans = BUFFER_VCHANS_ALL;
1589 
1590 	/* Grab all IRQ sources */
1591 	for (i = 0; i < of_cfg->irq_count; i++) {
1592 		lradc->irq[i] = platform_get_irq(pdev, i);
1593 		if (lradc->irq[i] < 0) {
1594 			ret = lradc->irq[i];
1595 			goto err_clk;
1596 		}
1597 
1598 		ret = devm_request_irq(dev, lradc->irq[i],
1599 					mxs_lradc_handle_irq, 0,
1600 					of_cfg->irq_name[i], iio);
1601 		if (ret)
1602 			goto err_clk;
1603 	}
1604 
1605 	lradc->vref_mv = of_cfg->vref_mv;
1606 
1607 	platform_set_drvdata(pdev, iio);
1608 
1609 	init_completion(&lradc->completion);
1610 	mutex_init(&lradc->lock);
1611 
1612 	iio->name = pdev->name;
1613 	iio->dev.parent = &pdev->dev;
1614 	iio->info = &mxs_lradc_iio_info;
1615 	iio->modes = INDIO_DIRECT_MODE;
1616 	iio->channels = mxs_lradc_chan_spec;
1617 	iio->num_channels = ARRAY_SIZE(mxs_lradc_chan_spec);
1618 	iio->masklength = LRADC_MAX_TOTAL_CHANS;
1619 
1620 	ret = iio_triggered_buffer_setup(iio, &iio_pollfunc_store_time,
1621 				&mxs_lradc_trigger_handler,
1622 				&mxs_lradc_buffer_ops);
1623 	if (ret)
1624 		goto err_clk;
1625 
1626 	ret = mxs_lradc_trigger_init(iio);
1627 	if (ret)
1628 		goto err_trig;
1629 
1630 	/* Populate available ADC input ranges */
1631 	for (i = 0; i < LRADC_MAX_TOTAL_CHANS; i++) {
1632 		for (s = 0; s < ARRAY_SIZE(lradc->scale_avail[i]); s++) {
1633 			/*
1634 			 * [s=0] = optional divider by two disabled (default)
1635 			 * [s=1] = optional divider by two enabled
1636 			 *
1637 			 * The scale is calculated by doing:
1638 			 *   Vref >> (realbits - s)
1639 			 * which multiplies by two on the second component
1640 			 * of the array.
1641 			 */
1642 			scale_uv = ((u64)lradc->vref_mv[i] * 100000000) >>
1643 				   (LRADC_RESOLUTION - s);
1644 			lradc->scale_avail[i][s].nano =
1645 					do_div(scale_uv, 100000000) * 10;
1646 			lradc->scale_avail[i][s].integer = scale_uv;
1647 		}
1648 	}
1649 
1650 	/* Configure the hardware. */
1651 	ret = mxs_lradc_hw_init(lradc);
1652 	if (ret)
1653 		goto err_dev;
1654 
1655 	/* Register the touchscreen input device. */
1656 	if (touch_ret == 0) {
1657 		ret = mxs_lradc_ts_register(lradc);
1658 		if (ret)
1659 			goto err_ts_register;
1660 	}
1661 
1662 	/* Register IIO device. */
1663 	ret = iio_device_register(iio);
1664 	if (ret) {
1665 		dev_err(dev, "Failed to register IIO device\n");
1666 		goto err_ts;
1667 	}
1668 
1669 	return 0;
1670 
1671 err_ts:
1672 	mxs_lradc_ts_unregister(lradc);
1673 err_ts_register:
1674 	mxs_lradc_hw_stop(lradc);
1675 err_dev:
1676 	mxs_lradc_trigger_remove(iio);
1677 err_trig:
1678 	iio_triggered_buffer_cleanup(iio);
1679 err_clk:
1680 	clk_disable_unprepare(lradc->clk);
1681 	return ret;
1682 }
1683 
mxs_lradc_remove(struct platform_device * pdev)1684 static int mxs_lradc_remove(struct platform_device *pdev)
1685 {
1686 	struct iio_dev *iio = platform_get_drvdata(pdev);
1687 	struct mxs_lradc *lradc = iio_priv(iio);
1688 
1689 	iio_device_unregister(iio);
1690 	mxs_lradc_ts_unregister(lradc);
1691 	mxs_lradc_hw_stop(lradc);
1692 	mxs_lradc_trigger_remove(iio);
1693 	iio_triggered_buffer_cleanup(iio);
1694 
1695 	clk_disable_unprepare(lradc->clk);
1696 	return 0;
1697 }
1698 
1699 static struct platform_driver mxs_lradc_driver = {
1700 	.driver	= {
1701 		.name	= DRIVER_NAME,
1702 		.of_match_table = mxs_lradc_dt_ids,
1703 	},
1704 	.probe	= mxs_lradc_probe,
1705 	.remove	= mxs_lradc_remove,
1706 };
1707 
1708 module_platform_driver(mxs_lradc_driver);
1709 
1710 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
1711 MODULE_DESCRIPTION("Freescale i.MX28 LRADC driver");
1712 MODULE_LICENSE("GPL v2");
1713 MODULE_ALIAS("platform:" DRIVER_NAME);
1714