1/*
2 * Simple synchronous userspace interface to SPI devices
3 *
4 * Copyright (C) 2006 SWAPP
5 *	Andrea Paterniani <a.paterniani@swapp-eng.it>
6 * Copyright (C) 2007 David Brownell (simplification, cleanup)
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 * GNU General Public License for more details.
17 */
18
19#include <linux/init.h>
20#include <linux/module.h>
21#include <linux/ioctl.h>
22#include <linux/fs.h>
23#include <linux/device.h>
24#include <linux/err.h>
25#include <linux/list.h>
26#include <linux/errno.h>
27#include <linux/mutex.h>
28#include <linux/slab.h>
29#include <linux/compat.h>
30#include <linux/of.h>
31#include <linux/of_device.h>
32
33#include <linux/spi/spi.h>
34#include <linux/spi/spidev.h>
35
36#include <linux/uaccess.h>
37
38
39/*
40 * This supports access to SPI devices using normal userspace I/O calls.
41 * Note that while traditional UNIX/POSIX I/O semantics are half duplex,
42 * and often mask message boundaries, full SPI support requires full duplex
43 * transfers.  There are several kinds of internal message boundaries to
44 * handle chipselect management and other protocol options.
45 *
46 * SPI has a character major number assigned.  We allocate minor numbers
47 * dynamically using a bitmask.  You must use hotplug tools, such as udev
48 * (or mdev with busybox) to create and destroy the /dev/spidevB.C device
49 * nodes, since there is no fixed association of minor numbers with any
50 * particular SPI bus or device.
51 */
52#define SPIDEV_MAJOR			153	/* assigned */
53#define N_SPI_MINORS			32	/* ... up to 256 */
54
55static DECLARE_BITMAP(minors, N_SPI_MINORS);
56
57
58/* Bit masks for spi_device.mode management.  Note that incorrect
59 * settings for some settings can cause *lots* of trouble for other
60 * devices on a shared bus:
61 *
62 *  - CS_HIGH ... this device will be active when it shouldn't be
63 *  - 3WIRE ... when active, it won't behave as it should
64 *  - NO_CS ... there will be no explicit message boundaries; this
65 *	is completely incompatible with the shared bus model
66 *  - READY ... transfers may proceed when they shouldn't.
67 *
68 * REVISIT should changing those flags be privileged?
69 */
70#define SPI_MODE_MASK		(SPI_CPHA | SPI_CPOL | SPI_CS_HIGH \
71				| SPI_LSB_FIRST | SPI_3WIRE | SPI_LOOP \
72				| SPI_NO_CS | SPI_READY | SPI_TX_DUAL \
73				| SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)
74
75struct spidev_data {
76	dev_t			devt;
77	spinlock_t		spi_lock;
78	struct spi_device	*spi;
79	struct list_head	device_entry;
80
81	/* TX/RX buffers are NULL unless this device is open (users > 0) */
82	struct mutex		buf_lock;
83	unsigned		users;
84	u8			*tx_buffer;
85	u8			*rx_buffer;
86	u32			speed_hz;
87};
88
89static LIST_HEAD(device_list);
90static DEFINE_MUTEX(device_list_lock);
91
92static unsigned bufsiz = 4096;
93module_param(bufsiz, uint, S_IRUGO);
94MODULE_PARM_DESC(bufsiz, "data bytes in biggest supported SPI message");
95
96/*-------------------------------------------------------------------------*/
97
98/*
99 * We can't use the standard synchronous wrappers for file I/O; we
100 * need to protect against async removal of the underlying spi_device.
101 */
102static void spidev_complete(void *arg)
103{
104	complete(arg);
105}
106
107static ssize_t
108spidev_sync(struct spidev_data *spidev, struct spi_message *message)
109{
110	DECLARE_COMPLETION_ONSTACK(done);
111	int status;
112
113	message->complete = spidev_complete;
114	message->context = &done;
115
116	spin_lock_irq(&spidev->spi_lock);
117	if (spidev->spi == NULL)
118		status = -ESHUTDOWN;
119	else
120		status = spi_async(spidev->spi, message);
121	spin_unlock_irq(&spidev->spi_lock);
122
123	if (status == 0) {
124		wait_for_completion(&done);
125		status = message->status;
126		if (status == 0)
127			status = message->actual_length;
128	}
129	return status;
130}
131
132static inline ssize_t
133spidev_sync_write(struct spidev_data *spidev, size_t len)
134{
135	struct spi_transfer	t = {
136			.tx_buf		= spidev->tx_buffer,
137			.len		= len,
138			.speed_hz	= spidev->speed_hz,
139		};
140	struct spi_message	m;
141
142	spi_message_init(&m);
143	spi_message_add_tail(&t, &m);
144	return spidev_sync(spidev, &m);
145}
146
147static inline ssize_t
148spidev_sync_read(struct spidev_data *spidev, size_t len)
149{
150	struct spi_transfer	t = {
151			.rx_buf		= spidev->rx_buffer,
152			.len		= len,
153			.speed_hz	= spidev->speed_hz,
154		};
155	struct spi_message	m;
156
157	spi_message_init(&m);
158	spi_message_add_tail(&t, &m);
159	return spidev_sync(spidev, &m);
160}
161
162/*-------------------------------------------------------------------------*/
163
164/* Read-only message with current device setup */
165static ssize_t
166spidev_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
167{
168	struct spidev_data	*spidev;
169	ssize_t			status = 0;
170
171	/* chipselect only toggles at start or end of operation */
172	if (count > bufsiz)
173		return -EMSGSIZE;
174
175	spidev = filp->private_data;
176
177	mutex_lock(&spidev->buf_lock);
178	status = spidev_sync_read(spidev, count);
179	if (status > 0) {
180		unsigned long	missing;
181
182		missing = copy_to_user(buf, spidev->rx_buffer, status);
183		if (missing == status)
184			status = -EFAULT;
185		else
186			status = status - missing;
187	}
188	mutex_unlock(&spidev->buf_lock);
189
190	return status;
191}
192
193/* Write-only message with current device setup */
194static ssize_t
195spidev_write(struct file *filp, const char __user *buf,
196		size_t count, loff_t *f_pos)
197{
198	struct spidev_data	*spidev;
199	ssize_t			status = 0;
200	unsigned long		missing;
201
202	/* chipselect only toggles at start or end of operation */
203	if (count > bufsiz)
204		return -EMSGSIZE;
205
206	spidev = filp->private_data;
207
208	mutex_lock(&spidev->buf_lock);
209	missing = copy_from_user(spidev->tx_buffer, buf, count);
210	if (missing == 0)
211		status = spidev_sync_write(spidev, count);
212	else
213		status = -EFAULT;
214	mutex_unlock(&spidev->buf_lock);
215
216	return status;
217}
218
219static int spidev_message(struct spidev_data *spidev,
220		struct spi_ioc_transfer *u_xfers, unsigned n_xfers)
221{
222	struct spi_message	msg;
223	struct spi_transfer	*k_xfers;
224	struct spi_transfer	*k_tmp;
225	struct spi_ioc_transfer *u_tmp;
226	unsigned		n, total, tx_total, rx_total;
227	u8			*tx_buf, *rx_buf;
228	int			status = -EFAULT;
229
230	spi_message_init(&msg);
231	k_xfers = kcalloc(n_xfers, sizeof(*k_tmp), GFP_KERNEL);
232	if (k_xfers == NULL)
233		return -ENOMEM;
234
235	/* Construct spi_message, copying any tx data to bounce buffer.
236	 * We walk the array of user-provided transfers, using each one
237	 * to initialize a kernel version of the same transfer.
238	 */
239	tx_buf = spidev->tx_buffer;
240	rx_buf = spidev->rx_buffer;
241	total = 0;
242	tx_total = 0;
243	rx_total = 0;
244	for (n = n_xfers, k_tmp = k_xfers, u_tmp = u_xfers;
245			n;
246			n--, k_tmp++, u_tmp++) {
247		k_tmp->len = u_tmp->len;
248
249		total += k_tmp->len;
250		/* Since the function returns the total length of transfers
251		 * on success, restrict the total to positive int values to
252		 * avoid the return value looking like an error.  Also check
253		 * each transfer length to avoid arithmetic overflow.
254		 */
255		if (total > INT_MAX || k_tmp->len > INT_MAX) {
256			status = -EMSGSIZE;
257			goto done;
258		}
259
260		if (u_tmp->rx_buf) {
261			/* this transfer needs space in RX bounce buffer */
262			rx_total += k_tmp->len;
263			if (rx_total > bufsiz) {
264				status = -EMSGSIZE;
265				goto done;
266			}
267			k_tmp->rx_buf = rx_buf;
268			if (!access_ok(VERIFY_WRITE, (u8 __user *)
269						(uintptr_t) u_tmp->rx_buf,
270						u_tmp->len))
271				goto done;
272			rx_buf += k_tmp->len;
273		}
274		if (u_tmp->tx_buf) {
275			/* this transfer needs space in TX bounce buffer */
276			tx_total += k_tmp->len;
277			if (tx_total > bufsiz) {
278				status = -EMSGSIZE;
279				goto done;
280			}
281			k_tmp->tx_buf = tx_buf;
282			if (copy_from_user(tx_buf, (const u8 __user *)
283						(uintptr_t) u_tmp->tx_buf,
284					u_tmp->len))
285				goto done;
286			tx_buf += k_tmp->len;
287		}
288
289		k_tmp->cs_change = !!u_tmp->cs_change;
290		k_tmp->tx_nbits = u_tmp->tx_nbits;
291		k_tmp->rx_nbits = u_tmp->rx_nbits;
292		k_tmp->bits_per_word = u_tmp->bits_per_word;
293		k_tmp->delay_usecs = u_tmp->delay_usecs;
294		k_tmp->speed_hz = u_tmp->speed_hz;
295		if (!k_tmp->speed_hz)
296			k_tmp->speed_hz = spidev->speed_hz;
297#ifdef VERBOSE
298		dev_dbg(&spidev->spi->dev,
299			"  xfer len %zd %s%s%s%dbits %u usec %uHz\n",
300			u_tmp->len,
301			u_tmp->rx_buf ? "rx " : "",
302			u_tmp->tx_buf ? "tx " : "",
303			u_tmp->cs_change ? "cs " : "",
304			u_tmp->bits_per_word ? : spidev->spi->bits_per_word,
305			u_tmp->delay_usecs,
306			u_tmp->speed_hz ? : spidev->spi->max_speed_hz);
307#endif
308		spi_message_add_tail(k_tmp, &msg);
309	}
310
311	status = spidev_sync(spidev, &msg);
312	if (status < 0)
313		goto done;
314
315	/* copy any rx data out of bounce buffer */
316	rx_buf = spidev->rx_buffer;
317	for (n = n_xfers, u_tmp = u_xfers; n; n--, u_tmp++) {
318		if (u_tmp->rx_buf) {
319			if (__copy_to_user((u8 __user *)
320					(uintptr_t) u_tmp->rx_buf, rx_buf,
321					u_tmp->len)) {
322				status = -EFAULT;
323				goto done;
324			}
325			rx_buf += u_tmp->len;
326		}
327	}
328	status = total;
329
330done:
331	kfree(k_xfers);
332	return status;
333}
334
335static struct spi_ioc_transfer *
336spidev_get_ioc_message(unsigned int cmd, struct spi_ioc_transfer __user *u_ioc,
337		unsigned *n_ioc)
338{
339	struct spi_ioc_transfer	*ioc;
340	u32	tmp;
341
342	/* Check type, command number and direction */
343	if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC
344			|| _IOC_NR(cmd) != _IOC_NR(SPI_IOC_MESSAGE(0))
345			|| _IOC_DIR(cmd) != _IOC_WRITE)
346		return ERR_PTR(-ENOTTY);
347
348	tmp = _IOC_SIZE(cmd);
349	if ((tmp % sizeof(struct spi_ioc_transfer)) != 0)
350		return ERR_PTR(-EINVAL);
351	*n_ioc = tmp / sizeof(struct spi_ioc_transfer);
352	if (*n_ioc == 0)
353		return NULL;
354
355	/* copy into scratch area */
356	ioc = kmalloc(tmp, GFP_KERNEL);
357	if (!ioc)
358		return ERR_PTR(-ENOMEM);
359	if (__copy_from_user(ioc, u_ioc, tmp)) {
360		kfree(ioc);
361		return ERR_PTR(-EFAULT);
362	}
363	return ioc;
364}
365
366static long
367spidev_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
368{
369	int			err = 0;
370	int			retval = 0;
371	struct spidev_data	*spidev;
372	struct spi_device	*spi;
373	u32			tmp;
374	unsigned		n_ioc;
375	struct spi_ioc_transfer	*ioc;
376
377	/* Check type and command number */
378	if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC)
379		return -ENOTTY;
380
381	/* Check access direction once here; don't repeat below.
382	 * IOC_DIR is from the user perspective, while access_ok is
383	 * from the kernel perspective; so they look reversed.
384	 */
385	if (_IOC_DIR(cmd) & _IOC_READ)
386		err = !access_ok(VERIFY_WRITE,
387				(void __user *)arg, _IOC_SIZE(cmd));
388	if (err == 0 && _IOC_DIR(cmd) & _IOC_WRITE)
389		err = !access_ok(VERIFY_READ,
390				(void __user *)arg, _IOC_SIZE(cmd));
391	if (err)
392		return -EFAULT;
393
394	/* guard against device removal before, or while,
395	 * we issue this ioctl.
396	 */
397	spidev = filp->private_data;
398	spin_lock_irq(&spidev->spi_lock);
399	spi = spi_dev_get(spidev->spi);
400	spin_unlock_irq(&spidev->spi_lock);
401
402	if (spi == NULL)
403		return -ESHUTDOWN;
404
405	/* use the buffer lock here for triple duty:
406	 *  - prevent I/O (from us) so calling spi_setup() is safe;
407	 *  - prevent concurrent SPI_IOC_WR_* from morphing
408	 *    data fields while SPI_IOC_RD_* reads them;
409	 *  - SPI_IOC_MESSAGE needs the buffer locked "normally".
410	 */
411	mutex_lock(&spidev->buf_lock);
412
413	switch (cmd) {
414	/* read requests */
415	case SPI_IOC_RD_MODE:
416		retval = __put_user(spi->mode & SPI_MODE_MASK,
417					(__u8 __user *)arg);
418		break;
419	case SPI_IOC_RD_MODE32:
420		retval = __put_user(spi->mode & SPI_MODE_MASK,
421					(__u32 __user *)arg);
422		break;
423	case SPI_IOC_RD_LSB_FIRST:
424		retval = __put_user((spi->mode & SPI_LSB_FIRST) ?  1 : 0,
425					(__u8 __user *)arg);
426		break;
427	case SPI_IOC_RD_BITS_PER_WORD:
428		retval = __put_user(spi->bits_per_word, (__u8 __user *)arg);
429		break;
430	case SPI_IOC_RD_MAX_SPEED_HZ:
431		retval = __put_user(spidev->speed_hz, (__u32 __user *)arg);
432		break;
433
434	/* write requests */
435	case SPI_IOC_WR_MODE:
436	case SPI_IOC_WR_MODE32:
437		if (cmd == SPI_IOC_WR_MODE)
438			retval = __get_user(tmp, (u8 __user *)arg);
439		else
440			retval = __get_user(tmp, (u32 __user *)arg);
441		if (retval == 0) {
442			u32	save = spi->mode;
443
444			if (tmp & ~SPI_MODE_MASK) {
445				retval = -EINVAL;
446				break;
447			}
448
449			tmp |= spi->mode & ~SPI_MODE_MASK;
450			spi->mode = (u16)tmp;
451			retval = spi_setup(spi);
452			if (retval < 0)
453				spi->mode = save;
454			else
455				dev_dbg(&spi->dev, "spi mode %x\n", tmp);
456		}
457		break;
458	case SPI_IOC_WR_LSB_FIRST:
459		retval = __get_user(tmp, (__u8 __user *)arg);
460		if (retval == 0) {
461			u32	save = spi->mode;
462
463			if (tmp)
464				spi->mode |= SPI_LSB_FIRST;
465			else
466				spi->mode &= ~SPI_LSB_FIRST;
467			retval = spi_setup(spi);
468			if (retval < 0)
469				spi->mode = save;
470			else
471				dev_dbg(&spi->dev, "%csb first\n",
472						tmp ? 'l' : 'm');
473		}
474		break;
475	case SPI_IOC_WR_BITS_PER_WORD:
476		retval = __get_user(tmp, (__u8 __user *)arg);
477		if (retval == 0) {
478			u8	save = spi->bits_per_word;
479
480			spi->bits_per_word = tmp;
481			retval = spi_setup(spi);
482			if (retval < 0)
483				spi->bits_per_word = save;
484			else
485				dev_dbg(&spi->dev, "%d bits per word\n", tmp);
486		}
487		break;
488	case SPI_IOC_WR_MAX_SPEED_HZ:
489		retval = __get_user(tmp, (__u32 __user *)arg);
490		if (retval == 0) {
491			u32	save = spi->max_speed_hz;
492
493			spi->max_speed_hz = tmp;
494			retval = spi_setup(spi);
495			if (retval >= 0)
496				spidev->speed_hz = tmp;
497			else
498				dev_dbg(&spi->dev, "%d Hz (max)\n", tmp);
499			spi->max_speed_hz = save;
500		}
501		break;
502
503	default:
504		/* segmented and/or full-duplex I/O request */
505		/* Check message and copy into scratch area */
506		ioc = spidev_get_ioc_message(cmd,
507				(struct spi_ioc_transfer __user *)arg, &n_ioc);
508		if (IS_ERR(ioc)) {
509			retval = PTR_ERR(ioc);
510			break;
511		}
512		if (!ioc)
513			break;	/* n_ioc is also 0 */
514
515		/* translate to spi_message, execute */
516		retval = spidev_message(spidev, ioc, n_ioc);
517		kfree(ioc);
518		break;
519	}
520
521	mutex_unlock(&spidev->buf_lock);
522	spi_dev_put(spi);
523	return retval;
524}
525
526#ifdef CONFIG_COMPAT
527static long
528spidev_compat_ioc_message(struct file *filp, unsigned int cmd,
529		unsigned long arg)
530{
531	struct spi_ioc_transfer __user	*u_ioc;
532	int				retval = 0;
533	struct spidev_data		*spidev;
534	struct spi_device		*spi;
535	unsigned			n_ioc, n;
536	struct spi_ioc_transfer		*ioc;
537
538	u_ioc = (struct spi_ioc_transfer __user *) compat_ptr(arg);
539	if (!access_ok(VERIFY_READ, u_ioc, _IOC_SIZE(cmd)))
540		return -EFAULT;
541
542	/* guard against device removal before, or while,
543	 * we issue this ioctl.
544	 */
545	spidev = filp->private_data;
546	spin_lock_irq(&spidev->spi_lock);
547	spi = spi_dev_get(spidev->spi);
548	spin_unlock_irq(&spidev->spi_lock);
549
550	if (spi == NULL)
551		return -ESHUTDOWN;
552
553	/* SPI_IOC_MESSAGE needs the buffer locked "normally" */
554	mutex_lock(&spidev->buf_lock);
555
556	/* Check message and copy into scratch area */
557	ioc = spidev_get_ioc_message(cmd, u_ioc, &n_ioc);
558	if (IS_ERR(ioc)) {
559		retval = PTR_ERR(ioc);
560		goto done;
561	}
562	if (!ioc)
563		goto done;	/* n_ioc is also 0 */
564
565	/* Convert buffer pointers */
566	for (n = 0; n < n_ioc; n++) {
567		ioc[n].rx_buf = (uintptr_t) compat_ptr(ioc[n].rx_buf);
568		ioc[n].tx_buf = (uintptr_t) compat_ptr(ioc[n].tx_buf);
569	}
570
571	/* translate to spi_message, execute */
572	retval = spidev_message(spidev, ioc, n_ioc);
573	kfree(ioc);
574
575done:
576	mutex_unlock(&spidev->buf_lock);
577	spi_dev_put(spi);
578	return retval;
579}
580
581static long
582spidev_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
583{
584	if (_IOC_TYPE(cmd) == SPI_IOC_MAGIC
585			&& _IOC_NR(cmd) == _IOC_NR(SPI_IOC_MESSAGE(0))
586			&& _IOC_DIR(cmd) == _IOC_WRITE)
587		return spidev_compat_ioc_message(filp, cmd, arg);
588
589	return spidev_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
590}
591#else
592#define spidev_compat_ioctl NULL
593#endif /* CONFIG_COMPAT */
594
595static int spidev_open(struct inode *inode, struct file *filp)
596{
597	struct spidev_data	*spidev;
598	int			status = -ENXIO;
599
600	mutex_lock(&device_list_lock);
601
602	list_for_each_entry(spidev, &device_list, device_entry) {
603		if (spidev->devt == inode->i_rdev) {
604			status = 0;
605			break;
606		}
607	}
608
609	if (status) {
610		pr_debug("spidev: nothing for minor %d\n", iminor(inode));
611		goto err_find_dev;
612	}
613
614	if (!spidev->tx_buffer) {
615		spidev->tx_buffer = kmalloc(bufsiz, GFP_KERNEL);
616		if (!spidev->tx_buffer) {
617				dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");
618				status = -ENOMEM;
619			goto err_find_dev;
620			}
621		}
622
623	if (!spidev->rx_buffer) {
624		spidev->rx_buffer = kmalloc(bufsiz, GFP_KERNEL);
625		if (!spidev->rx_buffer) {
626			dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");
627			status = -ENOMEM;
628			goto err_alloc_rx_buf;
629		}
630	}
631
632	spidev->users++;
633	filp->private_data = spidev;
634	nonseekable_open(inode, filp);
635
636	mutex_unlock(&device_list_lock);
637	return 0;
638
639err_alloc_rx_buf:
640	kfree(spidev->tx_buffer);
641	spidev->tx_buffer = NULL;
642err_find_dev:
643	mutex_unlock(&device_list_lock);
644	return status;
645}
646
647static int spidev_release(struct inode *inode, struct file *filp)
648{
649	struct spidev_data	*spidev;
650	int			status = 0;
651
652	mutex_lock(&device_list_lock);
653	spidev = filp->private_data;
654	filp->private_data = NULL;
655
656	/* last close? */
657	spidev->users--;
658	if (!spidev->users) {
659		int		dofree;
660
661		kfree(spidev->tx_buffer);
662		spidev->tx_buffer = NULL;
663
664		kfree(spidev->rx_buffer);
665		spidev->rx_buffer = NULL;
666
667		if (spidev->spi)
668			spidev->speed_hz = spidev->spi->max_speed_hz;
669
670		/* ... after we unbound from the underlying device? */
671		spin_lock_irq(&spidev->spi_lock);
672		dofree = (spidev->spi == NULL);
673		spin_unlock_irq(&spidev->spi_lock);
674
675		if (dofree)
676			kfree(spidev);
677	}
678	mutex_unlock(&device_list_lock);
679
680	return status;
681}
682
683static const struct file_operations spidev_fops = {
684	.owner =	THIS_MODULE,
685	/* REVISIT switch to aio primitives, so that userspace
686	 * gets more complete API coverage.  It'll simplify things
687	 * too, except for the locking.
688	 */
689	.write =	spidev_write,
690	.read =		spidev_read,
691	.unlocked_ioctl = spidev_ioctl,
692	.compat_ioctl = spidev_compat_ioctl,
693	.open =		spidev_open,
694	.release =	spidev_release,
695	.llseek =	no_llseek,
696};
697
698/*-------------------------------------------------------------------------*/
699
700/* The main reason to have this class is to make mdev/udev create the
701 * /dev/spidevB.C character device nodes exposing our userspace API.
702 * It also simplifies memory management.
703 */
704
705static struct class *spidev_class;
706
707#ifdef CONFIG_OF
708static const struct of_device_id spidev_dt_ids[] = {
709	{ .compatible = "rohm,dh2228fv" },
710	{},
711};
712MODULE_DEVICE_TABLE(of, spidev_dt_ids);
713#endif
714
715/*-------------------------------------------------------------------------*/
716
717static int spidev_probe(struct spi_device *spi)
718{
719	struct spidev_data	*spidev;
720	int			status;
721	unsigned long		minor;
722
723	/*
724	 * spidev should never be referenced in DT without a specific
725	 * compatbile string, it is a Linux implementation thing
726	 * rather than a description of the hardware.
727	 */
728	if (spi->dev.of_node && !of_match_device(spidev_dt_ids, &spi->dev)) {
729		dev_err(&spi->dev, "buggy DT: spidev listed directly in DT\n");
730		WARN_ON(spi->dev.of_node &&
731			!of_match_device(spidev_dt_ids, &spi->dev));
732	}
733
734	/* Allocate driver data */
735	spidev = kzalloc(sizeof(*spidev), GFP_KERNEL);
736	if (!spidev)
737		return -ENOMEM;
738
739	/* Initialize the driver data */
740	spidev->spi = spi;
741	spin_lock_init(&spidev->spi_lock);
742	mutex_init(&spidev->buf_lock);
743
744	INIT_LIST_HEAD(&spidev->device_entry);
745
746	/* If we can allocate a minor number, hook up this device.
747	 * Reusing minors is fine so long as udev or mdev is working.
748	 */
749	mutex_lock(&device_list_lock);
750	minor = find_first_zero_bit(minors, N_SPI_MINORS);
751	if (minor < N_SPI_MINORS) {
752		struct device *dev;
753
754		spidev->devt = MKDEV(SPIDEV_MAJOR, minor);
755		dev = device_create(spidev_class, &spi->dev, spidev->devt,
756				    spidev, "spidev%d.%d",
757				    spi->master->bus_num, spi->chip_select);
758		status = PTR_ERR_OR_ZERO(dev);
759	} else {
760		dev_dbg(&spi->dev, "no minor number available!\n");
761		status = -ENODEV;
762	}
763	if (status == 0) {
764		set_bit(minor, minors);
765		list_add(&spidev->device_entry, &device_list);
766	}
767	mutex_unlock(&device_list_lock);
768
769	spidev->speed_hz = spi->max_speed_hz;
770
771	if (status == 0)
772		spi_set_drvdata(spi, spidev);
773	else
774		kfree(spidev);
775
776	return status;
777}
778
779static int spidev_remove(struct spi_device *spi)
780{
781	struct spidev_data	*spidev = spi_get_drvdata(spi);
782
783	/* make sure ops on existing fds can abort cleanly */
784	spin_lock_irq(&spidev->spi_lock);
785	spidev->spi = NULL;
786	spin_unlock_irq(&spidev->spi_lock);
787
788	/* prevent new opens */
789	mutex_lock(&device_list_lock);
790	list_del(&spidev->device_entry);
791	device_destroy(spidev_class, spidev->devt);
792	clear_bit(MINOR(spidev->devt), minors);
793	if (spidev->users == 0)
794		kfree(spidev);
795	mutex_unlock(&device_list_lock);
796
797	return 0;
798}
799
800static struct spi_driver spidev_spi_driver = {
801	.driver = {
802		.name =		"spidev",
803		.owner =	THIS_MODULE,
804		.of_match_table = of_match_ptr(spidev_dt_ids),
805	},
806	.probe =	spidev_probe,
807	.remove =	spidev_remove,
808
809	/* NOTE:  suspend/resume methods are not necessary here.
810	 * We don't do anything except pass the requests to/from
811	 * the underlying controller.  The refrigerator handles
812	 * most issues; the controller driver handles the rest.
813	 */
814};
815
816/*-------------------------------------------------------------------------*/
817
818static int __init spidev_init(void)
819{
820	int status;
821
822	/* Claim our 256 reserved device numbers.  Then register a class
823	 * that will key udev/mdev to add/remove /dev nodes.  Last, register
824	 * the driver which manages those device numbers.
825	 */
826	BUILD_BUG_ON(N_SPI_MINORS > 256);
827	status = register_chrdev(SPIDEV_MAJOR, "spi", &spidev_fops);
828	if (status < 0)
829		return status;
830
831	spidev_class = class_create(THIS_MODULE, "spidev");
832	if (IS_ERR(spidev_class)) {
833		unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
834		return PTR_ERR(spidev_class);
835	}
836
837	status = spi_register_driver(&spidev_spi_driver);
838	if (status < 0) {
839		class_destroy(spidev_class);
840		unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
841	}
842	return status;
843}
844module_init(spidev_init);
845
846static void __exit spidev_exit(void)
847{
848	spi_unregister_driver(&spidev_spi_driver);
849	class_destroy(spidev_class);
850	unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
851}
852module_exit(spidev_exit);
853
854MODULE_AUTHOR("Andrea Paterniani, <a.paterniani@swapp-eng.it>");
855MODULE_DESCRIPTION("User mode SPI device interface");
856MODULE_LICENSE("GPL");
857MODULE_ALIAS("spi:spidev");
858