1/*
2 * SPI init/core code
3 *
4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 */
17
18#include <linux/kernel.h>
19#include <linux/device.h>
20#include <linux/init.h>
21#include <linux/cache.h>
22#include <linux/dma-mapping.h>
23#include <linux/dmaengine.h>
24#include <linux/mutex.h>
25#include <linux/of_device.h>
26#include <linux/of_irq.h>
27#include <linux/clk/clk-conf.h>
28#include <linux/slab.h>
29#include <linux/mod_devicetable.h>
30#include <linux/spi/spi.h>
31#include <linux/of_gpio.h>
32#include <linux/pm_runtime.h>
33#include <linux/pm_domain.h>
34#include <linux/export.h>
35#include <linux/sched/rt.h>
36#include <linux/delay.h>
37#include <linux/kthread.h>
38#include <linux/ioport.h>
39#include <linux/acpi.h>
40
41#define CREATE_TRACE_POINTS
42#include <trace/events/spi.h>
43
44static void spidev_release(struct device *dev)
45{
46	struct spi_device	*spi = to_spi_device(dev);
47
48	/* spi masters may cleanup for released devices */
49	if (spi->master->cleanup)
50		spi->master->cleanup(spi);
51
52	spi_master_put(spi->master);
53	kfree(spi);
54}
55
56static ssize_t
57modalias_show(struct device *dev, struct device_attribute *a, char *buf)
58{
59	const struct spi_device	*spi = to_spi_device(dev);
60	int len;
61
62	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
63	if (len != -ENODEV)
64		return len;
65
66	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
67}
68static DEVICE_ATTR_RO(modalias);
69
70static struct attribute *spi_dev_attrs[] = {
71	&dev_attr_modalias.attr,
72	NULL,
73};
74ATTRIBUTE_GROUPS(spi_dev);
75
76/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
77 * and the sysfs version makes coldplug work too.
78 */
79
80static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
81						const struct spi_device *sdev)
82{
83	while (id->name[0]) {
84		if (!strcmp(sdev->modalias, id->name))
85			return id;
86		id++;
87	}
88	return NULL;
89}
90
91const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
92{
93	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
94
95	return spi_match_id(sdrv->id_table, sdev);
96}
97EXPORT_SYMBOL_GPL(spi_get_device_id);
98
99static int spi_match_device(struct device *dev, struct device_driver *drv)
100{
101	const struct spi_device	*spi = to_spi_device(dev);
102	const struct spi_driver	*sdrv = to_spi_driver(drv);
103
104	/* Attempt an OF style match */
105	if (of_driver_match_device(dev, drv))
106		return 1;
107
108	/* Then try ACPI */
109	if (acpi_driver_match_device(dev, drv))
110		return 1;
111
112	if (sdrv->id_table)
113		return !!spi_match_id(sdrv->id_table, spi);
114
115	return strcmp(spi->modalias, drv->name) == 0;
116}
117
118static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
119{
120	const struct spi_device		*spi = to_spi_device(dev);
121	int rc;
122
123	rc = acpi_device_uevent_modalias(dev, env);
124	if (rc != -ENODEV)
125		return rc;
126
127	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
128	return 0;
129}
130
131struct bus_type spi_bus_type = {
132	.name		= "spi",
133	.dev_groups	= spi_dev_groups,
134	.match		= spi_match_device,
135	.uevent		= spi_uevent,
136};
137EXPORT_SYMBOL_GPL(spi_bus_type);
138
139
140static int spi_drv_probe(struct device *dev)
141{
142	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
143	int ret;
144
145	ret = of_clk_set_defaults(dev->of_node, false);
146	if (ret)
147		return ret;
148
149	ret = dev_pm_domain_attach(dev, true);
150	if (ret != -EPROBE_DEFER) {
151		ret = sdrv->probe(to_spi_device(dev));
152		if (ret)
153			dev_pm_domain_detach(dev, true);
154	}
155
156	return ret;
157}
158
159static int spi_drv_remove(struct device *dev)
160{
161	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
162	int ret;
163
164	ret = sdrv->remove(to_spi_device(dev));
165	dev_pm_domain_detach(dev, true);
166
167	return ret;
168}
169
170static void spi_drv_shutdown(struct device *dev)
171{
172	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
173
174	sdrv->shutdown(to_spi_device(dev));
175}
176
177/**
178 * spi_register_driver - register a SPI driver
179 * @sdrv: the driver to register
180 * Context: can sleep
181 */
182int spi_register_driver(struct spi_driver *sdrv)
183{
184	sdrv->driver.bus = &spi_bus_type;
185	if (sdrv->probe)
186		sdrv->driver.probe = spi_drv_probe;
187	if (sdrv->remove)
188		sdrv->driver.remove = spi_drv_remove;
189	if (sdrv->shutdown)
190		sdrv->driver.shutdown = spi_drv_shutdown;
191	return driver_register(&sdrv->driver);
192}
193EXPORT_SYMBOL_GPL(spi_register_driver);
194
195/*-------------------------------------------------------------------------*/
196
197/* SPI devices should normally not be created by SPI device drivers; that
198 * would make them board-specific.  Similarly with SPI master drivers.
199 * Device registration normally goes into like arch/.../mach.../board-YYY.c
200 * with other readonly (flashable) information about mainboard devices.
201 */
202
203struct boardinfo {
204	struct list_head	list;
205	struct spi_board_info	board_info;
206};
207
208static LIST_HEAD(board_list);
209static LIST_HEAD(spi_master_list);
210
211/*
212 * Used to protect add/del opertion for board_info list and
213 * spi_master list, and their matching process
214 */
215static DEFINE_MUTEX(board_lock);
216
217/**
218 * spi_alloc_device - Allocate a new SPI device
219 * @master: Controller to which device is connected
220 * Context: can sleep
221 *
222 * Allows a driver to allocate and initialize a spi_device without
223 * registering it immediately.  This allows a driver to directly
224 * fill the spi_device with device parameters before calling
225 * spi_add_device() on it.
226 *
227 * Caller is responsible to call spi_add_device() on the returned
228 * spi_device structure to add it to the SPI master.  If the caller
229 * needs to discard the spi_device without adding it, then it should
230 * call spi_dev_put() on it.
231 *
232 * Returns a pointer to the new device, or NULL.
233 */
234struct spi_device *spi_alloc_device(struct spi_master *master)
235{
236	struct spi_device	*spi;
237
238	if (!spi_master_get(master))
239		return NULL;
240
241	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
242	if (!spi) {
243		spi_master_put(master);
244		return NULL;
245	}
246
247	spi->master = master;
248	spi->dev.parent = &master->dev;
249	spi->dev.bus = &spi_bus_type;
250	spi->dev.release = spidev_release;
251	spi->cs_gpio = -ENOENT;
252	device_initialize(&spi->dev);
253	return spi;
254}
255EXPORT_SYMBOL_GPL(spi_alloc_device);
256
257static void spi_dev_set_name(struct spi_device *spi)
258{
259	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
260
261	if (adev) {
262		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
263		return;
264	}
265
266	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
267		     spi->chip_select);
268}
269
270static int spi_dev_check(struct device *dev, void *data)
271{
272	struct spi_device *spi = to_spi_device(dev);
273	struct spi_device *new_spi = data;
274
275	if (spi->master == new_spi->master &&
276	    spi->chip_select == new_spi->chip_select)
277		return -EBUSY;
278	return 0;
279}
280
281/**
282 * spi_add_device - Add spi_device allocated with spi_alloc_device
283 * @spi: spi_device to register
284 *
285 * Companion function to spi_alloc_device.  Devices allocated with
286 * spi_alloc_device can be added onto the spi bus with this function.
287 *
288 * Returns 0 on success; negative errno on failure
289 */
290int spi_add_device(struct spi_device *spi)
291{
292	static DEFINE_MUTEX(spi_add_lock);
293	struct spi_master *master = spi->master;
294	struct device *dev = master->dev.parent;
295	int status;
296
297	/* Chipselects are numbered 0..max; validate. */
298	if (spi->chip_select >= master->num_chipselect) {
299		dev_err(dev, "cs%d >= max %d\n",
300			spi->chip_select,
301			master->num_chipselect);
302		return -EINVAL;
303	}
304
305	/* Set the bus ID string */
306	spi_dev_set_name(spi);
307
308	/* We need to make sure there's no other device with this
309	 * chipselect **BEFORE** we call setup(), else we'll trash
310	 * its configuration.  Lock against concurrent add() calls.
311	 */
312	mutex_lock(&spi_add_lock);
313
314	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
315	if (status) {
316		dev_err(dev, "chipselect %d already in use\n",
317				spi->chip_select);
318		goto done;
319	}
320
321	if (master->cs_gpios)
322		spi->cs_gpio = master->cs_gpios[spi->chip_select];
323
324	/* Drivers may modify this initial i/o setup, but will
325	 * normally rely on the device being setup.  Devices
326	 * using SPI_CS_HIGH can't coexist well otherwise...
327	 */
328	status = spi_setup(spi);
329	if (status < 0) {
330		dev_err(dev, "can't setup %s, status %d\n",
331				dev_name(&spi->dev), status);
332		goto done;
333	}
334
335	/* Device may be bound to an active driver when this returns */
336	status = device_add(&spi->dev);
337	if (status < 0)
338		dev_err(dev, "can't add %s, status %d\n",
339				dev_name(&spi->dev), status);
340	else
341		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
342
343done:
344	mutex_unlock(&spi_add_lock);
345	return status;
346}
347EXPORT_SYMBOL_GPL(spi_add_device);
348
349/**
350 * spi_new_device - instantiate one new SPI device
351 * @master: Controller to which device is connected
352 * @chip: Describes the SPI device
353 * Context: can sleep
354 *
355 * On typical mainboards, this is purely internal; and it's not needed
356 * after board init creates the hard-wired devices.  Some development
357 * platforms may not be able to use spi_register_board_info though, and
358 * this is exported so that for example a USB or parport based adapter
359 * driver could add devices (which it would learn about out-of-band).
360 *
361 * Returns the new device, or NULL.
362 */
363struct spi_device *spi_new_device(struct spi_master *master,
364				  struct spi_board_info *chip)
365{
366	struct spi_device	*proxy;
367	int			status;
368
369	/* NOTE:  caller did any chip->bus_num checks necessary.
370	 *
371	 * Also, unless we change the return value convention to use
372	 * error-or-pointer (not NULL-or-pointer), troubleshootability
373	 * suggests syslogged diagnostics are best here (ugh).
374	 */
375
376	proxy = spi_alloc_device(master);
377	if (!proxy)
378		return NULL;
379
380	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
381
382	proxy->chip_select = chip->chip_select;
383	proxy->max_speed_hz = chip->max_speed_hz;
384	proxy->mode = chip->mode;
385	proxy->irq = chip->irq;
386	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
387	proxy->dev.platform_data = (void *) chip->platform_data;
388	proxy->controller_data = chip->controller_data;
389	proxy->controller_state = NULL;
390
391	status = spi_add_device(proxy);
392	if (status < 0) {
393		spi_dev_put(proxy);
394		return NULL;
395	}
396
397	return proxy;
398}
399EXPORT_SYMBOL_GPL(spi_new_device);
400
401static void spi_match_master_to_boardinfo(struct spi_master *master,
402				struct spi_board_info *bi)
403{
404	struct spi_device *dev;
405
406	if (master->bus_num != bi->bus_num)
407		return;
408
409	dev = spi_new_device(master, bi);
410	if (!dev)
411		dev_err(master->dev.parent, "can't create new device for %s\n",
412			bi->modalias);
413}
414
415/**
416 * spi_register_board_info - register SPI devices for a given board
417 * @info: array of chip descriptors
418 * @n: how many descriptors are provided
419 * Context: can sleep
420 *
421 * Board-specific early init code calls this (probably during arch_initcall)
422 * with segments of the SPI device table.  Any device nodes are created later,
423 * after the relevant parent SPI controller (bus_num) is defined.  We keep
424 * this table of devices forever, so that reloading a controller driver will
425 * not make Linux forget about these hard-wired devices.
426 *
427 * Other code can also call this, e.g. a particular add-on board might provide
428 * SPI devices through its expansion connector, so code initializing that board
429 * would naturally declare its SPI devices.
430 *
431 * The board info passed can safely be __initdata ... but be careful of
432 * any embedded pointers (platform_data, etc), they're copied as-is.
433 */
434int spi_register_board_info(struct spi_board_info const *info, unsigned n)
435{
436	struct boardinfo *bi;
437	int i;
438
439	if (!n)
440		return -EINVAL;
441
442	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
443	if (!bi)
444		return -ENOMEM;
445
446	for (i = 0; i < n; i++, bi++, info++) {
447		struct spi_master *master;
448
449		memcpy(&bi->board_info, info, sizeof(*info));
450		mutex_lock(&board_lock);
451		list_add_tail(&bi->list, &board_list);
452		list_for_each_entry(master, &spi_master_list, list)
453			spi_match_master_to_boardinfo(master, &bi->board_info);
454		mutex_unlock(&board_lock);
455	}
456
457	return 0;
458}
459
460/*-------------------------------------------------------------------------*/
461
462static void spi_set_cs(struct spi_device *spi, bool enable)
463{
464	if (spi->mode & SPI_CS_HIGH)
465		enable = !enable;
466
467	if (spi->cs_gpio >= 0)
468		gpio_set_value(spi->cs_gpio, !enable);
469	else if (spi->master->set_cs)
470		spi->master->set_cs(spi, !enable);
471}
472
473#ifdef CONFIG_HAS_DMA
474static int spi_map_buf(struct spi_master *master, struct device *dev,
475		       struct sg_table *sgt, void *buf, size_t len,
476		       enum dma_data_direction dir)
477{
478	const bool vmalloced_buf = is_vmalloc_addr(buf);
479	const int desc_len = vmalloced_buf ? PAGE_SIZE : master->max_dma_len;
480	const int sgs = DIV_ROUND_UP(len, desc_len);
481	struct page *vm_page;
482	void *sg_buf;
483	size_t min;
484	int i, ret;
485
486	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
487	if (ret != 0)
488		return ret;
489
490	for (i = 0; i < sgs; i++) {
491		min = min_t(size_t, len, desc_len);
492
493		if (vmalloced_buf) {
494			vm_page = vmalloc_to_page(buf);
495			if (!vm_page) {
496				sg_free_table(sgt);
497				return -ENOMEM;
498			}
499			sg_set_page(&sgt->sgl[i], vm_page,
500				    min, offset_in_page(buf));
501		} else {
502			sg_buf = buf;
503			sg_set_buf(&sgt->sgl[i], sg_buf, min);
504		}
505
506
507		buf += min;
508		len -= min;
509	}
510
511	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
512	if (!ret)
513		ret = -ENOMEM;
514	if (ret < 0) {
515		sg_free_table(sgt);
516		return ret;
517	}
518
519	sgt->nents = ret;
520
521	return 0;
522}
523
524static void spi_unmap_buf(struct spi_master *master, struct device *dev,
525			  struct sg_table *sgt, enum dma_data_direction dir)
526{
527	if (sgt->orig_nents) {
528		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
529		sg_free_table(sgt);
530	}
531}
532
533static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
534{
535	struct device *tx_dev, *rx_dev;
536	struct spi_transfer *xfer;
537	int ret;
538
539	if (!master->can_dma)
540		return 0;
541
542	tx_dev = master->dma_tx->device->dev;
543	rx_dev = master->dma_rx->device->dev;
544
545	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
546		if (!master->can_dma(master, msg->spi, xfer))
547			continue;
548
549		if (xfer->tx_buf != NULL) {
550			ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
551					  (void *)xfer->tx_buf, xfer->len,
552					  DMA_TO_DEVICE);
553			if (ret != 0)
554				return ret;
555		}
556
557		if (xfer->rx_buf != NULL) {
558			ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
559					  xfer->rx_buf, xfer->len,
560					  DMA_FROM_DEVICE);
561			if (ret != 0) {
562				spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
563					      DMA_TO_DEVICE);
564				return ret;
565			}
566		}
567	}
568
569	master->cur_msg_mapped = true;
570
571	return 0;
572}
573
574static int spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
575{
576	struct spi_transfer *xfer;
577	struct device *tx_dev, *rx_dev;
578
579	if (!master->cur_msg_mapped || !master->can_dma)
580		return 0;
581
582	tx_dev = master->dma_tx->device->dev;
583	rx_dev = master->dma_rx->device->dev;
584
585	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
586		/*
587		 * Restore the original value of tx_buf or rx_buf if they are
588		 * NULL.
589		 */
590		if (xfer->tx_buf == master->dummy_tx)
591			xfer->tx_buf = NULL;
592		if (xfer->rx_buf == master->dummy_rx)
593			xfer->rx_buf = NULL;
594
595		if (!master->can_dma(master, msg->spi, xfer))
596			continue;
597
598		spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
599		spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
600	}
601
602	return 0;
603}
604#else /* !CONFIG_HAS_DMA */
605static inline int __spi_map_msg(struct spi_master *master,
606				struct spi_message *msg)
607{
608	return 0;
609}
610
611static inline int spi_unmap_msg(struct spi_master *master,
612				struct spi_message *msg)
613{
614	return 0;
615}
616#endif /* !CONFIG_HAS_DMA */
617
618static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
619{
620	struct spi_transfer *xfer;
621	void *tmp;
622	unsigned int max_tx, max_rx;
623
624	if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
625		max_tx = 0;
626		max_rx = 0;
627
628		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
629			if ((master->flags & SPI_MASTER_MUST_TX) &&
630			    !xfer->tx_buf)
631				max_tx = max(xfer->len, max_tx);
632			if ((master->flags & SPI_MASTER_MUST_RX) &&
633			    !xfer->rx_buf)
634				max_rx = max(xfer->len, max_rx);
635		}
636
637		if (max_tx) {
638			tmp = krealloc(master->dummy_tx, max_tx,
639				       GFP_KERNEL | GFP_DMA);
640			if (!tmp)
641				return -ENOMEM;
642			master->dummy_tx = tmp;
643			memset(tmp, 0, max_tx);
644		}
645
646		if (max_rx) {
647			tmp = krealloc(master->dummy_rx, max_rx,
648				       GFP_KERNEL | GFP_DMA);
649			if (!tmp)
650				return -ENOMEM;
651			master->dummy_rx = tmp;
652		}
653
654		if (max_tx || max_rx) {
655			list_for_each_entry(xfer, &msg->transfers,
656					    transfer_list) {
657				if (!xfer->tx_buf)
658					xfer->tx_buf = master->dummy_tx;
659				if (!xfer->rx_buf)
660					xfer->rx_buf = master->dummy_rx;
661			}
662		}
663	}
664
665	return __spi_map_msg(master, msg);
666}
667
668/*
669 * spi_transfer_one_message - Default implementation of transfer_one_message()
670 *
671 * This is a standard implementation of transfer_one_message() for
672 * drivers which impelment a transfer_one() operation.  It provides
673 * standard handling of delays and chip select management.
674 */
675static int spi_transfer_one_message(struct spi_master *master,
676				    struct spi_message *msg)
677{
678	struct spi_transfer *xfer;
679	bool keep_cs = false;
680	int ret = 0;
681	unsigned long ms = 1;
682
683	spi_set_cs(msg->spi, true);
684
685	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
686		trace_spi_transfer_start(msg, xfer);
687
688		if (xfer->tx_buf || xfer->rx_buf) {
689			reinit_completion(&master->xfer_completion);
690
691			ret = master->transfer_one(master, msg->spi, xfer);
692			if (ret < 0) {
693				dev_err(&msg->spi->dev,
694					"SPI transfer failed: %d\n", ret);
695				goto out;
696			}
697
698			if (ret > 0) {
699				ret = 0;
700				ms = xfer->len * 8 * 1000 / xfer->speed_hz;
701				ms += ms + 100; /* some tolerance */
702
703				ms = wait_for_completion_timeout(&master->xfer_completion,
704								 msecs_to_jiffies(ms));
705			}
706
707			if (ms == 0) {
708				dev_err(&msg->spi->dev,
709					"SPI transfer timed out\n");
710				msg->status = -ETIMEDOUT;
711			}
712		} else {
713			if (xfer->len)
714				dev_err(&msg->spi->dev,
715					"Bufferless transfer has length %u\n",
716					xfer->len);
717		}
718
719		trace_spi_transfer_stop(msg, xfer);
720
721		if (msg->status != -EINPROGRESS)
722			goto out;
723
724		if (xfer->delay_usecs)
725			udelay(xfer->delay_usecs);
726
727		if (xfer->cs_change) {
728			if (list_is_last(&xfer->transfer_list,
729					 &msg->transfers)) {
730				keep_cs = true;
731			} else {
732				spi_set_cs(msg->spi, false);
733				udelay(10);
734				spi_set_cs(msg->spi, true);
735			}
736		}
737
738		msg->actual_length += xfer->len;
739	}
740
741out:
742	if (ret != 0 || !keep_cs)
743		spi_set_cs(msg->spi, false);
744
745	if (msg->status == -EINPROGRESS)
746		msg->status = ret;
747
748	if (msg->status && master->handle_err)
749		master->handle_err(master, msg);
750
751	spi_finalize_current_message(master);
752
753	return ret;
754}
755
756/**
757 * spi_finalize_current_transfer - report completion of a transfer
758 * @master: the master reporting completion
759 *
760 * Called by SPI drivers using the core transfer_one_message()
761 * implementation to notify it that the current interrupt driven
762 * transfer has finished and the next one may be scheduled.
763 */
764void spi_finalize_current_transfer(struct spi_master *master)
765{
766	complete(&master->xfer_completion);
767}
768EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
769
770/**
771 * __spi_pump_messages - function which processes spi message queue
772 * @master: master to process queue for
773 * @in_kthread: true if we are in the context of the message pump thread
774 *
775 * This function checks if there is any spi message in the queue that
776 * needs processing and if so call out to the driver to initialize hardware
777 * and transfer each message.
778 *
779 * Note that it is called both from the kthread itself and also from
780 * inside spi_sync(); the queue extraction handling at the top of the
781 * function should deal with this safely.
782 */
783static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
784{
785	unsigned long flags;
786	bool was_busy = false;
787	int ret;
788
789	/* Lock queue */
790	spin_lock_irqsave(&master->queue_lock, flags);
791
792	/* Make sure we are not already running a message */
793	if (master->cur_msg) {
794		spin_unlock_irqrestore(&master->queue_lock, flags);
795		return;
796	}
797
798	/* If another context is idling the device then defer */
799	if (master->idling) {
800		queue_kthread_work(&master->kworker, &master->pump_messages);
801		spin_unlock_irqrestore(&master->queue_lock, flags);
802		return;
803	}
804
805	/* Check if the queue is idle */
806	if (list_empty(&master->queue) || !master->running) {
807		if (!master->busy) {
808			spin_unlock_irqrestore(&master->queue_lock, flags);
809			return;
810		}
811
812		/* Only do teardown in the thread */
813		if (!in_kthread) {
814			queue_kthread_work(&master->kworker,
815					   &master->pump_messages);
816			spin_unlock_irqrestore(&master->queue_lock, flags);
817			return;
818		}
819
820		master->busy = false;
821		master->idling = true;
822		spin_unlock_irqrestore(&master->queue_lock, flags);
823
824		kfree(master->dummy_rx);
825		master->dummy_rx = NULL;
826		kfree(master->dummy_tx);
827		master->dummy_tx = NULL;
828		if (master->unprepare_transfer_hardware &&
829		    master->unprepare_transfer_hardware(master))
830			dev_err(&master->dev,
831				"failed to unprepare transfer hardware\n");
832		if (master->auto_runtime_pm) {
833			pm_runtime_mark_last_busy(master->dev.parent);
834			pm_runtime_put_autosuspend(master->dev.parent);
835		}
836		trace_spi_master_idle(master);
837
838		spin_lock_irqsave(&master->queue_lock, flags);
839		master->idling = false;
840		spin_unlock_irqrestore(&master->queue_lock, flags);
841		return;
842	}
843
844	/* Extract head of queue */
845	master->cur_msg =
846		list_first_entry(&master->queue, struct spi_message, queue);
847
848	list_del_init(&master->cur_msg->queue);
849	if (master->busy)
850		was_busy = true;
851	else
852		master->busy = true;
853	spin_unlock_irqrestore(&master->queue_lock, flags);
854
855	if (!was_busy && master->auto_runtime_pm) {
856		ret = pm_runtime_get_sync(master->dev.parent);
857		if (ret < 0) {
858			dev_err(&master->dev, "Failed to power device: %d\n",
859				ret);
860			return;
861		}
862	}
863
864	if (!was_busy)
865		trace_spi_master_busy(master);
866
867	if (!was_busy && master->prepare_transfer_hardware) {
868		ret = master->prepare_transfer_hardware(master);
869		if (ret) {
870			dev_err(&master->dev,
871				"failed to prepare transfer hardware\n");
872
873			if (master->auto_runtime_pm)
874				pm_runtime_put(master->dev.parent);
875			return;
876		}
877	}
878
879	trace_spi_message_start(master->cur_msg);
880
881	if (master->prepare_message) {
882		ret = master->prepare_message(master, master->cur_msg);
883		if (ret) {
884			dev_err(&master->dev,
885				"failed to prepare message: %d\n", ret);
886			master->cur_msg->status = ret;
887			spi_finalize_current_message(master);
888			return;
889		}
890		master->cur_msg_prepared = true;
891	}
892
893	ret = spi_map_msg(master, master->cur_msg);
894	if (ret) {
895		master->cur_msg->status = ret;
896		spi_finalize_current_message(master);
897		return;
898	}
899
900	ret = master->transfer_one_message(master, master->cur_msg);
901	if (ret) {
902		dev_err(&master->dev,
903			"failed to transfer one message from queue\n");
904		return;
905	}
906}
907
908/**
909 * spi_pump_messages - kthread work function which processes spi message queue
910 * @work: pointer to kthread work struct contained in the master struct
911 */
912static void spi_pump_messages(struct kthread_work *work)
913{
914	struct spi_master *master =
915		container_of(work, struct spi_master, pump_messages);
916
917	__spi_pump_messages(master, true);
918}
919
920static int spi_init_queue(struct spi_master *master)
921{
922	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
923
924	master->running = false;
925	master->busy = false;
926
927	init_kthread_worker(&master->kworker);
928	master->kworker_task = kthread_run(kthread_worker_fn,
929					   &master->kworker, "%s",
930					   dev_name(&master->dev));
931	if (IS_ERR(master->kworker_task)) {
932		dev_err(&master->dev, "failed to create message pump task\n");
933		return PTR_ERR(master->kworker_task);
934	}
935	init_kthread_work(&master->pump_messages, spi_pump_messages);
936
937	/*
938	 * Master config will indicate if this controller should run the
939	 * message pump with high (realtime) priority to reduce the transfer
940	 * latency on the bus by minimising the delay between a transfer
941	 * request and the scheduling of the message pump thread. Without this
942	 * setting the message pump thread will remain at default priority.
943	 */
944	if (master->rt) {
945		dev_info(&master->dev,
946			"will run message pump with realtime priority\n");
947		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
948	}
949
950	return 0;
951}
952
953/**
954 * spi_get_next_queued_message() - called by driver to check for queued
955 * messages
956 * @master: the master to check for queued messages
957 *
958 * If there are more messages in the queue, the next message is returned from
959 * this call.
960 */
961struct spi_message *spi_get_next_queued_message(struct spi_master *master)
962{
963	struct spi_message *next;
964	unsigned long flags;
965
966	/* get a pointer to the next message, if any */
967	spin_lock_irqsave(&master->queue_lock, flags);
968	next = list_first_entry_or_null(&master->queue, struct spi_message,
969					queue);
970	spin_unlock_irqrestore(&master->queue_lock, flags);
971
972	return next;
973}
974EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
975
976/**
977 * spi_finalize_current_message() - the current message is complete
978 * @master: the master to return the message to
979 *
980 * Called by the driver to notify the core that the message in the front of the
981 * queue is complete and can be removed from the queue.
982 */
983void spi_finalize_current_message(struct spi_master *master)
984{
985	struct spi_message *mesg;
986	unsigned long flags;
987	int ret;
988
989	spin_lock_irqsave(&master->queue_lock, flags);
990	mesg = master->cur_msg;
991	spin_unlock_irqrestore(&master->queue_lock, flags);
992
993	spi_unmap_msg(master, mesg);
994
995	if (master->cur_msg_prepared && master->unprepare_message) {
996		ret = master->unprepare_message(master, mesg);
997		if (ret) {
998			dev_err(&master->dev,
999				"failed to unprepare message: %d\n", ret);
1000		}
1001	}
1002
1003	spin_lock_irqsave(&master->queue_lock, flags);
1004	master->cur_msg = NULL;
1005	master->cur_msg_prepared = false;
1006	queue_kthread_work(&master->kworker, &master->pump_messages);
1007	spin_unlock_irqrestore(&master->queue_lock, flags);
1008
1009	trace_spi_message_done(mesg);
1010
1011	mesg->state = NULL;
1012	if (mesg->complete)
1013		mesg->complete(mesg->context);
1014}
1015EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1016
1017static int spi_start_queue(struct spi_master *master)
1018{
1019	unsigned long flags;
1020
1021	spin_lock_irqsave(&master->queue_lock, flags);
1022
1023	if (master->running || master->busy) {
1024		spin_unlock_irqrestore(&master->queue_lock, flags);
1025		return -EBUSY;
1026	}
1027
1028	master->running = true;
1029	master->cur_msg = NULL;
1030	spin_unlock_irqrestore(&master->queue_lock, flags);
1031
1032	queue_kthread_work(&master->kworker, &master->pump_messages);
1033
1034	return 0;
1035}
1036
1037static int spi_stop_queue(struct spi_master *master)
1038{
1039	unsigned long flags;
1040	unsigned limit = 500;
1041	int ret = 0;
1042
1043	spin_lock_irqsave(&master->queue_lock, flags);
1044
1045	/*
1046	 * This is a bit lame, but is optimized for the common execution path.
1047	 * A wait_queue on the master->busy could be used, but then the common
1048	 * execution path (pump_messages) would be required to call wake_up or
1049	 * friends on every SPI message. Do this instead.
1050	 */
1051	while ((!list_empty(&master->queue) || master->busy) && limit--) {
1052		spin_unlock_irqrestore(&master->queue_lock, flags);
1053		usleep_range(10000, 11000);
1054		spin_lock_irqsave(&master->queue_lock, flags);
1055	}
1056
1057	if (!list_empty(&master->queue) || master->busy)
1058		ret = -EBUSY;
1059	else
1060		master->running = false;
1061
1062	spin_unlock_irqrestore(&master->queue_lock, flags);
1063
1064	if (ret) {
1065		dev_warn(&master->dev,
1066			 "could not stop message queue\n");
1067		return ret;
1068	}
1069	return ret;
1070}
1071
1072static int spi_destroy_queue(struct spi_master *master)
1073{
1074	int ret;
1075
1076	ret = spi_stop_queue(master);
1077
1078	/*
1079	 * flush_kthread_worker will block until all work is done.
1080	 * If the reason that stop_queue timed out is that the work will never
1081	 * finish, then it does no good to call flush/stop thread, so
1082	 * return anyway.
1083	 */
1084	if (ret) {
1085		dev_err(&master->dev, "problem destroying queue\n");
1086		return ret;
1087	}
1088
1089	flush_kthread_worker(&master->kworker);
1090	kthread_stop(master->kworker_task);
1091
1092	return 0;
1093}
1094
1095static int __spi_queued_transfer(struct spi_device *spi,
1096				 struct spi_message *msg,
1097				 bool need_pump)
1098{
1099	struct spi_master *master = spi->master;
1100	unsigned long flags;
1101
1102	spin_lock_irqsave(&master->queue_lock, flags);
1103
1104	if (!master->running) {
1105		spin_unlock_irqrestore(&master->queue_lock, flags);
1106		return -ESHUTDOWN;
1107	}
1108	msg->actual_length = 0;
1109	msg->status = -EINPROGRESS;
1110
1111	list_add_tail(&msg->queue, &master->queue);
1112	if (!master->busy && need_pump)
1113		queue_kthread_work(&master->kworker, &master->pump_messages);
1114
1115	spin_unlock_irqrestore(&master->queue_lock, flags);
1116	return 0;
1117}
1118
1119/**
1120 * spi_queued_transfer - transfer function for queued transfers
1121 * @spi: spi device which is requesting transfer
1122 * @msg: spi message which is to handled is queued to driver queue
1123 */
1124static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1125{
1126	return __spi_queued_transfer(spi, msg, true);
1127}
1128
1129static int spi_master_initialize_queue(struct spi_master *master)
1130{
1131	int ret;
1132
1133	master->transfer = spi_queued_transfer;
1134	if (!master->transfer_one_message)
1135		master->transfer_one_message = spi_transfer_one_message;
1136
1137	/* Initialize and start queue */
1138	ret = spi_init_queue(master);
1139	if (ret) {
1140		dev_err(&master->dev, "problem initializing queue\n");
1141		goto err_init_queue;
1142	}
1143	master->queued = true;
1144	ret = spi_start_queue(master);
1145	if (ret) {
1146		dev_err(&master->dev, "problem starting queue\n");
1147		goto err_start_queue;
1148	}
1149
1150	return 0;
1151
1152err_start_queue:
1153	spi_destroy_queue(master);
1154err_init_queue:
1155	return ret;
1156}
1157
1158/*-------------------------------------------------------------------------*/
1159
1160#if defined(CONFIG_OF)
1161static struct spi_device *
1162of_register_spi_device(struct spi_master *master, struct device_node *nc)
1163{
1164	struct spi_device *spi;
1165	int rc;
1166	u32 value;
1167
1168	/* Alloc an spi_device */
1169	spi = spi_alloc_device(master);
1170	if (!spi) {
1171		dev_err(&master->dev, "spi_device alloc error for %s\n",
1172			nc->full_name);
1173		rc = -ENOMEM;
1174		goto err_out;
1175	}
1176
1177	/* Select device driver */
1178	rc = of_modalias_node(nc, spi->modalias,
1179				sizeof(spi->modalias));
1180	if (rc < 0) {
1181		dev_err(&master->dev, "cannot find modalias for %s\n",
1182			nc->full_name);
1183		goto err_out;
1184	}
1185
1186	/* Device address */
1187	rc = of_property_read_u32(nc, "reg", &value);
1188	if (rc) {
1189		dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1190			nc->full_name, rc);
1191		goto err_out;
1192	}
1193	spi->chip_select = value;
1194
1195	/* Mode (clock phase/polarity/etc.) */
1196	if (of_find_property(nc, "spi-cpha", NULL))
1197		spi->mode |= SPI_CPHA;
1198	if (of_find_property(nc, "spi-cpol", NULL))
1199		spi->mode |= SPI_CPOL;
1200	if (of_find_property(nc, "spi-cs-high", NULL))
1201		spi->mode |= SPI_CS_HIGH;
1202	if (of_find_property(nc, "spi-3wire", NULL))
1203		spi->mode |= SPI_3WIRE;
1204	if (of_find_property(nc, "spi-lsb-first", NULL))
1205		spi->mode |= SPI_LSB_FIRST;
1206
1207	/* Device DUAL/QUAD mode */
1208	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1209		switch (value) {
1210		case 1:
1211			break;
1212		case 2:
1213			spi->mode |= SPI_TX_DUAL;
1214			break;
1215		case 4:
1216			spi->mode |= SPI_TX_QUAD;
1217			break;
1218		default:
1219			dev_warn(&master->dev,
1220				"spi-tx-bus-width %d not supported\n",
1221				value);
1222			break;
1223		}
1224	}
1225
1226	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1227		switch (value) {
1228		case 1:
1229			break;
1230		case 2:
1231			spi->mode |= SPI_RX_DUAL;
1232			break;
1233		case 4:
1234			spi->mode |= SPI_RX_QUAD;
1235			break;
1236		default:
1237			dev_warn(&master->dev,
1238				"spi-rx-bus-width %d not supported\n",
1239				value);
1240			break;
1241		}
1242	}
1243
1244	/* Device speed */
1245	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1246	if (rc) {
1247		dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1248			nc->full_name, rc);
1249		goto err_out;
1250	}
1251	spi->max_speed_hz = value;
1252
1253	/* IRQ */
1254	spi->irq = irq_of_parse_and_map(nc, 0);
1255
1256	/* Store a pointer to the node in the device structure */
1257	of_node_get(nc);
1258	spi->dev.of_node = nc;
1259
1260	/* Register the new device */
1261	rc = spi_add_device(spi);
1262	if (rc) {
1263		dev_err(&master->dev, "spi_device register error %s\n",
1264			nc->full_name);
1265		goto err_out;
1266	}
1267
1268	return spi;
1269
1270err_out:
1271	spi_dev_put(spi);
1272	return ERR_PTR(rc);
1273}
1274
1275/**
1276 * of_register_spi_devices() - Register child devices onto the SPI bus
1277 * @master:	Pointer to spi_master device
1278 *
1279 * Registers an spi_device for each child node of master node which has a 'reg'
1280 * property.
1281 */
1282static void of_register_spi_devices(struct spi_master *master)
1283{
1284	struct spi_device *spi;
1285	struct device_node *nc;
1286
1287	if (!master->dev.of_node)
1288		return;
1289
1290	for_each_available_child_of_node(master->dev.of_node, nc) {
1291		spi = of_register_spi_device(master, nc);
1292		if (IS_ERR(spi))
1293			dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1294				nc->full_name);
1295	}
1296}
1297#else
1298static void of_register_spi_devices(struct spi_master *master) { }
1299#endif
1300
1301#ifdef CONFIG_ACPI
1302static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1303{
1304	struct spi_device *spi = data;
1305
1306	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1307		struct acpi_resource_spi_serialbus *sb;
1308
1309		sb = &ares->data.spi_serial_bus;
1310		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1311			spi->chip_select = sb->device_selection;
1312			spi->max_speed_hz = sb->connection_speed;
1313
1314			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1315				spi->mode |= SPI_CPHA;
1316			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1317				spi->mode |= SPI_CPOL;
1318			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1319				spi->mode |= SPI_CS_HIGH;
1320		}
1321	} else if (spi->irq < 0) {
1322		struct resource r;
1323
1324		if (acpi_dev_resource_interrupt(ares, 0, &r))
1325			spi->irq = r.start;
1326	}
1327
1328	/* Always tell the ACPI core to skip this resource */
1329	return 1;
1330}
1331
1332static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1333				       void *data, void **return_value)
1334{
1335	struct spi_master *master = data;
1336	struct list_head resource_list;
1337	struct acpi_device *adev;
1338	struct spi_device *spi;
1339	int ret;
1340
1341	if (acpi_bus_get_device(handle, &adev))
1342		return AE_OK;
1343	if (acpi_bus_get_status(adev) || !adev->status.present)
1344		return AE_OK;
1345
1346	spi = spi_alloc_device(master);
1347	if (!spi) {
1348		dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1349			dev_name(&adev->dev));
1350		return AE_NO_MEMORY;
1351	}
1352
1353	ACPI_COMPANION_SET(&spi->dev, adev);
1354	spi->irq = -1;
1355
1356	INIT_LIST_HEAD(&resource_list);
1357	ret = acpi_dev_get_resources(adev, &resource_list,
1358				     acpi_spi_add_resource, spi);
1359	acpi_dev_free_resource_list(&resource_list);
1360
1361	if (ret < 0 || !spi->max_speed_hz) {
1362		spi_dev_put(spi);
1363		return AE_OK;
1364	}
1365
1366	adev->power.flags.ignore_parent = true;
1367	strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1368	if (spi_add_device(spi)) {
1369		adev->power.flags.ignore_parent = false;
1370		dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1371			dev_name(&adev->dev));
1372		spi_dev_put(spi);
1373	}
1374
1375	return AE_OK;
1376}
1377
1378static void acpi_register_spi_devices(struct spi_master *master)
1379{
1380	acpi_status status;
1381	acpi_handle handle;
1382
1383	handle = ACPI_HANDLE(master->dev.parent);
1384	if (!handle)
1385		return;
1386
1387	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1388				     acpi_spi_add_device, NULL,
1389				     master, NULL);
1390	if (ACPI_FAILURE(status))
1391		dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1392}
1393#else
1394static inline void acpi_register_spi_devices(struct spi_master *master) {}
1395#endif /* CONFIG_ACPI */
1396
1397static void spi_master_release(struct device *dev)
1398{
1399	struct spi_master *master;
1400
1401	master = container_of(dev, struct spi_master, dev);
1402	kfree(master);
1403}
1404
1405static struct class spi_master_class = {
1406	.name		= "spi_master",
1407	.owner		= THIS_MODULE,
1408	.dev_release	= spi_master_release,
1409};
1410
1411
1412
1413/**
1414 * spi_alloc_master - allocate SPI master controller
1415 * @dev: the controller, possibly using the platform_bus
1416 * @size: how much zeroed driver-private data to allocate; the pointer to this
1417 *	memory is in the driver_data field of the returned device,
1418 *	accessible with spi_master_get_devdata().
1419 * Context: can sleep
1420 *
1421 * This call is used only by SPI master controller drivers, which are the
1422 * only ones directly touching chip registers.  It's how they allocate
1423 * an spi_master structure, prior to calling spi_register_master().
1424 *
1425 * This must be called from context that can sleep.  It returns the SPI
1426 * master structure on success, else NULL.
1427 *
1428 * The caller is responsible for assigning the bus number and initializing
1429 * the master's methods before calling spi_register_master(); and (after errors
1430 * adding the device) calling spi_master_put() to prevent a memory leak.
1431 */
1432struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1433{
1434	struct spi_master	*master;
1435
1436	if (!dev)
1437		return NULL;
1438
1439	master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1440	if (!master)
1441		return NULL;
1442
1443	device_initialize(&master->dev);
1444	master->bus_num = -1;
1445	master->num_chipselect = 1;
1446	master->dev.class = &spi_master_class;
1447	master->dev.parent = get_device(dev);
1448	spi_master_set_devdata(master, &master[1]);
1449
1450	return master;
1451}
1452EXPORT_SYMBOL_GPL(spi_alloc_master);
1453
1454#ifdef CONFIG_OF
1455static int of_spi_register_master(struct spi_master *master)
1456{
1457	int nb, i, *cs;
1458	struct device_node *np = master->dev.of_node;
1459
1460	if (!np)
1461		return 0;
1462
1463	nb = of_gpio_named_count(np, "cs-gpios");
1464	master->num_chipselect = max_t(int, nb, master->num_chipselect);
1465
1466	/* Return error only for an incorrectly formed cs-gpios property */
1467	if (nb == 0 || nb == -ENOENT)
1468		return 0;
1469	else if (nb < 0)
1470		return nb;
1471
1472	cs = devm_kzalloc(&master->dev,
1473			  sizeof(int) * master->num_chipselect,
1474			  GFP_KERNEL);
1475	master->cs_gpios = cs;
1476
1477	if (!master->cs_gpios)
1478		return -ENOMEM;
1479
1480	for (i = 0; i < master->num_chipselect; i++)
1481		cs[i] = -ENOENT;
1482
1483	for (i = 0; i < nb; i++)
1484		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1485
1486	return 0;
1487}
1488#else
1489static int of_spi_register_master(struct spi_master *master)
1490{
1491	return 0;
1492}
1493#endif
1494
1495/**
1496 * spi_register_master - register SPI master controller
1497 * @master: initialized master, originally from spi_alloc_master()
1498 * Context: can sleep
1499 *
1500 * SPI master controllers connect to their drivers using some non-SPI bus,
1501 * such as the platform bus.  The final stage of probe() in that code
1502 * includes calling spi_register_master() to hook up to this SPI bus glue.
1503 *
1504 * SPI controllers use board specific (often SOC specific) bus numbers,
1505 * and board-specific addressing for SPI devices combines those numbers
1506 * with chip select numbers.  Since SPI does not directly support dynamic
1507 * device identification, boards need configuration tables telling which
1508 * chip is at which address.
1509 *
1510 * This must be called from context that can sleep.  It returns zero on
1511 * success, else a negative error code (dropping the master's refcount).
1512 * After a successful return, the caller is responsible for calling
1513 * spi_unregister_master().
1514 */
1515int spi_register_master(struct spi_master *master)
1516{
1517	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1518	struct device		*dev = master->dev.parent;
1519	struct boardinfo	*bi;
1520	int			status = -ENODEV;
1521	int			dynamic = 0;
1522
1523	if (!dev)
1524		return -ENODEV;
1525
1526	status = of_spi_register_master(master);
1527	if (status)
1528		return status;
1529
1530	/* even if it's just one always-selected device, there must
1531	 * be at least one chipselect
1532	 */
1533	if (master->num_chipselect == 0)
1534		return -EINVAL;
1535
1536	if ((master->bus_num < 0) && master->dev.of_node)
1537		master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1538
1539	/* convention:  dynamically assigned bus IDs count down from the max */
1540	if (master->bus_num < 0) {
1541		/* FIXME switch to an IDR based scheme, something like
1542		 * I2C now uses, so we can't run out of "dynamic" IDs
1543		 */
1544		master->bus_num = atomic_dec_return(&dyn_bus_id);
1545		dynamic = 1;
1546	}
1547
1548	INIT_LIST_HEAD(&master->queue);
1549	spin_lock_init(&master->queue_lock);
1550	spin_lock_init(&master->bus_lock_spinlock);
1551	mutex_init(&master->bus_lock_mutex);
1552	master->bus_lock_flag = 0;
1553	init_completion(&master->xfer_completion);
1554	if (!master->max_dma_len)
1555		master->max_dma_len = INT_MAX;
1556
1557	/* register the device, then userspace will see it.
1558	 * registration fails if the bus ID is in use.
1559	 */
1560	dev_set_name(&master->dev, "spi%u", master->bus_num);
1561	status = device_add(&master->dev);
1562	if (status < 0)
1563		goto done;
1564	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1565			dynamic ? " (dynamic)" : "");
1566
1567	/* If we're using a queued driver, start the queue */
1568	if (master->transfer)
1569		dev_info(dev, "master is unqueued, this is deprecated\n");
1570	else {
1571		status = spi_master_initialize_queue(master);
1572		if (status) {
1573			device_del(&master->dev);
1574			goto done;
1575		}
1576	}
1577
1578	mutex_lock(&board_lock);
1579	list_add_tail(&master->list, &spi_master_list);
1580	list_for_each_entry(bi, &board_list, list)
1581		spi_match_master_to_boardinfo(master, &bi->board_info);
1582	mutex_unlock(&board_lock);
1583
1584	/* Register devices from the device tree and ACPI */
1585	of_register_spi_devices(master);
1586	acpi_register_spi_devices(master);
1587done:
1588	return status;
1589}
1590EXPORT_SYMBOL_GPL(spi_register_master);
1591
1592static void devm_spi_unregister(struct device *dev, void *res)
1593{
1594	spi_unregister_master(*(struct spi_master **)res);
1595}
1596
1597/**
1598 * dev_spi_register_master - register managed SPI master controller
1599 * @dev:    device managing SPI master
1600 * @master: initialized master, originally from spi_alloc_master()
1601 * Context: can sleep
1602 *
1603 * Register a SPI device as with spi_register_master() which will
1604 * automatically be unregister
1605 */
1606int devm_spi_register_master(struct device *dev, struct spi_master *master)
1607{
1608	struct spi_master **ptr;
1609	int ret;
1610
1611	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1612	if (!ptr)
1613		return -ENOMEM;
1614
1615	ret = spi_register_master(master);
1616	if (!ret) {
1617		*ptr = master;
1618		devres_add(dev, ptr);
1619	} else {
1620		devres_free(ptr);
1621	}
1622
1623	return ret;
1624}
1625EXPORT_SYMBOL_GPL(devm_spi_register_master);
1626
1627static int __unregister(struct device *dev, void *null)
1628{
1629	spi_unregister_device(to_spi_device(dev));
1630	return 0;
1631}
1632
1633/**
1634 * spi_unregister_master - unregister SPI master controller
1635 * @master: the master being unregistered
1636 * Context: can sleep
1637 *
1638 * This call is used only by SPI master controller drivers, which are the
1639 * only ones directly touching chip registers.
1640 *
1641 * This must be called from context that can sleep.
1642 */
1643void spi_unregister_master(struct spi_master *master)
1644{
1645	int dummy;
1646
1647	if (master->queued) {
1648		if (spi_destroy_queue(master))
1649			dev_err(&master->dev, "queue remove failed\n");
1650	}
1651
1652	mutex_lock(&board_lock);
1653	list_del(&master->list);
1654	mutex_unlock(&board_lock);
1655
1656	dummy = device_for_each_child(&master->dev, NULL, __unregister);
1657	device_unregister(&master->dev);
1658}
1659EXPORT_SYMBOL_GPL(spi_unregister_master);
1660
1661int spi_master_suspend(struct spi_master *master)
1662{
1663	int ret;
1664
1665	/* Basically no-ops for non-queued masters */
1666	if (!master->queued)
1667		return 0;
1668
1669	ret = spi_stop_queue(master);
1670	if (ret)
1671		dev_err(&master->dev, "queue stop failed\n");
1672
1673	return ret;
1674}
1675EXPORT_SYMBOL_GPL(spi_master_suspend);
1676
1677int spi_master_resume(struct spi_master *master)
1678{
1679	int ret;
1680
1681	if (!master->queued)
1682		return 0;
1683
1684	ret = spi_start_queue(master);
1685	if (ret)
1686		dev_err(&master->dev, "queue restart failed\n");
1687
1688	return ret;
1689}
1690EXPORT_SYMBOL_GPL(spi_master_resume);
1691
1692static int __spi_master_match(struct device *dev, const void *data)
1693{
1694	struct spi_master *m;
1695	const u16 *bus_num = data;
1696
1697	m = container_of(dev, struct spi_master, dev);
1698	return m->bus_num == *bus_num;
1699}
1700
1701/**
1702 * spi_busnum_to_master - look up master associated with bus_num
1703 * @bus_num: the master's bus number
1704 * Context: can sleep
1705 *
1706 * This call may be used with devices that are registered after
1707 * arch init time.  It returns a refcounted pointer to the relevant
1708 * spi_master (which the caller must release), or NULL if there is
1709 * no such master registered.
1710 */
1711struct spi_master *spi_busnum_to_master(u16 bus_num)
1712{
1713	struct device		*dev;
1714	struct spi_master	*master = NULL;
1715
1716	dev = class_find_device(&spi_master_class, NULL, &bus_num,
1717				__spi_master_match);
1718	if (dev)
1719		master = container_of(dev, struct spi_master, dev);
1720	/* reference got in class_find_device */
1721	return master;
1722}
1723EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1724
1725
1726/*-------------------------------------------------------------------------*/
1727
1728/* Core methods for SPI master protocol drivers.  Some of the
1729 * other core methods are currently defined as inline functions.
1730 */
1731
1732/**
1733 * spi_setup - setup SPI mode and clock rate
1734 * @spi: the device whose settings are being modified
1735 * Context: can sleep, and no requests are queued to the device
1736 *
1737 * SPI protocol drivers may need to update the transfer mode if the
1738 * device doesn't work with its default.  They may likewise need
1739 * to update clock rates or word sizes from initial values.  This function
1740 * changes those settings, and must be called from a context that can sleep.
1741 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1742 * effect the next time the device is selected and data is transferred to
1743 * or from it.  When this function returns, the spi device is deselected.
1744 *
1745 * Note that this call will fail if the protocol driver specifies an option
1746 * that the underlying controller or its driver does not support.  For
1747 * example, not all hardware supports wire transfers using nine bit words,
1748 * LSB-first wire encoding, or active-high chipselects.
1749 */
1750int spi_setup(struct spi_device *spi)
1751{
1752	unsigned	bad_bits, ugly_bits;
1753	int		status = 0;
1754
1755	/* check mode to prevent that DUAL and QUAD set at the same time
1756	 */
1757	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
1758		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
1759		dev_err(&spi->dev,
1760		"setup: can not select dual and quad at the same time\n");
1761		return -EINVAL;
1762	}
1763	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
1764	 */
1765	if ((spi->mode & SPI_3WIRE) && (spi->mode &
1766		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
1767		return -EINVAL;
1768	/* help drivers fail *cleanly* when they need options
1769	 * that aren't supported with their current master
1770	 */
1771	bad_bits = spi->mode & ~spi->master->mode_bits;
1772	ugly_bits = bad_bits &
1773		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
1774	if (ugly_bits) {
1775		dev_warn(&spi->dev,
1776			 "setup: ignoring unsupported mode bits %x\n",
1777			 ugly_bits);
1778		spi->mode &= ~ugly_bits;
1779		bad_bits &= ~ugly_bits;
1780	}
1781	if (bad_bits) {
1782		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1783			bad_bits);
1784		return -EINVAL;
1785	}
1786
1787	if (!spi->bits_per_word)
1788		spi->bits_per_word = 8;
1789
1790	if (!spi->max_speed_hz)
1791		spi->max_speed_hz = spi->master->max_speed_hz;
1792
1793	spi_set_cs(spi, false);
1794
1795	if (spi->master->setup)
1796		status = spi->master->setup(spi);
1797
1798	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
1799			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1800			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1801			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1802			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
1803			(spi->mode & SPI_LOOP) ? "loopback, " : "",
1804			spi->bits_per_word, spi->max_speed_hz,
1805			status);
1806
1807	return status;
1808}
1809EXPORT_SYMBOL_GPL(spi_setup);
1810
1811static int __spi_validate(struct spi_device *spi, struct spi_message *message)
1812{
1813	struct spi_master *master = spi->master;
1814	struct spi_transfer *xfer;
1815	int w_size;
1816
1817	if (list_empty(&message->transfers))
1818		return -EINVAL;
1819
1820	/* Half-duplex links include original MicroWire, and ones with
1821	 * only one data pin like SPI_3WIRE (switches direction) or where
1822	 * either MOSI or MISO is missing.  They can also be caused by
1823	 * software limitations.
1824	 */
1825	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1826			|| (spi->mode & SPI_3WIRE)) {
1827		unsigned flags = master->flags;
1828
1829		list_for_each_entry(xfer, &message->transfers, transfer_list) {
1830			if (xfer->rx_buf && xfer->tx_buf)
1831				return -EINVAL;
1832			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1833				return -EINVAL;
1834			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1835				return -EINVAL;
1836		}
1837	}
1838
1839	/**
1840	 * Set transfer bits_per_word and max speed as spi device default if
1841	 * it is not set for this transfer.
1842	 * Set transfer tx_nbits and rx_nbits as single transfer default
1843	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
1844	 */
1845	list_for_each_entry(xfer, &message->transfers, transfer_list) {
1846		message->frame_length += xfer->len;
1847		if (!xfer->bits_per_word)
1848			xfer->bits_per_word = spi->bits_per_word;
1849
1850		if (!xfer->speed_hz)
1851			xfer->speed_hz = spi->max_speed_hz;
1852
1853		if (master->max_speed_hz &&
1854		    xfer->speed_hz > master->max_speed_hz)
1855			xfer->speed_hz = master->max_speed_hz;
1856
1857		if (master->bits_per_word_mask) {
1858			/* Only 32 bits fit in the mask */
1859			if (xfer->bits_per_word > 32)
1860				return -EINVAL;
1861			if (!(master->bits_per_word_mask &
1862					BIT(xfer->bits_per_word - 1)))
1863				return -EINVAL;
1864		}
1865
1866		/*
1867		 * SPI transfer length should be multiple of SPI word size
1868		 * where SPI word size should be power-of-two multiple
1869		 */
1870		if (xfer->bits_per_word <= 8)
1871			w_size = 1;
1872		else if (xfer->bits_per_word <= 16)
1873			w_size = 2;
1874		else
1875			w_size = 4;
1876
1877		/* No partial transfers accepted */
1878		if (xfer->len % w_size)
1879			return -EINVAL;
1880
1881		if (xfer->speed_hz && master->min_speed_hz &&
1882		    xfer->speed_hz < master->min_speed_hz)
1883			return -EINVAL;
1884
1885		if (xfer->tx_buf && !xfer->tx_nbits)
1886			xfer->tx_nbits = SPI_NBITS_SINGLE;
1887		if (xfer->rx_buf && !xfer->rx_nbits)
1888			xfer->rx_nbits = SPI_NBITS_SINGLE;
1889		/* check transfer tx/rx_nbits:
1890		 * 1. check the value matches one of single, dual and quad
1891		 * 2. check tx/rx_nbits match the mode in spi_device
1892		 */
1893		if (xfer->tx_buf) {
1894			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
1895				xfer->tx_nbits != SPI_NBITS_DUAL &&
1896				xfer->tx_nbits != SPI_NBITS_QUAD)
1897				return -EINVAL;
1898			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
1899				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
1900				return -EINVAL;
1901			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
1902				!(spi->mode & SPI_TX_QUAD))
1903				return -EINVAL;
1904		}
1905		/* check transfer rx_nbits */
1906		if (xfer->rx_buf) {
1907			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
1908				xfer->rx_nbits != SPI_NBITS_DUAL &&
1909				xfer->rx_nbits != SPI_NBITS_QUAD)
1910				return -EINVAL;
1911			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
1912				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
1913				return -EINVAL;
1914			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
1915				!(spi->mode & SPI_RX_QUAD))
1916				return -EINVAL;
1917		}
1918	}
1919
1920	message->status = -EINPROGRESS;
1921
1922	return 0;
1923}
1924
1925static int __spi_async(struct spi_device *spi, struct spi_message *message)
1926{
1927	struct spi_master *master = spi->master;
1928
1929	message->spi = spi;
1930
1931	trace_spi_message_submit(message);
1932
1933	return master->transfer(spi, message);
1934}
1935
1936/**
1937 * spi_async - asynchronous SPI transfer
1938 * @spi: device with which data will be exchanged
1939 * @message: describes the data transfers, including completion callback
1940 * Context: any (irqs may be blocked, etc)
1941 *
1942 * This call may be used in_irq and other contexts which can't sleep,
1943 * as well as from task contexts which can sleep.
1944 *
1945 * The completion callback is invoked in a context which can't sleep.
1946 * Before that invocation, the value of message->status is undefined.
1947 * When the callback is issued, message->status holds either zero (to
1948 * indicate complete success) or a negative error code.  After that
1949 * callback returns, the driver which issued the transfer request may
1950 * deallocate the associated memory; it's no longer in use by any SPI
1951 * core or controller driver code.
1952 *
1953 * Note that although all messages to a spi_device are handled in
1954 * FIFO order, messages may go to different devices in other orders.
1955 * Some device might be higher priority, or have various "hard" access
1956 * time requirements, for example.
1957 *
1958 * On detection of any fault during the transfer, processing of
1959 * the entire message is aborted, and the device is deselected.
1960 * Until returning from the associated message completion callback,
1961 * no other spi_message queued to that device will be processed.
1962 * (This rule applies equally to all the synchronous transfer calls,
1963 * which are wrappers around this core asynchronous primitive.)
1964 */
1965int spi_async(struct spi_device *spi, struct spi_message *message)
1966{
1967	struct spi_master *master = spi->master;
1968	int ret;
1969	unsigned long flags;
1970
1971	ret = __spi_validate(spi, message);
1972	if (ret != 0)
1973		return ret;
1974
1975	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1976
1977	if (master->bus_lock_flag)
1978		ret = -EBUSY;
1979	else
1980		ret = __spi_async(spi, message);
1981
1982	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1983
1984	return ret;
1985}
1986EXPORT_SYMBOL_GPL(spi_async);
1987
1988/**
1989 * spi_async_locked - version of spi_async with exclusive bus usage
1990 * @spi: device with which data will be exchanged
1991 * @message: describes the data transfers, including completion callback
1992 * Context: any (irqs may be blocked, etc)
1993 *
1994 * This call may be used in_irq and other contexts which can't sleep,
1995 * as well as from task contexts which can sleep.
1996 *
1997 * The completion callback is invoked in a context which can't sleep.
1998 * Before that invocation, the value of message->status is undefined.
1999 * When the callback is issued, message->status holds either zero (to
2000 * indicate complete success) or a negative error code.  After that
2001 * callback returns, the driver which issued the transfer request may
2002 * deallocate the associated memory; it's no longer in use by any SPI
2003 * core or controller driver code.
2004 *
2005 * Note that although all messages to a spi_device are handled in
2006 * FIFO order, messages may go to different devices in other orders.
2007 * Some device might be higher priority, or have various "hard" access
2008 * time requirements, for example.
2009 *
2010 * On detection of any fault during the transfer, processing of
2011 * the entire message is aborted, and the device is deselected.
2012 * Until returning from the associated message completion callback,
2013 * no other spi_message queued to that device will be processed.
2014 * (This rule applies equally to all the synchronous transfer calls,
2015 * which are wrappers around this core asynchronous primitive.)
2016 */
2017int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2018{
2019	struct spi_master *master = spi->master;
2020	int ret;
2021	unsigned long flags;
2022
2023	ret = __spi_validate(spi, message);
2024	if (ret != 0)
2025		return ret;
2026
2027	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2028
2029	ret = __spi_async(spi, message);
2030
2031	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2032
2033	return ret;
2034
2035}
2036EXPORT_SYMBOL_GPL(spi_async_locked);
2037
2038
2039/*-------------------------------------------------------------------------*/
2040
2041/* Utility methods for SPI master protocol drivers, layered on
2042 * top of the core.  Some other utility methods are defined as
2043 * inline functions.
2044 */
2045
2046static void spi_complete(void *arg)
2047{
2048	complete(arg);
2049}
2050
2051static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2052		      int bus_locked)
2053{
2054	DECLARE_COMPLETION_ONSTACK(done);
2055	int status;
2056	struct spi_master *master = spi->master;
2057	unsigned long flags;
2058
2059	status = __spi_validate(spi, message);
2060	if (status != 0)
2061		return status;
2062
2063	message->complete = spi_complete;
2064	message->context = &done;
2065	message->spi = spi;
2066
2067	if (!bus_locked)
2068		mutex_lock(&master->bus_lock_mutex);
2069
2070	/* If we're not using the legacy transfer method then we will
2071	 * try to transfer in the calling context so special case.
2072	 * This code would be less tricky if we could remove the
2073	 * support for driver implemented message queues.
2074	 */
2075	if (master->transfer == spi_queued_transfer) {
2076		spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2077
2078		trace_spi_message_submit(message);
2079
2080		status = __spi_queued_transfer(spi, message, false);
2081
2082		spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2083	} else {
2084		status = spi_async_locked(spi, message);
2085	}
2086
2087	if (!bus_locked)
2088		mutex_unlock(&master->bus_lock_mutex);
2089
2090	if (status == 0) {
2091		/* Push out the messages in the calling context if we
2092		 * can.
2093		 */
2094		if (master->transfer == spi_queued_transfer)
2095			__spi_pump_messages(master, false);
2096
2097		wait_for_completion(&done);
2098		status = message->status;
2099	}
2100	message->context = NULL;
2101	return status;
2102}
2103
2104/**
2105 * spi_sync - blocking/synchronous SPI data transfers
2106 * @spi: device with which data will be exchanged
2107 * @message: describes the data transfers
2108 * Context: can sleep
2109 *
2110 * This call may only be used from a context that may sleep.  The sleep
2111 * is non-interruptible, and has no timeout.  Low-overhead controller
2112 * drivers may DMA directly into and out of the message buffers.
2113 *
2114 * Note that the SPI device's chip select is active during the message,
2115 * and then is normally disabled between messages.  Drivers for some
2116 * frequently-used devices may want to minimize costs of selecting a chip,
2117 * by leaving it selected in anticipation that the next message will go
2118 * to the same chip.  (That may increase power usage.)
2119 *
2120 * Also, the caller is guaranteeing that the memory associated with the
2121 * message will not be freed before this call returns.
2122 *
2123 * It returns zero on success, else a negative error code.
2124 */
2125int spi_sync(struct spi_device *spi, struct spi_message *message)
2126{
2127	return __spi_sync(spi, message, 0);
2128}
2129EXPORT_SYMBOL_GPL(spi_sync);
2130
2131/**
2132 * spi_sync_locked - version of spi_sync with exclusive bus usage
2133 * @spi: device with which data will be exchanged
2134 * @message: describes the data transfers
2135 * Context: can sleep
2136 *
2137 * This call may only be used from a context that may sleep.  The sleep
2138 * is non-interruptible, and has no timeout.  Low-overhead controller
2139 * drivers may DMA directly into and out of the message buffers.
2140 *
2141 * This call should be used by drivers that require exclusive access to the
2142 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2143 * be released by a spi_bus_unlock call when the exclusive access is over.
2144 *
2145 * It returns zero on success, else a negative error code.
2146 */
2147int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2148{
2149	return __spi_sync(spi, message, 1);
2150}
2151EXPORT_SYMBOL_GPL(spi_sync_locked);
2152
2153/**
2154 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2155 * @master: SPI bus master that should be locked for exclusive bus access
2156 * Context: can sleep
2157 *
2158 * This call may only be used from a context that may sleep.  The sleep
2159 * is non-interruptible, and has no timeout.
2160 *
2161 * This call should be used by drivers that require exclusive access to the
2162 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2163 * exclusive access is over. Data transfer must be done by spi_sync_locked
2164 * and spi_async_locked calls when the SPI bus lock is held.
2165 *
2166 * It returns zero on success, else a negative error code.
2167 */
2168int spi_bus_lock(struct spi_master *master)
2169{
2170	unsigned long flags;
2171
2172	mutex_lock(&master->bus_lock_mutex);
2173
2174	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2175	master->bus_lock_flag = 1;
2176	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2177
2178	/* mutex remains locked until spi_bus_unlock is called */
2179
2180	return 0;
2181}
2182EXPORT_SYMBOL_GPL(spi_bus_lock);
2183
2184/**
2185 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2186 * @master: SPI bus master that was locked for exclusive bus access
2187 * Context: can sleep
2188 *
2189 * This call may only be used from a context that may sleep.  The sleep
2190 * is non-interruptible, and has no timeout.
2191 *
2192 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2193 * call.
2194 *
2195 * It returns zero on success, else a negative error code.
2196 */
2197int spi_bus_unlock(struct spi_master *master)
2198{
2199	master->bus_lock_flag = 0;
2200
2201	mutex_unlock(&master->bus_lock_mutex);
2202
2203	return 0;
2204}
2205EXPORT_SYMBOL_GPL(spi_bus_unlock);
2206
2207/* portable code must never pass more than 32 bytes */
2208#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
2209
2210static u8	*buf;
2211
2212/**
2213 * spi_write_then_read - SPI synchronous write followed by read
2214 * @spi: device with which data will be exchanged
2215 * @txbuf: data to be written (need not be dma-safe)
2216 * @n_tx: size of txbuf, in bytes
2217 * @rxbuf: buffer into which data will be read (need not be dma-safe)
2218 * @n_rx: size of rxbuf, in bytes
2219 * Context: can sleep
2220 *
2221 * This performs a half duplex MicroWire style transaction with the
2222 * device, sending txbuf and then reading rxbuf.  The return value
2223 * is zero for success, else a negative errno status code.
2224 * This call may only be used from a context that may sleep.
2225 *
2226 * Parameters to this routine are always copied using a small buffer;
2227 * portable code should never use this for more than 32 bytes.
2228 * Performance-sensitive or bulk transfer code should instead use
2229 * spi_{async,sync}() calls with dma-safe buffers.
2230 */
2231int spi_write_then_read(struct spi_device *spi,
2232		const void *txbuf, unsigned n_tx,
2233		void *rxbuf, unsigned n_rx)
2234{
2235	static DEFINE_MUTEX(lock);
2236
2237	int			status;
2238	struct spi_message	message;
2239	struct spi_transfer	x[2];
2240	u8			*local_buf;
2241
2242	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
2243	 * copying here, (as a pure convenience thing), but we can
2244	 * keep heap costs out of the hot path unless someone else is
2245	 * using the pre-allocated buffer or the transfer is too large.
2246	 */
2247	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2248		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2249				    GFP_KERNEL | GFP_DMA);
2250		if (!local_buf)
2251			return -ENOMEM;
2252	} else {
2253		local_buf = buf;
2254	}
2255
2256	spi_message_init(&message);
2257	memset(x, 0, sizeof(x));
2258	if (n_tx) {
2259		x[0].len = n_tx;
2260		spi_message_add_tail(&x[0], &message);
2261	}
2262	if (n_rx) {
2263		x[1].len = n_rx;
2264		spi_message_add_tail(&x[1], &message);
2265	}
2266
2267	memcpy(local_buf, txbuf, n_tx);
2268	x[0].tx_buf = local_buf;
2269	x[1].rx_buf = local_buf + n_tx;
2270
2271	/* do the i/o */
2272	status = spi_sync(spi, &message);
2273	if (status == 0)
2274		memcpy(rxbuf, x[1].rx_buf, n_rx);
2275
2276	if (x[0].tx_buf == buf)
2277		mutex_unlock(&lock);
2278	else
2279		kfree(local_buf);
2280
2281	return status;
2282}
2283EXPORT_SYMBOL_GPL(spi_write_then_read);
2284
2285/*-------------------------------------------------------------------------*/
2286
2287#if IS_ENABLED(CONFIG_OF_DYNAMIC)
2288static int __spi_of_device_match(struct device *dev, void *data)
2289{
2290	return dev->of_node == data;
2291}
2292
2293/* must call put_device() when done with returned spi_device device */
2294static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
2295{
2296	struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
2297						__spi_of_device_match);
2298	return dev ? to_spi_device(dev) : NULL;
2299}
2300
2301static int __spi_of_master_match(struct device *dev, const void *data)
2302{
2303	return dev->of_node == data;
2304}
2305
2306/* the spi masters are not using spi_bus, so we find it with another way */
2307static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
2308{
2309	struct device *dev;
2310
2311	dev = class_find_device(&spi_master_class, NULL, node,
2312				__spi_of_master_match);
2313	if (!dev)
2314		return NULL;
2315
2316	/* reference got in class_find_device */
2317	return container_of(dev, struct spi_master, dev);
2318}
2319
2320static int of_spi_notify(struct notifier_block *nb, unsigned long action,
2321			 void *arg)
2322{
2323	struct of_reconfig_data *rd = arg;
2324	struct spi_master *master;
2325	struct spi_device *spi;
2326
2327	switch (of_reconfig_get_state_change(action, arg)) {
2328	case OF_RECONFIG_CHANGE_ADD:
2329		master = of_find_spi_master_by_node(rd->dn->parent);
2330		if (master == NULL)
2331			return NOTIFY_OK;	/* not for us */
2332
2333		spi = of_register_spi_device(master, rd->dn);
2334		put_device(&master->dev);
2335
2336		if (IS_ERR(spi)) {
2337			pr_err("%s: failed to create for '%s'\n",
2338					__func__, rd->dn->full_name);
2339			return notifier_from_errno(PTR_ERR(spi));
2340		}
2341		break;
2342
2343	case OF_RECONFIG_CHANGE_REMOVE:
2344		/* find our device by node */
2345		spi = of_find_spi_device_by_node(rd->dn);
2346		if (spi == NULL)
2347			return NOTIFY_OK;	/* no? not meant for us */
2348
2349		/* unregister takes one ref away */
2350		spi_unregister_device(spi);
2351
2352		/* and put the reference of the find */
2353		put_device(&spi->dev);
2354		break;
2355	}
2356
2357	return NOTIFY_OK;
2358}
2359
2360static struct notifier_block spi_of_notifier = {
2361	.notifier_call = of_spi_notify,
2362};
2363#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2364extern struct notifier_block spi_of_notifier;
2365#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2366
2367static int __init spi_init(void)
2368{
2369	int	status;
2370
2371	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2372	if (!buf) {
2373		status = -ENOMEM;
2374		goto err0;
2375	}
2376
2377	status = bus_register(&spi_bus_type);
2378	if (status < 0)
2379		goto err1;
2380
2381	status = class_register(&spi_master_class);
2382	if (status < 0)
2383		goto err2;
2384
2385	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
2386		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
2387
2388	return 0;
2389
2390err2:
2391	bus_unregister(&spi_bus_type);
2392err1:
2393	kfree(buf);
2394	buf = NULL;
2395err0:
2396	return status;
2397}
2398
2399/* board_info is normally registered in arch_initcall(),
2400 * but even essential drivers wait till later
2401 *
2402 * REVISIT only boardinfo really needs static linking. the rest (device and
2403 * driver registration) _could_ be dynamically linked (modular) ... costs
2404 * include needing to have boardinfo data structures be much more public.
2405 */
2406postcore_initcall(spi_init);
2407
2408