1/*
2 * SPI driver for NVIDIA's Tegra114 SPI Controller.
3 *
4 * Copyright (c) 2013, NVIDIA CORPORATION.  All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17 */
18
19#include <linux/clk.h>
20#include <linux/completion.h>
21#include <linux/delay.h>
22#include <linux/dmaengine.h>
23#include <linux/dma-mapping.h>
24#include <linux/dmapool.h>
25#include <linux/err.h>
26#include <linux/interrupt.h>
27#include <linux/io.h>
28#include <linux/kernel.h>
29#include <linux/kthread.h>
30#include <linux/module.h>
31#include <linux/platform_device.h>
32#include <linux/pm_runtime.h>
33#include <linux/of.h>
34#include <linux/of_device.h>
35#include <linux/reset.h>
36#include <linux/spi/spi.h>
37
38#define SPI_COMMAND1				0x000
39#define SPI_BIT_LENGTH(x)			(((x) & 0x1f) << 0)
40#define SPI_PACKED				(1 << 5)
41#define SPI_TX_EN				(1 << 11)
42#define SPI_RX_EN				(1 << 12)
43#define SPI_BOTH_EN_BYTE			(1 << 13)
44#define SPI_BOTH_EN_BIT				(1 << 14)
45#define SPI_LSBYTE_FE				(1 << 15)
46#define SPI_LSBIT_FE				(1 << 16)
47#define SPI_BIDIROE				(1 << 17)
48#define SPI_IDLE_SDA_DRIVE_LOW			(0 << 18)
49#define SPI_IDLE_SDA_DRIVE_HIGH			(1 << 18)
50#define SPI_IDLE_SDA_PULL_LOW			(2 << 18)
51#define SPI_IDLE_SDA_PULL_HIGH			(3 << 18)
52#define SPI_IDLE_SDA_MASK			(3 << 18)
53#define SPI_CS_SS_VAL				(1 << 20)
54#define SPI_CS_SW_HW				(1 << 21)
55/* SPI_CS_POL_INACTIVE bits are default high */
56						/* n from 0 to 3 */
57#define SPI_CS_POL_INACTIVE(n)			(1 << (22 + (n)))
58#define SPI_CS_POL_INACTIVE_MASK		(0xF << 22)
59
60#define SPI_CS_SEL_0				(0 << 26)
61#define SPI_CS_SEL_1				(1 << 26)
62#define SPI_CS_SEL_2				(2 << 26)
63#define SPI_CS_SEL_3				(3 << 26)
64#define SPI_CS_SEL_MASK				(3 << 26)
65#define SPI_CS_SEL(x)				(((x) & 0x3) << 26)
66#define SPI_CONTROL_MODE_0			(0 << 28)
67#define SPI_CONTROL_MODE_1			(1 << 28)
68#define SPI_CONTROL_MODE_2			(2 << 28)
69#define SPI_CONTROL_MODE_3			(3 << 28)
70#define SPI_CONTROL_MODE_MASK			(3 << 28)
71#define SPI_MODE_SEL(x)				(((x) & 0x3) << 28)
72#define SPI_M_S					(1 << 30)
73#define SPI_PIO					(1 << 31)
74
75#define SPI_COMMAND2				0x004
76#define SPI_TX_TAP_DELAY(x)			(((x) & 0x3F) << 6)
77#define SPI_RX_TAP_DELAY(x)			(((x) & 0x3F) << 0)
78
79#define SPI_CS_TIMING1				0x008
80#define SPI_SETUP_HOLD(setup, hold)		(((setup) << 4) | (hold))
81#define SPI_CS_SETUP_HOLD(reg, cs, val)			\
82		((((val) & 0xFFu) << ((cs) * 8)) |	\
83		((reg) & ~(0xFFu << ((cs) * 8))))
84
85#define SPI_CS_TIMING2				0x00C
86#define CYCLES_BETWEEN_PACKETS_0(x)		(((x) & 0x1F) << 0)
87#define CS_ACTIVE_BETWEEN_PACKETS_0		(1 << 5)
88#define CYCLES_BETWEEN_PACKETS_1(x)		(((x) & 0x1F) << 8)
89#define CS_ACTIVE_BETWEEN_PACKETS_1		(1 << 13)
90#define CYCLES_BETWEEN_PACKETS_2(x)		(((x) & 0x1F) << 16)
91#define CS_ACTIVE_BETWEEN_PACKETS_2		(1 << 21)
92#define CYCLES_BETWEEN_PACKETS_3(x)		(((x) & 0x1F) << 24)
93#define CS_ACTIVE_BETWEEN_PACKETS_3		(1 << 29)
94#define SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(reg, cs, val)		\
95		(reg = (((val) & 0x1) << ((cs) * 8 + 5)) |	\
96			((reg) & ~(1 << ((cs) * 8 + 5))))
97#define SPI_SET_CYCLES_BETWEEN_PACKETS(reg, cs, val)		\
98		(reg = (((val) & 0xF) << ((cs) * 8)) |		\
99			((reg) & ~(0xF << ((cs) * 8))))
100
101#define SPI_TRANS_STATUS			0x010
102#define SPI_BLK_CNT(val)			(((val) >> 0) & 0xFFFF)
103#define SPI_SLV_IDLE_COUNT(val)			(((val) >> 16) & 0xFF)
104#define SPI_RDY					(1 << 30)
105
106#define SPI_FIFO_STATUS				0x014
107#define SPI_RX_FIFO_EMPTY			(1 << 0)
108#define SPI_RX_FIFO_FULL			(1 << 1)
109#define SPI_TX_FIFO_EMPTY			(1 << 2)
110#define SPI_TX_FIFO_FULL			(1 << 3)
111#define SPI_RX_FIFO_UNF				(1 << 4)
112#define SPI_RX_FIFO_OVF				(1 << 5)
113#define SPI_TX_FIFO_UNF				(1 << 6)
114#define SPI_TX_FIFO_OVF				(1 << 7)
115#define SPI_ERR					(1 << 8)
116#define SPI_TX_FIFO_FLUSH			(1 << 14)
117#define SPI_RX_FIFO_FLUSH			(1 << 15)
118#define SPI_TX_FIFO_EMPTY_COUNT(val)		(((val) >> 16) & 0x7F)
119#define SPI_RX_FIFO_FULL_COUNT(val)		(((val) >> 23) & 0x7F)
120#define SPI_FRAME_END				(1 << 30)
121#define SPI_CS_INACTIVE				(1 << 31)
122
123#define SPI_FIFO_ERROR				(SPI_RX_FIFO_UNF | \
124			SPI_RX_FIFO_OVF | SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF)
125#define SPI_FIFO_EMPTY			(SPI_RX_FIFO_EMPTY | SPI_TX_FIFO_EMPTY)
126
127#define SPI_TX_DATA				0x018
128#define SPI_RX_DATA				0x01C
129
130#define SPI_DMA_CTL				0x020
131#define SPI_TX_TRIG_1				(0 << 15)
132#define SPI_TX_TRIG_4				(1 << 15)
133#define SPI_TX_TRIG_8				(2 << 15)
134#define SPI_TX_TRIG_16				(3 << 15)
135#define SPI_TX_TRIG_MASK			(3 << 15)
136#define SPI_RX_TRIG_1				(0 << 19)
137#define SPI_RX_TRIG_4				(1 << 19)
138#define SPI_RX_TRIG_8				(2 << 19)
139#define SPI_RX_TRIG_16				(3 << 19)
140#define SPI_RX_TRIG_MASK			(3 << 19)
141#define SPI_IE_TX				(1 << 28)
142#define SPI_IE_RX				(1 << 29)
143#define SPI_CONT				(1 << 30)
144#define SPI_DMA					(1 << 31)
145#define SPI_DMA_EN				SPI_DMA
146
147#define SPI_DMA_BLK				0x024
148#define SPI_DMA_BLK_SET(x)			(((x) & 0xFFFF) << 0)
149
150#define SPI_TX_FIFO				0x108
151#define SPI_RX_FIFO				0x188
152#define MAX_CHIP_SELECT				4
153#define SPI_FIFO_DEPTH				64
154#define DATA_DIR_TX				(1 << 0)
155#define DATA_DIR_RX				(1 << 1)
156
157#define SPI_DMA_TIMEOUT				(msecs_to_jiffies(1000))
158#define DEFAULT_SPI_DMA_BUF_LEN			(16*1024)
159#define TX_FIFO_EMPTY_COUNT_MAX			SPI_TX_FIFO_EMPTY_COUNT(0x40)
160#define RX_FIFO_FULL_COUNT_ZERO			SPI_RX_FIFO_FULL_COUNT(0)
161#define MAX_HOLD_CYCLES				16
162#define SPI_DEFAULT_SPEED			25000000
163
164struct tegra_spi_data {
165	struct device				*dev;
166	struct spi_master			*master;
167	spinlock_t				lock;
168
169	struct clk				*clk;
170	struct reset_control			*rst;
171	void __iomem				*base;
172	phys_addr_t				phys;
173	unsigned				irq;
174	u32					cur_speed;
175
176	struct spi_device			*cur_spi;
177	struct spi_device			*cs_control;
178	unsigned				cur_pos;
179	unsigned				words_per_32bit;
180	unsigned				bytes_per_word;
181	unsigned				curr_dma_words;
182	unsigned				cur_direction;
183
184	unsigned				cur_rx_pos;
185	unsigned				cur_tx_pos;
186
187	unsigned				dma_buf_size;
188	unsigned				max_buf_size;
189	bool					is_curr_dma_xfer;
190
191	struct completion			rx_dma_complete;
192	struct completion			tx_dma_complete;
193
194	u32					tx_status;
195	u32					rx_status;
196	u32					status_reg;
197	bool					is_packed;
198
199	u32					command1_reg;
200	u32					dma_control_reg;
201	u32					def_command1_reg;
202
203	struct completion			xfer_completion;
204	struct spi_transfer			*curr_xfer;
205	struct dma_chan				*rx_dma_chan;
206	u32					*rx_dma_buf;
207	dma_addr_t				rx_dma_phys;
208	struct dma_async_tx_descriptor		*rx_dma_desc;
209
210	struct dma_chan				*tx_dma_chan;
211	u32					*tx_dma_buf;
212	dma_addr_t				tx_dma_phys;
213	struct dma_async_tx_descriptor		*tx_dma_desc;
214};
215
216static int tegra_spi_runtime_suspend(struct device *dev);
217static int tegra_spi_runtime_resume(struct device *dev);
218
219static inline u32 tegra_spi_readl(struct tegra_spi_data *tspi,
220		unsigned long reg)
221{
222	return readl(tspi->base + reg);
223}
224
225static inline void tegra_spi_writel(struct tegra_spi_data *tspi,
226		u32 val, unsigned long reg)
227{
228	writel(val, tspi->base + reg);
229
230	/* Read back register to make sure that register writes completed */
231	if (reg != SPI_TX_FIFO)
232		readl(tspi->base + SPI_COMMAND1);
233}
234
235static void tegra_spi_clear_status(struct tegra_spi_data *tspi)
236{
237	u32 val;
238
239	/* Write 1 to clear status register */
240	val = tegra_spi_readl(tspi, SPI_TRANS_STATUS);
241	tegra_spi_writel(tspi, val, SPI_TRANS_STATUS);
242
243	/* Clear fifo status error if any */
244	val = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
245	if (val & SPI_ERR)
246		tegra_spi_writel(tspi, SPI_ERR | SPI_FIFO_ERROR,
247				SPI_FIFO_STATUS);
248}
249
250static unsigned tegra_spi_calculate_curr_xfer_param(
251	struct spi_device *spi, struct tegra_spi_data *tspi,
252	struct spi_transfer *t)
253{
254	unsigned remain_len = t->len - tspi->cur_pos;
255	unsigned max_word;
256	unsigned bits_per_word = t->bits_per_word;
257	unsigned max_len;
258	unsigned total_fifo_words;
259
260	tspi->bytes_per_word = DIV_ROUND_UP(bits_per_word, 8);
261
262	if (bits_per_word == 8 || bits_per_word == 16) {
263		tspi->is_packed = 1;
264		tspi->words_per_32bit = 32/bits_per_word;
265	} else {
266		tspi->is_packed = 0;
267		tspi->words_per_32bit = 1;
268	}
269
270	if (tspi->is_packed) {
271		max_len = min(remain_len, tspi->max_buf_size);
272		tspi->curr_dma_words = max_len/tspi->bytes_per_word;
273		total_fifo_words = (max_len + 3) / 4;
274	} else {
275		max_word = (remain_len - 1) / tspi->bytes_per_word + 1;
276		max_word = min(max_word, tspi->max_buf_size/4);
277		tspi->curr_dma_words = max_word;
278		total_fifo_words = max_word;
279	}
280	return total_fifo_words;
281}
282
283static unsigned tegra_spi_fill_tx_fifo_from_client_txbuf(
284	struct tegra_spi_data *tspi, struct spi_transfer *t)
285{
286	unsigned nbytes;
287	unsigned tx_empty_count;
288	u32 fifo_status;
289	unsigned max_n_32bit;
290	unsigned i, count;
291	unsigned int written_words;
292	unsigned fifo_words_left;
293	u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
294
295	fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
296	tx_empty_count = SPI_TX_FIFO_EMPTY_COUNT(fifo_status);
297
298	if (tspi->is_packed) {
299		fifo_words_left = tx_empty_count * tspi->words_per_32bit;
300		written_words = min(fifo_words_left, tspi->curr_dma_words);
301		nbytes = written_words * tspi->bytes_per_word;
302		max_n_32bit = DIV_ROUND_UP(nbytes, 4);
303		for (count = 0; count < max_n_32bit; count++) {
304			u32 x = 0;
305
306			for (i = 0; (i < 4) && nbytes; i++, nbytes--)
307				x |= (u32)(*tx_buf++) << (i * 8);
308			tegra_spi_writel(tspi, x, SPI_TX_FIFO);
309		}
310	} else {
311		max_n_32bit = min(tspi->curr_dma_words,  tx_empty_count);
312		written_words = max_n_32bit;
313		nbytes = written_words * tspi->bytes_per_word;
314		for (count = 0; count < max_n_32bit; count++) {
315			u32 x = 0;
316
317			for (i = 0; nbytes && (i < tspi->bytes_per_word);
318							i++, nbytes--)
319				x |= (u32)(*tx_buf++) << (i * 8);
320			tegra_spi_writel(tspi, x, SPI_TX_FIFO);
321		}
322	}
323	tspi->cur_tx_pos += written_words * tspi->bytes_per_word;
324	return written_words;
325}
326
327static unsigned int tegra_spi_read_rx_fifo_to_client_rxbuf(
328		struct tegra_spi_data *tspi, struct spi_transfer *t)
329{
330	unsigned rx_full_count;
331	u32 fifo_status;
332	unsigned i, count;
333	unsigned int read_words = 0;
334	unsigned len;
335	u8 *rx_buf = (u8 *)t->rx_buf + tspi->cur_rx_pos;
336
337	fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
338	rx_full_count = SPI_RX_FIFO_FULL_COUNT(fifo_status);
339	if (tspi->is_packed) {
340		len = tspi->curr_dma_words * tspi->bytes_per_word;
341		for (count = 0; count < rx_full_count; count++) {
342			u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO);
343
344			for (i = 0; len && (i < 4); i++, len--)
345				*rx_buf++ = (x >> i*8) & 0xFF;
346		}
347		tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
348		read_words += tspi->curr_dma_words;
349	} else {
350		u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
351
352		for (count = 0; count < rx_full_count; count++) {
353			u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO) & rx_mask;
354
355			for (i = 0; (i < tspi->bytes_per_word); i++)
356				*rx_buf++ = (x >> (i*8)) & 0xFF;
357		}
358		tspi->cur_rx_pos += rx_full_count * tspi->bytes_per_word;
359		read_words += rx_full_count;
360	}
361	return read_words;
362}
363
364static void tegra_spi_copy_client_txbuf_to_spi_txbuf(
365		struct tegra_spi_data *tspi, struct spi_transfer *t)
366{
367	/* Make the dma buffer to read by cpu */
368	dma_sync_single_for_cpu(tspi->dev, tspi->tx_dma_phys,
369				tspi->dma_buf_size, DMA_TO_DEVICE);
370
371	if (tspi->is_packed) {
372		unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
373
374		memcpy(tspi->tx_dma_buf, t->tx_buf + tspi->cur_pos, len);
375	} else {
376		unsigned int i;
377		unsigned int count;
378		u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
379		unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
380
381		for (count = 0; count < tspi->curr_dma_words; count++) {
382			u32 x = 0;
383
384			for (i = 0; consume && (i < tspi->bytes_per_word);
385							i++, consume--)
386				x |= (u32)(*tx_buf++) << (i * 8);
387			tspi->tx_dma_buf[count] = x;
388		}
389	}
390	tspi->cur_tx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
391
392	/* Make the dma buffer to read by dma */
393	dma_sync_single_for_device(tspi->dev, tspi->tx_dma_phys,
394				tspi->dma_buf_size, DMA_TO_DEVICE);
395}
396
397static void tegra_spi_copy_spi_rxbuf_to_client_rxbuf(
398		struct tegra_spi_data *tspi, struct spi_transfer *t)
399{
400	/* Make the dma buffer to read by cpu */
401	dma_sync_single_for_cpu(tspi->dev, tspi->rx_dma_phys,
402		tspi->dma_buf_size, DMA_FROM_DEVICE);
403
404	if (tspi->is_packed) {
405		unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
406
407		memcpy(t->rx_buf + tspi->cur_rx_pos, tspi->rx_dma_buf, len);
408	} else {
409		unsigned int i;
410		unsigned int count;
411		unsigned char *rx_buf = t->rx_buf + tspi->cur_rx_pos;
412		u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
413
414		for (count = 0; count < tspi->curr_dma_words; count++) {
415			u32 x = tspi->rx_dma_buf[count] & rx_mask;
416
417			for (i = 0; (i < tspi->bytes_per_word); i++)
418				*rx_buf++ = (x >> (i*8)) & 0xFF;
419		}
420	}
421	tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
422
423	/* Make the dma buffer to read by dma */
424	dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
425		tspi->dma_buf_size, DMA_FROM_DEVICE);
426}
427
428static void tegra_spi_dma_complete(void *args)
429{
430	struct completion *dma_complete = args;
431
432	complete(dma_complete);
433}
434
435static int tegra_spi_start_tx_dma(struct tegra_spi_data *tspi, int len)
436{
437	reinit_completion(&tspi->tx_dma_complete);
438	tspi->tx_dma_desc = dmaengine_prep_slave_single(tspi->tx_dma_chan,
439				tspi->tx_dma_phys, len, DMA_MEM_TO_DEV,
440				DMA_PREP_INTERRUPT |  DMA_CTRL_ACK);
441	if (!tspi->tx_dma_desc) {
442		dev_err(tspi->dev, "Not able to get desc for Tx\n");
443		return -EIO;
444	}
445
446	tspi->tx_dma_desc->callback = tegra_spi_dma_complete;
447	tspi->tx_dma_desc->callback_param = &tspi->tx_dma_complete;
448
449	dmaengine_submit(tspi->tx_dma_desc);
450	dma_async_issue_pending(tspi->tx_dma_chan);
451	return 0;
452}
453
454static int tegra_spi_start_rx_dma(struct tegra_spi_data *tspi, int len)
455{
456	reinit_completion(&tspi->rx_dma_complete);
457	tspi->rx_dma_desc = dmaengine_prep_slave_single(tspi->rx_dma_chan,
458				tspi->rx_dma_phys, len, DMA_DEV_TO_MEM,
459				DMA_PREP_INTERRUPT |  DMA_CTRL_ACK);
460	if (!tspi->rx_dma_desc) {
461		dev_err(tspi->dev, "Not able to get desc for Rx\n");
462		return -EIO;
463	}
464
465	tspi->rx_dma_desc->callback = tegra_spi_dma_complete;
466	tspi->rx_dma_desc->callback_param = &tspi->rx_dma_complete;
467
468	dmaengine_submit(tspi->rx_dma_desc);
469	dma_async_issue_pending(tspi->rx_dma_chan);
470	return 0;
471}
472
473static int tegra_spi_start_dma_based_transfer(
474		struct tegra_spi_data *tspi, struct spi_transfer *t)
475{
476	u32 val;
477	unsigned int len;
478	int ret = 0;
479	u32 status;
480
481	/* Make sure that Rx and Tx fifo are empty */
482	status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
483	if ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) {
484		dev_err(tspi->dev, "Rx/Tx fifo are not empty status 0x%08x\n",
485			(unsigned)status);
486		return -EIO;
487	}
488
489	val = SPI_DMA_BLK_SET(tspi->curr_dma_words - 1);
490	tegra_spi_writel(tspi, val, SPI_DMA_BLK);
491
492	if (tspi->is_packed)
493		len = DIV_ROUND_UP(tspi->curr_dma_words * tspi->bytes_per_word,
494					4) * 4;
495	else
496		len = tspi->curr_dma_words * 4;
497
498	/* Set attention level based on length of transfer */
499	if (len & 0xF)
500		val |= SPI_TX_TRIG_1 | SPI_RX_TRIG_1;
501	else if (((len) >> 4) & 0x1)
502		val |= SPI_TX_TRIG_4 | SPI_RX_TRIG_4;
503	else
504		val |= SPI_TX_TRIG_8 | SPI_RX_TRIG_8;
505
506	if (tspi->cur_direction & DATA_DIR_TX)
507		val |= SPI_IE_TX;
508
509	if (tspi->cur_direction & DATA_DIR_RX)
510		val |= SPI_IE_RX;
511
512	tegra_spi_writel(tspi, val, SPI_DMA_CTL);
513	tspi->dma_control_reg = val;
514
515	if (tspi->cur_direction & DATA_DIR_TX) {
516		tegra_spi_copy_client_txbuf_to_spi_txbuf(tspi, t);
517		ret = tegra_spi_start_tx_dma(tspi, len);
518		if (ret < 0) {
519			dev_err(tspi->dev,
520				"Starting tx dma failed, err %d\n", ret);
521			return ret;
522		}
523	}
524
525	if (tspi->cur_direction & DATA_DIR_RX) {
526		/* Make the dma buffer to read by dma */
527		dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
528				tspi->dma_buf_size, DMA_FROM_DEVICE);
529
530		ret = tegra_spi_start_rx_dma(tspi, len);
531		if (ret < 0) {
532			dev_err(tspi->dev,
533				"Starting rx dma failed, err %d\n", ret);
534			if (tspi->cur_direction & DATA_DIR_TX)
535				dmaengine_terminate_all(tspi->tx_dma_chan);
536			return ret;
537		}
538	}
539	tspi->is_curr_dma_xfer = true;
540	tspi->dma_control_reg = val;
541
542	val |= SPI_DMA_EN;
543	tegra_spi_writel(tspi, val, SPI_DMA_CTL);
544	return ret;
545}
546
547static int tegra_spi_start_cpu_based_transfer(
548		struct tegra_spi_data *tspi, struct spi_transfer *t)
549{
550	u32 val;
551	unsigned cur_words;
552
553	if (tspi->cur_direction & DATA_DIR_TX)
554		cur_words = tegra_spi_fill_tx_fifo_from_client_txbuf(tspi, t);
555	else
556		cur_words = tspi->curr_dma_words;
557
558	val = SPI_DMA_BLK_SET(cur_words - 1);
559	tegra_spi_writel(tspi, val, SPI_DMA_BLK);
560
561	val = 0;
562	if (tspi->cur_direction & DATA_DIR_TX)
563		val |= SPI_IE_TX;
564
565	if (tspi->cur_direction & DATA_DIR_RX)
566		val |= SPI_IE_RX;
567
568	tegra_spi_writel(tspi, val, SPI_DMA_CTL);
569	tspi->dma_control_reg = val;
570
571	tspi->is_curr_dma_xfer = false;
572
573	val |= SPI_DMA_EN;
574	tegra_spi_writel(tspi, val, SPI_DMA_CTL);
575	return 0;
576}
577
578static int tegra_spi_init_dma_param(struct tegra_spi_data *tspi,
579			bool dma_to_memory)
580{
581	struct dma_chan *dma_chan;
582	u32 *dma_buf;
583	dma_addr_t dma_phys;
584	int ret;
585	struct dma_slave_config dma_sconfig;
586
587	dma_chan = dma_request_slave_channel_reason(tspi->dev,
588					dma_to_memory ? "rx" : "tx");
589	if (IS_ERR(dma_chan)) {
590		ret = PTR_ERR(dma_chan);
591		if (ret != -EPROBE_DEFER)
592			dev_err(tspi->dev,
593				"Dma channel is not available: %d\n", ret);
594		return ret;
595	}
596
597	dma_buf = dma_alloc_coherent(tspi->dev, tspi->dma_buf_size,
598				&dma_phys, GFP_KERNEL);
599	if (!dma_buf) {
600		dev_err(tspi->dev, " Not able to allocate the dma buffer\n");
601		dma_release_channel(dma_chan);
602		return -ENOMEM;
603	}
604
605	if (dma_to_memory) {
606		dma_sconfig.src_addr = tspi->phys + SPI_RX_FIFO;
607		dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
608		dma_sconfig.src_maxburst = 0;
609	} else {
610		dma_sconfig.dst_addr = tspi->phys + SPI_TX_FIFO;
611		dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
612		dma_sconfig.dst_maxburst = 0;
613	}
614
615	ret = dmaengine_slave_config(dma_chan, &dma_sconfig);
616	if (ret)
617		goto scrub;
618	if (dma_to_memory) {
619		tspi->rx_dma_chan = dma_chan;
620		tspi->rx_dma_buf = dma_buf;
621		tspi->rx_dma_phys = dma_phys;
622	} else {
623		tspi->tx_dma_chan = dma_chan;
624		tspi->tx_dma_buf = dma_buf;
625		tspi->tx_dma_phys = dma_phys;
626	}
627	return 0;
628
629scrub:
630	dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
631	dma_release_channel(dma_chan);
632	return ret;
633}
634
635static void tegra_spi_deinit_dma_param(struct tegra_spi_data *tspi,
636	bool dma_to_memory)
637{
638	u32 *dma_buf;
639	dma_addr_t dma_phys;
640	struct dma_chan *dma_chan;
641
642	if (dma_to_memory) {
643		dma_buf = tspi->rx_dma_buf;
644		dma_chan = tspi->rx_dma_chan;
645		dma_phys = tspi->rx_dma_phys;
646		tspi->rx_dma_chan = NULL;
647		tspi->rx_dma_buf = NULL;
648	} else {
649		dma_buf = tspi->tx_dma_buf;
650		dma_chan = tspi->tx_dma_chan;
651		dma_phys = tspi->tx_dma_phys;
652		tspi->tx_dma_buf = NULL;
653		tspi->tx_dma_chan = NULL;
654	}
655	if (!dma_chan)
656		return;
657
658	dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
659	dma_release_channel(dma_chan);
660}
661
662static u32 tegra_spi_setup_transfer_one(struct spi_device *spi,
663		struct spi_transfer *t, bool is_first_of_msg)
664{
665	struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
666	u32 speed = t->speed_hz;
667	u8 bits_per_word = t->bits_per_word;
668	u32 command1;
669	int req_mode;
670
671	if (speed != tspi->cur_speed) {
672		clk_set_rate(tspi->clk, speed);
673		tspi->cur_speed = speed;
674	}
675
676	tspi->cur_spi = spi;
677	tspi->cur_pos = 0;
678	tspi->cur_rx_pos = 0;
679	tspi->cur_tx_pos = 0;
680	tspi->curr_xfer = t;
681
682	if (is_first_of_msg) {
683		tegra_spi_clear_status(tspi);
684
685		command1 = tspi->def_command1_reg;
686		command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
687
688		command1 &= ~SPI_CONTROL_MODE_MASK;
689		req_mode = spi->mode & 0x3;
690		if (req_mode == SPI_MODE_0)
691			command1 |= SPI_CONTROL_MODE_0;
692		else if (req_mode == SPI_MODE_1)
693			command1 |= SPI_CONTROL_MODE_1;
694		else if (req_mode == SPI_MODE_2)
695			command1 |= SPI_CONTROL_MODE_2;
696		else if (req_mode == SPI_MODE_3)
697			command1 |= SPI_CONTROL_MODE_3;
698
699		if (tspi->cs_control) {
700			if (tspi->cs_control != spi)
701				tegra_spi_writel(tspi, command1, SPI_COMMAND1);
702			tspi->cs_control = NULL;
703		} else
704			tegra_spi_writel(tspi, command1, SPI_COMMAND1);
705
706		command1 |= SPI_CS_SW_HW;
707		if (spi->mode & SPI_CS_HIGH)
708			command1 |= SPI_CS_SS_VAL;
709		else
710			command1 &= ~SPI_CS_SS_VAL;
711
712		tegra_spi_writel(tspi, 0, SPI_COMMAND2);
713	} else {
714		command1 = tspi->command1_reg;
715		command1 &= ~SPI_BIT_LENGTH(~0);
716		command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
717	}
718
719	return command1;
720}
721
722static int tegra_spi_start_transfer_one(struct spi_device *spi,
723		struct spi_transfer *t, u32 command1)
724{
725	struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
726	unsigned total_fifo_words;
727	int ret;
728
729	total_fifo_words = tegra_spi_calculate_curr_xfer_param(spi, tspi, t);
730
731	if (tspi->is_packed)
732		command1 |= SPI_PACKED;
733
734	command1 &= ~(SPI_CS_SEL_MASK | SPI_TX_EN | SPI_RX_EN);
735	tspi->cur_direction = 0;
736	if (t->rx_buf) {
737		command1 |= SPI_RX_EN;
738		tspi->cur_direction |= DATA_DIR_RX;
739	}
740	if (t->tx_buf) {
741		command1 |= SPI_TX_EN;
742		tspi->cur_direction |= DATA_DIR_TX;
743	}
744	command1 |= SPI_CS_SEL(spi->chip_select);
745	tegra_spi_writel(tspi, command1, SPI_COMMAND1);
746	tspi->command1_reg = command1;
747
748	dev_dbg(tspi->dev, "The def 0x%x and written 0x%x\n",
749		tspi->def_command1_reg, (unsigned)command1);
750
751	if (total_fifo_words > SPI_FIFO_DEPTH)
752		ret = tegra_spi_start_dma_based_transfer(tspi, t);
753	else
754		ret = tegra_spi_start_cpu_based_transfer(tspi, t);
755	return ret;
756}
757
758static int tegra_spi_setup(struct spi_device *spi)
759{
760	struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
761	u32 val;
762	unsigned long flags;
763	int ret;
764
765	dev_dbg(&spi->dev, "setup %d bpw, %scpol, %scpha, %dHz\n",
766		spi->bits_per_word,
767		spi->mode & SPI_CPOL ? "" : "~",
768		spi->mode & SPI_CPHA ? "" : "~",
769		spi->max_speed_hz);
770
771	ret = pm_runtime_get_sync(tspi->dev);
772	if (ret < 0) {
773		dev_err(tspi->dev, "pm runtime failed, e = %d\n", ret);
774		return ret;
775	}
776
777	spin_lock_irqsave(&tspi->lock, flags);
778	val = tspi->def_command1_reg;
779	if (spi->mode & SPI_CS_HIGH)
780		val &= ~SPI_CS_POL_INACTIVE(spi->chip_select);
781	else
782		val |= SPI_CS_POL_INACTIVE(spi->chip_select);
783	tspi->def_command1_reg = val;
784	tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
785	spin_unlock_irqrestore(&tspi->lock, flags);
786
787	pm_runtime_put(tspi->dev);
788	return 0;
789}
790
791static void tegra_spi_transfer_delay(int delay)
792{
793	if (!delay)
794		return;
795
796	if (delay >= 1000)
797		mdelay(delay / 1000);
798
799	udelay(delay % 1000);
800}
801
802static int tegra_spi_transfer_one_message(struct spi_master *master,
803			struct spi_message *msg)
804{
805	bool is_first_msg = true;
806	struct tegra_spi_data *tspi = spi_master_get_devdata(master);
807	struct spi_transfer *xfer;
808	struct spi_device *spi = msg->spi;
809	int ret;
810	bool skip = false;
811
812	msg->status = 0;
813	msg->actual_length = 0;
814
815	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
816		u32 cmd1;
817
818		reinit_completion(&tspi->xfer_completion);
819
820		cmd1 = tegra_spi_setup_transfer_one(spi, xfer, is_first_msg);
821
822		if (!xfer->len) {
823			ret = 0;
824			skip = true;
825			goto complete_xfer;
826		}
827
828		ret = tegra_spi_start_transfer_one(spi, xfer, cmd1);
829		if (ret < 0) {
830			dev_err(tspi->dev,
831				"spi can not start transfer, err %d\n", ret);
832			goto complete_xfer;
833		}
834
835		is_first_msg = false;
836		ret = wait_for_completion_timeout(&tspi->xfer_completion,
837						SPI_DMA_TIMEOUT);
838		if (WARN_ON(ret == 0)) {
839			dev_err(tspi->dev,
840				"spi trasfer timeout, err %d\n", ret);
841			ret = -EIO;
842			goto complete_xfer;
843		}
844
845		if (tspi->tx_status ||  tspi->rx_status) {
846			dev_err(tspi->dev, "Error in Transfer\n");
847			ret = -EIO;
848			goto complete_xfer;
849		}
850		msg->actual_length += xfer->len;
851
852complete_xfer:
853		if (ret < 0 || skip) {
854			tegra_spi_writel(tspi, tspi->def_command1_reg,
855					SPI_COMMAND1);
856			tegra_spi_transfer_delay(xfer->delay_usecs);
857			goto exit;
858		} else if (list_is_last(&xfer->transfer_list,
859					&msg->transfers)) {
860			if (xfer->cs_change)
861				tspi->cs_control = spi;
862			else {
863				tegra_spi_writel(tspi, tspi->def_command1_reg,
864						SPI_COMMAND1);
865				tegra_spi_transfer_delay(xfer->delay_usecs);
866			}
867		} else if (xfer->cs_change) {
868			tegra_spi_writel(tspi, tspi->def_command1_reg,
869					SPI_COMMAND1);
870			tegra_spi_transfer_delay(xfer->delay_usecs);
871		}
872
873	}
874	ret = 0;
875exit:
876	msg->status = ret;
877	spi_finalize_current_message(master);
878	return ret;
879}
880
881static irqreturn_t handle_cpu_based_xfer(struct tegra_spi_data *tspi)
882{
883	struct spi_transfer *t = tspi->curr_xfer;
884	unsigned long flags;
885
886	spin_lock_irqsave(&tspi->lock, flags);
887	if (tspi->tx_status ||  tspi->rx_status) {
888		dev_err(tspi->dev, "CpuXfer ERROR bit set 0x%x\n",
889			tspi->status_reg);
890		dev_err(tspi->dev, "CpuXfer 0x%08x:0x%08x\n",
891			tspi->command1_reg, tspi->dma_control_reg);
892		reset_control_assert(tspi->rst);
893		udelay(2);
894		reset_control_deassert(tspi->rst);
895		complete(&tspi->xfer_completion);
896		goto exit;
897	}
898
899	if (tspi->cur_direction & DATA_DIR_RX)
900		tegra_spi_read_rx_fifo_to_client_rxbuf(tspi, t);
901
902	if (tspi->cur_direction & DATA_DIR_TX)
903		tspi->cur_pos = tspi->cur_tx_pos;
904	else
905		tspi->cur_pos = tspi->cur_rx_pos;
906
907	if (tspi->cur_pos == t->len) {
908		complete(&tspi->xfer_completion);
909		goto exit;
910	}
911
912	tegra_spi_calculate_curr_xfer_param(tspi->cur_spi, tspi, t);
913	tegra_spi_start_cpu_based_transfer(tspi, t);
914exit:
915	spin_unlock_irqrestore(&tspi->lock, flags);
916	return IRQ_HANDLED;
917}
918
919static irqreturn_t handle_dma_based_xfer(struct tegra_spi_data *tspi)
920{
921	struct spi_transfer *t = tspi->curr_xfer;
922	long wait_status;
923	int err = 0;
924	unsigned total_fifo_words;
925	unsigned long flags;
926
927	/* Abort dmas if any error */
928	if (tspi->cur_direction & DATA_DIR_TX) {
929		if (tspi->tx_status) {
930			dmaengine_terminate_all(tspi->tx_dma_chan);
931			err += 1;
932		} else {
933			wait_status = wait_for_completion_interruptible_timeout(
934				&tspi->tx_dma_complete, SPI_DMA_TIMEOUT);
935			if (wait_status <= 0) {
936				dmaengine_terminate_all(tspi->tx_dma_chan);
937				dev_err(tspi->dev, "TxDma Xfer failed\n");
938				err += 1;
939			}
940		}
941	}
942
943	if (tspi->cur_direction & DATA_DIR_RX) {
944		if (tspi->rx_status) {
945			dmaengine_terminate_all(tspi->rx_dma_chan);
946			err += 2;
947		} else {
948			wait_status = wait_for_completion_interruptible_timeout(
949				&tspi->rx_dma_complete, SPI_DMA_TIMEOUT);
950			if (wait_status <= 0) {
951				dmaengine_terminate_all(tspi->rx_dma_chan);
952				dev_err(tspi->dev, "RxDma Xfer failed\n");
953				err += 2;
954			}
955		}
956	}
957
958	spin_lock_irqsave(&tspi->lock, flags);
959	if (err) {
960		dev_err(tspi->dev, "DmaXfer: ERROR bit set 0x%x\n",
961			tspi->status_reg);
962		dev_err(tspi->dev, "DmaXfer 0x%08x:0x%08x\n",
963			tspi->command1_reg, tspi->dma_control_reg);
964		reset_control_assert(tspi->rst);
965		udelay(2);
966		reset_control_deassert(tspi->rst);
967		complete(&tspi->xfer_completion);
968		spin_unlock_irqrestore(&tspi->lock, flags);
969		return IRQ_HANDLED;
970	}
971
972	if (tspi->cur_direction & DATA_DIR_RX)
973		tegra_spi_copy_spi_rxbuf_to_client_rxbuf(tspi, t);
974
975	if (tspi->cur_direction & DATA_DIR_TX)
976		tspi->cur_pos = tspi->cur_tx_pos;
977	else
978		tspi->cur_pos = tspi->cur_rx_pos;
979
980	if (tspi->cur_pos == t->len) {
981		complete(&tspi->xfer_completion);
982		goto exit;
983	}
984
985	/* Continue transfer in current message */
986	total_fifo_words = tegra_spi_calculate_curr_xfer_param(tspi->cur_spi,
987							tspi, t);
988	if (total_fifo_words > SPI_FIFO_DEPTH)
989		err = tegra_spi_start_dma_based_transfer(tspi, t);
990	else
991		err = tegra_spi_start_cpu_based_transfer(tspi, t);
992
993exit:
994	spin_unlock_irqrestore(&tspi->lock, flags);
995	return IRQ_HANDLED;
996}
997
998static irqreturn_t tegra_spi_isr_thread(int irq, void *context_data)
999{
1000	struct tegra_spi_data *tspi = context_data;
1001
1002	if (!tspi->is_curr_dma_xfer)
1003		return handle_cpu_based_xfer(tspi);
1004	return handle_dma_based_xfer(tspi);
1005}
1006
1007static irqreturn_t tegra_spi_isr(int irq, void *context_data)
1008{
1009	struct tegra_spi_data *tspi = context_data;
1010
1011	tspi->status_reg = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
1012	if (tspi->cur_direction & DATA_DIR_TX)
1013		tspi->tx_status = tspi->status_reg &
1014					(SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF);
1015
1016	if (tspi->cur_direction & DATA_DIR_RX)
1017		tspi->rx_status = tspi->status_reg &
1018					(SPI_RX_FIFO_OVF | SPI_RX_FIFO_UNF);
1019	tegra_spi_clear_status(tspi);
1020
1021	return IRQ_WAKE_THREAD;
1022}
1023
1024static const struct of_device_id tegra_spi_of_match[] = {
1025	{ .compatible = "nvidia,tegra114-spi", },
1026	{}
1027};
1028MODULE_DEVICE_TABLE(of, tegra_spi_of_match);
1029
1030static int tegra_spi_probe(struct platform_device *pdev)
1031{
1032	struct spi_master	*master;
1033	struct tegra_spi_data	*tspi;
1034	struct resource		*r;
1035	int ret, spi_irq;
1036
1037	master = spi_alloc_master(&pdev->dev, sizeof(*tspi));
1038	if (!master) {
1039		dev_err(&pdev->dev, "master allocation failed\n");
1040		return -ENOMEM;
1041	}
1042	platform_set_drvdata(pdev, master);
1043	tspi = spi_master_get_devdata(master);
1044
1045	if (of_property_read_u32(pdev->dev.of_node, "spi-max-frequency",
1046				 &master->max_speed_hz))
1047		master->max_speed_hz = 25000000; /* 25MHz */
1048
1049	/* the spi->mode bits understood by this driver: */
1050	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1051	master->setup = tegra_spi_setup;
1052	master->transfer_one_message = tegra_spi_transfer_one_message;
1053	master->num_chipselect = MAX_CHIP_SELECT;
1054	master->auto_runtime_pm = true;
1055
1056	tspi->master = master;
1057	tspi->dev = &pdev->dev;
1058	spin_lock_init(&tspi->lock);
1059
1060	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1061	tspi->base = devm_ioremap_resource(&pdev->dev, r);
1062	if (IS_ERR(tspi->base)) {
1063		ret = PTR_ERR(tspi->base);
1064		goto exit_free_master;
1065	}
1066	tspi->phys = r->start;
1067
1068	spi_irq = platform_get_irq(pdev, 0);
1069	tspi->irq = spi_irq;
1070	ret = request_threaded_irq(tspi->irq, tegra_spi_isr,
1071			tegra_spi_isr_thread, IRQF_ONESHOT,
1072			dev_name(&pdev->dev), tspi);
1073	if (ret < 0) {
1074		dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n",
1075					tspi->irq);
1076		goto exit_free_master;
1077	}
1078
1079	tspi->clk = devm_clk_get(&pdev->dev, "spi");
1080	if (IS_ERR(tspi->clk)) {
1081		dev_err(&pdev->dev, "can not get clock\n");
1082		ret = PTR_ERR(tspi->clk);
1083		goto exit_free_irq;
1084	}
1085
1086	tspi->rst = devm_reset_control_get(&pdev->dev, "spi");
1087	if (IS_ERR(tspi->rst)) {
1088		dev_err(&pdev->dev, "can not get reset\n");
1089		ret = PTR_ERR(tspi->rst);
1090		goto exit_free_irq;
1091	}
1092
1093	tspi->max_buf_size = SPI_FIFO_DEPTH << 2;
1094	tspi->dma_buf_size = DEFAULT_SPI_DMA_BUF_LEN;
1095
1096	ret = tegra_spi_init_dma_param(tspi, true);
1097	if (ret < 0)
1098		goto exit_free_irq;
1099	ret = tegra_spi_init_dma_param(tspi, false);
1100	if (ret < 0)
1101		goto exit_rx_dma_free;
1102	tspi->max_buf_size = tspi->dma_buf_size;
1103	init_completion(&tspi->tx_dma_complete);
1104	init_completion(&tspi->rx_dma_complete);
1105
1106	init_completion(&tspi->xfer_completion);
1107
1108	pm_runtime_enable(&pdev->dev);
1109	if (!pm_runtime_enabled(&pdev->dev)) {
1110		ret = tegra_spi_runtime_resume(&pdev->dev);
1111		if (ret)
1112			goto exit_pm_disable;
1113	}
1114
1115	ret = pm_runtime_get_sync(&pdev->dev);
1116	if (ret < 0) {
1117		dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret);
1118		goto exit_pm_disable;
1119	}
1120	tspi->def_command1_reg  = SPI_M_S;
1121	tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
1122	pm_runtime_put(&pdev->dev);
1123
1124	master->dev.of_node = pdev->dev.of_node;
1125	ret = devm_spi_register_master(&pdev->dev, master);
1126	if (ret < 0) {
1127		dev_err(&pdev->dev, "can not register to master err %d\n", ret);
1128		goto exit_pm_disable;
1129	}
1130	return ret;
1131
1132exit_pm_disable:
1133	pm_runtime_disable(&pdev->dev);
1134	if (!pm_runtime_status_suspended(&pdev->dev))
1135		tegra_spi_runtime_suspend(&pdev->dev);
1136	tegra_spi_deinit_dma_param(tspi, false);
1137exit_rx_dma_free:
1138	tegra_spi_deinit_dma_param(tspi, true);
1139exit_free_irq:
1140	free_irq(spi_irq, tspi);
1141exit_free_master:
1142	spi_master_put(master);
1143	return ret;
1144}
1145
1146static int tegra_spi_remove(struct platform_device *pdev)
1147{
1148	struct spi_master *master = platform_get_drvdata(pdev);
1149	struct tegra_spi_data	*tspi = spi_master_get_devdata(master);
1150
1151	free_irq(tspi->irq, tspi);
1152
1153	if (tspi->tx_dma_chan)
1154		tegra_spi_deinit_dma_param(tspi, false);
1155
1156	if (tspi->rx_dma_chan)
1157		tegra_spi_deinit_dma_param(tspi, true);
1158
1159	pm_runtime_disable(&pdev->dev);
1160	if (!pm_runtime_status_suspended(&pdev->dev))
1161		tegra_spi_runtime_suspend(&pdev->dev);
1162
1163	return 0;
1164}
1165
1166#ifdef CONFIG_PM_SLEEP
1167static int tegra_spi_suspend(struct device *dev)
1168{
1169	struct spi_master *master = dev_get_drvdata(dev);
1170
1171	return spi_master_suspend(master);
1172}
1173
1174static int tegra_spi_resume(struct device *dev)
1175{
1176	struct spi_master *master = dev_get_drvdata(dev);
1177	struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1178	int ret;
1179
1180	ret = pm_runtime_get_sync(dev);
1181	if (ret < 0) {
1182		dev_err(dev, "pm runtime failed, e = %d\n", ret);
1183		return ret;
1184	}
1185	tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1);
1186	pm_runtime_put(dev);
1187
1188	return spi_master_resume(master);
1189}
1190#endif
1191
1192static int tegra_spi_runtime_suspend(struct device *dev)
1193{
1194	struct spi_master *master = dev_get_drvdata(dev);
1195	struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1196
1197	/* Flush all write which are in PPSB queue by reading back */
1198	tegra_spi_readl(tspi, SPI_COMMAND1);
1199
1200	clk_disable_unprepare(tspi->clk);
1201	return 0;
1202}
1203
1204static int tegra_spi_runtime_resume(struct device *dev)
1205{
1206	struct spi_master *master = dev_get_drvdata(dev);
1207	struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1208	int ret;
1209
1210	ret = clk_prepare_enable(tspi->clk);
1211	if (ret < 0) {
1212		dev_err(tspi->dev, "clk_prepare failed: %d\n", ret);
1213		return ret;
1214	}
1215	return 0;
1216}
1217
1218static const struct dev_pm_ops tegra_spi_pm_ops = {
1219	SET_RUNTIME_PM_OPS(tegra_spi_runtime_suspend,
1220		tegra_spi_runtime_resume, NULL)
1221	SET_SYSTEM_SLEEP_PM_OPS(tegra_spi_suspend, tegra_spi_resume)
1222};
1223static struct platform_driver tegra_spi_driver = {
1224	.driver = {
1225		.name		= "spi-tegra114",
1226		.pm		= &tegra_spi_pm_ops,
1227		.of_match_table	= tegra_spi_of_match,
1228	},
1229	.probe =	tegra_spi_probe,
1230	.remove =	tegra_spi_remove,
1231};
1232module_platform_driver(tegra_spi_driver);
1233
1234MODULE_ALIAS("platform:spi-tegra114");
1235MODULE_DESCRIPTION("NVIDIA Tegra114 SPI Controller Driver");
1236MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1237MODULE_LICENSE("GPL v2");
1238