1/*
2 * SH RSPI driver
3 *
4 * Copyright (C) 2012, 2013  Renesas Solutions Corp.
5 * Copyright (C) 2014 Glider bvba
6 *
7 * Based on spi-sh.c:
8 * Copyright (C) 2011 Renesas Solutions Corp.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2 of the License.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/module.h>
21#include <linux/kernel.h>
22#include <linux/sched.h>
23#include <linux/errno.h>
24#include <linux/interrupt.h>
25#include <linux/platform_device.h>
26#include <linux/io.h>
27#include <linux/clk.h>
28#include <linux/dmaengine.h>
29#include <linux/dma-mapping.h>
30#include <linux/of_device.h>
31#include <linux/pm_runtime.h>
32#include <linux/sh_dma.h>
33#include <linux/spi/spi.h>
34#include <linux/spi/rspi.h>
35
36#define RSPI_SPCR		0x00	/* Control Register */
37#define RSPI_SSLP		0x01	/* Slave Select Polarity Register */
38#define RSPI_SPPCR		0x02	/* Pin Control Register */
39#define RSPI_SPSR		0x03	/* Status Register */
40#define RSPI_SPDR		0x04	/* Data Register */
41#define RSPI_SPSCR		0x08	/* Sequence Control Register */
42#define RSPI_SPSSR		0x09	/* Sequence Status Register */
43#define RSPI_SPBR		0x0a	/* Bit Rate Register */
44#define RSPI_SPDCR		0x0b	/* Data Control Register */
45#define RSPI_SPCKD		0x0c	/* Clock Delay Register */
46#define RSPI_SSLND		0x0d	/* Slave Select Negation Delay Register */
47#define RSPI_SPND		0x0e	/* Next-Access Delay Register */
48#define RSPI_SPCR2		0x0f	/* Control Register 2 (SH only) */
49#define RSPI_SPCMD0		0x10	/* Command Register 0 */
50#define RSPI_SPCMD1		0x12	/* Command Register 1 */
51#define RSPI_SPCMD2		0x14	/* Command Register 2 */
52#define RSPI_SPCMD3		0x16	/* Command Register 3 */
53#define RSPI_SPCMD4		0x18	/* Command Register 4 */
54#define RSPI_SPCMD5		0x1a	/* Command Register 5 */
55#define RSPI_SPCMD6		0x1c	/* Command Register 6 */
56#define RSPI_SPCMD7		0x1e	/* Command Register 7 */
57#define RSPI_SPCMD(i)		(RSPI_SPCMD0 + (i) * 2)
58#define RSPI_NUM_SPCMD		8
59#define RSPI_RZ_NUM_SPCMD	4
60#define QSPI_NUM_SPCMD		4
61
62/* RSPI on RZ only */
63#define RSPI_SPBFCR		0x20	/* Buffer Control Register */
64#define RSPI_SPBFDR		0x22	/* Buffer Data Count Setting Register */
65
66/* QSPI only */
67#define QSPI_SPBFCR		0x18	/* Buffer Control Register */
68#define QSPI_SPBDCR		0x1a	/* Buffer Data Count Register */
69#define QSPI_SPBMUL0		0x1c	/* Transfer Data Length Multiplier Setting Register 0 */
70#define QSPI_SPBMUL1		0x20	/* Transfer Data Length Multiplier Setting Register 1 */
71#define QSPI_SPBMUL2		0x24	/* Transfer Data Length Multiplier Setting Register 2 */
72#define QSPI_SPBMUL3		0x28	/* Transfer Data Length Multiplier Setting Register 3 */
73#define QSPI_SPBMUL(i)		(QSPI_SPBMUL0 + (i) * 4)
74
75/* SPCR - Control Register */
76#define SPCR_SPRIE		0x80	/* Receive Interrupt Enable */
77#define SPCR_SPE		0x40	/* Function Enable */
78#define SPCR_SPTIE		0x20	/* Transmit Interrupt Enable */
79#define SPCR_SPEIE		0x10	/* Error Interrupt Enable */
80#define SPCR_MSTR		0x08	/* Master/Slave Mode Select */
81#define SPCR_MODFEN		0x04	/* Mode Fault Error Detection Enable */
82/* RSPI on SH only */
83#define SPCR_TXMD		0x02	/* TX Only Mode (vs. Full Duplex) */
84#define SPCR_SPMS		0x01	/* 3-wire Mode (vs. 4-wire) */
85/* QSPI on R-Car Gen2 only */
86#define SPCR_WSWAP		0x02	/* Word Swap of read-data for DMAC */
87#define SPCR_BSWAP		0x01	/* Byte Swap of read-data for DMAC */
88
89/* SSLP - Slave Select Polarity Register */
90#define SSLP_SSL1P		0x02	/* SSL1 Signal Polarity Setting */
91#define SSLP_SSL0P		0x01	/* SSL0 Signal Polarity Setting */
92
93/* SPPCR - Pin Control Register */
94#define SPPCR_MOIFE		0x20	/* MOSI Idle Value Fixing Enable */
95#define SPPCR_MOIFV		0x10	/* MOSI Idle Fixed Value */
96#define SPPCR_SPOM		0x04
97#define SPPCR_SPLP2		0x02	/* Loopback Mode 2 (non-inverting) */
98#define SPPCR_SPLP		0x01	/* Loopback Mode (inverting) */
99
100#define SPPCR_IO3FV		0x04	/* Single-/Dual-SPI Mode IO3 Output Fixed Value */
101#define SPPCR_IO2FV		0x04	/* Single-/Dual-SPI Mode IO2 Output Fixed Value */
102
103/* SPSR - Status Register */
104#define SPSR_SPRF		0x80	/* Receive Buffer Full Flag */
105#define SPSR_TEND		0x40	/* Transmit End */
106#define SPSR_SPTEF		0x20	/* Transmit Buffer Empty Flag */
107#define SPSR_PERF		0x08	/* Parity Error Flag */
108#define SPSR_MODF		0x04	/* Mode Fault Error Flag */
109#define SPSR_IDLNF		0x02	/* RSPI Idle Flag */
110#define SPSR_OVRF		0x01	/* Overrun Error Flag (RSPI only) */
111
112/* SPSCR - Sequence Control Register */
113#define SPSCR_SPSLN_MASK	0x07	/* Sequence Length Specification */
114
115/* SPSSR - Sequence Status Register */
116#define SPSSR_SPECM_MASK	0x70	/* Command Error Mask */
117#define SPSSR_SPCP_MASK		0x07	/* Command Pointer Mask */
118
119/* SPDCR - Data Control Register */
120#define SPDCR_TXDMY		0x80	/* Dummy Data Transmission Enable */
121#define SPDCR_SPLW1		0x40	/* Access Width Specification (RZ) */
122#define SPDCR_SPLW0		0x20	/* Access Width Specification (RZ) */
123#define SPDCR_SPLLWORD		(SPDCR_SPLW1 | SPDCR_SPLW0)
124#define SPDCR_SPLWORD		SPDCR_SPLW1
125#define SPDCR_SPLBYTE		SPDCR_SPLW0
126#define SPDCR_SPLW		0x20	/* Access Width Specification (SH) */
127#define SPDCR_SPRDTD		0x10	/* Receive Transmit Data Select (SH) */
128#define SPDCR_SLSEL1		0x08
129#define SPDCR_SLSEL0		0x04
130#define SPDCR_SLSEL_MASK	0x0c	/* SSL1 Output Select (SH) */
131#define SPDCR_SPFC1		0x02
132#define SPDCR_SPFC0		0x01
133#define SPDCR_SPFC_MASK		0x03	/* Frame Count Setting (1-4) (SH) */
134
135/* SPCKD - Clock Delay Register */
136#define SPCKD_SCKDL_MASK	0x07	/* Clock Delay Setting (1-8) */
137
138/* SSLND - Slave Select Negation Delay Register */
139#define SSLND_SLNDL_MASK	0x07	/* SSL Negation Delay Setting (1-8) */
140
141/* SPND - Next-Access Delay Register */
142#define SPND_SPNDL_MASK		0x07	/* Next-Access Delay Setting (1-8) */
143
144/* SPCR2 - Control Register 2 */
145#define SPCR2_PTE		0x08	/* Parity Self-Test Enable */
146#define SPCR2_SPIE		0x04	/* Idle Interrupt Enable */
147#define SPCR2_SPOE		0x02	/* Odd Parity Enable (vs. Even) */
148#define SPCR2_SPPE		0x01	/* Parity Enable */
149
150/* SPCMDn - Command Registers */
151#define SPCMD_SCKDEN		0x8000	/* Clock Delay Setting Enable */
152#define SPCMD_SLNDEN		0x4000	/* SSL Negation Delay Setting Enable */
153#define SPCMD_SPNDEN		0x2000	/* Next-Access Delay Enable */
154#define SPCMD_LSBF		0x1000	/* LSB First */
155#define SPCMD_SPB_MASK		0x0f00	/* Data Length Setting */
156#define SPCMD_SPB_8_TO_16(bit)	(((bit - 1) << 8) & SPCMD_SPB_MASK)
157#define SPCMD_SPB_8BIT		0x0000	/* QSPI only */
158#define SPCMD_SPB_16BIT		0x0100
159#define SPCMD_SPB_20BIT		0x0000
160#define SPCMD_SPB_24BIT		0x0100
161#define SPCMD_SPB_32BIT		0x0200
162#define SPCMD_SSLKP		0x0080	/* SSL Signal Level Keeping */
163#define SPCMD_SPIMOD_MASK	0x0060	/* SPI Operating Mode (QSPI only) */
164#define SPCMD_SPIMOD1		0x0040
165#define SPCMD_SPIMOD0		0x0020
166#define SPCMD_SPIMOD_SINGLE	0
167#define SPCMD_SPIMOD_DUAL	SPCMD_SPIMOD0
168#define SPCMD_SPIMOD_QUAD	SPCMD_SPIMOD1
169#define SPCMD_SPRW		0x0010	/* SPI Read/Write Access (Dual/Quad) */
170#define SPCMD_SSLA_MASK		0x0030	/* SSL Assert Signal Setting (RSPI) */
171#define SPCMD_BRDV_MASK		0x000c	/* Bit Rate Division Setting */
172#define SPCMD_CPOL		0x0002	/* Clock Polarity Setting */
173#define SPCMD_CPHA		0x0001	/* Clock Phase Setting */
174
175/* SPBFCR - Buffer Control Register */
176#define SPBFCR_TXRST		0x80	/* Transmit Buffer Data Reset */
177#define SPBFCR_RXRST		0x40	/* Receive Buffer Data Reset */
178#define SPBFCR_TXTRG_MASK	0x30	/* Transmit Buffer Data Triggering Number */
179#define SPBFCR_RXTRG_MASK	0x07	/* Receive Buffer Data Triggering Number */
180/* QSPI on R-Car Gen2 */
181#define SPBFCR_TXTRG_1B		0x00	/* 31 bytes (1 byte available) */
182#define SPBFCR_TXTRG_32B	0x30	/* 0 byte (32 bytes available) */
183#define SPBFCR_RXTRG_1B		0x00	/* 1 byte (31 bytes available) */
184#define SPBFCR_RXTRG_32B	0x07	/* 32 bytes (0 byte available) */
185
186#define QSPI_BUFFER_SIZE        32u
187
188struct rspi_data {
189	void __iomem *addr;
190	u32 max_speed_hz;
191	struct spi_master *master;
192	wait_queue_head_t wait;
193	struct clk *clk;
194	u16 spcmd;
195	u8 spsr;
196	u8 sppcr;
197	int rx_irq, tx_irq;
198	const struct spi_ops *ops;
199
200	unsigned dma_callbacked:1;
201	unsigned byte_access:1;
202};
203
204static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
205{
206	iowrite8(data, rspi->addr + offset);
207}
208
209static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
210{
211	iowrite16(data, rspi->addr + offset);
212}
213
214static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
215{
216	iowrite32(data, rspi->addr + offset);
217}
218
219static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
220{
221	return ioread8(rspi->addr + offset);
222}
223
224static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
225{
226	return ioread16(rspi->addr + offset);
227}
228
229static void rspi_write_data(const struct rspi_data *rspi, u16 data)
230{
231	if (rspi->byte_access)
232		rspi_write8(rspi, data, RSPI_SPDR);
233	else /* 16 bit */
234		rspi_write16(rspi, data, RSPI_SPDR);
235}
236
237static u16 rspi_read_data(const struct rspi_data *rspi)
238{
239	if (rspi->byte_access)
240		return rspi_read8(rspi, RSPI_SPDR);
241	else /* 16 bit */
242		return rspi_read16(rspi, RSPI_SPDR);
243}
244
245/* optional functions */
246struct spi_ops {
247	int (*set_config_register)(struct rspi_data *rspi, int access_size);
248	int (*transfer_one)(struct spi_master *master, struct spi_device *spi,
249			    struct spi_transfer *xfer);
250	u16 mode_bits;
251	u16 flags;
252	u16 fifo_size;
253};
254
255/*
256 * functions for RSPI on legacy SH
257 */
258static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
259{
260	int spbr;
261
262	/* Sets output mode, MOSI signal, and (optionally) loopback */
263	rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
264
265	/* Sets transfer bit rate */
266	spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
267			    2 * rspi->max_speed_hz) - 1;
268	rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
269
270	/* Disable dummy transmission, set 16-bit word access, 1 frame */
271	rspi_write8(rspi, 0, RSPI_SPDCR);
272	rspi->byte_access = 0;
273
274	/* Sets RSPCK, SSL, next-access delay value */
275	rspi_write8(rspi, 0x00, RSPI_SPCKD);
276	rspi_write8(rspi, 0x00, RSPI_SSLND);
277	rspi_write8(rspi, 0x00, RSPI_SPND);
278
279	/* Sets parity, interrupt mask */
280	rspi_write8(rspi, 0x00, RSPI_SPCR2);
281
282	/* Sets SPCMD */
283	rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
284	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
285
286	/* Sets RSPI mode */
287	rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
288
289	return 0;
290}
291
292/*
293 * functions for RSPI on RZ
294 */
295static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
296{
297	int spbr;
298
299	/* Sets output mode, MOSI signal, and (optionally) loopback */
300	rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
301
302	/* Sets transfer bit rate */
303	spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
304			    2 * rspi->max_speed_hz) - 1;
305	rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
306
307	/* Disable dummy transmission, set byte access */
308	rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
309	rspi->byte_access = 1;
310
311	/* Sets RSPCK, SSL, next-access delay value */
312	rspi_write8(rspi, 0x00, RSPI_SPCKD);
313	rspi_write8(rspi, 0x00, RSPI_SSLND);
314	rspi_write8(rspi, 0x00, RSPI_SPND);
315
316	/* Sets SPCMD */
317	rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
318	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
319
320	/* Sets RSPI mode */
321	rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
322
323	return 0;
324}
325
326/*
327 * functions for QSPI
328 */
329static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
330{
331	int spbr;
332
333	/* Sets output mode, MOSI signal, and (optionally) loopback */
334	rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
335
336	/* Sets transfer bit rate */
337	spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 2 * rspi->max_speed_hz);
338	rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
339
340	/* Disable dummy transmission, set byte access */
341	rspi_write8(rspi, 0, RSPI_SPDCR);
342	rspi->byte_access = 1;
343
344	/* Sets RSPCK, SSL, next-access delay value */
345	rspi_write8(rspi, 0x00, RSPI_SPCKD);
346	rspi_write8(rspi, 0x00, RSPI_SSLND);
347	rspi_write8(rspi, 0x00, RSPI_SPND);
348
349	/* Data Length Setting */
350	if (access_size == 8)
351		rspi->spcmd |= SPCMD_SPB_8BIT;
352	else if (access_size == 16)
353		rspi->spcmd |= SPCMD_SPB_16BIT;
354	else
355		rspi->spcmd |= SPCMD_SPB_32BIT;
356
357	rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
358
359	/* Resets transfer data length */
360	rspi_write32(rspi, 0, QSPI_SPBMUL0);
361
362	/* Resets transmit and receive buffer */
363	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
364	/* Sets buffer to allow normal operation */
365	rspi_write8(rspi, 0x00, QSPI_SPBFCR);
366
367	/* Sets SPCMD */
368	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
369
370	/* Enables SPI function in master mode */
371	rspi_write8(rspi, SPCR_SPE | SPCR_MSTR, RSPI_SPCR);
372
373	return 0;
374}
375
376static void qspi_update(const struct rspi_data *rspi, u8 mask, u8 val, u8 reg)
377{
378	u8 data;
379
380	data = rspi_read8(rspi, reg);
381	data &= ~mask;
382	data |= (val & mask);
383	rspi_write8(rspi, data, reg);
384}
385
386static int qspi_set_send_trigger(struct rspi_data *rspi, unsigned int len)
387{
388	unsigned int n;
389
390	n = min(len, QSPI_BUFFER_SIZE);
391
392	if (len >= QSPI_BUFFER_SIZE) {
393		/* sets triggering number to 32 bytes */
394		qspi_update(rspi, SPBFCR_TXTRG_MASK,
395			     SPBFCR_TXTRG_32B, QSPI_SPBFCR);
396	} else {
397		/* sets triggering number to 1 byte */
398		qspi_update(rspi, SPBFCR_TXTRG_MASK,
399			     SPBFCR_TXTRG_1B, QSPI_SPBFCR);
400	}
401
402	return n;
403}
404
405static void qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len)
406{
407	unsigned int n;
408
409	n = min(len, QSPI_BUFFER_SIZE);
410
411	if (len >= QSPI_BUFFER_SIZE) {
412		/* sets triggering number to 32 bytes */
413		qspi_update(rspi, SPBFCR_RXTRG_MASK,
414			     SPBFCR_RXTRG_32B, QSPI_SPBFCR);
415	} else {
416		/* sets triggering number to 1 byte */
417		qspi_update(rspi, SPBFCR_RXTRG_MASK,
418			     SPBFCR_RXTRG_1B, QSPI_SPBFCR);
419	}
420}
421
422#define set_config_register(spi, n) spi->ops->set_config_register(spi, n)
423
424static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
425{
426	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
427}
428
429static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
430{
431	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
432}
433
434static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
435				   u8 enable_bit)
436{
437	int ret;
438
439	rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
440	if (rspi->spsr & wait_mask)
441		return 0;
442
443	rspi_enable_irq(rspi, enable_bit);
444	ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
445	if (ret == 0 && !(rspi->spsr & wait_mask))
446		return -ETIMEDOUT;
447
448	return 0;
449}
450
451static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
452{
453	return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
454}
455
456static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
457{
458	return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
459}
460
461static int rspi_data_out(struct rspi_data *rspi, u8 data)
462{
463	int error = rspi_wait_for_tx_empty(rspi);
464	if (error < 0) {
465		dev_err(&rspi->master->dev, "transmit timeout\n");
466		return error;
467	}
468	rspi_write_data(rspi, data);
469	return 0;
470}
471
472static int rspi_data_in(struct rspi_data *rspi)
473{
474	int error;
475	u8 data;
476
477	error = rspi_wait_for_rx_full(rspi);
478	if (error < 0) {
479		dev_err(&rspi->master->dev, "receive timeout\n");
480		return error;
481	}
482	data = rspi_read_data(rspi);
483	return data;
484}
485
486static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
487			     unsigned int n)
488{
489	while (n-- > 0) {
490		if (tx) {
491			int ret = rspi_data_out(rspi, *tx++);
492			if (ret < 0)
493				return ret;
494		}
495		if (rx) {
496			int ret = rspi_data_in(rspi);
497			if (ret < 0)
498				return ret;
499			*rx++ = ret;
500		}
501	}
502
503	return 0;
504}
505
506static void rspi_dma_complete(void *arg)
507{
508	struct rspi_data *rspi = arg;
509
510	rspi->dma_callbacked = 1;
511	wake_up_interruptible(&rspi->wait);
512}
513
514static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
515			     struct sg_table *rx)
516{
517	struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
518	u8 irq_mask = 0;
519	unsigned int other_irq = 0;
520	dma_cookie_t cookie;
521	int ret;
522
523	/* First prepare and submit the DMA request(s), as this may fail */
524	if (rx) {
525		desc_rx = dmaengine_prep_slave_sg(rspi->master->dma_rx,
526					rx->sgl, rx->nents, DMA_FROM_DEVICE,
527					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
528		if (!desc_rx) {
529			ret = -EAGAIN;
530			goto no_dma_rx;
531		}
532
533		desc_rx->callback = rspi_dma_complete;
534		desc_rx->callback_param = rspi;
535		cookie = dmaengine_submit(desc_rx);
536		if (dma_submit_error(cookie)) {
537			ret = cookie;
538			goto no_dma_rx;
539		}
540
541		irq_mask |= SPCR_SPRIE;
542	}
543
544	if (tx) {
545		desc_tx = dmaengine_prep_slave_sg(rspi->master->dma_tx,
546					tx->sgl, tx->nents, DMA_TO_DEVICE,
547					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
548		if (!desc_tx) {
549			ret = -EAGAIN;
550			goto no_dma_tx;
551		}
552
553		if (rx) {
554			/* No callback */
555			desc_tx->callback = NULL;
556		} else {
557			desc_tx->callback = rspi_dma_complete;
558			desc_tx->callback_param = rspi;
559		}
560		cookie = dmaengine_submit(desc_tx);
561		if (dma_submit_error(cookie)) {
562			ret = cookie;
563			goto no_dma_tx;
564		}
565
566		irq_mask |= SPCR_SPTIE;
567	}
568
569	/*
570	 * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
571	 * called. So, this driver disables the IRQ while DMA transfer.
572	 */
573	if (tx)
574		disable_irq(other_irq = rspi->tx_irq);
575	if (rx && rspi->rx_irq != other_irq)
576		disable_irq(rspi->rx_irq);
577
578	rspi_enable_irq(rspi, irq_mask);
579	rspi->dma_callbacked = 0;
580
581	/* Now start DMA */
582	if (rx)
583		dma_async_issue_pending(rspi->master->dma_rx);
584	if (tx)
585		dma_async_issue_pending(rspi->master->dma_tx);
586
587	ret = wait_event_interruptible_timeout(rspi->wait,
588					       rspi->dma_callbacked, HZ);
589	if (ret > 0 && rspi->dma_callbacked)
590		ret = 0;
591	else if (!ret) {
592		dev_err(&rspi->master->dev, "DMA timeout\n");
593		ret = -ETIMEDOUT;
594		if (tx)
595			dmaengine_terminate_all(rspi->master->dma_tx);
596		if (rx)
597			dmaengine_terminate_all(rspi->master->dma_rx);
598	}
599
600	rspi_disable_irq(rspi, irq_mask);
601
602	if (tx)
603		enable_irq(rspi->tx_irq);
604	if (rx && rspi->rx_irq != other_irq)
605		enable_irq(rspi->rx_irq);
606
607	return ret;
608
609no_dma_tx:
610	if (rx)
611		dmaengine_terminate_all(rspi->master->dma_rx);
612no_dma_rx:
613	if (ret == -EAGAIN) {
614		pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
615			     dev_driver_string(&rspi->master->dev),
616			     dev_name(&rspi->master->dev));
617	}
618	return ret;
619}
620
621static void rspi_receive_init(const struct rspi_data *rspi)
622{
623	u8 spsr;
624
625	spsr = rspi_read8(rspi, RSPI_SPSR);
626	if (spsr & SPSR_SPRF)
627		rspi_read_data(rspi);	/* dummy read */
628	if (spsr & SPSR_OVRF)
629		rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
630			    RSPI_SPSR);
631}
632
633static void rspi_rz_receive_init(const struct rspi_data *rspi)
634{
635	rspi_receive_init(rspi);
636	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
637	rspi_write8(rspi, 0, RSPI_SPBFCR);
638}
639
640static void qspi_receive_init(const struct rspi_data *rspi)
641{
642	u8 spsr;
643
644	spsr = rspi_read8(rspi, RSPI_SPSR);
645	if (spsr & SPSR_SPRF)
646		rspi_read_data(rspi);   /* dummy read */
647	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
648	rspi_write8(rspi, 0, QSPI_SPBFCR);
649}
650
651static bool __rspi_can_dma(const struct rspi_data *rspi,
652			   const struct spi_transfer *xfer)
653{
654	return xfer->len > rspi->ops->fifo_size;
655}
656
657static bool rspi_can_dma(struct spi_master *master, struct spi_device *spi,
658			 struct spi_transfer *xfer)
659{
660	struct rspi_data *rspi = spi_master_get_devdata(master);
661
662	return __rspi_can_dma(rspi, xfer);
663}
664
665static int rspi_dma_check_then_transfer(struct rspi_data *rspi,
666					 struct spi_transfer *xfer)
667{
668	if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
669		/* rx_buf can be NULL on RSPI on SH in TX-only Mode */
670		int ret = rspi_dma_transfer(rspi, &xfer->tx_sg,
671					xfer->rx_buf ? &xfer->rx_sg : NULL);
672		if (ret != -EAGAIN)
673			return 0;
674	}
675
676	return -EAGAIN;
677}
678
679static int rspi_common_transfer(struct rspi_data *rspi,
680				struct spi_transfer *xfer)
681{
682	int ret;
683
684	ret = rspi_dma_check_then_transfer(rspi, xfer);
685	if (ret != -EAGAIN)
686		return ret;
687
688	ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
689	if (ret < 0)
690		return ret;
691
692	/* Wait for the last transmission */
693	rspi_wait_for_tx_empty(rspi);
694
695	return 0;
696}
697
698static int rspi_transfer_one(struct spi_master *master, struct spi_device *spi,
699			     struct spi_transfer *xfer)
700{
701	struct rspi_data *rspi = spi_master_get_devdata(master);
702	u8 spcr;
703
704	spcr = rspi_read8(rspi, RSPI_SPCR);
705	if (xfer->rx_buf) {
706		rspi_receive_init(rspi);
707		spcr &= ~SPCR_TXMD;
708	} else {
709		spcr |= SPCR_TXMD;
710	}
711	rspi_write8(rspi, spcr, RSPI_SPCR);
712
713	return rspi_common_transfer(rspi, xfer);
714}
715
716static int rspi_rz_transfer_one(struct spi_master *master,
717				struct spi_device *spi,
718				struct spi_transfer *xfer)
719{
720	struct rspi_data *rspi = spi_master_get_devdata(master);
721
722	rspi_rz_receive_init(rspi);
723
724	return rspi_common_transfer(rspi, xfer);
725}
726
727static int qspi_trigger_transfer_out_int(struct rspi_data *rspi, const u8 *tx,
728					u8 *rx, unsigned int len)
729{
730	int i, n, ret;
731	int error;
732
733	while (len > 0) {
734		n = qspi_set_send_trigger(rspi, len);
735		qspi_set_receive_trigger(rspi, len);
736		if (n == QSPI_BUFFER_SIZE) {
737			error = rspi_wait_for_tx_empty(rspi);
738			if (error < 0) {
739				dev_err(&rspi->master->dev, "transmit timeout\n");
740				return error;
741			}
742			for (i = 0; i < n; i++)
743				rspi_write_data(rspi, *tx++);
744
745			error = rspi_wait_for_rx_full(rspi);
746			if (error < 0) {
747				dev_err(&rspi->master->dev, "receive timeout\n");
748				return error;
749			}
750			for (i = 0; i < n; i++)
751				*rx++ = rspi_read_data(rspi);
752		} else {
753			ret = rspi_pio_transfer(rspi, tx, rx, n);
754			if (ret < 0)
755				return ret;
756		}
757		len -= n;
758	}
759
760	return 0;
761}
762
763static int qspi_transfer_out_in(struct rspi_data *rspi,
764				struct spi_transfer *xfer)
765{
766	int ret;
767
768	qspi_receive_init(rspi);
769
770	ret = rspi_dma_check_then_transfer(rspi, xfer);
771	if (ret != -EAGAIN)
772		return ret;
773
774	ret = qspi_trigger_transfer_out_int(rspi, xfer->tx_buf,
775					    xfer->rx_buf, xfer->len);
776	if (ret < 0)
777		return ret;
778
779	return 0;
780}
781
782static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
783{
784	int ret;
785
786	if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
787		ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
788		if (ret != -EAGAIN)
789			return ret;
790	}
791
792	ret = rspi_pio_transfer(rspi, xfer->tx_buf, NULL, xfer->len);
793	if (ret < 0)
794		return ret;
795
796	/* Wait for the last transmission */
797	rspi_wait_for_tx_empty(rspi);
798
799	return 0;
800}
801
802static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
803{
804	if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
805		int ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
806		if (ret != -EAGAIN)
807			return ret;
808	}
809
810	return rspi_pio_transfer(rspi, NULL, xfer->rx_buf, xfer->len);
811}
812
813static int qspi_transfer_one(struct spi_master *master, struct spi_device *spi,
814			     struct spi_transfer *xfer)
815{
816	struct rspi_data *rspi = spi_master_get_devdata(master);
817
818	if (spi->mode & SPI_LOOP) {
819		return qspi_transfer_out_in(rspi, xfer);
820	} else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
821		/* Quad or Dual SPI Write */
822		return qspi_transfer_out(rspi, xfer);
823	} else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
824		/* Quad or Dual SPI Read */
825		return qspi_transfer_in(rspi, xfer);
826	} else {
827		/* Single SPI Transfer */
828		return qspi_transfer_out_in(rspi, xfer);
829	}
830}
831
832static int rspi_setup(struct spi_device *spi)
833{
834	struct rspi_data *rspi = spi_master_get_devdata(spi->master);
835
836	rspi->max_speed_hz = spi->max_speed_hz;
837
838	rspi->spcmd = SPCMD_SSLKP;
839	if (spi->mode & SPI_CPOL)
840		rspi->spcmd |= SPCMD_CPOL;
841	if (spi->mode & SPI_CPHA)
842		rspi->spcmd |= SPCMD_CPHA;
843
844	/* CMOS output mode and MOSI signal from previous transfer */
845	rspi->sppcr = 0;
846	if (spi->mode & SPI_LOOP)
847		rspi->sppcr |= SPPCR_SPLP;
848
849	set_config_register(rspi, 8);
850
851	return 0;
852}
853
854static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
855{
856	if (xfer->tx_buf)
857		switch (xfer->tx_nbits) {
858		case SPI_NBITS_QUAD:
859			return SPCMD_SPIMOD_QUAD;
860		case SPI_NBITS_DUAL:
861			return SPCMD_SPIMOD_DUAL;
862		default:
863			return 0;
864		}
865	if (xfer->rx_buf)
866		switch (xfer->rx_nbits) {
867		case SPI_NBITS_QUAD:
868			return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
869		case SPI_NBITS_DUAL:
870			return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
871		default:
872			return 0;
873		}
874
875	return 0;
876}
877
878static int qspi_setup_sequencer(struct rspi_data *rspi,
879				const struct spi_message *msg)
880{
881	const struct spi_transfer *xfer;
882	unsigned int i = 0, len = 0;
883	u16 current_mode = 0xffff, mode;
884
885	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
886		mode = qspi_transfer_mode(xfer);
887		if (mode == current_mode) {
888			len += xfer->len;
889			continue;
890		}
891
892		/* Transfer mode change */
893		if (i) {
894			/* Set transfer data length of previous transfer */
895			rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
896		}
897
898		if (i >= QSPI_NUM_SPCMD) {
899			dev_err(&msg->spi->dev,
900				"Too many different transfer modes");
901			return -EINVAL;
902		}
903
904		/* Program transfer mode for this transfer */
905		rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
906		current_mode = mode;
907		len = xfer->len;
908		i++;
909	}
910	if (i) {
911		/* Set final transfer data length and sequence length */
912		rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
913		rspi_write8(rspi, i - 1, RSPI_SPSCR);
914	}
915
916	return 0;
917}
918
919static int rspi_prepare_message(struct spi_master *master,
920				struct spi_message *msg)
921{
922	struct rspi_data *rspi = spi_master_get_devdata(master);
923	int ret;
924
925	if (msg->spi->mode &
926	    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
927		/* Setup sequencer for messages with multiple transfer modes */
928		ret = qspi_setup_sequencer(rspi, msg);
929		if (ret < 0)
930			return ret;
931	}
932
933	/* Enable SPI function in master mode */
934	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
935	return 0;
936}
937
938static int rspi_unprepare_message(struct spi_master *master,
939				  struct spi_message *msg)
940{
941	struct rspi_data *rspi = spi_master_get_devdata(master);
942
943	/* Disable SPI function */
944	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
945
946	/* Reset sequencer for Single SPI Transfers */
947	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
948	rspi_write8(rspi, 0, RSPI_SPSCR);
949	return 0;
950}
951
952static irqreturn_t rspi_irq_mux(int irq, void *_sr)
953{
954	struct rspi_data *rspi = _sr;
955	u8 spsr;
956	irqreturn_t ret = IRQ_NONE;
957	u8 disable_irq = 0;
958
959	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
960	if (spsr & SPSR_SPRF)
961		disable_irq |= SPCR_SPRIE;
962	if (spsr & SPSR_SPTEF)
963		disable_irq |= SPCR_SPTIE;
964
965	if (disable_irq) {
966		ret = IRQ_HANDLED;
967		rspi_disable_irq(rspi, disable_irq);
968		wake_up(&rspi->wait);
969	}
970
971	return ret;
972}
973
974static irqreturn_t rspi_irq_rx(int irq, void *_sr)
975{
976	struct rspi_data *rspi = _sr;
977	u8 spsr;
978
979	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
980	if (spsr & SPSR_SPRF) {
981		rspi_disable_irq(rspi, SPCR_SPRIE);
982		wake_up(&rspi->wait);
983		return IRQ_HANDLED;
984	}
985
986	return 0;
987}
988
989static irqreturn_t rspi_irq_tx(int irq, void *_sr)
990{
991	struct rspi_data *rspi = _sr;
992	u8 spsr;
993
994	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
995	if (spsr & SPSR_SPTEF) {
996		rspi_disable_irq(rspi, SPCR_SPTIE);
997		wake_up(&rspi->wait);
998		return IRQ_HANDLED;
999	}
1000
1001	return 0;
1002}
1003
1004static struct dma_chan *rspi_request_dma_chan(struct device *dev,
1005					      enum dma_transfer_direction dir,
1006					      unsigned int id,
1007					      dma_addr_t port_addr)
1008{
1009	dma_cap_mask_t mask;
1010	struct dma_chan *chan;
1011	struct dma_slave_config cfg;
1012	int ret;
1013
1014	dma_cap_zero(mask);
1015	dma_cap_set(DMA_SLAVE, mask);
1016
1017	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1018				(void *)(unsigned long)id, dev,
1019				dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1020	if (!chan) {
1021		dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1022		return NULL;
1023	}
1024
1025	memset(&cfg, 0, sizeof(cfg));
1026	cfg.direction = dir;
1027	if (dir == DMA_MEM_TO_DEV) {
1028		cfg.dst_addr = port_addr;
1029		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1030	} else {
1031		cfg.src_addr = port_addr;
1032		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1033	}
1034
1035	ret = dmaengine_slave_config(chan, &cfg);
1036	if (ret) {
1037		dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1038		dma_release_channel(chan);
1039		return NULL;
1040	}
1041
1042	return chan;
1043}
1044
1045static int rspi_request_dma(struct device *dev, struct spi_master *master,
1046			    const struct resource *res)
1047{
1048	const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
1049	unsigned int dma_tx_id, dma_rx_id;
1050
1051	if (dev->of_node) {
1052		/* In the OF case we will get the slave IDs from the DT */
1053		dma_tx_id = 0;
1054		dma_rx_id = 0;
1055	} else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) {
1056		dma_tx_id = rspi_pd->dma_tx_id;
1057		dma_rx_id = rspi_pd->dma_rx_id;
1058	} else {
1059		/* The driver assumes no error. */
1060		return 0;
1061	}
1062
1063	master->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id,
1064					       res->start + RSPI_SPDR);
1065	if (!master->dma_tx)
1066		return -ENODEV;
1067
1068	master->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id,
1069					       res->start + RSPI_SPDR);
1070	if (!master->dma_rx) {
1071		dma_release_channel(master->dma_tx);
1072		master->dma_tx = NULL;
1073		return -ENODEV;
1074	}
1075
1076	master->can_dma = rspi_can_dma;
1077	dev_info(dev, "DMA available");
1078	return 0;
1079}
1080
1081static void rspi_release_dma(struct spi_master *master)
1082{
1083	if (master->dma_tx)
1084		dma_release_channel(master->dma_tx);
1085	if (master->dma_rx)
1086		dma_release_channel(master->dma_rx);
1087}
1088
1089static int rspi_remove(struct platform_device *pdev)
1090{
1091	struct rspi_data *rspi = platform_get_drvdata(pdev);
1092
1093	rspi_release_dma(rspi->master);
1094	pm_runtime_disable(&pdev->dev);
1095
1096	return 0;
1097}
1098
1099static const struct spi_ops rspi_ops = {
1100	.set_config_register =	rspi_set_config_register,
1101	.transfer_one =		rspi_transfer_one,
1102	.mode_bits =		SPI_CPHA | SPI_CPOL | SPI_LOOP,
1103	.flags =		SPI_MASTER_MUST_TX,
1104	.fifo_size =		8,
1105};
1106
1107static const struct spi_ops rspi_rz_ops = {
1108	.set_config_register =	rspi_rz_set_config_register,
1109	.transfer_one =		rspi_rz_transfer_one,
1110	.mode_bits =		SPI_CPHA | SPI_CPOL | SPI_LOOP,
1111	.flags =		SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX,
1112	.fifo_size =		8,	/* 8 for TX, 32 for RX */
1113};
1114
1115static const struct spi_ops qspi_ops = {
1116	.set_config_register =	qspi_set_config_register,
1117	.transfer_one =		qspi_transfer_one,
1118	.mode_bits =		SPI_CPHA | SPI_CPOL | SPI_LOOP |
1119				SPI_TX_DUAL | SPI_TX_QUAD |
1120				SPI_RX_DUAL | SPI_RX_QUAD,
1121	.flags =		SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX,
1122	.fifo_size =		32,
1123};
1124
1125#ifdef CONFIG_OF
1126static const struct of_device_id rspi_of_match[] = {
1127	/* RSPI on legacy SH */
1128	{ .compatible = "renesas,rspi", .data = &rspi_ops },
1129	/* RSPI on RZ/A1H */
1130	{ .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
1131	/* QSPI on R-Car Gen2 */
1132	{ .compatible = "renesas,qspi", .data = &qspi_ops },
1133	{ /* sentinel */ }
1134};
1135
1136MODULE_DEVICE_TABLE(of, rspi_of_match);
1137
1138static int rspi_parse_dt(struct device *dev, struct spi_master *master)
1139{
1140	u32 num_cs;
1141	int error;
1142
1143	/* Parse DT properties */
1144	error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
1145	if (error) {
1146		dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
1147		return error;
1148	}
1149
1150	master->num_chipselect = num_cs;
1151	return 0;
1152}
1153#else
1154#define rspi_of_match	NULL
1155static inline int rspi_parse_dt(struct device *dev, struct spi_master *master)
1156{
1157	return -EINVAL;
1158}
1159#endif /* CONFIG_OF */
1160
1161static int rspi_request_irq(struct device *dev, unsigned int irq,
1162			    irq_handler_t handler, const char *suffix,
1163			    void *dev_id)
1164{
1165	const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s",
1166					  dev_name(dev), suffix);
1167	if (!name)
1168		return -ENOMEM;
1169
1170	return devm_request_irq(dev, irq, handler, 0, name, dev_id);
1171}
1172
1173static int rspi_probe(struct platform_device *pdev)
1174{
1175	struct resource *res;
1176	struct spi_master *master;
1177	struct rspi_data *rspi;
1178	int ret;
1179	const struct of_device_id *of_id;
1180	const struct rspi_plat_data *rspi_pd;
1181	const struct spi_ops *ops;
1182
1183	master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
1184	if (master == NULL) {
1185		dev_err(&pdev->dev, "spi_alloc_master error.\n");
1186		return -ENOMEM;
1187	}
1188
1189	of_id = of_match_device(rspi_of_match, &pdev->dev);
1190	if (of_id) {
1191		ops = of_id->data;
1192		ret = rspi_parse_dt(&pdev->dev, master);
1193		if (ret)
1194			goto error1;
1195	} else {
1196		ops = (struct spi_ops *)pdev->id_entry->driver_data;
1197		rspi_pd = dev_get_platdata(&pdev->dev);
1198		if (rspi_pd && rspi_pd->num_chipselect)
1199			master->num_chipselect = rspi_pd->num_chipselect;
1200		else
1201			master->num_chipselect = 2; /* default */
1202	}
1203
1204	/* ops parameter check */
1205	if (!ops->set_config_register) {
1206		dev_err(&pdev->dev, "there is no set_config_register\n");
1207		ret = -ENODEV;
1208		goto error1;
1209	}
1210
1211	rspi = spi_master_get_devdata(master);
1212	platform_set_drvdata(pdev, rspi);
1213	rspi->ops = ops;
1214	rspi->master = master;
1215
1216	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1217	rspi->addr = devm_ioremap_resource(&pdev->dev, res);
1218	if (IS_ERR(rspi->addr)) {
1219		ret = PTR_ERR(rspi->addr);
1220		goto error1;
1221	}
1222
1223	rspi->clk = devm_clk_get(&pdev->dev, NULL);
1224	if (IS_ERR(rspi->clk)) {
1225		dev_err(&pdev->dev, "cannot get clock\n");
1226		ret = PTR_ERR(rspi->clk);
1227		goto error1;
1228	}
1229
1230	pm_runtime_enable(&pdev->dev);
1231
1232	init_waitqueue_head(&rspi->wait);
1233
1234	master->bus_num = pdev->id;
1235	master->setup = rspi_setup;
1236	master->auto_runtime_pm = true;
1237	master->transfer_one = ops->transfer_one;
1238	master->prepare_message = rspi_prepare_message;
1239	master->unprepare_message = rspi_unprepare_message;
1240	master->mode_bits = ops->mode_bits;
1241	master->flags = ops->flags;
1242	master->dev.of_node = pdev->dev.of_node;
1243
1244	ret = platform_get_irq_byname(pdev, "rx");
1245	if (ret < 0) {
1246		ret = platform_get_irq_byname(pdev, "mux");
1247		if (ret < 0)
1248			ret = platform_get_irq(pdev, 0);
1249		if (ret >= 0)
1250			rspi->rx_irq = rspi->tx_irq = ret;
1251	} else {
1252		rspi->rx_irq = ret;
1253		ret = platform_get_irq_byname(pdev, "tx");
1254		if (ret >= 0)
1255			rspi->tx_irq = ret;
1256	}
1257	if (ret < 0) {
1258		dev_err(&pdev->dev, "platform_get_irq error\n");
1259		goto error2;
1260	}
1261
1262	if (rspi->rx_irq == rspi->tx_irq) {
1263		/* Single multiplexed interrupt */
1264		ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
1265				       "mux", rspi);
1266	} else {
1267		/* Multi-interrupt mode, only SPRI and SPTI are used */
1268		ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
1269				       "rx", rspi);
1270		if (!ret)
1271			ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
1272					       rspi_irq_tx, "tx", rspi);
1273	}
1274	if (ret < 0) {
1275		dev_err(&pdev->dev, "request_irq error\n");
1276		goto error2;
1277	}
1278
1279	ret = rspi_request_dma(&pdev->dev, master, res);
1280	if (ret < 0)
1281		dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1282
1283	ret = devm_spi_register_master(&pdev->dev, master);
1284	if (ret < 0) {
1285		dev_err(&pdev->dev, "spi_register_master error.\n");
1286		goto error3;
1287	}
1288
1289	dev_info(&pdev->dev, "probed\n");
1290
1291	return 0;
1292
1293error3:
1294	rspi_release_dma(master);
1295error2:
1296	pm_runtime_disable(&pdev->dev);
1297error1:
1298	spi_master_put(master);
1299
1300	return ret;
1301}
1302
1303static struct platform_device_id spi_driver_ids[] = {
1304	{ "rspi",	(kernel_ulong_t)&rspi_ops },
1305	{ "rspi-rz",	(kernel_ulong_t)&rspi_rz_ops },
1306	{ "qspi",	(kernel_ulong_t)&qspi_ops },
1307	{},
1308};
1309
1310MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1311
1312static struct platform_driver rspi_driver = {
1313	.probe =	rspi_probe,
1314	.remove =	rspi_remove,
1315	.id_table =	spi_driver_ids,
1316	.driver		= {
1317		.name = "renesas_spi",
1318		.of_match_table = of_match_ptr(rspi_of_match),
1319	},
1320};
1321module_platform_driver(rspi_driver);
1322
1323MODULE_DESCRIPTION("Renesas RSPI bus driver");
1324MODULE_LICENSE("GPL v2");
1325MODULE_AUTHOR("Yoshihiro Shimoda");
1326MODULE_ALIAS("platform:rspi");
1327