1 /*
2  * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
3  * Copyright (C) 2013, Intel Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/device.h>
19 #include <linux/ioport.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/interrupt.h>
23 #include <linux/kernel.h>
24 #include <linux/platform_device.h>
25 #include <linux/spi/pxa2xx_spi.h>
26 #include <linux/spi/spi.h>
27 #include <linux/delay.h>
28 #include <linux/gpio.h>
29 #include <linux/slab.h>
30 #include <linux/clk.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/acpi.h>
33 
34 #include "spi-pxa2xx.h"
35 
36 MODULE_AUTHOR("Stephen Street");
37 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
38 MODULE_LICENSE("GPL");
39 MODULE_ALIAS("platform:pxa2xx-spi");
40 
41 #define TIMOUT_DFLT		1000
42 
43 /*
44  * for testing SSCR1 changes that require SSP restart, basically
45  * everything except the service and interrupt enables, the pxa270 developer
46  * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
47  * list, but the PXA255 dev man says all bits without really meaning the
48  * service and interrupt enables
49  */
50 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
51 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
52 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
53 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
54 				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
55 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
56 
57 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\
58 				| QUARK_X1000_SSCR1_EFWR	\
59 				| QUARK_X1000_SSCR1_RFT		\
60 				| QUARK_X1000_SSCR1_TFT		\
61 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
62 
63 #define LPSS_RX_THRESH_DFLT	64
64 #define LPSS_TX_LOTHRESH_DFLT	160
65 #define LPSS_TX_HITHRESH_DFLT	224
66 
67 /* Offset from drv_data->lpss_base */
68 #define GENERAL_REG		0x08
69 #define GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24)
70 #define SSP_REG			0x0c
71 #define SPI_CS_CONTROL		0x18
72 #define SPI_CS_CONTROL_SW_MODE	BIT(0)
73 #define SPI_CS_CONTROL_CS_HIGH	BIT(1)
74 
is_lpss_ssp(const struct driver_data * drv_data)75 static bool is_lpss_ssp(const struct driver_data *drv_data)
76 {
77 	return drv_data->ssp_type == LPSS_SSP;
78 }
79 
is_quark_x1000_ssp(const struct driver_data * drv_data)80 static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
81 {
82 	return drv_data->ssp_type == QUARK_X1000_SSP;
83 }
84 
pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data * drv_data)85 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
86 {
87 	switch (drv_data->ssp_type) {
88 	case QUARK_X1000_SSP:
89 		return QUARK_X1000_SSCR1_CHANGE_MASK;
90 	default:
91 		return SSCR1_CHANGE_MASK;
92 	}
93 }
94 
95 static u32
pxa2xx_spi_get_rx_default_thre(const struct driver_data * drv_data)96 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
97 {
98 	switch (drv_data->ssp_type) {
99 	case QUARK_X1000_SSP:
100 		return RX_THRESH_QUARK_X1000_DFLT;
101 	default:
102 		return RX_THRESH_DFLT;
103 	}
104 }
105 
pxa2xx_spi_txfifo_full(const struct driver_data * drv_data)106 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
107 {
108 	u32 mask;
109 
110 	switch (drv_data->ssp_type) {
111 	case QUARK_X1000_SSP:
112 		mask = QUARK_X1000_SSSR_TFL_MASK;
113 		break;
114 	default:
115 		mask = SSSR_TFL_MASK;
116 		break;
117 	}
118 
119 	return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
120 }
121 
pxa2xx_spi_clear_rx_thre(const struct driver_data * drv_data,u32 * sccr1_reg)122 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
123 				     u32 *sccr1_reg)
124 {
125 	u32 mask;
126 
127 	switch (drv_data->ssp_type) {
128 	case QUARK_X1000_SSP:
129 		mask = QUARK_X1000_SSCR1_RFT;
130 		break;
131 	default:
132 		mask = SSCR1_RFT;
133 		break;
134 	}
135 	*sccr1_reg &= ~mask;
136 }
137 
pxa2xx_spi_set_rx_thre(const struct driver_data * drv_data,u32 * sccr1_reg,u32 threshold)138 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
139 				   u32 *sccr1_reg, u32 threshold)
140 {
141 	switch (drv_data->ssp_type) {
142 	case QUARK_X1000_SSP:
143 		*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
144 		break;
145 	default:
146 		*sccr1_reg |= SSCR1_RxTresh(threshold);
147 		break;
148 	}
149 }
150 
pxa2xx_configure_sscr0(const struct driver_data * drv_data,u32 clk_div,u8 bits)151 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
152 				  u32 clk_div, u8 bits)
153 {
154 	switch (drv_data->ssp_type) {
155 	case QUARK_X1000_SSP:
156 		return clk_div
157 			| QUARK_X1000_SSCR0_Motorola
158 			| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
159 			| SSCR0_SSE;
160 	default:
161 		return clk_div
162 			| SSCR0_Motorola
163 			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
164 			| SSCR0_SSE
165 			| (bits > 16 ? SSCR0_EDSS : 0);
166 	}
167 }
168 
169 /*
170  * Read and write LPSS SSP private registers. Caller must first check that
171  * is_lpss_ssp() returns true before these can be called.
172  */
__lpss_ssp_read_priv(struct driver_data * drv_data,unsigned offset)173 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
174 {
175 	WARN_ON(!drv_data->lpss_base);
176 	return readl(drv_data->lpss_base + offset);
177 }
178 
__lpss_ssp_write_priv(struct driver_data * drv_data,unsigned offset,u32 value)179 static void __lpss_ssp_write_priv(struct driver_data *drv_data,
180 				  unsigned offset, u32 value)
181 {
182 	WARN_ON(!drv_data->lpss_base);
183 	writel(value, drv_data->lpss_base + offset);
184 }
185 
186 /*
187  * lpss_ssp_setup - perform LPSS SSP specific setup
188  * @drv_data: pointer to the driver private data
189  *
190  * Perform LPSS SSP specific setup. This function must be called first if
191  * one is going to use LPSS SSP private registers.
192  */
lpss_ssp_setup(struct driver_data * drv_data)193 static void lpss_ssp_setup(struct driver_data *drv_data)
194 {
195 	unsigned offset = 0x400;
196 	u32 value, orig;
197 
198 	/*
199 	 * Perform auto-detection of the LPSS SSP private registers. They
200 	 * can be either at 1k or 2k offset from the base address.
201 	 */
202 	orig = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
203 
204 	/* Test SPI_CS_CONTROL_SW_MODE bit enabling */
205 	value = orig | SPI_CS_CONTROL_SW_MODE;
206 	writel(value, drv_data->ioaddr + offset + SPI_CS_CONTROL);
207 	value = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
208 	if (value != (orig | SPI_CS_CONTROL_SW_MODE)) {
209 		offset = 0x800;
210 		goto detection_done;
211 	}
212 
213 	orig = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
214 
215 	/* Test SPI_CS_CONTROL_SW_MODE bit disabling */
216 	value = orig & ~SPI_CS_CONTROL_SW_MODE;
217 	writel(value, drv_data->ioaddr + offset + SPI_CS_CONTROL);
218 	value = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
219 	if (value != (orig & ~SPI_CS_CONTROL_SW_MODE)) {
220 		offset = 0x800;
221 		goto detection_done;
222 	}
223 
224 detection_done:
225 	/* Now set the LPSS base */
226 	drv_data->lpss_base = drv_data->ioaddr + offset;
227 
228 	/* Enable software chip select control */
229 	value = SPI_CS_CONTROL_SW_MODE | SPI_CS_CONTROL_CS_HIGH;
230 	__lpss_ssp_write_priv(drv_data, SPI_CS_CONTROL, value);
231 
232 	/* Enable multiblock DMA transfers */
233 	if (drv_data->master_info->enable_dma) {
234 		__lpss_ssp_write_priv(drv_data, SSP_REG, 1);
235 
236 		value = __lpss_ssp_read_priv(drv_data, GENERAL_REG);
237 		value |= GENERAL_REG_RXTO_HOLDOFF_DISABLE;
238 		__lpss_ssp_write_priv(drv_data, GENERAL_REG, value);
239 	}
240 }
241 
lpss_ssp_cs_control(struct driver_data * drv_data,bool enable)242 static void lpss_ssp_cs_control(struct driver_data *drv_data, bool enable)
243 {
244 	u32 value;
245 
246 	value = __lpss_ssp_read_priv(drv_data, SPI_CS_CONTROL);
247 	if (enable)
248 		value &= ~SPI_CS_CONTROL_CS_HIGH;
249 	else
250 		value |= SPI_CS_CONTROL_CS_HIGH;
251 	__lpss_ssp_write_priv(drv_data, SPI_CS_CONTROL, value);
252 }
253 
cs_assert(struct driver_data * drv_data)254 static void cs_assert(struct driver_data *drv_data)
255 {
256 	struct chip_data *chip = drv_data->cur_chip;
257 
258 	if (drv_data->ssp_type == CE4100_SSP) {
259 		pxa2xx_spi_write(drv_data, SSSR, drv_data->cur_chip->frm);
260 		return;
261 	}
262 
263 	if (chip->cs_control) {
264 		chip->cs_control(PXA2XX_CS_ASSERT);
265 		return;
266 	}
267 
268 	if (gpio_is_valid(chip->gpio_cs)) {
269 		gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted);
270 		return;
271 	}
272 
273 	if (is_lpss_ssp(drv_data))
274 		lpss_ssp_cs_control(drv_data, true);
275 }
276 
cs_deassert(struct driver_data * drv_data)277 static void cs_deassert(struct driver_data *drv_data)
278 {
279 	struct chip_data *chip = drv_data->cur_chip;
280 
281 	if (drv_data->ssp_type == CE4100_SSP)
282 		return;
283 
284 	if (chip->cs_control) {
285 		chip->cs_control(PXA2XX_CS_DEASSERT);
286 		return;
287 	}
288 
289 	if (gpio_is_valid(chip->gpio_cs)) {
290 		gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted);
291 		return;
292 	}
293 
294 	if (is_lpss_ssp(drv_data))
295 		lpss_ssp_cs_control(drv_data, false);
296 }
297 
pxa2xx_spi_flush(struct driver_data * drv_data)298 int pxa2xx_spi_flush(struct driver_data *drv_data)
299 {
300 	unsigned long limit = loops_per_jiffy << 1;
301 
302 	do {
303 		while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
304 			pxa2xx_spi_read(drv_data, SSDR);
305 	} while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
306 	write_SSSR_CS(drv_data, SSSR_ROR);
307 
308 	return limit;
309 }
310 
null_writer(struct driver_data * drv_data)311 static int null_writer(struct driver_data *drv_data)
312 {
313 	u8 n_bytes = drv_data->n_bytes;
314 
315 	if (pxa2xx_spi_txfifo_full(drv_data)
316 		|| (drv_data->tx == drv_data->tx_end))
317 		return 0;
318 
319 	pxa2xx_spi_write(drv_data, SSDR, 0);
320 	drv_data->tx += n_bytes;
321 
322 	return 1;
323 }
324 
null_reader(struct driver_data * drv_data)325 static int null_reader(struct driver_data *drv_data)
326 {
327 	u8 n_bytes = drv_data->n_bytes;
328 
329 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
330 	       && (drv_data->rx < drv_data->rx_end)) {
331 		pxa2xx_spi_read(drv_data, SSDR);
332 		drv_data->rx += n_bytes;
333 	}
334 
335 	return drv_data->rx == drv_data->rx_end;
336 }
337 
u8_writer(struct driver_data * drv_data)338 static int u8_writer(struct driver_data *drv_data)
339 {
340 	if (pxa2xx_spi_txfifo_full(drv_data)
341 		|| (drv_data->tx == drv_data->tx_end))
342 		return 0;
343 
344 	pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
345 	++drv_data->tx;
346 
347 	return 1;
348 }
349 
u8_reader(struct driver_data * drv_data)350 static int u8_reader(struct driver_data *drv_data)
351 {
352 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
353 	       && (drv_data->rx < drv_data->rx_end)) {
354 		*(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
355 		++drv_data->rx;
356 	}
357 
358 	return drv_data->rx == drv_data->rx_end;
359 }
360 
u16_writer(struct driver_data * drv_data)361 static int u16_writer(struct driver_data *drv_data)
362 {
363 	if (pxa2xx_spi_txfifo_full(drv_data)
364 		|| (drv_data->tx == drv_data->tx_end))
365 		return 0;
366 
367 	pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
368 	drv_data->tx += 2;
369 
370 	return 1;
371 }
372 
u16_reader(struct driver_data * drv_data)373 static int u16_reader(struct driver_data *drv_data)
374 {
375 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
376 	       && (drv_data->rx < drv_data->rx_end)) {
377 		*(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
378 		drv_data->rx += 2;
379 	}
380 
381 	return drv_data->rx == drv_data->rx_end;
382 }
383 
u32_writer(struct driver_data * drv_data)384 static int u32_writer(struct driver_data *drv_data)
385 {
386 	if (pxa2xx_spi_txfifo_full(drv_data)
387 		|| (drv_data->tx == drv_data->tx_end))
388 		return 0;
389 
390 	pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
391 	drv_data->tx += 4;
392 
393 	return 1;
394 }
395 
u32_reader(struct driver_data * drv_data)396 static int u32_reader(struct driver_data *drv_data)
397 {
398 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
399 	       && (drv_data->rx < drv_data->rx_end)) {
400 		*(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
401 		drv_data->rx += 4;
402 	}
403 
404 	return drv_data->rx == drv_data->rx_end;
405 }
406 
pxa2xx_spi_next_transfer(struct driver_data * drv_data)407 void *pxa2xx_spi_next_transfer(struct driver_data *drv_data)
408 {
409 	struct spi_message *msg = drv_data->cur_msg;
410 	struct spi_transfer *trans = drv_data->cur_transfer;
411 
412 	/* Move to next transfer */
413 	if (trans->transfer_list.next != &msg->transfers) {
414 		drv_data->cur_transfer =
415 			list_entry(trans->transfer_list.next,
416 					struct spi_transfer,
417 					transfer_list);
418 		return RUNNING_STATE;
419 	} else
420 		return DONE_STATE;
421 }
422 
423 /* caller already set message->status; dma and pio irqs are blocked */
giveback(struct driver_data * drv_data)424 static void giveback(struct driver_data *drv_data)
425 {
426 	struct spi_transfer* last_transfer;
427 	struct spi_message *msg;
428 
429 	msg = drv_data->cur_msg;
430 	drv_data->cur_msg = NULL;
431 	drv_data->cur_transfer = NULL;
432 
433 	last_transfer = list_last_entry(&msg->transfers, struct spi_transfer,
434 					transfer_list);
435 
436 	/* Delay if requested before any change in chip select */
437 	if (last_transfer->delay_usecs)
438 		udelay(last_transfer->delay_usecs);
439 
440 	/* Drop chip select UNLESS cs_change is true or we are returning
441 	 * a message with an error, or next message is for another chip
442 	 */
443 	if (!last_transfer->cs_change)
444 		cs_deassert(drv_data);
445 	else {
446 		struct spi_message *next_msg;
447 
448 		/* Holding of cs was hinted, but we need to make sure
449 		 * the next message is for the same chip.  Don't waste
450 		 * time with the following tests unless this was hinted.
451 		 *
452 		 * We cannot postpone this until pump_messages, because
453 		 * after calling msg->complete (below) the driver that
454 		 * sent the current message could be unloaded, which
455 		 * could invalidate the cs_control() callback...
456 		 */
457 
458 		/* get a pointer to the next message, if any */
459 		next_msg = spi_get_next_queued_message(drv_data->master);
460 
461 		/* see if the next and current messages point
462 		 * to the same chip
463 		 */
464 		if (next_msg && next_msg->spi != msg->spi)
465 			next_msg = NULL;
466 		if (!next_msg || msg->state == ERROR_STATE)
467 			cs_deassert(drv_data);
468 	}
469 
470 	drv_data->cur_chip = NULL;
471 	spi_finalize_current_message(drv_data->master);
472 }
473 
reset_sccr1(struct driver_data * drv_data)474 static void reset_sccr1(struct driver_data *drv_data)
475 {
476 	struct chip_data *chip = drv_data->cur_chip;
477 	u32 sccr1_reg;
478 
479 	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
480 	sccr1_reg &= ~SSCR1_RFT;
481 	sccr1_reg |= chip->threshold;
482 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
483 }
484 
int_error_stop(struct driver_data * drv_data,const char * msg)485 static void int_error_stop(struct driver_data *drv_data, const char* msg)
486 {
487 	/* Stop and reset SSP */
488 	write_SSSR_CS(drv_data, drv_data->clear_sr);
489 	reset_sccr1(drv_data);
490 	if (!pxa25x_ssp_comp(drv_data))
491 		pxa2xx_spi_write(drv_data, SSTO, 0);
492 	pxa2xx_spi_flush(drv_data);
493 	pxa2xx_spi_write(drv_data, SSCR0,
494 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
495 
496 	dev_err(&drv_data->pdev->dev, "%s\n", msg);
497 
498 	drv_data->cur_msg->state = ERROR_STATE;
499 	tasklet_schedule(&drv_data->pump_transfers);
500 }
501 
int_transfer_complete(struct driver_data * drv_data)502 static void int_transfer_complete(struct driver_data *drv_data)
503 {
504 	/* Stop SSP */
505 	write_SSSR_CS(drv_data, drv_data->clear_sr);
506 	reset_sccr1(drv_data);
507 	if (!pxa25x_ssp_comp(drv_data))
508 		pxa2xx_spi_write(drv_data, SSTO, 0);
509 
510 	/* Update total byte transferred return count actual bytes read */
511 	drv_data->cur_msg->actual_length += drv_data->len -
512 				(drv_data->rx_end - drv_data->rx);
513 
514 	/* Transfer delays and chip select release are
515 	 * handled in pump_transfers or giveback
516 	 */
517 
518 	/* Move to next transfer */
519 	drv_data->cur_msg->state = pxa2xx_spi_next_transfer(drv_data);
520 
521 	/* Schedule transfer tasklet */
522 	tasklet_schedule(&drv_data->pump_transfers);
523 }
524 
interrupt_transfer(struct driver_data * drv_data)525 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
526 {
527 	u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
528 		       drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
529 
530 	u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
531 
532 	if (irq_status & SSSR_ROR) {
533 		int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
534 		return IRQ_HANDLED;
535 	}
536 
537 	if (irq_status & SSSR_TINT) {
538 		pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
539 		if (drv_data->read(drv_data)) {
540 			int_transfer_complete(drv_data);
541 			return IRQ_HANDLED;
542 		}
543 	}
544 
545 	/* Drain rx fifo, Fill tx fifo and prevent overruns */
546 	do {
547 		if (drv_data->read(drv_data)) {
548 			int_transfer_complete(drv_data);
549 			return IRQ_HANDLED;
550 		}
551 	} while (drv_data->write(drv_data));
552 
553 	if (drv_data->read(drv_data)) {
554 		int_transfer_complete(drv_data);
555 		return IRQ_HANDLED;
556 	}
557 
558 	if (drv_data->tx == drv_data->tx_end) {
559 		u32 bytes_left;
560 		u32 sccr1_reg;
561 
562 		sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
563 		sccr1_reg &= ~SSCR1_TIE;
564 
565 		/*
566 		 * PXA25x_SSP has no timeout, set up rx threshould for the
567 		 * remaining RX bytes.
568 		 */
569 		if (pxa25x_ssp_comp(drv_data)) {
570 			u32 rx_thre;
571 
572 			pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
573 
574 			bytes_left = drv_data->rx_end - drv_data->rx;
575 			switch (drv_data->n_bytes) {
576 			case 4:
577 				bytes_left >>= 1;
578 			case 2:
579 				bytes_left >>= 1;
580 			}
581 
582 			rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
583 			if (rx_thre > bytes_left)
584 				rx_thre = bytes_left;
585 
586 			pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
587 		}
588 		pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
589 	}
590 
591 	/* We did something */
592 	return IRQ_HANDLED;
593 }
594 
ssp_int(int irq,void * dev_id)595 static irqreturn_t ssp_int(int irq, void *dev_id)
596 {
597 	struct driver_data *drv_data = dev_id;
598 	u32 sccr1_reg;
599 	u32 mask = drv_data->mask_sr;
600 	u32 status;
601 
602 	/*
603 	 * The IRQ might be shared with other peripherals so we must first
604 	 * check that are we RPM suspended or not. If we are we assume that
605 	 * the IRQ was not for us (we shouldn't be RPM suspended when the
606 	 * interrupt is enabled).
607 	 */
608 	if (pm_runtime_suspended(&drv_data->pdev->dev))
609 		return IRQ_NONE;
610 
611 	/*
612 	 * If the device is not yet in RPM suspended state and we get an
613 	 * interrupt that is meant for another device, check if status bits
614 	 * are all set to one. That means that the device is already
615 	 * powered off.
616 	 */
617 	status = pxa2xx_spi_read(drv_data, SSSR);
618 	if (status == ~0)
619 		return IRQ_NONE;
620 
621 	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
622 
623 	/* Ignore possible writes if we don't need to write */
624 	if (!(sccr1_reg & SSCR1_TIE))
625 		mask &= ~SSSR_TFS;
626 
627 	/* Ignore RX timeout interrupt if it is disabled */
628 	if (!(sccr1_reg & SSCR1_TINTE))
629 		mask &= ~SSSR_TINT;
630 
631 	if (!(status & mask))
632 		return IRQ_NONE;
633 
634 	if (!drv_data->cur_msg) {
635 
636 		pxa2xx_spi_write(drv_data, SSCR0,
637 				 pxa2xx_spi_read(drv_data, SSCR0)
638 				 & ~SSCR0_SSE);
639 		pxa2xx_spi_write(drv_data, SSCR1,
640 				 pxa2xx_spi_read(drv_data, SSCR1)
641 				 & ~drv_data->int_cr1);
642 		if (!pxa25x_ssp_comp(drv_data))
643 			pxa2xx_spi_write(drv_data, SSTO, 0);
644 		write_SSSR_CS(drv_data, drv_data->clear_sr);
645 
646 		dev_err(&drv_data->pdev->dev,
647 			"bad message state in interrupt handler\n");
648 
649 		/* Never fail */
650 		return IRQ_HANDLED;
651 	}
652 
653 	return drv_data->transfer_handler(drv_data);
654 }
655 
656 /*
657  * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
658  * input frequency by fractions of 2^24. It also has a divider by 5.
659  *
660  * There are formulas to get baud rate value for given input frequency and
661  * divider parameters, such as DDS_CLK_RATE and SCR:
662  *
663  * Fsys = 200MHz
664  *
665  * Fssp = Fsys * DDS_CLK_RATE / 2^24			(1)
666  * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))		(2)
667  *
668  * DDS_CLK_RATE either 2^n or 2^n / 5.
669  * SCR is in range 0 .. 255
670  *
671  * Divisor = 5^i * 2^j * 2 * k
672  *       i = [0, 1]      i = 1 iff j = 0 or j > 3
673  *       j = [0, 23]     j = 0 iff i = 1
674  *       k = [1, 256]
675  * Special case: j = 0, i = 1: Divisor = 2 / 5
676  *
677  * Accordingly to the specification the recommended values for DDS_CLK_RATE
678  * are:
679  *	Case 1:		2^n, n = [0, 23]
680  *	Case 2:		2^24 * 2 / 5 (0x666666)
681  *	Case 3:		less than or equal to 2^24 / 5 / 16 (0x33333)
682  *
683  * In all cases the lowest possible value is better.
684  *
685  * The function calculates parameters for all cases and chooses the one closest
686  * to the asked baud rate.
687  */
quark_x1000_get_clk_div(int rate,u32 * dds)688 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
689 {
690 	unsigned long xtal = 200000000;
691 	unsigned long fref = xtal / 2;		/* mandatory division by 2,
692 						   see (2) */
693 						/* case 3 */
694 	unsigned long fref1 = fref / 2;		/* case 1 */
695 	unsigned long fref2 = fref * 2 / 5;	/* case 2 */
696 	unsigned long scale;
697 	unsigned long q, q1, q2;
698 	long r, r1, r2;
699 	u32 mul;
700 
701 	/* Case 1 */
702 
703 	/* Set initial value for DDS_CLK_RATE */
704 	mul = (1 << 24) >> 1;
705 
706 	/* Calculate initial quot */
707 	q1 = DIV_ROUND_CLOSEST(fref1, rate);
708 
709 	/* Scale q1 if it's too big */
710 	if (q1 > 256) {
711 		/* Scale q1 to range [1, 512] */
712 		scale = fls_long(q1 - 1);
713 		if (scale > 9) {
714 			q1 >>= scale - 9;
715 			mul >>= scale - 9;
716 		}
717 
718 		/* Round the result if we have a remainder */
719 		q1 += q1 & 1;
720 	}
721 
722 	/* Decrease DDS_CLK_RATE as much as we can without loss in precision */
723 	scale = __ffs(q1);
724 	q1 >>= scale;
725 	mul >>= scale;
726 
727 	/* Get the remainder */
728 	r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
729 
730 	/* Case 2 */
731 
732 	q2 = DIV_ROUND_CLOSEST(fref2, rate);
733 	r2 = abs(fref2 / q2 - rate);
734 
735 	/*
736 	 * Choose the best between two: less remainder we have the better. We
737 	 * can't go case 2 if q2 is greater than 256 since SCR register can
738 	 * hold only values 0 .. 255.
739 	 */
740 	if (r2 >= r1 || q2 > 256) {
741 		/* case 1 is better */
742 		r = r1;
743 		q = q1;
744 	} else {
745 		/* case 2 is better */
746 		r = r2;
747 		q = q2;
748 		mul = (1 << 24) * 2 / 5;
749 	}
750 
751 	/* Check case 3 only If the divisor is big enough */
752 	if (fref / rate >= 80) {
753 		u64 fssp;
754 		u32 m;
755 
756 		/* Calculate initial quot */
757 		q1 = DIV_ROUND_CLOSEST(fref, rate);
758 		m = (1 << 24) / q1;
759 
760 		/* Get the remainder */
761 		fssp = (u64)fref * m;
762 		do_div(fssp, 1 << 24);
763 		r1 = abs(fssp - rate);
764 
765 		/* Choose this one if it suits better */
766 		if (r1 < r) {
767 			/* case 3 is better */
768 			q = 1;
769 			mul = m;
770 		}
771 	}
772 
773 	*dds = mul;
774 	return q - 1;
775 }
776 
ssp_get_clk_div(struct driver_data * drv_data,int rate)777 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
778 {
779 	unsigned long ssp_clk = drv_data->max_clk_rate;
780 	const struct ssp_device *ssp = drv_data->ssp;
781 
782 	rate = min_t(int, ssp_clk, rate);
783 
784 	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
785 		return (ssp_clk / (2 * rate) - 1) & 0xff;
786 	else
787 		return (ssp_clk / rate - 1) & 0xfff;
788 }
789 
pxa2xx_ssp_get_clk_div(struct driver_data * drv_data,struct chip_data * chip,int rate)790 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
791 					   struct chip_data *chip, int rate)
792 {
793 	unsigned int clk_div;
794 
795 	switch (drv_data->ssp_type) {
796 	case QUARK_X1000_SSP:
797 		clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
798 		break;
799 	default:
800 		clk_div = ssp_get_clk_div(drv_data, rate);
801 		break;
802 	}
803 	return clk_div << 8;
804 }
805 
pump_transfers(unsigned long data)806 static void pump_transfers(unsigned long data)
807 {
808 	struct driver_data *drv_data = (struct driver_data *)data;
809 	struct spi_message *message = NULL;
810 	struct spi_transfer *transfer = NULL;
811 	struct spi_transfer *previous = NULL;
812 	struct chip_data *chip = NULL;
813 	u32 clk_div = 0;
814 	u8 bits = 0;
815 	u32 speed = 0;
816 	u32 cr0;
817 	u32 cr1;
818 	u32 dma_thresh = drv_data->cur_chip->dma_threshold;
819 	u32 dma_burst = drv_data->cur_chip->dma_burst_size;
820 	u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
821 
822 	/* Get current state information */
823 	message = drv_data->cur_msg;
824 	transfer = drv_data->cur_transfer;
825 	chip = drv_data->cur_chip;
826 
827 	/* Handle for abort */
828 	if (message->state == ERROR_STATE) {
829 		message->status = -EIO;
830 		giveback(drv_data);
831 		return;
832 	}
833 
834 	/* Handle end of message */
835 	if (message->state == DONE_STATE) {
836 		message->status = 0;
837 		giveback(drv_data);
838 		return;
839 	}
840 
841 	/* Delay if requested at end of transfer before CS change */
842 	if (message->state == RUNNING_STATE) {
843 		previous = list_entry(transfer->transfer_list.prev,
844 					struct spi_transfer,
845 					transfer_list);
846 		if (previous->delay_usecs)
847 			udelay(previous->delay_usecs);
848 
849 		/* Drop chip select only if cs_change is requested */
850 		if (previous->cs_change)
851 			cs_deassert(drv_data);
852 	}
853 
854 	/* Check if we can DMA this transfer */
855 	if (!pxa2xx_spi_dma_is_possible(transfer->len) && chip->enable_dma) {
856 
857 		/* reject already-mapped transfers; PIO won't always work */
858 		if (message->is_dma_mapped
859 				|| transfer->rx_dma || transfer->tx_dma) {
860 			dev_err(&drv_data->pdev->dev,
861 				"pump_transfers: mapped transfer length of "
862 				"%u is greater than %d\n",
863 				transfer->len, MAX_DMA_LEN);
864 			message->status = -EINVAL;
865 			giveback(drv_data);
866 			return;
867 		}
868 
869 		/* warn ... we force this to PIO mode */
870 		dev_warn_ratelimited(&message->spi->dev,
871 				     "pump_transfers: DMA disabled for transfer length %ld "
872 				     "greater than %d\n",
873 				     (long)drv_data->len, MAX_DMA_LEN);
874 	}
875 
876 	/* Setup the transfer state based on the type of transfer */
877 	if (pxa2xx_spi_flush(drv_data) == 0) {
878 		dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
879 		message->status = -EIO;
880 		giveback(drv_data);
881 		return;
882 	}
883 	drv_data->n_bytes = chip->n_bytes;
884 	drv_data->tx = (void *)transfer->tx_buf;
885 	drv_data->tx_end = drv_data->tx + transfer->len;
886 	drv_data->rx = transfer->rx_buf;
887 	drv_data->rx_end = drv_data->rx + transfer->len;
888 	drv_data->rx_dma = transfer->rx_dma;
889 	drv_data->tx_dma = transfer->tx_dma;
890 	drv_data->len = transfer->len;
891 	drv_data->write = drv_data->tx ? chip->write : null_writer;
892 	drv_data->read = drv_data->rx ? chip->read : null_reader;
893 
894 	/* Change speed and bit per word on a per transfer */
895 	cr0 = chip->cr0;
896 	if (transfer->speed_hz || transfer->bits_per_word) {
897 
898 		bits = chip->bits_per_word;
899 		speed = chip->speed_hz;
900 
901 		if (transfer->speed_hz)
902 			speed = transfer->speed_hz;
903 
904 		if (transfer->bits_per_word)
905 			bits = transfer->bits_per_word;
906 
907 		clk_div = pxa2xx_ssp_get_clk_div(drv_data, chip, speed);
908 
909 		if (bits <= 8) {
910 			drv_data->n_bytes = 1;
911 			drv_data->read = drv_data->read != null_reader ?
912 						u8_reader : null_reader;
913 			drv_data->write = drv_data->write != null_writer ?
914 						u8_writer : null_writer;
915 		} else if (bits <= 16) {
916 			drv_data->n_bytes = 2;
917 			drv_data->read = drv_data->read != null_reader ?
918 						u16_reader : null_reader;
919 			drv_data->write = drv_data->write != null_writer ?
920 						u16_writer : null_writer;
921 		} else if (bits <= 32) {
922 			drv_data->n_bytes = 4;
923 			drv_data->read = drv_data->read != null_reader ?
924 						u32_reader : null_reader;
925 			drv_data->write = drv_data->write != null_writer ?
926 						u32_writer : null_writer;
927 		}
928 		/* if bits/word is changed in dma mode, then must check the
929 		 * thresholds and burst also */
930 		if (chip->enable_dma) {
931 			if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
932 							message->spi,
933 							bits, &dma_burst,
934 							&dma_thresh))
935 				dev_warn_ratelimited(&message->spi->dev,
936 						     "pump_transfers: DMA burst size reduced to match bits_per_word\n");
937 		}
938 
939 		cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
940 	}
941 
942 	message->state = RUNNING_STATE;
943 
944 	drv_data->dma_mapped = 0;
945 	if (pxa2xx_spi_dma_is_possible(drv_data->len))
946 		drv_data->dma_mapped = pxa2xx_spi_map_dma_buffers(drv_data);
947 	if (drv_data->dma_mapped) {
948 
949 		/* Ensure we have the correct interrupt handler */
950 		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
951 
952 		pxa2xx_spi_dma_prepare(drv_data, dma_burst);
953 
954 		/* Clear status and start DMA engine */
955 		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
956 		pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
957 
958 		pxa2xx_spi_dma_start(drv_data);
959 	} else {
960 		/* Ensure we have the correct interrupt handler	*/
961 		drv_data->transfer_handler = interrupt_transfer;
962 
963 		/* Clear status  */
964 		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
965 		write_SSSR_CS(drv_data, drv_data->clear_sr);
966 	}
967 
968 	if (is_lpss_ssp(drv_data)) {
969 		if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
970 		    != chip->lpss_rx_threshold)
971 			pxa2xx_spi_write(drv_data, SSIRF,
972 					 chip->lpss_rx_threshold);
973 		if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
974 		    != chip->lpss_tx_threshold)
975 			pxa2xx_spi_write(drv_data, SSITF,
976 					 chip->lpss_tx_threshold);
977 	}
978 
979 	if (is_quark_x1000_ssp(drv_data) &&
980 	    (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
981 		pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
982 
983 	/* see if we need to reload the config registers */
984 	if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
985 	    || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
986 	    != (cr1 & change_mask)) {
987 		/* stop the SSP, and update the other bits */
988 		pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
989 		if (!pxa25x_ssp_comp(drv_data))
990 			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
991 		/* first set CR1 without interrupt and service enables */
992 		pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
993 		/* restart the SSP */
994 		pxa2xx_spi_write(drv_data, SSCR0, cr0);
995 
996 	} else {
997 		if (!pxa25x_ssp_comp(drv_data))
998 			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
999 	}
1000 
1001 	cs_assert(drv_data);
1002 
1003 	/* after chip select, release the data by enabling service
1004 	 * requests and interrupts, without changing any mode bits */
1005 	pxa2xx_spi_write(drv_data, SSCR1, cr1);
1006 }
1007 
pxa2xx_spi_transfer_one_message(struct spi_master * master,struct spi_message * msg)1008 static int pxa2xx_spi_transfer_one_message(struct spi_master *master,
1009 					   struct spi_message *msg)
1010 {
1011 	struct driver_data *drv_data = spi_master_get_devdata(master);
1012 
1013 	drv_data->cur_msg = msg;
1014 	/* Initial message state*/
1015 	drv_data->cur_msg->state = START_STATE;
1016 	drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
1017 						struct spi_transfer,
1018 						transfer_list);
1019 
1020 	/* prepare to setup the SSP, in pump_transfers, using the per
1021 	 * chip configuration */
1022 	drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
1023 
1024 	/* Mark as busy and launch transfers */
1025 	tasklet_schedule(&drv_data->pump_transfers);
1026 	return 0;
1027 }
1028 
pxa2xx_spi_unprepare_transfer(struct spi_master * master)1029 static int pxa2xx_spi_unprepare_transfer(struct spi_master *master)
1030 {
1031 	struct driver_data *drv_data = spi_master_get_devdata(master);
1032 
1033 	/* Disable the SSP now */
1034 	pxa2xx_spi_write(drv_data, SSCR0,
1035 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1036 
1037 	return 0;
1038 }
1039 
setup_cs(struct spi_device * spi,struct chip_data * chip,struct pxa2xx_spi_chip * chip_info)1040 static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1041 		    struct pxa2xx_spi_chip *chip_info)
1042 {
1043 	int err = 0;
1044 
1045 	if (chip == NULL || chip_info == NULL)
1046 		return 0;
1047 
1048 	/* NOTE: setup() can be called multiple times, possibly with
1049 	 * different chip_info, release previously requested GPIO
1050 	 */
1051 	if (gpio_is_valid(chip->gpio_cs))
1052 		gpio_free(chip->gpio_cs);
1053 
1054 	/* If (*cs_control) is provided, ignore GPIO chip select */
1055 	if (chip_info->cs_control) {
1056 		chip->cs_control = chip_info->cs_control;
1057 		return 0;
1058 	}
1059 
1060 	if (gpio_is_valid(chip_info->gpio_cs)) {
1061 		err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1062 		if (err) {
1063 			dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1064 				chip_info->gpio_cs);
1065 			return err;
1066 		}
1067 
1068 		chip->gpio_cs = chip_info->gpio_cs;
1069 		chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1070 
1071 		err = gpio_direction_output(chip->gpio_cs,
1072 					!chip->gpio_cs_inverted);
1073 	}
1074 
1075 	return err;
1076 }
1077 
setup(struct spi_device * spi)1078 static int setup(struct spi_device *spi)
1079 {
1080 	struct pxa2xx_spi_chip *chip_info = NULL;
1081 	struct chip_data *chip;
1082 	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1083 	unsigned int clk_div;
1084 	uint tx_thres, tx_hi_thres, rx_thres;
1085 
1086 	switch (drv_data->ssp_type) {
1087 	case QUARK_X1000_SSP:
1088 		tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1089 		tx_hi_thres = 0;
1090 		rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1091 		break;
1092 	case LPSS_SSP:
1093 		tx_thres = LPSS_TX_LOTHRESH_DFLT;
1094 		tx_hi_thres = LPSS_TX_HITHRESH_DFLT;
1095 		rx_thres = LPSS_RX_THRESH_DFLT;
1096 		break;
1097 	default:
1098 		tx_thres = TX_THRESH_DFLT;
1099 		tx_hi_thres = 0;
1100 		rx_thres = RX_THRESH_DFLT;
1101 		break;
1102 	}
1103 
1104 	/* Only alloc on first setup */
1105 	chip = spi_get_ctldata(spi);
1106 	if (!chip) {
1107 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1108 		if (!chip)
1109 			return -ENOMEM;
1110 
1111 		if (drv_data->ssp_type == CE4100_SSP) {
1112 			if (spi->chip_select > 4) {
1113 				dev_err(&spi->dev,
1114 					"failed setup: cs number must not be > 4.\n");
1115 				kfree(chip);
1116 				return -EINVAL;
1117 			}
1118 
1119 			chip->frm = spi->chip_select;
1120 		} else
1121 			chip->gpio_cs = -1;
1122 		chip->enable_dma = 0;
1123 		chip->timeout = TIMOUT_DFLT;
1124 	}
1125 
1126 	/* protocol drivers may change the chip settings, so...
1127 	 * if chip_info exists, use it */
1128 	chip_info = spi->controller_data;
1129 
1130 	/* chip_info isn't always needed */
1131 	chip->cr1 = 0;
1132 	if (chip_info) {
1133 		if (chip_info->timeout)
1134 			chip->timeout = chip_info->timeout;
1135 		if (chip_info->tx_threshold)
1136 			tx_thres = chip_info->tx_threshold;
1137 		if (chip_info->tx_hi_threshold)
1138 			tx_hi_thres = chip_info->tx_hi_threshold;
1139 		if (chip_info->rx_threshold)
1140 			rx_thres = chip_info->rx_threshold;
1141 		chip->enable_dma = drv_data->master_info->enable_dma;
1142 		chip->dma_threshold = 0;
1143 		if (chip_info->enable_loopback)
1144 			chip->cr1 = SSCR1_LBM;
1145 	} else if (ACPI_HANDLE(&spi->dev)) {
1146 		/*
1147 		 * Slave devices enumerated from ACPI namespace don't
1148 		 * usually have chip_info but we still might want to use
1149 		 * DMA with them.
1150 		 */
1151 		chip->enable_dma = drv_data->master_info->enable_dma;
1152 	}
1153 
1154 	chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1155 	chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1156 				| SSITF_TxHiThresh(tx_hi_thres);
1157 
1158 	/* set dma burst and threshold outside of chip_info path so that if
1159 	 * chip_info goes away after setting chip->enable_dma, the
1160 	 * burst and threshold can still respond to changes in bits_per_word */
1161 	if (chip->enable_dma) {
1162 		/* set up legal burst and threshold for dma */
1163 		if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1164 						spi->bits_per_word,
1165 						&chip->dma_burst_size,
1166 						&chip->dma_threshold)) {
1167 			dev_warn(&spi->dev,
1168 				 "in setup: DMA burst size reduced to match bits_per_word\n");
1169 		}
1170 	}
1171 
1172 	clk_div = pxa2xx_ssp_get_clk_div(drv_data, chip, spi->max_speed_hz);
1173 	chip->speed_hz = spi->max_speed_hz;
1174 
1175 	chip->cr0 = pxa2xx_configure_sscr0(drv_data, clk_div,
1176 					   spi->bits_per_word);
1177 	switch (drv_data->ssp_type) {
1178 	case QUARK_X1000_SSP:
1179 		chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1180 				   & QUARK_X1000_SSCR1_RFT)
1181 				   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1182 				   & QUARK_X1000_SSCR1_TFT);
1183 		break;
1184 	default:
1185 		chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1186 			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1187 		break;
1188 	}
1189 
1190 	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1191 	chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1192 			| (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1193 
1194 	if (spi->mode & SPI_LOOP)
1195 		chip->cr1 |= SSCR1_LBM;
1196 
1197 	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1198 	if (!pxa25x_ssp_comp(drv_data))
1199 		dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
1200 			drv_data->max_clk_rate
1201 				/ (1 + ((chip->cr0 & SSCR0_SCR(0xfff)) >> 8)),
1202 			chip->enable_dma ? "DMA" : "PIO");
1203 	else
1204 		dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
1205 			drv_data->max_clk_rate / 2
1206 				/ (1 + ((chip->cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1207 			chip->enable_dma ? "DMA" : "PIO");
1208 
1209 	if (spi->bits_per_word <= 8) {
1210 		chip->n_bytes = 1;
1211 		chip->read = u8_reader;
1212 		chip->write = u8_writer;
1213 	} else if (spi->bits_per_word <= 16) {
1214 		chip->n_bytes = 2;
1215 		chip->read = u16_reader;
1216 		chip->write = u16_writer;
1217 	} else if (spi->bits_per_word <= 32) {
1218 		if (!is_quark_x1000_ssp(drv_data))
1219 			chip->cr0 |= SSCR0_EDSS;
1220 		chip->n_bytes = 4;
1221 		chip->read = u32_reader;
1222 		chip->write = u32_writer;
1223 	}
1224 	chip->bits_per_word = spi->bits_per_word;
1225 
1226 	spi_set_ctldata(spi, chip);
1227 
1228 	if (drv_data->ssp_type == CE4100_SSP)
1229 		return 0;
1230 
1231 	return setup_cs(spi, chip, chip_info);
1232 }
1233 
cleanup(struct spi_device * spi)1234 static void cleanup(struct spi_device *spi)
1235 {
1236 	struct chip_data *chip = spi_get_ctldata(spi);
1237 	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1238 
1239 	if (!chip)
1240 		return;
1241 
1242 	if (drv_data->ssp_type != CE4100_SSP && gpio_is_valid(chip->gpio_cs))
1243 		gpio_free(chip->gpio_cs);
1244 
1245 	kfree(chip);
1246 }
1247 
1248 #ifdef CONFIG_ACPI
1249 static struct pxa2xx_spi_master *
pxa2xx_spi_acpi_get_pdata(struct platform_device * pdev)1250 pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev)
1251 {
1252 	struct pxa2xx_spi_master *pdata;
1253 	struct acpi_device *adev;
1254 	struct ssp_device *ssp;
1255 	struct resource *res;
1256 	int devid;
1257 
1258 	if (!ACPI_HANDLE(&pdev->dev) ||
1259 	    acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
1260 		return NULL;
1261 
1262 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1263 	if (!pdata)
1264 		return NULL;
1265 
1266 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1267 	if (!res)
1268 		return NULL;
1269 
1270 	ssp = &pdata->ssp;
1271 
1272 	ssp->phys_base = res->start;
1273 	ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1274 	if (IS_ERR(ssp->mmio_base))
1275 		return NULL;
1276 
1277 	ssp->clk = devm_clk_get(&pdev->dev, NULL);
1278 	ssp->irq = platform_get_irq(pdev, 0);
1279 	ssp->type = LPSS_SSP;
1280 	ssp->pdev = pdev;
1281 
1282 	ssp->port_id = -1;
1283 	if (adev->pnp.unique_id && !kstrtoint(adev->pnp.unique_id, 0, &devid))
1284 		ssp->port_id = devid;
1285 
1286 	pdata->num_chipselect = 1;
1287 	pdata->enable_dma = true;
1288 
1289 	return pdata;
1290 }
1291 
1292 static struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1293 	{ "INT33C0", 0 },
1294 	{ "INT33C1", 0 },
1295 	{ "INT3430", 0 },
1296 	{ "INT3431", 0 },
1297 	{ "80860F0E", 0 },
1298 	{ "8086228E", 0 },
1299 	{ },
1300 };
1301 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1302 #else
1303 static inline struct pxa2xx_spi_master *
pxa2xx_spi_acpi_get_pdata(struct platform_device * pdev)1304 pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev)
1305 {
1306 	return NULL;
1307 }
1308 #endif
1309 
pxa2xx_spi_probe(struct platform_device * pdev)1310 static int pxa2xx_spi_probe(struct platform_device *pdev)
1311 {
1312 	struct device *dev = &pdev->dev;
1313 	struct pxa2xx_spi_master *platform_info;
1314 	struct spi_master *master;
1315 	struct driver_data *drv_data;
1316 	struct ssp_device *ssp;
1317 	int status;
1318 	u32 tmp;
1319 
1320 	platform_info = dev_get_platdata(dev);
1321 	if (!platform_info) {
1322 		platform_info = pxa2xx_spi_acpi_get_pdata(pdev);
1323 		if (!platform_info) {
1324 			dev_err(&pdev->dev, "missing platform data\n");
1325 			return -ENODEV;
1326 		}
1327 	}
1328 
1329 	ssp = pxa_ssp_request(pdev->id, pdev->name);
1330 	if (!ssp)
1331 		ssp = &platform_info->ssp;
1332 
1333 	if (!ssp->mmio_base) {
1334 		dev_err(&pdev->dev, "failed to get ssp\n");
1335 		return -ENODEV;
1336 	}
1337 
1338 	/* Allocate master with space for drv_data and null dma buffer */
1339 	master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
1340 	if (!master) {
1341 		dev_err(&pdev->dev, "cannot alloc spi_master\n");
1342 		pxa_ssp_free(ssp);
1343 		return -ENOMEM;
1344 	}
1345 	drv_data = spi_master_get_devdata(master);
1346 	drv_data->master = master;
1347 	drv_data->master_info = platform_info;
1348 	drv_data->pdev = pdev;
1349 	drv_data->ssp = ssp;
1350 
1351 	master->dev.parent = &pdev->dev;
1352 	master->dev.of_node = pdev->dev.of_node;
1353 	/* the spi->mode bits understood by this driver: */
1354 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1355 
1356 	master->bus_num = ssp->port_id;
1357 	master->num_chipselect = platform_info->num_chipselect;
1358 	master->dma_alignment = DMA_ALIGNMENT;
1359 	master->cleanup = cleanup;
1360 	master->setup = setup;
1361 	master->transfer_one_message = pxa2xx_spi_transfer_one_message;
1362 	master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1363 	master->auto_runtime_pm = true;
1364 
1365 	drv_data->ssp_type = ssp->type;
1366 	drv_data->null_dma_buf = (u32 *)PTR_ALIGN(&drv_data[1], DMA_ALIGNMENT);
1367 
1368 	drv_data->ioaddr = ssp->mmio_base;
1369 	drv_data->ssdr_physical = ssp->phys_base + SSDR;
1370 	if (pxa25x_ssp_comp(drv_data)) {
1371 		switch (drv_data->ssp_type) {
1372 		case QUARK_X1000_SSP:
1373 			master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1374 			break;
1375 		default:
1376 			master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1377 			break;
1378 		}
1379 
1380 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1381 		drv_data->dma_cr1 = 0;
1382 		drv_data->clear_sr = SSSR_ROR;
1383 		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1384 	} else {
1385 		master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1386 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1387 		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1388 		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1389 		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
1390 	}
1391 
1392 	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1393 			drv_data);
1394 	if (status < 0) {
1395 		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1396 		goto out_error_master_alloc;
1397 	}
1398 
1399 	/* Setup DMA if requested */
1400 	drv_data->tx_channel = -1;
1401 	drv_data->rx_channel = -1;
1402 	if (platform_info->enable_dma) {
1403 		status = pxa2xx_spi_dma_setup(drv_data);
1404 		if (status) {
1405 			dev_dbg(dev, "no DMA channels available, using PIO\n");
1406 			platform_info->enable_dma = false;
1407 		}
1408 	}
1409 
1410 	/* Enable SOC clock */
1411 	clk_prepare_enable(ssp->clk);
1412 
1413 	drv_data->max_clk_rate = clk_get_rate(ssp->clk);
1414 
1415 	/* Load default SSP configuration */
1416 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1417 	switch (drv_data->ssp_type) {
1418 	case QUARK_X1000_SSP:
1419 		tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT)
1420 		      | QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1421 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1422 
1423 		/* using the Motorola SPI protocol and use 8 bit frame */
1424 		pxa2xx_spi_write(drv_data, SSCR0,
1425 				 QUARK_X1000_SSCR0_Motorola
1426 				 | QUARK_X1000_SSCR0_DataSize(8));
1427 		break;
1428 	default:
1429 		tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1430 		      SSCR1_TxTresh(TX_THRESH_DFLT);
1431 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1432 		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1433 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1434 		break;
1435 	}
1436 
1437 	if (!pxa25x_ssp_comp(drv_data))
1438 		pxa2xx_spi_write(drv_data, SSTO, 0);
1439 
1440 	if (!is_quark_x1000_ssp(drv_data))
1441 		pxa2xx_spi_write(drv_data, SSPSP, 0);
1442 
1443 	if (is_lpss_ssp(drv_data))
1444 		lpss_ssp_setup(drv_data);
1445 
1446 	tasklet_init(&drv_data->pump_transfers, pump_transfers,
1447 		     (unsigned long)drv_data);
1448 
1449 	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1450 	pm_runtime_use_autosuspend(&pdev->dev);
1451 	pm_runtime_set_active(&pdev->dev);
1452 	pm_runtime_enable(&pdev->dev);
1453 
1454 	/* Register with the SPI framework */
1455 	platform_set_drvdata(pdev, drv_data);
1456 	status = devm_spi_register_master(&pdev->dev, master);
1457 	if (status != 0) {
1458 		dev_err(&pdev->dev, "problem registering spi master\n");
1459 		goto out_error_clock_enabled;
1460 	}
1461 
1462 	return status;
1463 
1464 out_error_clock_enabled:
1465 	clk_disable_unprepare(ssp->clk);
1466 	pxa2xx_spi_dma_release(drv_data);
1467 	free_irq(ssp->irq, drv_data);
1468 
1469 out_error_master_alloc:
1470 	spi_master_put(master);
1471 	pxa_ssp_free(ssp);
1472 	return status;
1473 }
1474 
pxa2xx_spi_remove(struct platform_device * pdev)1475 static int pxa2xx_spi_remove(struct platform_device *pdev)
1476 {
1477 	struct driver_data *drv_data = platform_get_drvdata(pdev);
1478 	struct ssp_device *ssp;
1479 
1480 	if (!drv_data)
1481 		return 0;
1482 	ssp = drv_data->ssp;
1483 
1484 	pm_runtime_get_sync(&pdev->dev);
1485 
1486 	/* Disable the SSP at the peripheral and SOC level */
1487 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1488 	clk_disable_unprepare(ssp->clk);
1489 
1490 	/* Release DMA */
1491 	if (drv_data->master_info->enable_dma)
1492 		pxa2xx_spi_dma_release(drv_data);
1493 
1494 	pm_runtime_put_noidle(&pdev->dev);
1495 	pm_runtime_disable(&pdev->dev);
1496 
1497 	/* Release IRQ */
1498 	free_irq(ssp->irq, drv_data);
1499 
1500 	/* Release SSP */
1501 	pxa_ssp_free(ssp);
1502 
1503 	return 0;
1504 }
1505 
pxa2xx_spi_shutdown(struct platform_device * pdev)1506 static void pxa2xx_spi_shutdown(struct platform_device *pdev)
1507 {
1508 	int status = 0;
1509 
1510 	if ((status = pxa2xx_spi_remove(pdev)) != 0)
1511 		dev_err(&pdev->dev, "shutdown failed with %d\n", status);
1512 }
1513 
1514 #ifdef CONFIG_PM_SLEEP
pxa2xx_spi_suspend(struct device * dev)1515 static int pxa2xx_spi_suspend(struct device *dev)
1516 {
1517 	struct driver_data *drv_data = dev_get_drvdata(dev);
1518 	struct ssp_device *ssp = drv_data->ssp;
1519 	int status = 0;
1520 
1521 	status = spi_master_suspend(drv_data->master);
1522 	if (status != 0)
1523 		return status;
1524 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1525 
1526 	if (!pm_runtime_suspended(dev))
1527 		clk_disable_unprepare(ssp->clk);
1528 
1529 	return 0;
1530 }
1531 
pxa2xx_spi_resume(struct device * dev)1532 static int pxa2xx_spi_resume(struct device *dev)
1533 {
1534 	struct driver_data *drv_data = dev_get_drvdata(dev);
1535 	struct ssp_device *ssp = drv_data->ssp;
1536 	int status = 0;
1537 
1538 	pxa2xx_spi_dma_resume(drv_data);
1539 
1540 	/* Enable the SSP clock */
1541 	if (!pm_runtime_suspended(dev))
1542 		clk_prepare_enable(ssp->clk);
1543 
1544 	/* Restore LPSS private register bits */
1545 	if (is_lpss_ssp(drv_data))
1546 		lpss_ssp_setup(drv_data);
1547 
1548 	/* Start the queue running */
1549 	status = spi_master_resume(drv_data->master);
1550 	if (status != 0) {
1551 		dev_err(dev, "problem starting queue (%d)\n", status);
1552 		return status;
1553 	}
1554 
1555 	return 0;
1556 }
1557 #endif
1558 
1559 #ifdef CONFIG_PM
pxa2xx_spi_runtime_suspend(struct device * dev)1560 static int pxa2xx_spi_runtime_suspend(struct device *dev)
1561 {
1562 	struct driver_data *drv_data = dev_get_drvdata(dev);
1563 
1564 	clk_disable_unprepare(drv_data->ssp->clk);
1565 	return 0;
1566 }
1567 
pxa2xx_spi_runtime_resume(struct device * dev)1568 static int pxa2xx_spi_runtime_resume(struct device *dev)
1569 {
1570 	struct driver_data *drv_data = dev_get_drvdata(dev);
1571 
1572 	clk_prepare_enable(drv_data->ssp->clk);
1573 	return 0;
1574 }
1575 #endif
1576 
1577 static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1578 	SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1579 	SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1580 			   pxa2xx_spi_runtime_resume, NULL)
1581 };
1582 
1583 static struct platform_driver driver = {
1584 	.driver = {
1585 		.name	= "pxa2xx-spi",
1586 		.pm	= &pxa2xx_spi_pm_ops,
1587 		.acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1588 	},
1589 	.probe = pxa2xx_spi_probe,
1590 	.remove = pxa2xx_spi_remove,
1591 	.shutdown = pxa2xx_spi_shutdown,
1592 };
1593 
pxa2xx_spi_init(void)1594 static int __init pxa2xx_spi_init(void)
1595 {
1596 	return platform_driver_register(&driver);
1597 }
1598 subsys_initcall(pxa2xx_spi_init);
1599 
pxa2xx_spi_exit(void)1600 static void __exit pxa2xx_spi_exit(void)
1601 {
1602 	platform_driver_unregister(&driver);
1603 }
1604 module_exit(pxa2xx_spi_exit);
1605