1/*
2 * PXA2xx SPI DMA engine support.
3 *
4 * Copyright (C) 2013, Intel Corporation
5 * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12#include <linux/device.h>
13#include <linux/dma-mapping.h>
14#include <linux/dmaengine.h>
15#include <linux/pxa2xx_ssp.h>
16#include <linux/scatterlist.h>
17#include <linux/sizes.h>
18#include <linux/spi/spi.h>
19#include <linux/spi/pxa2xx_spi.h>
20
21#include "spi-pxa2xx.h"
22
23static int pxa2xx_spi_map_dma_buffer(struct driver_data *drv_data,
24				     enum dma_data_direction dir)
25{
26	int i, nents, len = drv_data->len;
27	struct scatterlist *sg;
28	struct device *dmadev;
29	struct sg_table *sgt;
30	void *buf, *pbuf;
31
32	if (dir == DMA_TO_DEVICE) {
33		dmadev = drv_data->tx_chan->device->dev;
34		sgt = &drv_data->tx_sgt;
35		buf = drv_data->tx;
36		drv_data->tx_map_len = len;
37	} else {
38		dmadev = drv_data->rx_chan->device->dev;
39		sgt = &drv_data->rx_sgt;
40		buf = drv_data->rx;
41		drv_data->rx_map_len = len;
42	}
43
44	nents = DIV_ROUND_UP(len, SZ_2K);
45	if (nents != sgt->nents) {
46		int ret;
47
48		sg_free_table(sgt);
49		ret = sg_alloc_table(sgt, nents, GFP_ATOMIC);
50		if (ret)
51			return ret;
52	}
53
54	pbuf = buf;
55	for_each_sg(sgt->sgl, sg, sgt->nents, i) {
56		size_t bytes = min_t(size_t, len, SZ_2K);
57
58		if (buf)
59			sg_set_buf(sg, pbuf, bytes);
60		else
61			sg_set_buf(sg, drv_data->dummy, bytes);
62
63		pbuf += bytes;
64		len -= bytes;
65	}
66
67	nents = dma_map_sg(dmadev, sgt->sgl, sgt->nents, dir);
68	if (!nents)
69		return -ENOMEM;
70
71	return nents;
72}
73
74static void pxa2xx_spi_unmap_dma_buffer(struct driver_data *drv_data,
75					enum dma_data_direction dir)
76{
77	struct device *dmadev;
78	struct sg_table *sgt;
79
80	if (dir == DMA_TO_DEVICE) {
81		dmadev = drv_data->tx_chan->device->dev;
82		sgt = &drv_data->tx_sgt;
83	} else {
84		dmadev = drv_data->rx_chan->device->dev;
85		sgt = &drv_data->rx_sgt;
86	}
87
88	dma_unmap_sg(dmadev, sgt->sgl, sgt->nents, dir);
89}
90
91static void pxa2xx_spi_unmap_dma_buffers(struct driver_data *drv_data)
92{
93	if (!drv_data->dma_mapped)
94		return;
95
96	pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_FROM_DEVICE);
97	pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_TO_DEVICE);
98
99	drv_data->dma_mapped = 0;
100}
101
102static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data,
103					     bool error)
104{
105	struct spi_message *msg = drv_data->cur_msg;
106
107	/*
108	 * It is possible that one CPU is handling ROR interrupt and other
109	 * just gets DMA completion. Calling pump_transfers() twice for the
110	 * same transfer leads to problems thus we prevent concurrent calls
111	 * by using ->dma_running.
112	 */
113	if (atomic_dec_and_test(&drv_data->dma_running)) {
114		/*
115		 * If the other CPU is still handling the ROR interrupt we
116		 * might not know about the error yet. So we re-check the
117		 * ROR bit here before we clear the status register.
118		 */
119		if (!error) {
120			u32 status = pxa2xx_spi_read(drv_data, SSSR)
121				     & drv_data->mask_sr;
122			error = status & SSSR_ROR;
123		}
124
125		/* Clear status & disable interrupts */
126		pxa2xx_spi_write(drv_data, SSCR1,
127				 pxa2xx_spi_read(drv_data, SSCR1)
128				 & ~drv_data->dma_cr1);
129		write_SSSR_CS(drv_data, drv_data->clear_sr);
130		if (!pxa25x_ssp_comp(drv_data))
131			pxa2xx_spi_write(drv_data, SSTO, 0);
132
133		if (!error) {
134			pxa2xx_spi_unmap_dma_buffers(drv_data);
135
136			drv_data->tx += drv_data->tx_map_len;
137			drv_data->rx += drv_data->rx_map_len;
138
139			msg->actual_length += drv_data->len;
140			msg->state = pxa2xx_spi_next_transfer(drv_data);
141		} else {
142			/* In case we got an error we disable the SSP now */
143			pxa2xx_spi_write(drv_data, SSCR0,
144					 pxa2xx_spi_read(drv_data, SSCR0)
145					 & ~SSCR0_SSE);
146
147			msg->state = ERROR_STATE;
148		}
149
150		tasklet_schedule(&drv_data->pump_transfers);
151	}
152}
153
154static void pxa2xx_spi_dma_callback(void *data)
155{
156	pxa2xx_spi_dma_transfer_complete(data, false);
157}
158
159static struct dma_async_tx_descriptor *
160pxa2xx_spi_dma_prepare_one(struct driver_data *drv_data,
161			   enum dma_transfer_direction dir)
162{
163	struct chip_data *chip = drv_data->cur_chip;
164	enum dma_slave_buswidth width;
165	struct dma_slave_config cfg;
166	struct dma_chan *chan;
167	struct sg_table *sgt;
168	int nents, ret;
169
170	switch (drv_data->n_bytes) {
171	case 1:
172		width = DMA_SLAVE_BUSWIDTH_1_BYTE;
173		break;
174	case 2:
175		width = DMA_SLAVE_BUSWIDTH_2_BYTES;
176		break;
177	default:
178		width = DMA_SLAVE_BUSWIDTH_4_BYTES;
179		break;
180	}
181
182	memset(&cfg, 0, sizeof(cfg));
183	cfg.direction = dir;
184
185	if (dir == DMA_MEM_TO_DEV) {
186		cfg.dst_addr = drv_data->ssdr_physical;
187		cfg.dst_addr_width = width;
188		cfg.dst_maxburst = chip->dma_burst_size;
189
190		sgt = &drv_data->tx_sgt;
191		nents = drv_data->tx_nents;
192		chan = drv_data->tx_chan;
193	} else {
194		cfg.src_addr = drv_data->ssdr_physical;
195		cfg.src_addr_width = width;
196		cfg.src_maxburst = chip->dma_burst_size;
197
198		sgt = &drv_data->rx_sgt;
199		nents = drv_data->rx_nents;
200		chan = drv_data->rx_chan;
201	}
202
203	ret = dmaengine_slave_config(chan, &cfg);
204	if (ret) {
205		dev_warn(&drv_data->pdev->dev, "DMA slave config failed\n");
206		return NULL;
207	}
208
209	return dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir,
210				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
211}
212
213bool pxa2xx_spi_dma_is_possible(size_t len)
214{
215	return len <= MAX_DMA_LEN;
216}
217
218int pxa2xx_spi_map_dma_buffers(struct driver_data *drv_data)
219{
220	const struct chip_data *chip = drv_data->cur_chip;
221	int ret;
222
223	if (!chip->enable_dma)
224		return 0;
225
226	/* Don't bother with DMA if we can't do even a single burst */
227	if (drv_data->len < chip->dma_burst_size)
228		return 0;
229
230	ret = pxa2xx_spi_map_dma_buffer(drv_data, DMA_TO_DEVICE);
231	if (ret <= 0) {
232		dev_warn(&drv_data->pdev->dev, "failed to DMA map TX\n");
233		return 0;
234	}
235
236	drv_data->tx_nents = ret;
237
238	ret = pxa2xx_spi_map_dma_buffer(drv_data, DMA_FROM_DEVICE);
239	if (ret <= 0) {
240		pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_TO_DEVICE);
241		dev_warn(&drv_data->pdev->dev, "failed to DMA map RX\n");
242		return 0;
243	}
244
245	drv_data->rx_nents = ret;
246	return 1;
247}
248
249irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data)
250{
251	u32 status;
252
253	status = pxa2xx_spi_read(drv_data, SSSR) & drv_data->mask_sr;
254	if (status & SSSR_ROR) {
255		dev_err(&drv_data->pdev->dev, "FIFO overrun\n");
256
257		dmaengine_terminate_all(drv_data->rx_chan);
258		dmaengine_terminate_all(drv_data->tx_chan);
259
260		pxa2xx_spi_dma_transfer_complete(drv_data, true);
261		return IRQ_HANDLED;
262	}
263
264	return IRQ_NONE;
265}
266
267int pxa2xx_spi_dma_prepare(struct driver_data *drv_data, u32 dma_burst)
268{
269	struct dma_async_tx_descriptor *tx_desc, *rx_desc;
270
271	tx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_MEM_TO_DEV);
272	if (!tx_desc) {
273		dev_err(&drv_data->pdev->dev,
274			"failed to get DMA TX descriptor\n");
275		return -EBUSY;
276	}
277
278	rx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_DEV_TO_MEM);
279	if (!rx_desc) {
280		dev_err(&drv_data->pdev->dev,
281			"failed to get DMA RX descriptor\n");
282		return -EBUSY;
283	}
284
285	/* We are ready when RX completes */
286	rx_desc->callback = pxa2xx_spi_dma_callback;
287	rx_desc->callback_param = drv_data;
288
289	dmaengine_submit(rx_desc);
290	dmaengine_submit(tx_desc);
291	return 0;
292}
293
294void pxa2xx_spi_dma_start(struct driver_data *drv_data)
295{
296	dma_async_issue_pending(drv_data->rx_chan);
297	dma_async_issue_pending(drv_data->tx_chan);
298
299	atomic_set(&drv_data->dma_running, 1);
300}
301
302int pxa2xx_spi_dma_setup(struct driver_data *drv_data)
303{
304	struct pxa2xx_spi_master *pdata = drv_data->master_info;
305	struct device *dev = &drv_data->pdev->dev;
306	dma_cap_mask_t mask;
307
308	dma_cap_zero(mask);
309	dma_cap_set(DMA_SLAVE, mask);
310
311	drv_data->dummy = devm_kzalloc(dev, SZ_2K, GFP_KERNEL);
312	if (!drv_data->dummy)
313		return -ENOMEM;
314
315	drv_data->tx_chan = dma_request_slave_channel_compat(mask,
316				pdata->dma_filter, pdata->tx_param, dev, "tx");
317	if (!drv_data->tx_chan)
318		return -ENODEV;
319
320	drv_data->rx_chan = dma_request_slave_channel_compat(mask,
321				pdata->dma_filter, pdata->rx_param, dev, "rx");
322	if (!drv_data->rx_chan) {
323		dma_release_channel(drv_data->tx_chan);
324		drv_data->tx_chan = NULL;
325		return -ENODEV;
326	}
327
328	return 0;
329}
330
331void pxa2xx_spi_dma_release(struct driver_data *drv_data)
332{
333	if (drv_data->rx_chan) {
334		dmaengine_terminate_all(drv_data->rx_chan);
335		dma_release_channel(drv_data->rx_chan);
336		sg_free_table(&drv_data->rx_sgt);
337		drv_data->rx_chan = NULL;
338	}
339	if (drv_data->tx_chan) {
340		dmaengine_terminate_all(drv_data->tx_chan);
341		dma_release_channel(drv_data->tx_chan);
342		sg_free_table(&drv_data->tx_sgt);
343		drv_data->tx_chan = NULL;
344	}
345}
346
347void pxa2xx_spi_dma_resume(struct driver_data *drv_data)
348{
349}
350
351int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip,
352					   struct spi_device *spi,
353					   u8 bits_per_word, u32 *burst_code,
354					   u32 *threshold)
355{
356	struct pxa2xx_spi_chip *chip_info = spi->controller_data;
357
358	/*
359	 * If the DMA burst size is given in chip_info we use that,
360	 * otherwise we use the default. Also we use the default FIFO
361	 * thresholds for now.
362	 */
363	*burst_code = chip_info ? chip_info->dma_burst_size : 1;
364	*threshold = SSCR1_RxTresh(RX_THRESH_DFLT)
365		   | SSCR1_TxTresh(TX_THRESH_DFLT);
366
367	return 0;
368}
369