1/*
2 * Driver for Atmel AT32 and AT91 SPI Controllers
3 *
4 * Copyright (C) 2006 Atmel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11#include <linux/kernel.h>
12#include <linux/clk.h>
13#include <linux/module.h>
14#include <linux/platform_device.h>
15#include <linux/delay.h>
16#include <linux/dma-mapping.h>
17#include <linux/dmaengine.h>
18#include <linux/err.h>
19#include <linux/interrupt.h>
20#include <linux/spi/spi.h>
21#include <linux/slab.h>
22#include <linux/platform_data/atmel.h>
23#include <linux/platform_data/dma-atmel.h>
24#include <linux/of.h>
25
26#include <linux/io.h>
27#include <linux/gpio.h>
28#include <linux/pinctrl/consumer.h>
29#include <linux/pm_runtime.h>
30
31/* SPI register offsets */
32#define SPI_CR					0x0000
33#define SPI_MR					0x0004
34#define SPI_RDR					0x0008
35#define SPI_TDR					0x000c
36#define SPI_SR					0x0010
37#define SPI_IER					0x0014
38#define SPI_IDR					0x0018
39#define SPI_IMR					0x001c
40#define SPI_CSR0				0x0030
41#define SPI_CSR1				0x0034
42#define SPI_CSR2				0x0038
43#define SPI_CSR3				0x003c
44#define SPI_VERSION				0x00fc
45#define SPI_RPR					0x0100
46#define SPI_RCR					0x0104
47#define SPI_TPR					0x0108
48#define SPI_TCR					0x010c
49#define SPI_RNPR				0x0110
50#define SPI_RNCR				0x0114
51#define SPI_TNPR				0x0118
52#define SPI_TNCR				0x011c
53#define SPI_PTCR				0x0120
54#define SPI_PTSR				0x0124
55
56/* Bitfields in CR */
57#define SPI_SPIEN_OFFSET			0
58#define SPI_SPIEN_SIZE				1
59#define SPI_SPIDIS_OFFSET			1
60#define SPI_SPIDIS_SIZE				1
61#define SPI_SWRST_OFFSET			7
62#define SPI_SWRST_SIZE				1
63#define SPI_LASTXFER_OFFSET			24
64#define SPI_LASTXFER_SIZE			1
65
66/* Bitfields in MR */
67#define SPI_MSTR_OFFSET				0
68#define SPI_MSTR_SIZE				1
69#define SPI_PS_OFFSET				1
70#define SPI_PS_SIZE				1
71#define SPI_PCSDEC_OFFSET			2
72#define SPI_PCSDEC_SIZE				1
73#define SPI_FDIV_OFFSET				3
74#define SPI_FDIV_SIZE				1
75#define SPI_MODFDIS_OFFSET			4
76#define SPI_MODFDIS_SIZE			1
77#define SPI_WDRBT_OFFSET			5
78#define SPI_WDRBT_SIZE				1
79#define SPI_LLB_OFFSET				7
80#define SPI_LLB_SIZE				1
81#define SPI_PCS_OFFSET				16
82#define SPI_PCS_SIZE				4
83#define SPI_DLYBCS_OFFSET			24
84#define SPI_DLYBCS_SIZE				8
85
86/* Bitfields in RDR */
87#define SPI_RD_OFFSET				0
88#define SPI_RD_SIZE				16
89
90/* Bitfields in TDR */
91#define SPI_TD_OFFSET				0
92#define SPI_TD_SIZE				16
93
94/* Bitfields in SR */
95#define SPI_RDRF_OFFSET				0
96#define SPI_RDRF_SIZE				1
97#define SPI_TDRE_OFFSET				1
98#define SPI_TDRE_SIZE				1
99#define SPI_MODF_OFFSET				2
100#define SPI_MODF_SIZE				1
101#define SPI_OVRES_OFFSET			3
102#define SPI_OVRES_SIZE				1
103#define SPI_ENDRX_OFFSET			4
104#define SPI_ENDRX_SIZE				1
105#define SPI_ENDTX_OFFSET			5
106#define SPI_ENDTX_SIZE				1
107#define SPI_RXBUFF_OFFSET			6
108#define SPI_RXBUFF_SIZE				1
109#define SPI_TXBUFE_OFFSET			7
110#define SPI_TXBUFE_SIZE				1
111#define SPI_NSSR_OFFSET				8
112#define SPI_NSSR_SIZE				1
113#define SPI_TXEMPTY_OFFSET			9
114#define SPI_TXEMPTY_SIZE			1
115#define SPI_SPIENS_OFFSET			16
116#define SPI_SPIENS_SIZE				1
117
118/* Bitfields in CSR0 */
119#define SPI_CPOL_OFFSET				0
120#define SPI_CPOL_SIZE				1
121#define SPI_NCPHA_OFFSET			1
122#define SPI_NCPHA_SIZE				1
123#define SPI_CSAAT_OFFSET			3
124#define SPI_CSAAT_SIZE				1
125#define SPI_BITS_OFFSET				4
126#define SPI_BITS_SIZE				4
127#define SPI_SCBR_OFFSET				8
128#define SPI_SCBR_SIZE				8
129#define SPI_DLYBS_OFFSET			16
130#define SPI_DLYBS_SIZE				8
131#define SPI_DLYBCT_OFFSET			24
132#define SPI_DLYBCT_SIZE				8
133
134/* Bitfields in RCR */
135#define SPI_RXCTR_OFFSET			0
136#define SPI_RXCTR_SIZE				16
137
138/* Bitfields in TCR */
139#define SPI_TXCTR_OFFSET			0
140#define SPI_TXCTR_SIZE				16
141
142/* Bitfields in RNCR */
143#define SPI_RXNCR_OFFSET			0
144#define SPI_RXNCR_SIZE				16
145
146/* Bitfields in TNCR */
147#define SPI_TXNCR_OFFSET			0
148#define SPI_TXNCR_SIZE				16
149
150/* Bitfields in PTCR */
151#define SPI_RXTEN_OFFSET			0
152#define SPI_RXTEN_SIZE				1
153#define SPI_RXTDIS_OFFSET			1
154#define SPI_RXTDIS_SIZE				1
155#define SPI_TXTEN_OFFSET			8
156#define SPI_TXTEN_SIZE				1
157#define SPI_TXTDIS_OFFSET			9
158#define SPI_TXTDIS_SIZE				1
159
160/* Constants for BITS */
161#define SPI_BITS_8_BPT				0
162#define SPI_BITS_9_BPT				1
163#define SPI_BITS_10_BPT				2
164#define SPI_BITS_11_BPT				3
165#define SPI_BITS_12_BPT				4
166#define SPI_BITS_13_BPT				5
167#define SPI_BITS_14_BPT				6
168#define SPI_BITS_15_BPT				7
169#define SPI_BITS_16_BPT				8
170
171/* Bit manipulation macros */
172#define SPI_BIT(name) \
173	(1 << SPI_##name##_OFFSET)
174#define SPI_BF(name, value) \
175	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
176#define SPI_BFEXT(name, value) \
177	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
178#define SPI_BFINS(name, value, old) \
179	(((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
180	  | SPI_BF(name, value))
181
182/* Register access macros */
183#ifdef CONFIG_AVR32
184#define spi_readl(port, reg) \
185	__raw_readl((port)->regs + SPI_##reg)
186#define spi_writel(port, reg, value) \
187	__raw_writel((value), (port)->regs + SPI_##reg)
188#else
189#define spi_readl(port, reg) \
190	readl_relaxed((port)->regs + SPI_##reg)
191#define spi_writel(port, reg, value) \
192	writel_relaxed((value), (port)->regs + SPI_##reg)
193#endif
194/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
195 * cache operations; better heuristics consider wordsize and bitrate.
196 */
197#define DMA_MIN_BYTES	16
198
199#define SPI_DMA_TIMEOUT		(msecs_to_jiffies(1000))
200
201#define AUTOSUSPEND_TIMEOUT	2000
202
203struct atmel_spi_dma {
204	struct dma_chan			*chan_rx;
205	struct dma_chan			*chan_tx;
206	struct scatterlist		sgrx;
207	struct scatterlist		sgtx;
208	struct dma_async_tx_descriptor	*data_desc_rx;
209	struct dma_async_tx_descriptor	*data_desc_tx;
210
211	struct at_dma_slave	dma_slave;
212};
213
214struct atmel_spi_caps {
215	bool	is_spi2;
216	bool	has_wdrbt;
217	bool	has_dma_support;
218};
219
220/*
221 * The core SPI transfer engine just talks to a register bank to set up
222 * DMA transfers; transfer queue progress is driven by IRQs.  The clock
223 * framework provides the base clock, subdivided for each spi_device.
224 */
225struct atmel_spi {
226	spinlock_t		lock;
227	unsigned long		flags;
228
229	phys_addr_t		phybase;
230	void __iomem		*regs;
231	int			irq;
232	struct clk		*clk;
233	struct platform_device	*pdev;
234
235	struct spi_transfer	*current_transfer;
236	int			current_remaining_bytes;
237	int			done_status;
238
239	struct completion	xfer_completion;
240
241	/* scratch buffer */
242	void			*buffer;
243	dma_addr_t		buffer_dma;
244
245	struct atmel_spi_caps	caps;
246
247	bool			use_dma;
248	bool			use_pdc;
249	/* dmaengine data */
250	struct atmel_spi_dma	dma;
251
252	bool			keep_cs;
253	bool			cs_active;
254};
255
256/* Controller-specific per-slave state */
257struct atmel_spi_device {
258	unsigned int		npcs_pin;
259	u32			csr;
260};
261
262#define BUFFER_SIZE		PAGE_SIZE
263#define INVALID_DMA_ADDRESS	0xffffffff
264
265/*
266 * Version 2 of the SPI controller has
267 *  - CR.LASTXFER
268 *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
269 *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
270 *  - SPI_CSRx.CSAAT
271 *  - SPI_CSRx.SBCR allows faster clocking
272 */
273static bool atmel_spi_is_v2(struct atmel_spi *as)
274{
275	return as->caps.is_spi2;
276}
277
278/*
279 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
280 * they assume that spi slave device state will not change on deselect, so
281 * that automagic deselection is OK.  ("NPCSx rises if no data is to be
282 * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
283 * controllers have CSAAT and friends.
284 *
285 * Since the CSAAT functionality is a bit weird on newer controllers as
286 * well, we use GPIO to control nCSx pins on all controllers, updating
287 * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
288 * support active-high chipselects despite the controller's belief that
289 * only active-low devices/systems exists.
290 *
291 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
292 * right when driven with GPIO.  ("Mode Fault does not allow more than one
293 * Master on Chip Select 0.")  No workaround exists for that ... so for
294 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
295 * and (c) will trigger that first erratum in some cases.
296 */
297
298static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
299{
300	struct atmel_spi_device *asd = spi->controller_state;
301	unsigned active = spi->mode & SPI_CS_HIGH;
302	u32 mr;
303
304	if (atmel_spi_is_v2(as)) {
305		spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
306		/* For the low SPI version, there is a issue that PDC transfer
307		 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
308		 */
309		spi_writel(as, CSR0, asd->csr);
310		if (as->caps.has_wdrbt) {
311			spi_writel(as, MR,
312					SPI_BF(PCS, ~(0x01 << spi->chip_select))
313					| SPI_BIT(WDRBT)
314					| SPI_BIT(MODFDIS)
315					| SPI_BIT(MSTR));
316		} else {
317			spi_writel(as, MR,
318					SPI_BF(PCS, ~(0x01 << spi->chip_select))
319					| SPI_BIT(MODFDIS)
320					| SPI_BIT(MSTR));
321		}
322
323		mr = spi_readl(as, MR);
324		gpio_set_value(asd->npcs_pin, active);
325	} else {
326		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
327		int i;
328		u32 csr;
329
330		/* Make sure clock polarity is correct */
331		for (i = 0; i < spi->master->num_chipselect; i++) {
332			csr = spi_readl(as, CSR0 + 4 * i);
333			if ((csr ^ cpol) & SPI_BIT(CPOL))
334				spi_writel(as, CSR0 + 4 * i,
335						csr ^ SPI_BIT(CPOL));
336		}
337
338		mr = spi_readl(as, MR);
339		mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
340		if (spi->chip_select != 0)
341			gpio_set_value(asd->npcs_pin, active);
342		spi_writel(as, MR, mr);
343	}
344
345	dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
346			asd->npcs_pin, active ? " (high)" : "",
347			mr);
348}
349
350static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
351{
352	struct atmel_spi_device *asd = spi->controller_state;
353	unsigned active = spi->mode & SPI_CS_HIGH;
354	u32 mr;
355
356	/* only deactivate *this* device; sometimes transfers to
357	 * another device may be active when this routine is called.
358	 */
359	mr = spi_readl(as, MR);
360	if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
361		mr = SPI_BFINS(PCS, 0xf, mr);
362		spi_writel(as, MR, mr);
363	}
364
365	dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
366			asd->npcs_pin, active ? " (low)" : "",
367			mr);
368
369	if (atmel_spi_is_v2(as) || spi->chip_select != 0)
370		gpio_set_value(asd->npcs_pin, !active);
371}
372
373static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
374{
375	spin_lock_irqsave(&as->lock, as->flags);
376}
377
378static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
379{
380	spin_unlock_irqrestore(&as->lock, as->flags);
381}
382
383static inline bool atmel_spi_use_dma(struct atmel_spi *as,
384				struct spi_transfer *xfer)
385{
386	return as->use_dma && xfer->len >= DMA_MIN_BYTES;
387}
388
389static int atmel_spi_dma_slave_config(struct atmel_spi *as,
390				struct dma_slave_config *slave_config,
391				u8 bits_per_word)
392{
393	int err = 0;
394
395	if (bits_per_word > 8) {
396		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
397		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
398	} else {
399		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
400		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
401	}
402
403	slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
404	slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
405	slave_config->src_maxburst = 1;
406	slave_config->dst_maxburst = 1;
407	slave_config->device_fc = false;
408
409	slave_config->direction = DMA_MEM_TO_DEV;
410	if (dmaengine_slave_config(as->dma.chan_tx, slave_config)) {
411		dev_err(&as->pdev->dev,
412			"failed to configure tx dma channel\n");
413		err = -EINVAL;
414	}
415
416	slave_config->direction = DMA_DEV_TO_MEM;
417	if (dmaengine_slave_config(as->dma.chan_rx, slave_config)) {
418		dev_err(&as->pdev->dev,
419			"failed to configure rx dma channel\n");
420		err = -EINVAL;
421	}
422
423	return err;
424}
425
426static int atmel_spi_configure_dma(struct atmel_spi *as)
427{
428	struct dma_slave_config	slave_config;
429	struct device *dev = &as->pdev->dev;
430	int err;
431
432	dma_cap_mask_t mask;
433	dma_cap_zero(mask);
434	dma_cap_set(DMA_SLAVE, mask);
435
436	as->dma.chan_tx = dma_request_slave_channel_reason(dev, "tx");
437	if (IS_ERR(as->dma.chan_tx)) {
438		err = PTR_ERR(as->dma.chan_tx);
439		if (err == -EPROBE_DEFER) {
440			dev_warn(dev, "no DMA channel available at the moment\n");
441			return err;
442		}
443		dev_err(dev,
444			"DMA TX channel not available, SPI unable to use DMA\n");
445		err = -EBUSY;
446		goto error;
447	}
448
449	/*
450	 * No reason to check EPROBE_DEFER here since we have already requested
451	 * tx channel. If it fails here, it's for another reason.
452	 */
453	as->dma.chan_rx = dma_request_slave_channel(dev, "rx");
454
455	if (!as->dma.chan_rx) {
456		dev_err(dev,
457			"DMA RX channel not available, SPI unable to use DMA\n");
458		err = -EBUSY;
459		goto error;
460	}
461
462	err = atmel_spi_dma_slave_config(as, &slave_config, 8);
463	if (err)
464		goto error;
465
466	dev_info(&as->pdev->dev,
467			"Using %s (tx) and %s (rx) for DMA transfers\n",
468			dma_chan_name(as->dma.chan_tx),
469			dma_chan_name(as->dma.chan_rx));
470	return 0;
471error:
472	if (as->dma.chan_rx)
473		dma_release_channel(as->dma.chan_rx);
474	if (!IS_ERR(as->dma.chan_tx))
475		dma_release_channel(as->dma.chan_tx);
476	return err;
477}
478
479static void atmel_spi_stop_dma(struct atmel_spi *as)
480{
481	if (as->dma.chan_rx)
482		dmaengine_terminate_all(as->dma.chan_rx);
483	if (as->dma.chan_tx)
484		dmaengine_terminate_all(as->dma.chan_tx);
485}
486
487static void atmel_spi_release_dma(struct atmel_spi *as)
488{
489	if (as->dma.chan_rx)
490		dma_release_channel(as->dma.chan_rx);
491	if (as->dma.chan_tx)
492		dma_release_channel(as->dma.chan_tx);
493}
494
495/* This function is called by the DMA driver from tasklet context */
496static void dma_callback(void *data)
497{
498	struct spi_master	*master = data;
499	struct atmel_spi	*as = spi_master_get_devdata(master);
500
501	complete(&as->xfer_completion);
502}
503
504/*
505 * Next transfer using PIO.
506 */
507static void atmel_spi_next_xfer_pio(struct spi_master *master,
508				struct spi_transfer *xfer)
509{
510	struct atmel_spi	*as = spi_master_get_devdata(master);
511	unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
512
513	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
514
515	/* Make sure data is not remaining in RDR */
516	spi_readl(as, RDR);
517	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
518		spi_readl(as, RDR);
519		cpu_relax();
520	}
521
522	if (xfer->tx_buf) {
523		if (xfer->bits_per_word > 8)
524			spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
525		else
526			spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
527	} else {
528		spi_writel(as, TDR, 0);
529	}
530
531	dev_dbg(master->dev.parent,
532		"  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
533		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
534		xfer->bits_per_word);
535
536	/* Enable relevant interrupts */
537	spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
538}
539
540/*
541 * Submit next transfer for DMA.
542 */
543static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
544				struct spi_transfer *xfer,
545				u32 *plen)
546{
547	struct atmel_spi	*as = spi_master_get_devdata(master);
548	struct dma_chan		*rxchan = as->dma.chan_rx;
549	struct dma_chan		*txchan = as->dma.chan_tx;
550	struct dma_async_tx_descriptor *rxdesc;
551	struct dma_async_tx_descriptor *txdesc;
552	struct dma_slave_config	slave_config;
553	dma_cookie_t		cookie;
554	u32	len = *plen;
555
556	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
557
558	/* Check that the channels are available */
559	if (!rxchan || !txchan)
560		return -ENODEV;
561
562	/* release lock for DMA operations */
563	atmel_spi_unlock(as);
564
565	/* prepare the RX dma transfer */
566	sg_init_table(&as->dma.sgrx, 1);
567	if (xfer->rx_buf) {
568		as->dma.sgrx.dma_address = xfer->rx_dma + xfer->len - *plen;
569	} else {
570		as->dma.sgrx.dma_address = as->buffer_dma;
571		if (len > BUFFER_SIZE)
572			len = BUFFER_SIZE;
573	}
574
575	/* prepare the TX dma transfer */
576	sg_init_table(&as->dma.sgtx, 1);
577	if (xfer->tx_buf) {
578		as->dma.sgtx.dma_address = xfer->tx_dma + xfer->len - *plen;
579	} else {
580		as->dma.sgtx.dma_address = as->buffer_dma;
581		if (len > BUFFER_SIZE)
582			len = BUFFER_SIZE;
583		memset(as->buffer, 0, len);
584	}
585
586	sg_dma_len(&as->dma.sgtx) = len;
587	sg_dma_len(&as->dma.sgrx) = len;
588
589	*plen = len;
590
591	if (atmel_spi_dma_slave_config(as, &slave_config, 8))
592		goto err_exit;
593
594	/* Send both scatterlists */
595	rxdesc = dmaengine_prep_slave_sg(rxchan, &as->dma.sgrx, 1,
596					 DMA_FROM_DEVICE,
597					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
598	if (!rxdesc)
599		goto err_dma;
600
601	txdesc = dmaengine_prep_slave_sg(txchan, &as->dma.sgtx, 1,
602					 DMA_TO_DEVICE,
603					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
604	if (!txdesc)
605		goto err_dma;
606
607	dev_dbg(master->dev.parent,
608		"  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
609		xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
610		xfer->rx_buf, (unsigned long long)xfer->rx_dma);
611
612	/* Enable relevant interrupts */
613	spi_writel(as, IER, SPI_BIT(OVRES));
614
615	/* Put the callback on the RX transfer only, that should finish last */
616	rxdesc->callback = dma_callback;
617	rxdesc->callback_param = master;
618
619	/* Submit and fire RX and TX with TX last so we're ready to read! */
620	cookie = rxdesc->tx_submit(rxdesc);
621	if (dma_submit_error(cookie))
622		goto err_dma;
623	cookie = txdesc->tx_submit(txdesc);
624	if (dma_submit_error(cookie))
625		goto err_dma;
626	rxchan->device->device_issue_pending(rxchan);
627	txchan->device->device_issue_pending(txchan);
628
629	/* take back lock */
630	atmel_spi_lock(as);
631	return 0;
632
633err_dma:
634	spi_writel(as, IDR, SPI_BIT(OVRES));
635	atmel_spi_stop_dma(as);
636err_exit:
637	atmel_spi_lock(as);
638	return -ENOMEM;
639}
640
641static void atmel_spi_next_xfer_data(struct spi_master *master,
642				struct spi_transfer *xfer,
643				dma_addr_t *tx_dma,
644				dma_addr_t *rx_dma,
645				u32 *plen)
646{
647	struct atmel_spi	*as = spi_master_get_devdata(master);
648	u32			len = *plen;
649
650	/* use scratch buffer only when rx or tx data is unspecified */
651	if (xfer->rx_buf)
652		*rx_dma = xfer->rx_dma + xfer->len - *plen;
653	else {
654		*rx_dma = as->buffer_dma;
655		if (len > BUFFER_SIZE)
656			len = BUFFER_SIZE;
657	}
658
659	if (xfer->tx_buf)
660		*tx_dma = xfer->tx_dma + xfer->len - *plen;
661	else {
662		*tx_dma = as->buffer_dma;
663		if (len > BUFFER_SIZE)
664			len = BUFFER_SIZE;
665		memset(as->buffer, 0, len);
666		dma_sync_single_for_device(&as->pdev->dev,
667				as->buffer_dma, len, DMA_TO_DEVICE);
668	}
669
670	*plen = len;
671}
672
673static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
674				    struct spi_device *spi,
675				    struct spi_transfer *xfer)
676{
677	u32			scbr, csr;
678	unsigned long		bus_hz;
679
680	/* v1 chips start out at half the peripheral bus speed. */
681	bus_hz = clk_get_rate(as->clk);
682	if (!atmel_spi_is_v2(as))
683		bus_hz /= 2;
684
685	/*
686	 * Calculate the lowest divider that satisfies the
687	 * constraint, assuming div32/fdiv/mbz == 0.
688	 */
689	if (xfer->speed_hz)
690		scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
691	else
692		/*
693		 * This can happend if max_speed is null.
694		 * In this case, we set the lowest possible speed
695		 */
696		scbr = 0xff;
697
698	/*
699	 * If the resulting divider doesn't fit into the
700	 * register bitfield, we can't satisfy the constraint.
701	 */
702	if (scbr >= (1 << SPI_SCBR_SIZE)) {
703		dev_err(&spi->dev,
704			"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
705			xfer->speed_hz, scbr, bus_hz/255);
706		return -EINVAL;
707	}
708	if (scbr == 0) {
709		dev_err(&spi->dev,
710			"setup: %d Hz too high, scbr %u; max %ld Hz\n",
711			xfer->speed_hz, scbr, bus_hz);
712		return -EINVAL;
713	}
714	csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
715	csr = SPI_BFINS(SCBR, scbr, csr);
716	spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
717
718	return 0;
719}
720
721/*
722 * Submit next transfer for PDC.
723 * lock is held, spi irq is blocked
724 */
725static void atmel_spi_pdc_next_xfer(struct spi_master *master,
726					struct spi_message *msg,
727					struct spi_transfer *xfer)
728{
729	struct atmel_spi	*as = spi_master_get_devdata(master);
730	u32			len;
731	dma_addr_t		tx_dma, rx_dma;
732
733	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
734
735	len = as->current_remaining_bytes;
736	atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
737	as->current_remaining_bytes -= len;
738
739	spi_writel(as, RPR, rx_dma);
740	spi_writel(as, TPR, tx_dma);
741
742	if (msg->spi->bits_per_word > 8)
743		len >>= 1;
744	spi_writel(as, RCR, len);
745	spi_writel(as, TCR, len);
746
747	dev_dbg(&msg->spi->dev,
748		"  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
749		xfer, xfer->len, xfer->tx_buf,
750		(unsigned long long)xfer->tx_dma, xfer->rx_buf,
751		(unsigned long long)xfer->rx_dma);
752
753	if (as->current_remaining_bytes) {
754		len = as->current_remaining_bytes;
755		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
756		as->current_remaining_bytes -= len;
757
758		spi_writel(as, RNPR, rx_dma);
759		spi_writel(as, TNPR, tx_dma);
760
761		if (msg->spi->bits_per_word > 8)
762			len >>= 1;
763		spi_writel(as, RNCR, len);
764		spi_writel(as, TNCR, len);
765
766		dev_dbg(&msg->spi->dev,
767			"  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
768			xfer, xfer->len, xfer->tx_buf,
769			(unsigned long long)xfer->tx_dma, xfer->rx_buf,
770			(unsigned long long)xfer->rx_dma);
771	}
772
773	/* REVISIT: We're waiting for RXBUFF before we start the next
774	 * transfer because we need to handle some difficult timing
775	 * issues otherwise. If we wait for TXBUFE in one transfer and
776	 * then starts waiting for RXBUFF in the next, it's difficult
777	 * to tell the difference between the RXBUFF interrupt we're
778	 * actually waiting for and the RXBUFF interrupt of the
779	 * previous transfer.
780	 *
781	 * It should be doable, though. Just not now...
782	 */
783	spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
784	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
785}
786
787/*
788 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
789 *  - The buffer is either valid for CPU access, else NULL
790 *  - If the buffer is valid, so is its DMA address
791 *
792 * This driver manages the dma address unless message->is_dma_mapped.
793 */
794static int
795atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
796{
797	struct device	*dev = &as->pdev->dev;
798
799	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
800	if (xfer->tx_buf) {
801		/* tx_buf is a const void* where we need a void * for the dma
802		 * mapping */
803		void *nonconst_tx = (void *)xfer->tx_buf;
804
805		xfer->tx_dma = dma_map_single(dev,
806				nonconst_tx, xfer->len,
807				DMA_TO_DEVICE);
808		if (dma_mapping_error(dev, xfer->tx_dma))
809			return -ENOMEM;
810	}
811	if (xfer->rx_buf) {
812		xfer->rx_dma = dma_map_single(dev,
813				xfer->rx_buf, xfer->len,
814				DMA_FROM_DEVICE);
815		if (dma_mapping_error(dev, xfer->rx_dma)) {
816			if (xfer->tx_buf)
817				dma_unmap_single(dev,
818						xfer->tx_dma, xfer->len,
819						DMA_TO_DEVICE);
820			return -ENOMEM;
821		}
822	}
823	return 0;
824}
825
826static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
827				     struct spi_transfer *xfer)
828{
829	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
830		dma_unmap_single(master->dev.parent, xfer->tx_dma,
831				 xfer->len, DMA_TO_DEVICE);
832	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
833		dma_unmap_single(master->dev.parent, xfer->rx_dma,
834				 xfer->len, DMA_FROM_DEVICE);
835}
836
837static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
838{
839	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
840}
841
842/* Called from IRQ
843 *
844 * Must update "current_remaining_bytes" to keep track of data
845 * to transfer.
846 */
847static void
848atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
849{
850	u8		*rxp;
851	u16		*rxp16;
852	unsigned long	xfer_pos = xfer->len - as->current_remaining_bytes;
853
854	if (xfer->rx_buf) {
855		if (xfer->bits_per_word > 8) {
856			rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
857			*rxp16 = spi_readl(as, RDR);
858		} else {
859			rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
860			*rxp = spi_readl(as, RDR);
861		}
862	} else {
863		spi_readl(as, RDR);
864	}
865	if (xfer->bits_per_word > 8) {
866		if (as->current_remaining_bytes > 2)
867			as->current_remaining_bytes -= 2;
868		else
869			as->current_remaining_bytes = 0;
870	} else {
871		as->current_remaining_bytes--;
872	}
873}
874
875/* Interrupt
876 *
877 * No need for locking in this Interrupt handler: done_status is the
878 * only information modified.
879 */
880static irqreturn_t
881atmel_spi_pio_interrupt(int irq, void *dev_id)
882{
883	struct spi_master	*master = dev_id;
884	struct atmel_spi	*as = spi_master_get_devdata(master);
885	u32			status, pending, imr;
886	struct spi_transfer	*xfer;
887	int			ret = IRQ_NONE;
888
889	imr = spi_readl(as, IMR);
890	status = spi_readl(as, SR);
891	pending = status & imr;
892
893	if (pending & SPI_BIT(OVRES)) {
894		ret = IRQ_HANDLED;
895		spi_writel(as, IDR, SPI_BIT(OVRES));
896		dev_warn(master->dev.parent, "overrun\n");
897
898		/*
899		 * When we get an overrun, we disregard the current
900		 * transfer. Data will not be copied back from any
901		 * bounce buffer and msg->actual_len will not be
902		 * updated with the last xfer.
903		 *
904		 * We will also not process any remaning transfers in
905		 * the message.
906		 */
907		as->done_status = -EIO;
908		smp_wmb();
909
910		/* Clear any overrun happening while cleaning up */
911		spi_readl(as, SR);
912
913		complete(&as->xfer_completion);
914
915	} else if (pending & SPI_BIT(RDRF)) {
916		atmel_spi_lock(as);
917
918		if (as->current_remaining_bytes) {
919			ret = IRQ_HANDLED;
920			xfer = as->current_transfer;
921			atmel_spi_pump_pio_data(as, xfer);
922			if (!as->current_remaining_bytes)
923				spi_writel(as, IDR, pending);
924
925			complete(&as->xfer_completion);
926		}
927
928		atmel_spi_unlock(as);
929	} else {
930		WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
931		ret = IRQ_HANDLED;
932		spi_writel(as, IDR, pending);
933	}
934
935	return ret;
936}
937
938static irqreturn_t
939atmel_spi_pdc_interrupt(int irq, void *dev_id)
940{
941	struct spi_master	*master = dev_id;
942	struct atmel_spi	*as = spi_master_get_devdata(master);
943	u32			status, pending, imr;
944	int			ret = IRQ_NONE;
945
946	imr = spi_readl(as, IMR);
947	status = spi_readl(as, SR);
948	pending = status & imr;
949
950	if (pending & SPI_BIT(OVRES)) {
951
952		ret = IRQ_HANDLED;
953
954		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
955				     | SPI_BIT(OVRES)));
956
957		/* Clear any overrun happening while cleaning up */
958		spi_readl(as, SR);
959
960		as->done_status = -EIO;
961
962		complete(&as->xfer_completion);
963
964	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
965		ret = IRQ_HANDLED;
966
967		spi_writel(as, IDR, pending);
968
969		complete(&as->xfer_completion);
970	}
971
972	return ret;
973}
974
975static int atmel_spi_setup(struct spi_device *spi)
976{
977	struct atmel_spi	*as;
978	struct atmel_spi_device	*asd;
979	u32			csr;
980	unsigned int		bits = spi->bits_per_word;
981	unsigned int		npcs_pin;
982	int			ret;
983
984	as = spi_master_get_devdata(spi->master);
985
986	/* see notes above re chipselect */
987	if (!atmel_spi_is_v2(as)
988			&& spi->chip_select == 0
989			&& (spi->mode & SPI_CS_HIGH)) {
990		dev_dbg(&spi->dev, "setup: can't be active-high\n");
991		return -EINVAL;
992	}
993
994	csr = SPI_BF(BITS, bits - 8);
995	if (spi->mode & SPI_CPOL)
996		csr |= SPI_BIT(CPOL);
997	if (!(spi->mode & SPI_CPHA))
998		csr |= SPI_BIT(NCPHA);
999
1000	/* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1001	 *
1002	 * DLYBCT would add delays between words, slowing down transfers.
1003	 * It could potentially be useful to cope with DMA bottlenecks, but
1004	 * in those cases it's probably best to just use a lower bitrate.
1005	 */
1006	csr |= SPI_BF(DLYBS, 0);
1007	csr |= SPI_BF(DLYBCT, 0);
1008
1009	/* chipselect must have been muxed as GPIO (e.g. in board setup) */
1010	npcs_pin = (unsigned long)spi->controller_data;
1011
1012	if (gpio_is_valid(spi->cs_gpio))
1013		npcs_pin = spi->cs_gpio;
1014
1015	asd = spi->controller_state;
1016	if (!asd) {
1017		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1018		if (!asd)
1019			return -ENOMEM;
1020
1021		ret = gpio_request(npcs_pin, dev_name(&spi->dev));
1022		if (ret) {
1023			kfree(asd);
1024			return ret;
1025		}
1026
1027		asd->npcs_pin = npcs_pin;
1028		spi->controller_state = asd;
1029		gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH));
1030	}
1031
1032	asd->csr = csr;
1033
1034	dev_dbg(&spi->dev,
1035		"setup: bpw %u mode 0x%x -> csr%d %08x\n",
1036		bits, spi->mode, spi->chip_select, csr);
1037
1038	if (!atmel_spi_is_v2(as))
1039		spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1040
1041	return 0;
1042}
1043
1044static int atmel_spi_one_transfer(struct spi_master *master,
1045					struct spi_message *msg,
1046					struct spi_transfer *xfer)
1047{
1048	struct atmel_spi	*as;
1049	struct spi_device	*spi = msg->spi;
1050	u8			bits;
1051	u32			len;
1052	struct atmel_spi_device	*asd;
1053	int			timeout;
1054	int			ret;
1055	unsigned long		dma_timeout;
1056
1057	as = spi_master_get_devdata(master);
1058
1059	if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1060		dev_dbg(&spi->dev, "missing rx or tx buf\n");
1061		return -EINVAL;
1062	}
1063
1064	if (xfer->bits_per_word) {
1065		asd = spi->controller_state;
1066		bits = (asd->csr >> 4) & 0xf;
1067		if (bits != xfer->bits_per_word - 8) {
1068			dev_dbg(&spi->dev,
1069			"you can't yet change bits_per_word in transfers\n");
1070			return -ENOPROTOOPT;
1071		}
1072	}
1073
1074	/*
1075	 * DMA map early, for performance (empties dcache ASAP) and
1076	 * better fault reporting.
1077	 */
1078	if ((!msg->is_dma_mapped)
1079		&& (atmel_spi_use_dma(as, xfer)	|| as->use_pdc)) {
1080		if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1081			return -ENOMEM;
1082	}
1083
1084	atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1085
1086	as->done_status = 0;
1087	as->current_transfer = xfer;
1088	as->current_remaining_bytes = xfer->len;
1089	while (as->current_remaining_bytes) {
1090		reinit_completion(&as->xfer_completion);
1091
1092		if (as->use_pdc) {
1093			atmel_spi_pdc_next_xfer(master, msg, xfer);
1094		} else if (atmel_spi_use_dma(as, xfer)) {
1095			len = as->current_remaining_bytes;
1096			ret = atmel_spi_next_xfer_dma_submit(master,
1097								xfer, &len);
1098			if (ret) {
1099				dev_err(&spi->dev,
1100					"unable to use DMA, fallback to PIO\n");
1101				atmel_spi_next_xfer_pio(master, xfer);
1102			} else {
1103				as->current_remaining_bytes -= len;
1104				if (as->current_remaining_bytes < 0)
1105					as->current_remaining_bytes = 0;
1106			}
1107		} else {
1108			atmel_spi_next_xfer_pio(master, xfer);
1109		}
1110
1111		/* interrupts are disabled, so free the lock for schedule */
1112		atmel_spi_unlock(as);
1113		dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1114							  SPI_DMA_TIMEOUT);
1115		atmel_spi_lock(as);
1116		if (WARN_ON(dma_timeout == 0)) {
1117			dev_err(&spi->dev, "spi transfer timeout\n");
1118			as->done_status = -EIO;
1119		}
1120
1121		if (as->done_status)
1122			break;
1123	}
1124
1125	if (as->done_status) {
1126		if (as->use_pdc) {
1127			dev_warn(master->dev.parent,
1128				"overrun (%u/%u remaining)\n",
1129				spi_readl(as, TCR), spi_readl(as, RCR));
1130
1131			/*
1132			 * Clean up DMA registers and make sure the data
1133			 * registers are empty.
1134			 */
1135			spi_writel(as, RNCR, 0);
1136			spi_writel(as, TNCR, 0);
1137			spi_writel(as, RCR, 0);
1138			spi_writel(as, TCR, 0);
1139			for (timeout = 1000; timeout; timeout--)
1140				if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1141					break;
1142			if (!timeout)
1143				dev_warn(master->dev.parent,
1144					 "timeout waiting for TXEMPTY");
1145			while (spi_readl(as, SR) & SPI_BIT(RDRF))
1146				spi_readl(as, RDR);
1147
1148			/* Clear any overrun happening while cleaning up */
1149			spi_readl(as, SR);
1150
1151		} else if (atmel_spi_use_dma(as, xfer)) {
1152			atmel_spi_stop_dma(as);
1153		}
1154
1155		if (!msg->is_dma_mapped
1156			&& (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1157			atmel_spi_dma_unmap_xfer(master, xfer);
1158
1159		return 0;
1160
1161	} else {
1162		/* only update length if no error */
1163		msg->actual_length += xfer->len;
1164	}
1165
1166	if (!msg->is_dma_mapped
1167		&& (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1168		atmel_spi_dma_unmap_xfer(master, xfer);
1169
1170	if (xfer->delay_usecs)
1171		udelay(xfer->delay_usecs);
1172
1173	if (xfer->cs_change) {
1174		if (list_is_last(&xfer->transfer_list,
1175				 &msg->transfers)) {
1176			as->keep_cs = true;
1177		} else {
1178			as->cs_active = !as->cs_active;
1179			if (as->cs_active)
1180				cs_activate(as, msg->spi);
1181			else
1182				cs_deactivate(as, msg->spi);
1183		}
1184	}
1185
1186	return 0;
1187}
1188
1189static int atmel_spi_transfer_one_message(struct spi_master *master,
1190						struct spi_message *msg)
1191{
1192	struct atmel_spi *as;
1193	struct spi_transfer *xfer;
1194	struct spi_device *spi = msg->spi;
1195	int ret = 0;
1196
1197	as = spi_master_get_devdata(master);
1198
1199	dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1200					msg, dev_name(&spi->dev));
1201
1202	atmel_spi_lock(as);
1203	cs_activate(as, spi);
1204
1205	as->cs_active = true;
1206	as->keep_cs = false;
1207
1208	msg->status = 0;
1209	msg->actual_length = 0;
1210
1211	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1212		ret = atmel_spi_one_transfer(master, msg, xfer);
1213		if (ret)
1214			goto msg_done;
1215	}
1216
1217	if (as->use_pdc)
1218		atmel_spi_disable_pdc_transfer(as);
1219
1220	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1221		dev_dbg(&spi->dev,
1222			"  xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1223			xfer, xfer->len,
1224			xfer->tx_buf, &xfer->tx_dma,
1225			xfer->rx_buf, &xfer->rx_dma);
1226	}
1227
1228msg_done:
1229	if (!as->keep_cs)
1230		cs_deactivate(as, msg->spi);
1231
1232	atmel_spi_unlock(as);
1233
1234	msg->status = as->done_status;
1235	spi_finalize_current_message(spi->master);
1236
1237	return ret;
1238}
1239
1240static void atmel_spi_cleanup(struct spi_device *spi)
1241{
1242	struct atmel_spi_device	*asd = spi->controller_state;
1243	unsigned		gpio = (unsigned long) spi->controller_data;
1244
1245	if (!asd)
1246		return;
1247
1248	spi->controller_state = NULL;
1249	gpio_free(gpio);
1250	kfree(asd);
1251}
1252
1253static inline unsigned int atmel_get_version(struct atmel_spi *as)
1254{
1255	return spi_readl(as, VERSION) & 0x00000fff;
1256}
1257
1258static void atmel_get_caps(struct atmel_spi *as)
1259{
1260	unsigned int version;
1261
1262	version = atmel_get_version(as);
1263	dev_info(&as->pdev->dev, "version: 0x%x\n", version);
1264
1265	as->caps.is_spi2 = version > 0x121;
1266	as->caps.has_wdrbt = version >= 0x210;
1267	as->caps.has_dma_support = version >= 0x212;
1268}
1269
1270/*-------------------------------------------------------------------------*/
1271
1272static int atmel_spi_probe(struct platform_device *pdev)
1273{
1274	struct resource		*regs;
1275	int			irq;
1276	struct clk		*clk;
1277	int			ret;
1278	struct spi_master	*master;
1279	struct atmel_spi	*as;
1280
1281	/* Select default pin state */
1282	pinctrl_pm_select_default_state(&pdev->dev);
1283
1284	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1285	if (!regs)
1286		return -ENXIO;
1287
1288	irq = platform_get_irq(pdev, 0);
1289	if (irq < 0)
1290		return irq;
1291
1292	clk = devm_clk_get(&pdev->dev, "spi_clk");
1293	if (IS_ERR(clk))
1294		return PTR_ERR(clk);
1295
1296	/* setup spi core then atmel-specific driver state */
1297	ret = -ENOMEM;
1298	master = spi_alloc_master(&pdev->dev, sizeof(*as));
1299	if (!master)
1300		goto out_free;
1301
1302	/* the spi->mode bits understood by this driver: */
1303	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1304	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1305	master->dev.of_node = pdev->dev.of_node;
1306	master->bus_num = pdev->id;
1307	master->num_chipselect = master->dev.of_node ? 0 : 4;
1308	master->setup = atmel_spi_setup;
1309	master->transfer_one_message = atmel_spi_transfer_one_message;
1310	master->cleanup = atmel_spi_cleanup;
1311	master->auto_runtime_pm = true;
1312	platform_set_drvdata(pdev, master);
1313
1314	as = spi_master_get_devdata(master);
1315
1316	/*
1317	 * Scratch buffer is used for throwaway rx and tx data.
1318	 * It's coherent to minimize dcache pollution.
1319	 */
1320	as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
1321					&as->buffer_dma, GFP_KERNEL);
1322	if (!as->buffer)
1323		goto out_free;
1324
1325	spin_lock_init(&as->lock);
1326
1327	as->pdev = pdev;
1328	as->regs = devm_ioremap_resource(&pdev->dev, regs);
1329	if (IS_ERR(as->regs)) {
1330		ret = PTR_ERR(as->regs);
1331		goto out_free_buffer;
1332	}
1333	as->phybase = regs->start;
1334	as->irq = irq;
1335	as->clk = clk;
1336
1337	init_completion(&as->xfer_completion);
1338
1339	atmel_get_caps(as);
1340
1341	as->use_dma = false;
1342	as->use_pdc = false;
1343	if (as->caps.has_dma_support) {
1344		ret = atmel_spi_configure_dma(as);
1345		if (ret == 0)
1346			as->use_dma = true;
1347		else if (ret == -EPROBE_DEFER)
1348			return ret;
1349	} else {
1350		as->use_pdc = true;
1351	}
1352
1353	if (as->caps.has_dma_support && !as->use_dma)
1354		dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1355
1356	if (as->use_pdc) {
1357		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1358					0, dev_name(&pdev->dev), master);
1359	} else {
1360		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1361					0, dev_name(&pdev->dev), master);
1362	}
1363	if (ret)
1364		goto out_unmap_regs;
1365
1366	/* Initialize the hardware */
1367	ret = clk_prepare_enable(clk);
1368	if (ret)
1369		goto out_free_irq;
1370	spi_writel(as, CR, SPI_BIT(SWRST));
1371	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1372	if (as->caps.has_wdrbt) {
1373		spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1374				| SPI_BIT(MSTR));
1375	} else {
1376		spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1377	}
1378
1379	if (as->use_pdc)
1380		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1381	spi_writel(as, CR, SPI_BIT(SPIEN));
1382
1383	/* go! */
1384	dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
1385			(unsigned long)regs->start, irq);
1386
1387	pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1388	pm_runtime_use_autosuspend(&pdev->dev);
1389	pm_runtime_set_active(&pdev->dev);
1390	pm_runtime_enable(&pdev->dev);
1391
1392	ret = devm_spi_register_master(&pdev->dev, master);
1393	if (ret)
1394		goto out_free_dma;
1395
1396	return 0;
1397
1398out_free_dma:
1399	pm_runtime_disable(&pdev->dev);
1400	pm_runtime_set_suspended(&pdev->dev);
1401
1402	if (as->use_dma)
1403		atmel_spi_release_dma(as);
1404
1405	spi_writel(as, CR, SPI_BIT(SWRST));
1406	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1407	clk_disable_unprepare(clk);
1408out_free_irq:
1409out_unmap_regs:
1410out_free_buffer:
1411	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1412			as->buffer_dma);
1413out_free:
1414	spi_master_put(master);
1415	return ret;
1416}
1417
1418static int atmel_spi_remove(struct platform_device *pdev)
1419{
1420	struct spi_master	*master = platform_get_drvdata(pdev);
1421	struct atmel_spi	*as = spi_master_get_devdata(master);
1422
1423	pm_runtime_get_sync(&pdev->dev);
1424
1425	/* reset the hardware and block queue progress */
1426	spin_lock_irq(&as->lock);
1427	if (as->use_dma) {
1428		atmel_spi_stop_dma(as);
1429		atmel_spi_release_dma(as);
1430	}
1431
1432	spi_writel(as, CR, SPI_BIT(SWRST));
1433	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1434	spi_readl(as, SR);
1435	spin_unlock_irq(&as->lock);
1436
1437	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1438			as->buffer_dma);
1439
1440	clk_disable_unprepare(as->clk);
1441
1442	pm_runtime_put_noidle(&pdev->dev);
1443	pm_runtime_disable(&pdev->dev);
1444
1445	return 0;
1446}
1447
1448#ifdef CONFIG_PM
1449static int atmel_spi_runtime_suspend(struct device *dev)
1450{
1451	struct spi_master *master = dev_get_drvdata(dev);
1452	struct atmel_spi *as = spi_master_get_devdata(master);
1453
1454	clk_disable_unprepare(as->clk);
1455	pinctrl_pm_select_sleep_state(dev);
1456
1457	return 0;
1458}
1459
1460static int atmel_spi_runtime_resume(struct device *dev)
1461{
1462	struct spi_master *master = dev_get_drvdata(dev);
1463	struct atmel_spi *as = spi_master_get_devdata(master);
1464
1465	pinctrl_pm_select_default_state(dev);
1466
1467	return clk_prepare_enable(as->clk);
1468}
1469
1470static int atmel_spi_suspend(struct device *dev)
1471{
1472	struct spi_master *master = dev_get_drvdata(dev);
1473	int ret;
1474
1475	/* Stop the queue running */
1476	ret = spi_master_suspend(master);
1477	if (ret) {
1478		dev_warn(dev, "cannot suspend master\n");
1479		return ret;
1480	}
1481
1482	if (!pm_runtime_suspended(dev))
1483		atmel_spi_runtime_suspend(dev);
1484
1485	return 0;
1486}
1487
1488static int atmel_spi_resume(struct device *dev)
1489{
1490	struct spi_master *master = dev_get_drvdata(dev);
1491	int ret;
1492
1493	if (!pm_runtime_suspended(dev)) {
1494		ret = atmel_spi_runtime_resume(dev);
1495		if (ret)
1496			return ret;
1497	}
1498
1499	/* Start the queue running */
1500	ret = spi_master_resume(master);
1501	if (ret)
1502		dev_err(dev, "problem starting queue (%d)\n", ret);
1503
1504	return ret;
1505}
1506
1507static const struct dev_pm_ops atmel_spi_pm_ops = {
1508	SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1509	SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1510			   atmel_spi_runtime_resume, NULL)
1511};
1512#define ATMEL_SPI_PM_OPS	(&atmel_spi_pm_ops)
1513#else
1514#define ATMEL_SPI_PM_OPS	NULL
1515#endif
1516
1517#if defined(CONFIG_OF)
1518static const struct of_device_id atmel_spi_dt_ids[] = {
1519	{ .compatible = "atmel,at91rm9200-spi" },
1520	{ /* sentinel */ }
1521};
1522
1523MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1524#endif
1525
1526static struct platform_driver atmel_spi_driver = {
1527	.driver		= {
1528		.name	= "atmel_spi",
1529		.pm	= ATMEL_SPI_PM_OPS,
1530		.of_match_table	= of_match_ptr(atmel_spi_dt_ids),
1531	},
1532	.probe		= atmel_spi_probe,
1533	.remove		= atmel_spi_remove,
1534};
1535module_platform_driver(atmel_spi_driver);
1536
1537MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1538MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1539MODULE_LICENSE("GPL");
1540MODULE_ALIAS("platform:atmel_spi");
1541