1/*
2 * Keystone Queue Manager subsystem driver
3 *
4 * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
5 * Authors:	Sandeep Nair <sandeep_n@ti.com>
6 *		Cyril Chemparathy <cyril@ti.com>
7 *		Santosh Shilimkar <santosh.shilimkar@ti.com>
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * version 2 as published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 * General Public License for more details.
17 */
18
19#include <linux/kernel.h>
20#include <linux/module.h>
21#include <linux/device.h>
22#include <linux/clk.h>
23#include <linux/io.h>
24#include <linux/interrupt.h>
25#include <linux/bitops.h>
26#include <linux/slab.h>
27#include <linux/spinlock.h>
28#include <linux/platform_device.h>
29#include <linux/dma-mapping.h>
30#include <linux/of.h>
31#include <linux/of_irq.h>
32#include <linux/of_device.h>
33#include <linux/of_address.h>
34#include <linux/pm_runtime.h>
35#include <linux/firmware.h>
36#include <linux/debugfs.h>
37#include <linux/seq_file.h>
38#include <linux/string.h>
39#include <linux/soc/ti/knav_qmss.h>
40
41#include "knav_qmss.h"
42
43static struct knav_device *kdev;
44static DEFINE_MUTEX(knav_dev_lock);
45
46/* Queue manager register indices in DTS */
47#define KNAV_QUEUE_PEEK_REG_INDEX	0
48#define KNAV_QUEUE_STATUS_REG_INDEX	1
49#define KNAV_QUEUE_CONFIG_REG_INDEX	2
50#define KNAV_QUEUE_REGION_REG_INDEX	3
51#define KNAV_QUEUE_PUSH_REG_INDEX	4
52#define KNAV_QUEUE_POP_REG_INDEX	5
53
54/* PDSP register indices in DTS */
55#define KNAV_QUEUE_PDSP_IRAM_REG_INDEX	0
56#define KNAV_QUEUE_PDSP_REGS_REG_INDEX	1
57#define KNAV_QUEUE_PDSP_INTD_REG_INDEX	2
58#define KNAV_QUEUE_PDSP_CMD_REG_INDEX	3
59
60#define knav_queue_idx_to_inst(kdev, idx)			\
61	(kdev->instances + (idx << kdev->inst_shift))
62
63#define for_each_handle_rcu(qh, inst)			\
64	list_for_each_entry_rcu(qh, &inst->handles, list)
65
66#define for_each_instance(idx, inst, kdev)		\
67	for (idx = 0, inst = kdev->instances;		\
68	     idx < (kdev)->num_queues_in_use;			\
69	     idx++, inst = knav_queue_idx_to_inst(kdev, idx))
70
71/**
72 * knav_queue_notify: qmss queue notfier call
73 *
74 * @inst:		qmss queue instance like accumulator
75 */
76void knav_queue_notify(struct knav_queue_inst *inst)
77{
78	struct knav_queue *qh;
79
80	if (!inst)
81		return;
82
83	rcu_read_lock();
84	for_each_handle_rcu(qh, inst) {
85		if (atomic_read(&qh->notifier_enabled) <= 0)
86			continue;
87		if (WARN_ON(!qh->notifier_fn))
88			continue;
89		atomic_inc(&qh->stats.notifies);
90		qh->notifier_fn(qh->notifier_fn_arg);
91	}
92	rcu_read_unlock();
93}
94EXPORT_SYMBOL_GPL(knav_queue_notify);
95
96static irqreturn_t knav_queue_int_handler(int irq, void *_instdata)
97{
98	struct knav_queue_inst *inst = _instdata;
99
100	knav_queue_notify(inst);
101	return IRQ_HANDLED;
102}
103
104static int knav_queue_setup_irq(struct knav_range_info *range,
105			  struct knav_queue_inst *inst)
106{
107	unsigned queue = inst->id - range->queue_base;
108	unsigned long cpu_map;
109	int ret = 0, irq;
110
111	if (range->flags & RANGE_HAS_IRQ) {
112		irq = range->irqs[queue].irq;
113		cpu_map = range->irqs[queue].cpu_map;
114		ret = request_irq(irq, knav_queue_int_handler, 0,
115					inst->irq_name, inst);
116		if (ret)
117			return ret;
118		disable_irq(irq);
119		if (cpu_map) {
120			ret = irq_set_affinity_hint(irq, to_cpumask(&cpu_map));
121			if (ret) {
122				dev_warn(range->kdev->dev,
123					 "Failed to set IRQ affinity\n");
124				return ret;
125			}
126		}
127	}
128	return ret;
129}
130
131static void knav_queue_free_irq(struct knav_queue_inst *inst)
132{
133	struct knav_range_info *range = inst->range;
134	unsigned queue = inst->id - inst->range->queue_base;
135	int irq;
136
137	if (range->flags & RANGE_HAS_IRQ) {
138		irq = range->irqs[queue].irq;
139		irq_set_affinity_hint(irq, NULL);
140		free_irq(irq, inst);
141	}
142}
143
144static inline bool knav_queue_is_busy(struct knav_queue_inst *inst)
145{
146	return !list_empty(&inst->handles);
147}
148
149static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst)
150{
151	return inst->range->flags & RANGE_RESERVED;
152}
153
154static inline bool knav_queue_is_shared(struct knav_queue_inst *inst)
155{
156	struct knav_queue *tmp;
157
158	rcu_read_lock();
159	for_each_handle_rcu(tmp, inst) {
160		if (tmp->flags & KNAV_QUEUE_SHARED) {
161			rcu_read_unlock();
162			return true;
163		}
164	}
165	rcu_read_unlock();
166	return false;
167}
168
169static inline bool knav_queue_match_type(struct knav_queue_inst *inst,
170						unsigned type)
171{
172	if ((type == KNAV_QUEUE_QPEND) &&
173	    (inst->range->flags & RANGE_HAS_IRQ)) {
174		return true;
175	} else if ((type == KNAV_QUEUE_ACC) &&
176		(inst->range->flags & RANGE_HAS_ACCUMULATOR)) {
177		return true;
178	} else if ((type == KNAV_QUEUE_GP) &&
179		!(inst->range->flags &
180			(RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) {
181		return true;
182	}
183	return false;
184}
185
186static inline struct knav_queue_inst *
187knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id)
188{
189	struct knav_queue_inst *inst;
190	int idx;
191
192	for_each_instance(idx, inst, kdev) {
193		if (inst->id == id)
194			return inst;
195	}
196	return NULL;
197}
198
199static inline struct knav_queue_inst *knav_queue_find_by_id(int id)
200{
201	if (kdev->base_id <= id &&
202	    kdev->base_id + kdev->num_queues > id) {
203		id -= kdev->base_id;
204		return knav_queue_match_id_to_inst(kdev, id);
205	}
206	return NULL;
207}
208
209static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst,
210				      const char *name, unsigned flags)
211{
212	struct knav_queue *qh;
213	unsigned id;
214	int ret = 0;
215
216	qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL);
217	if (!qh)
218		return ERR_PTR(-ENOMEM);
219
220	qh->flags = flags;
221	qh->inst = inst;
222	id = inst->id - inst->qmgr->start_queue;
223	qh->reg_push = &inst->qmgr->reg_push[id];
224	qh->reg_pop = &inst->qmgr->reg_pop[id];
225	qh->reg_peek = &inst->qmgr->reg_peek[id];
226
227	/* first opener? */
228	if (!knav_queue_is_busy(inst)) {
229		struct knav_range_info *range = inst->range;
230
231		inst->name = kstrndup(name, KNAV_NAME_SIZE, GFP_KERNEL);
232		if (range->ops && range->ops->open_queue)
233			ret = range->ops->open_queue(range, inst, flags);
234
235		if (ret) {
236			devm_kfree(inst->kdev->dev, qh);
237			return ERR_PTR(ret);
238		}
239	}
240	list_add_tail_rcu(&qh->list, &inst->handles);
241	return qh;
242}
243
244static struct knav_queue *
245knav_queue_open_by_id(const char *name, unsigned id, unsigned flags)
246{
247	struct knav_queue_inst *inst;
248	struct knav_queue *qh;
249
250	mutex_lock(&knav_dev_lock);
251
252	qh = ERR_PTR(-ENODEV);
253	inst = knav_queue_find_by_id(id);
254	if (!inst)
255		goto unlock_ret;
256
257	qh = ERR_PTR(-EEXIST);
258	if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst))
259		goto unlock_ret;
260
261	qh = ERR_PTR(-EBUSY);
262	if ((flags & KNAV_QUEUE_SHARED) &&
263	    (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst)))
264		goto unlock_ret;
265
266	qh = __knav_queue_open(inst, name, flags);
267
268unlock_ret:
269	mutex_unlock(&knav_dev_lock);
270
271	return qh;
272}
273
274static struct knav_queue *knav_queue_open_by_type(const char *name,
275						unsigned type, unsigned flags)
276{
277	struct knav_queue_inst *inst;
278	struct knav_queue *qh = ERR_PTR(-EINVAL);
279	int idx;
280
281	mutex_lock(&knav_dev_lock);
282
283	for_each_instance(idx, inst, kdev) {
284		if (knav_queue_is_reserved(inst))
285			continue;
286		if (!knav_queue_match_type(inst, type))
287			continue;
288		if (knav_queue_is_busy(inst))
289			continue;
290		qh = __knav_queue_open(inst, name, flags);
291		goto unlock_ret;
292	}
293
294unlock_ret:
295	mutex_unlock(&knav_dev_lock);
296	return qh;
297}
298
299static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled)
300{
301	struct knav_range_info *range = inst->range;
302
303	if (range->ops && range->ops->set_notify)
304		range->ops->set_notify(range, inst, enabled);
305}
306
307static int knav_queue_enable_notifier(struct knav_queue *qh)
308{
309	struct knav_queue_inst *inst = qh->inst;
310	bool first;
311
312	if (WARN_ON(!qh->notifier_fn))
313		return -EINVAL;
314
315	/* Adjust the per handle notifier count */
316	first = (atomic_inc_return(&qh->notifier_enabled) == 1);
317	if (!first)
318		return 0; /* nothing to do */
319
320	/* Now adjust the per instance notifier count */
321	first = (atomic_inc_return(&inst->num_notifiers) == 1);
322	if (first)
323		knav_queue_set_notify(inst, true);
324
325	return 0;
326}
327
328static int knav_queue_disable_notifier(struct knav_queue *qh)
329{
330	struct knav_queue_inst *inst = qh->inst;
331	bool last;
332
333	last = (atomic_dec_return(&qh->notifier_enabled) == 0);
334	if (!last)
335		return 0; /* nothing to do */
336
337	last = (atomic_dec_return(&inst->num_notifiers) == 0);
338	if (last)
339		knav_queue_set_notify(inst, false);
340
341	return 0;
342}
343
344static int knav_queue_set_notifier(struct knav_queue *qh,
345				struct knav_queue_notify_config *cfg)
346{
347	knav_queue_notify_fn old_fn = qh->notifier_fn;
348
349	if (!cfg)
350		return -EINVAL;
351
352	if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ)))
353		return -ENOTSUPP;
354
355	if (!cfg->fn && old_fn)
356		knav_queue_disable_notifier(qh);
357
358	qh->notifier_fn = cfg->fn;
359	qh->notifier_fn_arg = cfg->fn_arg;
360
361	if (cfg->fn && !old_fn)
362		knav_queue_enable_notifier(qh);
363
364	return 0;
365}
366
367static int knav_gp_set_notify(struct knav_range_info *range,
368			       struct knav_queue_inst *inst,
369			       bool enabled)
370{
371	unsigned queue;
372
373	if (range->flags & RANGE_HAS_IRQ) {
374		queue = inst->id - range->queue_base;
375		if (enabled)
376			enable_irq(range->irqs[queue].irq);
377		else
378			disable_irq_nosync(range->irqs[queue].irq);
379	}
380	return 0;
381}
382
383static int knav_gp_open_queue(struct knav_range_info *range,
384				struct knav_queue_inst *inst, unsigned flags)
385{
386	return knav_queue_setup_irq(range, inst);
387}
388
389static int knav_gp_close_queue(struct knav_range_info *range,
390				struct knav_queue_inst *inst)
391{
392	knav_queue_free_irq(inst);
393	return 0;
394}
395
396struct knav_range_ops knav_gp_range_ops = {
397	.set_notify	= knav_gp_set_notify,
398	.open_queue	= knav_gp_open_queue,
399	.close_queue	= knav_gp_close_queue,
400};
401
402
403static int knav_queue_get_count(void *qhandle)
404{
405	struct knav_queue *qh = qhandle;
406	struct knav_queue_inst *inst = qh->inst;
407
408	return readl_relaxed(&qh->reg_peek[0].entry_count) +
409		atomic_read(&inst->desc_count);
410}
411
412static void knav_queue_debug_show_instance(struct seq_file *s,
413					struct knav_queue_inst *inst)
414{
415	struct knav_device *kdev = inst->kdev;
416	struct knav_queue *qh;
417
418	if (!knav_queue_is_busy(inst))
419		return;
420
421	seq_printf(s, "\tqueue id %d (%s)\n",
422		   kdev->base_id + inst->id, inst->name);
423	for_each_handle_rcu(qh, inst) {
424		seq_printf(s, "\t\thandle %p: ", qh);
425		seq_printf(s, "pushes %8d, ",
426			   atomic_read(&qh->stats.pushes));
427		seq_printf(s, "pops %8d, ",
428			   atomic_read(&qh->stats.pops));
429		seq_printf(s, "count %8d, ",
430			   knav_queue_get_count(qh));
431		seq_printf(s, "notifies %8d, ",
432			   atomic_read(&qh->stats.notifies));
433		seq_printf(s, "push errors %8d, ",
434			   atomic_read(&qh->stats.push_errors));
435		seq_printf(s, "pop errors %8d\n",
436			   atomic_read(&qh->stats.pop_errors));
437	}
438}
439
440static int knav_queue_debug_show(struct seq_file *s, void *v)
441{
442	struct knav_queue_inst *inst;
443	int idx;
444
445	mutex_lock(&knav_dev_lock);
446	seq_printf(s, "%s: %u-%u\n",
447		   dev_name(kdev->dev), kdev->base_id,
448		   kdev->base_id + kdev->num_queues - 1);
449	for_each_instance(idx, inst, kdev)
450		knav_queue_debug_show_instance(s, inst);
451	mutex_unlock(&knav_dev_lock);
452
453	return 0;
454}
455
456static int knav_queue_debug_open(struct inode *inode, struct file *file)
457{
458	return single_open(file, knav_queue_debug_show, NULL);
459}
460
461static const struct file_operations knav_queue_debug_ops = {
462	.open		= knav_queue_debug_open,
463	.read		= seq_read,
464	.llseek		= seq_lseek,
465	.release	= single_release,
466};
467
468static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout,
469					u32 flags)
470{
471	unsigned long end;
472	u32 val = 0;
473
474	end = jiffies + msecs_to_jiffies(timeout);
475	while (time_after(end, jiffies)) {
476		val = readl_relaxed(addr);
477		if (flags)
478			val &= flags;
479		if (!val)
480			break;
481		cpu_relax();
482	}
483	return val ? -ETIMEDOUT : 0;
484}
485
486
487static int knav_queue_flush(struct knav_queue *qh)
488{
489	struct knav_queue_inst *inst = qh->inst;
490	unsigned id = inst->id - inst->qmgr->start_queue;
491
492	atomic_set(&inst->desc_count, 0);
493	writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh);
494	return 0;
495}
496
497/**
498 * knav_queue_open()	- open a hardware queue
499 * @name		- name to give the queue handle
500 * @id			- desired queue number if any or specifes the type
501 *			  of queue
502 * @flags		- the following flags are applicable to queues:
503 *	KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
504 *			     exclusive by default.
505 *			     Subsequent attempts to open a shared queue should
506 *			     also have this flag.
507 *
508 * Returns a handle to the open hardware queue if successful. Use IS_ERR()
509 * to check the returned value for error codes.
510 */
511void *knav_queue_open(const char *name, unsigned id,
512					unsigned flags)
513{
514	struct knav_queue *qh = ERR_PTR(-EINVAL);
515
516	switch (id) {
517	case KNAV_QUEUE_QPEND:
518	case KNAV_QUEUE_ACC:
519	case KNAV_QUEUE_GP:
520		qh = knav_queue_open_by_type(name, id, flags);
521		break;
522
523	default:
524		qh = knav_queue_open_by_id(name, id, flags);
525		break;
526	}
527	return qh;
528}
529EXPORT_SYMBOL_GPL(knav_queue_open);
530
531/**
532 * knav_queue_close()	- close a hardware queue handle
533 * @qh			- handle to close
534 */
535void knav_queue_close(void *qhandle)
536{
537	struct knav_queue *qh = qhandle;
538	struct knav_queue_inst *inst = qh->inst;
539
540	while (atomic_read(&qh->notifier_enabled) > 0)
541		knav_queue_disable_notifier(qh);
542
543	mutex_lock(&knav_dev_lock);
544	list_del_rcu(&qh->list);
545	mutex_unlock(&knav_dev_lock);
546	synchronize_rcu();
547	if (!knav_queue_is_busy(inst)) {
548		struct knav_range_info *range = inst->range;
549
550		if (range->ops && range->ops->close_queue)
551			range->ops->close_queue(range, inst);
552	}
553	devm_kfree(inst->kdev->dev, qh);
554}
555EXPORT_SYMBOL_GPL(knav_queue_close);
556
557/**
558 * knav_queue_device_control()	- Perform control operations on a queue
559 * @qh				- queue handle
560 * @cmd				- control commands
561 * @arg				- command argument
562 *
563 * Returns 0 on success, errno otherwise.
564 */
565int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd,
566				unsigned long arg)
567{
568	struct knav_queue *qh = qhandle;
569	struct knav_queue_notify_config *cfg;
570	int ret;
571
572	switch ((int)cmd) {
573	case KNAV_QUEUE_GET_ID:
574		ret = qh->inst->kdev->base_id + qh->inst->id;
575		break;
576
577	case KNAV_QUEUE_FLUSH:
578		ret = knav_queue_flush(qh);
579		break;
580
581	case KNAV_QUEUE_SET_NOTIFIER:
582		cfg = (void *)arg;
583		ret = knav_queue_set_notifier(qh, cfg);
584		break;
585
586	case KNAV_QUEUE_ENABLE_NOTIFY:
587		ret = knav_queue_enable_notifier(qh);
588		break;
589
590	case KNAV_QUEUE_DISABLE_NOTIFY:
591		ret = knav_queue_disable_notifier(qh);
592		break;
593
594	case KNAV_QUEUE_GET_COUNT:
595		ret = knav_queue_get_count(qh);
596		break;
597
598	default:
599		ret = -ENOTSUPP;
600		break;
601	}
602	return ret;
603}
604EXPORT_SYMBOL_GPL(knav_queue_device_control);
605
606
607
608/**
609 * knav_queue_push()	- push data (or descriptor) to the tail of a queue
610 * @qh			- hardware queue handle
611 * @data		- data to push
612 * @size		- size of data to push
613 * @flags		- can be used to pass additional information
614 *
615 * Returns 0 on success, errno otherwise.
616 */
617int knav_queue_push(void *qhandle, dma_addr_t dma,
618					unsigned size, unsigned flags)
619{
620	struct knav_queue *qh = qhandle;
621	u32 val;
622
623	val = (u32)dma | ((size / 16) - 1);
624	writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh);
625
626	atomic_inc(&qh->stats.pushes);
627	return 0;
628}
629EXPORT_SYMBOL_GPL(knav_queue_push);
630
631/**
632 * knav_queue_pop()	- pop data (or descriptor) from the head of a queue
633 * @qh			- hardware queue handle
634 * @size		- (optional) size of the data pop'ed.
635 *
636 * Returns a DMA address on success, 0 on failure.
637 */
638dma_addr_t knav_queue_pop(void *qhandle, unsigned *size)
639{
640	struct knav_queue *qh = qhandle;
641	struct knav_queue_inst *inst = qh->inst;
642	dma_addr_t dma;
643	u32 val, idx;
644
645	/* are we accumulated? */
646	if (inst->descs) {
647		if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) {
648			atomic_inc(&inst->desc_count);
649			return 0;
650		}
651		idx  = atomic_inc_return(&inst->desc_head);
652		idx &= ACC_DESCS_MASK;
653		val = inst->descs[idx];
654	} else {
655		val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh);
656		if (unlikely(!val))
657			return 0;
658	}
659
660	dma = val & DESC_PTR_MASK;
661	if (size)
662		*size = ((val & DESC_SIZE_MASK) + 1) * 16;
663
664	atomic_inc(&qh->stats.pops);
665	return dma;
666}
667EXPORT_SYMBOL_GPL(knav_queue_pop);
668
669/* carve out descriptors and push into queue */
670static void kdesc_fill_pool(struct knav_pool *pool)
671{
672	struct knav_region *region;
673	int i;
674
675	region = pool->region;
676	pool->desc_size = region->desc_size;
677	for (i = 0; i < pool->num_desc; i++) {
678		int index = pool->region_offset + i;
679		dma_addr_t dma_addr;
680		unsigned dma_size;
681		dma_addr = region->dma_start + (region->desc_size * index);
682		dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES);
683		dma_sync_single_for_device(pool->dev, dma_addr, dma_size,
684					   DMA_TO_DEVICE);
685		knav_queue_push(pool->queue, dma_addr, dma_size, 0);
686	}
687}
688
689/* pop out descriptors and close the queue */
690static void kdesc_empty_pool(struct knav_pool *pool)
691{
692	dma_addr_t dma;
693	unsigned size;
694	void *desc;
695	int i;
696
697	if (!pool->queue)
698		return;
699
700	for (i = 0;; i++) {
701		dma = knav_queue_pop(pool->queue, &size);
702		if (!dma)
703			break;
704		desc = knav_pool_desc_dma_to_virt(pool, dma);
705		if (!desc) {
706			dev_dbg(pool->kdev->dev,
707				"couldn't unmap desc, continuing\n");
708			continue;
709		}
710	}
711	WARN_ON(i != pool->num_desc);
712	knav_queue_close(pool->queue);
713}
714
715
716/* Get the DMA address of a descriptor */
717dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt)
718{
719	struct knav_pool *pool = ph;
720	return pool->region->dma_start + (virt - pool->region->virt_start);
721}
722EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma);
723
724void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma)
725{
726	struct knav_pool *pool = ph;
727	return pool->region->virt_start + (dma - pool->region->dma_start);
728}
729EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt);
730
731/**
732 * knav_pool_create()	- Create a pool of descriptors
733 * @name		- name to give the pool handle
734 * @num_desc		- numbers of descriptors in the pool
735 * @region_id		- QMSS region id from which the descriptors are to be
736 *			  allocated.
737 *
738 * Returns a pool handle on success.
739 * Use IS_ERR_OR_NULL() to identify error values on return.
740 */
741void *knav_pool_create(const char *name,
742					int num_desc, int region_id)
743{
744	struct knav_region *reg_itr, *region = NULL;
745	struct knav_pool *pool, *pi;
746	struct list_head *node;
747	unsigned last_offset;
748	bool slot_found;
749	int ret;
750
751	if (!kdev->dev)
752		return ERR_PTR(-ENODEV);
753
754	pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
755	if (!pool) {
756		dev_err(kdev->dev, "out of memory allocating pool\n");
757		return ERR_PTR(-ENOMEM);
758	}
759
760	for_each_region(kdev, reg_itr) {
761		if (reg_itr->id != region_id)
762			continue;
763		region = reg_itr;
764		break;
765	}
766
767	if (!region) {
768		dev_err(kdev->dev, "region-id(%d) not found\n", region_id);
769		ret = -EINVAL;
770		goto err;
771	}
772
773	pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0);
774	if (IS_ERR_OR_NULL(pool->queue)) {
775		dev_err(kdev->dev,
776			"failed to open queue for pool(%s), error %ld\n",
777			name, PTR_ERR(pool->queue));
778		ret = PTR_ERR(pool->queue);
779		goto err;
780	}
781
782	pool->name = kstrndup(name, KNAV_NAME_SIZE, GFP_KERNEL);
783	pool->kdev = kdev;
784	pool->dev = kdev->dev;
785
786	mutex_lock(&knav_dev_lock);
787
788	if (num_desc > (region->num_desc - region->used_desc)) {
789		dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n",
790			region_id, name);
791		ret = -ENOMEM;
792		goto err_unlock;
793	}
794
795	/* Region maintains a sorted (by region offset) list of pools
796	 * use the first free slot which is large enough to accomodate
797	 * the request
798	 */
799	last_offset = 0;
800	slot_found = false;
801	node = &region->pools;
802	list_for_each_entry(pi, &region->pools, region_inst) {
803		if ((pi->region_offset - last_offset) >= num_desc) {
804			slot_found = true;
805			break;
806		}
807		last_offset = pi->region_offset + pi->num_desc;
808	}
809	node = &pi->region_inst;
810
811	if (slot_found) {
812		pool->region = region;
813		pool->num_desc = num_desc;
814		pool->region_offset = last_offset;
815		region->used_desc += num_desc;
816		list_add_tail(&pool->list, &kdev->pools);
817		list_add_tail(&pool->region_inst, node);
818	} else {
819		dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
820			name, region_id);
821		ret = -ENOMEM;
822		goto err_unlock;
823	}
824
825	mutex_unlock(&knav_dev_lock);
826	kdesc_fill_pool(pool);
827	return pool;
828
829err_unlock:
830	mutex_unlock(&knav_dev_lock);
831err:
832	kfree(pool->name);
833	devm_kfree(kdev->dev, pool);
834	return ERR_PTR(ret);
835}
836EXPORT_SYMBOL_GPL(knav_pool_create);
837
838/**
839 * knav_pool_destroy()	- Free a pool of descriptors
840 * @pool		- pool handle
841 */
842void knav_pool_destroy(void *ph)
843{
844	struct knav_pool *pool = ph;
845
846	if (!pool)
847		return;
848
849	if (!pool->region)
850		return;
851
852	kdesc_empty_pool(pool);
853	mutex_lock(&knav_dev_lock);
854
855	pool->region->used_desc -= pool->num_desc;
856	list_del(&pool->region_inst);
857	list_del(&pool->list);
858
859	mutex_unlock(&knav_dev_lock);
860	kfree(pool->name);
861	devm_kfree(kdev->dev, pool);
862}
863EXPORT_SYMBOL_GPL(knav_pool_destroy);
864
865
866/**
867 * knav_pool_desc_get()	- Get a descriptor from the pool
868 * @pool			- pool handle
869 *
870 * Returns descriptor from the pool.
871 */
872void *knav_pool_desc_get(void *ph)
873{
874	struct knav_pool *pool = ph;
875	dma_addr_t dma;
876	unsigned size;
877	void *data;
878
879	dma = knav_queue_pop(pool->queue, &size);
880	if (unlikely(!dma))
881		return ERR_PTR(-ENOMEM);
882	data = knav_pool_desc_dma_to_virt(pool, dma);
883	return data;
884}
885EXPORT_SYMBOL_GPL(knav_pool_desc_get);
886
887/**
888 * knav_pool_desc_put()	- return a descriptor to the pool
889 * @pool			- pool handle
890 */
891void knav_pool_desc_put(void *ph, void *desc)
892{
893	struct knav_pool *pool = ph;
894	dma_addr_t dma;
895	dma = knav_pool_desc_virt_to_dma(pool, desc);
896	knav_queue_push(pool->queue, dma, pool->region->desc_size, 0);
897}
898EXPORT_SYMBOL_GPL(knav_pool_desc_put);
899
900/**
901 * knav_pool_desc_map()	- Map descriptor for DMA transfer
902 * @pool			- pool handle
903 * @desc			- address of descriptor to map
904 * @size			- size of descriptor to map
905 * @dma				- DMA address return pointer
906 * @dma_sz			- adjusted return pointer
907 *
908 * Returns 0 on success, errno otherwise.
909 */
910int knav_pool_desc_map(void *ph, void *desc, unsigned size,
911					dma_addr_t *dma, unsigned *dma_sz)
912{
913	struct knav_pool *pool = ph;
914	*dma = knav_pool_desc_virt_to_dma(pool, desc);
915	size = min(size, pool->region->desc_size);
916	size = ALIGN(size, SMP_CACHE_BYTES);
917	*dma_sz = size;
918	dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE);
919
920	/* Ensure the descriptor reaches to the memory */
921	__iowmb();
922
923	return 0;
924}
925EXPORT_SYMBOL_GPL(knav_pool_desc_map);
926
927/**
928 * knav_pool_desc_unmap()	- Unmap descriptor after DMA transfer
929 * @pool			- pool handle
930 * @dma				- DMA address of descriptor to unmap
931 * @dma_sz			- size of descriptor to unmap
932 *
933 * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
934 * error values on return.
935 */
936void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz)
937{
938	struct knav_pool *pool = ph;
939	unsigned desc_sz;
940	void *desc;
941
942	desc_sz = min(dma_sz, pool->region->desc_size);
943	desc = knav_pool_desc_dma_to_virt(pool, dma);
944	dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE);
945	prefetch(desc);
946	return desc;
947}
948EXPORT_SYMBOL_GPL(knav_pool_desc_unmap);
949
950/**
951 * knav_pool_count()	- Get the number of descriptors in pool.
952 * @pool		- pool handle
953 * Returns number of elements in the pool.
954 */
955int knav_pool_count(void *ph)
956{
957	struct knav_pool *pool = ph;
958	return knav_queue_get_count(pool->queue);
959}
960EXPORT_SYMBOL_GPL(knav_pool_count);
961
962static void knav_queue_setup_region(struct knav_device *kdev,
963					struct knav_region *region)
964{
965	unsigned hw_num_desc, hw_desc_size, size;
966	struct knav_reg_region __iomem  *regs;
967	struct knav_qmgr_info *qmgr;
968	struct knav_pool *pool;
969	int id = region->id;
970	struct page *page;
971
972	/* unused region? */
973	if (!region->num_desc) {
974		dev_warn(kdev->dev, "unused region %s\n", region->name);
975		return;
976	}
977
978	/* get hardware descriptor value */
979	hw_num_desc = ilog2(region->num_desc - 1) + 1;
980
981	/* did we force fit ourselves into nothingness? */
982	if (region->num_desc < 32) {
983		region->num_desc = 0;
984		dev_warn(kdev->dev, "too few descriptors in region %s\n",
985			 region->name);
986		return;
987	}
988
989	size = region->num_desc * region->desc_size;
990	region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA |
991						GFP_DMA32);
992	if (!region->virt_start) {
993		region->num_desc = 0;
994		dev_err(kdev->dev, "memory alloc failed for region %s\n",
995			region->name);
996		return;
997	}
998	region->virt_end = region->virt_start + size;
999	page = virt_to_page(region->virt_start);
1000
1001	region->dma_start = dma_map_page(kdev->dev, page, 0, size,
1002					 DMA_BIDIRECTIONAL);
1003	if (dma_mapping_error(kdev->dev, region->dma_start)) {
1004		dev_err(kdev->dev, "dma map failed for region %s\n",
1005			region->name);
1006		goto fail;
1007	}
1008	region->dma_end = region->dma_start + size;
1009
1010	pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
1011	if (!pool) {
1012		dev_err(kdev->dev, "out of memory allocating dummy pool\n");
1013		goto fail;
1014	}
1015	pool->num_desc = 0;
1016	pool->region_offset = region->num_desc;
1017	list_add(&pool->region_inst, &region->pools);
1018
1019	dev_dbg(kdev->dev,
1020		"region %s (%d): size:%d, link:%d@%d, phys:%08x-%08x, virt:%p-%p\n",
1021		region->name, id, region->desc_size, region->num_desc,
1022		region->link_index, region->dma_start, region->dma_end,
1023		region->virt_start, region->virt_end);
1024
1025	hw_desc_size = (region->desc_size / 16) - 1;
1026	hw_num_desc -= 5;
1027
1028	for_each_qmgr(kdev, qmgr) {
1029		regs = qmgr->reg_region + id;
1030		writel_relaxed(region->dma_start, &regs->base);
1031		writel_relaxed(region->link_index, &regs->start_index);
1032		writel_relaxed(hw_desc_size << 16 | hw_num_desc,
1033			       &regs->size_count);
1034	}
1035	return;
1036
1037fail:
1038	if (region->dma_start)
1039		dma_unmap_page(kdev->dev, region->dma_start, size,
1040				DMA_BIDIRECTIONAL);
1041	if (region->virt_start)
1042		free_pages_exact(region->virt_start, size);
1043	region->num_desc = 0;
1044	return;
1045}
1046
1047static const char *knav_queue_find_name(struct device_node *node)
1048{
1049	const char *name;
1050
1051	if (of_property_read_string(node, "label", &name) < 0)
1052		name = node->name;
1053	if (!name)
1054		name = "unknown";
1055	return name;
1056}
1057
1058static int knav_queue_setup_regions(struct knav_device *kdev,
1059					struct device_node *regions)
1060{
1061	struct device *dev = kdev->dev;
1062	struct knav_region *region;
1063	struct device_node *child;
1064	u32 temp[2];
1065	int ret;
1066
1067	for_each_child_of_node(regions, child) {
1068		region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL);
1069		if (!region) {
1070			dev_err(dev, "out of memory allocating region\n");
1071			return -ENOMEM;
1072		}
1073
1074		region->name = knav_queue_find_name(child);
1075		of_property_read_u32(child, "id", &region->id);
1076		ret = of_property_read_u32_array(child, "region-spec", temp, 2);
1077		if (!ret) {
1078			region->num_desc  = temp[0];
1079			region->desc_size = temp[1];
1080		} else {
1081			dev_err(dev, "invalid region info %s\n", region->name);
1082			devm_kfree(dev, region);
1083			continue;
1084		}
1085
1086		if (!of_get_property(child, "link-index", NULL)) {
1087			dev_err(dev, "No link info for %s\n", region->name);
1088			devm_kfree(dev, region);
1089			continue;
1090		}
1091		ret = of_property_read_u32(child, "link-index",
1092					   &region->link_index);
1093		if (ret) {
1094			dev_err(dev, "link index not found for %s\n",
1095				region->name);
1096			devm_kfree(dev, region);
1097			continue;
1098		}
1099
1100		INIT_LIST_HEAD(&region->pools);
1101		list_add_tail(&region->list, &kdev->regions);
1102	}
1103	if (list_empty(&kdev->regions)) {
1104		dev_err(dev, "no valid region information found\n");
1105		return -ENODEV;
1106	}
1107
1108	/* Next, we run through the regions and set things up */
1109	for_each_region(kdev, region)
1110		knav_queue_setup_region(kdev, region);
1111
1112	return 0;
1113}
1114
1115static int knav_get_link_ram(struct knav_device *kdev,
1116				       const char *name,
1117				       struct knav_link_ram_block *block)
1118{
1119	struct platform_device *pdev = to_platform_device(kdev->dev);
1120	struct device_node *node = pdev->dev.of_node;
1121	u32 temp[2];
1122
1123	/*
1124	 * Note: link ram resources are specified in "entry" sized units. In
1125	 * reality, although entries are ~40bits in hardware, we treat them as
1126	 * 64-bit entities here.
1127	 *
1128	 * For example, to specify the internal link ram for Keystone-I class
1129	 * devices, we would set the linkram0 resource to 0x80000-0x83fff.
1130	 *
1131	 * This gets a bit weird when other link rams are used.  For example,
1132	 * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
1133	 * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
1134	 * which accounts for 64-bits per entry, for 16K entries.
1135	 */
1136	if (!of_property_read_u32_array(node, name , temp, 2)) {
1137		if (temp[0]) {
1138			/*
1139			 * queue_base specified => using internal or onchip
1140			 * link ram WARNING - we do not "reserve" this block
1141			 */
1142			block->phys = (dma_addr_t)temp[0];
1143			block->virt = NULL;
1144			block->size = temp[1];
1145		} else {
1146			block->size = temp[1];
1147			/* queue_base not specific => allocate requested size */
1148			block->virt = dmam_alloc_coherent(kdev->dev,
1149						  8 * block->size, &block->phys,
1150						  GFP_KERNEL);
1151			if (!block->virt) {
1152				dev_err(kdev->dev, "failed to alloc linkram\n");
1153				return -ENOMEM;
1154			}
1155		}
1156	} else {
1157		return -ENODEV;
1158	}
1159	return 0;
1160}
1161
1162static int knav_queue_setup_link_ram(struct knav_device *kdev)
1163{
1164	struct knav_link_ram_block *block;
1165	struct knav_qmgr_info *qmgr;
1166
1167	for_each_qmgr(kdev, qmgr) {
1168		block = &kdev->link_rams[0];
1169		dev_dbg(kdev->dev, "linkram0: phys:%x, virt:%p, size:%x\n",
1170			block->phys, block->virt, block->size);
1171		writel_relaxed(block->phys, &qmgr->reg_config->link_ram_base0);
1172		writel_relaxed(block->size, &qmgr->reg_config->link_ram_size0);
1173
1174		block++;
1175		if (!block->size)
1176			return 0;
1177
1178		dev_dbg(kdev->dev, "linkram1: phys:%x, virt:%p, size:%x\n",
1179			block->phys, block->virt, block->size);
1180		writel_relaxed(block->phys, &qmgr->reg_config->link_ram_base1);
1181	}
1182
1183	return 0;
1184}
1185
1186static int knav_setup_queue_range(struct knav_device *kdev,
1187					struct device_node *node)
1188{
1189	struct device *dev = kdev->dev;
1190	struct knav_range_info *range;
1191	struct knav_qmgr_info *qmgr;
1192	u32 temp[2], start, end, id, index;
1193	int ret, i;
1194
1195	range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
1196	if (!range) {
1197		dev_err(dev, "out of memory allocating range\n");
1198		return -ENOMEM;
1199	}
1200
1201	range->kdev = kdev;
1202	range->name = knav_queue_find_name(node);
1203	ret = of_property_read_u32_array(node, "qrange", temp, 2);
1204	if (!ret) {
1205		range->queue_base = temp[0] - kdev->base_id;
1206		range->num_queues = temp[1];
1207	} else {
1208		dev_err(dev, "invalid queue range %s\n", range->name);
1209		devm_kfree(dev, range);
1210		return -EINVAL;
1211	}
1212
1213	for (i = 0; i < RANGE_MAX_IRQS; i++) {
1214		struct of_phandle_args oirq;
1215
1216		if (of_irq_parse_one(node, i, &oirq))
1217			break;
1218
1219		range->irqs[i].irq = irq_create_of_mapping(&oirq);
1220		if (range->irqs[i].irq == IRQ_NONE)
1221			break;
1222
1223		range->num_irqs++;
1224
1225		if (oirq.args_count == 3)
1226			range->irqs[i].cpu_map =
1227				(oirq.args[2] & 0x0000ff00) >> 8;
1228	}
1229
1230	range->num_irqs = min(range->num_irqs, range->num_queues);
1231	if (range->num_irqs)
1232		range->flags |= RANGE_HAS_IRQ;
1233
1234	if (of_get_property(node, "qalloc-by-id", NULL))
1235		range->flags |= RANGE_RESERVED;
1236
1237	if (of_get_property(node, "accumulator", NULL)) {
1238		ret = knav_init_acc_range(kdev, node, range);
1239		if (ret < 0) {
1240			devm_kfree(dev, range);
1241			return ret;
1242		}
1243	} else {
1244		range->ops = &knav_gp_range_ops;
1245	}
1246
1247	/* set threshold to 1, and flush out the queues */
1248	for_each_qmgr(kdev, qmgr) {
1249		start = max(qmgr->start_queue, range->queue_base);
1250		end   = min(qmgr->start_queue + qmgr->num_queues,
1251			    range->queue_base + range->num_queues);
1252		for (id = start; id < end; id++) {
1253			index = id - qmgr->start_queue;
1254			writel_relaxed(THRESH_GTE | 1,
1255				       &qmgr->reg_peek[index].ptr_size_thresh);
1256			writel_relaxed(0,
1257				       &qmgr->reg_push[index].ptr_size_thresh);
1258		}
1259	}
1260
1261	list_add_tail(&range->list, &kdev->queue_ranges);
1262	dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n",
1263		range->name, range->queue_base,
1264		range->queue_base + range->num_queues - 1,
1265		range->num_irqs,
1266		(range->flags & RANGE_HAS_IRQ) ? ", has irq" : "",
1267		(range->flags & RANGE_RESERVED) ? ", reserved" : "",
1268		(range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : "");
1269	kdev->num_queues_in_use += range->num_queues;
1270	return 0;
1271}
1272
1273static int knav_setup_queue_pools(struct knav_device *kdev,
1274				   struct device_node *queue_pools)
1275{
1276	struct device_node *type, *range;
1277	int ret;
1278
1279	for_each_child_of_node(queue_pools, type) {
1280		for_each_child_of_node(type, range) {
1281			ret = knav_setup_queue_range(kdev, range);
1282			/* return value ignored, we init the rest... */
1283		}
1284	}
1285
1286	/* ... and barf if they all failed! */
1287	if (list_empty(&kdev->queue_ranges)) {
1288		dev_err(kdev->dev, "no valid queue range found\n");
1289		return -ENODEV;
1290	}
1291	return 0;
1292}
1293
1294static void knav_free_queue_range(struct knav_device *kdev,
1295				  struct knav_range_info *range)
1296{
1297	if (range->ops && range->ops->free_range)
1298		range->ops->free_range(range);
1299	list_del(&range->list);
1300	devm_kfree(kdev->dev, range);
1301}
1302
1303static void knav_free_queue_ranges(struct knav_device *kdev)
1304{
1305	struct knav_range_info *range;
1306
1307	for (;;) {
1308		range = first_queue_range(kdev);
1309		if (!range)
1310			break;
1311		knav_free_queue_range(kdev, range);
1312	}
1313}
1314
1315static void knav_queue_free_regions(struct knav_device *kdev)
1316{
1317	struct knav_region *region;
1318	struct knav_pool *pool, *tmp;
1319	unsigned size;
1320
1321	for (;;) {
1322		region = first_region(kdev);
1323		if (!region)
1324			break;
1325		list_for_each_entry_safe(pool, tmp, &region->pools, region_inst)
1326			knav_pool_destroy(pool);
1327
1328		size = region->virt_end - region->virt_start;
1329		if (size)
1330			free_pages_exact(region->virt_start, size);
1331		list_del(&region->list);
1332		devm_kfree(kdev->dev, region);
1333	}
1334}
1335
1336static void __iomem *knav_queue_map_reg(struct knav_device *kdev,
1337					struct device_node *node, int index)
1338{
1339	struct resource res;
1340	void __iomem *regs;
1341	int ret;
1342
1343	ret = of_address_to_resource(node, index, &res);
1344	if (ret) {
1345		dev_err(kdev->dev, "Can't translate of node(%s) address for index(%d)\n",
1346			node->name, index);
1347		return ERR_PTR(ret);
1348	}
1349
1350	regs = devm_ioremap_resource(kdev->dev, &res);
1351	if (IS_ERR(regs))
1352		dev_err(kdev->dev, "Failed to map register base for index(%d) node(%s)\n",
1353			index, node->name);
1354	return regs;
1355}
1356
1357static int knav_queue_init_qmgrs(struct knav_device *kdev,
1358					struct device_node *qmgrs)
1359{
1360	struct device *dev = kdev->dev;
1361	struct knav_qmgr_info *qmgr;
1362	struct device_node *child;
1363	u32 temp[2];
1364	int ret;
1365
1366	for_each_child_of_node(qmgrs, child) {
1367		qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL);
1368		if (!qmgr) {
1369			dev_err(dev, "out of memory allocating qmgr\n");
1370			return -ENOMEM;
1371		}
1372
1373		ret = of_property_read_u32_array(child, "managed-queues",
1374						 temp, 2);
1375		if (!ret) {
1376			qmgr->start_queue = temp[0];
1377			qmgr->num_queues = temp[1];
1378		} else {
1379			dev_err(dev, "invalid qmgr queue range\n");
1380			devm_kfree(dev, qmgr);
1381			continue;
1382		}
1383
1384		dev_info(dev, "qmgr start queue %d, number of queues %d\n",
1385			 qmgr->start_queue, qmgr->num_queues);
1386
1387		qmgr->reg_peek =
1388			knav_queue_map_reg(kdev, child,
1389					   KNAV_QUEUE_PEEK_REG_INDEX);
1390		qmgr->reg_status =
1391			knav_queue_map_reg(kdev, child,
1392					   KNAV_QUEUE_STATUS_REG_INDEX);
1393		qmgr->reg_config =
1394			knav_queue_map_reg(kdev, child,
1395					   KNAV_QUEUE_CONFIG_REG_INDEX);
1396		qmgr->reg_region =
1397			knav_queue_map_reg(kdev, child,
1398					   KNAV_QUEUE_REGION_REG_INDEX);
1399		qmgr->reg_push =
1400			knav_queue_map_reg(kdev, child,
1401					   KNAV_QUEUE_PUSH_REG_INDEX);
1402		qmgr->reg_pop =
1403			knav_queue_map_reg(kdev, child,
1404					   KNAV_QUEUE_POP_REG_INDEX);
1405
1406		if (IS_ERR(qmgr->reg_peek) || IS_ERR(qmgr->reg_status) ||
1407		    IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) ||
1408		    IS_ERR(qmgr->reg_push) || IS_ERR(qmgr->reg_pop)) {
1409			dev_err(dev, "failed to map qmgr regs\n");
1410			if (!IS_ERR(qmgr->reg_peek))
1411				devm_iounmap(dev, qmgr->reg_peek);
1412			if (!IS_ERR(qmgr->reg_status))
1413				devm_iounmap(dev, qmgr->reg_status);
1414			if (!IS_ERR(qmgr->reg_config))
1415				devm_iounmap(dev, qmgr->reg_config);
1416			if (!IS_ERR(qmgr->reg_region))
1417				devm_iounmap(dev, qmgr->reg_region);
1418			if (!IS_ERR(qmgr->reg_push))
1419				devm_iounmap(dev, qmgr->reg_push);
1420			if (!IS_ERR(qmgr->reg_pop))
1421				devm_iounmap(dev, qmgr->reg_pop);
1422			devm_kfree(dev, qmgr);
1423			continue;
1424		}
1425
1426		list_add_tail(&qmgr->list, &kdev->qmgrs);
1427		dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
1428			 qmgr->start_queue, qmgr->num_queues,
1429			 qmgr->reg_peek, qmgr->reg_status,
1430			 qmgr->reg_config, qmgr->reg_region,
1431			 qmgr->reg_push, qmgr->reg_pop);
1432	}
1433	return 0;
1434}
1435
1436static int knav_queue_init_pdsps(struct knav_device *kdev,
1437					struct device_node *pdsps)
1438{
1439	struct device *dev = kdev->dev;
1440	struct knav_pdsp_info *pdsp;
1441	struct device_node *child;
1442	int ret;
1443
1444	for_each_child_of_node(pdsps, child) {
1445		pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL);
1446		if (!pdsp) {
1447			dev_err(dev, "out of memory allocating pdsp\n");
1448			return -ENOMEM;
1449		}
1450		pdsp->name = knav_queue_find_name(child);
1451		ret = of_property_read_string(child, "firmware",
1452					      &pdsp->firmware);
1453		if (ret < 0 || !pdsp->firmware) {
1454			dev_err(dev, "unknown firmware for pdsp %s\n",
1455				pdsp->name);
1456			devm_kfree(dev, pdsp);
1457			continue;
1458		}
1459		dev_dbg(dev, "pdsp name %s fw name :%s\n", pdsp->name,
1460			pdsp->firmware);
1461
1462		pdsp->iram =
1463			knav_queue_map_reg(kdev, child,
1464					   KNAV_QUEUE_PDSP_IRAM_REG_INDEX);
1465		pdsp->regs =
1466			knav_queue_map_reg(kdev, child,
1467					   KNAV_QUEUE_PDSP_REGS_REG_INDEX);
1468		pdsp->intd =
1469			knav_queue_map_reg(kdev, child,
1470					   KNAV_QUEUE_PDSP_INTD_REG_INDEX);
1471		pdsp->command =
1472			knav_queue_map_reg(kdev, child,
1473					   KNAV_QUEUE_PDSP_CMD_REG_INDEX);
1474
1475		if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) ||
1476		    IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) {
1477			dev_err(dev, "failed to map pdsp %s regs\n",
1478				pdsp->name);
1479			if (!IS_ERR(pdsp->command))
1480				devm_iounmap(dev, pdsp->command);
1481			if (!IS_ERR(pdsp->iram))
1482				devm_iounmap(dev, pdsp->iram);
1483			if (!IS_ERR(pdsp->regs))
1484				devm_iounmap(dev, pdsp->regs);
1485			if (!IS_ERR(pdsp->intd))
1486				devm_iounmap(dev, pdsp->intd);
1487			devm_kfree(dev, pdsp);
1488			continue;
1489		}
1490		of_property_read_u32(child, "id", &pdsp->id);
1491		list_add_tail(&pdsp->list, &kdev->pdsps);
1492		dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p, firmware %s\n",
1493			pdsp->name, pdsp->command, pdsp->iram, pdsp->regs,
1494			pdsp->intd, pdsp->firmware);
1495	}
1496	return 0;
1497}
1498
1499static int knav_queue_stop_pdsp(struct knav_device *kdev,
1500			  struct knav_pdsp_info *pdsp)
1501{
1502	u32 val, timeout = 1000;
1503	int ret;
1504
1505	val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE;
1506	writel_relaxed(val, &pdsp->regs->control);
1507	ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout,
1508					PDSP_CTRL_RUNNING);
1509	if (ret < 0) {
1510		dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name);
1511		return ret;
1512	}
1513	return 0;
1514}
1515
1516static int knav_queue_load_pdsp(struct knav_device *kdev,
1517			  struct knav_pdsp_info *pdsp)
1518{
1519	int i, ret, fwlen;
1520	const struct firmware *fw;
1521	u32 *fwdata;
1522
1523	ret = request_firmware(&fw, pdsp->firmware, kdev->dev);
1524	if (ret) {
1525		dev_err(kdev->dev, "failed to get firmware %s for pdsp %s\n",
1526			pdsp->firmware, pdsp->name);
1527		return ret;
1528	}
1529	writel_relaxed(pdsp->id + 1, pdsp->command + 0x18);
1530	/* download the firmware */
1531	fwdata = (u32 *)fw->data;
1532	fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32);
1533	for (i = 0; i < fwlen; i++)
1534		writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i);
1535
1536	release_firmware(fw);
1537	return 0;
1538}
1539
1540static int knav_queue_start_pdsp(struct knav_device *kdev,
1541			   struct knav_pdsp_info *pdsp)
1542{
1543	u32 val, timeout = 1000;
1544	int ret;
1545
1546	/* write a command for sync */
1547	writel_relaxed(0xffffffff, pdsp->command);
1548	while (readl_relaxed(pdsp->command) != 0xffffffff)
1549		cpu_relax();
1550
1551	/* soft reset the PDSP */
1552	val  = readl_relaxed(&pdsp->regs->control);
1553	val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET);
1554	writel_relaxed(val, &pdsp->regs->control);
1555
1556	/* enable pdsp */
1557	val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE;
1558	writel_relaxed(val, &pdsp->regs->control);
1559
1560	/* wait for command register to clear */
1561	ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0);
1562	if (ret < 0) {
1563		dev_err(kdev->dev,
1564			"timed out on pdsp %s command register wait\n",
1565			pdsp->name);
1566		return ret;
1567	}
1568	return 0;
1569}
1570
1571static void knav_queue_stop_pdsps(struct knav_device *kdev)
1572{
1573	struct knav_pdsp_info *pdsp;
1574
1575	/* disable all pdsps */
1576	for_each_pdsp(kdev, pdsp)
1577		knav_queue_stop_pdsp(kdev, pdsp);
1578}
1579
1580static int knav_queue_start_pdsps(struct knav_device *kdev)
1581{
1582	struct knav_pdsp_info *pdsp;
1583	int ret;
1584
1585	knav_queue_stop_pdsps(kdev);
1586	/* now load them all */
1587	for_each_pdsp(kdev, pdsp) {
1588		ret = knav_queue_load_pdsp(kdev, pdsp);
1589		if (ret < 0)
1590			return ret;
1591	}
1592
1593	for_each_pdsp(kdev, pdsp) {
1594		ret = knav_queue_start_pdsp(kdev, pdsp);
1595		WARN_ON(ret);
1596	}
1597	return 0;
1598}
1599
1600static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id)
1601{
1602	struct knav_qmgr_info *qmgr;
1603
1604	for_each_qmgr(kdev, qmgr) {
1605		if ((id >= qmgr->start_queue) &&
1606		    (id < qmgr->start_queue + qmgr->num_queues))
1607			return qmgr;
1608	}
1609	return NULL;
1610}
1611
1612static int knav_queue_init_queue(struct knav_device *kdev,
1613					struct knav_range_info *range,
1614					struct knav_queue_inst *inst,
1615					unsigned id)
1616{
1617	char irq_name[KNAV_NAME_SIZE];
1618	inst->qmgr = knav_find_qmgr(id);
1619	if (!inst->qmgr)
1620		return -1;
1621
1622	INIT_LIST_HEAD(&inst->handles);
1623	inst->kdev = kdev;
1624	inst->range = range;
1625	inst->irq_num = -1;
1626	inst->id = id;
1627	scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id);
1628	inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL);
1629
1630	if (range->ops && range->ops->init_queue)
1631		return range->ops->init_queue(range, inst);
1632	else
1633		return 0;
1634}
1635
1636static int knav_queue_init_queues(struct knav_device *kdev)
1637{
1638	struct knav_range_info *range;
1639	int size, id, base_idx;
1640	int idx = 0, ret = 0;
1641
1642	/* how much do we need for instance data? */
1643	size = sizeof(struct knav_queue_inst);
1644
1645	/* round this up to a power of 2, keep the index to instance
1646	 * arithmetic fast.
1647	 * */
1648	kdev->inst_shift = order_base_2(size);
1649	size = (1 << kdev->inst_shift) * kdev->num_queues_in_use;
1650	kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL);
1651	if (!kdev->instances)
1652		return -ENOMEM;
1653
1654	for_each_queue_range(kdev, range) {
1655		if (range->ops && range->ops->init_range)
1656			range->ops->init_range(range);
1657		base_idx = idx;
1658		for (id = range->queue_base;
1659		     id < range->queue_base + range->num_queues; id++, idx++) {
1660			ret = knav_queue_init_queue(kdev, range,
1661					knav_queue_idx_to_inst(kdev, idx), id);
1662			if (ret < 0)
1663				return ret;
1664		}
1665		range->queue_base_inst =
1666			knav_queue_idx_to_inst(kdev, base_idx);
1667	}
1668	return 0;
1669}
1670
1671static int knav_queue_probe(struct platform_device *pdev)
1672{
1673	struct device_node *node = pdev->dev.of_node;
1674	struct device_node *qmgrs, *queue_pools, *regions, *pdsps;
1675	struct device *dev = &pdev->dev;
1676	u32 temp[2];
1677	int ret;
1678
1679	if (!node) {
1680		dev_err(dev, "device tree info unavailable\n");
1681		return -ENODEV;
1682	}
1683
1684	kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL);
1685	if (!kdev) {
1686		dev_err(dev, "memory allocation failed\n");
1687		return -ENOMEM;
1688	}
1689
1690	platform_set_drvdata(pdev, kdev);
1691	kdev->dev = dev;
1692	INIT_LIST_HEAD(&kdev->queue_ranges);
1693	INIT_LIST_HEAD(&kdev->qmgrs);
1694	INIT_LIST_HEAD(&kdev->pools);
1695	INIT_LIST_HEAD(&kdev->regions);
1696	INIT_LIST_HEAD(&kdev->pdsps);
1697
1698	pm_runtime_enable(&pdev->dev);
1699	ret = pm_runtime_get_sync(&pdev->dev);
1700	if (ret < 0) {
1701		dev_err(dev, "Failed to enable QMSS\n");
1702		return ret;
1703	}
1704
1705	if (of_property_read_u32_array(node, "queue-range", temp, 2)) {
1706		dev_err(dev, "queue-range not specified\n");
1707		ret = -ENODEV;
1708		goto err;
1709	}
1710	kdev->base_id    = temp[0];
1711	kdev->num_queues = temp[1];
1712
1713	/* Initialize queue managers using device tree configuration */
1714	qmgrs =  of_get_child_by_name(node, "qmgrs");
1715	if (!qmgrs) {
1716		dev_err(dev, "queue manager info not specified\n");
1717		ret = -ENODEV;
1718		goto err;
1719	}
1720	ret = knav_queue_init_qmgrs(kdev, qmgrs);
1721	of_node_put(qmgrs);
1722	if (ret)
1723		goto err;
1724
1725	/* get pdsp configuration values from device tree */
1726	pdsps =  of_get_child_by_name(node, "pdsps");
1727	if (pdsps) {
1728		ret = knav_queue_init_pdsps(kdev, pdsps);
1729		if (ret)
1730			goto err;
1731
1732		ret = knav_queue_start_pdsps(kdev);
1733		if (ret)
1734			goto err;
1735	}
1736	of_node_put(pdsps);
1737
1738	/* get usable queue range values from device tree */
1739	queue_pools = of_get_child_by_name(node, "queue-pools");
1740	if (!queue_pools) {
1741		dev_err(dev, "queue-pools not specified\n");
1742		ret = -ENODEV;
1743		goto err;
1744	}
1745	ret = knav_setup_queue_pools(kdev, queue_pools);
1746	of_node_put(queue_pools);
1747	if (ret)
1748		goto err;
1749
1750	ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]);
1751	if (ret) {
1752		dev_err(kdev->dev, "could not setup linking ram\n");
1753		goto err;
1754	}
1755
1756	ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]);
1757	if (ret) {
1758		/*
1759		 * nothing really, we have one linking ram already, so we just
1760		 * live within our means
1761		 */
1762	}
1763
1764	ret = knav_queue_setup_link_ram(kdev);
1765	if (ret)
1766		goto err;
1767
1768	regions =  of_get_child_by_name(node, "descriptor-regions");
1769	if (!regions) {
1770		dev_err(dev, "descriptor-regions not specified\n");
1771		goto err;
1772	}
1773	ret = knav_queue_setup_regions(kdev, regions);
1774	of_node_put(regions);
1775	if (ret)
1776		goto err;
1777
1778	ret = knav_queue_init_queues(kdev);
1779	if (ret < 0) {
1780		dev_err(dev, "hwqueue initialization failed\n");
1781		goto err;
1782	}
1783
1784	debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL,
1785			    &knav_queue_debug_ops);
1786	return 0;
1787
1788err:
1789	knav_queue_stop_pdsps(kdev);
1790	knav_queue_free_regions(kdev);
1791	knav_free_queue_ranges(kdev);
1792	pm_runtime_put_sync(&pdev->dev);
1793	pm_runtime_disable(&pdev->dev);
1794	return ret;
1795}
1796
1797static int knav_queue_remove(struct platform_device *pdev)
1798{
1799	/* TODO: Free resources */
1800	pm_runtime_put_sync(&pdev->dev);
1801	pm_runtime_disable(&pdev->dev);
1802	return 0;
1803}
1804
1805/* Match table for of_platform binding */
1806static struct of_device_id keystone_qmss_of_match[] = {
1807	{ .compatible = "ti,keystone-navigator-qmss", },
1808	{},
1809};
1810MODULE_DEVICE_TABLE(of, keystone_qmss_of_match);
1811
1812static struct platform_driver keystone_qmss_driver = {
1813	.probe		= knav_queue_probe,
1814	.remove		= knav_queue_remove,
1815	.driver		= {
1816		.name	= "keystone-navigator-qmss",
1817		.of_match_table = keystone_qmss_of_match,
1818	},
1819};
1820module_platform_driver(keystone_qmss_driver);
1821
1822MODULE_LICENSE("GPL v2");
1823MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
1824MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>");
1825MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>");
1826