1/*
2 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
3 * of PCI-SCSI IO processors.
4 *
5 * Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
6 * Copyright (c) 2003-2005  Matthew Wilcox <matthew@wil.cx>
7 *
8 * This driver is derived from the Linux sym53c8xx driver.
9 * Copyright (C) 1998-2000  Gerard Roudier
10 *
11 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
12 * a port of the FreeBSD ncr driver to Linux-1.2.13.
13 *
14 * The original ncr driver has been written for 386bsd and FreeBSD by
15 *         Wolfgang Stanglmeier        <wolf@cologne.de>
16 *         Stefan Esser                <se@mi.Uni-Koeln.de>
17 * Copyright (C) 1994  Wolfgang Stanglmeier
18 *
19 * Other major contributions:
20 *
21 * NVRAM detection and reading.
22 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
23 *
24 *-----------------------------------------------------------------------------
25 *
26 * This program is free software; you can redistribute it and/or modify
27 * it under the terms of the GNU General Public License as published by
28 * the Free Software Foundation; either version 2 of the License, or
29 * (at your option) any later version.
30 *
31 * This program is distributed in the hope that it will be useful,
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
34 * GNU General Public License for more details.
35 *
36 * You should have received a copy of the GNU General Public License
37 * along with this program; if not, write to the Free Software
38 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
39 */
40
41#include <linux/slab.h>
42#include <asm/param.h>		/* for timeouts in units of HZ */
43
44#include "sym_glue.h"
45#include "sym_nvram.h"
46
47#if 0
48#define SYM_DEBUG_GENERIC_SUPPORT
49#endif
50
51/*
52 *  Needed function prototypes.
53 */
54static void sym_int_ma (struct sym_hcb *np);
55static void sym_int_sir(struct sym_hcb *);
56static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np);
57static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa);
58static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln);
59static void sym_complete_error (struct sym_hcb *np, struct sym_ccb *cp);
60static void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp);
61static int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp);
62
63/*
64 *  Print a buffer in hexadecimal format with a ".\n" at end.
65 */
66static void sym_printl_hex(u_char *p, int n)
67{
68	while (n-- > 0)
69		printf (" %x", *p++);
70	printf (".\n");
71}
72
73static void sym_print_msg(struct sym_ccb *cp, char *label, u_char *msg)
74{
75	sym_print_addr(cp->cmd, "%s: ", label);
76
77	spi_print_msg(msg);
78	printf("\n");
79}
80
81static void sym_print_nego_msg(struct sym_hcb *np, int target, char *label, u_char *msg)
82{
83	struct sym_tcb *tp = &np->target[target];
84	dev_info(&tp->starget->dev, "%s: ", label);
85
86	spi_print_msg(msg);
87	printf("\n");
88}
89
90/*
91 *  Print something that tells about extended errors.
92 */
93void sym_print_xerr(struct scsi_cmnd *cmd, int x_status)
94{
95	if (x_status & XE_PARITY_ERR) {
96		sym_print_addr(cmd, "unrecovered SCSI parity error.\n");
97	}
98	if (x_status & XE_EXTRA_DATA) {
99		sym_print_addr(cmd, "extraneous data discarded.\n");
100	}
101	if (x_status & XE_BAD_PHASE) {
102		sym_print_addr(cmd, "illegal scsi phase (4/5).\n");
103	}
104	if (x_status & XE_SODL_UNRUN) {
105		sym_print_addr(cmd, "ODD transfer in DATA OUT phase.\n");
106	}
107	if (x_status & XE_SWIDE_OVRUN) {
108		sym_print_addr(cmd, "ODD transfer in DATA IN phase.\n");
109	}
110}
111
112/*
113 *  Return a string for SCSI BUS mode.
114 */
115static char *sym_scsi_bus_mode(int mode)
116{
117	switch(mode) {
118	case SMODE_HVD:	return "HVD";
119	case SMODE_SE:	return "SE";
120	case SMODE_LVD: return "LVD";
121	}
122	return "??";
123}
124
125/*
126 *  Soft reset the chip.
127 *
128 *  Raising SRST when the chip is running may cause
129 *  problems on dual function chips (see below).
130 *  On the other hand, LVD devices need some delay
131 *  to settle and report actual BUS mode in STEST4.
132 */
133static void sym_chip_reset (struct sym_hcb *np)
134{
135	OUTB(np, nc_istat, SRST);
136	INB(np, nc_mbox1);
137	udelay(10);
138	OUTB(np, nc_istat, 0);
139	INB(np, nc_mbox1);
140	udelay(2000);	/* For BUS MODE to settle */
141}
142
143/*
144 *  Really soft reset the chip.:)
145 *
146 *  Some 896 and 876 chip revisions may hang-up if we set
147 *  the SRST (soft reset) bit at the wrong time when SCRIPTS
148 *  are running.
149 *  So, we need to abort the current operation prior to
150 *  soft resetting the chip.
151 */
152static void sym_soft_reset (struct sym_hcb *np)
153{
154	u_char istat = 0;
155	int i;
156
157	if (!(np->features & FE_ISTAT1) || !(INB(np, nc_istat1) & SCRUN))
158		goto do_chip_reset;
159
160	OUTB(np, nc_istat, CABRT);
161	for (i = 100000 ; i ; --i) {
162		istat = INB(np, nc_istat);
163		if (istat & SIP) {
164			INW(np, nc_sist);
165		}
166		else if (istat & DIP) {
167			if (INB(np, nc_dstat) & ABRT)
168				break;
169		}
170		udelay(5);
171	}
172	OUTB(np, nc_istat, 0);
173	if (!i)
174		printf("%s: unable to abort current chip operation, "
175		       "ISTAT=0x%02x.\n", sym_name(np), istat);
176do_chip_reset:
177	sym_chip_reset(np);
178}
179
180/*
181 *  Start reset process.
182 *
183 *  The interrupt handler will reinitialize the chip.
184 */
185static void sym_start_reset(struct sym_hcb *np)
186{
187	sym_reset_scsi_bus(np, 1);
188}
189
190int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int)
191{
192	u32 term;
193	int retv = 0;
194
195	sym_soft_reset(np);	/* Soft reset the chip */
196	if (enab_int)
197		OUTW(np, nc_sien, RST);
198	/*
199	 *  Enable Tolerant, reset IRQD if present and
200	 *  properly set IRQ mode, prior to resetting the bus.
201	 */
202	OUTB(np, nc_stest3, TE);
203	OUTB(np, nc_dcntl, (np->rv_dcntl & IRQM));
204	OUTB(np, nc_scntl1, CRST);
205	INB(np, nc_mbox1);
206	udelay(200);
207
208	if (!SYM_SETUP_SCSI_BUS_CHECK)
209		goto out;
210	/*
211	 *  Check for no terminators or SCSI bus shorts to ground.
212	 *  Read SCSI data bus, data parity bits and control signals.
213	 *  We are expecting RESET to be TRUE and other signals to be
214	 *  FALSE.
215	 */
216	term =	INB(np, nc_sstat0);
217	term =	((term & 2) << 7) + ((term & 1) << 17);	/* rst sdp0 */
218	term |= ((INB(np, nc_sstat2) & 0x01) << 26) |	/* sdp1     */
219		((INW(np, nc_sbdl) & 0xff)   << 9)  |	/* d7-0     */
220		((INW(np, nc_sbdl) & 0xff00) << 10) |	/* d15-8    */
221		INB(np, nc_sbcl);	/* req ack bsy sel atn msg cd io    */
222
223	if (!np->maxwide)
224		term &= 0x3ffff;
225
226	if (term != (2<<7)) {
227		printf("%s: suspicious SCSI data while resetting the BUS.\n",
228			sym_name(np));
229		printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
230			"0x%lx, expecting 0x%lx\n",
231			sym_name(np),
232			(np->features & FE_WIDE) ? "dp1,d15-8," : "",
233			(u_long)term, (u_long)(2<<7));
234		if (SYM_SETUP_SCSI_BUS_CHECK == 1)
235			retv = 1;
236	}
237out:
238	OUTB(np, nc_scntl1, 0);
239	return retv;
240}
241
242/*
243 *  Select SCSI clock frequency
244 */
245static void sym_selectclock(struct sym_hcb *np, u_char scntl3)
246{
247	/*
248	 *  If multiplier not present or not selected, leave here.
249	 */
250	if (np->multiplier <= 1) {
251		OUTB(np, nc_scntl3, scntl3);
252		return;
253	}
254
255	if (sym_verbose >= 2)
256		printf ("%s: enabling clock multiplier\n", sym_name(np));
257
258	OUTB(np, nc_stest1, DBLEN);	   /* Enable clock multiplier */
259	/*
260	 *  Wait for the LCKFRQ bit to be set if supported by the chip.
261	 *  Otherwise wait 50 micro-seconds (at least).
262	 */
263	if (np->features & FE_LCKFRQ) {
264		int i = 20;
265		while (!(INB(np, nc_stest4) & LCKFRQ) && --i > 0)
266			udelay(20);
267		if (!i)
268			printf("%s: the chip cannot lock the frequency\n",
269				sym_name(np));
270	} else {
271		INB(np, nc_mbox1);
272		udelay(50+10);
273	}
274	OUTB(np, nc_stest3, HSC);		/* Halt the scsi clock	*/
275	OUTB(np, nc_scntl3, scntl3);
276	OUTB(np, nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier	*/
277	OUTB(np, nc_stest3, 0x00);		/* Restart scsi clock 	*/
278}
279
280
281/*
282 *  Determine the chip's clock frequency.
283 *
284 *  This is essential for the negotiation of the synchronous
285 *  transfer rate.
286 *
287 *  Note: we have to return the correct value.
288 *  THERE IS NO SAFE DEFAULT VALUE.
289 *
290 *  Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
291 *  53C860 and 53C875 rev. 1 support fast20 transfers but
292 *  do not have a clock doubler and so are provided with a
293 *  80 MHz clock. All other fast20 boards incorporate a doubler
294 *  and so should be delivered with a 40 MHz clock.
295 *  The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
296 *  clock and provide a clock quadrupler (160 Mhz).
297 */
298
299/*
300 *  calculate SCSI clock frequency (in KHz)
301 */
302static unsigned getfreq (struct sym_hcb *np, int gen)
303{
304	unsigned int ms = 0;
305	unsigned int f;
306
307	/*
308	 * Measure GEN timer delay in order
309	 * to calculate SCSI clock frequency
310	 *
311	 * This code will never execute too
312	 * many loop iterations (if DELAY is
313	 * reasonably correct). It could get
314	 * too low a delay (too high a freq.)
315	 * if the CPU is slow executing the
316	 * loop for some reason (an NMI, for
317	 * example). For this reason we will
318	 * if multiple measurements are to be
319	 * performed trust the higher delay
320	 * (lower frequency returned).
321	 */
322	OUTW(np, nc_sien, 0);	/* mask all scsi interrupts */
323	INW(np, nc_sist);	/* clear pending scsi interrupt */
324	OUTB(np, nc_dien, 0);	/* mask all dma interrupts */
325	INW(np, nc_sist);	/* another one, just to be sure :) */
326	/*
327	 * The C1010-33 core does not report GEN in SIST,
328	 * if this interrupt is masked in SIEN.
329	 * I don't know yet if the C1010-66 behaves the same way.
330	 */
331	if (np->features & FE_C10) {
332		OUTW(np, nc_sien, GEN);
333		OUTB(np, nc_istat1, SIRQD);
334	}
335	OUTB(np, nc_scntl3, 4);	   /* set pre-scaler to divide by 3 */
336	OUTB(np, nc_stime1, 0);	   /* disable general purpose timer */
337	OUTB(np, nc_stime1, gen);  /* set to nominal delay of 1<<gen * 125us */
338	while (!(INW(np, nc_sist) & GEN) && ms++ < 100000)
339		udelay(1000/4);    /* count in 1/4 of ms */
340	OUTB(np, nc_stime1, 0);    /* disable general purpose timer */
341	/*
342	 * Undo C1010-33 specific settings.
343	 */
344	if (np->features & FE_C10) {
345		OUTW(np, nc_sien, 0);
346		OUTB(np, nc_istat1, 0);
347	}
348 	/*
349 	 * set prescaler to divide by whatever 0 means
350 	 * 0 ought to choose divide by 2, but appears
351 	 * to set divide by 3.5 mode in my 53c810 ...
352 	 */
353 	OUTB(np, nc_scntl3, 0);
354
355  	/*
356 	 * adjust for prescaler, and convert into KHz
357  	 */
358	f = ms ? ((1 << gen) * (4340*4)) / ms : 0;
359
360	/*
361	 * The C1010-33 result is biased by a factor
362	 * of 2/3 compared to earlier chips.
363	 */
364	if (np->features & FE_C10)
365		f = (f * 2) / 3;
366
367	if (sym_verbose >= 2)
368		printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
369			sym_name(np), gen, ms/4, f);
370
371	return f;
372}
373
374static unsigned sym_getfreq (struct sym_hcb *np)
375{
376	u_int f1, f2;
377	int gen = 8;
378
379	getfreq (np, gen);	/* throw away first result */
380	f1 = getfreq (np, gen);
381	f2 = getfreq (np, gen);
382	if (f1 > f2) f1 = f2;		/* trust lower result	*/
383	return f1;
384}
385
386/*
387 *  Get/probe chip SCSI clock frequency
388 */
389static void sym_getclock (struct sym_hcb *np, int mult)
390{
391	unsigned char scntl3 = np->sv_scntl3;
392	unsigned char stest1 = np->sv_stest1;
393	unsigned f1;
394
395	np->multiplier = 1;
396	f1 = 40000;
397	/*
398	 *  True with 875/895/896/895A with clock multiplier selected
399	 */
400	if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
401		if (sym_verbose >= 2)
402			printf ("%s: clock multiplier found\n", sym_name(np));
403		np->multiplier = mult;
404	}
405
406	/*
407	 *  If multiplier not found or scntl3 not 7,5,3,
408	 *  reset chip and get frequency from general purpose timer.
409	 *  Otherwise trust scntl3 BIOS setting.
410	 */
411	if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
412		OUTB(np, nc_stest1, 0);		/* make sure doubler is OFF */
413		f1 = sym_getfreq (np);
414
415		if (sym_verbose)
416			printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
417
418		if	(f1 <	45000)		f1 =  40000;
419		else if (f1 <	55000)		f1 =  50000;
420		else				f1 =  80000;
421
422		if (f1 < 80000 && mult > 1) {
423			if (sym_verbose >= 2)
424				printf ("%s: clock multiplier assumed\n",
425					sym_name(np));
426			np->multiplier	= mult;
427		}
428	} else {
429		if	((scntl3 & 7) == 3)	f1 =  40000;
430		else if	((scntl3 & 7) == 5)	f1 =  80000;
431		else 				f1 = 160000;
432
433		f1 /= np->multiplier;
434	}
435
436	/*
437	 *  Compute controller synchronous parameters.
438	 */
439	f1		*= np->multiplier;
440	np->clock_khz	= f1;
441}
442
443/*
444 *  Get/probe PCI clock frequency
445 */
446static int sym_getpciclock (struct sym_hcb *np)
447{
448	int f = 0;
449
450	/*
451	 *  For now, we only need to know about the actual
452	 *  PCI BUS clock frequency for C1010-66 chips.
453	 */
454#if 1
455	if (np->features & FE_66MHZ) {
456#else
457	if (1) {
458#endif
459		OUTB(np, nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */
460		f = sym_getfreq(np);
461		OUTB(np, nc_stest1, 0);
462	}
463	np->pciclk_khz = f;
464
465	return f;
466}
467
468/*
469 *  SYMBIOS chip clock divisor table.
470 *
471 *  Divisors are multiplied by 10,000,000 in order to make
472 *  calculations more simple.
473 */
474#define _5M 5000000
475static const u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
476
477/*
478 *  Get clock factor and sync divisor for a given
479 *  synchronous factor period.
480 */
481static int
482sym_getsync(struct sym_hcb *np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
483{
484	u32	clk = np->clock_khz;	/* SCSI clock frequency in kHz	*/
485	int	div = np->clock_divn;	/* Number of divisors supported	*/
486	u32	fak;			/* Sync factor in sxfer		*/
487	u32	per;			/* Period in tenths of ns	*/
488	u32	kpc;			/* (per * clk)			*/
489	int	ret;
490
491	/*
492	 *  Compute the synchronous period in tenths of nano-seconds
493	 */
494	if (dt && sfac <= 9)	per = 125;
495	else if	(sfac <= 10)	per = 250;
496	else if	(sfac == 11)	per = 303;
497	else if	(sfac == 12)	per = 500;
498	else			per = 40 * sfac;
499	ret = per;
500
501	kpc = per * clk;
502	if (dt)
503		kpc <<= 1;
504
505	/*
506	 *  For earliest C10 revision 0, we cannot use extra
507	 *  clocks for the setting of the SCSI clocking.
508	 *  Note that this limits the lowest sync data transfer
509	 *  to 5 Mega-transfers per second and may result in
510	 *  using higher clock divisors.
511	 */
512#if 1
513	if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
514		/*
515		 *  Look for the lowest clock divisor that allows an
516		 *  output speed not faster than the period.
517		 */
518		while (div > 0) {
519			--div;
520			if (kpc > (div_10M[div] << 2)) {
521				++div;
522				break;
523			}
524		}
525		fak = 0;			/* No extra clocks */
526		if (div == np->clock_divn) {	/* Are we too fast ? */
527			ret = -1;
528		}
529		*divp = div;
530		*fakp = fak;
531		return ret;
532	}
533#endif
534
535	/*
536	 *  Look for the greatest clock divisor that allows an
537	 *  input speed faster than the period.
538	 */
539	while (div-- > 0)
540		if (kpc >= (div_10M[div] << 2)) break;
541
542	/*
543	 *  Calculate the lowest clock factor that allows an output
544	 *  speed not faster than the period, and the max output speed.
545	 *  If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
546	 *  If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
547	 */
548	if (dt) {
549		fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
550		/* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
551	} else {
552		fak = (kpc - 1) / div_10M[div] + 1 - 4;
553		/* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
554	}
555
556	/*
557	 *  Check against our hardware limits, or bugs :).
558	 */
559	if (fak > 2) {
560		fak = 2;
561		ret = -1;
562	}
563
564	/*
565	 *  Compute and return sync parameters.
566	 */
567	*divp = div;
568	*fakp = fak;
569
570	return ret;
571}
572
573/*
574 *  SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
575 *  128 transfers. All chips support at least 16 transfers
576 *  bursts. The 825A, 875 and 895 chips support bursts of up
577 *  to 128 transfers and the 895A and 896 support bursts of up
578 *  to 64 transfers. All other chips support up to 16
579 *  transfers bursts.
580 *
581 *  For PCI 32 bit data transfers each transfer is a DWORD.
582 *  It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
583 *
584 *  We use log base 2 (burst length) as internal code, with
585 *  value 0 meaning "burst disabled".
586 */
587
588/*
589 *  Burst length from burst code.
590 */
591#define burst_length(bc) (!(bc))? 0 : 1 << (bc)
592
593/*
594 *  Burst code from io register bits.
595 */
596#define burst_code(dmode, ctest4, ctest5) \
597	(ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
598
599/*
600 *  Set initial io register bits from burst code.
601 */
602static inline void sym_init_burst(struct sym_hcb *np, u_char bc)
603{
604	np->rv_ctest4	&= ~0x80;
605	np->rv_dmode	&= ~(0x3 << 6);
606	np->rv_ctest5	&= ~0x4;
607
608	if (!bc) {
609		np->rv_ctest4	|= 0x80;
610	}
611	else {
612		--bc;
613		np->rv_dmode	|= ((bc & 0x3) << 6);
614		np->rv_ctest5	|= (bc & 0x4);
615	}
616}
617
618/*
619 *  Save initial settings of some IO registers.
620 *  Assumed to have been set by BIOS.
621 *  We cannot reset the chip prior to reading the
622 *  IO registers, since informations will be lost.
623 *  Since the SCRIPTS processor may be running, this
624 *  is not safe on paper, but it seems to work quite
625 *  well. :)
626 */
627static void sym_save_initial_setting (struct sym_hcb *np)
628{
629	np->sv_scntl0	= INB(np, nc_scntl0) & 0x0a;
630	np->sv_scntl3	= INB(np, nc_scntl3) & 0x07;
631	np->sv_dmode	= INB(np, nc_dmode)  & 0xce;
632	np->sv_dcntl	= INB(np, nc_dcntl)  & 0xa8;
633	np->sv_ctest3	= INB(np, nc_ctest3) & 0x01;
634	np->sv_ctest4	= INB(np, nc_ctest4) & 0x80;
635	np->sv_gpcntl	= INB(np, nc_gpcntl);
636	np->sv_stest1	= INB(np, nc_stest1);
637	np->sv_stest2	= INB(np, nc_stest2) & 0x20;
638	np->sv_stest4	= INB(np, nc_stest4);
639	if (np->features & FE_C10) {	/* Always large DMA fifo + ultra3 */
640		np->sv_scntl4	= INB(np, nc_scntl4);
641		np->sv_ctest5	= INB(np, nc_ctest5) & 0x04;
642	}
643	else
644		np->sv_ctest5	= INB(np, nc_ctest5) & 0x24;
645}
646
647/*
648 *  Set SCSI BUS mode.
649 *  - LVD capable chips (895/895A/896/1010) report the current BUS mode
650 *    through the STEST4 IO register.
651 *  - For previous generation chips (825/825A/875), the user has to tell us
652 *    how to check against HVD, since a 100% safe algorithm is not possible.
653 */
654static void sym_set_bus_mode(struct sym_hcb *np, struct sym_nvram *nvram)
655{
656	if (np->scsi_mode)
657		return;
658
659	np->scsi_mode = SMODE_SE;
660	if (np->features & (FE_ULTRA2|FE_ULTRA3))
661		np->scsi_mode = (np->sv_stest4 & SMODE);
662	else if	(np->features & FE_DIFF) {
663		if (SYM_SETUP_SCSI_DIFF == 1) {
664			if (np->sv_scntl3) {
665				if (np->sv_stest2 & 0x20)
666					np->scsi_mode = SMODE_HVD;
667			} else if (nvram->type == SYM_SYMBIOS_NVRAM) {
668				if (!(INB(np, nc_gpreg) & 0x08))
669					np->scsi_mode = SMODE_HVD;
670			}
671		} else if (SYM_SETUP_SCSI_DIFF == 2)
672			np->scsi_mode = SMODE_HVD;
673	}
674	if (np->scsi_mode == SMODE_HVD)
675		np->rv_stest2 |= 0x20;
676}
677
678/*
679 *  Prepare io register values used by sym_start_up()
680 *  according to selected and supported features.
681 */
682static int sym_prepare_setting(struct Scsi_Host *shost, struct sym_hcb *np, struct sym_nvram *nvram)
683{
684	struct sym_data *sym_data = shost_priv(shost);
685	struct pci_dev *pdev = sym_data->pdev;
686	u_char	burst_max;
687	u32	period;
688	int i;
689
690	np->maxwide = (np->features & FE_WIDE) ? 1 : 0;
691
692	/*
693	 *  Guess the frequency of the chip's clock.
694	 */
695	if	(np->features & (FE_ULTRA3 | FE_ULTRA2))
696		np->clock_khz = 160000;
697	else if	(np->features & FE_ULTRA)
698		np->clock_khz = 80000;
699	else
700		np->clock_khz = 40000;
701
702	/*
703	 *  Get the clock multiplier factor.
704 	 */
705	if	(np->features & FE_QUAD)
706		np->multiplier	= 4;
707	else if	(np->features & FE_DBLR)
708		np->multiplier	= 2;
709	else
710		np->multiplier	= 1;
711
712	/*
713	 *  Measure SCSI clock frequency for chips
714	 *  it may vary from assumed one.
715	 */
716	if (np->features & FE_VARCLK)
717		sym_getclock(np, np->multiplier);
718
719	/*
720	 * Divisor to be used for async (timer pre-scaler).
721	 */
722	i = np->clock_divn - 1;
723	while (--i >= 0) {
724		if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
725			++i;
726			break;
727		}
728	}
729	np->rv_scntl3 = i+1;
730
731	/*
732	 * The C1010 uses hardwired divisors for async.
733	 * So, we just throw away, the async. divisor.:-)
734	 */
735	if (np->features & FE_C10)
736		np->rv_scntl3 = 0;
737
738	/*
739	 * Minimum synchronous period factor supported by the chip.
740	 * Btw, 'period' is in tenths of nanoseconds.
741	 */
742	period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
743
744	if	(period <= 250)		np->minsync = 10;
745	else if	(period <= 303)		np->minsync = 11;
746	else if	(period <= 500)		np->minsync = 12;
747	else				np->minsync = (period + 40 - 1) / 40;
748
749	/*
750	 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
751	 */
752	if	(np->minsync < 25 &&
753		 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
754		np->minsync = 25;
755	else if	(np->minsync < 12 &&
756		 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
757		np->minsync = 12;
758
759	/*
760	 * Maximum synchronous period factor supported by the chip.
761	 */
762	period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
763	np->maxsync = period > 2540 ? 254 : period / 10;
764
765	/*
766	 * If chip is a C1010, guess the sync limits in DT mode.
767	 */
768	if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
769		if (np->clock_khz == 160000) {
770			np->minsync_dt = 9;
771			np->maxsync_dt = 50;
772			np->maxoffs_dt = nvram->type ? 62 : 31;
773		}
774	}
775
776	/*
777	 *  64 bit addressing  (895A/896/1010) ?
778	 */
779	if (np->features & FE_DAC) {
780		if (!use_dac(np))
781			np->rv_ccntl1 |= (DDAC);
782		else if (SYM_CONF_DMA_ADDRESSING_MODE == 1)
783			np->rv_ccntl1 |= (XTIMOD | EXTIBMV);
784		else if (SYM_CONF_DMA_ADDRESSING_MODE == 2)
785			np->rv_ccntl1 |= (0 | EXTIBMV);
786	}
787
788	/*
789	 *  Phase mismatch handled by SCRIPTS (895A/896/1010) ?
790  	 */
791	if (np->features & FE_NOPM)
792		np->rv_ccntl0	|= (ENPMJ);
793
794 	/*
795	 *  C1010-33 Errata: Part Number:609-039638 (rev. 1) is fixed.
796	 *  In dual channel mode, contention occurs if internal cycles
797	 *  are used. Disable internal cycles.
798	 */
799	if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_33 &&
800	    pdev->revision < 0x1)
801		np->rv_ccntl0	|=  DILS;
802
803	/*
804	 *  Select burst length (dwords)
805	 */
806	burst_max	= SYM_SETUP_BURST_ORDER;
807	if (burst_max == 255)
808		burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
809				       np->sv_ctest5);
810	if (burst_max > 7)
811		burst_max = 7;
812	if (burst_max > np->maxburst)
813		burst_max = np->maxburst;
814
815	/*
816	 *  DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
817	 *  This chip and the 860 Rev 1 may wrongly use PCI cache line
818	 *  based transactions on LOAD/STORE instructions. So we have
819	 *  to prevent these chips from using such PCI transactions in
820	 *  this driver. The generic ncr driver that does not use
821	 *  LOAD/STORE instructions does not need this work-around.
822	 */
823	if ((pdev->device == PCI_DEVICE_ID_NCR_53C810 &&
824	     pdev->revision >= 0x10 && pdev->revision <= 0x11) ||
825	    (pdev->device == PCI_DEVICE_ID_NCR_53C860 &&
826	     pdev->revision <= 0x1))
827		np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
828
829	/*
830	 *  Select all supported special features.
831	 *  If we are using on-board RAM for scripts, prefetch (PFEN)
832	 *  does not help, but burst op fetch (BOF) does.
833	 *  Disabling PFEN makes sure BOF will be used.
834	 */
835	if (np->features & FE_ERL)
836		np->rv_dmode	|= ERL;		/* Enable Read Line */
837	if (np->features & FE_BOF)
838		np->rv_dmode	|= BOF;		/* Burst Opcode Fetch */
839	if (np->features & FE_ERMP)
840		np->rv_dmode	|= ERMP;	/* Enable Read Multiple */
841#if 1
842	if ((np->features & FE_PFEN) && !np->ram_ba)
843#else
844	if (np->features & FE_PFEN)
845#endif
846		np->rv_dcntl	|= PFEN;	/* Prefetch Enable */
847	if (np->features & FE_CLSE)
848		np->rv_dcntl	|= CLSE;	/* Cache Line Size Enable */
849	if (np->features & FE_WRIE)
850		np->rv_ctest3	|= WRIE;	/* Write and Invalidate */
851	if (np->features & FE_DFS)
852		np->rv_ctest5	|= DFS;		/* Dma Fifo Size */
853
854	/*
855	 *  Select some other
856	 */
857	np->rv_ctest4	|= MPEE; /* Master parity checking */
858	np->rv_scntl0	|= 0x0a; /*  full arb., ena parity, par->ATN  */
859
860	/*
861	 *  Get parity checking, host ID and verbose mode from NVRAM
862	 */
863	np->myaddr = 255;
864	np->scsi_mode = 0;
865	sym_nvram_setup_host(shost, np, nvram);
866
867	/*
868	 *  Get SCSI addr of host adapter (set by bios?).
869	 */
870	if (np->myaddr == 255) {
871		np->myaddr = INB(np, nc_scid) & 0x07;
872		if (!np->myaddr)
873			np->myaddr = SYM_SETUP_HOST_ID;
874	}
875
876	/*
877	 *  Prepare initial io register bits for burst length
878	 */
879	sym_init_burst(np, burst_max);
880
881	sym_set_bus_mode(np, nvram);
882
883	/*
884	 *  Set LED support from SCRIPTS.
885	 *  Ignore this feature for boards known to use a
886	 *  specific GPIO wiring and for the 895A, 896
887	 *  and 1010 that drive the LED directly.
888	 */
889	if ((SYM_SETUP_SCSI_LED ||
890	     (nvram->type == SYM_SYMBIOS_NVRAM ||
891	      (nvram->type == SYM_TEKRAM_NVRAM &&
892	       pdev->device == PCI_DEVICE_ID_NCR_53C895))) &&
893	    !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
894		np->features |= FE_LED0;
895
896	/*
897	 *  Set irq mode.
898	 */
899	switch(SYM_SETUP_IRQ_MODE & 3) {
900	case 2:
901		np->rv_dcntl	|= IRQM;
902		break;
903	case 1:
904		np->rv_dcntl	|= (np->sv_dcntl & IRQM);
905		break;
906	default:
907		break;
908	}
909
910	/*
911	 *  Configure targets according to driver setup.
912	 *  If NVRAM present get targets setup from NVRAM.
913	 */
914	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
915		struct sym_tcb *tp = &np->target[i];
916
917		tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
918		tp->usrtags = SYM_SETUP_MAX_TAG;
919		tp->usr_width = np->maxwide;
920		tp->usr_period = 9;
921
922		sym_nvram_setup_target(tp, i, nvram);
923
924		if (!tp->usrtags)
925			tp->usrflags &= ~SYM_TAGS_ENABLED;
926	}
927
928	/*
929	 *  Let user know about the settings.
930	 */
931	printf("%s: %s, ID %d, Fast-%d, %s, %s\n", sym_name(np),
932		sym_nvram_type(nvram), np->myaddr,
933		(np->features & FE_ULTRA3) ? 80 :
934		(np->features & FE_ULTRA2) ? 40 :
935		(np->features & FE_ULTRA)  ? 20 : 10,
936		sym_scsi_bus_mode(np->scsi_mode),
937		(np->rv_scntl0 & 0xa)	? "parity checking" : "NO parity");
938	/*
939	 *  Tell him more on demand.
940	 */
941	if (sym_verbose) {
942		printf("%s: %s IRQ line driver%s\n",
943			sym_name(np),
944			np->rv_dcntl & IRQM ? "totem pole" : "open drain",
945			np->ram_ba ? ", using on-chip SRAM" : "");
946		printf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
947		if (np->features & FE_NOPM)
948			printf("%s: handling phase mismatch from SCRIPTS.\n",
949			       sym_name(np));
950	}
951	/*
952	 *  And still more.
953	 */
954	if (sym_verbose >= 2) {
955		printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
956			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
957			sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
958			np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
959
960		printf ("%s: final   SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
961			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
962			sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
963			np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
964	}
965
966	return 0;
967}
968
969/*
970 *  Test the pci bus snoop logic :-(
971 *
972 *  Has to be called with interrupts disabled.
973 */
974#ifdef CONFIG_SCSI_SYM53C8XX_MMIO
975static int sym_regtest(struct sym_hcb *np)
976{
977	register volatile u32 data;
978	/*
979	 *  chip registers may NOT be cached.
980	 *  write 0xffffffff to a read only register area,
981	 *  and try to read it back.
982	 */
983	data = 0xffffffff;
984	OUTL(np, nc_dstat, data);
985	data = INL(np, nc_dstat);
986#if 1
987	if (data == 0xffffffff) {
988#else
989	if ((data & 0xe2f0fffd) != 0x02000080) {
990#endif
991		printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
992			(unsigned) data);
993		return 0x10;
994	}
995	return 0;
996}
997#else
998static inline int sym_regtest(struct sym_hcb *np)
999{
1000	return 0;
1001}
1002#endif
1003
1004static int sym_snooptest(struct sym_hcb *np)
1005{
1006	u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
1007	int i, err;
1008
1009	err = sym_regtest(np);
1010	if (err)
1011		return err;
1012restart_test:
1013	/*
1014	 *  Enable Master Parity Checking as we intend
1015	 *  to enable it for normal operations.
1016	 */
1017	OUTB(np, nc_ctest4, (np->rv_ctest4 & MPEE));
1018	/*
1019	 *  init
1020	 */
1021	pc  = SCRIPTZ_BA(np, snooptest);
1022	host_wr = 1;
1023	sym_wr  = 2;
1024	/*
1025	 *  Set memory and register.
1026	 */
1027	np->scratch = cpu_to_scr(host_wr);
1028	OUTL(np, nc_temp, sym_wr);
1029	/*
1030	 *  Start script (exchange values)
1031	 */
1032	OUTL(np, nc_dsa, np->hcb_ba);
1033	OUTL_DSP(np, pc);
1034	/*
1035	 *  Wait 'til done (with timeout)
1036	 */
1037	for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
1038		if (INB(np, nc_istat) & (INTF|SIP|DIP))
1039			break;
1040	if (i>=SYM_SNOOP_TIMEOUT) {
1041		printf ("CACHE TEST FAILED: timeout.\n");
1042		return (0x20);
1043	}
1044	/*
1045	 *  Check for fatal DMA errors.
1046	 */
1047	dstat = INB(np, nc_dstat);
1048#if 1	/* Band aiding for broken hardwares that fail PCI parity */
1049	if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
1050		printf ("%s: PCI DATA PARITY ERROR DETECTED - "
1051			"DISABLING MASTER DATA PARITY CHECKING.\n",
1052			sym_name(np));
1053		np->rv_ctest4 &= ~MPEE;
1054		goto restart_test;
1055	}
1056#endif
1057	if (dstat & (MDPE|BF|IID)) {
1058		printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
1059		return (0x80);
1060	}
1061	/*
1062	 *  Save termination position.
1063	 */
1064	pc = INL(np, nc_dsp);
1065	/*
1066	 *  Read memory and register.
1067	 */
1068	host_rd = scr_to_cpu(np->scratch);
1069	sym_rd  = INL(np, nc_scratcha);
1070	sym_bk  = INL(np, nc_temp);
1071	/*
1072	 *  Check termination position.
1073	 */
1074	if (pc != SCRIPTZ_BA(np, snoopend)+8) {
1075		printf ("CACHE TEST FAILED: script execution failed.\n");
1076		printf ("start=%08lx, pc=%08lx, end=%08lx\n",
1077			(u_long) SCRIPTZ_BA(np, snooptest), (u_long) pc,
1078			(u_long) SCRIPTZ_BA(np, snoopend) +8);
1079		return (0x40);
1080	}
1081	/*
1082	 *  Show results.
1083	 */
1084	if (host_wr != sym_rd) {
1085		printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
1086			(int) host_wr, (int) sym_rd);
1087		err |= 1;
1088	}
1089	if (host_rd != sym_wr) {
1090		printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
1091			(int) sym_wr, (int) host_rd);
1092		err |= 2;
1093	}
1094	if (sym_bk != sym_wr) {
1095		printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
1096			(int) sym_wr, (int) sym_bk);
1097		err |= 4;
1098	}
1099
1100	return err;
1101}
1102
1103/*
1104 *  log message for real hard errors
1105 *
1106 *  sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sx/s3/s4) @ name (dsp:dbc).
1107 *  	      reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
1108 *
1109 *  exception register:
1110 *  	ds:	dstat
1111 *  	si:	sist
1112 *
1113 *  SCSI bus lines:
1114 *  	so:	control lines as driven by chip.
1115 *  	si:	control lines as seen by chip.
1116 *  	sd:	scsi data lines as seen by chip.
1117 *
1118 *  wide/fastmode:
1119 *  	sx:	sxfer  (see the manual)
1120 *  	s3:	scntl3 (see the manual)
1121 *  	s4:	scntl4 (see the manual)
1122 *
1123 *  current script command:
1124 *  	dsp:	script address (relative to start of script).
1125 *  	dbc:	first word of script command.
1126 *
1127 *  First 24 register of the chip:
1128 *  	r0..rf
1129 */
1130static void sym_log_hard_error(struct Scsi_Host *shost, u_short sist, u_char dstat)
1131{
1132	struct sym_hcb *np = sym_get_hcb(shost);
1133	u32	dsp;
1134	int	script_ofs;
1135	int	script_size;
1136	char	*script_name;
1137	u_char	*script_base;
1138	int	i;
1139
1140	dsp	= INL(np, nc_dsp);
1141
1142	if	(dsp > np->scripta_ba &&
1143		 dsp <= np->scripta_ba + np->scripta_sz) {
1144		script_ofs	= dsp - np->scripta_ba;
1145		script_size	= np->scripta_sz;
1146		script_base	= (u_char *) np->scripta0;
1147		script_name	= "scripta";
1148	}
1149	else if (np->scriptb_ba < dsp &&
1150		 dsp <= np->scriptb_ba + np->scriptb_sz) {
1151		script_ofs	= dsp - np->scriptb_ba;
1152		script_size	= np->scriptb_sz;
1153		script_base	= (u_char *) np->scriptb0;
1154		script_name	= "scriptb";
1155	} else {
1156		script_ofs	= dsp;
1157		script_size	= 0;
1158		script_base	= NULL;
1159		script_name	= "mem";
1160	}
1161
1162	printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x/%x) @ (%s %x:%08x).\n",
1163		sym_name(np), (unsigned)INB(np, nc_sdid)&0x0f, dstat, sist,
1164		(unsigned)INB(np, nc_socl), (unsigned)INB(np, nc_sbcl),
1165		(unsigned)INB(np, nc_sbdl), (unsigned)INB(np, nc_sxfer),
1166		(unsigned)INB(np, nc_scntl3),
1167		(np->features & FE_C10) ?  (unsigned)INB(np, nc_scntl4) : 0,
1168		script_name, script_ofs,   (unsigned)INL(np, nc_dbc));
1169
1170	if (((script_ofs & 3) == 0) &&
1171	    (unsigned)script_ofs < script_size) {
1172		printf ("%s: script cmd = %08x\n", sym_name(np),
1173			scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
1174	}
1175
1176	printf("%s: regdump:", sym_name(np));
1177	for (i = 0; i < 24; i++)
1178		printf(" %02x", (unsigned)INB_OFF(np, i));
1179	printf(".\n");
1180
1181	/*
1182	 *  PCI BUS error.
1183	 */
1184	if (dstat & (MDPE|BF))
1185		sym_log_bus_error(shost);
1186}
1187
1188void sym_dump_registers(struct Scsi_Host *shost)
1189{
1190	struct sym_hcb *np = sym_get_hcb(shost);
1191	u_short sist;
1192	u_char dstat;
1193
1194	sist = INW(np, nc_sist);
1195	dstat = INB(np, nc_dstat);
1196	sym_log_hard_error(shost, sist, dstat);
1197}
1198
1199static struct sym_chip sym_dev_table[] = {
1200 {PCI_DEVICE_ID_NCR_53C810, 0x0f, "810", 4, 8, 4, 64,
1201 FE_ERL}
1202 ,
1203#ifdef SYM_DEBUG_GENERIC_SUPPORT
1204 {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4,  8, 4, 1,
1205 FE_BOF}
1206 ,
1207#else
1208 {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4,  8, 4, 1,
1209 FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
1210 ,
1211#endif
1212 {PCI_DEVICE_ID_NCR_53C815, 0xff, "815", 4,  8, 4, 64,
1213 FE_BOF|FE_ERL}
1214 ,
1215 {PCI_DEVICE_ID_NCR_53C825, 0x0f, "825", 6,  8, 4, 64,
1216 FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
1217 ,
1218 {PCI_DEVICE_ID_NCR_53C825, 0xff, "825a", 6,  8, 4, 2,
1219 FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
1220 ,
1221 {PCI_DEVICE_ID_NCR_53C860, 0xff, "860", 4,  8, 5, 1,
1222 FE_ULTRA|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
1223 ,
1224 {PCI_DEVICE_ID_NCR_53C875, 0x01, "875", 6, 16, 5, 2,
1225 FE_WIDE|FE_ULTRA|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1226 FE_RAM|FE_DIFF|FE_VARCLK}
1227 ,
1228 {PCI_DEVICE_ID_NCR_53C875, 0xff, "875", 6, 16, 5, 2,
1229 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1230 FE_RAM|FE_DIFF|FE_VARCLK}
1231 ,
1232 {PCI_DEVICE_ID_NCR_53C875J, 0xff, "875J", 6, 16, 5, 2,
1233 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1234 FE_RAM|FE_DIFF|FE_VARCLK}
1235 ,
1236 {PCI_DEVICE_ID_NCR_53C885, 0xff, "885", 6, 16, 5, 2,
1237 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1238 FE_RAM|FE_DIFF|FE_VARCLK}
1239 ,
1240#ifdef SYM_DEBUG_GENERIC_SUPPORT
1241 {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
1242 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
1243 FE_RAM|FE_LCKFRQ}
1244 ,
1245#else
1246 {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
1247 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1248 FE_RAM|FE_LCKFRQ}
1249 ,
1250#endif
1251 {PCI_DEVICE_ID_NCR_53C896, 0xff, "896", 6, 31, 7, 4,
1252 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1253 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1254 ,
1255 {PCI_DEVICE_ID_LSI_53C895A, 0xff, "895a", 6, 31, 7, 4,
1256 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1257 FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1258 ,
1259 {PCI_DEVICE_ID_LSI_53C875A, 0xff, "875a", 6, 31, 7, 4,
1260 FE_WIDE|FE_ULTRA|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1261 FE_RAM|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1262 ,
1263 {PCI_DEVICE_ID_LSI_53C1010_33, 0x00, "1010-33", 6, 31, 7, 8,
1264 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1265 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1266 FE_C10}
1267 ,
1268 {PCI_DEVICE_ID_LSI_53C1010_33, 0xff, "1010-33", 6, 31, 7, 8,
1269 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1270 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1271 FE_C10|FE_U3EN}
1272 ,
1273 {PCI_DEVICE_ID_LSI_53C1010_66, 0xff, "1010-66", 6, 31, 7, 8,
1274 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1275 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
1276 FE_C10|FE_U3EN}
1277 ,
1278 {PCI_DEVICE_ID_LSI_53C1510, 0xff, "1510d", 6, 31, 7, 4,
1279 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1280 FE_RAM|FE_IO256|FE_LEDC}
1281};
1282
1283#define sym_num_devs (ARRAY_SIZE(sym_dev_table))
1284
1285/*
1286 *  Look up the chip table.
1287 *
1288 *  Return a pointer to the chip entry if found,
1289 *  zero otherwise.
1290 */
1291struct sym_chip *
1292sym_lookup_chip_table (u_short device_id, u_char revision)
1293{
1294	struct	sym_chip *chip;
1295	int	i;
1296
1297	for (i = 0; i < sym_num_devs; i++) {
1298		chip = &sym_dev_table[i];
1299		if (device_id != chip->device_id)
1300			continue;
1301		if (revision > chip->revision_id)
1302			continue;
1303		return chip;
1304	}
1305
1306	return NULL;
1307}
1308
1309#if SYM_CONF_DMA_ADDRESSING_MODE == 2
1310/*
1311 *  Lookup the 64 bit DMA segments map.
1312 *  This is only used if the direct mapping
1313 *  has been unsuccessful.
1314 */
1315int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s)
1316{
1317	int i;
1318
1319	if (!use_dac(np))
1320		goto weird;
1321
1322	/* Look up existing mappings */
1323	for (i = SYM_DMAP_SIZE-1; i > 0; i--) {
1324		if (h == np->dmap_bah[i])
1325			return i;
1326	}
1327	/* If direct mapping is free, get it */
1328	if (!np->dmap_bah[s])
1329		goto new;
1330	/* Collision -> lookup free mappings */
1331	for (s = SYM_DMAP_SIZE-1; s > 0; s--) {
1332		if (!np->dmap_bah[s])
1333			goto new;
1334	}
1335weird:
1336	panic("sym: ran out of 64 bit DMA segment registers");
1337	return -1;
1338new:
1339	np->dmap_bah[s] = h;
1340	np->dmap_dirty = 1;
1341	return s;
1342}
1343
1344/*
1345 *  Update IO registers scratch C..R so they will be
1346 *  in sync. with queued CCB expectations.
1347 */
1348static void sym_update_dmap_regs(struct sym_hcb *np)
1349{
1350	int o, i;
1351
1352	if (!np->dmap_dirty)
1353		return;
1354	o = offsetof(struct sym_reg, nc_scrx[0]);
1355	for (i = 0; i < SYM_DMAP_SIZE; i++) {
1356		OUTL_OFF(np, o, np->dmap_bah[i]);
1357		o += 4;
1358	}
1359	np->dmap_dirty = 0;
1360}
1361#endif
1362
1363/* Enforce all the fiddly SPI rules and the chip limitations */
1364static void sym_check_goals(struct sym_hcb *np, struct scsi_target *starget,
1365		struct sym_trans *goal)
1366{
1367	if (!spi_support_wide(starget))
1368		goal->width = 0;
1369
1370	if (!spi_support_sync(starget)) {
1371		goal->iu = 0;
1372		goal->dt = 0;
1373		goal->qas = 0;
1374		goal->offset = 0;
1375		return;
1376	}
1377
1378	if (spi_support_dt(starget)) {
1379		if (spi_support_dt_only(starget))
1380			goal->dt = 1;
1381
1382		if (goal->offset == 0)
1383			goal->dt = 0;
1384	} else {
1385		goal->dt = 0;
1386	}
1387
1388	/* Some targets fail to properly negotiate DT in SE mode */
1389	if ((np->scsi_mode != SMODE_LVD) || !(np->features & FE_U3EN))
1390		goal->dt = 0;
1391
1392	if (goal->dt) {
1393		/* all DT transfers must be wide */
1394		goal->width = 1;
1395		if (goal->offset > np->maxoffs_dt)
1396			goal->offset = np->maxoffs_dt;
1397		if (goal->period < np->minsync_dt)
1398			goal->period = np->minsync_dt;
1399		if (goal->period > np->maxsync_dt)
1400			goal->period = np->maxsync_dt;
1401	} else {
1402		goal->iu = goal->qas = 0;
1403		if (goal->offset > np->maxoffs)
1404			goal->offset = np->maxoffs;
1405		if (goal->period < np->minsync)
1406			goal->period = np->minsync;
1407		if (goal->period > np->maxsync)
1408			goal->period = np->maxsync;
1409	}
1410}
1411
1412/*
1413 *  Prepare the next negotiation message if needed.
1414 *
1415 *  Fill in the part of message buffer that contains the
1416 *  negotiation and the nego_status field of the CCB.
1417 *  Returns the size of the message in bytes.
1418 */
1419static int sym_prepare_nego(struct sym_hcb *np, struct sym_ccb *cp, u_char *msgptr)
1420{
1421	struct sym_tcb *tp = &np->target[cp->target];
1422	struct scsi_target *starget = tp->starget;
1423	struct sym_trans *goal = &tp->tgoal;
1424	int msglen = 0;
1425	int nego;
1426
1427	sym_check_goals(np, starget, goal);
1428
1429	/*
1430	 * Many devices implement PPR in a buggy way, so only use it if we
1431	 * really want to.
1432	 */
1433	if (goal->renego == NS_PPR || (goal->offset &&
1434	    (goal->iu || goal->dt || goal->qas || (goal->period < 0xa)))) {
1435		nego = NS_PPR;
1436	} else if (goal->renego == NS_WIDE || goal->width) {
1437		nego = NS_WIDE;
1438	} else if (goal->renego == NS_SYNC || goal->offset) {
1439		nego = NS_SYNC;
1440	} else {
1441		goal->check_nego = 0;
1442		nego = 0;
1443	}
1444
1445	switch (nego) {
1446	case NS_SYNC:
1447		msglen += spi_populate_sync_msg(msgptr + msglen, goal->period,
1448				goal->offset);
1449		break;
1450	case NS_WIDE:
1451		msglen += spi_populate_width_msg(msgptr + msglen, goal->width);
1452		break;
1453	case NS_PPR:
1454		msglen += spi_populate_ppr_msg(msgptr + msglen, goal->period,
1455				goal->offset, goal->width,
1456				(goal->iu ? PPR_OPT_IU : 0) |
1457					(goal->dt ? PPR_OPT_DT : 0) |
1458					(goal->qas ? PPR_OPT_QAS : 0));
1459		break;
1460	}
1461
1462	cp->nego_status = nego;
1463
1464	if (nego) {
1465		tp->nego_cp = cp; /* Keep track a nego will be performed */
1466		if (DEBUG_FLAGS & DEBUG_NEGO) {
1467			sym_print_nego_msg(np, cp->target,
1468					  nego == NS_SYNC ? "sync msgout" :
1469					  nego == NS_WIDE ? "wide msgout" :
1470					  "ppr msgout", msgptr);
1471		}
1472	}
1473
1474	return msglen;
1475}
1476
1477/*
1478 *  Insert a job into the start queue.
1479 */
1480void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp)
1481{
1482	u_short	qidx;
1483
1484#ifdef SYM_CONF_IARB_SUPPORT
1485	/*
1486	 *  If the previously queued CCB is not yet done,
1487	 *  set the IARB hint. The SCRIPTS will go with IARB
1488	 *  for this job when starting the previous one.
1489	 *  We leave devices a chance to win arbitration by
1490	 *  not using more than 'iarb_max' consecutive
1491	 *  immediate arbitrations.
1492	 */
1493	if (np->last_cp && np->iarb_count < np->iarb_max) {
1494		np->last_cp->host_flags |= HF_HINT_IARB;
1495		++np->iarb_count;
1496	}
1497	else
1498		np->iarb_count = 0;
1499	np->last_cp = cp;
1500#endif
1501
1502#if   SYM_CONF_DMA_ADDRESSING_MODE == 2
1503	/*
1504	 *  Make SCRIPTS aware of the 64 bit DMA
1505	 *  segment registers not being up-to-date.
1506	 */
1507	if (np->dmap_dirty)
1508		cp->host_xflags |= HX_DMAP_DIRTY;
1509#endif
1510
1511	/*
1512	 *  Insert first the idle task and then our job.
1513	 *  The MBs should ensure proper ordering.
1514	 */
1515	qidx = np->squeueput + 2;
1516	if (qidx >= MAX_QUEUE*2) qidx = 0;
1517
1518	np->squeue [qidx]	   = cpu_to_scr(np->idletask_ba);
1519	MEMORY_WRITE_BARRIER();
1520	np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
1521
1522	np->squeueput = qidx;
1523
1524	if (DEBUG_FLAGS & DEBUG_QUEUE)
1525		scmd_printk(KERN_DEBUG, cp->cmd, "queuepos=%d\n",
1526							np->squeueput);
1527
1528	/*
1529	 *  Script processor may be waiting for reselect.
1530	 *  Wake it up.
1531	 */
1532	MEMORY_WRITE_BARRIER();
1533	OUTB(np, nc_istat, SIGP|np->istat_sem);
1534}
1535
1536#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1537/*
1538 *  Start next ready-to-start CCBs.
1539 */
1540void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn)
1541{
1542	SYM_QUEHEAD *qp;
1543	struct sym_ccb *cp;
1544
1545	/*
1546	 *  Paranoia, as usual. :-)
1547	 */
1548	assert(!lp->started_tags || !lp->started_no_tag);
1549
1550	/*
1551	 *  Try to start as many commands as asked by caller.
1552	 *  Prevent from having both tagged and untagged
1553	 *  commands queued to the device at the same time.
1554	 */
1555	while (maxn--) {
1556		qp = sym_remque_head(&lp->waiting_ccbq);
1557		if (!qp)
1558			break;
1559		cp = sym_que_entry(qp, struct sym_ccb, link2_ccbq);
1560		if (cp->tag != NO_TAG) {
1561			if (lp->started_no_tag ||
1562			    lp->started_tags >= lp->started_max) {
1563				sym_insque_head(qp, &lp->waiting_ccbq);
1564				break;
1565			}
1566			lp->itlq_tbl[cp->tag] = cpu_to_scr(cp->ccb_ba);
1567			lp->head.resel_sa =
1568				cpu_to_scr(SCRIPTA_BA(np, resel_tag));
1569			++lp->started_tags;
1570		} else {
1571			if (lp->started_no_tag || lp->started_tags) {
1572				sym_insque_head(qp, &lp->waiting_ccbq);
1573				break;
1574			}
1575			lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
1576			lp->head.resel_sa =
1577			      cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
1578			++lp->started_no_tag;
1579		}
1580		cp->started = 1;
1581		sym_insque_tail(qp, &lp->started_ccbq);
1582		sym_put_start_queue(np, cp);
1583	}
1584}
1585#endif /* SYM_OPT_HANDLE_DEVICE_QUEUEING */
1586
1587/*
1588 *  The chip may have completed jobs. Look at the DONE QUEUE.
1589 *
1590 *  On paper, memory read barriers may be needed here to
1591 *  prevent out of order LOADs by the CPU from having
1592 *  prefetched stale data prior to DMA having occurred.
1593 */
1594static int sym_wakeup_done (struct sym_hcb *np)
1595{
1596	struct sym_ccb *cp;
1597	int i, n;
1598	u32 dsa;
1599
1600	n = 0;
1601	i = np->dqueueget;
1602
1603	/* MEMORY_READ_BARRIER(); */
1604	while (1) {
1605		dsa = scr_to_cpu(np->dqueue[i]);
1606		if (!dsa)
1607			break;
1608		np->dqueue[i] = 0;
1609		if ((i = i+2) >= MAX_QUEUE*2)
1610			i = 0;
1611
1612		cp = sym_ccb_from_dsa(np, dsa);
1613		if (cp) {
1614			MEMORY_READ_BARRIER();
1615			sym_complete_ok (np, cp);
1616			++n;
1617		}
1618		else
1619			printf ("%s: bad DSA (%x) in done queue.\n",
1620				sym_name(np), (u_int) dsa);
1621	}
1622	np->dqueueget = i;
1623
1624	return n;
1625}
1626
1627/*
1628 *  Complete all CCBs queued to the COMP queue.
1629 *
1630 *  These CCBs are assumed:
1631 *  - Not to be referenced either by devices or
1632 *    SCRIPTS-related queues and datas.
1633 *  - To have to be completed with an error condition
1634 *    or requeued.
1635 *
1636 *  The device queue freeze count is incremented
1637 *  for each CCB that does not prevent this.
1638 *  This function is called when all CCBs involved
1639 *  in error handling/recovery have been reaped.
1640 */
1641static void sym_flush_comp_queue(struct sym_hcb *np, int cam_status)
1642{
1643	SYM_QUEHEAD *qp;
1644	struct sym_ccb *cp;
1645
1646	while ((qp = sym_remque_head(&np->comp_ccbq)) != NULL) {
1647		struct scsi_cmnd *cmd;
1648		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
1649		sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
1650		/* Leave quiet CCBs waiting for resources */
1651		if (cp->host_status == HS_WAIT)
1652			continue;
1653		cmd = cp->cmd;
1654		if (cam_status)
1655			sym_set_cam_status(cmd, cam_status);
1656#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1657		if (sym_get_cam_status(cmd) == DID_SOFT_ERROR) {
1658			struct sym_tcb *tp = &np->target[cp->target];
1659			struct sym_lcb *lp = sym_lp(tp, cp->lun);
1660			if (lp) {
1661				sym_remque(&cp->link2_ccbq);
1662				sym_insque_tail(&cp->link2_ccbq,
1663				                &lp->waiting_ccbq);
1664				if (cp->started) {
1665					if (cp->tag != NO_TAG)
1666						--lp->started_tags;
1667					else
1668						--lp->started_no_tag;
1669				}
1670			}
1671			cp->started = 0;
1672			continue;
1673		}
1674#endif
1675		sym_free_ccb(np, cp);
1676		sym_xpt_done(np, cmd);
1677	}
1678}
1679
1680/*
1681 *  Complete all active CCBs with error.
1682 *  Used on CHIP/SCSI RESET.
1683 */
1684static void sym_flush_busy_queue (struct sym_hcb *np, int cam_status)
1685{
1686	/*
1687	 *  Move all active CCBs to the COMP queue
1688	 *  and flush this queue.
1689	 */
1690	sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
1691	sym_que_init(&np->busy_ccbq);
1692	sym_flush_comp_queue(np, cam_status);
1693}
1694
1695/*
1696 *  Start chip.
1697 *
1698 *  'reason' means:
1699 *     0: initialisation.
1700 *     1: SCSI BUS RESET delivered or received.
1701 *     2: SCSI BUS MODE changed.
1702 */
1703void sym_start_up(struct Scsi_Host *shost, int reason)
1704{
1705	struct sym_data *sym_data = shost_priv(shost);
1706	struct pci_dev *pdev = sym_data->pdev;
1707	struct sym_hcb *np = sym_data->ncb;
1708 	int	i;
1709	u32	phys;
1710
1711 	/*
1712	 *  Reset chip if asked, otherwise just clear fifos.
1713 	 */
1714	if (reason == 1)
1715		sym_soft_reset(np);
1716	else {
1717		OUTB(np, nc_stest3, TE|CSF);
1718		OUTONB(np, nc_ctest3, CLF);
1719	}
1720
1721	/*
1722	 *  Clear Start Queue
1723	 */
1724	phys = np->squeue_ba;
1725	for (i = 0; i < MAX_QUEUE*2; i += 2) {
1726		np->squeue[i]   = cpu_to_scr(np->idletask_ba);
1727		np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
1728	}
1729	np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1730
1731	/*
1732	 *  Start at first entry.
1733	 */
1734	np->squeueput = 0;
1735
1736	/*
1737	 *  Clear Done Queue
1738	 */
1739	phys = np->dqueue_ba;
1740	for (i = 0; i < MAX_QUEUE*2; i += 2) {
1741		np->dqueue[i]   = 0;
1742		np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
1743	}
1744	np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1745
1746	/*
1747	 *  Start at first entry.
1748	 */
1749	np->dqueueget = 0;
1750
1751	/*
1752	 *  Install patches in scripts.
1753	 *  This also let point to first position the start
1754	 *  and done queue pointers used from SCRIPTS.
1755	 */
1756	np->fw_patch(shost);
1757
1758	/*
1759	 *  Wakeup all pending jobs.
1760	 */
1761	sym_flush_busy_queue(np, DID_RESET);
1762
1763	/*
1764	 *  Init chip.
1765	 */
1766	OUTB(np, nc_istat,  0x00);			/*  Remove Reset, abort */
1767	INB(np, nc_mbox1);
1768	udelay(2000); /* The 895 needs time for the bus mode to settle */
1769
1770	OUTB(np, nc_scntl0, np->rv_scntl0 | 0xc0);
1771					/*  full arb., ena parity, par->ATN  */
1772	OUTB(np, nc_scntl1, 0x00);		/*  odd parity, and remove CRST!! */
1773
1774	sym_selectclock(np, np->rv_scntl3);	/* Select SCSI clock */
1775
1776	OUTB(np, nc_scid  , RRE|np->myaddr);	/* Adapter SCSI address */
1777	OUTW(np, nc_respid, 1ul<<np->myaddr);	/* Id to respond to */
1778	OUTB(np, nc_istat , SIGP	);		/*  Signal Process */
1779	OUTB(np, nc_dmode , np->rv_dmode);		/* Burst length, dma mode */
1780	OUTB(np, nc_ctest5, np->rv_ctest5);	/* Large fifo + large burst */
1781
1782	OUTB(np, nc_dcntl , NOCOM|np->rv_dcntl);	/* Protect SFBR */
1783	OUTB(np, nc_ctest3, np->rv_ctest3);	/* Write and invalidate */
1784	OUTB(np, nc_ctest4, np->rv_ctest4);	/* Master parity checking */
1785
1786	/* Extended Sreq/Sack filtering not supported on the C10 */
1787	if (np->features & FE_C10)
1788		OUTB(np, nc_stest2, np->rv_stest2);
1789	else
1790		OUTB(np, nc_stest2, EXT|np->rv_stest2);
1791
1792	OUTB(np, nc_stest3, TE);			/* TolerANT enable */
1793	OUTB(np, nc_stime0, 0x0c);			/* HTH disabled  STO 0.25 sec */
1794
1795	/*
1796	 *  For now, disable AIP generation on C1010-66.
1797	 */
1798	if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_66)
1799		OUTB(np, nc_aipcntl1, DISAIP);
1800
1801	/*
1802	 *  C10101 rev. 0 errata.
1803	 *  Errant SGE's when in narrow. Write bits 4 & 5 of
1804	 *  STEST1 register to disable SGE. We probably should do
1805	 *  that from SCRIPTS for each selection/reselection, but
1806	 *  I just don't want. :)
1807	 */
1808	if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_33 &&
1809	    pdev->revision < 1)
1810		OUTB(np, nc_stest1, INB(np, nc_stest1) | 0x30);
1811
1812	/*
1813	 *  DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
1814	 *  Disable overlapped arbitration for some dual function devices,
1815	 *  regardless revision id (kind of post-chip-design feature. ;-))
1816	 */
1817	if (pdev->device == PCI_DEVICE_ID_NCR_53C875)
1818		OUTB(np, nc_ctest0, (1<<5));
1819	else if (pdev->device == PCI_DEVICE_ID_NCR_53C896)
1820		np->rv_ccntl0 |= DPR;
1821
1822	/*
1823	 *  Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
1824	 *  and/or hardware phase mismatch, since only such chips
1825	 *  seem to support those IO registers.
1826	 */
1827	if (np->features & (FE_DAC|FE_NOPM)) {
1828		OUTB(np, nc_ccntl0, np->rv_ccntl0);
1829		OUTB(np, nc_ccntl1, np->rv_ccntl1);
1830	}
1831
1832#if	SYM_CONF_DMA_ADDRESSING_MODE == 2
1833	/*
1834	 *  Set up scratch C and DRS IO registers to map the 32 bit
1835	 *  DMA address range our data structures are located in.
1836	 */
1837	if (use_dac(np)) {
1838		np->dmap_bah[0] = 0;	/* ??? */
1839		OUTL(np, nc_scrx[0], np->dmap_bah[0]);
1840		OUTL(np, nc_drs, np->dmap_bah[0]);
1841	}
1842#endif
1843
1844	/*
1845	 *  If phase mismatch handled by scripts (895A/896/1010),
1846	 *  set PM jump addresses.
1847	 */
1848	if (np->features & FE_NOPM) {
1849		OUTL(np, nc_pmjad1, SCRIPTB_BA(np, pm_handle));
1850		OUTL(np, nc_pmjad2, SCRIPTB_BA(np, pm_handle));
1851	}
1852
1853	/*
1854	 *    Enable GPIO0 pin for writing if LED support from SCRIPTS.
1855	 *    Also set GPIO5 and clear GPIO6 if hardware LED control.
1856	 */
1857	if (np->features & FE_LED0)
1858		OUTB(np, nc_gpcntl, INB(np, nc_gpcntl) & ~0x01);
1859	else if (np->features & FE_LEDC)
1860		OUTB(np, nc_gpcntl, (INB(np, nc_gpcntl) & ~0x41) | 0x20);
1861
1862	/*
1863	 *      enable ints
1864	 */
1865	OUTW(np, nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
1866	OUTB(np, nc_dien , MDPE|BF|SSI|SIR|IID);
1867
1868	/*
1869	 *  For 895/6 enable SBMC interrupt and save current SCSI bus mode.
1870	 *  Try to eat the spurious SBMC interrupt that may occur when
1871	 *  we reset the chip but not the SCSI BUS (at initialization).
1872	 */
1873	if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
1874		OUTONW(np, nc_sien, SBMC);
1875		if (reason == 0) {
1876			INB(np, nc_mbox1);
1877			mdelay(100);
1878			INW(np, nc_sist);
1879		}
1880		np->scsi_mode = INB(np, nc_stest4) & SMODE;
1881	}
1882
1883	/*
1884	 *  Fill in target structure.
1885	 *  Reinitialize usrsync.
1886	 *  Reinitialize usrwide.
1887	 *  Prepare sync negotiation according to actual SCSI bus mode.
1888	 */
1889	for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
1890		struct sym_tcb *tp = &np->target[i];
1891
1892		tp->to_reset  = 0;
1893		tp->head.sval = 0;
1894		tp->head.wval = np->rv_scntl3;
1895		tp->head.uval = 0;
1896		if (tp->lun0p)
1897			tp->lun0p->to_clear = 0;
1898		if (tp->lunmp) {
1899			int ln;
1900
1901			for (ln = 1; ln < SYM_CONF_MAX_LUN; ln++)
1902				if (tp->lunmp[ln])
1903					tp->lunmp[ln]->to_clear = 0;
1904		}
1905	}
1906
1907	/*
1908	 *  Download SCSI SCRIPTS to on-chip RAM if present,
1909	 *  and start script processor.
1910	 *  We do the download preferently from the CPU.
1911	 *  For platforms that may not support PCI memory mapping,
1912	 *  we use simple SCRIPTS that performs MEMORY MOVEs.
1913	 */
1914	phys = SCRIPTA_BA(np, init);
1915	if (np->ram_ba) {
1916		if (sym_verbose >= 2)
1917			printf("%s: Downloading SCSI SCRIPTS.\n", sym_name(np));
1918		memcpy_toio(np->s.ramaddr, np->scripta0, np->scripta_sz);
1919		if (np->features & FE_RAM8K) {
1920			memcpy_toio(np->s.ramaddr + 4096, np->scriptb0, np->scriptb_sz);
1921			phys = scr_to_cpu(np->scr_ram_seg);
1922			OUTL(np, nc_mmws, phys);
1923			OUTL(np, nc_mmrs, phys);
1924			OUTL(np, nc_sfs,  phys);
1925			phys = SCRIPTB_BA(np, start64);
1926		}
1927	}
1928
1929	np->istat_sem = 0;
1930
1931	OUTL(np, nc_dsa, np->hcb_ba);
1932	OUTL_DSP(np, phys);
1933
1934	/*
1935	 *  Notify the XPT about the RESET condition.
1936	 */
1937	if (reason != 0)
1938		sym_xpt_async_bus_reset(np);
1939}
1940
1941/*
1942 *  Switch trans mode for current job and its target.
1943 */
1944static void sym_settrans(struct sym_hcb *np, int target, u_char opts, u_char ofs,
1945			 u_char per, u_char wide, u_char div, u_char fak)
1946{
1947	SYM_QUEHEAD *qp;
1948	u_char sval, wval, uval;
1949	struct sym_tcb *tp = &np->target[target];
1950
1951	assert(target == (INB(np, nc_sdid) & 0x0f));
1952
1953	sval = tp->head.sval;
1954	wval = tp->head.wval;
1955	uval = tp->head.uval;
1956
1957#if 0
1958	printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
1959		sval, wval, uval, np->rv_scntl3);
1960#endif
1961	/*
1962	 *  Set the offset.
1963	 */
1964	if (!(np->features & FE_C10))
1965		sval = (sval & ~0x1f) | ofs;
1966	else
1967		sval = (sval & ~0x3f) | ofs;
1968
1969	/*
1970	 *  Set the sync divisor and extra clock factor.
1971	 */
1972	if (ofs != 0) {
1973		wval = (wval & ~0x70) | ((div+1) << 4);
1974		if (!(np->features & FE_C10))
1975			sval = (sval & ~0xe0) | (fak << 5);
1976		else {
1977			uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
1978			if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
1979			if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
1980		}
1981	}
1982
1983	/*
1984	 *  Set the bus width.
1985	 */
1986	wval = wval & ~EWS;
1987	if (wide != 0)
1988		wval |= EWS;
1989
1990	/*
1991	 *  Set misc. ultra enable bits.
1992	 */
1993	if (np->features & FE_C10) {
1994		uval = uval & ~(U3EN|AIPCKEN);
1995		if (opts)	{
1996			assert(np->features & FE_U3EN);
1997			uval |= U3EN;
1998		}
1999	} else {
2000		wval = wval & ~ULTRA;
2001		if (per <= 12)	wval |= ULTRA;
2002	}
2003
2004	/*
2005	 *   Stop there if sync parameters are unchanged.
2006	 */
2007	if (tp->head.sval == sval &&
2008	    tp->head.wval == wval &&
2009	    tp->head.uval == uval)
2010		return;
2011	tp->head.sval = sval;
2012	tp->head.wval = wval;
2013	tp->head.uval = uval;
2014
2015	/*
2016	 *  Disable extended Sreq/Sack filtering if per < 50.
2017	 *  Not supported on the C1010.
2018	 */
2019	if (per < 50 && !(np->features & FE_C10))
2020		OUTOFFB(np, nc_stest2, EXT);
2021
2022	/*
2023	 *  set actual value and sync_status
2024	 */
2025	OUTB(np, nc_sxfer,  tp->head.sval);
2026	OUTB(np, nc_scntl3, tp->head.wval);
2027
2028	if (np->features & FE_C10) {
2029		OUTB(np, nc_scntl4, tp->head.uval);
2030	}
2031
2032	/*
2033	 *  patch ALL busy ccbs of this target.
2034	 */
2035	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
2036		struct sym_ccb *cp;
2037		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
2038		if (cp->target != target)
2039			continue;
2040		cp->phys.select.sel_scntl3 = tp->head.wval;
2041		cp->phys.select.sel_sxfer  = tp->head.sval;
2042		if (np->features & FE_C10) {
2043			cp->phys.select.sel_scntl4 = tp->head.uval;
2044		}
2045	}
2046}
2047
2048static void sym_announce_transfer_rate(struct sym_tcb *tp)
2049{
2050	struct scsi_target *starget = tp->starget;
2051
2052	if (tp->tprint.period != spi_period(starget) ||
2053	    tp->tprint.offset != spi_offset(starget) ||
2054	    tp->tprint.width != spi_width(starget) ||
2055	    tp->tprint.iu != spi_iu(starget) ||
2056	    tp->tprint.dt != spi_dt(starget) ||
2057	    tp->tprint.qas != spi_qas(starget) ||
2058	    !tp->tprint.check_nego) {
2059		tp->tprint.period = spi_period(starget);
2060		tp->tprint.offset = spi_offset(starget);
2061		tp->tprint.width = spi_width(starget);
2062		tp->tprint.iu = spi_iu(starget);
2063		tp->tprint.dt = spi_dt(starget);
2064		tp->tprint.qas = spi_qas(starget);
2065		tp->tprint.check_nego = 1;
2066
2067		spi_display_xfer_agreement(starget);
2068	}
2069}
2070
2071/*
2072 *  We received a WDTR.
2073 *  Let everything be aware of the changes.
2074 */
2075static void sym_setwide(struct sym_hcb *np, int target, u_char wide)
2076{
2077	struct sym_tcb *tp = &np->target[target];
2078	struct scsi_target *starget = tp->starget;
2079
2080	sym_settrans(np, target, 0, 0, 0, wide, 0, 0);
2081
2082	if (wide)
2083		tp->tgoal.renego = NS_WIDE;
2084	else
2085		tp->tgoal.renego = 0;
2086	tp->tgoal.check_nego = 0;
2087	tp->tgoal.width = wide;
2088	spi_offset(starget) = 0;
2089	spi_period(starget) = 0;
2090	spi_width(starget) = wide;
2091	spi_iu(starget) = 0;
2092	spi_dt(starget) = 0;
2093	spi_qas(starget) = 0;
2094
2095	if (sym_verbose >= 3)
2096		sym_announce_transfer_rate(tp);
2097}
2098
2099/*
2100 *  We received a SDTR.
2101 *  Let everything be aware of the changes.
2102 */
2103static void
2104sym_setsync(struct sym_hcb *np, int target,
2105            u_char ofs, u_char per, u_char div, u_char fak)
2106{
2107	struct sym_tcb *tp = &np->target[target];
2108	struct scsi_target *starget = tp->starget;
2109	u_char wide = (tp->head.wval & EWS) ? BUS_16_BIT : BUS_8_BIT;
2110
2111	sym_settrans(np, target, 0, ofs, per, wide, div, fak);
2112
2113	if (wide)
2114		tp->tgoal.renego = NS_WIDE;
2115	else if (ofs)
2116		tp->tgoal.renego = NS_SYNC;
2117	else
2118		tp->tgoal.renego = 0;
2119	spi_period(starget) = per;
2120	spi_offset(starget) = ofs;
2121	spi_iu(starget) = spi_dt(starget) = spi_qas(starget) = 0;
2122
2123	if (!tp->tgoal.dt && !tp->tgoal.iu && !tp->tgoal.qas) {
2124		tp->tgoal.period = per;
2125		tp->tgoal.offset = ofs;
2126		tp->tgoal.check_nego = 0;
2127	}
2128
2129	sym_announce_transfer_rate(tp);
2130}
2131
2132/*
2133 *  We received a PPR.
2134 *  Let everything be aware of the changes.
2135 */
2136static void
2137sym_setpprot(struct sym_hcb *np, int target, u_char opts, u_char ofs,
2138             u_char per, u_char wide, u_char div, u_char fak)
2139{
2140	struct sym_tcb *tp = &np->target[target];
2141	struct scsi_target *starget = tp->starget;
2142
2143	sym_settrans(np, target, opts, ofs, per, wide, div, fak);
2144
2145	if (wide || ofs)
2146		tp->tgoal.renego = NS_PPR;
2147	else
2148		tp->tgoal.renego = 0;
2149	spi_width(starget) = tp->tgoal.width = wide;
2150	spi_period(starget) = tp->tgoal.period = per;
2151	spi_offset(starget) = tp->tgoal.offset = ofs;
2152	spi_iu(starget) = tp->tgoal.iu = !!(opts & PPR_OPT_IU);
2153	spi_dt(starget) = tp->tgoal.dt = !!(opts & PPR_OPT_DT);
2154	spi_qas(starget) = tp->tgoal.qas = !!(opts & PPR_OPT_QAS);
2155	tp->tgoal.check_nego = 0;
2156
2157	sym_announce_transfer_rate(tp);
2158}
2159
2160/*
2161 *  generic recovery from scsi interrupt
2162 *
2163 *  The doc says that when the chip gets an SCSI interrupt,
2164 *  it tries to stop in an orderly fashion, by completing
2165 *  an instruction fetch that had started or by flushing
2166 *  the DMA fifo for a write to memory that was executing.
2167 *  Such a fashion is not enough to know if the instruction
2168 *  that was just before the current DSP value has been
2169 *  executed or not.
2170 *
2171 *  There are some small SCRIPTS sections that deal with
2172 *  the start queue and the done queue that may break any
2173 *  assomption from the C code if we are interrupted
2174 *  inside, so we reset if this happens. Btw, since these
2175 *  SCRIPTS sections are executed while the SCRIPTS hasn't
2176 *  started SCSI operations, it is very unlikely to happen.
2177 *
2178 *  All the driver data structures are supposed to be
2179 *  allocated from the same 4 GB memory window, so there
2180 *  is a 1 to 1 relationship between DSA and driver data
2181 *  structures. Since we are careful :) to invalidate the
2182 *  DSA when we complete a command or when the SCRIPTS
2183 *  pushes a DSA into a queue, we can trust it when it
2184 *  points to a CCB.
2185 */
2186static void sym_recover_scsi_int (struct sym_hcb *np, u_char hsts)
2187{
2188	u32	dsp	= INL(np, nc_dsp);
2189	u32	dsa	= INL(np, nc_dsa);
2190	struct sym_ccb *cp	= sym_ccb_from_dsa(np, dsa);
2191
2192	/*
2193	 *  If we haven't been interrupted inside the SCRIPTS
2194	 *  critical pathes, we can safely restart the SCRIPTS
2195	 *  and trust the DSA value if it matches a CCB.
2196	 */
2197	if ((!(dsp > SCRIPTA_BA(np, getjob_begin) &&
2198	       dsp < SCRIPTA_BA(np, getjob_end) + 1)) &&
2199	    (!(dsp > SCRIPTA_BA(np, ungetjob) &&
2200	       dsp < SCRIPTA_BA(np, reselect) + 1)) &&
2201	    (!(dsp > SCRIPTB_BA(np, sel_for_abort) &&
2202	       dsp < SCRIPTB_BA(np, sel_for_abort_1) + 1)) &&
2203	    (!(dsp > SCRIPTA_BA(np, done) &&
2204	       dsp < SCRIPTA_BA(np, done_end) + 1))) {
2205		OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo  */
2206		OUTB(np, nc_stest3, TE|CSF);		/* clear scsi fifo */
2207		/*
2208		 *  If we have a CCB, let the SCRIPTS call us back for
2209		 *  the handling of the error with SCRATCHA filled with
2210		 *  STARTPOS. This way, we will be able to freeze the
2211		 *  device queue and requeue awaiting IOs.
2212		 */
2213		if (cp) {
2214			cp->host_status = hsts;
2215			OUTL_DSP(np, SCRIPTA_BA(np, complete_error));
2216		}
2217		/*
2218		 *  Otherwise just restart the SCRIPTS.
2219		 */
2220		else {
2221			OUTL(np, nc_dsa, 0xffffff);
2222			OUTL_DSP(np, SCRIPTA_BA(np, start));
2223		}
2224	}
2225	else
2226		goto reset_all;
2227
2228	return;
2229
2230reset_all:
2231	sym_start_reset(np);
2232}
2233
2234/*
2235 *  chip exception handler for selection timeout
2236 */
2237static void sym_int_sto (struct sym_hcb *np)
2238{
2239	u32 dsp	= INL(np, nc_dsp);
2240
2241	if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
2242
2243	if (dsp == SCRIPTA_BA(np, wf_sel_done) + 8)
2244		sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
2245	else
2246		sym_start_reset(np);
2247}
2248
2249/*
2250 *  chip exception handler for unexpected disconnect
2251 */
2252static void sym_int_udc (struct sym_hcb *np)
2253{
2254	printf ("%s: unexpected disconnect\n", sym_name(np));
2255	sym_recover_scsi_int(np, HS_UNEXPECTED);
2256}
2257
2258/*
2259 *  chip exception handler for SCSI bus mode change
2260 *
2261 *  spi2-r12 11.2.3 says a transceiver mode change must
2262 *  generate a reset event and a device that detects a reset
2263 *  event shall initiate a hard reset. It says also that a
2264 *  device that detects a mode change shall set data transfer
2265 *  mode to eight bit asynchronous, etc...
2266 *  So, just reinitializing all except chip should be enough.
2267 */
2268static void sym_int_sbmc(struct Scsi_Host *shost)
2269{
2270	struct sym_hcb *np = sym_get_hcb(shost);
2271	u_char scsi_mode = INB(np, nc_stest4) & SMODE;
2272
2273	/*
2274	 *  Notify user.
2275	 */
2276	printf("%s: SCSI BUS mode change from %s to %s.\n", sym_name(np),
2277		sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
2278
2279	/*
2280	 *  Should suspend command processing for a few seconds and
2281	 *  reinitialize all except the chip.
2282	 */
2283	sym_start_up(shost, 2);
2284}
2285
2286/*
2287 *  chip exception handler for SCSI parity error.
2288 *
2289 *  When the chip detects a SCSI parity error and is
2290 *  currently executing a (CH)MOV instruction, it does
2291 *  not interrupt immediately, but tries to finish the
2292 *  transfer of the current scatter entry before
2293 *  interrupting. The following situations may occur:
2294 *
2295 *  - The complete scatter entry has been transferred
2296 *    without the device having changed phase.
2297 *    The chip will then interrupt with the DSP pointing
2298 *    to the instruction that follows the MOV.
2299 *
2300 *  - A phase mismatch occurs before the MOV finished
2301 *    and phase errors are to be handled by the C code.
2302 *    The chip will then interrupt with both PAR and MA
2303 *    conditions set.
2304 *
2305 *  - A phase mismatch occurs before the MOV finished and
2306 *    phase errors are to be handled by SCRIPTS.
2307 *    The chip will load the DSP with the phase mismatch
2308 *    JUMP address and interrupt the host processor.
2309 */
2310static void sym_int_par (struct sym_hcb *np, u_short sist)
2311{
2312	u_char	hsts	= INB(np, HS_PRT);
2313	u32	dsp	= INL(np, nc_dsp);
2314	u32	dbc	= INL(np, nc_dbc);
2315	u32	dsa	= INL(np, nc_dsa);
2316	u_char	sbcl	= INB(np, nc_sbcl);
2317	u_char	cmd	= dbc >> 24;
2318	int phase	= cmd & 7;
2319	struct sym_ccb *cp	= sym_ccb_from_dsa(np, dsa);
2320
2321	if (printk_ratelimit())
2322		printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
2323			sym_name(np), hsts, dbc, sbcl);
2324
2325	/*
2326	 *  Check that the chip is connected to the SCSI BUS.
2327	 */
2328	if (!(INB(np, nc_scntl1) & ISCON)) {
2329		sym_recover_scsi_int(np, HS_UNEXPECTED);
2330		return;
2331	}
2332
2333	/*
2334	 *  If the nexus is not clearly identified, reset the bus.
2335	 *  We will try to do better later.
2336	 */
2337	if (!cp)
2338		goto reset_all;
2339
2340	/*
2341	 *  Check instruction was a MOV, direction was INPUT and
2342	 *  ATN is asserted.
2343	 */
2344	if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
2345		goto reset_all;
2346
2347	/*
2348	 *  Keep track of the parity error.
2349	 */
2350	OUTONB(np, HF_PRT, HF_EXT_ERR);
2351	cp->xerr_status |= XE_PARITY_ERR;
2352
2353	/*
2354	 *  Prepare the message to send to the device.
2355	 */
2356	np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
2357
2358	/*
2359	 *  If the old phase was DATA IN phase, we have to deal with
2360	 *  the 3 situations described above.
2361	 *  For other input phases (MSG IN and STATUS), the device
2362	 *  must resend the whole thing that failed parity checking
2363	 *  or signal error. So, jumping to dispatcher should be OK.
2364	 */
2365	if (phase == 1 || phase == 5) {
2366		/* Phase mismatch handled by SCRIPTS */
2367		if (dsp == SCRIPTB_BA(np, pm_handle))
2368			OUTL_DSP(np, dsp);
2369		/* Phase mismatch handled by the C code */
2370		else if (sist & MA)
2371			sym_int_ma (np);
2372		/* No phase mismatch occurred */
2373		else {
2374			sym_set_script_dp (np, cp, dsp);
2375			OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
2376		}
2377	}
2378	else if (phase == 7)	/* We definitely cannot handle parity errors */
2379#if 1				/* in message-in phase due to the relection  */
2380		goto reset_all; /* path and various message anticipations.   */
2381#else
2382		OUTL_DSP(np, SCRIPTA_BA(np, clrack));
2383#endif
2384	else
2385		OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
2386	return;
2387
2388reset_all:
2389	sym_start_reset(np);
2390	return;
2391}
2392
2393/*
2394 *  chip exception handler for phase errors.
2395 *
2396 *  We have to construct a new transfer descriptor,
2397 *  to transfer the rest of the current block.
2398 */
2399static void sym_int_ma (struct sym_hcb *np)
2400{
2401	u32	dbc;
2402	u32	rest;
2403	u32	dsp;
2404	u32	dsa;
2405	u32	nxtdsp;
2406	u32	*vdsp;
2407	u32	oadr, olen;
2408	u32	*tblp;
2409        u32	newcmd;
2410	u_int	delta;
2411	u_char	cmd;
2412	u_char	hflags, hflags0;
2413	struct	sym_pmc *pm;
2414	struct sym_ccb *cp;
2415
2416	dsp	= INL(np, nc_dsp);
2417	dbc	= INL(np, nc_dbc);
2418	dsa	= INL(np, nc_dsa);
2419
2420	cmd	= dbc >> 24;
2421	rest	= dbc & 0xffffff;
2422	delta	= 0;
2423
2424	/*
2425	 *  locate matching cp if any.
2426	 */
2427	cp = sym_ccb_from_dsa(np, dsa);
2428
2429	/*
2430	 *  Donnot take into account dma fifo and various buffers in
2431	 *  INPUT phase since the chip flushes everything before
2432	 *  raising the MA interrupt for interrupted INPUT phases.
2433	 *  For DATA IN phase, we will check for the SWIDE later.
2434	 */
2435	if ((cmd & 7) != 1 && (cmd & 7) != 5) {
2436		u_char ss0, ss2;
2437
2438		if (np->features & FE_DFBC)
2439			delta = INW(np, nc_dfbc);
2440		else {
2441			u32 dfifo;
2442
2443			/*
2444			 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
2445			 */
2446			dfifo = INL(np, nc_dfifo);
2447
2448			/*
2449			 *  Calculate remaining bytes in DMA fifo.
2450			 *  (CTEST5 = dfifo >> 16)
2451			 */
2452			if (dfifo & (DFS << 16))
2453				delta = ((((dfifo >> 8) & 0x300) |
2454				          (dfifo & 0xff)) - rest) & 0x3ff;
2455			else
2456				delta = ((dfifo & 0xff) - rest) & 0x7f;
2457		}
2458
2459		/*
2460		 *  The data in the dma fifo has not been transferred to
2461		 *  the target -> add the amount to the rest
2462		 *  and clear the data.
2463		 *  Check the sstat2 register in case of wide transfer.
2464		 */
2465		rest += delta;
2466		ss0  = INB(np, nc_sstat0);
2467		if (ss0 & OLF) rest++;
2468		if (!(np->features & FE_C10))
2469			if (ss0 & ORF) rest++;
2470		if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
2471			ss2 = INB(np, nc_sstat2);
2472			if (ss2 & OLF1) rest++;
2473			if (!(np->features & FE_C10))
2474				if (ss2 & ORF1) rest++;
2475		}
2476
2477		/*
2478		 *  Clear fifos.
2479		 */
2480		OUTB(np, nc_ctest3, np->rv_ctest3 | CLF);	/* dma fifo  */
2481		OUTB(np, nc_stest3, TE|CSF);		/* scsi fifo */
2482	}
2483
2484	/*
2485	 *  log the information
2486	 */
2487	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
2488		printf ("P%x%x RL=%d D=%d ", cmd&7, INB(np, nc_sbcl)&7,
2489			(unsigned) rest, (unsigned) delta);
2490
2491	/*
2492	 *  try to find the interrupted script command,
2493	 *  and the address at which to continue.
2494	 */
2495	vdsp	= NULL;
2496	nxtdsp	= 0;
2497	if	(dsp >  np->scripta_ba &&
2498		 dsp <= np->scripta_ba + np->scripta_sz) {
2499		vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
2500		nxtdsp = dsp;
2501	}
2502	else if	(dsp >  np->scriptb_ba &&
2503		 dsp <= np->scriptb_ba + np->scriptb_sz) {
2504		vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
2505		nxtdsp = dsp;
2506	}
2507
2508	/*
2509	 *  log the information
2510	 */
2511	if (DEBUG_FLAGS & DEBUG_PHASE) {
2512		printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
2513			cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
2514	}
2515
2516	if (!vdsp) {
2517		printf ("%s: interrupted SCRIPT address not found.\n",
2518			sym_name (np));
2519		goto reset_all;
2520	}
2521
2522	if (!cp) {
2523		printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
2524			sym_name (np));
2525		goto reset_all;
2526	}
2527
2528	/*
2529	 *  get old startaddress and old length.
2530	 */
2531	oadr = scr_to_cpu(vdsp[1]);
2532
2533	if (cmd & 0x10) {	/* Table indirect */
2534		tblp = (u32 *) ((char*) &cp->phys + oadr);
2535		olen = scr_to_cpu(tblp[0]);
2536		oadr = scr_to_cpu(tblp[1]);
2537	} else {
2538		tblp = (u32 *) 0;
2539		olen = scr_to_cpu(vdsp[0]) & 0xffffff;
2540	}
2541
2542	if (DEBUG_FLAGS & DEBUG_PHASE) {
2543		printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
2544			(unsigned) (scr_to_cpu(vdsp[0]) >> 24),
2545			tblp,
2546			(unsigned) olen,
2547			(unsigned) oadr);
2548	}
2549
2550	/*
2551	 *  check cmd against assumed interrupted script command.
2552	 *  If dt data phase, the MOVE instruction hasn't bit 4 of
2553	 *  the phase.
2554	 */
2555	if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
2556		sym_print_addr(cp->cmd,
2557			"internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
2558			cmd, scr_to_cpu(vdsp[0]) >> 24);
2559
2560		goto reset_all;
2561	}
2562
2563	/*
2564	 *  if old phase not dataphase, leave here.
2565	 */
2566	if (cmd & 2) {
2567		sym_print_addr(cp->cmd,
2568			"phase change %x-%x %d@%08x resid=%d.\n",
2569			cmd&7, INB(np, nc_sbcl)&7, (unsigned)olen,
2570			(unsigned)oadr, (unsigned)rest);
2571		goto unexpected_phase;
2572	}
2573
2574	/*
2575	 *  Choose the correct PM save area.
2576	 *
2577	 *  Look at the PM_SAVE SCRIPT if you want to understand
2578	 *  this stuff. The equivalent code is implemented in
2579	 *  SCRIPTS for the 895A, 896 and 1010 that are able to
2580	 *  handle PM from the SCRIPTS processor.
2581	 */
2582	hflags0 = INB(np, HF_PRT);
2583	hflags = hflags0;
2584
2585	if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
2586		if (hflags & HF_IN_PM0)
2587			nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
2588		else if	(hflags & HF_IN_PM1)
2589			nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
2590
2591		if (hflags & HF_DP_SAVED)
2592			hflags ^= HF_ACT_PM;
2593	}
2594
2595	if (!(hflags & HF_ACT_PM)) {
2596		pm = &cp->phys.pm0;
2597		newcmd = SCRIPTA_BA(np, pm0_data);
2598	}
2599	else {
2600		pm = &cp->phys.pm1;
2601		newcmd = SCRIPTA_BA(np, pm1_data);
2602	}
2603
2604	hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
2605	if (hflags != hflags0)
2606		OUTB(np, HF_PRT, hflags);
2607
2608	/*
2609	 *  fillin the phase mismatch context
2610	 */
2611	pm->sg.addr = cpu_to_scr(oadr + olen - rest);
2612	pm->sg.size = cpu_to_scr(rest);
2613	pm->ret     = cpu_to_scr(nxtdsp);
2614
2615	/*
2616	 *  If we have a SWIDE,
2617	 *  - prepare the address to write the SWIDE from SCRIPTS,
2618	 *  - compute the SCRIPTS address to restart from,
2619	 *  - move current data pointer context by one byte.
2620	 */
2621	nxtdsp = SCRIPTA_BA(np, dispatch);
2622	if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
2623	    (INB(np, nc_scntl2) & WSR)) {
2624		u32 tmp;
2625
2626		/*
2627		 *  Set up the table indirect for the MOVE
2628		 *  of the residual byte and adjust the data
2629		 *  pointer context.
2630		 */
2631		tmp = scr_to_cpu(pm->sg.addr);
2632		cp->phys.wresid.addr = cpu_to_scr(tmp);
2633		pm->sg.addr = cpu_to_scr(tmp + 1);
2634		tmp = scr_to_cpu(pm->sg.size);
2635		cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
2636		pm->sg.size = cpu_to_scr(tmp - 1);
2637
2638		/*
2639		 *  If only the residual byte is to be moved,
2640		 *  no PM context is needed.
2641		 */
2642		if ((tmp&0xffffff) == 1)
2643			newcmd = pm->ret;
2644
2645		/*
2646		 *  Prepare the address of SCRIPTS that will
2647		 *  move the residual byte to memory.
2648		 */
2649		nxtdsp = SCRIPTB_BA(np, wsr_ma_helper);
2650	}
2651
2652	if (DEBUG_FLAGS & DEBUG_PHASE) {
2653		sym_print_addr(cp->cmd, "PM %x %x %x / %x %x %x.\n",
2654			hflags0, hflags, newcmd,
2655			(unsigned)scr_to_cpu(pm->sg.addr),
2656			(unsigned)scr_to_cpu(pm->sg.size),
2657			(unsigned)scr_to_cpu(pm->ret));
2658	}
2659
2660	/*
2661	 *  Restart the SCRIPTS processor.
2662	 */
2663	sym_set_script_dp (np, cp, newcmd);
2664	OUTL_DSP(np, nxtdsp);
2665	return;
2666
2667	/*
2668	 *  Unexpected phase changes that occurs when the current phase
2669	 *  is not a DATA IN or DATA OUT phase are due to error conditions.
2670	 *  Such event may only happen when the SCRIPTS is using a
2671	 *  multibyte SCSI MOVE.
2672	 *
2673	 *  Phase change		Some possible cause
2674	 *
2675	 *  COMMAND  --> MSG IN	SCSI parity error detected by target.
2676	 *  COMMAND  --> STATUS	Bad command or refused by target.
2677	 *  MSG OUT  --> MSG IN     Message rejected by target.
2678	 *  MSG OUT  --> COMMAND    Bogus target that discards extended
2679	 *  			negotiation messages.
2680	 *
2681	 *  The code below does not care of the new phase and so
2682	 *  trusts the target. Why to annoy it ?
2683	 *  If the interrupted phase is COMMAND phase, we restart at
2684	 *  dispatcher.
2685	 *  If a target does not get all the messages after selection,
2686	 *  the code assumes blindly that the target discards extended
2687	 *  messages and clears the negotiation status.
2688	 *  If the target does not want all our response to negotiation,
2689	 *  we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
2690	 *  bloat for such a should_not_happen situation).
2691	 *  In all other situation, we reset the BUS.
2692	 *  Are these assumptions reasonable ? (Wait and see ...)
2693	 */
2694unexpected_phase:
2695	dsp -= 8;
2696	nxtdsp = 0;
2697
2698	switch (cmd & 7) {
2699	case 2:	/* COMMAND phase */
2700		nxtdsp = SCRIPTA_BA(np, dispatch);
2701		break;
2702#if 0
2703	case 3:	/* STATUS  phase */
2704		nxtdsp = SCRIPTA_BA(np, dispatch);
2705		break;
2706#endif
2707	case 6:	/* MSG OUT phase */
2708		/*
2709		 *  If the device may want to use untagged when we want
2710		 *  tagged, we prepare an IDENTIFY without disc. granted,
2711		 *  since we will not be able to handle reselect.
2712		 *  Otherwise, we just don't care.
2713		 */
2714		if	(dsp == SCRIPTA_BA(np, send_ident)) {
2715			if (cp->tag != NO_TAG && olen - rest <= 3) {
2716				cp->host_status = HS_BUSY;
2717				np->msgout[0] = IDENTIFY(0, cp->lun);
2718				nxtdsp = SCRIPTB_BA(np, ident_break_atn);
2719			}
2720			else
2721				nxtdsp = SCRIPTB_BA(np, ident_break);
2722		}
2723		else if	(dsp == SCRIPTB_BA(np, send_wdtr) ||
2724			 dsp == SCRIPTB_BA(np, send_sdtr) ||
2725			 dsp == SCRIPTB_BA(np, send_ppr)) {
2726			nxtdsp = SCRIPTB_BA(np, nego_bad_phase);
2727			if (dsp == SCRIPTB_BA(np, send_ppr)) {
2728				struct scsi_device *dev = cp->cmd->device;
2729				dev->ppr = 0;
2730			}
2731		}
2732		break;
2733#if 0
2734	case 7:	/* MSG IN  phase */
2735		nxtdsp = SCRIPTA_BA(np, clrack);
2736		break;
2737#endif
2738	}
2739
2740	if (nxtdsp) {
2741		OUTL_DSP(np, nxtdsp);
2742		return;
2743	}
2744
2745reset_all:
2746	sym_start_reset(np);
2747}
2748
2749/*
2750 *  chip interrupt handler
2751 *
2752 *  In normal situations, interrupt conditions occur one at
2753 *  a time. But when something bad happens on the SCSI BUS,
2754 *  the chip may raise several interrupt flags before
2755 *  stopping and interrupting the CPU. The additionnal
2756 *  interrupt flags are stacked in some extra registers
2757 *  after the SIP and/or DIP flag has been raised in the
2758 *  ISTAT. After the CPU has read the interrupt condition
2759 *  flag from SIST or DSTAT, the chip unstacks the other
2760 *  interrupt flags and sets the corresponding bits in
2761 *  SIST or DSTAT. Since the chip starts stacking once the
2762 *  SIP or DIP flag is set, there is a small window of time
2763 *  where the stacking does not occur.
2764 *
2765 *  Typically, multiple interrupt conditions may happen in
2766 *  the following situations:
2767 *
2768 *  - SCSI parity error + Phase mismatch  (PAR|MA)
2769 *    When an parity error is detected in input phase
2770 *    and the device switches to msg-in phase inside a
2771 *    block MOV.
2772 *  - SCSI parity error + Unexpected disconnect (PAR|UDC)
2773 *    When a stupid device does not want to handle the
2774 *    recovery of an SCSI parity error.
2775 *  - Some combinations of STO, PAR, UDC, ...
2776 *    When using non compliant SCSI stuff, when user is
2777 *    doing non compliant hot tampering on the BUS, when
2778 *    something really bad happens to a device, etc ...
2779 *
2780 *  The heuristic suggested by SYMBIOS to handle
2781 *  multiple interrupts is to try unstacking all
2782 *  interrupts conditions and to handle them on some
2783 *  priority based on error severity.
2784 *  This will work when the unstacking has been
2785 *  successful, but we cannot be 100 % sure of that,
2786 *  since the CPU may have been faster to unstack than
2787 *  the chip is able to stack. Hmmm ... But it seems that
2788 *  such a situation is very unlikely to happen.
2789 *
2790 *  If this happen, for example STO caught by the CPU
2791 *  then UDC happenning before the CPU have restarted
2792 *  the SCRIPTS, the driver may wrongly complete the
2793 *  same command on UDC, since the SCRIPTS didn't restart
2794 *  and the DSA still points to the same command.
2795 *  We avoid this situation by setting the DSA to an
2796 *  invalid value when the CCB is completed and before
2797 *  restarting the SCRIPTS.
2798 *
2799 *  Another issue is that we need some section of our
2800 *  recovery procedures to be somehow uninterruptible but
2801 *  the SCRIPTS processor does not provides such a
2802 *  feature. For this reason, we handle recovery preferently
2803 *  from the C code and check against some SCRIPTS critical
2804 *  sections from the C code.
2805 *
2806 *  Hopefully, the interrupt handling of the driver is now
2807 *  able to resist to weird BUS error conditions, but donnot
2808 *  ask me for any guarantee that it will never fail. :-)
2809 *  Use at your own decision and risk.
2810 */
2811
2812irqreturn_t sym_interrupt(struct Scsi_Host *shost)
2813{
2814	struct sym_data *sym_data = shost_priv(shost);
2815	struct sym_hcb *np = sym_data->ncb;
2816	struct pci_dev *pdev = sym_data->pdev;
2817	u_char	istat, istatc;
2818	u_char	dstat;
2819	u_short	sist;
2820
2821	/*
2822	 *  interrupt on the fly ?
2823	 *  (SCRIPTS may still be running)
2824	 *
2825	 *  A `dummy read' is needed to ensure that the
2826	 *  clear of the INTF flag reaches the device
2827	 *  and that posted writes are flushed to memory
2828	 *  before the scanning of the DONE queue.
2829	 *  Note that SCRIPTS also (dummy) read to memory
2830	 *  prior to deliver the INTF interrupt condition.
2831	 */
2832	istat = INB(np, nc_istat);
2833	if (istat & INTF) {
2834		OUTB(np, nc_istat, (istat & SIGP) | INTF | np->istat_sem);
2835		istat |= INB(np, nc_istat);		/* DUMMY READ */
2836		if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
2837		sym_wakeup_done(np);
2838	}
2839
2840	if (!(istat & (SIP|DIP)))
2841		return (istat & INTF) ? IRQ_HANDLED : IRQ_NONE;
2842
2843#if 0	/* We should never get this one */
2844	if (istat & CABRT)
2845		OUTB(np, nc_istat, CABRT);
2846#endif
2847
2848	/*
2849	 *  PAR and MA interrupts may occur at the same time,
2850	 *  and we need to know of both in order to handle
2851	 *  this situation properly. We try to unstack SCSI
2852	 *  interrupts for that reason. BTW, I dislike a LOT
2853	 *  such a loop inside the interrupt routine.
2854	 *  Even if DMA interrupt stacking is very unlikely to
2855	 *  happen, we also try unstacking these ones, since
2856	 *  this has no performance impact.
2857	 */
2858	sist	= 0;
2859	dstat	= 0;
2860	istatc	= istat;
2861	do {
2862		if (istatc & SIP)
2863			sist  |= INW(np, nc_sist);
2864		if (istatc & DIP)
2865			dstat |= INB(np, nc_dstat);
2866		istatc = INB(np, nc_istat);
2867		istat |= istatc;
2868
2869		/* Prevent deadlock waiting on a condition that may
2870		 * never clear. */
2871		if (unlikely(sist == 0xffff && dstat == 0xff)) {
2872			if (pci_channel_offline(pdev))
2873				return IRQ_NONE;
2874		}
2875	} while (istatc & (SIP|DIP));
2876
2877	if (DEBUG_FLAGS & DEBUG_TINY)
2878		printf ("<%d|%x:%x|%x:%x>",
2879			(int)INB(np, nc_scr0),
2880			dstat,sist,
2881			(unsigned)INL(np, nc_dsp),
2882			(unsigned)INL(np, nc_dbc));
2883	/*
2884	 *  On paper, a memory read barrier may be needed here to
2885	 *  prevent out of order LOADs by the CPU from having
2886	 *  prefetched stale data prior to DMA having occurred.
2887	 *  And since we are paranoid ... :)
2888	 */
2889	MEMORY_READ_BARRIER();
2890
2891	/*
2892	 *  First, interrupts we want to service cleanly.
2893	 *
2894	 *  Phase mismatch (MA) is the most frequent interrupt
2895	 *  for chip earlier than the 896 and so we have to service
2896	 *  it as quickly as possible.
2897	 *  A SCSI parity error (PAR) may be combined with a phase
2898	 *  mismatch condition (MA).
2899	 *  Programmed interrupts (SIR) are used to call the C code
2900	 *  from SCRIPTS.
2901	 *  The single step interrupt (SSI) is not used in this
2902	 *  driver.
2903	 */
2904	if (!(sist  & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
2905	    !(dstat & (MDPE|BF|ABRT|IID))) {
2906		if	(sist & PAR)	sym_int_par (np, sist);
2907		else if (sist & MA)	sym_int_ma (np);
2908		else if (dstat & SIR)	sym_int_sir(np);
2909		else if (dstat & SSI)	OUTONB_STD();
2910		else			goto unknown_int;
2911		return IRQ_HANDLED;
2912	}
2913
2914	/*
2915	 *  Now, interrupts that donnot happen in normal
2916	 *  situations and that we may need to recover from.
2917	 *
2918	 *  On SCSI RESET (RST), we reset everything.
2919	 *  On SCSI BUS MODE CHANGE (SBMC), we complete all
2920	 *  active CCBs with RESET status, prepare all devices
2921	 *  for negotiating again and restart the SCRIPTS.
2922	 *  On STO and UDC, we complete the CCB with the corres-
2923	 *  ponding status and restart the SCRIPTS.
2924	 */
2925	if (sist & RST) {
2926		printf("%s: SCSI BUS reset detected.\n", sym_name(np));
2927		sym_start_up(shost, 1);
2928		return IRQ_HANDLED;
2929	}
2930
2931	OUTB(np, nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
2932	OUTB(np, nc_stest3, TE|CSF);		/* clear scsi fifo */
2933
2934	if (!(sist  & (GEN|HTH|SGE)) &&
2935	    !(dstat & (MDPE|BF|ABRT|IID))) {
2936		if	(sist & SBMC)	sym_int_sbmc(shost);
2937		else if (sist & STO)	sym_int_sto (np);
2938		else if (sist & UDC)	sym_int_udc (np);
2939		else			goto unknown_int;
2940		return IRQ_HANDLED;
2941	}
2942
2943	/*
2944	 *  Now, interrupts we are not able to recover cleanly.
2945	 *
2946	 *  Log message for hard errors.
2947	 *  Reset everything.
2948	 */
2949
2950	sym_log_hard_error(shost, sist, dstat);
2951
2952	if ((sist & (GEN|HTH|SGE)) ||
2953		(dstat & (MDPE|BF|ABRT|IID))) {
2954		sym_start_reset(np);
2955		return IRQ_HANDLED;
2956	}
2957
2958unknown_int:
2959	/*
2960	 *  We just miss the cause of the interrupt. :(
2961	 *  Print a message. The timeout will do the real work.
2962	 */
2963	printf(	"%s: unknown interrupt(s) ignored, "
2964		"ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
2965		sym_name(np), istat, dstat, sist);
2966	return IRQ_NONE;
2967}
2968
2969/*
2970 *  Dequeue from the START queue all CCBs that match
2971 *  a given target/lun/task condition (-1 means all),
2972 *  and move them from the BUSY queue to the COMP queue
2973 *  with DID_SOFT_ERROR status condition.
2974 *  This function is used during error handling/recovery.
2975 *  It is called with SCRIPTS not running.
2976 */
2977static int
2978sym_dequeue_from_squeue(struct sym_hcb *np, int i, int target, int lun, int task)
2979{
2980	int j;
2981	struct sym_ccb *cp;
2982
2983	/*
2984	 *  Make sure the starting index is within range.
2985	 */
2986	assert((i >= 0) && (i < 2*MAX_QUEUE));
2987
2988	/*
2989	 *  Walk until end of START queue and dequeue every job
2990	 *  that matches the target/lun/task condition.
2991	 */
2992	j = i;
2993	while (i != np->squeueput) {
2994		cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
2995		assert(cp);
2996#ifdef SYM_CONF_IARB_SUPPORT
2997		/* Forget hints for IARB, they may be no longer relevant */
2998		cp->host_flags &= ~HF_HINT_IARB;
2999#endif
3000		if ((target == -1 || cp->target == target) &&
3001		    (lun    == -1 || cp->lun    == lun)    &&
3002		    (task   == -1 || cp->tag    == task)) {
3003#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
3004			sym_set_cam_status(cp->cmd, DID_SOFT_ERROR);
3005#else
3006			sym_set_cam_status(cp->cmd, DID_REQUEUE);
3007#endif
3008			sym_remque(&cp->link_ccbq);
3009			sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3010		}
3011		else {
3012			if (i != j)
3013				np->squeue[j] = np->squeue[i];
3014			if ((j += 2) >= MAX_QUEUE*2) j = 0;
3015		}
3016		if ((i += 2) >= MAX_QUEUE*2) i = 0;
3017	}
3018	if (i != j)		/* Copy back the idle task if needed */
3019		np->squeue[j] = np->squeue[i];
3020	np->squeueput = j;	/* Update our current start queue pointer */
3021
3022	return (i - j) / 2;
3023}
3024
3025/*
3026 *  chip handler for bad SCSI status condition
3027 *
3028 *  In case of bad SCSI status, we unqueue all the tasks
3029 *  currently queued to the controller but not yet started
3030 *  and then restart the SCRIPTS processor immediately.
3031 *
3032 *  QUEUE FULL and BUSY conditions are handled the same way.
3033 *  Basically all the not yet started tasks are requeued in
3034 *  device queue and the queue is frozen until a completion.
3035 *
3036 *  For CHECK CONDITION and COMMAND TERMINATED status, we use
3037 *  the CCB of the failed command to prepare a REQUEST SENSE
3038 *  SCSI command and queue it to the controller queue.
3039 *
3040 *  SCRATCHA is assumed to have been loaded with STARTPOS
3041 *  before the SCRIPTS called the C code.
3042 */
3043static void sym_sir_bad_scsi_status(struct sym_hcb *np, int num, struct sym_ccb *cp)
3044{
3045	u32		startp;
3046	u_char		s_status = cp->ssss_status;
3047	u_char		h_flags  = cp->host_flags;
3048	int		msglen;
3049	int		i;
3050
3051	/*
3052	 *  Compute the index of the next job to start from SCRIPTS.
3053	 */
3054	i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3055
3056	/*
3057	 *  The last CCB queued used for IARB hint may be
3058	 *  no longer relevant. Forget it.
3059	 */
3060#ifdef SYM_CONF_IARB_SUPPORT
3061	if (np->last_cp)
3062		np->last_cp = 0;
3063#endif
3064
3065	/*
3066	 *  Now deal with the SCSI status.
3067	 */
3068	switch(s_status) {
3069	case S_BUSY:
3070	case S_QUEUE_FULL:
3071		if (sym_verbose >= 2) {
3072			sym_print_addr(cp->cmd, "%s\n",
3073			        s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
3074		}
3075	default:	/* S_INT, S_INT_COND_MET, S_CONFLICT */
3076		sym_complete_error (np, cp);
3077		break;
3078	case S_TERMINATED:
3079	case S_CHECK_COND:
3080		/*
3081		 *  If we get an SCSI error when requesting sense, give up.
3082		 */
3083		if (h_flags & HF_SENSE) {
3084			sym_complete_error (np, cp);
3085			break;
3086		}
3087
3088		/*
3089		 *  Dequeue all queued CCBs for that device not yet started,
3090		 *  and restart the SCRIPTS processor immediately.
3091		 */
3092		sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3093		OUTL_DSP(np, SCRIPTA_BA(np, start));
3094
3095 		/*
3096		 *  Save some info of the actual IO.
3097		 *  Compute the data residual.
3098		 */
3099		cp->sv_scsi_status = cp->ssss_status;
3100		cp->sv_xerr_status = cp->xerr_status;
3101		cp->sv_resid = sym_compute_residual(np, cp);
3102
3103		/*
3104		 *  Prepare all needed data structures for
3105		 *  requesting sense data.
3106		 */
3107
3108		cp->scsi_smsg2[0] = IDENTIFY(0, cp->lun);
3109		msglen = 1;
3110
3111		/*
3112		 *  If we are currently using anything different from
3113		 *  async. 8 bit data transfers with that target,
3114		 *  start a negotiation, since the device may want
3115		 *  to report us a UNIT ATTENTION condition due to
3116		 *  a cause we currently ignore, and we donnot want
3117		 *  to be stuck with WIDE and/or SYNC data transfer.
3118		 *
3119		 *  cp->nego_status is filled by sym_prepare_nego().
3120		 */
3121		cp->nego_status = 0;
3122		msglen += sym_prepare_nego(np, cp, &cp->scsi_smsg2[msglen]);
3123		/*
3124		 *  Message table indirect structure.
3125		 */
3126		cp->phys.smsg.addr	= CCB_BA(cp, scsi_smsg2);
3127		cp->phys.smsg.size	= cpu_to_scr(msglen);
3128
3129		/*
3130		 *  sense command
3131		 */
3132		cp->phys.cmd.addr	= CCB_BA(cp, sensecmd);
3133		cp->phys.cmd.size	= cpu_to_scr(6);
3134
3135		/*
3136		 *  patch requested size into sense command
3137		 */
3138		cp->sensecmd[0]		= REQUEST_SENSE;
3139		cp->sensecmd[1]		= 0;
3140		if (cp->cmd->device->scsi_level <= SCSI_2 && cp->lun <= 7)
3141			cp->sensecmd[1]	= cp->lun << 5;
3142		cp->sensecmd[4]		= SYM_SNS_BBUF_LEN;
3143		cp->data_len		= SYM_SNS_BBUF_LEN;
3144
3145		/*
3146		 *  sense data
3147		 */
3148		memset(cp->sns_bbuf, 0, SYM_SNS_BBUF_LEN);
3149		cp->phys.sense.addr	= CCB_BA(cp, sns_bbuf);
3150		cp->phys.sense.size	= cpu_to_scr(SYM_SNS_BBUF_LEN);
3151
3152		/*
3153		 *  requeue the command.
3154		 */
3155		startp = SCRIPTB_BA(np, sdata_in);
3156
3157		cp->phys.head.savep	= cpu_to_scr(startp);
3158		cp->phys.head.lastp	= cpu_to_scr(startp);
3159		cp->startp		= cpu_to_scr(startp);
3160		cp->goalp		= cpu_to_scr(startp + 16);
3161
3162		cp->host_xflags = 0;
3163		cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
3164		cp->ssss_status = S_ILLEGAL;
3165		cp->host_flags	= (HF_SENSE|HF_DATA_IN);
3166		cp->xerr_status = 0;
3167		cp->extra_bytes = 0;
3168
3169		cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select));
3170
3171		/*
3172		 *  Requeue the command.
3173		 */
3174		sym_put_start_queue(np, cp);
3175
3176		/*
3177		 *  Give back to upper layer everything we have dequeued.
3178		 */
3179		sym_flush_comp_queue(np, 0);
3180		break;
3181	}
3182}
3183
3184/*
3185 *  After a device has accepted some management message
3186 *  as BUS DEVICE RESET, ABORT TASK, etc ..., or when
3187 *  a device signals a UNIT ATTENTION condition, some
3188 *  tasks are thrown away by the device. We are required
3189 *  to reflect that on our tasks list since the device
3190 *  will never complete these tasks.
3191 *
3192 *  This function move from the BUSY queue to the COMP
3193 *  queue all disconnected CCBs for a given target that
3194 *  match the following criteria:
3195 *  - lun=-1  means any logical UNIT otherwise a given one.
3196 *  - task=-1 means any task, otherwise a given one.
3197 */
3198int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task)
3199{
3200	SYM_QUEHEAD qtmp, *qp;
3201	int i = 0;
3202	struct sym_ccb *cp;
3203
3204	/*
3205	 *  Move the entire BUSY queue to our temporary queue.
3206	 */
3207	sym_que_init(&qtmp);
3208	sym_que_splice(&np->busy_ccbq, &qtmp);
3209	sym_que_init(&np->busy_ccbq);
3210
3211	/*
3212	 *  Put all CCBs that matches our criteria into
3213	 *  the COMP queue and put back other ones into
3214	 *  the BUSY queue.
3215	 */
3216	while ((qp = sym_remque_head(&qtmp)) != NULL) {
3217		struct scsi_cmnd *cmd;
3218		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3219		cmd = cp->cmd;
3220		if (cp->host_status != HS_DISCONNECT ||
3221		    cp->target != target	     ||
3222		    (lun  != -1 && cp->lun != lun)   ||
3223		    (task != -1 &&
3224			(cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
3225			sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
3226			continue;
3227		}
3228		sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3229
3230		/* Preserve the software timeout condition */
3231		if (sym_get_cam_status(cmd) != DID_TIME_OUT)
3232			sym_set_cam_status(cmd, cam_status);
3233		++i;
3234#if 0
3235printf("XXXX TASK @%p CLEARED\n", cp);
3236#endif
3237	}
3238	return i;
3239}
3240
3241/*
3242 *  chip handler for TASKS recovery
3243 *
3244 *  We cannot safely abort a command, while the SCRIPTS
3245 *  processor is running, since we just would be in race
3246 *  with it.
3247 *
3248 *  As long as we have tasks to abort, we keep the SEM
3249 *  bit set in the ISTAT. When this bit is set, the
3250 *  SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
3251 *  each time it enters the scheduler.
3252 *
3253 *  If we have to reset a target, clear tasks of a unit,
3254 *  or to perform the abort of a disconnected job, we
3255 *  restart the SCRIPTS for selecting the target. Once
3256 *  selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
3257 *  If it loses arbitration, the SCRIPTS will interrupt again
3258 *  the next time it will enter its scheduler, and so on ...
3259 *
3260 *  On SIR_TARGET_SELECTED, we scan for the more
3261 *  appropriate thing to do:
3262 *
3263 *  - If nothing, we just sent a M_ABORT message to the
3264 *    target to get rid of the useless SCSI bus ownership.
3265 *    According to the specs, no tasks shall be affected.
3266 *  - If the target is to be reset, we send it a M_RESET
3267 *    message.
3268 *  - If a logical UNIT is to be cleared , we send the
3269 *    IDENTIFY(lun) + M_ABORT.
3270 *  - If an untagged task is to be aborted, we send the
3271 *    IDENTIFY(lun) + M_ABORT.
3272 *  - If a tagged task is to be aborted, we send the
3273 *    IDENTIFY(lun) + task attributes + M_ABORT_TAG.
3274 *
3275 *  Once our 'kiss of death' :) message has been accepted
3276 *  by the target, the SCRIPTS interrupts again
3277 *  (SIR_ABORT_SENT). On this interrupt, we complete
3278 *  all the CCBs that should have been aborted by the
3279 *  target according to our message.
3280 */
3281static void sym_sir_task_recovery(struct sym_hcb *np, int num)
3282{
3283	SYM_QUEHEAD *qp;
3284	struct sym_ccb *cp;
3285	struct sym_tcb *tp = NULL; /* gcc isn't quite smart enough yet */
3286	struct scsi_target *starget;
3287	int target=-1, lun=-1, task;
3288	int i, k;
3289
3290	switch(num) {
3291	/*
3292	 *  The SCRIPTS processor stopped before starting
3293	 *  the next command in order to allow us to perform
3294	 *  some task recovery.
3295	 */
3296	case SIR_SCRIPT_STOPPED:
3297		/*
3298		 *  Do we have any target to reset or unit to clear ?
3299		 */
3300		for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
3301			tp = &np->target[i];
3302			if (tp->to_reset ||
3303			    (tp->lun0p && tp->lun0p->to_clear)) {
3304				target = i;
3305				break;
3306			}
3307			if (!tp->lunmp)
3308				continue;
3309			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3310				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3311					target	= i;
3312					break;
3313				}
3314			}
3315			if (target != -1)
3316				break;
3317		}
3318
3319		/*
3320		 *  If not, walk the busy queue for any
3321		 *  disconnected CCB to be aborted.
3322		 */
3323		if (target == -1) {
3324			FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3325				cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
3326				if (cp->host_status != HS_DISCONNECT)
3327					continue;
3328				if (cp->to_abort) {
3329					target = cp->target;
3330					break;
3331				}
3332			}
3333		}
3334
3335		/*
3336		 *  If some target is to be selected,
3337		 *  prepare and start the selection.
3338		 */
3339		if (target != -1) {
3340			tp = &np->target[target];
3341			np->abrt_sel.sel_id	= target;
3342			np->abrt_sel.sel_scntl3 = tp->head.wval;
3343			np->abrt_sel.sel_sxfer  = tp->head.sval;
3344			OUTL(np, nc_dsa, np->hcb_ba);
3345			OUTL_DSP(np, SCRIPTB_BA(np, sel_for_abort));
3346			return;
3347		}
3348
3349		/*
3350		 *  Now look for a CCB to abort that haven't started yet.
3351		 *  Btw, the SCRIPTS processor is still stopped, so
3352		 *  we are not in race.
3353		 */
3354		i = 0;
3355		cp = NULL;
3356		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3357			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3358			if (cp->host_status != HS_BUSY &&
3359			    cp->host_status != HS_NEGOTIATE)
3360				continue;
3361			if (!cp->to_abort)
3362				continue;
3363#ifdef SYM_CONF_IARB_SUPPORT
3364			/*
3365			 *    If we are using IMMEDIATE ARBITRATION, we donnot
3366			 *    want to cancel the last queued CCB, since the
3367			 *    SCRIPTS may have anticipated the selection.
3368			 */
3369			if (cp == np->last_cp) {
3370				cp->to_abort = 0;
3371				continue;
3372			}
3373#endif
3374			i = 1;	/* Means we have found some */
3375			break;
3376		}
3377		if (!i) {
3378			/*
3379			 *  We are done, so we donnot need
3380			 *  to synchronize with the SCRIPTS anylonger.
3381			 *  Remove the SEM flag from the ISTAT.
3382			 */
3383			np->istat_sem = 0;
3384			OUTB(np, nc_istat, SIGP);
3385			break;
3386		}
3387		/*
3388		 *  Compute index of next position in the start
3389		 *  queue the SCRIPTS intends to start and dequeue
3390		 *  all CCBs for that device that haven't been started.
3391		 */
3392		i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3393		i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3394
3395		/*
3396		 *  Make sure at least our IO to abort has been dequeued.
3397		 */
3398#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
3399		assert(i && sym_get_cam_status(cp->cmd) == DID_SOFT_ERROR);
3400#else
3401		sym_remque(&cp->link_ccbq);
3402		sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3403#endif
3404		/*
3405		 *  Keep track in cam status of the reason of the abort.
3406		 */
3407		if (cp->to_abort == 2)
3408			sym_set_cam_status(cp->cmd, DID_TIME_OUT);
3409		else
3410			sym_set_cam_status(cp->cmd, DID_ABORT);
3411
3412		/*
3413		 *  Complete with error everything that we have dequeued.
3414	 	 */
3415		sym_flush_comp_queue(np, 0);
3416		break;
3417	/*
3418	 *  The SCRIPTS processor has selected a target
3419	 *  we may have some manual recovery to perform for.
3420	 */
3421	case SIR_TARGET_SELECTED:
3422		target = INB(np, nc_sdid) & 0xf;
3423		tp = &np->target[target];
3424
3425		np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
3426
3427		/*
3428		 *  If the target is to be reset, prepare a
3429		 *  M_RESET message and clear the to_reset flag
3430		 *  since we donnot expect this operation to fail.
3431		 */
3432		if (tp->to_reset) {
3433			np->abrt_msg[0] = M_RESET;
3434			np->abrt_tbl.size = 1;
3435			tp->to_reset = 0;
3436			break;
3437		}
3438
3439		/*
3440		 *  Otherwise, look for some logical unit to be cleared.
3441		 */
3442		if (tp->lun0p && tp->lun0p->to_clear)
3443			lun = 0;
3444		else if (tp->lunmp) {
3445			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3446				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3447					lun = k;
3448					break;
3449				}
3450			}
3451		}
3452
3453		/*
3454		 *  If a logical unit is to be cleared, prepare
3455		 *  an IDENTIFY(lun) + ABORT MESSAGE.
3456		 */
3457		if (lun != -1) {
3458			struct sym_lcb *lp = sym_lp(tp, lun);
3459			lp->to_clear = 0; /* We don't expect to fail here */
3460			np->abrt_msg[0] = IDENTIFY(0, lun);
3461			np->abrt_msg[1] = M_ABORT;
3462			np->abrt_tbl.size = 2;
3463			break;
3464		}
3465
3466		/*
3467		 *  Otherwise, look for some disconnected job to
3468		 *  abort for this target.
3469		 */
3470		i = 0;
3471		cp = NULL;
3472		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3473			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3474			if (cp->host_status != HS_DISCONNECT)
3475				continue;
3476			if (cp->target != target)
3477				continue;
3478			if (!cp->to_abort)
3479				continue;
3480			i = 1;	/* Means we have some */
3481			break;
3482		}
3483
3484		/*
3485		 *  If we have none, probably since the device has
3486		 *  completed the command before we won abitration,
3487		 *  send a M_ABORT message without IDENTIFY.
3488		 *  According to the specs, the device must just
3489		 *  disconnect the BUS and not abort any task.
3490		 */
3491		if (!i) {
3492			np->abrt_msg[0] = M_ABORT;
3493			np->abrt_tbl.size = 1;
3494			break;
3495		}
3496
3497		/*
3498		 *  We have some task to abort.
3499		 *  Set the IDENTIFY(lun)
3500		 */
3501		np->abrt_msg[0] = IDENTIFY(0, cp->lun);
3502
3503		/*
3504		 *  If we want to abort an untagged command, we
3505		 *  will send a IDENTIFY + M_ABORT.
3506		 *  Otherwise (tagged command), we will send
3507		 *  a IDENTITFY + task attributes + ABORT TAG.
3508		 */
3509		if (cp->tag == NO_TAG) {
3510			np->abrt_msg[1] = M_ABORT;
3511			np->abrt_tbl.size = 2;
3512		} else {
3513			np->abrt_msg[1] = cp->scsi_smsg[1];
3514			np->abrt_msg[2] = cp->scsi_smsg[2];
3515			np->abrt_msg[3] = M_ABORT_TAG;
3516			np->abrt_tbl.size = 4;
3517		}
3518		/*
3519		 *  Keep track of software timeout condition, since the
3520		 *  peripheral driver may not count retries on abort
3521		 *  conditions not due to timeout.
3522		 */
3523		if (cp->to_abort == 2)
3524			sym_set_cam_status(cp->cmd, DID_TIME_OUT);
3525		cp->to_abort = 0; /* We donnot expect to fail here */
3526		break;
3527
3528	/*
3529	 *  The target has accepted our message and switched
3530	 *  to BUS FREE phase as we expected.
3531	 */
3532	case SIR_ABORT_SENT:
3533		target = INB(np, nc_sdid) & 0xf;
3534		tp = &np->target[target];
3535		starget = tp->starget;
3536
3537		/*
3538		**  If we didn't abort anything, leave here.
3539		*/
3540		if (np->abrt_msg[0] == M_ABORT)
3541			break;
3542
3543		/*
3544		 *  If we sent a M_RESET, then a hardware reset has
3545		 *  been performed by the target.
3546		 *  - Reset everything to async 8 bit
3547		 *  - Tell ourself to negotiate next time :-)
3548		 *  - Prepare to clear all disconnected CCBs for
3549		 *    this target from our task list (lun=task=-1)
3550		 */
3551		lun = -1;
3552		task = -1;
3553		if (np->abrt_msg[0] == M_RESET) {
3554			tp->head.sval = 0;
3555			tp->head.wval = np->rv_scntl3;
3556			tp->head.uval = 0;
3557			spi_period(starget) = 0;
3558			spi_offset(starget) = 0;
3559			spi_width(starget) = 0;
3560			spi_iu(starget) = 0;
3561			spi_dt(starget) = 0;
3562			spi_qas(starget) = 0;
3563			tp->tgoal.check_nego = 1;
3564			tp->tgoal.renego = 0;
3565		}
3566
3567		/*
3568		 *  Otherwise, check for the LUN and TASK(s)
3569		 *  concerned by the cancelation.
3570		 *  If it is not ABORT_TAG then it is CLEAR_QUEUE
3571		 *  or an ABORT message :-)
3572		 */
3573		else {
3574			lun = np->abrt_msg[0] & 0x3f;
3575			if (np->abrt_msg[1] == M_ABORT_TAG)
3576				task = np->abrt_msg[2];
3577		}
3578
3579		/*
3580		 *  Complete all the CCBs the device should have
3581		 *  aborted due to our 'kiss of death' message.
3582		 */
3583		i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3584		sym_dequeue_from_squeue(np, i, target, lun, -1);
3585		sym_clear_tasks(np, DID_ABORT, target, lun, task);
3586		sym_flush_comp_queue(np, 0);
3587
3588 		/*
3589		 *  If we sent a BDR, make upper layer aware of that.
3590 		 */
3591		if (np->abrt_msg[0] == M_RESET)
3592			starget_printk(KERN_NOTICE, starget,
3593							"has been reset\n");
3594		break;
3595	}
3596
3597	/*
3598	 *  Print to the log the message we intend to send.
3599	 */
3600	if (num == SIR_TARGET_SELECTED) {
3601		dev_info(&tp->starget->dev, "control msgout:");
3602		sym_printl_hex(np->abrt_msg, np->abrt_tbl.size);
3603		np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
3604	}
3605
3606	/*
3607	 *  Let the SCRIPTS processor continue.
3608	 */
3609	OUTONB_STD();
3610}
3611
3612/*
3613 *  Gerard's alchemy:) that deals with with the data
3614 *  pointer for both MDP and the residual calculation.
3615 *
3616 *  I didn't want to bloat the code by more than 200
3617 *  lines for the handling of both MDP and the residual.
3618 *  This has been achieved by using a data pointer
3619 *  representation consisting in an index in the data
3620 *  array (dp_sg) and a negative offset (dp_ofs) that
3621 *  have the following meaning:
3622 *
3623 *  - dp_sg = SYM_CONF_MAX_SG
3624 *    we are at the end of the data script.
3625 *  - dp_sg < SYM_CONF_MAX_SG
3626 *    dp_sg points to the next entry of the scatter array
3627 *    we want to transfer.
3628 *  - dp_ofs < 0
3629 *    dp_ofs represents the residual of bytes of the
3630 *    previous entry scatter entry we will send first.
3631 *  - dp_ofs = 0
3632 *    no residual to send first.
3633 *
3634 *  The function sym_evaluate_dp() accepts an arbitray
3635 *  offset (basically from the MDP message) and returns
3636 *  the corresponding values of dp_sg and dp_ofs.
3637 */
3638
3639static int sym_evaluate_dp(struct sym_hcb *np, struct sym_ccb *cp, u32 scr, int *ofs)
3640{
3641	u32	dp_scr;
3642	int	dp_ofs, dp_sg, dp_sgmin;
3643	int	tmp;
3644	struct sym_pmc *pm;
3645
3646	/*
3647	 *  Compute the resulted data pointer in term of a script
3648	 *  address within some DATA script and a signed byte offset.
3649	 */
3650	dp_scr = scr;
3651	dp_ofs = *ofs;
3652	if	(dp_scr == SCRIPTA_BA(np, pm0_data))
3653		pm = &cp->phys.pm0;
3654	else if (dp_scr == SCRIPTA_BA(np, pm1_data))
3655		pm = &cp->phys.pm1;
3656	else
3657		pm = NULL;
3658
3659	if (pm) {
3660		dp_scr  = scr_to_cpu(pm->ret);
3661		dp_ofs -= scr_to_cpu(pm->sg.size) & 0x00ffffff;
3662	}
3663
3664	/*
3665	 *  If we are auto-sensing, then we are done.
3666	 */
3667	if (cp->host_flags & HF_SENSE) {
3668		*ofs = dp_ofs;
3669		return 0;
3670	}
3671
3672	/*
3673	 *  Deduce the index of the sg entry.
3674	 *  Keep track of the index of the first valid entry.
3675	 *  If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
3676	 *  end of the data.
3677	 */
3678	tmp = scr_to_cpu(cp->goalp);
3679	dp_sg = SYM_CONF_MAX_SG;
3680	if (dp_scr != tmp)
3681		dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
3682	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
3683
3684	/*
3685	 *  Move to the sg entry the data pointer belongs to.
3686	 *
3687	 *  If we are inside the data area, we expect result to be:
3688	 *
3689	 *  Either,
3690	 *      dp_ofs = 0 and dp_sg is the index of the sg entry
3691	 *      the data pointer belongs to (or the end of the data)
3692	 *  Or,
3693	 *      dp_ofs < 0 and dp_sg is the index of the sg entry
3694	 *      the data pointer belongs to + 1.
3695	 */
3696	if (dp_ofs < 0) {
3697		int n;
3698		while (dp_sg > dp_sgmin) {
3699			--dp_sg;
3700			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3701			n = dp_ofs + (tmp & 0xffffff);
3702			if (n > 0) {
3703				++dp_sg;
3704				break;
3705			}
3706			dp_ofs = n;
3707		}
3708	}
3709	else if (dp_ofs > 0) {
3710		while (dp_sg < SYM_CONF_MAX_SG) {
3711			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3712			dp_ofs -= (tmp & 0xffffff);
3713			++dp_sg;
3714			if (dp_ofs <= 0)
3715				break;
3716		}
3717	}
3718
3719	/*
3720	 *  Make sure the data pointer is inside the data area.
3721	 *  If not, return some error.
3722	 */
3723	if	(dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
3724		goto out_err;
3725	else if	(dp_sg > SYM_CONF_MAX_SG ||
3726		 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
3727		goto out_err;
3728
3729	/*
3730	 *  Save the extreme pointer if needed.
3731	 */
3732	if (dp_sg > cp->ext_sg ||
3733            (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
3734		cp->ext_sg  = dp_sg;
3735		cp->ext_ofs = dp_ofs;
3736	}
3737
3738	/*
3739	 *  Return data.
3740	 */
3741	*ofs = dp_ofs;
3742	return dp_sg;
3743
3744out_err:
3745	return -1;
3746}
3747
3748/*
3749 *  chip handler for MODIFY DATA POINTER MESSAGE
3750 *
3751 *  We also call this function on IGNORE WIDE RESIDUE
3752 *  messages that do not match a SWIDE full condition.
3753 *  Btw, we assume in that situation that such a message
3754 *  is equivalent to a MODIFY DATA POINTER (offset=-1).
3755 */
3756
3757static void sym_modify_dp(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp, int ofs)
3758{
3759	int dp_ofs	= ofs;
3760	u32	dp_scr	= sym_get_script_dp (np, cp);
3761	u32	dp_ret;
3762	u32	tmp;
3763	u_char	hflags;
3764	int	dp_sg;
3765	struct	sym_pmc *pm;
3766
3767	/*
3768	 *  Not supported for auto-sense.
3769	 */
3770	if (cp->host_flags & HF_SENSE)
3771		goto out_reject;
3772
3773	/*
3774	 *  Apply our alchemy:) (see comments in sym_evaluate_dp()),
3775	 *  to the resulted data pointer.
3776	 */
3777	dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
3778	if (dp_sg < 0)
3779		goto out_reject;
3780
3781	/*
3782	 *  And our alchemy:) allows to easily calculate the data
3783	 *  script address we want to return for the next data phase.
3784	 */
3785	dp_ret = cpu_to_scr(cp->goalp);
3786	dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
3787
3788	/*
3789	 *  If offset / scatter entry is zero we donnot need
3790	 *  a context for the new current data pointer.
3791	 */
3792	if (dp_ofs == 0) {
3793		dp_scr = dp_ret;
3794		goto out_ok;
3795	}
3796
3797	/*
3798	 *  Get a context for the new current data pointer.
3799	 */
3800	hflags = INB(np, HF_PRT);
3801
3802	if (hflags & HF_DP_SAVED)
3803		hflags ^= HF_ACT_PM;
3804
3805	if (!(hflags & HF_ACT_PM)) {
3806		pm  = &cp->phys.pm0;
3807		dp_scr = SCRIPTA_BA(np, pm0_data);
3808	}
3809	else {
3810		pm = &cp->phys.pm1;
3811		dp_scr = SCRIPTA_BA(np, pm1_data);
3812	}
3813
3814	hflags &= ~(HF_DP_SAVED);
3815
3816	OUTB(np, HF_PRT, hflags);
3817
3818	/*
3819	 *  Set up the new current data pointer.
3820	 *  ofs < 0 there, and for the next data phase, we
3821	 *  want to transfer part of the data of the sg entry
3822	 *  corresponding to index dp_sg-1 prior to returning
3823	 *  to the main data script.
3824	 */
3825	pm->ret = cpu_to_scr(dp_ret);
3826	tmp  = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
3827	tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
3828	pm->sg.addr = cpu_to_scr(tmp);
3829	pm->sg.size = cpu_to_scr(-dp_ofs);
3830
3831out_ok:
3832	sym_set_script_dp (np, cp, dp_scr);
3833	OUTL_DSP(np, SCRIPTA_BA(np, clrack));
3834	return;
3835
3836out_reject:
3837	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
3838}
3839
3840
3841/*
3842 *  chip calculation of the data residual.
3843 *
3844 *  As I used to say, the requirement of data residual
3845 *  in SCSI is broken, useless and cannot be achieved
3846 *  without huge complexity.
3847 *  But most OSes and even the official CAM require it.
3848 *  When stupidity happens to be so widely spread inside
3849 *  a community, it gets hard to convince.
3850 *
3851 *  Anyway, I don't care, since I am not going to use
3852 *  any software that considers this data residual as
3853 *  a relevant information. :)
3854 */
3855
3856int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp)
3857{
3858	int dp_sg, dp_sgmin, resid = 0;
3859	int dp_ofs = 0;
3860
3861	/*
3862	 *  Check for some data lost or just thrown away.
3863	 *  We are not required to be quite accurate in this
3864	 *  situation. Btw, if we are odd for output and the
3865	 *  device claims some more data, it may well happen
3866	 *  than our residual be zero. :-)
3867	 */
3868	if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
3869		if (cp->xerr_status & XE_EXTRA_DATA)
3870			resid -= cp->extra_bytes;
3871		if (cp->xerr_status & XE_SODL_UNRUN)
3872			++resid;
3873		if (cp->xerr_status & XE_SWIDE_OVRUN)
3874			--resid;
3875	}
3876
3877	/*
3878	 *  If all data has been transferred,
3879	 *  there is no residual.
3880	 */
3881	if (cp->phys.head.lastp == cp->goalp)
3882		return resid;
3883
3884	/*
3885	 *  If no data transfer occurs, or if the data
3886	 *  pointer is weird, return full residual.
3887	 */
3888	if (cp->startp == cp->phys.head.lastp ||
3889	    sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
3890			    &dp_ofs) < 0) {
3891		return cp->data_len - cp->odd_byte_adjustment;
3892	}
3893
3894	/*
3895	 *  If we were auto-sensing, then we are done.
3896	 */
3897	if (cp->host_flags & HF_SENSE) {
3898		return -dp_ofs;
3899	}
3900
3901	/*
3902	 *  We are now full comfortable in the computation
3903	 *  of the data residual (2's complement).
3904	 */
3905	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
3906	resid = -cp->ext_ofs;
3907	for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
3908		u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3909		resid += (tmp & 0xffffff);
3910	}
3911
3912	resid -= cp->odd_byte_adjustment;
3913
3914	/*
3915	 *  Hopefully, the result is not too wrong.
3916	 */
3917	return resid;
3918}
3919
3920/*
3921 *  Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
3922 *
3923 *  When we try to negotiate, we append the negotiation message
3924 *  to the identify and (maybe) simple tag message.
3925 *  The host status field is set to HS_NEGOTIATE to mark this
3926 *  situation.
3927 *
3928 *  If the target doesn't answer this message immediately
3929 *  (as required by the standard), the SIR_NEGO_FAILED interrupt
3930 *  will be raised eventually.
3931 *  The handler removes the HS_NEGOTIATE status, and sets the
3932 *  negotiated value to the default (async / nowide).
3933 *
3934 *  If we receive a matching answer immediately, we check it
3935 *  for validity, and set the values.
3936 *
3937 *  If we receive a Reject message immediately, we assume the
3938 *  negotiation has failed, and fall back to standard values.
3939 *
3940 *  If we receive a negotiation message while not in HS_NEGOTIATE
3941 *  state, it's a target initiated negotiation. We prepare a
3942 *  (hopefully) valid answer, set our parameters, and send back
3943 *  this answer to the target.
3944 *
3945 *  If the target doesn't fetch the answer (no message out phase),
3946 *  we assume the negotiation has failed, and fall back to default
3947 *  settings (SIR_NEGO_PROTO interrupt).
3948 *
3949 *  When we set the values, we adjust them in all ccbs belonging
3950 *  to this target, in the controller's register, and in the "phys"
3951 *  field of the controller's struct sym_hcb.
3952 */
3953
3954/*
3955 *  chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
3956 */
3957static int
3958sym_sync_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
3959{
3960	int target = cp->target;
3961	u_char	chg, ofs, per, fak, div;
3962
3963	if (DEBUG_FLAGS & DEBUG_NEGO) {
3964		sym_print_nego_msg(np, target, "sync msgin", np->msgin);
3965	}
3966
3967	/*
3968	 *  Get requested values.
3969	 */
3970	chg = 0;
3971	per = np->msgin[3];
3972	ofs = np->msgin[4];
3973
3974	/*
3975	 *  Check values against our limits.
3976	 */
3977	if (ofs) {
3978		if (ofs > np->maxoffs)
3979			{chg = 1; ofs = np->maxoffs;}
3980	}
3981
3982	if (ofs) {
3983		if (per < np->minsync)
3984			{chg = 1; per = np->minsync;}
3985	}
3986
3987	/*
3988	 *  Get new chip synchronous parameters value.
3989	 */
3990	div = fak = 0;
3991	if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
3992		goto reject_it;
3993
3994	if (DEBUG_FLAGS & DEBUG_NEGO) {
3995		sym_print_addr(cp->cmd,
3996				"sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
3997				ofs, per, div, fak, chg);
3998	}
3999
4000	/*
4001	 *  If it was an answer we want to change,
4002	 *  then it isn't acceptable. Reject it.
4003	 */
4004	if (!req && chg)
4005		goto reject_it;
4006
4007	/*
4008	 *  Apply new values.
4009	 */
4010	sym_setsync (np, target, ofs, per, div, fak);
4011
4012	/*
4013	 *  It was an answer. We are done.
4014	 */
4015	if (!req)
4016		return 0;
4017
4018	/*
4019	 *  It was a request. Prepare an answer message.
4020	 */
4021	spi_populate_sync_msg(np->msgout, per, ofs);
4022
4023	if (DEBUG_FLAGS & DEBUG_NEGO) {
4024		sym_print_nego_msg(np, target, "sync msgout", np->msgout);
4025	}
4026
4027	np->msgin [0] = M_NOOP;
4028
4029	return 0;
4030
4031reject_it:
4032	sym_setsync (np, target, 0, 0, 0, 0);
4033	return -1;
4034}
4035
4036static void sym_sync_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4037{
4038	int req = 1;
4039	int result;
4040
4041	/*
4042	 *  Request or answer ?
4043	 */
4044	if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4045		OUTB(np, HS_PRT, HS_BUSY);
4046		if (cp->nego_status && cp->nego_status != NS_SYNC)
4047			goto reject_it;
4048		req = 0;
4049	}
4050
4051	/*
4052	 *  Check and apply new values.
4053	 */
4054	result = sym_sync_nego_check(np, req, cp);
4055	if (result)	/* Not acceptable, reject it */
4056		goto reject_it;
4057	if (req) {	/* Was a request, send response. */
4058		cp->nego_status = NS_SYNC;
4059		OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
4060	}
4061	else		/* Was a response, we are done. */
4062		OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4063	return;
4064
4065reject_it:
4066	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4067}
4068
4069/*
4070 *  chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
4071 */
4072static int
4073sym_ppr_nego_check(struct sym_hcb *np, int req, int target)
4074{
4075	struct sym_tcb *tp = &np->target[target];
4076	unsigned char fak, div;
4077	int dt, chg = 0;
4078
4079	unsigned char per = np->msgin[3];
4080	unsigned char ofs = np->msgin[5];
4081	unsigned char wide = np->msgin[6];
4082	unsigned char opts = np->msgin[7] & PPR_OPT_MASK;
4083
4084	if (DEBUG_FLAGS & DEBUG_NEGO) {
4085		sym_print_nego_msg(np, target, "ppr msgin", np->msgin);
4086	}
4087
4088	/*
4089	 *  Check values against our limits.
4090	 */
4091	if (wide > np->maxwide) {
4092		chg = 1;
4093		wide = np->maxwide;
4094	}
4095	if (!wide || !(np->features & FE_U3EN))
4096		opts = 0;
4097
4098	if (opts != (np->msgin[7] & PPR_OPT_MASK))
4099		chg = 1;
4100
4101	dt = opts & PPR_OPT_DT;
4102
4103	if (ofs) {
4104		unsigned char maxoffs = dt ? np->maxoffs_dt : np->maxoffs;
4105		if (ofs > maxoffs) {
4106			chg = 1;
4107			ofs = maxoffs;
4108		}
4109	}
4110
4111	if (ofs) {
4112		unsigned char minsync = dt ? np->minsync_dt : np->minsync;
4113		if (per < minsync) {
4114			chg = 1;
4115			per = minsync;
4116		}
4117	}
4118
4119	/*
4120	 *  Get new chip synchronous parameters value.
4121	 */
4122	div = fak = 0;
4123	if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
4124		goto reject_it;
4125
4126	/*
4127	 *  If it was an answer we want to change,
4128	 *  then it isn't acceptable. Reject it.
4129	 */
4130	if (!req && chg)
4131		goto reject_it;
4132
4133	/*
4134	 *  Apply new values.
4135	 */
4136	sym_setpprot(np, target, opts, ofs, per, wide, div, fak);
4137
4138	/*
4139	 *  It was an answer. We are done.
4140	 */
4141	if (!req)
4142		return 0;
4143
4144	/*
4145	 *  It was a request. Prepare an answer message.
4146	 */
4147	spi_populate_ppr_msg(np->msgout, per, ofs, wide, opts);
4148
4149	if (DEBUG_FLAGS & DEBUG_NEGO) {
4150		sym_print_nego_msg(np, target, "ppr msgout", np->msgout);
4151	}
4152
4153	np->msgin [0] = M_NOOP;
4154
4155	return 0;
4156
4157reject_it:
4158	sym_setpprot (np, target, 0, 0, 0, 0, 0, 0);
4159	/*
4160	 *  If it is a device response that should result in
4161	 *  ST, we may want to try a legacy negotiation later.
4162	 */
4163	if (!req && !opts) {
4164		tp->tgoal.period = per;
4165		tp->tgoal.offset = ofs;
4166		tp->tgoal.width = wide;
4167		tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
4168		tp->tgoal.check_nego = 1;
4169	}
4170	return -1;
4171}
4172
4173static void sym_ppr_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4174{
4175	int req = 1;
4176	int result;
4177
4178	/*
4179	 *  Request or answer ?
4180	 */
4181	if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4182		OUTB(np, HS_PRT, HS_BUSY);
4183		if (cp->nego_status && cp->nego_status != NS_PPR)
4184			goto reject_it;
4185		req = 0;
4186	}
4187
4188	/*
4189	 *  Check and apply new values.
4190	 */
4191	result = sym_ppr_nego_check(np, req, cp->target);
4192	if (result)	/* Not acceptable, reject it */
4193		goto reject_it;
4194	if (req) {	/* Was a request, send response. */
4195		cp->nego_status = NS_PPR;
4196		OUTL_DSP(np, SCRIPTB_BA(np, ppr_resp));
4197	}
4198	else		/* Was a response, we are done. */
4199		OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4200	return;
4201
4202reject_it:
4203	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4204}
4205
4206/*
4207 *  chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
4208 */
4209static int
4210sym_wide_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
4211{
4212	int target = cp->target;
4213	u_char	chg, wide;
4214
4215	if (DEBUG_FLAGS & DEBUG_NEGO) {
4216		sym_print_nego_msg(np, target, "wide msgin", np->msgin);
4217	}
4218
4219	/*
4220	 *  Get requested values.
4221	 */
4222	chg  = 0;
4223	wide = np->msgin[3];
4224
4225	/*
4226	 *  Check values against our limits.
4227	 */
4228	if (wide > np->maxwide) {
4229		chg = 1;
4230		wide = np->maxwide;
4231	}
4232
4233	if (DEBUG_FLAGS & DEBUG_NEGO) {
4234		sym_print_addr(cp->cmd, "wdtr: wide=%d chg=%d.\n",
4235				wide, chg);
4236	}
4237
4238	/*
4239	 *  If it was an answer we want to change,
4240	 *  then it isn't acceptable. Reject it.
4241	 */
4242	if (!req && chg)
4243		goto reject_it;
4244
4245	/*
4246	 *  Apply new values.
4247	 */
4248	sym_setwide (np, target, wide);
4249
4250	/*
4251	 *  It was an answer. We are done.
4252	 */
4253	if (!req)
4254		return 0;
4255
4256	/*
4257	 *  It was a request. Prepare an answer message.
4258	 */
4259	spi_populate_width_msg(np->msgout, wide);
4260
4261	np->msgin [0] = M_NOOP;
4262
4263	if (DEBUG_FLAGS & DEBUG_NEGO) {
4264		sym_print_nego_msg(np, target, "wide msgout", np->msgout);
4265	}
4266
4267	return 0;
4268
4269reject_it:
4270	return -1;
4271}
4272
4273static void sym_wide_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4274{
4275	int req = 1;
4276	int result;
4277
4278	/*
4279	 *  Request or answer ?
4280	 */
4281	if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4282		OUTB(np, HS_PRT, HS_BUSY);
4283		if (cp->nego_status && cp->nego_status != NS_WIDE)
4284			goto reject_it;
4285		req = 0;
4286	}
4287
4288	/*
4289	 *  Check and apply new values.
4290	 */
4291	result = sym_wide_nego_check(np, req, cp);
4292	if (result)	/* Not acceptable, reject it */
4293		goto reject_it;
4294	if (req) {	/* Was a request, send response. */
4295		cp->nego_status = NS_WIDE;
4296		OUTL_DSP(np, SCRIPTB_BA(np, wdtr_resp));
4297	} else {		/* Was a response. */
4298		/*
4299		 * Negotiate for SYNC immediately after WIDE response.
4300		 * This allows to negotiate for both WIDE and SYNC on
4301		 * a single SCSI command (Suggested by Justin Gibbs).
4302		 */
4303		if (tp->tgoal.offset) {
4304			spi_populate_sync_msg(np->msgout, tp->tgoal.period,
4305					tp->tgoal.offset);
4306
4307			if (DEBUG_FLAGS & DEBUG_NEGO) {
4308				sym_print_nego_msg(np, cp->target,
4309				                   "sync msgout", np->msgout);
4310			}
4311
4312			cp->nego_status = NS_SYNC;
4313			OUTB(np, HS_PRT, HS_NEGOTIATE);
4314			OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
4315			return;
4316		} else
4317			OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4318	}
4319
4320	return;
4321
4322reject_it:
4323	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4324}
4325
4326/*
4327 *  Reset DT, SYNC or WIDE to default settings.
4328 *
4329 *  Called when a negotiation does not succeed either
4330 *  on rejection or on protocol error.
4331 *
4332 *  A target that understands a PPR message should never
4333 *  reject it, and messing with it is very unlikely.
4334 *  So, if a PPR makes problems, we may just want to
4335 *  try a legacy negotiation later.
4336 */
4337static void sym_nego_default(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4338{
4339	switch (cp->nego_status) {
4340	case NS_PPR:
4341#if 0
4342		sym_setpprot (np, cp->target, 0, 0, 0, 0, 0, 0);
4343#else
4344		if (tp->tgoal.period < np->minsync)
4345			tp->tgoal.period = np->minsync;
4346		if (tp->tgoal.offset > np->maxoffs)
4347			tp->tgoal.offset = np->maxoffs;
4348		tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
4349		tp->tgoal.check_nego = 1;
4350#endif
4351		break;
4352	case NS_SYNC:
4353		sym_setsync (np, cp->target, 0, 0, 0, 0);
4354		break;
4355	case NS_WIDE:
4356		sym_setwide (np, cp->target, 0);
4357		break;
4358	}
4359	np->msgin [0] = M_NOOP;
4360	np->msgout[0] = M_NOOP;
4361	cp->nego_status = 0;
4362}
4363
4364/*
4365 *  chip handler for MESSAGE REJECT received in response to
4366 *  PPR, WIDE or SYNCHRONOUS negotiation.
4367 */
4368static void sym_nego_rejected(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4369{
4370	sym_nego_default(np, tp, cp);
4371	OUTB(np, HS_PRT, HS_BUSY);
4372}
4373
4374/*
4375 *  chip exception handler for programmed interrupts.
4376 */
4377static void sym_int_sir(struct sym_hcb *np)
4378{
4379	u_char	num	= INB(np, nc_dsps);
4380	u32	dsa	= INL(np, nc_dsa);
4381	struct sym_ccb *cp	= sym_ccb_from_dsa(np, dsa);
4382	u_char	target	= INB(np, nc_sdid) & 0x0f;
4383	struct sym_tcb *tp	= &np->target[target];
4384	int	tmp;
4385
4386	if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
4387
4388	switch (num) {
4389#if   SYM_CONF_DMA_ADDRESSING_MODE == 2
4390	/*
4391	 *  SCRIPTS tell us that we may have to update
4392	 *  64 bit DMA segment registers.
4393	 */
4394	case SIR_DMAP_DIRTY:
4395		sym_update_dmap_regs(np);
4396		goto out;
4397#endif
4398	/*
4399	 *  Command has been completed with error condition
4400	 *  or has been auto-sensed.
4401	 */
4402	case SIR_COMPLETE_ERROR:
4403		sym_complete_error(np, cp);
4404		return;
4405	/*
4406	 *  The C code is currently trying to recover from something.
4407	 *  Typically, user want to abort some command.
4408	 */
4409	case SIR_SCRIPT_STOPPED:
4410	case SIR_TARGET_SELECTED:
4411	case SIR_ABORT_SENT:
4412		sym_sir_task_recovery(np, num);
4413		return;
4414	/*
4415	 *  The device didn't go to MSG OUT phase after having
4416	 *  been selected with ATN.  We do not want to handle that.
4417	 */
4418	case SIR_SEL_ATN_NO_MSG_OUT:
4419		scmd_printk(KERN_WARNING, cp->cmd,
4420				"No MSG OUT phase after selection with ATN\n");
4421		goto out_stuck;
4422	/*
4423	 *  The device didn't switch to MSG IN phase after
4424	 *  having reselected the initiator.
4425	 */
4426	case SIR_RESEL_NO_MSG_IN:
4427		scmd_printk(KERN_WARNING, cp->cmd,
4428				"No MSG IN phase after reselection\n");
4429		goto out_stuck;
4430	/*
4431	 *  After reselection, the device sent a message that wasn't
4432	 *  an IDENTIFY.
4433	 */
4434	case SIR_RESEL_NO_IDENTIFY:
4435		scmd_printk(KERN_WARNING, cp->cmd,
4436				"No IDENTIFY after reselection\n");
4437		goto out_stuck;
4438	/*
4439	 *  The device reselected a LUN we do not know about.
4440	 */
4441	case SIR_RESEL_BAD_LUN:
4442		np->msgout[0] = M_RESET;
4443		goto out;
4444	/*
4445	 *  The device reselected for an untagged nexus and we
4446	 *  haven't any.
4447	 */
4448	case SIR_RESEL_BAD_I_T_L:
4449		np->msgout[0] = M_ABORT;
4450		goto out;
4451	/*
4452	 * The device reselected for a tagged nexus that we do not have.
4453	 */
4454	case SIR_RESEL_BAD_I_T_L_Q:
4455		np->msgout[0] = M_ABORT_TAG;
4456		goto out;
4457	/*
4458	 *  The SCRIPTS let us know that the device has grabbed
4459	 *  our message and will abort the job.
4460	 */
4461	case SIR_RESEL_ABORTED:
4462		np->lastmsg = np->msgout[0];
4463		np->msgout[0] = M_NOOP;
4464		scmd_printk(KERN_WARNING, cp->cmd,
4465			"message %x sent on bad reselection\n", np->lastmsg);
4466		goto out;
4467	/*
4468	 *  The SCRIPTS let us know that a message has been
4469	 *  successfully sent to the device.
4470	 */
4471	case SIR_MSG_OUT_DONE:
4472		np->lastmsg = np->msgout[0];
4473		np->msgout[0] = M_NOOP;
4474		/* Should we really care of that */
4475		if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
4476			if (cp) {
4477				cp->xerr_status &= ~XE_PARITY_ERR;
4478				if (!cp->xerr_status)
4479					OUTOFFB(np, HF_PRT, HF_EXT_ERR);
4480			}
4481		}
4482		goto out;
4483	/*
4484	 *  The device didn't send a GOOD SCSI status.
4485	 *  We may have some work to do prior to allow
4486	 *  the SCRIPTS processor to continue.
4487	 */
4488	case SIR_BAD_SCSI_STATUS:
4489		if (!cp)
4490			goto out;
4491		sym_sir_bad_scsi_status(np, num, cp);
4492		return;
4493	/*
4494	 *  We are asked by the SCRIPTS to prepare a
4495	 *  REJECT message.
4496	 */
4497	case SIR_REJECT_TO_SEND:
4498		sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
4499		np->msgout[0] = M_REJECT;
4500		goto out;
4501	/*
4502	 *  We have been ODD at the end of a DATA IN
4503	 *  transfer and the device didn't send a
4504	 *  IGNORE WIDE RESIDUE message.
4505	 *  It is a data overrun condition.
4506	 */
4507	case SIR_SWIDE_OVERRUN:
4508		if (cp) {
4509			OUTONB(np, HF_PRT, HF_EXT_ERR);
4510			cp->xerr_status |= XE_SWIDE_OVRUN;
4511		}
4512		goto out;
4513	/*
4514	 *  We have been ODD at the end of a DATA OUT
4515	 *  transfer.
4516	 *  It is a data underrun condition.
4517	 */
4518	case SIR_SODL_UNDERRUN:
4519		if (cp) {
4520			OUTONB(np, HF_PRT, HF_EXT_ERR);
4521			cp->xerr_status |= XE_SODL_UNRUN;
4522		}
4523		goto out;
4524	/*
4525	 *  The device wants us to tranfer more data than
4526	 *  expected or in the wrong direction.
4527	 *  The number of extra bytes is in scratcha.
4528	 *  It is a data overrun condition.
4529	 */
4530	case SIR_DATA_OVERRUN:
4531		if (cp) {
4532			OUTONB(np, HF_PRT, HF_EXT_ERR);
4533			cp->xerr_status |= XE_EXTRA_DATA;
4534			cp->extra_bytes += INL(np, nc_scratcha);
4535		}
4536		goto out;
4537	/*
4538	 *  The device switched to an illegal phase (4/5).
4539	 */
4540	case SIR_BAD_PHASE:
4541		if (cp) {
4542			OUTONB(np, HF_PRT, HF_EXT_ERR);
4543			cp->xerr_status |= XE_BAD_PHASE;
4544		}
4545		goto out;
4546	/*
4547	 *  We received a message.
4548	 */
4549	case SIR_MSG_RECEIVED:
4550		if (!cp)
4551			goto out_stuck;
4552		switch (np->msgin [0]) {
4553		/*
4554		 *  We received an extended message.
4555		 *  We handle MODIFY DATA POINTER, SDTR, WDTR
4556		 *  and reject all other extended messages.
4557		 */
4558		case M_EXTENDED:
4559			switch (np->msgin [2]) {
4560			case M_X_MODIFY_DP:
4561				if (DEBUG_FLAGS & DEBUG_POINTER)
4562					sym_print_msg(cp, "extended msg ",
4563						      np->msgin);
4564				tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
4565				      (np->msgin[5]<<8)  + (np->msgin[6]);
4566				sym_modify_dp(np, tp, cp, tmp);
4567				return;
4568			case M_X_SYNC_REQ:
4569				sym_sync_nego(np, tp, cp);
4570				return;
4571			case M_X_PPR_REQ:
4572				sym_ppr_nego(np, tp, cp);
4573				return;
4574			case M_X_WIDE_REQ:
4575				sym_wide_nego(np, tp, cp);
4576				return;
4577			default:
4578				goto out_reject;
4579			}
4580			break;
4581		/*
4582		 *  We received a 1/2 byte message not handled from SCRIPTS.
4583		 *  We are only expecting MESSAGE REJECT and IGNORE WIDE
4584		 *  RESIDUE messages that haven't been anticipated by
4585		 *  SCRIPTS on SWIDE full condition. Unanticipated IGNORE
4586		 *  WIDE RESIDUE messages are aliased as MODIFY DP (-1).
4587		 */
4588		case M_IGN_RESIDUE:
4589			if (DEBUG_FLAGS & DEBUG_POINTER)
4590				sym_print_msg(cp, "1 or 2 byte ", np->msgin);
4591			if (cp->host_flags & HF_SENSE)
4592				OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4593			else
4594				sym_modify_dp(np, tp, cp, -1);
4595			return;
4596		case M_REJECT:
4597			if (INB(np, HS_PRT) == HS_NEGOTIATE)
4598				sym_nego_rejected(np, tp, cp);
4599			else {
4600				sym_print_addr(cp->cmd,
4601					"M_REJECT received (%x:%x).\n",
4602					scr_to_cpu(np->lastmsg), np->msgout[0]);
4603			}
4604			goto out_clrack;
4605			break;
4606		default:
4607			goto out_reject;
4608		}
4609		break;
4610	/*
4611	 *  We received an unknown message.
4612	 *  Ignore all MSG IN phases and reject it.
4613	 */
4614	case SIR_MSG_WEIRD:
4615		sym_print_msg(cp, "WEIRD message received", np->msgin);
4616		OUTL_DSP(np, SCRIPTB_BA(np, msg_weird));
4617		return;
4618	/*
4619	 *  Negotiation failed.
4620	 *  Target does not send us the reply.
4621	 *  Remove the HS_NEGOTIATE status.
4622	 */
4623	case SIR_NEGO_FAILED:
4624		OUTB(np, HS_PRT, HS_BUSY);
4625	/*
4626	 *  Negotiation failed.
4627	 *  Target does not want answer message.
4628	 */
4629	case SIR_NEGO_PROTO:
4630		sym_nego_default(np, tp, cp);
4631		goto out;
4632	}
4633
4634out:
4635	OUTONB_STD();
4636	return;
4637out_reject:
4638	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4639	return;
4640out_clrack:
4641	OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4642	return;
4643out_stuck:
4644	return;
4645}
4646
4647/*
4648 *  Acquire a control block
4649 */
4650struct sym_ccb *sym_get_ccb (struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order)
4651{
4652	u_char tn = cmd->device->id;
4653	u_char ln = cmd->device->lun;
4654	struct sym_tcb *tp = &np->target[tn];
4655	struct sym_lcb *lp = sym_lp(tp, ln);
4656	u_short tag = NO_TAG;
4657	SYM_QUEHEAD *qp;
4658	struct sym_ccb *cp = NULL;
4659
4660	/*
4661	 *  Look for a free CCB
4662	 */
4663	if (sym_que_empty(&np->free_ccbq))
4664		sym_alloc_ccb(np);
4665	qp = sym_remque_head(&np->free_ccbq);
4666	if (!qp)
4667		goto out;
4668	cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4669
4670	{
4671		/*
4672		 *  If we have been asked for a tagged command.
4673		 */
4674		if (tag_order) {
4675			/*
4676			 *  Debugging purpose.
4677			 */
4678#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4679			if (lp->busy_itl != 0)
4680				goto out_free;
4681#endif
4682			/*
4683			 *  Allocate resources for tags if not yet.
4684			 */
4685			if (!lp->cb_tags) {
4686				sym_alloc_lcb_tags(np, tn, ln);
4687				if (!lp->cb_tags)
4688					goto out_free;
4689			}
4690			/*
4691			 *  Get a tag for this SCSI IO and set up
4692			 *  the CCB bus address for reselection,
4693			 *  and count it for this LUN.
4694			 *  Toggle reselect path to tagged.
4695			 */
4696			if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
4697				tag = lp->cb_tags[lp->ia_tag];
4698				if (++lp->ia_tag == SYM_CONF_MAX_TASK)
4699					lp->ia_tag = 0;
4700				++lp->busy_itlq;
4701#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4702				lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
4703				lp->head.resel_sa =
4704					cpu_to_scr(SCRIPTA_BA(np, resel_tag));
4705#endif
4706#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4707				cp->tags_si = lp->tags_si;
4708				++lp->tags_sum[cp->tags_si];
4709				++lp->tags_since;
4710#endif
4711			}
4712			else
4713				goto out_free;
4714		}
4715		/*
4716		 *  This command will not be tagged.
4717		 *  If we already have either a tagged or untagged
4718		 *  one, refuse to overlap this untagged one.
4719		 */
4720		else {
4721			/*
4722			 *  Debugging purpose.
4723			 */
4724#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4725			if (lp->busy_itl != 0 || lp->busy_itlq != 0)
4726				goto out_free;
4727#endif
4728			/*
4729			 *  Count this nexus for this LUN.
4730			 *  Set up the CCB bus address for reselection.
4731			 *  Toggle reselect path to untagged.
4732			 */
4733			++lp->busy_itl;
4734#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4735			if (lp->busy_itl == 1) {
4736				lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
4737				lp->head.resel_sa =
4738				      cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
4739			}
4740			else
4741				goto out_free;
4742#endif
4743		}
4744	}
4745	/*
4746	 *  Put the CCB into the busy queue.
4747	 */
4748	sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4749#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4750	if (lp) {
4751		sym_remque(&cp->link2_ccbq);
4752		sym_insque_tail(&cp->link2_ccbq, &lp->waiting_ccbq);
4753	}
4754
4755#endif
4756	cp->to_abort = 0;
4757	cp->odd_byte_adjustment = 0;
4758	cp->tag	   = tag;
4759	cp->order  = tag_order;
4760	cp->target = tn;
4761	cp->lun    = ln;
4762
4763	if (DEBUG_FLAGS & DEBUG_TAGS) {
4764		sym_print_addr(cmd, "ccb @%p using tag %d.\n", cp, tag);
4765	}
4766
4767out:
4768	return cp;
4769out_free:
4770	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4771	return NULL;
4772}
4773
4774/*
4775 *  Release one control block
4776 */
4777void sym_free_ccb (struct sym_hcb *np, struct sym_ccb *cp)
4778{
4779	struct sym_tcb *tp = &np->target[cp->target];
4780	struct sym_lcb *lp = sym_lp(tp, cp->lun);
4781
4782	if (DEBUG_FLAGS & DEBUG_TAGS) {
4783		sym_print_addr(cp->cmd, "ccb @%p freeing tag %d.\n",
4784				cp, cp->tag);
4785	}
4786
4787	/*
4788	 *  If LCB available,
4789	 */
4790	if (lp) {
4791		/*
4792		 *  If tagged, release the tag, set the relect path
4793		 */
4794		if (cp->tag != NO_TAG) {
4795#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4796			--lp->tags_sum[cp->tags_si];
4797#endif
4798			/*
4799			 *  Free the tag value.
4800			 */
4801			lp->cb_tags[lp->if_tag] = cp->tag;
4802			if (++lp->if_tag == SYM_CONF_MAX_TASK)
4803				lp->if_tag = 0;
4804			/*
4805			 *  Make the reselect path invalid,
4806			 *  and uncount this CCB.
4807			 */
4808			lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
4809			--lp->busy_itlq;
4810		} else {	/* Untagged */
4811			/*
4812			 *  Make the reselect path invalid,
4813			 *  and uncount this CCB.
4814			 */
4815			lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
4816			--lp->busy_itl;
4817		}
4818		/*
4819		 *  If no JOB active, make the LUN reselect path invalid.
4820		 */
4821		if (lp->busy_itlq == 0 && lp->busy_itl == 0)
4822			lp->head.resel_sa =
4823				cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
4824	}
4825
4826	/*
4827	 *  We donnot queue more than 1 ccb per target
4828	 *  with negotiation at any time. If this ccb was
4829	 *  used for negotiation, clear this info in the tcb.
4830	 */
4831	if (cp == tp->nego_cp)
4832		tp->nego_cp = NULL;
4833
4834#ifdef SYM_CONF_IARB_SUPPORT
4835	/*
4836	 *  If we just complete the last queued CCB,
4837	 *  clear this info that is no longer relevant.
4838	 */
4839	if (cp == np->last_cp)
4840		np->last_cp = 0;
4841#endif
4842
4843	/*
4844	 *  Make this CCB available.
4845	 */
4846	cp->cmd = NULL;
4847	cp->host_status = HS_IDLE;
4848	sym_remque(&cp->link_ccbq);
4849	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4850
4851#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4852	if (lp) {
4853		sym_remque(&cp->link2_ccbq);
4854		sym_insque_tail(&cp->link2_ccbq, &np->dummy_ccbq);
4855		if (cp->started) {
4856			if (cp->tag != NO_TAG)
4857				--lp->started_tags;
4858			else
4859				--lp->started_no_tag;
4860		}
4861	}
4862	cp->started = 0;
4863#endif
4864}
4865
4866/*
4867 *  Allocate a CCB from memory and initialize its fixed part.
4868 */
4869static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np)
4870{
4871	struct sym_ccb *cp = NULL;
4872	int hcode;
4873
4874	/*
4875	 *  Prevent from allocating more CCBs than we can
4876	 *  queue to the controller.
4877	 */
4878	if (np->actccbs >= SYM_CONF_MAX_START)
4879		return NULL;
4880
4881	/*
4882	 *  Allocate memory for this CCB.
4883	 */
4884	cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
4885	if (!cp)
4886		goto out_free;
4887
4888	/*
4889	 *  Count it.
4890	 */
4891	np->actccbs++;
4892
4893	/*
4894	 *  Compute the bus address of this ccb.
4895	 */
4896	cp->ccb_ba = vtobus(cp);
4897
4898	/*
4899	 *  Insert this ccb into the hashed list.
4900	 */
4901	hcode = CCB_HASH_CODE(cp->ccb_ba);
4902	cp->link_ccbh = np->ccbh[hcode];
4903	np->ccbh[hcode] = cp;
4904
4905	/*
4906	 *  Initialyze the start and restart actions.
4907	 */
4908	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA(np, idle));
4909	cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
4910
4911 	/*
4912	 *  Initilialyze some other fields.
4913	 */
4914	cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
4915
4916	/*
4917	 *  Chain into free ccb queue.
4918	 */
4919	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4920
4921	/*
4922	 *  Chain into optionnal lists.
4923	 */
4924#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4925	sym_insque_head(&cp->link2_ccbq, &np->dummy_ccbq);
4926#endif
4927	return cp;
4928out_free:
4929	if (cp)
4930		sym_mfree_dma(cp, sizeof(*cp), "CCB");
4931	return NULL;
4932}
4933
4934/*
4935 *  Look up a CCB from a DSA value.
4936 */
4937static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa)
4938{
4939	int hcode;
4940	struct sym_ccb *cp;
4941
4942	hcode = CCB_HASH_CODE(dsa);
4943	cp = np->ccbh[hcode];
4944	while (cp) {
4945		if (cp->ccb_ba == dsa)
4946			break;
4947		cp = cp->link_ccbh;
4948	}
4949
4950	return cp;
4951}
4952
4953/*
4954 *  Target control block initialisation.
4955 *  Nothing important to do at the moment.
4956 */
4957static void sym_init_tcb (struct sym_hcb *np, u_char tn)
4958{
4959#if 0	/*  Hmmm... this checking looks paranoid. */
4960	/*
4961	 *  Check some alignments required by the chip.
4962	 */
4963	assert (((offsetof(struct sym_reg, nc_sxfer) ^
4964		offsetof(struct sym_tcb, head.sval)) &3) == 0);
4965	assert (((offsetof(struct sym_reg, nc_scntl3) ^
4966		offsetof(struct sym_tcb, head.wval)) &3) == 0);
4967#endif
4968}
4969
4970/*
4971 *  Lun control block allocation and initialization.
4972 */
4973struct sym_lcb *sym_alloc_lcb (struct sym_hcb *np, u_char tn, u_char ln)
4974{
4975	struct sym_tcb *tp = &np->target[tn];
4976	struct sym_lcb *lp = NULL;
4977
4978	/*
4979	 *  Initialize the target control block if not yet.
4980	 */
4981	sym_init_tcb (np, tn);
4982
4983	/*
4984	 *  Allocate the LCB bus address array.
4985	 *  Compute the bus address of this table.
4986	 */
4987	if (ln && !tp->luntbl) {
4988		int i;
4989
4990		tp->luntbl = sym_calloc_dma(256, "LUNTBL");
4991		if (!tp->luntbl)
4992			goto fail;
4993		for (i = 0 ; i < 64 ; i++)
4994			tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
4995		tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
4996	}
4997
4998	/*
4999	 *  Allocate the table of pointers for LUN(s) > 0, if needed.
5000	 */
5001	if (ln && !tp->lunmp) {
5002		tp->lunmp = kcalloc(SYM_CONF_MAX_LUN, sizeof(struct sym_lcb *),
5003				GFP_ATOMIC);
5004		if (!tp->lunmp)
5005			goto fail;
5006	}
5007
5008	/*
5009	 *  Allocate the lcb.
5010	 *  Make it available to the chip.
5011	 */
5012	lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
5013	if (!lp)
5014		goto fail;
5015	if (ln) {
5016		tp->lunmp[ln] = lp;
5017		tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
5018	}
5019	else {
5020		tp->lun0p = lp;
5021		tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
5022	}
5023	tp->nlcb++;
5024
5025	/*
5026	 *  Let the itl task point to error handling.
5027	 */
5028	lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
5029
5030	/*
5031	 *  Set the reselect pattern to our default. :)
5032	 */
5033	lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
5034
5035	/*
5036	 *  Set user capabilities.
5037	 */
5038	lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
5039
5040#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5041	/*
5042	 *  Initialize device queueing.
5043	 */
5044	sym_que_init(&lp->waiting_ccbq);
5045	sym_que_init(&lp->started_ccbq);
5046	lp->started_max   = SYM_CONF_MAX_TASK;
5047	lp->started_limit = SYM_CONF_MAX_TASK;
5048#endif
5049
5050fail:
5051	return lp;
5052}
5053
5054/*
5055 *  Allocate LCB resources for tagged command queuing.
5056 */
5057static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln)
5058{
5059	struct sym_tcb *tp = &np->target[tn];
5060	struct sym_lcb *lp = sym_lp(tp, ln);
5061	int i;
5062
5063	/*
5064	 *  Allocate the task table and and the tag allocation
5065	 *  circular buffer. We want both or none.
5066	 */
5067	lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5068	if (!lp->itlq_tbl)
5069		goto fail;
5070	lp->cb_tags = kcalloc(SYM_CONF_MAX_TASK, 1, GFP_ATOMIC);
5071	if (!lp->cb_tags) {
5072		sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5073		lp->itlq_tbl = NULL;
5074		goto fail;
5075	}
5076
5077	/*
5078	 *  Initialize the task table with invalid entries.
5079	 */
5080	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
5081		lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
5082
5083	/*
5084	 *  Fill up the tag buffer with tag numbers.
5085	 */
5086	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
5087		lp->cb_tags[i] = i;
5088
5089	/*
5090	 *  Make the task table available to SCRIPTS,
5091	 *  And accept tagged commands now.
5092	 */
5093	lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
5094
5095	return;
5096fail:
5097	return;
5098}
5099
5100/*
5101 *  Lun control block deallocation. Returns the number of valid remaining LCBs
5102 *  for the target.
5103 */
5104int sym_free_lcb(struct sym_hcb *np, u_char tn, u_char ln)
5105{
5106	struct sym_tcb *tp = &np->target[tn];
5107	struct sym_lcb *lp = sym_lp(tp, ln);
5108
5109	tp->nlcb--;
5110
5111	if (ln) {
5112		if (!tp->nlcb) {
5113			kfree(tp->lunmp);
5114			sym_mfree_dma(tp->luntbl, 256, "LUNTBL");
5115			tp->lunmp = NULL;
5116			tp->luntbl = NULL;
5117			tp->head.luntbl_sa = cpu_to_scr(vtobus(np->badluntbl));
5118		} else {
5119			tp->luntbl[ln] = cpu_to_scr(vtobus(&np->badlun_sa));
5120			tp->lunmp[ln] = NULL;
5121		}
5122	} else {
5123		tp->lun0p = NULL;
5124		tp->head.lun0_sa = cpu_to_scr(vtobus(&np->badlun_sa));
5125	}
5126
5127	if (lp->itlq_tbl) {
5128		sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5129		kfree(lp->cb_tags);
5130	}
5131
5132	sym_mfree_dma(lp, sizeof(*lp), "LCB");
5133
5134	return tp->nlcb;
5135}
5136
5137/*
5138 *  Queue a SCSI IO to the controller.
5139 */
5140int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
5141{
5142	struct scsi_device *sdev = cmd->device;
5143	struct sym_tcb *tp;
5144	struct sym_lcb *lp;
5145	u_char	*msgptr;
5146	u_int   msglen;
5147	int can_disconnect;
5148
5149	/*
5150	 *  Keep track of the IO in our CCB.
5151	 */
5152	cp->cmd = cmd;
5153
5154	/*
5155	 *  Retrieve the target descriptor.
5156	 */
5157	tp = &np->target[cp->target];
5158
5159	/*
5160	 *  Retrieve the lun descriptor.
5161	 */
5162	lp = sym_lp(tp, sdev->lun);
5163
5164	can_disconnect = (cp->tag != NO_TAG) ||
5165		(lp && (lp->curr_flags & SYM_DISC_ENABLED));
5166
5167	msgptr = cp->scsi_smsg;
5168	msglen = 0;
5169	msgptr[msglen++] = IDENTIFY(can_disconnect, sdev->lun);
5170
5171	/*
5172	 *  Build the tag message if present.
5173	 */
5174	if (cp->tag != NO_TAG) {
5175		u_char order = cp->order;
5176
5177		switch(order) {
5178		case M_ORDERED_TAG:
5179			break;
5180		case M_HEAD_TAG:
5181			break;
5182		default:
5183			order = M_SIMPLE_TAG;
5184		}
5185#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
5186		/*
5187		 *  Avoid too much reordering of SCSI commands.
5188		 *  The algorithm tries to prevent completion of any
5189		 *  tagged command from being delayed against more
5190		 *  than 3 times the max number of queued commands.
5191		 */
5192		if (lp && lp->tags_since > 3*SYM_CONF_MAX_TAG) {
5193			lp->tags_si = !(lp->tags_si);
5194			if (lp->tags_sum[lp->tags_si]) {
5195				order = M_ORDERED_TAG;
5196				if ((DEBUG_FLAGS & DEBUG_TAGS)||sym_verbose>1) {
5197					sym_print_addr(cmd,
5198						"ordered tag forced.\n");
5199				}
5200			}
5201			lp->tags_since = 0;
5202		}
5203#endif
5204		msgptr[msglen++] = order;
5205
5206		/*
5207		 *  For less than 128 tags, actual tags are numbered
5208		 *  1,3,5,..2*MAXTAGS+1,since we may have to deal
5209		 *  with devices that have problems with #TAG 0 or too
5210		 *  great #TAG numbers. For more tags (up to 256),
5211		 *  we use directly our tag number.
5212		 */
5213#if SYM_CONF_MAX_TASK > (512/4)
5214		msgptr[msglen++] = cp->tag;
5215#else
5216		msgptr[msglen++] = (cp->tag << 1) + 1;
5217#endif
5218	}
5219
5220	/*
5221	 *  Build a negotiation message if needed.
5222	 *  (nego_status is filled by sym_prepare_nego())
5223	 *
5224	 *  Always negotiate on INQUIRY and REQUEST SENSE.
5225	 *
5226	 */
5227	cp->nego_status = 0;
5228	if ((tp->tgoal.check_nego ||
5229	     cmd->cmnd[0] == INQUIRY || cmd->cmnd[0] == REQUEST_SENSE) &&
5230	    !tp->nego_cp && lp) {
5231		msglen += sym_prepare_nego(np, cp, msgptr + msglen);
5232	}
5233
5234	/*
5235	 *  Startqueue
5236	 */
5237	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA(np, select));
5238	cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA(np, resel_dsa));
5239
5240	/*
5241	 *  select
5242	 */
5243	cp->phys.select.sel_id		= cp->target;
5244	cp->phys.select.sel_scntl3	= tp->head.wval;
5245	cp->phys.select.sel_sxfer	= tp->head.sval;
5246	cp->phys.select.sel_scntl4	= tp->head.uval;
5247
5248	/*
5249	 *  message
5250	 */
5251	cp->phys.smsg.addr	= CCB_BA(cp, scsi_smsg);
5252	cp->phys.smsg.size	= cpu_to_scr(msglen);
5253
5254	/*
5255	 *  status
5256	 */
5257	cp->host_xflags		= 0;
5258	cp->host_status		= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
5259	cp->ssss_status		= S_ILLEGAL;
5260	cp->xerr_status		= 0;
5261	cp->host_flags		= 0;
5262	cp->extra_bytes		= 0;
5263
5264	/*
5265	 *  extreme data pointer.
5266	 *  shall be positive, so -1 is lower than lowest.:)
5267	 */
5268	cp->ext_sg  = -1;
5269	cp->ext_ofs = 0;
5270
5271	/*
5272	 *  Build the CDB and DATA descriptor block
5273	 *  and start the IO.
5274	 */
5275	return sym_setup_data_and_start(np, cmd, cp);
5276}
5277
5278/*
5279 *  Reset a SCSI target (all LUNs of this target).
5280 */
5281int sym_reset_scsi_target(struct sym_hcb *np, int target)
5282{
5283	struct sym_tcb *tp;
5284
5285	if (target == np->myaddr || (u_int)target >= SYM_CONF_MAX_TARGET)
5286		return -1;
5287
5288	tp = &np->target[target];
5289	tp->to_reset = 1;
5290
5291	np->istat_sem = SEM;
5292	OUTB(np, nc_istat, SIGP|SEM);
5293
5294	return 0;
5295}
5296
5297/*
5298 *  Abort a SCSI IO.
5299 */
5300static int sym_abort_ccb(struct sym_hcb *np, struct sym_ccb *cp, int timed_out)
5301{
5302	/*
5303	 *  Check that the IO is active.
5304	 */
5305	if (!cp || !cp->host_status || cp->host_status == HS_WAIT)
5306		return -1;
5307
5308	/*
5309	 *  If a previous abort didn't succeed in time,
5310	 *  perform a BUS reset.
5311	 */
5312	if (cp->to_abort) {
5313		sym_reset_scsi_bus(np, 1);
5314		return 0;
5315	}
5316
5317	/*
5318	 *  Mark the CCB for abort and allow time for.
5319	 */
5320	cp->to_abort = timed_out ? 2 : 1;
5321
5322	/*
5323	 *  Tell the SCRIPTS processor to stop and synchronize with us.
5324	 */
5325	np->istat_sem = SEM;
5326	OUTB(np, nc_istat, SIGP|SEM);
5327	return 0;
5328}
5329
5330int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, int timed_out)
5331{
5332	struct sym_ccb *cp;
5333	SYM_QUEHEAD *qp;
5334
5335	/*
5336	 *  Look up our CCB control block.
5337	 */
5338	cp = NULL;
5339	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5340		struct sym_ccb *cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5341		if (cp2->cmd == cmd) {
5342			cp = cp2;
5343			break;
5344		}
5345	}
5346
5347	return sym_abort_ccb(np, cp, timed_out);
5348}
5349
5350/*
5351 *  Complete execution of a SCSI command with extended
5352 *  error, SCSI status error, or having been auto-sensed.
5353 *
5354 *  The SCRIPTS processor is not running there, so we
5355 *  can safely access IO registers and remove JOBs from
5356 *  the START queue.
5357 *  SCRATCHA is assumed to have been loaded with STARTPOS
5358 *  before the SCRIPTS called the C code.
5359 */
5360void sym_complete_error(struct sym_hcb *np, struct sym_ccb *cp)
5361{
5362	struct scsi_device *sdev;
5363	struct scsi_cmnd *cmd;
5364	struct sym_tcb *tp;
5365	struct sym_lcb *lp;
5366	int resid;
5367	int i;
5368
5369	/*
5370	 *  Paranoid check. :)
5371	 */
5372	if (!cp || !cp->cmd)
5373		return;
5374
5375	cmd = cp->cmd;
5376	sdev = cmd->device;
5377	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
5378		dev_info(&sdev->sdev_gendev, "CCB=%p STAT=%x/%x/%x\n", cp,
5379			cp->host_status, cp->ssss_status, cp->host_flags);
5380	}
5381
5382	/*
5383	 *  Get target and lun pointers.
5384	 */
5385	tp = &np->target[cp->target];
5386	lp = sym_lp(tp, sdev->lun);
5387
5388	/*
5389	 *  Check for extended errors.
5390	 */
5391	if (cp->xerr_status) {
5392		if (sym_verbose)
5393			sym_print_xerr(cmd, cp->xerr_status);
5394		if (cp->host_status == HS_COMPLETE)
5395			cp->host_status = HS_COMP_ERR;
5396	}
5397
5398	/*
5399	 *  Calculate the residual.
5400	 */
5401	resid = sym_compute_residual(np, cp);
5402
5403	if (!SYM_SETUP_RESIDUAL_SUPPORT) {/* If user does not want residuals */
5404		resid  = 0;		 /* throw them away. :)		    */
5405		cp->sv_resid = 0;
5406	}
5407#ifdef DEBUG_2_0_X
5408if (resid)
5409	printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5410#endif
5411
5412	/*
5413	 *  Dequeue all queued CCBs for that device
5414	 *  not yet started by SCRIPTS.
5415	 */
5416	i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
5417	i = sym_dequeue_from_squeue(np, i, cp->target, sdev->lun, -1);
5418
5419	/*
5420	 *  Restart the SCRIPTS processor.
5421	 */
5422	OUTL_DSP(np, SCRIPTA_BA(np, start));
5423
5424#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5425	if (cp->host_status == HS_COMPLETE &&
5426	    cp->ssss_status == S_QUEUE_FULL) {
5427		if (!lp || lp->started_tags - i < 2)
5428			goto weirdness;
5429		/*
5430		 *  Decrease queue depth as needed.
5431		 */
5432		lp->started_max = lp->started_tags - i - 1;
5433		lp->num_sgood = 0;
5434
5435		if (sym_verbose >= 2) {
5436			sym_print_addr(cmd, " queue depth is now %d\n",
5437					lp->started_max);
5438		}
5439
5440		/*
5441		 *  Repair the CCB.
5442		 */
5443		cp->host_status = HS_BUSY;
5444		cp->ssss_status = S_ILLEGAL;
5445
5446		/*
5447		 *  Let's requeue it to device.
5448		 */
5449		sym_set_cam_status(cmd, DID_SOFT_ERROR);
5450		goto finish;
5451	}
5452weirdness:
5453#endif
5454	/*
5455	 *  Build result in CAM ccb.
5456	 */
5457	sym_set_cam_result_error(np, cp, resid);
5458
5459#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5460finish:
5461#endif
5462	/*
5463	 *  Add this one to the COMP queue.
5464	 */
5465	sym_remque(&cp->link_ccbq);
5466	sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
5467
5468	/*
5469	 *  Complete all those commands with either error
5470	 *  or requeue condition.
5471	 */
5472	sym_flush_comp_queue(np, 0);
5473
5474#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5475	/*
5476	 *  Donnot start more than 1 command after an error.
5477	 */
5478	sym_start_next_ccbs(np, lp, 1);
5479#endif
5480}
5481
5482/*
5483 *  Complete execution of a successful SCSI command.
5484 *
5485 *  Only successful commands go to the DONE queue,
5486 *  since we need to have the SCRIPTS processor
5487 *  stopped on any error condition.
5488 *  The SCRIPTS processor is running while we are
5489 *  completing successful commands.
5490 */
5491void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp)
5492{
5493	struct sym_tcb *tp;
5494	struct sym_lcb *lp;
5495	struct scsi_cmnd *cmd;
5496	int resid;
5497
5498	/*
5499	 *  Paranoid check. :)
5500	 */
5501	if (!cp || !cp->cmd)
5502		return;
5503	assert (cp->host_status == HS_COMPLETE);
5504
5505	/*
5506	 *  Get user command.
5507	 */
5508	cmd = cp->cmd;
5509
5510	/*
5511	 *  Get target and lun pointers.
5512	 */
5513	tp = &np->target[cp->target];
5514	lp = sym_lp(tp, cp->lun);
5515
5516	/*
5517	 *  If all data have been transferred, given than no
5518	 *  extended error did occur, there is no residual.
5519	 */
5520	resid = 0;
5521	if (cp->phys.head.lastp != cp->goalp)
5522		resid = sym_compute_residual(np, cp);
5523
5524	/*
5525	 *  Wrong transfer residuals may be worse than just always
5526	 *  returning zero. User can disable this feature in
5527	 *  sym53c8xx.h. Residual support is enabled by default.
5528	 */
5529	if (!SYM_SETUP_RESIDUAL_SUPPORT)
5530		resid  = 0;
5531#ifdef DEBUG_2_0_X
5532if (resid)
5533	printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5534#endif
5535
5536	/*
5537	 *  Build result in CAM ccb.
5538	 */
5539	sym_set_cam_result_ok(cp, cmd, resid);
5540
5541#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5542	/*
5543	 *  If max number of started ccbs had been reduced,
5544	 *  increase it if 200 good status received.
5545	 */
5546	if (lp && lp->started_max < lp->started_limit) {
5547		++lp->num_sgood;
5548		if (lp->num_sgood >= 200) {
5549			lp->num_sgood = 0;
5550			++lp->started_max;
5551			if (sym_verbose >= 2) {
5552				sym_print_addr(cmd, " queue depth is now %d\n",
5553				       lp->started_max);
5554			}
5555		}
5556	}
5557#endif
5558
5559	/*
5560	 *  Free our CCB.
5561	 */
5562	sym_free_ccb (np, cp);
5563
5564#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5565	/*
5566	 *  Requeue a couple of awaiting scsi commands.
5567	 */
5568	if (!sym_que_empty(&lp->waiting_ccbq))
5569		sym_start_next_ccbs(np, lp, 2);
5570#endif
5571	/*
5572	 *  Complete the command.
5573	 */
5574	sym_xpt_done(np, cmd);
5575}
5576
5577/*
5578 *  Soft-attach the controller.
5579 */
5580int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram)
5581{
5582	struct sym_hcb *np = sym_get_hcb(shost);
5583	int i;
5584
5585	/*
5586	 *  Get some info about the firmware.
5587	 */
5588	np->scripta_sz	 = fw->a_size;
5589	np->scriptb_sz	 = fw->b_size;
5590	np->scriptz_sz	 = fw->z_size;
5591	np->fw_setup	 = fw->setup;
5592	np->fw_patch	 = fw->patch;
5593	np->fw_name	 = fw->name;
5594
5595	/*
5596	 *  Save setting of some IO registers, so we will
5597	 *  be able to probe specific implementations.
5598	 */
5599	sym_save_initial_setting (np);
5600
5601	/*
5602	 *  Reset the chip now, since it has been reported
5603	 *  that SCSI clock calibration may not work properly
5604	 *  if the chip is currently active.
5605	 */
5606	sym_chip_reset(np);
5607
5608	/*
5609	 *  Prepare controller and devices settings, according
5610	 *  to chip features, user set-up and driver set-up.
5611	 */
5612	sym_prepare_setting(shost, np, nvram);
5613
5614	/*
5615	 *  Check the PCI clock frequency.
5616	 *  Must be performed after prepare_setting since it destroys
5617	 *  STEST1 that is used to probe for the clock doubler.
5618	 */
5619	i = sym_getpciclock(np);
5620	if (i > 37000 && !(np->features & FE_66MHZ))
5621		printf("%s: PCI BUS clock seems too high: %u KHz.\n",
5622			sym_name(np), i);
5623
5624	/*
5625	 *  Allocate the start queue.
5626	 */
5627	np->squeue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
5628	if (!np->squeue)
5629		goto attach_failed;
5630	np->squeue_ba = vtobus(np->squeue);
5631
5632	/*
5633	 *  Allocate the done queue.
5634	 */
5635	np->dqueue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
5636	if (!np->dqueue)
5637		goto attach_failed;
5638	np->dqueue_ba = vtobus(np->dqueue);
5639
5640	/*
5641	 *  Allocate the target bus address array.
5642	 */
5643	np->targtbl = sym_calloc_dma(256, "TARGTBL");
5644	if (!np->targtbl)
5645		goto attach_failed;
5646	np->targtbl_ba = vtobus(np->targtbl);
5647
5648	/*
5649	 *  Allocate SCRIPTS areas.
5650	 */
5651	np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
5652	np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
5653	np->scriptz0 = sym_calloc_dma(np->scriptz_sz, "SCRIPTZ0");
5654	if (!np->scripta0 || !np->scriptb0 || !np->scriptz0)
5655		goto attach_failed;
5656
5657	/*
5658	 *  Allocate the array of lists of CCBs hashed by DSA.
5659	 */
5660	np->ccbh = kcalloc(CCB_HASH_SIZE, sizeof(struct sym_ccb **), GFP_KERNEL);
5661	if (!np->ccbh)
5662		goto attach_failed;
5663
5664	/*
5665	 *  Initialyze the CCB free and busy queues.
5666	 */
5667	sym_que_init(&np->free_ccbq);
5668	sym_que_init(&np->busy_ccbq);
5669	sym_que_init(&np->comp_ccbq);
5670
5671	/*
5672	 *  Initialization for optional handling
5673	 *  of device queueing.
5674	 */
5675#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5676	sym_que_init(&np->dummy_ccbq);
5677#endif
5678	/*
5679	 *  Allocate some CCB. We need at least ONE.
5680	 */
5681	if (!sym_alloc_ccb(np))
5682		goto attach_failed;
5683
5684	/*
5685	 *  Calculate BUS addresses where we are going
5686	 *  to load the SCRIPTS.
5687	 */
5688	np->scripta_ba	= vtobus(np->scripta0);
5689	np->scriptb_ba	= vtobus(np->scriptb0);
5690	np->scriptz_ba	= vtobus(np->scriptz0);
5691
5692	if (np->ram_ba) {
5693		np->scripta_ba = np->ram_ba;
5694		if (np->features & FE_RAM8K) {
5695			np->scriptb_ba = np->scripta_ba + 4096;
5696#if 0	/* May get useful for 64 BIT PCI addressing */
5697			np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
5698#endif
5699		}
5700	}
5701
5702	/*
5703	 *  Copy scripts to controller instance.
5704	 */
5705	memcpy(np->scripta0, fw->a_base, np->scripta_sz);
5706	memcpy(np->scriptb0, fw->b_base, np->scriptb_sz);
5707	memcpy(np->scriptz0, fw->z_base, np->scriptz_sz);
5708
5709	/*
5710	 *  Setup variable parts in scripts and compute
5711	 *  scripts bus addresses used from the C code.
5712	 */
5713	np->fw_setup(np, fw);
5714
5715	/*
5716	 *  Bind SCRIPTS with physical addresses usable by the
5717	 *  SCRIPTS processor (as seen from the BUS = BUS addresses).
5718	 */
5719	sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
5720	sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
5721	sym_fw_bind_script(np, (u32 *) np->scriptz0, np->scriptz_sz);
5722
5723#ifdef SYM_CONF_IARB_SUPPORT
5724	/*
5725	 *    If user wants IARB to be set when we win arbitration
5726	 *    and have other jobs, compute the max number of consecutive
5727	 *    settings of IARB hints before we leave devices a chance to
5728	 *    arbitrate for reselection.
5729	 */
5730#ifdef	SYM_SETUP_IARB_MAX
5731	np->iarb_max = SYM_SETUP_IARB_MAX;
5732#else
5733	np->iarb_max = 4;
5734#endif
5735#endif
5736
5737	/*
5738	 *  Prepare the idle and invalid task actions.
5739	 */
5740	np->idletask.start	= cpu_to_scr(SCRIPTA_BA(np, idle));
5741	np->idletask.restart	= cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5742	np->idletask_ba		= vtobus(&np->idletask);
5743
5744	np->notask.start	= cpu_to_scr(SCRIPTA_BA(np, idle));
5745	np->notask.restart	= cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5746	np->notask_ba		= vtobus(&np->notask);
5747
5748	np->bad_itl.start	= cpu_to_scr(SCRIPTA_BA(np, idle));
5749	np->bad_itl.restart	= cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5750	np->bad_itl_ba		= vtobus(&np->bad_itl);
5751
5752	np->bad_itlq.start	= cpu_to_scr(SCRIPTA_BA(np, idle));
5753	np->bad_itlq.restart	= cpu_to_scr(SCRIPTB_BA(np,bad_i_t_l_q));
5754	np->bad_itlq_ba		= vtobus(&np->bad_itlq);
5755
5756	/*
5757	 *  Allocate and prepare the lun JUMP table that is used
5758	 *  for a target prior the probing of devices (bad lun table).
5759	 *  A private table will be allocated for the target on the
5760	 *  first INQUIRY response received.
5761	 */
5762	np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
5763	if (!np->badluntbl)
5764		goto attach_failed;
5765
5766	np->badlun_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
5767	for (i = 0 ; i < 64 ; i++)	/* 64 luns/target, no less */
5768		np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
5769
5770	/*
5771	 *  Prepare the bus address array that contains the bus
5772	 *  address of each target control block.
5773	 *  For now, assume all logical units are wrong. :)
5774	 */
5775	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
5776		np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
5777		np->target[i].head.luntbl_sa =
5778				cpu_to_scr(vtobus(np->badluntbl));
5779		np->target[i].head.lun0_sa =
5780				cpu_to_scr(vtobus(&np->badlun_sa));
5781	}
5782
5783	/*
5784	 *  Now check the cache handling of the pci chipset.
5785	 */
5786	if (sym_snooptest (np)) {
5787		printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np));
5788		goto attach_failed;
5789	}
5790
5791	/*
5792	 *  Sigh! we are done.
5793	 */
5794	return 0;
5795
5796attach_failed:
5797	return -ENXIO;
5798}
5799
5800/*
5801 *  Free everything that has been allocated for this device.
5802 */
5803void sym_hcb_free(struct sym_hcb *np)
5804{
5805	SYM_QUEHEAD *qp;
5806	struct sym_ccb *cp;
5807	struct sym_tcb *tp;
5808	int target;
5809
5810	if (np->scriptz0)
5811		sym_mfree_dma(np->scriptz0, np->scriptz_sz, "SCRIPTZ0");
5812	if (np->scriptb0)
5813		sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
5814	if (np->scripta0)
5815		sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
5816	if (np->squeue)
5817		sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
5818	if (np->dqueue)
5819		sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
5820
5821	if (np->actccbs) {
5822		while ((qp = sym_remque_head(&np->free_ccbq)) != NULL) {
5823			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5824			sym_mfree_dma(cp, sizeof(*cp), "CCB");
5825		}
5826	}
5827	kfree(np->ccbh);
5828
5829	if (np->badluntbl)
5830		sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
5831
5832	for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
5833		tp = &np->target[target];
5834		if (tp->luntbl)
5835			sym_mfree_dma(tp->luntbl, 256, "LUNTBL");
5836#if SYM_CONF_MAX_LUN > 1
5837		kfree(tp->lunmp);
5838#endif
5839	}
5840	if (np->targtbl)
5841		sym_mfree_dma(np->targtbl, 256, "TARGTBL");
5842}
5843