1/******************************************************************************
2**  Device driver for the PCI-SCSI NCR538XX controller family.
3**
4**  Copyright (C) 1994  Wolfgang Stanglmeier
5**
6**  This program is free software; you can redistribute it and/or modify
7**  it under the terms of the GNU General Public License as published by
8**  the Free Software Foundation; either version 2 of the License, or
9**  (at your option) any later version.
10**
11**  This program is distributed in the hope that it will be useful,
12**  but WITHOUT ANY WARRANTY; without even the implied warranty of
13**  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14**  GNU General Public License for more details.
15**
16**  You should have received a copy of the GNU General Public License
17**  along with this program; if not, write to the Free Software
18**  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19**
20**-----------------------------------------------------------------------------
21**
22**  This driver has been ported to Linux from the FreeBSD NCR53C8XX driver
23**  and is currently maintained by
24**
25**          Gerard Roudier              <groudier@free.fr>
26**
27**  Being given that this driver originates from the FreeBSD version, and
28**  in order to keep synergy on both, any suggested enhancements and corrections
29**  received on Linux are automatically a potential candidate for the FreeBSD
30**  version.
31**
32**  The original driver has been written for 386bsd and FreeBSD by
33**          Wolfgang Stanglmeier        <wolf@cologne.de>
34**          Stefan Esser                <se@mi.Uni-Koeln.de>
35**
36**  And has been ported to NetBSD by
37**          Charles M. Hannum           <mycroft@gnu.ai.mit.edu>
38**
39**-----------------------------------------------------------------------------
40**
41**                     Brief history
42**
43**  December 10 1995 by Gerard Roudier:
44**     Initial port to Linux.
45**
46**  June 23 1996 by Gerard Roudier:
47**     Support for 64 bits architectures (Alpha).
48**
49**  November 30 1996 by Gerard Roudier:
50**     Support for Fast-20 scsi.
51**     Support for large DMA fifo and 128 dwords bursting.
52**
53**  February 27 1997 by Gerard Roudier:
54**     Support for Fast-40 scsi.
55**     Support for on-Board RAM.
56**
57**  May 3 1997 by Gerard Roudier:
58**     Full support for scsi scripts instructions pre-fetching.
59**
60**  May 19 1997 by Richard Waltham <dormouse@farsrobt.demon.co.uk>:
61**     Support for NvRAM detection and reading.
62**
63**  August 18 1997 by Cort <cort@cs.nmt.edu>:
64**     Support for Power/PC (Big Endian).
65**
66**  June 20 1998 by Gerard Roudier
67**     Support for up to 64 tags per lun.
68**     O(1) everywhere (C and SCRIPTS) for normal cases.
69**     Low PCI traffic for command handling when on-chip RAM is present.
70**     Aggressive SCSI SCRIPTS optimizations.
71**
72**  2005 by Matthew Wilcox and James Bottomley
73**     PCI-ectomy.  This driver now supports only the 720 chip (see the
74**     NCR_Q720 and zalon drivers for the bus probe logic).
75**
76*******************************************************************************
77*/
78
79/*
80**	Supported SCSI-II features:
81**	    Synchronous negotiation
82**	    Wide negotiation        (depends on the NCR Chip)
83**	    Enable disconnection
84**	    Tagged command queuing
85**	    Parity checking
86**	    Etc...
87**
88**	Supported NCR/SYMBIOS chips:
89**		53C720		(Wide,   Fast SCSI-2, intfly problems)
90*/
91
92/* Name and version of the driver */
93#define SCSI_NCR_DRIVER_NAME	"ncr53c8xx-3.4.3g"
94
95#define SCSI_NCR_DEBUG_FLAGS	(0)
96
97#include <linux/blkdev.h>
98#include <linux/delay.h>
99#include <linux/dma-mapping.h>
100#include <linux/errno.h>
101#include <linux/gfp.h>
102#include <linux/init.h>
103#include <linux/interrupt.h>
104#include <linux/ioport.h>
105#include <linux/mm.h>
106#include <linux/module.h>
107#include <linux/sched.h>
108#include <linux/signal.h>
109#include <linux/spinlock.h>
110#include <linux/stat.h>
111#include <linux/string.h>
112#include <linux/time.h>
113#include <linux/timer.h>
114#include <linux/types.h>
115
116#include <asm/dma.h>
117#include <asm/io.h>
118
119#include <scsi/scsi.h>
120#include <scsi/scsi_cmnd.h>
121#include <scsi/scsi_dbg.h>
122#include <scsi/scsi_device.h>
123#include <scsi/scsi_tcq.h>
124#include <scsi/scsi_transport.h>
125#include <scsi/scsi_transport_spi.h>
126
127#include "ncr53c8xx.h"
128
129#define NAME53C8XX		"ncr53c8xx"
130
131/*==========================================================
132**
133**	Debugging tags
134**
135**==========================================================
136*/
137
138#define DEBUG_ALLOC    (0x0001)
139#define DEBUG_PHASE    (0x0002)
140#define DEBUG_QUEUE    (0x0008)
141#define DEBUG_RESULT   (0x0010)
142#define DEBUG_POINTER  (0x0020)
143#define DEBUG_SCRIPT   (0x0040)
144#define DEBUG_TINY     (0x0080)
145#define DEBUG_TIMING   (0x0100)
146#define DEBUG_NEGO     (0x0200)
147#define DEBUG_TAGS     (0x0400)
148#define DEBUG_SCATTER  (0x0800)
149#define DEBUG_IC        (0x1000)
150
151/*
152**    Enable/Disable debug messages.
153**    Can be changed at runtime too.
154*/
155
156#ifdef SCSI_NCR_DEBUG_INFO_SUPPORT
157static int ncr_debug = SCSI_NCR_DEBUG_FLAGS;
158	#define DEBUG_FLAGS ncr_debug
159#else
160	#define DEBUG_FLAGS	SCSI_NCR_DEBUG_FLAGS
161#endif
162
163static inline struct list_head *ncr_list_pop(struct list_head *head)
164{
165	if (!list_empty(head)) {
166		struct list_head *elem = head->next;
167
168		list_del(elem);
169		return elem;
170	}
171
172	return NULL;
173}
174
175/*==========================================================
176**
177**	Simple power of two buddy-like allocator.
178**
179**	This simple code is not intended to be fast, but to
180**	provide power of 2 aligned memory allocations.
181**	Since the SCRIPTS processor only supplies 8 bit
182**	arithmetic, this allocator allows simple and fast
183**	address calculations  from the SCRIPTS code.
184**	In addition, cache line alignment is guaranteed for
185**	power of 2 cache line size.
186**	Enhanced in linux-2.3.44 to provide a memory pool
187**	per pcidev to support dynamic dma mapping. (I would
188**	have preferred a real bus abstraction, btw).
189**
190**==========================================================
191*/
192
193#define MEMO_SHIFT	4	/* 16 bytes minimum memory chunk */
194#if PAGE_SIZE >= 8192
195#define MEMO_PAGE_ORDER	0	/* 1 PAGE  maximum */
196#else
197#define MEMO_PAGE_ORDER	1	/* 2 PAGES maximum */
198#endif
199#define MEMO_FREE_UNUSED	/* Free unused pages immediately */
200#define MEMO_WARN	1
201#define MEMO_GFP_FLAGS	GFP_ATOMIC
202#define MEMO_CLUSTER_SHIFT	(PAGE_SHIFT+MEMO_PAGE_ORDER)
203#define MEMO_CLUSTER_SIZE	(1UL << MEMO_CLUSTER_SHIFT)
204#define MEMO_CLUSTER_MASK	(MEMO_CLUSTER_SIZE-1)
205
206typedef u_long m_addr_t;	/* Enough bits to bit-hack addresses */
207typedef struct device *m_bush_t;	/* Something that addresses DMAable */
208
209typedef struct m_link {		/* Link between free memory chunks */
210	struct m_link *next;
211} m_link_s;
212
213typedef struct m_vtob {		/* Virtual to Bus address translation */
214	struct m_vtob *next;
215	m_addr_t vaddr;
216	m_addr_t baddr;
217} m_vtob_s;
218#define VTOB_HASH_SHIFT		5
219#define VTOB_HASH_SIZE		(1UL << VTOB_HASH_SHIFT)
220#define VTOB_HASH_MASK		(VTOB_HASH_SIZE-1)
221#define VTOB_HASH_CODE(m)	\
222	((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK)
223
224typedef struct m_pool {		/* Memory pool of a given kind */
225	m_bush_t bush;
226	m_addr_t (*getp)(struct m_pool *);
227	void (*freep)(struct m_pool *, m_addr_t);
228	int nump;
229	m_vtob_s *(vtob[VTOB_HASH_SIZE]);
230	struct m_pool *next;
231	struct m_link h[PAGE_SHIFT-MEMO_SHIFT+MEMO_PAGE_ORDER+1];
232} m_pool_s;
233
234static void *___m_alloc(m_pool_s *mp, int size)
235{
236	int i = 0;
237	int s = (1 << MEMO_SHIFT);
238	int j;
239	m_addr_t a;
240	m_link_s *h = mp->h;
241
242	if (size > (PAGE_SIZE << MEMO_PAGE_ORDER))
243		return NULL;
244
245	while (size > s) {
246		s <<= 1;
247		++i;
248	}
249
250	j = i;
251	while (!h[j].next) {
252		if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) {
253			h[j].next = (m_link_s *)mp->getp(mp);
254			if (h[j].next)
255				h[j].next->next = NULL;
256			break;
257		}
258		++j;
259		s <<= 1;
260	}
261	a = (m_addr_t) h[j].next;
262	if (a) {
263		h[j].next = h[j].next->next;
264		while (j > i) {
265			j -= 1;
266			s >>= 1;
267			h[j].next = (m_link_s *) (a+s);
268			h[j].next->next = NULL;
269		}
270	}
271#ifdef DEBUG
272	printk("___m_alloc(%d) = %p\n", size, (void *) a);
273#endif
274	return (void *) a;
275}
276
277static void ___m_free(m_pool_s *mp, void *ptr, int size)
278{
279	int i = 0;
280	int s = (1 << MEMO_SHIFT);
281	m_link_s *q;
282	m_addr_t a, b;
283	m_link_s *h = mp->h;
284
285#ifdef DEBUG
286	printk("___m_free(%p, %d)\n", ptr, size);
287#endif
288
289	if (size > (PAGE_SIZE << MEMO_PAGE_ORDER))
290		return;
291
292	while (size > s) {
293		s <<= 1;
294		++i;
295	}
296
297	a = (m_addr_t) ptr;
298
299	while (1) {
300#ifdef MEMO_FREE_UNUSED
301		if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) {
302			mp->freep(mp, a);
303			break;
304		}
305#endif
306		b = a ^ s;
307		q = &h[i];
308		while (q->next && q->next != (m_link_s *) b) {
309			q = q->next;
310		}
311		if (!q->next) {
312			((m_link_s *) a)->next = h[i].next;
313			h[i].next = (m_link_s *) a;
314			break;
315		}
316		q->next = q->next->next;
317		a = a & b;
318		s <<= 1;
319		++i;
320	}
321}
322
323static DEFINE_SPINLOCK(ncr53c8xx_lock);
324
325static void *__m_calloc2(m_pool_s *mp, int size, char *name, int uflags)
326{
327	void *p;
328
329	p = ___m_alloc(mp, size);
330
331	if (DEBUG_FLAGS & DEBUG_ALLOC)
332		printk ("new %-10s[%4d] @%p.\n", name, size, p);
333
334	if (p)
335		memset(p, 0, size);
336	else if (uflags & MEMO_WARN)
337		printk (NAME53C8XX ": failed to allocate %s[%d]\n", name, size);
338
339	return p;
340}
341
342#define __m_calloc(mp, s, n)	__m_calloc2(mp, s, n, MEMO_WARN)
343
344static void __m_free(m_pool_s *mp, void *ptr, int size, char *name)
345{
346	if (DEBUG_FLAGS & DEBUG_ALLOC)
347		printk ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
348
349	___m_free(mp, ptr, size);
350
351}
352
353/*
354 * With pci bus iommu support, we use a default pool of unmapped memory
355 * for memory we donnot need to DMA from/to and one pool per pcidev for
356 * memory accessed by the PCI chip. `mp0' is the default not DMAable pool.
357 */
358
359static m_addr_t ___mp0_getp(m_pool_s *mp)
360{
361	m_addr_t m = __get_free_pages(MEMO_GFP_FLAGS, MEMO_PAGE_ORDER);
362	if (m)
363		++mp->nump;
364	return m;
365}
366
367static void ___mp0_freep(m_pool_s *mp, m_addr_t m)
368{
369	free_pages(m, MEMO_PAGE_ORDER);
370	--mp->nump;
371}
372
373static m_pool_s mp0 = {NULL, ___mp0_getp, ___mp0_freep};
374
375/*
376 * DMAable pools.
377 */
378
379/*
380 * With pci bus iommu support, we maintain one pool per pcidev and a
381 * hashed reverse table for virtual to bus physical address translations.
382 */
383static m_addr_t ___dma_getp(m_pool_s *mp)
384{
385	m_addr_t vp;
386	m_vtob_s *vbp;
387
388	vbp = __m_calloc(&mp0, sizeof(*vbp), "VTOB");
389	if (vbp) {
390		dma_addr_t daddr;
391		vp = (m_addr_t) dma_alloc_coherent(mp->bush,
392						PAGE_SIZE<<MEMO_PAGE_ORDER,
393						&daddr, GFP_ATOMIC);
394		if (vp) {
395			int hc = VTOB_HASH_CODE(vp);
396			vbp->vaddr = vp;
397			vbp->baddr = daddr;
398			vbp->next = mp->vtob[hc];
399			mp->vtob[hc] = vbp;
400			++mp->nump;
401			return vp;
402		}
403	}
404	if (vbp)
405		__m_free(&mp0, vbp, sizeof(*vbp), "VTOB");
406	return 0;
407}
408
409static void ___dma_freep(m_pool_s *mp, m_addr_t m)
410{
411	m_vtob_s **vbpp, *vbp;
412	int hc = VTOB_HASH_CODE(m);
413
414	vbpp = &mp->vtob[hc];
415	while (*vbpp && (*vbpp)->vaddr != m)
416		vbpp = &(*vbpp)->next;
417	if (*vbpp) {
418		vbp = *vbpp;
419		*vbpp = (*vbpp)->next;
420		dma_free_coherent(mp->bush, PAGE_SIZE<<MEMO_PAGE_ORDER,
421				  (void *)vbp->vaddr, (dma_addr_t)vbp->baddr);
422		__m_free(&mp0, vbp, sizeof(*vbp), "VTOB");
423		--mp->nump;
424	}
425}
426
427static inline m_pool_s *___get_dma_pool(m_bush_t bush)
428{
429	m_pool_s *mp;
430	for (mp = mp0.next; mp && mp->bush != bush; mp = mp->next);
431	return mp;
432}
433
434static m_pool_s *___cre_dma_pool(m_bush_t bush)
435{
436	m_pool_s *mp;
437	mp = __m_calloc(&mp0, sizeof(*mp), "MPOOL");
438	if (mp) {
439		memset(mp, 0, sizeof(*mp));
440		mp->bush = bush;
441		mp->getp = ___dma_getp;
442		mp->freep = ___dma_freep;
443		mp->next = mp0.next;
444		mp0.next = mp;
445	}
446	return mp;
447}
448
449static void ___del_dma_pool(m_pool_s *p)
450{
451	struct m_pool **pp = &mp0.next;
452
453	while (*pp && *pp != p)
454		pp = &(*pp)->next;
455	if (*pp) {
456		*pp = (*pp)->next;
457		__m_free(&mp0, p, sizeof(*p), "MPOOL");
458	}
459}
460
461static void *__m_calloc_dma(m_bush_t bush, int size, char *name)
462{
463	u_long flags;
464	struct m_pool *mp;
465	void *m = NULL;
466
467	spin_lock_irqsave(&ncr53c8xx_lock, flags);
468	mp = ___get_dma_pool(bush);
469	if (!mp)
470		mp = ___cre_dma_pool(bush);
471	if (mp)
472		m = __m_calloc(mp, size, name);
473	if (mp && !mp->nump)
474		___del_dma_pool(mp);
475	spin_unlock_irqrestore(&ncr53c8xx_lock, flags);
476
477	return m;
478}
479
480static void __m_free_dma(m_bush_t bush, void *m, int size, char *name)
481{
482	u_long flags;
483	struct m_pool *mp;
484
485	spin_lock_irqsave(&ncr53c8xx_lock, flags);
486	mp = ___get_dma_pool(bush);
487	if (mp)
488		__m_free(mp, m, size, name);
489	if (mp && !mp->nump)
490		___del_dma_pool(mp);
491	spin_unlock_irqrestore(&ncr53c8xx_lock, flags);
492}
493
494static m_addr_t __vtobus(m_bush_t bush, void *m)
495{
496	u_long flags;
497	m_pool_s *mp;
498	int hc = VTOB_HASH_CODE(m);
499	m_vtob_s *vp = NULL;
500	m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK;
501
502	spin_lock_irqsave(&ncr53c8xx_lock, flags);
503	mp = ___get_dma_pool(bush);
504	if (mp) {
505		vp = mp->vtob[hc];
506		while (vp && (m_addr_t) vp->vaddr != a)
507			vp = vp->next;
508	}
509	spin_unlock_irqrestore(&ncr53c8xx_lock, flags);
510	return vp ? vp->baddr + (((m_addr_t) m) - a) : 0;
511}
512
513#define _m_calloc_dma(np, s, n)		__m_calloc_dma(np->dev, s, n)
514#define _m_free_dma(np, p, s, n)	__m_free_dma(np->dev, p, s, n)
515#define m_calloc_dma(s, n)		_m_calloc_dma(np, s, n)
516#define m_free_dma(p, s, n)		_m_free_dma(np, p, s, n)
517#define _vtobus(np, p)			__vtobus(np->dev, p)
518#define vtobus(p)			_vtobus(np, p)
519
520/*
521 *  Deal with DMA mapping/unmapping.
522 */
523
524/* To keep track of the dma mapping (sg/single) that has been set */
525#define __data_mapped	SCp.phase
526#define __data_mapping	SCp.have_data_in
527
528static void __unmap_scsi_data(struct device *dev, struct scsi_cmnd *cmd)
529{
530	switch(cmd->__data_mapped) {
531	case 2:
532		scsi_dma_unmap(cmd);
533		break;
534	}
535	cmd->__data_mapped = 0;
536}
537
538static int __map_scsi_sg_data(struct device *dev, struct scsi_cmnd *cmd)
539{
540	int use_sg;
541
542	use_sg = scsi_dma_map(cmd);
543	if (!use_sg)
544		return 0;
545
546	cmd->__data_mapped = 2;
547	cmd->__data_mapping = use_sg;
548
549	return use_sg;
550}
551
552#define unmap_scsi_data(np, cmd)	__unmap_scsi_data(np->dev, cmd)
553#define map_scsi_sg_data(np, cmd)	__map_scsi_sg_data(np->dev, cmd)
554
555/*==========================================================
556**
557**	Driver setup.
558**
559**	This structure is initialized from linux config
560**	options. It can be overridden at boot-up by the boot
561**	command line.
562**
563**==========================================================
564*/
565static struct ncr_driver_setup
566	driver_setup			= SCSI_NCR_DRIVER_SETUP;
567
568#ifndef MODULE
569#ifdef	SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT
570static struct ncr_driver_setup
571	driver_safe_setup __initdata	= SCSI_NCR_DRIVER_SAFE_SETUP;
572#endif
573#endif /* !MODULE */
574
575#define initverbose (driver_setup.verbose)
576#define bootverbose (np->verbose)
577
578
579/*===================================================================
580**
581**	Driver setup from the boot command line
582**
583**===================================================================
584*/
585
586#ifdef MODULE
587#define	ARG_SEP	' '
588#else
589#define	ARG_SEP	','
590#endif
591
592#define OPT_TAGS		1
593#define OPT_MASTER_PARITY	2
594#define OPT_SCSI_PARITY		3
595#define OPT_DISCONNECTION	4
596#define OPT_SPECIAL_FEATURES	5
597#define OPT_UNUSED_1		6
598#define OPT_FORCE_SYNC_NEGO	7
599#define OPT_REVERSE_PROBE	8
600#define OPT_DEFAULT_SYNC	9
601#define OPT_VERBOSE		10
602#define OPT_DEBUG		11
603#define OPT_BURST_MAX		12
604#define OPT_LED_PIN		13
605#define OPT_MAX_WIDE		14
606#define OPT_SETTLE_DELAY	15
607#define OPT_DIFF_SUPPORT	16
608#define OPT_IRQM		17
609#define OPT_PCI_FIX_UP		18
610#define OPT_BUS_CHECK		19
611#define OPT_OPTIMIZE		20
612#define OPT_RECOVERY		21
613#define OPT_SAFE_SETUP		22
614#define OPT_USE_NVRAM		23
615#define OPT_EXCLUDE		24
616#define OPT_HOST_ID		25
617
618#ifdef SCSI_NCR_IARB_SUPPORT
619#define OPT_IARB		26
620#endif
621
622#ifdef MODULE
623#define	ARG_SEP	' '
624#else
625#define	ARG_SEP	','
626#endif
627
628#ifndef MODULE
629static char setup_token[] __initdata =
630	"tags:"   "mpar:"
631	"spar:"   "disc:"
632	"specf:"  "ultra:"
633	"fsn:"    "revprob:"
634	"sync:"   "verb:"
635	"debug:"  "burst:"
636	"led:"    "wide:"
637	"settle:" "diff:"
638	"irqm:"   "pcifix:"
639	"buschk:" "optim:"
640	"recovery:"
641	"safe:"   "nvram:"
642	"excl:"   "hostid:"
643#ifdef SCSI_NCR_IARB_SUPPORT
644	"iarb:"
645#endif
646	;	/* DONNOT REMOVE THIS ';' */
647
648static int __init get_setup_token(char *p)
649{
650	char *cur = setup_token;
651	char *pc;
652	int i = 0;
653
654	while (cur != NULL && (pc = strchr(cur, ':')) != NULL) {
655		++pc;
656		++i;
657		if (!strncmp(p, cur, pc - cur))
658			return i;
659		cur = pc;
660	}
661	return 0;
662}
663
664static int __init sym53c8xx__setup(char *str)
665{
666#ifdef SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT
667	char *cur = str;
668	char *pc, *pv;
669	int i, val, c;
670	int xi = 0;
671
672	while (cur != NULL && (pc = strchr(cur, ':')) != NULL) {
673		char *pe;
674
675		val = 0;
676		pv = pc;
677		c = *++pv;
678
679		if	(c == 'n')
680			val = 0;
681		else if	(c == 'y')
682			val = 1;
683		else
684			val = (int) simple_strtoul(pv, &pe, 0);
685
686		switch (get_setup_token(cur)) {
687		case OPT_TAGS:
688			driver_setup.default_tags = val;
689			if (pe && *pe == '/') {
690				i = 0;
691				while (*pe && *pe != ARG_SEP &&
692					i < sizeof(driver_setup.tag_ctrl)-1) {
693					driver_setup.tag_ctrl[i++] = *pe++;
694				}
695				driver_setup.tag_ctrl[i] = '\0';
696			}
697			break;
698		case OPT_MASTER_PARITY:
699			driver_setup.master_parity = val;
700			break;
701		case OPT_SCSI_PARITY:
702			driver_setup.scsi_parity = val;
703			break;
704		case OPT_DISCONNECTION:
705			driver_setup.disconnection = val;
706			break;
707		case OPT_SPECIAL_FEATURES:
708			driver_setup.special_features = val;
709			break;
710		case OPT_FORCE_SYNC_NEGO:
711			driver_setup.force_sync_nego = val;
712			break;
713		case OPT_REVERSE_PROBE:
714			driver_setup.reverse_probe = val;
715			break;
716		case OPT_DEFAULT_SYNC:
717			driver_setup.default_sync = val;
718			break;
719		case OPT_VERBOSE:
720			driver_setup.verbose = val;
721			break;
722		case OPT_DEBUG:
723			driver_setup.debug = val;
724			break;
725		case OPT_BURST_MAX:
726			driver_setup.burst_max = val;
727			break;
728		case OPT_LED_PIN:
729			driver_setup.led_pin = val;
730			break;
731		case OPT_MAX_WIDE:
732			driver_setup.max_wide = val? 1:0;
733			break;
734		case OPT_SETTLE_DELAY:
735			driver_setup.settle_delay = val;
736			break;
737		case OPT_DIFF_SUPPORT:
738			driver_setup.diff_support = val;
739			break;
740		case OPT_IRQM:
741			driver_setup.irqm = val;
742			break;
743		case OPT_PCI_FIX_UP:
744			driver_setup.pci_fix_up	= val;
745			break;
746		case OPT_BUS_CHECK:
747			driver_setup.bus_check = val;
748			break;
749		case OPT_OPTIMIZE:
750			driver_setup.optimize = val;
751			break;
752		case OPT_RECOVERY:
753			driver_setup.recovery = val;
754			break;
755		case OPT_USE_NVRAM:
756			driver_setup.use_nvram = val;
757			break;
758		case OPT_SAFE_SETUP:
759			memcpy(&driver_setup, &driver_safe_setup,
760				sizeof(driver_setup));
761			break;
762		case OPT_EXCLUDE:
763			if (xi < SCSI_NCR_MAX_EXCLUDES)
764				driver_setup.excludes[xi++] = val;
765			break;
766		case OPT_HOST_ID:
767			driver_setup.host_id = val;
768			break;
769#ifdef SCSI_NCR_IARB_SUPPORT
770		case OPT_IARB:
771			driver_setup.iarb = val;
772			break;
773#endif
774		default:
775			printk("sym53c8xx_setup: unexpected boot option '%.*s' ignored\n", (int)(pc-cur+1), cur);
776			break;
777		}
778
779		if ((cur = strchr(cur, ARG_SEP)) != NULL)
780			++cur;
781	}
782#endif /* SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT */
783	return 1;
784}
785#endif /* !MODULE */
786
787/*===================================================================
788**
789**	Get device queue depth from boot command line.
790**
791**===================================================================
792*/
793#define DEF_DEPTH	(driver_setup.default_tags)
794#define ALL_TARGETS	-2
795#define NO_TARGET	-1
796#define ALL_LUNS	-2
797#define NO_LUN		-1
798
799static int device_queue_depth(int unit, int target, int lun)
800{
801	int c, h, t, u, v;
802	char *p = driver_setup.tag_ctrl;
803	char *ep;
804
805	h = -1;
806	t = NO_TARGET;
807	u = NO_LUN;
808	while ((c = *p++) != 0) {
809		v = simple_strtoul(p, &ep, 0);
810		switch(c) {
811		case '/':
812			++h;
813			t = ALL_TARGETS;
814			u = ALL_LUNS;
815			break;
816		case 't':
817			if (t != target)
818				t = (target == v) ? v : NO_TARGET;
819			u = ALL_LUNS;
820			break;
821		case 'u':
822			if (u != lun)
823				u = (lun == v) ? v : NO_LUN;
824			break;
825		case 'q':
826			if (h == unit &&
827				(t == ALL_TARGETS || t == target) &&
828				(u == ALL_LUNS    || u == lun))
829				return v;
830			break;
831		case '-':
832			t = ALL_TARGETS;
833			u = ALL_LUNS;
834			break;
835		default:
836			break;
837		}
838		p = ep;
839	}
840	return DEF_DEPTH;
841}
842
843
844/*==========================================================
845**
846**	The CCB done queue uses an array of CCB virtual
847**	addresses. Empty entries are flagged using the bogus
848**	virtual address 0xffffffff.
849**
850**	Since PCI ensures that only aligned DWORDs are accessed
851**	atomically, 64 bit little-endian architecture requires
852**	to test the high order DWORD of the entry to determine
853**	if it is empty or valid.
854**
855**	BTW, I will make things differently as soon as I will
856**	have a better idea, but this is simple and should work.
857**
858**==========================================================
859*/
860
861#define SCSI_NCR_CCB_DONE_SUPPORT
862#ifdef  SCSI_NCR_CCB_DONE_SUPPORT
863
864#define MAX_DONE 24
865#define CCB_DONE_EMPTY 0xffffffffUL
866
867/* All 32 bit architectures */
868#if BITS_PER_LONG == 32
869#define CCB_DONE_VALID(cp)  (((u_long) cp) != CCB_DONE_EMPTY)
870
871/* All > 32 bit (64 bit) architectures regardless endian-ness */
872#else
873#define CCB_DONE_VALID(cp)  \
874	((((u_long) cp) & 0xffffffff00000000ul) && 	\
875	 (((u_long) cp) & 0xfffffffful) != CCB_DONE_EMPTY)
876#endif
877
878#endif /* SCSI_NCR_CCB_DONE_SUPPORT */
879
880/*==========================================================
881**
882**	Configuration and Debugging
883**
884**==========================================================
885*/
886
887/*
888**    SCSI address of this device.
889**    The boot routines should have set it.
890**    If not, use this.
891*/
892
893#ifndef SCSI_NCR_MYADDR
894#define SCSI_NCR_MYADDR      (7)
895#endif
896
897/*
898**    The maximum number of tags per logic unit.
899**    Used only for disk devices that support tags.
900*/
901
902#ifndef SCSI_NCR_MAX_TAGS
903#define SCSI_NCR_MAX_TAGS    (8)
904#endif
905
906/*
907**    TAGS are actually limited to 64 tags/lun.
908**    We need to deal with power of 2, for alignment constraints.
909*/
910#if	SCSI_NCR_MAX_TAGS > 64
911#define	MAX_TAGS (64)
912#else
913#define	MAX_TAGS SCSI_NCR_MAX_TAGS
914#endif
915
916#define NO_TAG	(255)
917
918/*
919**	Choose appropriate type for tag bitmap.
920*/
921#if	MAX_TAGS > 32
922typedef u64 tagmap_t;
923#else
924typedef u32 tagmap_t;
925#endif
926
927/*
928**    Number of targets supported by the driver.
929**    n permits target numbers 0..n-1.
930**    Default is 16, meaning targets #0..#15.
931**    #7 .. is myself.
932*/
933
934#ifdef SCSI_NCR_MAX_TARGET
935#define MAX_TARGET  (SCSI_NCR_MAX_TARGET)
936#else
937#define MAX_TARGET  (16)
938#endif
939
940/*
941**    Number of logic units supported by the driver.
942**    n enables logic unit numbers 0..n-1.
943**    The common SCSI devices require only
944**    one lun, so take 1 as the default.
945*/
946
947#ifdef SCSI_NCR_MAX_LUN
948#define MAX_LUN    SCSI_NCR_MAX_LUN
949#else
950#define MAX_LUN    (1)
951#endif
952
953/*
954**    Asynchronous pre-scaler (ns). Shall be 40
955*/
956
957#ifndef SCSI_NCR_MIN_ASYNC
958#define SCSI_NCR_MIN_ASYNC (40)
959#endif
960
961/*
962**    The maximum number of jobs scheduled for starting.
963**    There should be one slot per target, and one slot
964**    for each tag of each target in use.
965**    The calculation below is actually quite silly ...
966*/
967
968#ifdef SCSI_NCR_CAN_QUEUE
969#define MAX_START   (SCSI_NCR_CAN_QUEUE + 4)
970#else
971#define MAX_START   (MAX_TARGET + 7 * MAX_TAGS)
972#endif
973
974/*
975**   We limit the max number of pending IO to 250.
976**   since we donnot want to allocate more than 1
977**   PAGE for 'scripth'.
978*/
979#if	MAX_START > 250
980#undef	MAX_START
981#define	MAX_START 250
982#endif
983
984/*
985**    The maximum number of segments a transfer is split into.
986**    We support up to 127 segments for both read and write.
987**    The data scripts are broken into 2 sub-scripts.
988**    80 (MAX_SCATTERL) segments are moved from a sub-script
989**    in on-chip RAM. This makes data transfers shorter than
990**    80k (assuming 1k fs) as fast as possible.
991*/
992
993#define MAX_SCATTER (SCSI_NCR_MAX_SCATTER)
994
995#if (MAX_SCATTER > 80)
996#define MAX_SCATTERL	80
997#define	MAX_SCATTERH	(MAX_SCATTER - MAX_SCATTERL)
998#else
999#define MAX_SCATTERL	(MAX_SCATTER-1)
1000#define	MAX_SCATTERH	1
1001#endif
1002
1003/*
1004**	other
1005*/
1006
1007#define NCR_SNOOP_TIMEOUT (1000000)
1008
1009/*
1010**	Other definitions
1011*/
1012
1013#define ScsiResult(host_code, scsi_code) (((host_code) << 16) + ((scsi_code) & 0x7f))
1014
1015#define initverbose (driver_setup.verbose)
1016#define bootverbose (np->verbose)
1017
1018/*==========================================================
1019**
1020**	Command control block states.
1021**
1022**==========================================================
1023*/
1024
1025#define HS_IDLE		(0)
1026#define HS_BUSY		(1)
1027#define HS_NEGOTIATE	(2)	/* sync/wide data transfer*/
1028#define HS_DISCONNECT	(3)	/* Disconnected by target */
1029
1030#define HS_DONEMASK	(0x80)
1031#define HS_COMPLETE	(4|HS_DONEMASK)
1032#define HS_SEL_TIMEOUT	(5|HS_DONEMASK)	/* Selection timeout      */
1033#define HS_RESET	(6|HS_DONEMASK)	/* SCSI reset	          */
1034#define HS_ABORTED	(7|HS_DONEMASK)	/* Transfer aborted       */
1035#define HS_TIMEOUT	(8|HS_DONEMASK)	/* Software timeout       */
1036#define HS_FAIL		(9|HS_DONEMASK)	/* SCSI or PCI bus errors */
1037#define HS_UNEXPECTED	(10|HS_DONEMASK)/* Unexpected disconnect  */
1038
1039/*
1040**	Invalid host status values used by the SCRIPTS processor
1041**	when the nexus is not fully identified.
1042**	Shall never appear in a CCB.
1043*/
1044
1045#define HS_INVALMASK	(0x40)
1046#define	HS_SELECTING	(0|HS_INVALMASK)
1047#define	HS_IN_RESELECT	(1|HS_INVALMASK)
1048#define	HS_STARTING	(2|HS_INVALMASK)
1049
1050/*
1051**	Flags set by the SCRIPT processor for commands
1052**	that have been skipped.
1053*/
1054#define HS_SKIPMASK	(0x20)
1055
1056/*==========================================================
1057**
1058**	Software Interrupt Codes
1059**
1060**==========================================================
1061*/
1062
1063#define	SIR_BAD_STATUS		(1)
1064#define	SIR_XXXXXXXXXX		(2)
1065#define	SIR_NEGO_SYNC		(3)
1066#define	SIR_NEGO_WIDE		(4)
1067#define	SIR_NEGO_FAILED		(5)
1068#define	SIR_NEGO_PROTO		(6)
1069#define	SIR_REJECT_RECEIVED	(7)
1070#define	SIR_REJECT_SENT		(8)
1071#define	SIR_IGN_RESIDUE		(9)
1072#define	SIR_MISSING_SAVE	(10)
1073#define	SIR_RESEL_NO_MSG_IN	(11)
1074#define	SIR_RESEL_NO_IDENTIFY	(12)
1075#define	SIR_RESEL_BAD_LUN	(13)
1076#define	SIR_RESEL_BAD_TARGET	(14)
1077#define	SIR_RESEL_BAD_I_T_L	(15)
1078#define	SIR_RESEL_BAD_I_T_L_Q	(16)
1079#define	SIR_DONE_OVERFLOW	(17)
1080#define	SIR_INTFLY		(18)
1081#define	SIR_MAX			(18)
1082
1083/*==========================================================
1084**
1085**	Extended error codes.
1086**	xerr_status field of struct ccb.
1087**
1088**==========================================================
1089*/
1090
1091#define	XE_OK		(0)
1092#define	XE_EXTRA_DATA	(1)	/* unexpected data phase */
1093#define	XE_BAD_PHASE	(2)	/* illegal phase (4/5)   */
1094
1095/*==========================================================
1096**
1097**	Negotiation status.
1098**	nego_status field	of struct ccb.
1099**
1100**==========================================================
1101*/
1102
1103#define NS_NOCHANGE	(0)
1104#define NS_SYNC		(1)
1105#define NS_WIDE		(2)
1106#define NS_PPR		(4)
1107
1108/*==========================================================
1109**
1110**	Misc.
1111**
1112**==========================================================
1113*/
1114
1115#define CCB_MAGIC	(0xf2691ad2)
1116
1117/*==========================================================
1118**
1119**	Declaration of structs.
1120**
1121**==========================================================
1122*/
1123
1124static struct scsi_transport_template *ncr53c8xx_transport_template = NULL;
1125
1126struct tcb;
1127struct lcb;
1128struct ccb;
1129struct ncb;
1130struct script;
1131
1132struct link {
1133	ncrcmd	l_cmd;
1134	ncrcmd	l_paddr;
1135};
1136
1137struct	usrcmd {
1138	u_long	target;
1139	u_long	lun;
1140	u_long	data;
1141	u_long	cmd;
1142};
1143
1144#define UC_SETSYNC      10
1145#define UC_SETTAGS	11
1146#define UC_SETDEBUG	12
1147#define UC_SETORDER	13
1148#define UC_SETWIDE	14
1149#define UC_SETFLAG	15
1150#define UC_SETVERBOSE	17
1151
1152#define	UF_TRACE	(0x01)
1153#define	UF_NODISC	(0x02)
1154#define	UF_NOSCAN	(0x04)
1155
1156/*========================================================================
1157**
1158**	Declaration of structs:		target control block
1159**
1160**========================================================================
1161*/
1162struct tcb {
1163	/*----------------------------------------------------------------
1164	**	During reselection the ncr jumps to this point with SFBR
1165	**	set to the encoded target number with bit 7 set.
1166	**	if it's not this target, jump to the next.
1167	**
1168	**	JUMP  IF (SFBR != #target#), @(next tcb)
1169	**----------------------------------------------------------------
1170	*/
1171	struct link   jump_tcb;
1172
1173	/*----------------------------------------------------------------
1174	**	Load the actual values for the sxfer and the scntl3
1175	**	register (sync/wide mode).
1176	**
1177	**	SCR_COPY (1), @(sval field of this tcb), @(sxfer  register)
1178	**	SCR_COPY (1), @(wval field of this tcb), @(scntl3 register)
1179	**----------------------------------------------------------------
1180	*/
1181	ncrcmd	getscr[6];
1182
1183	/*----------------------------------------------------------------
1184	**	Get the IDENTIFY message and load the LUN to SFBR.
1185	**
1186	**	CALL, <RESEL_LUN>
1187	**----------------------------------------------------------------
1188	*/
1189	struct link   call_lun;
1190
1191	/*----------------------------------------------------------------
1192	**	Now look for the right lun.
1193	**
1194	**	For i = 0 to 3
1195	**		SCR_JUMP ^ IFTRUE(MASK(i, 3)), @(first lcb mod. i)
1196	**
1197	**	Recent chips will prefetch the 4 JUMPS using only 1 burst.
1198	**	It is kind of hashcoding.
1199	**----------------------------------------------------------------
1200	*/
1201	struct link     jump_lcb[4];	/* JUMPs for reselection	*/
1202	struct lcb *	lp[MAX_LUN];	/* The lcb's of this tcb	*/
1203
1204	/*----------------------------------------------------------------
1205	**	Pointer to the ccb used for negotiation.
1206	**	Prevent from starting a negotiation for all queued commands
1207	**	when tagged command queuing is enabled.
1208	**----------------------------------------------------------------
1209	*/
1210	struct ccb *   nego_cp;
1211
1212	/*----------------------------------------------------------------
1213	**	statistical data
1214	**----------------------------------------------------------------
1215	*/
1216	u_long	transfers;
1217	u_long	bytes;
1218
1219	/*----------------------------------------------------------------
1220	**	negotiation of wide and synch transfer and device quirks.
1221	**----------------------------------------------------------------
1222	*/
1223#ifdef SCSI_NCR_BIG_ENDIAN
1224/*0*/	u16	period;
1225/*2*/	u_char	sval;
1226/*3*/	u_char	minsync;
1227/*0*/	u_char	wval;
1228/*1*/	u_char	widedone;
1229/*2*/	u_char	quirks;
1230/*3*/	u_char	maxoffs;
1231#else
1232/*0*/	u_char	minsync;
1233/*1*/	u_char	sval;
1234/*2*/	u16	period;
1235/*0*/	u_char	maxoffs;
1236/*1*/	u_char	quirks;
1237/*2*/	u_char	widedone;
1238/*3*/	u_char	wval;
1239#endif
1240
1241	/* User settable limits and options.  */
1242	u_char	usrsync;
1243	u_char	usrwide;
1244	u_char	usrtags;
1245	u_char	usrflag;
1246	struct scsi_target *starget;
1247};
1248
1249/*========================================================================
1250**
1251**	Declaration of structs:		lun control block
1252**
1253**========================================================================
1254*/
1255struct lcb {
1256	/*----------------------------------------------------------------
1257	**	During reselection the ncr jumps to this point
1258	**	with SFBR set to the "Identify" message.
1259	**	if it's not this lun, jump to the next.
1260	**
1261	**	JUMP  IF (SFBR != #lun#), @(next lcb of this target)
1262	**
1263	**	It is this lun. Load TEMP with the nexus jumps table
1264	**	address and jump to RESEL_TAG (or RESEL_NOTAG).
1265	**
1266	**		SCR_COPY (4), p_jump_ccb, TEMP,
1267	**		SCR_JUMP, <RESEL_TAG>
1268	**----------------------------------------------------------------
1269	*/
1270	struct link	jump_lcb;
1271	ncrcmd		load_jump_ccb[3];
1272	struct link	jump_tag;
1273	ncrcmd		p_jump_ccb;	/* Jump table bus address	*/
1274
1275	/*----------------------------------------------------------------
1276	**	Jump table used by the script processor to directly jump
1277	**	to the CCB corresponding to the reselected nexus.
1278	**	Address is allocated on 256 bytes boundary in order to
1279	**	allow 8 bit calculation of the tag jump entry for up to
1280	**	64 possible tags.
1281	**----------------------------------------------------------------
1282	*/
1283	u32		jump_ccb_0;	/* Default table if no tags	*/
1284	u32		*jump_ccb;	/* Virtual address		*/
1285
1286	/*----------------------------------------------------------------
1287	**	CCB queue management.
1288	**----------------------------------------------------------------
1289	*/
1290	struct list_head free_ccbq;	/* Queue of available CCBs	*/
1291	struct list_head busy_ccbq;	/* Queue of busy CCBs		*/
1292	struct list_head wait_ccbq;	/* Queue of waiting for IO CCBs	*/
1293	struct list_head skip_ccbq;	/* Queue of skipped CCBs	*/
1294	u_char		actccbs;	/* Number of allocated CCBs	*/
1295	u_char		busyccbs;	/* CCBs busy for this lun	*/
1296	u_char		queuedccbs;	/* CCBs queued to the controller*/
1297	u_char		queuedepth;	/* Queue depth for this lun	*/
1298	u_char		scdev_depth;	/* SCSI device queue depth	*/
1299	u_char		maxnxs;		/* Max possible nexuses		*/
1300
1301	/*----------------------------------------------------------------
1302	**	Control of tagged command queuing.
1303	**	Tags allocation is performed using a circular buffer.
1304	**	This avoids using a loop for tag allocation.
1305	**----------------------------------------------------------------
1306	*/
1307	u_char		ia_tag;		/* Allocation index		*/
1308	u_char		if_tag;		/* Freeing index		*/
1309	u_char cb_tags[MAX_TAGS];	/* Circular tags buffer	*/
1310	u_char		usetags;	/* Command queuing is active	*/
1311	u_char		maxtags;	/* Max nr of tags asked by user	*/
1312	u_char		numtags;	/* Current number of tags	*/
1313
1314	/*----------------------------------------------------------------
1315	**	QUEUE FULL control and ORDERED tag control.
1316	**----------------------------------------------------------------
1317	*/
1318	/*----------------------------------------------------------------
1319	**	QUEUE FULL and ORDERED tag control.
1320	**----------------------------------------------------------------
1321	*/
1322	u16		num_good;	/* Nr of GOOD since QUEUE FULL	*/
1323	tagmap_t	tags_umap;	/* Used tags bitmap		*/
1324	tagmap_t	tags_smap;	/* Tags in use at 'tag_stime'	*/
1325	u_long		tags_stime;	/* Last time we set smap=umap	*/
1326	struct ccb *	held_ccb;	/* CCB held for QUEUE FULL	*/
1327};
1328
1329/*========================================================================
1330**
1331**      Declaration of structs:     the launch script.
1332**
1333**========================================================================
1334**
1335**	It is part of the CCB and is called by the scripts processor to
1336**	start or restart the data structure (nexus).
1337**	This 6 DWORDs mini script makes use of prefetching.
1338**
1339**------------------------------------------------------------------------
1340*/
1341struct launch {
1342	/*----------------------------------------------------------------
1343	**	SCR_COPY(4),	@(p_phys), @(dsa register)
1344	**	SCR_JUMP,	@(scheduler_point)
1345	**----------------------------------------------------------------
1346	*/
1347	ncrcmd		setup_dsa[3];	/* Copy 'phys' address to dsa	*/
1348	struct link	schedule;	/* Jump to scheduler point	*/
1349	ncrcmd		p_phys;		/* 'phys' header bus address	*/
1350};
1351
1352/*========================================================================
1353**
1354**      Declaration of structs:     global HEADER.
1355**
1356**========================================================================
1357**
1358**	This substructure is copied from the ccb to a global address after
1359**	selection (or reselection) and copied back before disconnect.
1360**
1361**	These fields are accessible to the script processor.
1362**
1363**------------------------------------------------------------------------
1364*/
1365
1366struct head {
1367	/*----------------------------------------------------------------
1368	**	Saved data pointer.
1369	**	Points to the position in the script responsible for the
1370	**	actual transfer transfer of data.
1371	**	It's written after reception of a SAVE_DATA_POINTER message.
1372	**	The goalpointer points after the last transfer command.
1373	**----------------------------------------------------------------
1374	*/
1375	u32		savep;
1376	u32		lastp;
1377	u32		goalp;
1378
1379	/*----------------------------------------------------------------
1380	**	Alternate data pointer.
1381	**	They are copied back to savep/lastp/goalp by the SCRIPTS
1382	**	when the direction is unknown and the device claims data out.
1383	**----------------------------------------------------------------
1384	*/
1385	u32		wlastp;
1386	u32		wgoalp;
1387
1388	/*----------------------------------------------------------------
1389	**	The virtual address of the ccb containing this header.
1390	**----------------------------------------------------------------
1391	*/
1392	struct ccb *	cp;
1393
1394	/*----------------------------------------------------------------
1395	**	Status fields.
1396	**----------------------------------------------------------------
1397	*/
1398	u_char		scr_st[4];	/* script status		*/
1399	u_char		status[4];	/* host status. must be the 	*/
1400					/*  last DWORD of the header.	*/
1401};
1402
1403/*
1404**	The status bytes are used by the host and the script processor.
1405**
1406**	The byte corresponding to the host_status must be stored in the
1407**	last DWORD of the CCB header since it is used for command
1408**	completion (ncr_wakeup()). Doing so, we are sure that the header
1409**	has been entirely copied back to the CCB when the host_status is
1410**	seen complete by the CPU.
1411**
1412**	The last four bytes (status[4]) are copied to the scratchb register
1413**	(declared as scr0..scr3 in ncr_reg.h) just after the select/reselect,
1414**	and copied back just after disconnecting.
1415**	Inside the script the XX_REG are used.
1416**
1417**	The first four bytes (scr_st[4]) are used inside the script by
1418**	"COPY" commands.
1419**	Because source and destination must have the same alignment
1420**	in a DWORD, the fields HAVE to be at the chosen offsets.
1421**		xerr_st		0	(0x34)	scratcha
1422**		sync_st		1	(0x05)	sxfer
1423**		wide_st		3	(0x03)	scntl3
1424*/
1425
1426/*
1427**	Last four bytes (script)
1428*/
1429#define  QU_REG	scr0
1430#define  HS_REG	scr1
1431#define  HS_PRT	nc_scr1
1432#define  SS_REG	scr2
1433#define  SS_PRT	nc_scr2
1434#define  PS_REG	scr3
1435
1436/*
1437**	Last four bytes (host)
1438*/
1439#ifdef SCSI_NCR_BIG_ENDIAN
1440#define  actualquirks  phys.header.status[3]
1441#define  host_status   phys.header.status[2]
1442#define  scsi_status   phys.header.status[1]
1443#define  parity_status phys.header.status[0]
1444#else
1445#define  actualquirks  phys.header.status[0]
1446#define  host_status   phys.header.status[1]
1447#define  scsi_status   phys.header.status[2]
1448#define  parity_status phys.header.status[3]
1449#endif
1450
1451/*
1452**	First four bytes (script)
1453*/
1454#define  xerr_st       header.scr_st[0]
1455#define  sync_st       header.scr_st[1]
1456#define  nego_st       header.scr_st[2]
1457#define  wide_st       header.scr_st[3]
1458
1459/*
1460**	First four bytes (host)
1461*/
1462#define  xerr_status   phys.xerr_st
1463#define  nego_status   phys.nego_st
1464
1465#if 0
1466#define  sync_status   phys.sync_st
1467#define  wide_status   phys.wide_st
1468#endif
1469
1470/*==========================================================
1471**
1472**      Declaration of structs:     Data structure block
1473**
1474**==========================================================
1475**
1476**	During execution of a ccb by the script processor,
1477**	the DSA (data structure address) register points
1478**	to this substructure of the ccb.
1479**	This substructure contains the header with
1480**	the script-processor-changeable data and
1481**	data blocks for the indirect move commands.
1482**
1483**----------------------------------------------------------
1484*/
1485
1486struct dsb {
1487
1488	/*
1489	**	Header.
1490	*/
1491
1492	struct head	header;
1493
1494	/*
1495	**	Table data for Script
1496	*/
1497
1498	struct scr_tblsel  select;
1499	struct scr_tblmove smsg  ;
1500	struct scr_tblmove cmd   ;
1501	struct scr_tblmove sense ;
1502	struct scr_tblmove data[MAX_SCATTER];
1503};
1504
1505
1506/*========================================================================
1507**
1508**      Declaration of structs:     Command control block.
1509**
1510**========================================================================
1511*/
1512struct ccb {
1513	/*----------------------------------------------------------------
1514	**	This is the data structure which is pointed by the DSA
1515	**	register when it is executed by the script processor.
1516	**	It must be the first entry because it contains the header
1517	**	as first entry that must be cache line aligned.
1518	**----------------------------------------------------------------
1519	*/
1520	struct dsb	phys;
1521
1522	/*----------------------------------------------------------------
1523	**	Mini-script used at CCB execution start-up.
1524	**	Load the DSA with the data structure address (phys) and
1525	**	jump to SELECT. Jump to CANCEL if CCB is to be canceled.
1526	**----------------------------------------------------------------
1527	*/
1528	struct launch	start;
1529
1530	/*----------------------------------------------------------------
1531	**	Mini-script used at CCB relection to restart the nexus.
1532	**	Load the DSA with the data structure address (phys) and
1533	**	jump to RESEL_DSA. Jump to ABORT if CCB is to be aborted.
1534	**----------------------------------------------------------------
1535	*/
1536	struct launch	restart;
1537
1538	/*----------------------------------------------------------------
1539	**	If a data transfer phase is terminated too early
1540	**	(after reception of a message (i.e. DISCONNECT)),
1541	**	we have to prepare a mini script to transfer
1542	**	the rest of the data.
1543	**----------------------------------------------------------------
1544	*/
1545	ncrcmd		patch[8];
1546
1547	/*----------------------------------------------------------------
1548	**	The general SCSI driver provides a
1549	**	pointer to a control block.
1550	**----------------------------------------------------------------
1551	*/
1552	struct scsi_cmnd	*cmd;		/* SCSI command 		*/
1553	u_char		cdb_buf[16];	/* Copy of CDB			*/
1554	u_char		sense_buf[64];
1555	int		data_len;	/* Total data length		*/
1556
1557	/*----------------------------------------------------------------
1558	**	Message areas.
1559	**	We prepare a message to be sent after selection.
1560	**	We may use a second one if the command is rescheduled
1561	**	due to GETCC or QFULL.
1562	**      Contents are IDENTIFY and SIMPLE_TAG.
1563	**	While negotiating sync or wide transfer,
1564	**	a SDTR or WDTR message is appended.
1565	**----------------------------------------------------------------
1566	*/
1567	u_char		scsi_smsg [8];
1568	u_char		scsi_smsg2[8];
1569
1570	/*----------------------------------------------------------------
1571	**	Other fields.
1572	**----------------------------------------------------------------
1573	*/
1574	u_long		p_ccb;		/* BUS address of this CCB	*/
1575	u_char		sensecmd[6];	/* Sense command		*/
1576	u_char		tag;		/* Tag for this transfer	*/
1577					/*  255 means no tag		*/
1578	u_char		target;
1579	u_char		lun;
1580	u_char		queued;
1581	u_char		auto_sense;
1582	struct ccb *	link_ccb;	/* Host adapter CCB chain	*/
1583	struct list_head link_ccbq;	/* Link to unit CCB queue	*/
1584	u32		startp;		/* Initial data pointer		*/
1585	u_long		magic;		/* Free / busy  CCB flag	*/
1586};
1587
1588#define CCB_PHYS(cp,lbl)	(cp->p_ccb + offsetof(struct ccb, lbl))
1589
1590
1591/*========================================================================
1592**
1593**      Declaration of structs:     NCR device descriptor
1594**
1595**========================================================================
1596*/
1597struct ncb {
1598	/*----------------------------------------------------------------
1599	**	The global header.
1600	**	It is accessible to both the host and the script processor.
1601	**	Must be cache line size aligned (32 for x86) in order to
1602	**	allow cache line bursting when it is copied to/from CCB.
1603	**----------------------------------------------------------------
1604	*/
1605	struct head     header;
1606
1607	/*----------------------------------------------------------------
1608	**	CCBs management queues.
1609	**----------------------------------------------------------------
1610	*/
1611	struct scsi_cmnd	*waiting_list;	/* Commands waiting for a CCB	*/
1612					/*  when lcb is not allocated.	*/
1613	struct scsi_cmnd	*done_list;	/* Commands waiting for done()  */
1614					/* callback to be invoked.      */
1615	spinlock_t	smp_lock;	/* Lock for SMP threading       */
1616
1617	/*----------------------------------------------------------------
1618	**	Chip and controller identification.
1619	**----------------------------------------------------------------
1620	*/
1621	int		unit;		/* Unit number			*/
1622	char		inst_name[16];	/* ncb instance name		*/
1623
1624	/*----------------------------------------------------------------
1625	**	Initial value of some IO register bits.
1626	**	These values are assumed to have been set by BIOS, and may
1627	**	be used for probing adapter implementation differences.
1628	**----------------------------------------------------------------
1629	*/
1630	u_char	sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest0, sv_ctest3,
1631		sv_ctest4, sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4;
1632
1633	/*----------------------------------------------------------------
1634	**	Actual initial value of IO register bits used by the
1635	**	driver. They are loaded at initialisation according to
1636	**	features that are to be enabled.
1637	**----------------------------------------------------------------
1638	*/
1639	u_char	rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest0, rv_ctest3,
1640		rv_ctest4, rv_ctest5, rv_stest2;
1641
1642	/*----------------------------------------------------------------
1643	**	Targets management.
1644	**	During reselection the ncr jumps to jump_tcb.
1645	**	The SFBR register is loaded with the encoded target id.
1646	**	For i = 0 to 3
1647	**		SCR_JUMP ^ IFTRUE(MASK(i, 3)), @(next tcb mod. i)
1648	**
1649	**	Recent chips will prefetch the 4 JUMPS using only 1 burst.
1650	**	It is kind of hashcoding.
1651	**----------------------------------------------------------------
1652	*/
1653	struct link     jump_tcb[4];	/* JUMPs for reselection	*/
1654	struct tcb  target[MAX_TARGET];	/* Target data			*/
1655
1656	/*----------------------------------------------------------------
1657	**	Virtual and physical bus addresses of the chip.
1658	**----------------------------------------------------------------
1659	*/
1660	void __iomem *vaddr;		/* Virtual and bus address of	*/
1661	unsigned long	paddr;		/*  chip's IO registers.	*/
1662	unsigned long	paddr2;		/* On-chip RAM bus address.	*/
1663	volatile			/* Pointer to volatile for 	*/
1664	struct ncr_reg	__iomem *reg;	/*  memory mapped IO.		*/
1665
1666	/*----------------------------------------------------------------
1667	**	SCRIPTS virtual and physical bus addresses.
1668	**	'script'  is loaded in the on-chip RAM if present.
1669	**	'scripth' stays in main memory.
1670	**----------------------------------------------------------------
1671	*/
1672	struct script	*script0;	/* Copies of script and scripth	*/
1673	struct scripth	*scripth0;	/*  relocated for this ncb.	*/
1674	struct scripth	*scripth;	/* Actual scripth virt. address	*/
1675	u_long		p_script;	/* Actual script and scripth	*/
1676	u_long		p_scripth;	/*  bus addresses.		*/
1677
1678	/*----------------------------------------------------------------
1679	**	General controller parameters and configuration.
1680	**----------------------------------------------------------------
1681	*/
1682	struct device	*dev;
1683	u_char		revision_id;	/* PCI device revision id	*/
1684	u32		irq;		/* IRQ level			*/
1685	u32		features;	/* Chip features map		*/
1686	u_char		myaddr;		/* SCSI id of the adapter	*/
1687	u_char		maxburst;	/* log base 2 of dwords burst	*/
1688	u_char		maxwide;	/* Maximum transfer width	*/
1689	u_char		minsync;	/* Minimum sync period factor	*/
1690	u_char		maxsync;	/* Maximum sync period factor	*/
1691	u_char		maxoffs;	/* Max scsi offset		*/
1692	u_char		multiplier;	/* Clock multiplier (1,2,4)	*/
1693	u_char		clock_divn;	/* Number of clock divisors	*/
1694	u_long		clock_khz;	/* SCSI clock frequency in KHz	*/
1695
1696	/*----------------------------------------------------------------
1697	**	Start queue management.
1698	**	It is filled up by the host processor and accessed by the
1699	**	SCRIPTS processor in order to start SCSI commands.
1700	**----------------------------------------------------------------
1701	*/
1702	u16		squeueput;	/* Next free slot of the queue	*/
1703	u16		actccbs;	/* Number of allocated CCBs	*/
1704	u16		queuedccbs;	/* Number of CCBs in start queue*/
1705	u16		queuedepth;	/* Start queue depth		*/
1706
1707	/*----------------------------------------------------------------
1708	**	Timeout handler.
1709	**----------------------------------------------------------------
1710	*/
1711	struct timer_list timer;	/* Timer handler link header	*/
1712	u_long		lasttime;
1713	u_long		settle_time;	/* Resetting the SCSI BUS	*/
1714
1715	/*----------------------------------------------------------------
1716	**	Debugging and profiling.
1717	**----------------------------------------------------------------
1718	*/
1719	struct ncr_reg	regdump;	/* Register dump		*/
1720	u_long		regtime;	/* Time it has been done	*/
1721
1722	/*----------------------------------------------------------------
1723	**	Miscellaneous buffers accessed by the scripts-processor.
1724	**	They shall be DWORD aligned, because they may be read or
1725	**	written with a SCR_COPY script command.
1726	**----------------------------------------------------------------
1727	*/
1728	u_char		msgout[8];	/* Buffer for MESSAGE OUT 	*/
1729	u_char		msgin [8];	/* Buffer for MESSAGE IN	*/
1730	u32		lastmsg;	/* Last SCSI message sent	*/
1731	u_char		scratch;	/* Scratch for SCSI receive	*/
1732
1733	/*----------------------------------------------------------------
1734	**	Miscellaneous configuration and status parameters.
1735	**----------------------------------------------------------------
1736	*/
1737	u_char		disc;		/* Diconnection allowed		*/
1738	u_char		scsi_mode;	/* Current SCSI BUS mode	*/
1739	u_char		order;		/* Tag order to use		*/
1740	u_char		verbose;	/* Verbosity for this controller*/
1741	int		ncr_cache;	/* Used for cache test at init.	*/
1742	u_long		p_ncb;		/* BUS address of this NCB	*/
1743
1744	/*----------------------------------------------------------------
1745	**	Command completion handling.
1746	**----------------------------------------------------------------
1747	*/
1748#ifdef SCSI_NCR_CCB_DONE_SUPPORT
1749	struct ccb	*(ccb_done[MAX_DONE]);
1750	int		ccb_done_ic;
1751#endif
1752	/*----------------------------------------------------------------
1753	**	Fields that should be removed or changed.
1754	**----------------------------------------------------------------
1755	*/
1756	struct ccb	*ccb;		/* Global CCB			*/
1757	struct usrcmd	user;		/* Command from user		*/
1758	volatile u_char	release_stage;	/* Synchronisation stage on release  */
1759};
1760
1761#define NCB_SCRIPT_PHYS(np,lbl)	 (np->p_script  + offsetof (struct script, lbl))
1762#define NCB_SCRIPTH_PHYS(np,lbl) (np->p_scripth + offsetof (struct scripth,lbl))
1763
1764/*==========================================================
1765**
1766**
1767**      Script for NCR-Processor.
1768**
1769**	Use ncr_script_fill() to create the variable parts.
1770**	Use ncr_script_copy_and_bind() to make a copy and
1771**	bind to physical addresses.
1772**
1773**
1774**==========================================================
1775**
1776**	We have to know the offsets of all labels before
1777**	we reach them (for forward jumps).
1778**	Therefore we declare a struct here.
1779**	If you make changes inside the script,
1780**	DONT FORGET TO CHANGE THE LENGTHS HERE!
1781**
1782**----------------------------------------------------------
1783*/
1784
1785/*
1786**	For HP Zalon/53c720 systems, the Zalon interface
1787**	between CPU and 53c720 does prefetches, which causes
1788**	problems with self modifying scripts.  The problem
1789**	is overcome by calling a dummy subroutine after each
1790**	modification, to force a refetch of the script on
1791**	return from the subroutine.
1792*/
1793
1794#ifdef CONFIG_NCR53C8XX_PREFETCH
1795#define PREFETCH_FLUSH_CNT	2
1796#define PREFETCH_FLUSH		SCR_CALL, PADDRH (wait_dma),
1797#else
1798#define PREFETCH_FLUSH_CNT	0
1799#define PREFETCH_FLUSH
1800#endif
1801
1802/*
1803**	Script fragments which are loaded into the on-chip RAM
1804**	of 825A, 875 and 895 chips.
1805*/
1806struct script {
1807	ncrcmd	start		[  5];
1808	ncrcmd  startpos	[  1];
1809	ncrcmd	select		[  6];
1810	ncrcmd	select2		[  9 + PREFETCH_FLUSH_CNT];
1811	ncrcmd	loadpos		[  4];
1812	ncrcmd	send_ident	[  9];
1813	ncrcmd	prepare		[  6];
1814	ncrcmd	prepare2	[  7];
1815	ncrcmd  command		[  6];
1816	ncrcmd  dispatch	[ 32];
1817	ncrcmd  clrack		[  4];
1818	ncrcmd	no_data		[ 17];
1819	ncrcmd  status		[  8];
1820	ncrcmd  msg_in		[  2];
1821	ncrcmd  msg_in2		[ 16];
1822	ncrcmd  msg_bad		[  4];
1823	ncrcmd	setmsg		[  7];
1824	ncrcmd	cleanup		[  6];
1825	ncrcmd  complete	[  9];
1826	ncrcmd	cleanup_ok	[  8 + PREFETCH_FLUSH_CNT];
1827	ncrcmd	cleanup0	[  1];
1828#ifndef SCSI_NCR_CCB_DONE_SUPPORT
1829	ncrcmd	signal		[ 12];
1830#else
1831	ncrcmd	signal		[  9];
1832	ncrcmd	done_pos	[  1];
1833	ncrcmd	done_plug	[  2];
1834	ncrcmd	done_end	[  7];
1835#endif
1836	ncrcmd  save_dp		[  7];
1837	ncrcmd  restore_dp	[  5];
1838	ncrcmd  disconnect	[ 10];
1839	ncrcmd	msg_out		[  9];
1840	ncrcmd	msg_out_done	[  7];
1841	ncrcmd  idle		[  2];
1842	ncrcmd	reselect	[  8];
1843	ncrcmd	reselected	[  8];
1844	ncrcmd	resel_dsa	[  6 + PREFETCH_FLUSH_CNT];
1845	ncrcmd	loadpos1	[  4];
1846	ncrcmd  resel_lun	[  6];
1847	ncrcmd	resel_tag	[  6];
1848	ncrcmd	jump_to_nexus	[  4 + PREFETCH_FLUSH_CNT];
1849	ncrcmd	nexus_indirect	[  4];
1850	ncrcmd	resel_notag	[  4];
1851	ncrcmd  data_in		[MAX_SCATTERL * 4];
1852	ncrcmd  data_in2	[  4];
1853	ncrcmd  data_out	[MAX_SCATTERL * 4];
1854	ncrcmd  data_out2	[  4];
1855};
1856
1857/*
1858**	Script fragments which stay in main memory for all chips.
1859*/
1860struct scripth {
1861	ncrcmd  tryloop		[MAX_START*2];
1862	ncrcmd  tryloop2	[  2];
1863#ifdef SCSI_NCR_CCB_DONE_SUPPORT
1864	ncrcmd  done_queue	[MAX_DONE*5];
1865	ncrcmd  done_queue2	[  2];
1866#endif
1867	ncrcmd	select_no_atn	[  8];
1868	ncrcmd	cancel		[  4];
1869	ncrcmd	skip		[  9 + PREFETCH_FLUSH_CNT];
1870	ncrcmd	skip2		[ 19];
1871	ncrcmd	par_err_data_in	[  6];
1872	ncrcmd	par_err_other	[  4];
1873	ncrcmd	msg_reject	[  8];
1874	ncrcmd	msg_ign_residue	[ 24];
1875	ncrcmd  msg_extended	[ 10];
1876	ncrcmd  msg_ext_2	[ 10];
1877	ncrcmd	msg_wdtr	[ 14];
1878	ncrcmd	send_wdtr	[  7];
1879	ncrcmd  msg_ext_3	[ 10];
1880	ncrcmd	msg_sdtr	[ 14];
1881	ncrcmd	send_sdtr	[  7];
1882	ncrcmd	nego_bad_phase	[  4];
1883	ncrcmd	msg_out_abort	[ 10];
1884	ncrcmd  hdata_in	[MAX_SCATTERH * 4];
1885	ncrcmd  hdata_in2	[  2];
1886	ncrcmd  hdata_out	[MAX_SCATTERH * 4];
1887	ncrcmd  hdata_out2	[  2];
1888	ncrcmd	reset		[  4];
1889	ncrcmd	aborttag	[  4];
1890	ncrcmd	abort		[  2];
1891	ncrcmd	abort_resel	[ 20];
1892	ncrcmd	resend_ident	[  4];
1893	ncrcmd	clratn_go_on	[  3];
1894	ncrcmd	nxtdsp_go_on	[  1];
1895	ncrcmd	sdata_in	[  8];
1896	ncrcmd  data_io		[ 18];
1897	ncrcmd	bad_identify	[ 12];
1898	ncrcmd	bad_i_t_l	[  4];
1899	ncrcmd	bad_i_t_l_q	[  4];
1900	ncrcmd	bad_target	[  8];
1901	ncrcmd	bad_status	[  8];
1902	ncrcmd	start_ram	[  4 + PREFETCH_FLUSH_CNT];
1903	ncrcmd	start_ram0	[  4];
1904	ncrcmd	sto_restart	[  5];
1905	ncrcmd	wait_dma	[  2];
1906	ncrcmd	snooptest	[  9];
1907	ncrcmd	snoopend	[  2];
1908};
1909
1910/*==========================================================
1911**
1912**
1913**      Function headers.
1914**
1915**
1916**==========================================================
1917*/
1918
1919static	void	ncr_alloc_ccb	(struct ncb *np, u_char tn, u_char ln);
1920static	void	ncr_complete	(struct ncb *np, struct ccb *cp);
1921static	void	ncr_exception	(struct ncb *np);
1922static	void	ncr_free_ccb	(struct ncb *np, struct ccb *cp);
1923static	void	ncr_init_ccb	(struct ncb *np, struct ccb *cp);
1924static	void	ncr_init_tcb	(struct ncb *np, u_char tn);
1925static	struct lcb *	ncr_alloc_lcb	(struct ncb *np, u_char tn, u_char ln);
1926static	struct lcb *	ncr_setup_lcb	(struct ncb *np, struct scsi_device *sdev);
1927static	void	ncr_getclock	(struct ncb *np, int mult);
1928static	void	ncr_selectclock	(struct ncb *np, u_char scntl3);
1929static	struct ccb *ncr_get_ccb	(struct ncb *np, struct scsi_cmnd *cmd);
1930static	void	ncr_chip_reset	(struct ncb *np, int delay);
1931static	void	ncr_init	(struct ncb *np, int reset, char * msg, u_long code);
1932static	int	ncr_int_sbmc	(struct ncb *np);
1933static	int	ncr_int_par	(struct ncb *np);
1934static	void	ncr_int_ma	(struct ncb *np);
1935static	void	ncr_int_sir	(struct ncb *np);
1936static  void    ncr_int_sto     (struct ncb *np);
1937static	void	ncr_negotiate	(struct ncb* np, struct tcb* tp);
1938static	int	ncr_prepare_nego(struct ncb *np, struct ccb *cp, u_char *msgptr);
1939
1940static	void	ncr_script_copy_and_bind
1941				(struct ncb *np, ncrcmd *src, ncrcmd *dst, int len);
1942static  void    ncr_script_fill (struct script * scr, struct scripth * scripth);
1943static	int	ncr_scatter	(struct ncb *np, struct ccb *cp, struct scsi_cmnd *cmd);
1944static	void	ncr_getsync	(struct ncb *np, u_char sfac, u_char *fakp, u_char *scntl3p);
1945static	void	ncr_setsync	(struct ncb *np, struct ccb *cp, u_char scntl3, u_char sxfer);
1946static	void	ncr_setup_tags	(struct ncb *np, struct scsi_device *sdev);
1947static	void	ncr_setwide	(struct ncb *np, struct ccb *cp, u_char wide, u_char ack);
1948static	int	ncr_snooptest	(struct ncb *np);
1949static	void	ncr_timeout	(struct ncb *np);
1950static  void    ncr_wakeup      (struct ncb *np, u_long code);
1951static  void    ncr_wakeup_done (struct ncb *np);
1952static	void	ncr_start_next_ccb (struct ncb *np, struct lcb * lp, int maxn);
1953static	void	ncr_put_start_queue(struct ncb *np, struct ccb *cp);
1954
1955static void insert_into_waiting_list(struct ncb *np, struct scsi_cmnd *cmd);
1956static struct scsi_cmnd *retrieve_from_waiting_list(int to_remove, struct ncb *np, struct scsi_cmnd *cmd);
1957static void process_waiting_list(struct ncb *np, int sts);
1958
1959#define remove_from_waiting_list(np, cmd) \
1960		retrieve_from_waiting_list(1, (np), (cmd))
1961#define requeue_waiting_list(np) process_waiting_list((np), DID_OK)
1962#define reset_waiting_list(np) process_waiting_list((np), DID_RESET)
1963
1964static inline char *ncr_name (struct ncb *np)
1965{
1966	return np->inst_name;
1967}
1968
1969
1970/*==========================================================
1971**
1972**
1973**      Scripts for NCR-Processor.
1974**
1975**      Use ncr_script_bind for binding to physical addresses.
1976**
1977**
1978**==========================================================
1979**
1980**	NADDR generates a reference to a field of the controller data.
1981**	PADDR generates a reference to another part of the script.
1982**	RADDR generates a reference to a script processor register.
1983**	FADDR generates a reference to a script processor register
1984**		with offset.
1985**
1986**----------------------------------------------------------
1987*/
1988
1989#define	RELOC_SOFTC	0x40000000
1990#define	RELOC_LABEL	0x50000000
1991#define	RELOC_REGISTER	0x60000000
1992#if 0
1993#define	RELOC_KVAR	0x70000000
1994#endif
1995#define	RELOC_LABELH	0x80000000
1996#define	RELOC_MASK	0xf0000000
1997
1998#define	NADDR(label)	(RELOC_SOFTC | offsetof(struct ncb, label))
1999#define PADDR(label)    (RELOC_LABEL | offsetof(struct script, label))
2000#define PADDRH(label)   (RELOC_LABELH | offsetof(struct scripth, label))
2001#define	RADDR(label)	(RELOC_REGISTER | REG(label))
2002#define	FADDR(label,ofs)(RELOC_REGISTER | ((REG(label))+(ofs)))
2003#if 0
2004#define	KVAR(which)	(RELOC_KVAR | (which))
2005#endif
2006
2007#if 0
2008#define	SCRIPT_KVAR_JIFFIES	(0)
2009#define	SCRIPT_KVAR_FIRST		SCRIPT_KVAR_JIFFIES
2010#define	SCRIPT_KVAR_LAST		SCRIPT_KVAR_JIFFIES
2011/*
2012 * Kernel variables referenced in the scripts.
2013 * THESE MUST ALL BE ALIGNED TO A 4-BYTE BOUNDARY.
2014 */
2015static void *script_kvars[] __initdata =
2016	{ (void *)&jiffies };
2017#endif
2018
2019static	struct script script0 __initdata = {
2020/*--------------------------< START >-----------------------*/ {
2021	/*
2022	**	This NOP will be patched with LED ON
2023	**	SCR_REG_REG (gpreg, SCR_AND, 0xfe)
2024	*/
2025	SCR_NO_OP,
2026		0,
2027	/*
2028	**      Clear SIGP.
2029	*/
2030	SCR_FROM_REG (ctest2),
2031		0,
2032	/*
2033	**	Then jump to a certain point in tryloop.
2034	**	Due to the lack of indirect addressing the code
2035	**	is self modifying here.
2036	*/
2037	SCR_JUMP,
2038}/*-------------------------< STARTPOS >--------------------*/,{
2039		PADDRH(tryloop),
2040
2041}/*-------------------------< SELECT >----------------------*/,{
2042	/*
2043	**	DSA	contains the address of a scheduled
2044	**		data structure.
2045	**
2046	**	SCRATCHA contains the address of the script,
2047	**		which starts the next entry.
2048	**
2049	**	Set Initiator mode.
2050	**
2051	**	(Target mode is left as an exercise for the reader)
2052	*/
2053
2054	SCR_CLR (SCR_TRG),
2055		0,
2056	SCR_LOAD_REG (HS_REG, HS_SELECTING),
2057		0,
2058
2059	/*
2060	**      And try to select this target.
2061	*/
2062	SCR_SEL_TBL_ATN ^ offsetof (struct dsb, select),
2063		PADDR (reselect),
2064
2065}/*-------------------------< SELECT2 >----------------------*/,{
2066	/*
2067	**	Now there are 4 possibilities:
2068	**
2069	**	(1) The ncr loses arbitration.
2070	**	This is ok, because it will try again,
2071	**	when the bus becomes idle.
2072	**	(But beware of the timeout function!)
2073	**
2074	**	(2) The ncr is reselected.
2075	**	Then the script processor takes the jump
2076	**	to the RESELECT label.
2077	**
2078	**	(3) The ncr wins arbitration.
2079	**	Then it will execute SCRIPTS instruction until
2080	**	the next instruction that checks SCSI phase.
2081	**	Then will stop and wait for selection to be
2082	**	complete or selection time-out to occur.
2083	**	As a result the SCRIPTS instructions until
2084	**	LOADPOS + 2 should be executed in parallel with
2085	**	the SCSI core performing selection.
2086	*/
2087
2088	/*
2089	**	The MESSAGE_REJECT problem seems to be due to a selection
2090	**	timing problem.
2091	**	Wait immediately for the selection to complete.
2092	**	(2.5x behaves so)
2093	*/
2094	SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)),
2095		0,
2096
2097	/*
2098	**	Next time use the next slot.
2099	*/
2100	SCR_COPY (4),
2101		RADDR (temp),
2102		PADDR (startpos),
2103	/*
2104	**      The ncr doesn't have an indirect load
2105	**	or store command. So we have to
2106	**	copy part of the control block to a
2107	**	fixed place, where we can access it.
2108	**
2109	**	We patch the address part of a
2110	**	COPY command with the DSA-register.
2111	*/
2112	SCR_COPY_F (4),
2113		RADDR (dsa),
2114		PADDR (loadpos),
2115	/*
2116	**	Flush script prefetch if required
2117	*/
2118	PREFETCH_FLUSH
2119	/*
2120	**	then we do the actual copy.
2121	*/
2122	SCR_COPY (sizeof (struct head)),
2123	/*
2124	**	continued after the next label ...
2125	*/
2126}/*-------------------------< LOADPOS >---------------------*/,{
2127		0,
2128		NADDR (header),
2129	/*
2130	**	Wait for the next phase or the selection
2131	**	to complete or time-out.
2132	*/
2133	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
2134		PADDR (prepare),
2135
2136}/*-------------------------< SEND_IDENT >----------------------*/,{
2137	/*
2138	**	Selection complete.
2139	**	Send the IDENTIFY and SIMPLE_TAG messages
2140	**	(and the EXTENDED_SDTR message)
2141	*/
2142	SCR_MOVE_TBL ^ SCR_MSG_OUT,
2143		offsetof (struct dsb, smsg),
2144	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
2145		PADDRH (resend_ident),
2146	SCR_LOAD_REG (scratcha, 0x80),
2147		0,
2148	SCR_COPY (1),
2149		RADDR (scratcha),
2150		NADDR (lastmsg),
2151}/*-------------------------< PREPARE >----------------------*/,{
2152	/*
2153	**      load the savep (saved pointer) into
2154	**      the TEMP register (actual pointer)
2155	*/
2156	SCR_COPY (4),
2157		NADDR (header.savep),
2158		RADDR (temp),
2159	/*
2160	**      Initialize the status registers
2161	*/
2162	SCR_COPY (4),
2163		NADDR (header.status),
2164		RADDR (scr0),
2165}/*-------------------------< PREPARE2 >---------------------*/,{
2166	/*
2167	**	Initialize the msgout buffer with a NOOP message.
2168	*/
2169	SCR_LOAD_REG (scratcha, NOP),
2170		0,
2171	SCR_COPY (1),
2172		RADDR (scratcha),
2173		NADDR (msgout),
2174#if 0
2175	SCR_COPY (1),
2176		RADDR (scratcha),
2177		NADDR (msgin),
2178#endif
2179	/*
2180	**	Anticipate the COMMAND phase.
2181	**	This is the normal case for initial selection.
2182	*/
2183	SCR_JUMP ^ IFFALSE (WHEN (SCR_COMMAND)),
2184		PADDR (dispatch),
2185
2186}/*-------------------------< COMMAND >--------------------*/,{
2187	/*
2188	**	... and send the command
2189	*/
2190	SCR_MOVE_TBL ^ SCR_COMMAND,
2191		offsetof (struct dsb, cmd),
2192	/*
2193	**	If status is still HS_NEGOTIATE, negotiation failed.
2194	**	We check this here, since we want to do that
2195	**	only once.
2196	*/
2197	SCR_FROM_REG (HS_REG),
2198		0,
2199	SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
2200		SIR_NEGO_FAILED,
2201
2202}/*-----------------------< DISPATCH >----------------------*/,{
2203	/*
2204	**	MSG_IN is the only phase that shall be
2205	**	entered at least once for each (re)selection.
2206	**	So we test it first.
2207	*/
2208	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
2209		PADDR (msg_in),
2210
2211	SCR_RETURN ^ IFTRUE (IF (SCR_DATA_OUT)),
2212		0,
2213	/*
2214	**	DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 4.
2215	**	Possible data corruption during Memory Write and Invalidate.
2216	**	This work-around resets the addressing logic prior to the
2217	**	start of the first MOVE of a DATA IN phase.
2218	**	(See Documentation/scsi/ncr53c8xx.txt for more information)
2219	*/
2220	SCR_JUMPR ^ IFFALSE (IF (SCR_DATA_IN)),
2221		20,
2222	SCR_COPY (4),
2223		RADDR (scratcha),
2224		RADDR (scratcha),
2225	SCR_RETURN,
2226 		0,
2227	SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)),
2228		PADDR (status),
2229	SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)),
2230		PADDR (command),
2231	SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)),
2232		PADDR (msg_out),
2233	/*
2234	**      Discard one illegal phase byte, if required.
2235	*/
2236	SCR_LOAD_REG (scratcha, XE_BAD_PHASE),
2237		0,
2238	SCR_COPY (1),
2239		RADDR (scratcha),
2240		NADDR (xerr_st),
2241	SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_OUT)),
2242		8,
2243	SCR_MOVE_ABS (1) ^ SCR_ILG_OUT,
2244		NADDR (scratch),
2245	SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_IN)),
2246		8,
2247	SCR_MOVE_ABS (1) ^ SCR_ILG_IN,
2248		NADDR (scratch),
2249	SCR_JUMP,
2250		PADDR (dispatch),
2251
2252}/*-------------------------< CLRACK >----------------------*/,{
2253	/*
2254	**	Terminate possible pending message phase.
2255	*/
2256	SCR_CLR (SCR_ACK),
2257		0,
2258	SCR_JUMP,
2259		PADDR (dispatch),
2260
2261}/*-------------------------< NO_DATA >--------------------*/,{
2262	/*
2263	**	The target wants to tranfer too much data
2264	**	or in the wrong direction.
2265	**      Remember that in extended error.
2266	*/
2267	SCR_LOAD_REG (scratcha, XE_EXTRA_DATA),
2268		0,
2269	SCR_COPY (1),
2270		RADDR (scratcha),
2271		NADDR (xerr_st),
2272	/*
2273	**      Discard one data byte, if required.
2274	*/
2275	SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)),
2276		8,
2277	SCR_MOVE_ABS (1) ^ SCR_DATA_OUT,
2278		NADDR (scratch),
2279	SCR_JUMPR ^ IFFALSE (IF (SCR_DATA_IN)),
2280		8,
2281	SCR_MOVE_ABS (1) ^ SCR_DATA_IN,
2282		NADDR (scratch),
2283	/*
2284	**      .. and repeat as required.
2285	*/
2286	SCR_CALL,
2287		PADDR (dispatch),
2288	SCR_JUMP,
2289		PADDR (no_data),
2290
2291}/*-------------------------< STATUS >--------------------*/,{
2292	/*
2293	**	get the status
2294	*/
2295	SCR_MOVE_ABS (1) ^ SCR_STATUS,
2296		NADDR (scratch),
2297	/*
2298	**	save status to scsi_status.
2299	**	mark as complete.
2300	*/
2301	SCR_TO_REG (SS_REG),
2302		0,
2303	SCR_LOAD_REG (HS_REG, HS_COMPLETE),
2304		0,
2305	SCR_JUMP,
2306		PADDR (dispatch),
2307}/*-------------------------< MSG_IN >--------------------*/,{
2308	/*
2309	**	Get the first byte of the message
2310	**	and save it to SCRATCHA.
2311	**
2312	**	The script processor doesn't negate the
2313	**	ACK signal after this transfer.
2314	*/
2315	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2316		NADDR (msgin[0]),
2317}/*-------------------------< MSG_IN2 >--------------------*/,{
2318	/*
2319	**	Handle this message.
2320	*/
2321	SCR_JUMP ^ IFTRUE (DATA (COMMAND_COMPLETE)),
2322		PADDR (complete),
2323	SCR_JUMP ^ IFTRUE (DATA (DISCONNECT)),
2324		PADDR (disconnect),
2325	SCR_JUMP ^ IFTRUE (DATA (SAVE_POINTERS)),
2326		PADDR (save_dp),
2327	SCR_JUMP ^ IFTRUE (DATA (RESTORE_POINTERS)),
2328		PADDR (restore_dp),
2329	SCR_JUMP ^ IFTRUE (DATA (EXTENDED_MESSAGE)),
2330		PADDRH (msg_extended),
2331	SCR_JUMP ^ IFTRUE (DATA (NOP)),
2332		PADDR (clrack),
2333	SCR_JUMP ^ IFTRUE (DATA (MESSAGE_REJECT)),
2334		PADDRH (msg_reject),
2335	SCR_JUMP ^ IFTRUE (DATA (IGNORE_WIDE_RESIDUE)),
2336		PADDRH (msg_ign_residue),
2337	/*
2338	**	Rest of the messages left as
2339	**	an exercise ...
2340	**
2341	**	Unimplemented messages:
2342	**	fall through to MSG_BAD.
2343	*/
2344}/*-------------------------< MSG_BAD >------------------*/,{
2345	/*
2346	**	unimplemented message - reject it.
2347	*/
2348	SCR_INT,
2349		SIR_REJECT_SENT,
2350	SCR_LOAD_REG (scratcha, MESSAGE_REJECT),
2351		0,
2352}/*-------------------------< SETMSG >----------------------*/,{
2353	SCR_COPY (1),
2354		RADDR (scratcha),
2355		NADDR (msgout),
2356	SCR_SET (SCR_ATN),
2357		0,
2358	SCR_JUMP,
2359		PADDR (clrack),
2360}/*-------------------------< CLEANUP >-------------------*/,{
2361	/*
2362	**      dsa:    Pointer to ccb
2363	**	      or xxxxxxFF (no ccb)
2364	**
2365	**      HS_REG:   Host-Status (<>0!)
2366	*/
2367	SCR_FROM_REG (dsa),
2368		0,
2369	SCR_JUMP ^ IFTRUE (DATA (0xff)),
2370		PADDR (start),
2371	/*
2372	**      dsa is valid.
2373	**	complete the cleanup.
2374	*/
2375	SCR_JUMP,
2376		PADDR (cleanup_ok),
2377
2378}/*-------------------------< COMPLETE >-----------------*/,{
2379	/*
2380	**	Complete message.
2381	**
2382	**	Copy TEMP register to LASTP in header.
2383	*/
2384	SCR_COPY (4),
2385		RADDR (temp),
2386		NADDR (header.lastp),
2387	/*
2388	**	When we terminate the cycle by clearing ACK,
2389	**	the target may disconnect immediately.
2390	**
2391	**	We don't want to be told of an
2392	**	"unexpected disconnect",
2393	**	so we disable this feature.
2394	*/
2395	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
2396		0,
2397	/*
2398	**	Terminate cycle ...
2399	*/
2400	SCR_CLR (SCR_ACK|SCR_ATN),
2401		0,
2402	/*
2403	**	... and wait for the disconnect.
2404	*/
2405	SCR_WAIT_DISC,
2406		0,
2407}/*-------------------------< CLEANUP_OK >----------------*/,{
2408	/*
2409	**	Save host status to header.
2410	*/
2411	SCR_COPY (4),
2412		RADDR (scr0),
2413		NADDR (header.status),
2414	/*
2415	**	and copy back the header to the ccb.
2416	*/
2417	SCR_COPY_F (4),
2418		RADDR (dsa),
2419		PADDR (cleanup0),
2420	/*
2421	**	Flush script prefetch if required
2422	*/
2423	PREFETCH_FLUSH
2424	SCR_COPY (sizeof (struct head)),
2425		NADDR (header),
2426}/*-------------------------< CLEANUP0 >--------------------*/,{
2427		0,
2428}/*-------------------------< SIGNAL >----------------------*/,{
2429	/*
2430	**	if job not completed ...
2431	*/
2432	SCR_FROM_REG (HS_REG),
2433		0,
2434	/*
2435	**	... start the next command.
2436	*/
2437	SCR_JUMP ^ IFTRUE (MASK (0, (HS_DONEMASK|HS_SKIPMASK))),
2438		PADDR(start),
2439	/*
2440	**	If command resulted in not GOOD status,
2441	**	call the C code if needed.
2442	*/
2443	SCR_FROM_REG (SS_REG),
2444		0,
2445	SCR_CALL ^ IFFALSE (DATA (S_GOOD)),
2446		PADDRH (bad_status),
2447
2448#ifndef	SCSI_NCR_CCB_DONE_SUPPORT
2449
2450	/*
2451	**	... signal completion to the host
2452	*/
2453	SCR_INT,
2454		SIR_INTFLY,
2455	/*
2456	**	Auf zu neuen Schandtaten!
2457	*/
2458	SCR_JUMP,
2459		PADDR(start),
2460
2461#else	/* defined SCSI_NCR_CCB_DONE_SUPPORT */
2462
2463	/*
2464	**	... signal completion to the host
2465	*/
2466	SCR_JUMP,
2467}/*------------------------< DONE_POS >---------------------*/,{
2468		PADDRH (done_queue),
2469}/*------------------------< DONE_PLUG >--------------------*/,{
2470	SCR_INT,
2471		SIR_DONE_OVERFLOW,
2472}/*------------------------< DONE_END >---------------------*/,{
2473	SCR_INT,
2474		SIR_INTFLY,
2475	SCR_COPY (4),
2476		RADDR (temp),
2477		PADDR (done_pos),
2478	SCR_JUMP,
2479		PADDR (start),
2480
2481#endif	/* SCSI_NCR_CCB_DONE_SUPPORT */
2482
2483}/*-------------------------< SAVE_DP >------------------*/,{
2484	/*
2485	**	SAVE_DP message:
2486	**	Copy TEMP register to SAVEP in header.
2487	*/
2488	SCR_COPY (4),
2489		RADDR (temp),
2490		NADDR (header.savep),
2491	SCR_CLR (SCR_ACK),
2492		0,
2493	SCR_JUMP,
2494		PADDR (dispatch),
2495}/*-------------------------< RESTORE_DP >---------------*/,{
2496	/*
2497	**	RESTORE_DP message:
2498	**	Copy SAVEP in header to TEMP register.
2499	*/
2500	SCR_COPY (4),
2501		NADDR (header.savep),
2502		RADDR (temp),
2503	SCR_JUMP,
2504		PADDR (clrack),
2505
2506}/*-------------------------< DISCONNECT >---------------*/,{
2507	/*
2508	**	DISCONNECTing  ...
2509	**
2510	**	disable the "unexpected disconnect" feature,
2511	**	and remove the ACK signal.
2512	*/
2513	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
2514		0,
2515	SCR_CLR (SCR_ACK|SCR_ATN),
2516		0,
2517	/*
2518	**	Wait for the disconnect.
2519	*/
2520	SCR_WAIT_DISC,
2521		0,
2522	/*
2523	**	Status is: DISCONNECTED.
2524	*/
2525	SCR_LOAD_REG (HS_REG, HS_DISCONNECT),
2526		0,
2527	SCR_JUMP,
2528		PADDR (cleanup_ok),
2529
2530}/*-------------------------< MSG_OUT >-------------------*/,{
2531	/*
2532	**	The target requests a message.
2533	*/
2534	SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
2535		NADDR (msgout),
2536	SCR_COPY (1),
2537		NADDR (msgout),
2538		NADDR (lastmsg),
2539	/*
2540	**	If it was no ABORT message ...
2541	*/
2542	SCR_JUMP ^ IFTRUE (DATA (ABORT_TASK_SET)),
2543		PADDRH (msg_out_abort),
2544	/*
2545	**	... wait for the next phase
2546	**	if it's a message out, send it again, ...
2547	*/
2548	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
2549		PADDR (msg_out),
2550}/*-------------------------< MSG_OUT_DONE >--------------*/,{
2551	/*
2552	**	... else clear the message ...
2553	*/
2554	SCR_LOAD_REG (scratcha, NOP),
2555		0,
2556	SCR_COPY (4),
2557		RADDR (scratcha),
2558		NADDR (msgout),
2559	/*
2560	**	... and process the next phase
2561	*/
2562	SCR_JUMP,
2563		PADDR (dispatch),
2564}/*-------------------------< IDLE >------------------------*/,{
2565	/*
2566	**	Nothing to do?
2567	**	Wait for reselect.
2568	**	This NOP will be patched with LED OFF
2569	**	SCR_REG_REG (gpreg, SCR_OR, 0x01)
2570	*/
2571	SCR_NO_OP,
2572		0,
2573}/*-------------------------< RESELECT >--------------------*/,{
2574	/*
2575	**	make the DSA invalid.
2576	*/
2577	SCR_LOAD_REG (dsa, 0xff),
2578		0,
2579	SCR_CLR (SCR_TRG),
2580		0,
2581	SCR_LOAD_REG (HS_REG, HS_IN_RESELECT),
2582		0,
2583	/*
2584	**	Sleep waiting for a reselection.
2585	**	If SIGP is set, special treatment.
2586	**
2587	**	Zu allem bereit ..
2588	*/
2589	SCR_WAIT_RESEL,
2590		PADDR(start),
2591}/*-------------------------< RESELECTED >------------------*/,{
2592	/*
2593	**	This NOP will be patched with LED ON
2594	**	SCR_REG_REG (gpreg, SCR_AND, 0xfe)
2595	*/
2596	SCR_NO_OP,
2597		0,
2598	/*
2599	**	... zu nichts zu gebrauchen ?
2600	**
2601	**      load the target id into the SFBR
2602	**	and jump to the control block.
2603	**
2604	**	Look at the declarations of
2605	**	- struct ncb
2606	**	- struct tcb
2607	**	- struct lcb
2608	**	- struct ccb
2609	**	to understand what's going on.
2610	*/
2611	SCR_REG_SFBR (ssid, SCR_AND, 0x8F),
2612		0,
2613	SCR_TO_REG (sdid),
2614		0,
2615	SCR_JUMP,
2616		NADDR (jump_tcb),
2617
2618}/*-------------------------< RESEL_DSA >-------------------*/,{
2619	/*
2620	**	Ack the IDENTIFY or TAG previously received.
2621	*/
2622	SCR_CLR (SCR_ACK),
2623		0,
2624	/*
2625	**      The ncr doesn't have an indirect load
2626	**	or store command. So we have to
2627	**	copy part of the control block to a
2628	**	fixed place, where we can access it.
2629	**
2630	**	We patch the address part of a
2631	**	COPY command with the DSA-register.
2632	*/
2633	SCR_COPY_F (4),
2634		RADDR (dsa),
2635		PADDR (loadpos1),
2636	/*
2637	**	Flush script prefetch if required
2638	*/
2639	PREFETCH_FLUSH
2640	/*
2641	**	then we do the actual copy.
2642	*/
2643	SCR_COPY (sizeof (struct head)),
2644	/*
2645	**	continued after the next label ...
2646	*/
2647
2648}/*-------------------------< LOADPOS1 >-------------------*/,{
2649		0,
2650		NADDR (header),
2651	/*
2652	**	The DSA contains the data structure address.
2653	*/
2654	SCR_JUMP,
2655		PADDR (prepare),
2656
2657}/*-------------------------< RESEL_LUN >-------------------*/,{
2658	/*
2659	**	come back to this point
2660	**	to get an IDENTIFY message
2661	**	Wait for a msg_in phase.
2662	*/
2663	SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
2664		SIR_RESEL_NO_MSG_IN,
2665	/*
2666	**	message phase.
2667	**	Read the data directly from the BUS DATA lines.
2668	**	This helps to support very old SCSI devices that
2669	**	may reselect without sending an IDENTIFY.
2670	*/
2671	SCR_FROM_REG (sbdl),
2672		0,
2673	/*
2674	**	It should be an Identify message.
2675	*/
2676	SCR_RETURN,
2677		0,
2678}/*-------------------------< RESEL_TAG >-------------------*/,{
2679	/*
2680	**	Read IDENTIFY + SIMPLE + TAG using a single MOVE.
2681	**	Aggressive optimization, is'nt it?
2682	**	No need to test the SIMPLE TAG message, since the
2683	**	driver only supports conformant devices for tags. ;-)
2684	*/
2685	SCR_MOVE_ABS (3) ^ SCR_MSG_IN,
2686		NADDR (msgin),
2687	/*
2688	**	Read the TAG from the SIDL.
2689	**	Still an aggressive optimization. ;-)
2690	**	Compute the CCB indirect jump address which
2691	**	is (#TAG*2 & 0xfc) due to tag numbering using
2692	**	1,3,5..MAXTAGS*2+1 actual values.
2693	*/
2694	SCR_REG_SFBR (sidl, SCR_SHL, 0),
2695		0,
2696	SCR_SFBR_REG (temp, SCR_AND, 0xfc),
2697		0,
2698}/*-------------------------< JUMP_TO_NEXUS >-------------------*/,{
2699	SCR_COPY_F (4),
2700		RADDR (temp),
2701		PADDR (nexus_indirect),
2702	/*
2703	**	Flush script prefetch if required
2704	*/
2705	PREFETCH_FLUSH
2706	SCR_COPY (4),
2707}/*-------------------------< NEXUS_INDIRECT >-------------------*/,{
2708		0,
2709		RADDR (temp),
2710	SCR_RETURN,
2711		0,
2712}/*-------------------------< RESEL_NOTAG >-------------------*/,{
2713	/*
2714	**	No tag expected.
2715	**	Read an throw away the IDENTIFY.
2716	*/
2717	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2718		NADDR (msgin),
2719	SCR_JUMP,
2720		PADDR (jump_to_nexus),
2721}/*-------------------------< DATA_IN >--------------------*/,{
2722/*
2723**	Because the size depends on the
2724**	#define MAX_SCATTERL parameter,
2725**	it is filled in at runtime.
2726**
2727**  ##===========< i=0; i<MAX_SCATTERL >=========
2728**  ||	SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)),
2729**  ||		PADDR (dispatch),
2730**  ||	SCR_MOVE_TBL ^ SCR_DATA_IN,
2731**  ||		offsetof (struct dsb, data[ i]),
2732**  ##==========================================
2733**
2734**---------------------------------------------------------
2735*/
27360
2737}/*-------------------------< DATA_IN2 >-------------------*/,{
2738	SCR_CALL,
2739		PADDR (dispatch),
2740	SCR_JUMP,
2741		PADDR (no_data),
2742}/*-------------------------< DATA_OUT >--------------------*/,{
2743/*
2744**	Because the size depends on the
2745**	#define MAX_SCATTERL parameter,
2746**	it is filled in at runtime.
2747**
2748**  ##===========< i=0; i<MAX_SCATTERL >=========
2749**  ||	SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT)),
2750**  ||		PADDR (dispatch),
2751**  ||	SCR_MOVE_TBL ^ SCR_DATA_OUT,
2752**  ||		offsetof (struct dsb, data[ i]),
2753**  ##==========================================
2754**
2755**---------------------------------------------------------
2756*/
27570
2758}/*-------------------------< DATA_OUT2 >-------------------*/,{
2759	SCR_CALL,
2760		PADDR (dispatch),
2761	SCR_JUMP,
2762		PADDR (no_data),
2763}/*--------------------------------------------------------*/
2764};
2765
2766static	struct scripth scripth0 __initdata = {
2767/*-------------------------< TRYLOOP >---------------------*/{
2768/*
2769**	Start the next entry.
2770**	Called addresses point to the launch script in the CCB.
2771**	They are patched by the main processor.
2772**
2773**	Because the size depends on the
2774**	#define MAX_START parameter, it is filled
2775**	in at runtime.
2776**
2777**-----------------------------------------------------------
2778**
2779**  ##===========< I=0; i<MAX_START >===========
2780**  ||	SCR_CALL,
2781**  ||		PADDR (idle),
2782**  ##==========================================
2783**
2784**-----------------------------------------------------------
2785*/
27860
2787}/*------------------------< TRYLOOP2 >---------------------*/,{
2788	SCR_JUMP,
2789		PADDRH(tryloop),
2790
2791#ifdef SCSI_NCR_CCB_DONE_SUPPORT
2792
2793}/*------------------------< DONE_QUEUE >-------------------*/,{
2794/*
2795**	Copy the CCB address to the next done entry.
2796**	Because the size depends on the
2797**	#define MAX_DONE parameter, it is filled
2798**	in at runtime.
2799**
2800**-----------------------------------------------------------
2801**
2802**  ##===========< I=0; i<MAX_DONE >===========
2803**  ||	SCR_COPY (sizeof(struct ccb *),
2804**  ||		NADDR (header.cp),
2805**  ||		NADDR (ccb_done[i]),
2806**  ||	SCR_CALL,
2807**  ||		PADDR (done_end),
2808**  ##==========================================
2809**
2810**-----------------------------------------------------------
2811*/
28120
2813}/*------------------------< DONE_QUEUE2 >------------------*/,{
2814	SCR_JUMP,
2815		PADDRH (done_queue),
2816
2817#endif /* SCSI_NCR_CCB_DONE_SUPPORT */
2818}/*------------------------< SELECT_NO_ATN >-----------------*/,{
2819	/*
2820	**	Set Initiator mode.
2821	**      And try to select this target without ATN.
2822	*/
2823
2824	SCR_CLR (SCR_TRG),
2825		0,
2826	SCR_LOAD_REG (HS_REG, HS_SELECTING),
2827		0,
2828	SCR_SEL_TBL ^ offsetof (struct dsb, select),
2829		PADDR (reselect),
2830	SCR_JUMP,
2831		PADDR (select2),
2832
2833}/*-------------------------< CANCEL >------------------------*/,{
2834
2835	SCR_LOAD_REG (scratcha, HS_ABORTED),
2836		0,
2837	SCR_JUMPR,
2838		8,
2839}/*-------------------------< SKIP >------------------------*/,{
2840	SCR_LOAD_REG (scratcha, 0),
2841		0,
2842	/*
2843	**	This entry has been canceled.
2844	**	Next time use the next slot.
2845	*/
2846	SCR_COPY (4),
2847		RADDR (temp),
2848		PADDR (startpos),
2849	/*
2850	**      The ncr doesn't have an indirect load
2851	**	or store command. So we have to
2852	**	copy part of the control block to a
2853	**	fixed place, where we can access it.
2854	**
2855	**	We patch the address part of a
2856	**	COPY command with the DSA-register.
2857	*/
2858	SCR_COPY_F (4),
2859		RADDR (dsa),
2860		PADDRH (skip2),
2861	/*
2862	**	Flush script prefetch if required
2863	*/
2864	PREFETCH_FLUSH
2865	/*
2866	**	then we do the actual copy.
2867	*/
2868	SCR_COPY (sizeof (struct head)),
2869	/*
2870	**	continued after the next label ...
2871	*/
2872}/*-------------------------< SKIP2 >---------------------*/,{
2873		0,
2874		NADDR (header),
2875	/*
2876	**      Initialize the status registers
2877	*/
2878	SCR_COPY (4),
2879		NADDR (header.status),
2880		RADDR (scr0),
2881	/*
2882	**	Force host status.
2883	*/
2884	SCR_FROM_REG (scratcha),
2885		0,
2886	SCR_JUMPR ^ IFFALSE (MASK (0, HS_DONEMASK)),
2887		16,
2888	SCR_REG_REG (HS_REG, SCR_OR, HS_SKIPMASK),
2889		0,
2890	SCR_JUMPR,
2891		8,
2892	SCR_TO_REG (HS_REG),
2893		0,
2894	SCR_LOAD_REG (SS_REG, S_GOOD),
2895		0,
2896	SCR_JUMP,
2897		PADDR (cleanup_ok),
2898
2899},/*-------------------------< PAR_ERR_DATA_IN >---------------*/{
2900	/*
2901	**	Ignore all data in byte, until next phase
2902	*/
2903	SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
2904		PADDRH (par_err_other),
2905	SCR_MOVE_ABS (1) ^ SCR_DATA_IN,
2906		NADDR (scratch),
2907	SCR_JUMPR,
2908		-24,
2909},/*-------------------------< PAR_ERR_OTHER >------------------*/{
2910	/*
2911	**	count it.
2912	*/
2913	SCR_REG_REG (PS_REG, SCR_ADD, 0x01),
2914		0,
2915	/*
2916	**	jump to dispatcher.
2917	*/
2918	SCR_JUMP,
2919		PADDR (dispatch),
2920}/*-------------------------< MSG_REJECT >---------------*/,{
2921	/*
2922	**	If a negotiation was in progress,
2923	**	negotiation failed.
2924	**	Otherwise, let the C code print
2925	**	some message.
2926	*/
2927	SCR_FROM_REG (HS_REG),
2928		0,
2929	SCR_INT ^ IFFALSE (DATA (HS_NEGOTIATE)),
2930		SIR_REJECT_RECEIVED,
2931	SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
2932		SIR_NEGO_FAILED,
2933	SCR_JUMP,
2934		PADDR (clrack),
2935
2936}/*-------------------------< MSG_IGN_RESIDUE >----------*/,{
2937	/*
2938	**	Terminate cycle
2939	*/
2940	SCR_CLR (SCR_ACK),
2941		0,
2942	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
2943		PADDR (dispatch),
2944	/*
2945	**	get residue size.
2946	*/
2947	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2948		NADDR (msgin[1]),
2949	/*
2950	**	Size is 0 .. ignore message.
2951	*/
2952	SCR_JUMP ^ IFTRUE (DATA (0)),
2953		PADDR (clrack),
2954	/*
2955	**	Size is not 1 .. have to interrupt.
2956	*/
2957	SCR_JUMPR ^ IFFALSE (DATA (1)),
2958		40,
2959	/*
2960	**	Check for residue byte in swide register
2961	*/
2962	SCR_FROM_REG (scntl2),
2963		0,
2964	SCR_JUMPR ^ IFFALSE (MASK (WSR, WSR)),
2965		16,
2966	/*
2967	**	There IS data in the swide register.
2968	**	Discard it.
2969	*/
2970	SCR_REG_REG (scntl2, SCR_OR, WSR),
2971		0,
2972	SCR_JUMP,
2973		PADDR (clrack),
2974	/*
2975	**	Load again the size to the sfbr register.
2976	*/
2977	SCR_FROM_REG (scratcha),
2978		0,
2979	SCR_INT,
2980		SIR_IGN_RESIDUE,
2981	SCR_JUMP,
2982		PADDR (clrack),
2983
2984}/*-------------------------< MSG_EXTENDED >-------------*/,{
2985	/*
2986	**	Terminate cycle
2987	*/
2988	SCR_CLR (SCR_ACK),
2989		0,
2990	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
2991		PADDR (dispatch),
2992	/*
2993	**	get length.
2994	*/
2995	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2996		NADDR (msgin[1]),
2997	/*
2998	*/
2999	SCR_JUMP ^ IFTRUE (DATA (3)),
3000		PADDRH (msg_ext_3),
3001	SCR_JUMP ^ IFFALSE (DATA (2)),
3002		PADDR (msg_bad),
3003}/*-------------------------< MSG_EXT_2 >----------------*/,{
3004	SCR_CLR (SCR_ACK),
3005		0,
3006	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
3007		PADDR (dispatch),
3008	/*
3009	**	get extended message code.
3010	*/
3011	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3012		NADDR (msgin[2]),
3013	SCR_JUMP ^ IFTRUE (DATA (EXTENDED_WDTR)),
3014		PADDRH (msg_wdtr),
3015	/*
3016	**	unknown extended message
3017	*/
3018	SCR_JUMP,
3019		PADDR (msg_bad)
3020}/*-------------------------< MSG_WDTR >-----------------*/,{
3021	SCR_CLR (SCR_ACK),
3022		0,
3023	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
3024		PADDR (dispatch),
3025	/*
3026	**	get data bus width
3027	*/
3028	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3029		NADDR (msgin[3]),
3030	/*
3031	**	let the host do the real work.
3032	*/
3033	SCR_INT,
3034		SIR_NEGO_WIDE,
3035	/*
3036	**	let the target fetch our answer.
3037	*/
3038	SCR_SET (SCR_ATN),
3039		0,
3040	SCR_CLR (SCR_ACK),
3041		0,
3042	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
3043		PADDRH (nego_bad_phase),
3044
3045}/*-------------------------< SEND_WDTR >----------------*/,{
3046	/*
3047	**	Send the EXTENDED_WDTR
3048	*/
3049	SCR_MOVE_ABS (4) ^ SCR_MSG_OUT,
3050		NADDR (msgout),
3051	SCR_COPY (1),
3052		NADDR (msgout),
3053		NADDR (lastmsg),
3054	SCR_JUMP,
3055		PADDR (msg_out_done),
3056
3057}/*-------------------------< MSG_EXT_3 >----------------*/,{
3058	SCR_CLR (SCR_ACK),
3059		0,
3060	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
3061		PADDR (dispatch),
3062	/*
3063	**	get extended message code.
3064	*/
3065	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3066		NADDR (msgin[2]),
3067	SCR_JUMP ^ IFTRUE (DATA (EXTENDED_SDTR)),
3068		PADDRH (msg_sdtr),
3069	/*
3070	**	unknown extended message
3071	*/
3072	SCR_JUMP,
3073		PADDR (msg_bad)
3074
3075}/*-------------------------< MSG_SDTR >-----------------*/,{
3076	SCR_CLR (SCR_ACK),
3077		0,
3078	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
3079		PADDR (dispatch),
3080	/*
3081	**	get period and offset
3082	*/
3083	SCR_MOVE_ABS (2) ^ SCR_MSG_IN,
3084		NADDR (msgin[3]),
3085	/*
3086	**	let the host do the real work.
3087	*/
3088	SCR_INT,
3089		SIR_NEGO_SYNC,
3090	/*
3091	**	let the target fetch our answer.
3092	*/
3093	SCR_SET (SCR_ATN),
3094		0,
3095	SCR_CLR (SCR_ACK),
3096		0,
3097	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
3098		PADDRH (nego_bad_phase),
3099
3100}/*-------------------------< SEND_SDTR >-------------*/,{
3101	/*
3102	**	Send the EXTENDED_SDTR
3103	*/
3104	SCR_MOVE_ABS (5) ^ SCR_MSG_OUT,
3105		NADDR (msgout),
3106	SCR_COPY (1),
3107		NADDR (msgout),
3108		NADDR (lastmsg),
3109	SCR_JUMP,
3110		PADDR (msg_out_done),
3111
3112}/*-------------------------< NEGO_BAD_PHASE >------------*/,{
3113	SCR_INT,
3114		SIR_NEGO_PROTO,
3115	SCR_JUMP,
3116		PADDR (dispatch),
3117
3118}/*-------------------------< MSG_OUT_ABORT >-------------*/,{
3119	/*
3120	**	After ABORT message,
3121	**
3122	**	expect an immediate disconnect, ...
3123	*/
3124	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
3125		0,
3126	SCR_CLR (SCR_ACK|SCR_ATN),
3127		0,
3128	SCR_WAIT_DISC,
3129		0,
3130	/*
3131	**	... and set the status to "ABORTED"
3132	*/
3133	SCR_LOAD_REG (HS_REG, HS_ABORTED),
3134		0,
3135	SCR_JUMP,
3136		PADDR (cleanup),
3137
3138}/*-------------------------< HDATA_IN >-------------------*/,{
3139/*
3140**	Because the size depends on the
3141**	#define MAX_SCATTERH parameter,
3142**	it is filled in at runtime.
3143**
3144**  ##==< i=MAX_SCATTERL; i<MAX_SCATTERL+MAX_SCATTERH >==
3145**  ||	SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)),
3146**  ||		PADDR (dispatch),
3147**  ||	SCR_MOVE_TBL ^ SCR_DATA_IN,
3148**  ||		offsetof (struct dsb, data[ i]),
3149**  ##===================================================
3150**
3151**---------------------------------------------------------
3152*/
31530
3154}/*-------------------------< HDATA_IN2 >------------------*/,{
3155	SCR_JUMP,
3156		PADDR (data_in),
3157
3158}/*-------------------------< HDATA_OUT >-------------------*/,{
3159/*
3160**	Because the size depends on the
3161**	#define MAX_SCATTERH parameter,
3162**	it is filled in at runtime.
3163**
3164**  ##==< i=MAX_SCATTERL; i<MAX_SCATTERL+MAX_SCATTERH >==
3165**  ||	SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT)),
3166**  ||		PADDR (dispatch),
3167**  ||	SCR_MOVE_TBL ^ SCR_DATA_OUT,
3168**  ||		offsetof (struct dsb, data[ i]),
3169**  ##===================================================
3170**
3171**---------------------------------------------------------
3172*/
31730
3174}/*-------------------------< HDATA_OUT2 >------------------*/,{
3175	SCR_JUMP,
3176		PADDR (data_out),
3177
3178}/*-------------------------< RESET >----------------------*/,{
3179	/*
3180	**      Send a TARGET_RESET message if bad IDENTIFY
3181	**	received on reselection.
3182	*/
3183	SCR_LOAD_REG (scratcha, ABORT_TASK),
3184		0,
3185	SCR_JUMP,
3186		PADDRH (abort_resel),
3187}/*-------------------------< ABORTTAG >-------------------*/,{
3188	/*
3189	**      Abort a wrong tag received on reselection.
3190	*/
3191	SCR_LOAD_REG (scratcha, ABORT_TASK),
3192		0,
3193	SCR_JUMP,
3194		PADDRH (abort_resel),
3195}/*-------------------------< ABORT >----------------------*/,{
3196	/*
3197	**      Abort a reselection when no active CCB.
3198	*/
3199	SCR_LOAD_REG (scratcha, ABORT_TASK_SET),
3200		0,
3201}/*-------------------------< ABORT_RESEL >----------------*/,{
3202	SCR_COPY (1),
3203		RADDR (scratcha),
3204		NADDR (msgout),
3205	SCR_SET (SCR_ATN),
3206		0,
3207	SCR_CLR (SCR_ACK),
3208		0,
3209	/*
3210	**	and send it.
3211	**	we expect an immediate disconnect
3212	*/
3213	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
3214		0,
3215	SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
3216		NADDR (msgout),
3217	SCR_COPY (1),
3218		NADDR (msgout),
3219		NADDR (lastmsg),
3220	SCR_CLR (SCR_ACK|SCR_ATN),
3221		0,
3222	SCR_WAIT_DISC,
3223		0,
3224	SCR_JUMP,
3225		PADDR (start),
3226}/*-------------------------< RESEND_IDENT >-------------------*/,{
3227	/*
3228	**	The target stays in MSG OUT phase after having acked
3229	**	Identify [+ Tag [+ Extended message ]]. Targets shall
3230	**	behave this way on parity error.
3231	**	We must send it again all the messages.
3232	*/
3233	SCR_SET (SCR_ATN), /* Shall be asserted 2 deskew delays before the  */
3234		0,         /* 1rst ACK = 90 ns. Hope the NCR is'nt too fast */
3235	SCR_JUMP,
3236		PADDR (send_ident),
3237}/*-------------------------< CLRATN_GO_ON >-------------------*/,{
3238	SCR_CLR (SCR_ATN),
3239		0,
3240	SCR_JUMP,
3241}/*-------------------------< NXTDSP_GO_ON >-------------------*/,{
3242		0,
3243}/*-------------------------< SDATA_IN >-------------------*/,{
3244	SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)),
3245		PADDR (dispatch),
3246	SCR_MOVE_TBL ^ SCR_DATA_IN,
3247		offsetof (struct dsb, sense),
3248	SCR_CALL,
3249		PADDR (dispatch),
3250	SCR_JUMP,
3251		PADDR (no_data),
3252}/*-------------------------< DATA_IO >--------------------*/,{
3253	/*
3254	**	We jump here if the data direction was unknown at the
3255	**	time we had to queue the command to the scripts processor.
3256	**	Pointers had been set as follow in this situation:
3257	**	  savep   -->   DATA_IO
3258	**	  lastp   -->   start pointer when DATA_IN
3259	**	  goalp   -->   goal  pointer when DATA_IN
3260	**	  wlastp  -->   start pointer when DATA_OUT
3261	**	  wgoalp  -->   goal  pointer when DATA_OUT
3262	**	This script sets savep/lastp/goalp according to the
3263	**	direction chosen by the target.
3264	*/
3265	SCR_JUMPR ^ IFTRUE (WHEN (SCR_DATA_OUT)),
3266		32,
3267	/*
3268	**	Direction is DATA IN.
3269	**	Warning: we jump here, even when phase is DATA OUT.
3270	*/
3271	SCR_COPY (4),
3272		NADDR (header.lastp),
3273		NADDR (header.savep),
3274
3275	/*
3276	**	Jump to the SCRIPTS according to actual direction.
3277	*/
3278	SCR_COPY (4),
3279		NADDR (header.savep),
3280		RADDR (temp),
3281	SCR_RETURN,
3282		0,
3283	/*
3284	**	Direction is DATA OUT.
3285	*/
3286	SCR_COPY (4),
3287		NADDR (header.wlastp),
3288		NADDR (header.lastp),
3289	SCR_COPY (4),
3290		NADDR (header.wgoalp),
3291		NADDR (header.goalp),
3292	SCR_JUMPR,
3293		-64,
3294}/*-------------------------< BAD_IDENTIFY >---------------*/,{
3295	/*
3296	**	If message phase but not an IDENTIFY,
3297	**	get some help from the C code.
3298	**	Old SCSI device may behave so.
3299	*/
3300	SCR_JUMPR ^ IFTRUE (MASK (0x80, 0x80)),
3301		16,
3302	SCR_INT,
3303		SIR_RESEL_NO_IDENTIFY,
3304	SCR_JUMP,
3305		PADDRH (reset),
3306	/*
3307	**	Message is an IDENTIFY, but lun is unknown.
3308	**	Read the message, since we got it directly
3309	**	from the SCSI BUS data lines.
3310	**	Signal problem to C code for logging the event.
3311	**	Send an ABORT_TASK_SET to clear all pending tasks.
3312	*/
3313	SCR_INT,
3314		SIR_RESEL_BAD_LUN,
3315	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3316		NADDR (msgin),
3317	SCR_JUMP,
3318		PADDRH (abort),
3319}/*-------------------------< BAD_I_T_L >------------------*/,{
3320	/*
3321	**	We donnot have a task for that I_T_L.
3322	**	Signal problem to C code for logging the event.
3323	**	Send an ABORT_TASK_SET message.
3324	*/
3325	SCR_INT,
3326		SIR_RESEL_BAD_I_T_L,
3327	SCR_JUMP,
3328		PADDRH (abort),
3329}/*-------------------------< BAD_I_T_L_Q >----------------*/,{
3330	/*
3331	**	We donnot have a task that matches the tag.
3332	**	Signal problem to C code for logging the event.
3333	**	Send an ABORT_TASK message.
3334	*/
3335	SCR_INT,
3336		SIR_RESEL_BAD_I_T_L_Q,
3337	SCR_JUMP,
3338		PADDRH (aborttag),
3339}/*-------------------------< BAD_TARGET >-----------------*/,{
3340	/*
3341	**	We donnot know the target that reselected us.
3342	**	Grab the first message if any (IDENTIFY).
3343	**	Signal problem to C code for logging the event.
3344	**	TARGET_RESET message.
3345	*/
3346	SCR_INT,
3347		SIR_RESEL_BAD_TARGET,
3348	SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_IN)),
3349		8,
3350	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3351		NADDR (msgin),
3352	SCR_JUMP,
3353		PADDRH (reset),
3354}/*-------------------------< BAD_STATUS >-----------------*/,{
3355	/*
3356	**	If command resulted in either QUEUE FULL,
3357	**	CHECK CONDITION or COMMAND TERMINATED,
3358	**	call the C code.
3359	*/
3360	SCR_INT ^ IFTRUE (DATA (S_QUEUE_FULL)),
3361		SIR_BAD_STATUS,
3362	SCR_INT ^ IFTRUE (DATA (S_CHECK_COND)),
3363		SIR_BAD_STATUS,
3364	SCR_INT ^ IFTRUE (DATA (S_TERMINATED)),
3365		SIR_BAD_STATUS,
3366	SCR_RETURN,
3367		0,
3368}/*-------------------------< START_RAM >-------------------*/,{
3369	/*
3370	**	Load the script into on-chip RAM,
3371	**	and jump to start point.
3372	*/
3373	SCR_COPY_F (4),
3374		RADDR (scratcha),
3375		PADDRH (start_ram0),
3376	/*
3377	**	Flush script prefetch if required
3378	*/
3379	PREFETCH_FLUSH
3380	SCR_COPY (sizeof (struct script)),
3381}/*-------------------------< START_RAM0 >--------------------*/,{
3382		0,
3383		PADDR (start),
3384	SCR_JUMP,
3385		PADDR (start),
3386}/*-------------------------< STO_RESTART >-------------------*/,{
3387	/*
3388	**
3389	**	Repair start queue (e.g. next time use the next slot)
3390	**	and jump to start point.
3391	*/
3392	SCR_COPY (4),
3393		RADDR (temp),
3394		PADDR (startpos),
3395	SCR_JUMP,
3396		PADDR (start),
3397}/*-------------------------< WAIT_DMA >-------------------*/,{
3398	/*
3399	**	For HP Zalon/53c720 systems, the Zalon interface
3400	**	between CPU and 53c720 does prefetches, which causes
3401	**	problems with self modifying scripts.  The problem
3402	**	is overcome by calling a dummy subroutine after each
3403	**	modification, to force a refetch of the script on
3404	**	return from the subroutine.
3405	*/
3406	SCR_RETURN,
3407		0,
3408}/*-------------------------< SNOOPTEST >-------------------*/,{
3409	/*
3410	**	Read the variable.
3411	*/
3412	SCR_COPY (4),
3413		NADDR(ncr_cache),
3414		RADDR (scratcha),
3415	/*
3416	**	Write the variable.
3417	*/
3418	SCR_COPY (4),
3419		RADDR (temp),
3420		NADDR(ncr_cache),
3421	/*
3422	**	Read back the variable.
3423	*/
3424	SCR_COPY (4),
3425		NADDR(ncr_cache),
3426		RADDR (temp),
3427}/*-------------------------< SNOOPEND >-------------------*/,{
3428	/*
3429	**	And stop.
3430	*/
3431	SCR_INT,
3432		99,
3433}/*--------------------------------------------------------*/
3434};
3435
3436/*==========================================================
3437**
3438**
3439**	Fill in #define dependent parts of the script
3440**
3441**
3442**==========================================================
3443*/
3444
3445void __init ncr_script_fill (struct script * scr, struct scripth * scrh)
3446{
3447	int	i;
3448	ncrcmd	*p;
3449
3450	p = scrh->tryloop;
3451	for (i=0; i<MAX_START; i++) {
3452		*p++ =SCR_CALL;
3453		*p++ =PADDR (idle);
3454	}
3455
3456	BUG_ON((u_long)p != (u_long)&scrh->tryloop + sizeof (scrh->tryloop));
3457
3458#ifdef SCSI_NCR_CCB_DONE_SUPPORT
3459
3460	p = scrh->done_queue;
3461	for (i = 0; i<MAX_DONE; i++) {
3462		*p++ =SCR_COPY (sizeof(struct ccb *));
3463		*p++ =NADDR (header.cp);
3464		*p++ =NADDR (ccb_done[i]);
3465		*p++ =SCR_CALL;
3466		*p++ =PADDR (done_end);
3467	}
3468
3469	BUG_ON((u_long)p != (u_long)&scrh->done_queue+sizeof(scrh->done_queue));
3470
3471#endif /* SCSI_NCR_CCB_DONE_SUPPORT */
3472
3473	p = scrh->hdata_in;
3474	for (i=0; i<MAX_SCATTERH; i++) {
3475		*p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN));
3476		*p++ =PADDR (dispatch);
3477		*p++ =SCR_MOVE_TBL ^ SCR_DATA_IN;
3478		*p++ =offsetof (struct dsb, data[i]);
3479	}
3480
3481	BUG_ON((u_long)p != (u_long)&scrh->hdata_in + sizeof (scrh->hdata_in));
3482
3483	p = scr->data_in;
3484	for (i=MAX_SCATTERH; i<MAX_SCATTERH+MAX_SCATTERL; i++) {
3485		*p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN));
3486		*p++ =PADDR (dispatch);
3487		*p++ =SCR_MOVE_TBL ^ SCR_DATA_IN;
3488		*p++ =offsetof (struct dsb, data[i]);
3489	}
3490
3491	BUG_ON((u_long)p != (u_long)&scr->data_in + sizeof (scr->data_in));
3492
3493	p = scrh->hdata_out;
3494	for (i=0; i<MAX_SCATTERH; i++) {
3495		*p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT));
3496		*p++ =PADDR (dispatch);
3497		*p++ =SCR_MOVE_TBL ^ SCR_DATA_OUT;
3498		*p++ =offsetof (struct dsb, data[i]);
3499	}
3500
3501	BUG_ON((u_long)p != (u_long)&scrh->hdata_out + sizeof (scrh->hdata_out));
3502
3503	p = scr->data_out;
3504	for (i=MAX_SCATTERH; i<MAX_SCATTERH+MAX_SCATTERL; i++) {
3505		*p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT));
3506		*p++ =PADDR (dispatch);
3507		*p++ =SCR_MOVE_TBL ^ SCR_DATA_OUT;
3508		*p++ =offsetof (struct dsb, data[i]);
3509	}
3510
3511	BUG_ON((u_long) p != (u_long)&scr->data_out + sizeof (scr->data_out));
3512}
3513
3514/*==========================================================
3515**
3516**
3517**	Copy and rebind a script.
3518**
3519**
3520**==========================================================
3521*/
3522
3523static void __init
3524ncr_script_copy_and_bind (struct ncb *np, ncrcmd *src, ncrcmd *dst, int len)
3525{
3526	ncrcmd  opcode, new, old, tmp1, tmp2;
3527	ncrcmd	*start, *end;
3528	int relocs;
3529	int opchanged = 0;
3530
3531	start = src;
3532	end = src + len/4;
3533
3534	while (src < end) {
3535
3536		opcode = *src++;
3537		*dst++ = cpu_to_scr(opcode);
3538
3539		/*
3540		**	If we forget to change the length
3541		**	in struct script, a field will be
3542		**	padded with 0. This is an illegal
3543		**	command.
3544		*/
3545
3546		if (opcode == 0) {
3547			printk (KERN_ERR "%s: ERROR0 IN SCRIPT at %d.\n",
3548				ncr_name(np), (int) (src-start-1));
3549			mdelay(1000);
3550		}
3551
3552		if (DEBUG_FLAGS & DEBUG_SCRIPT)
3553			printk (KERN_DEBUG "%p:  <%x>\n",
3554				(src-1), (unsigned)opcode);
3555
3556		/*
3557		**	We don't have to decode ALL commands
3558		*/
3559		switch (opcode >> 28) {
3560
3561		case 0xc:
3562			/*
3563			**	COPY has TWO arguments.
3564			*/
3565			relocs = 2;
3566			tmp1 = src[0];
3567#ifdef	RELOC_KVAR
3568			if ((tmp1 & RELOC_MASK) == RELOC_KVAR)
3569				tmp1 = 0;
3570#endif
3571			tmp2 = src[1];
3572#ifdef	RELOC_KVAR
3573			if ((tmp2 & RELOC_MASK) == RELOC_KVAR)
3574				tmp2 = 0;
3575#endif
3576			if ((tmp1 ^ tmp2) & 3) {
3577				printk (KERN_ERR"%s: ERROR1 IN SCRIPT at %d.\n",
3578					ncr_name(np), (int) (src-start-1));
3579				mdelay(1000);
3580			}
3581			/*
3582			**	If PREFETCH feature not enabled, remove
3583			**	the NO FLUSH bit if present.
3584			*/
3585			if ((opcode & SCR_NO_FLUSH) && !(np->features & FE_PFEN)) {
3586				dst[-1] = cpu_to_scr(opcode & ~SCR_NO_FLUSH);
3587				++opchanged;
3588			}
3589			break;
3590
3591		case 0x0:
3592			/*
3593			**	MOVE (absolute address)
3594			*/
3595			relocs = 1;
3596			break;
3597
3598		case 0x8:
3599			/*
3600			**	JUMP / CALL
3601			**	don't relocate if relative :-)
3602			*/
3603			if (opcode & 0x00800000)
3604				relocs = 0;
3605			else
3606				relocs = 1;
3607			break;
3608
3609		case 0x4:
3610		case 0x5:
3611		case 0x6:
3612		case 0x7:
3613			relocs = 1;
3614			break;
3615
3616		default:
3617			relocs = 0;
3618			break;
3619		}
3620
3621		if (relocs) {
3622			while (relocs--) {
3623				old = *src++;
3624
3625				switch (old & RELOC_MASK) {
3626				case RELOC_REGISTER:
3627					new = (old & ~RELOC_MASK) + np->paddr;
3628					break;
3629				case RELOC_LABEL:
3630					new = (old & ~RELOC_MASK) + np->p_script;
3631					break;
3632				case RELOC_LABELH:
3633					new = (old & ~RELOC_MASK) + np->p_scripth;
3634					break;
3635				case RELOC_SOFTC:
3636					new = (old & ~RELOC_MASK) + np->p_ncb;
3637					break;
3638#ifdef	RELOC_KVAR
3639				case RELOC_KVAR:
3640					if (((old & ~RELOC_MASK) <
3641					     SCRIPT_KVAR_FIRST) ||
3642					    ((old & ~RELOC_MASK) >
3643					     SCRIPT_KVAR_LAST))
3644						panic("ncr KVAR out of range");
3645					new = vtophys(script_kvars[old &
3646					    ~RELOC_MASK]);
3647					break;
3648#endif
3649				case 0:
3650					/* Don't relocate a 0 address. */
3651					if (old == 0) {
3652						new = old;
3653						break;
3654					}
3655					/* fall through */
3656				default:
3657					panic("ncr_script_copy_and_bind: weird relocation %x\n", old);
3658					break;
3659				}
3660
3661				*dst++ = cpu_to_scr(new);
3662			}
3663		} else
3664			*dst++ = cpu_to_scr(*src++);
3665
3666	}
3667}
3668
3669/*
3670**	Linux host data structure
3671*/
3672
3673struct host_data {
3674     struct ncb *ncb;
3675};
3676
3677#define PRINT_ADDR(cmd, arg...) dev_info(&cmd->device->sdev_gendev , ## arg)
3678
3679static void ncr_print_msg(struct ccb *cp, char *label, u_char *msg)
3680{
3681	PRINT_ADDR(cp->cmd, "%s: ", label);
3682
3683	spi_print_msg(msg);
3684	printk("\n");
3685}
3686
3687/*==========================================================
3688**
3689**	NCR chip clock divisor table.
3690**	Divisors are multiplied by 10,000,000 in order to make
3691**	calculations more simple.
3692**
3693**==========================================================
3694*/
3695
3696#define _5M 5000000
3697static u_long div_10M[] =
3698	{2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
3699
3700
3701/*===============================================================
3702**
3703**	Prepare io register values used by ncr_init() according
3704**	to selected and supported features.
3705**
3706**	NCR chips allow burst lengths of 2, 4, 8, 16, 32, 64, 128
3707**	transfers. 32,64,128 are only supported by 875 and 895 chips.
3708**	We use log base 2 (burst length) as internal code, with
3709**	value 0 meaning "burst disabled".
3710**
3711**===============================================================
3712*/
3713
3714/*
3715 *	Burst length from burst code.
3716 */
3717#define burst_length(bc) (!(bc))? 0 : 1 << (bc)
3718
3719/*
3720 *	Burst code from io register bits.  Burst enable is ctest0 for c720
3721 */
3722#define burst_code(dmode, ctest0) \
3723	(ctest0) & 0x80 ? 0 : (((dmode) & 0xc0) >> 6) + 1
3724
3725/*
3726 *	Set initial io register bits from burst code.
3727 */
3728static inline void ncr_init_burst(struct ncb *np, u_char bc)
3729{
3730	u_char *be = &np->rv_ctest0;
3731	*be		&= ~0x80;
3732	np->rv_dmode	&= ~(0x3 << 6);
3733	np->rv_ctest5	&= ~0x4;
3734
3735	if (!bc) {
3736		*be		|= 0x80;
3737	} else {
3738		--bc;
3739		np->rv_dmode	|= ((bc & 0x3) << 6);
3740		np->rv_ctest5	|= (bc & 0x4);
3741	}
3742}
3743
3744static void __init ncr_prepare_setting(struct ncb *np)
3745{
3746	u_char	burst_max;
3747	u_long	period;
3748	int i;
3749
3750	/*
3751	**	Save assumed BIOS setting
3752	*/
3753
3754	np->sv_scntl0	= INB(nc_scntl0) & 0x0a;
3755	np->sv_scntl3	= INB(nc_scntl3) & 0x07;
3756	np->sv_dmode	= INB(nc_dmode)  & 0xce;
3757	np->sv_dcntl	= INB(nc_dcntl)  & 0xa8;
3758	np->sv_ctest0	= INB(nc_ctest0) & 0x84;
3759	np->sv_ctest3	= INB(nc_ctest3) & 0x01;
3760	np->sv_ctest4	= INB(nc_ctest4) & 0x80;
3761	np->sv_ctest5	= INB(nc_ctest5) & 0x24;
3762	np->sv_gpcntl	= INB(nc_gpcntl);
3763	np->sv_stest2	= INB(nc_stest2) & 0x20;
3764	np->sv_stest4	= INB(nc_stest4);
3765
3766	/*
3767	**	Wide ?
3768	*/
3769
3770	np->maxwide	= (np->features & FE_WIDE)? 1 : 0;
3771
3772 	/*
3773	 *  Guess the frequency of the chip's clock.
3774	 */
3775	if (np->features & FE_ULTRA)
3776		np->clock_khz = 80000;
3777	else
3778		np->clock_khz = 40000;
3779
3780	/*
3781	 *  Get the clock multiplier factor.
3782 	 */
3783	if	(np->features & FE_QUAD)
3784		np->multiplier	= 4;
3785	else if	(np->features & FE_DBLR)
3786		np->multiplier	= 2;
3787	else
3788		np->multiplier	= 1;
3789
3790	/*
3791	 *  Measure SCSI clock frequency for chips
3792	 *  it may vary from assumed one.
3793	 */
3794	if (np->features & FE_VARCLK)
3795		ncr_getclock(np, np->multiplier);
3796
3797	/*
3798	 * Divisor to be used for async (timer pre-scaler).
3799	 */
3800	i = np->clock_divn - 1;
3801	while (--i >= 0) {
3802		if (10ul * SCSI_NCR_MIN_ASYNC * np->clock_khz > div_10M[i]) {
3803			++i;
3804			break;
3805		}
3806	}
3807	np->rv_scntl3 = i+1;
3808
3809	/*
3810	 * Minimum synchronous period factor supported by the chip.
3811	 * Btw, 'period' is in tenths of nanoseconds.
3812	 */
3813
3814	period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
3815	if	(period <= 250)		np->minsync = 10;
3816	else if	(period <= 303)		np->minsync = 11;
3817	else if	(period <= 500)		np->minsync = 12;
3818	else				np->minsync = (period + 40 - 1) / 40;
3819
3820	/*
3821	 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
3822	 */
3823
3824	if	(np->minsync < 25 && !(np->features & FE_ULTRA))
3825		np->minsync = 25;
3826
3827	/*
3828	 * Maximum synchronous period factor supported by the chip.
3829	 */
3830
3831	period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
3832	np->maxsync = period > 2540 ? 254 : period / 10;
3833
3834	/*
3835	**	Prepare initial value of other IO registers
3836	*/
3837#if defined SCSI_NCR_TRUST_BIOS_SETTING
3838	np->rv_scntl0	= np->sv_scntl0;
3839	np->rv_dmode	= np->sv_dmode;
3840	np->rv_dcntl	= np->sv_dcntl;
3841	np->rv_ctest0	= np->sv_ctest0;
3842	np->rv_ctest3	= np->sv_ctest3;
3843	np->rv_ctest4	= np->sv_ctest4;
3844	np->rv_ctest5	= np->sv_ctest5;
3845	burst_max	= burst_code(np->sv_dmode, np->sv_ctest0);
3846#else
3847
3848	/*
3849	**	Select burst length (dwords)
3850	*/
3851	burst_max	= driver_setup.burst_max;
3852	if (burst_max == 255)
3853		burst_max = burst_code(np->sv_dmode, np->sv_ctest0);
3854	if (burst_max > 7)
3855		burst_max = 7;
3856	if (burst_max > np->maxburst)
3857		burst_max = np->maxburst;
3858
3859	/*
3860	**	Select all supported special features
3861	*/
3862	if (np->features & FE_ERL)
3863		np->rv_dmode	|= ERL;		/* Enable Read Line */
3864	if (np->features & FE_BOF)
3865		np->rv_dmode	|= BOF;		/* Burst Opcode Fetch */
3866	if (np->features & FE_ERMP)
3867		np->rv_dmode	|= ERMP;	/* Enable Read Multiple */
3868	if (np->features & FE_PFEN)
3869		np->rv_dcntl	|= PFEN;	/* Prefetch Enable */
3870	if (np->features & FE_CLSE)
3871		np->rv_dcntl	|= CLSE;	/* Cache Line Size Enable */
3872	if (np->features & FE_WRIE)
3873		np->rv_ctest3	|= WRIE;	/* Write and Invalidate */
3874	if (np->features & FE_DFS)
3875		np->rv_ctest5	|= DFS;		/* Dma Fifo Size */
3876	if (np->features & FE_MUX)
3877		np->rv_ctest4	|= MUX;		/* Host bus multiplex mode */
3878	if (np->features & FE_EA)
3879		np->rv_dcntl	|= EA;		/* Enable ACK */
3880	if (np->features & FE_EHP)
3881		np->rv_ctest0	|= EHP;		/* Even host parity */
3882
3883	/*
3884	**	Select some other
3885	*/
3886	if (driver_setup.master_parity)
3887		np->rv_ctest4	|= MPEE;	/* Master parity checking */
3888	if (driver_setup.scsi_parity)
3889		np->rv_scntl0	|= 0x0a;	/*  full arb., ena parity, par->ATN  */
3890
3891	/*
3892	**  Get SCSI addr of host adapter (set by bios?).
3893	*/
3894	if (np->myaddr == 255) {
3895		np->myaddr = INB(nc_scid) & 0x07;
3896		if (!np->myaddr)
3897			np->myaddr = SCSI_NCR_MYADDR;
3898	}
3899
3900#endif /* SCSI_NCR_TRUST_BIOS_SETTING */
3901
3902	/*
3903	 *	Prepare initial io register bits for burst length
3904	 */
3905	ncr_init_burst(np, burst_max);
3906
3907	/*
3908	**	Set SCSI BUS mode.
3909	**
3910	**	- ULTRA2 chips (895/895A/896) report the current
3911	**	  BUS mode through the STEST4 IO register.
3912	**	- For previous generation chips (825/825A/875),
3913	**	  user has to tell us how to check against HVD,
3914	**	  since a 100% safe algorithm is not possible.
3915	*/
3916	np->scsi_mode = SMODE_SE;
3917	if (np->features & FE_DIFF) {
3918		switch(driver_setup.diff_support) {
3919		case 4:	/* Trust previous settings if present, then GPIO3 */
3920			if (np->sv_scntl3) {
3921				if (np->sv_stest2 & 0x20)
3922					np->scsi_mode = SMODE_HVD;
3923				break;
3924			}
3925		case 3:	/* SYMBIOS controllers report HVD through GPIO3 */
3926			if (INB(nc_gpreg) & 0x08)
3927				break;
3928		case 2:	/* Set HVD unconditionally */
3929			np->scsi_mode = SMODE_HVD;
3930		case 1:	/* Trust previous settings for HVD */
3931			if (np->sv_stest2 & 0x20)
3932				np->scsi_mode = SMODE_HVD;
3933			break;
3934		default:/* Don't care about HVD */
3935			break;
3936		}
3937	}
3938	if (np->scsi_mode == SMODE_HVD)
3939		np->rv_stest2 |= 0x20;
3940
3941	/*
3942	**	Set LED support from SCRIPTS.
3943	**	Ignore this feature for boards known to use a
3944	**	specific GPIO wiring and for the 895A or 896
3945	**	that drive the LED directly.
3946	**	Also probe initial setting of GPIO0 as output.
3947	*/
3948	if ((driver_setup.led_pin) &&
3949	    !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
3950		np->features |= FE_LED0;
3951
3952	/*
3953	**	Set irq mode.
3954	*/
3955	switch(driver_setup.irqm & 3) {
3956	case 2:
3957		np->rv_dcntl	|= IRQM;
3958		break;
3959	case 1:
3960		np->rv_dcntl	|= (np->sv_dcntl & IRQM);
3961		break;
3962	default:
3963		break;
3964	}
3965
3966	/*
3967	**	Configure targets according to driver setup.
3968	**	Allow to override sync, wide and NOSCAN from
3969	**	boot command line.
3970	*/
3971	for (i = 0 ; i < MAX_TARGET ; i++) {
3972		struct tcb *tp = &np->target[i];
3973
3974		tp->usrsync = driver_setup.default_sync;
3975		tp->usrwide = driver_setup.max_wide;
3976		tp->usrtags = MAX_TAGS;
3977		tp->period = 0xffff;
3978		if (!driver_setup.disconnection)
3979			np->target[i].usrflag = UF_NODISC;
3980	}
3981
3982	/*
3983	**	Announce all that stuff to user.
3984	*/
3985
3986	printk(KERN_INFO "%s: ID %d, Fast-%d%s%s\n", ncr_name(np),
3987		np->myaddr,
3988		np->minsync < 12 ? 40 : (np->minsync < 25 ? 20 : 10),
3989		(np->rv_scntl0 & 0xa)	? ", Parity Checking"	: ", NO Parity",
3990		(np->rv_stest2 & 0x20)	? ", Differential"	: "");
3991
3992	if (bootverbose > 1) {
3993		printk (KERN_INFO "%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
3994			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
3995			ncr_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
3996			np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
3997
3998		printk (KERN_INFO "%s: final   SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
3999			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
4000			ncr_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
4001			np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
4002	}
4003
4004	if (bootverbose && np->paddr2)
4005		printk (KERN_INFO "%s: on-chip RAM at 0x%lx\n",
4006			ncr_name(np), np->paddr2);
4007}
4008
4009/*==========================================================
4010**
4011**
4012**	Done SCSI commands list management.
4013**
4014**	We donnot enter the scsi_done() callback immediately
4015**	after a command has been seen as completed but we
4016**	insert it into a list which is flushed outside any kind
4017**	of driver critical section.
4018**	This allows to do minimal stuff under interrupt and
4019**	inside critical sections and to also avoid locking up
4020**	on recursive calls to driver entry points under SMP.
4021**	In fact, the only kernel point which is entered by the
4022**	driver with a driver lock set is kmalloc(GFP_ATOMIC)
4023**	that shall not reenter the driver under any circumstances,
4024**	AFAIK.
4025**
4026**==========================================================
4027*/
4028static inline void ncr_queue_done_cmd(struct ncb *np, struct scsi_cmnd *cmd)
4029{
4030	unmap_scsi_data(np, cmd);
4031	cmd->host_scribble = (char *) np->done_list;
4032	np->done_list = cmd;
4033}
4034
4035static inline void ncr_flush_done_cmds(struct scsi_cmnd *lcmd)
4036{
4037	struct scsi_cmnd *cmd;
4038
4039	while (lcmd) {
4040		cmd = lcmd;
4041		lcmd = (struct scsi_cmnd *) cmd->host_scribble;
4042		cmd->scsi_done(cmd);
4043	}
4044}
4045
4046/*==========================================================
4047**
4048**
4049**	Prepare the next negotiation message if needed.
4050**
4051**	Fill in the part of message buffer that contains the
4052**	negotiation and the nego_status field of the CCB.
4053**	Returns the size of the message in bytes.
4054**
4055**
4056**==========================================================
4057*/
4058
4059
4060static int ncr_prepare_nego(struct ncb *np, struct ccb *cp, u_char *msgptr)
4061{
4062	struct tcb *tp = &np->target[cp->target];
4063	int msglen = 0;
4064	int nego = 0;
4065	struct scsi_target *starget = tp->starget;
4066
4067	/* negotiate wide transfers ?  */
4068	if (!tp->widedone) {
4069		if (spi_support_wide(starget)) {
4070			nego = NS_WIDE;
4071		} else
4072			tp->widedone=1;
4073	}
4074
4075	/* negotiate synchronous transfers?  */
4076	if (!nego && !tp->period) {
4077		if (spi_support_sync(starget)) {
4078			nego = NS_SYNC;
4079		} else {
4080			tp->period  =0xffff;
4081			dev_info(&starget->dev, "target did not report SYNC.\n");
4082		}
4083	}
4084
4085	switch (nego) {
4086	case NS_SYNC:
4087		msglen += spi_populate_sync_msg(msgptr + msglen,
4088				tp->maxoffs ? tp->minsync : 0, tp->maxoffs);
4089		break;
4090	case NS_WIDE:
4091		msglen += spi_populate_width_msg(msgptr + msglen, tp->usrwide);
4092		break;
4093	}
4094
4095	cp->nego_status = nego;
4096
4097	if (nego) {
4098		tp->nego_cp = cp;
4099		if (DEBUG_FLAGS & DEBUG_NEGO) {
4100			ncr_print_msg(cp, nego == NS_WIDE ?
4101					  "wide msgout":"sync_msgout", msgptr);
4102		}
4103	}
4104
4105	return msglen;
4106}
4107
4108
4109
4110/*==========================================================
4111**
4112**
4113**	Start execution of a SCSI command.
4114**	This is called from the generic SCSI driver.
4115**
4116**
4117**==========================================================
4118*/
4119static int ncr_queue_command (struct ncb *np, struct scsi_cmnd *cmd)
4120{
4121	struct scsi_device *sdev = cmd->device;
4122	struct tcb *tp = &np->target[sdev->id];
4123	struct lcb *lp = tp->lp[sdev->lun];
4124	struct ccb *cp;
4125
4126	int	segments;
4127	u_char	idmsg, *msgptr;
4128	u32	msglen;
4129	int	direction;
4130	u32	lastp, goalp;
4131
4132	/*---------------------------------------------
4133	**
4134	**      Some shortcuts ...
4135	**
4136	**---------------------------------------------
4137	*/
4138	if ((sdev->id == np->myaddr	  ) ||
4139		(sdev->id >= MAX_TARGET) ||
4140		(sdev->lun    >= MAX_LUN   )) {
4141		return(DID_BAD_TARGET);
4142	}
4143
4144	/*---------------------------------------------
4145	**
4146	**	Complete the 1st TEST UNIT READY command
4147	**	with error condition if the device is
4148	**	flagged NOSCAN, in order to speed up
4149	**	the boot.
4150	**
4151	**---------------------------------------------
4152	*/
4153	if ((cmd->cmnd[0] == 0 || cmd->cmnd[0] == 0x12) &&
4154	    (tp->usrflag & UF_NOSCAN)) {
4155		tp->usrflag &= ~UF_NOSCAN;
4156		return DID_BAD_TARGET;
4157	}
4158
4159	if (DEBUG_FLAGS & DEBUG_TINY) {
4160		PRINT_ADDR(cmd, "CMD=%x ", cmd->cmnd[0]);
4161	}
4162
4163	/*---------------------------------------------------
4164	**
4165	**	Assign a ccb / bind cmd.
4166	**	If resetting, shorten settle_time if necessary
4167	**	in order to avoid spurious timeouts.
4168	**	If resetting or no free ccb,
4169	**	insert cmd into the waiting list.
4170	**
4171	**----------------------------------------------------
4172	*/
4173	if (np->settle_time && cmd->request->timeout >= HZ) {
4174		u_long tlimit = jiffies + cmd->request->timeout - HZ;
4175		if (time_after(np->settle_time, tlimit))
4176			np->settle_time = tlimit;
4177	}
4178
4179	if (np->settle_time || !(cp=ncr_get_ccb (np, cmd))) {
4180		insert_into_waiting_list(np, cmd);
4181		return(DID_OK);
4182	}
4183	cp->cmd = cmd;
4184
4185	/*----------------------------------------------------
4186	**
4187	**	Build the identify / tag / sdtr message
4188	**
4189	**----------------------------------------------------
4190	*/
4191
4192	idmsg = IDENTIFY(0, sdev->lun);
4193
4194	if (cp ->tag != NO_TAG ||
4195		(cp != np->ccb && np->disc && !(tp->usrflag & UF_NODISC)))
4196		idmsg |= 0x40;
4197
4198	msgptr = cp->scsi_smsg;
4199	msglen = 0;
4200	msgptr[msglen++] = idmsg;
4201
4202	if (cp->tag != NO_TAG) {
4203		char order = np->order;
4204
4205		/*
4206		**	Force ordered tag if necessary to avoid timeouts
4207		**	and to preserve interactivity.
4208		*/
4209		if (lp && time_after(jiffies, lp->tags_stime)) {
4210			if (lp->tags_smap) {
4211				order = ORDERED_QUEUE_TAG;
4212				if ((DEBUG_FLAGS & DEBUG_TAGS)||bootverbose>2){
4213					PRINT_ADDR(cmd,
4214						"ordered tag forced.\n");
4215				}
4216			}
4217			lp->tags_stime = jiffies + 3*HZ;
4218			lp->tags_smap = lp->tags_umap;
4219		}
4220
4221		if (order == 0) {
4222			/*
4223			**	Ordered write ops, unordered read ops.
4224			*/
4225			switch (cmd->cmnd[0]) {
4226			case 0x08:  /* READ_SMALL (6) */
4227			case 0x28:  /* READ_BIG  (10) */
4228			case 0xa8:  /* READ_HUGE (12) */
4229				order = SIMPLE_QUEUE_TAG;
4230				break;
4231			default:
4232				order = ORDERED_QUEUE_TAG;
4233			}
4234		}
4235		msgptr[msglen++] = order;
4236		/*
4237		**	Actual tags are numbered 1,3,5,..2*MAXTAGS+1,
4238		**	since we may have to deal with devices that have
4239		**	problems with #TAG 0 or too great #TAG numbers.
4240		*/
4241		msgptr[msglen++] = (cp->tag << 1) + 1;
4242	}
4243
4244	/*----------------------------------------------------
4245	**
4246	**	Build the data descriptors
4247	**
4248	**----------------------------------------------------
4249	*/
4250
4251	direction = cmd->sc_data_direction;
4252	if (direction != DMA_NONE) {
4253		segments = ncr_scatter(np, cp, cp->cmd);
4254		if (segments < 0) {
4255			ncr_free_ccb(np, cp);
4256			return(DID_ERROR);
4257		}
4258	}
4259	else {
4260		cp->data_len = 0;
4261		segments = 0;
4262	}
4263
4264	/*---------------------------------------------------
4265	**
4266	**	negotiation required?
4267	**
4268	**	(nego_status is filled by ncr_prepare_nego())
4269	**
4270	**---------------------------------------------------
4271	*/
4272
4273	cp->nego_status = 0;
4274
4275	if ((!tp->widedone || !tp->period) && !tp->nego_cp && lp) {
4276		msglen += ncr_prepare_nego (np, cp, msgptr + msglen);
4277	}
4278
4279	/*----------------------------------------------------
4280	**
4281	**	Determine xfer direction.
4282	**
4283	**----------------------------------------------------
4284	*/
4285	if (!cp->data_len)
4286		direction = DMA_NONE;
4287
4288	/*
4289	**	If data direction is BIDIRECTIONAL, speculate FROM_DEVICE
4290	**	but prepare alternate pointers for TO_DEVICE in case
4291	**	of our speculation will be just wrong.
4292	**	SCRIPTS will swap values if needed.
4293	*/
4294	switch(direction) {
4295	case DMA_BIDIRECTIONAL:
4296	case DMA_TO_DEVICE:
4297		goalp = NCB_SCRIPT_PHYS (np, data_out2) + 8;
4298		if (segments <= MAX_SCATTERL)
4299			lastp = goalp - 8 - (segments * 16);
4300		else {
4301			lastp = NCB_SCRIPTH_PHYS (np, hdata_out2);
4302			lastp -= (segments - MAX_SCATTERL) * 16;
4303		}
4304		if (direction != DMA_BIDIRECTIONAL)
4305			break;
4306		cp->phys.header.wgoalp	= cpu_to_scr(goalp);
4307		cp->phys.header.wlastp	= cpu_to_scr(lastp);
4308		/* fall through */
4309	case DMA_FROM_DEVICE:
4310		goalp = NCB_SCRIPT_PHYS (np, data_in2) + 8;
4311		if (segments <= MAX_SCATTERL)
4312			lastp = goalp - 8 - (segments * 16);
4313		else {
4314			lastp = NCB_SCRIPTH_PHYS (np, hdata_in2);
4315			lastp -= (segments - MAX_SCATTERL) * 16;
4316		}
4317		break;
4318	default:
4319	case DMA_NONE:
4320		lastp = goalp = NCB_SCRIPT_PHYS (np, no_data);
4321		break;
4322	}
4323
4324	/*
4325	**	Set all pointers values needed by SCRIPTS.
4326	**	If direction is unknown, start at data_io.
4327	*/
4328	cp->phys.header.lastp = cpu_to_scr(lastp);
4329	cp->phys.header.goalp = cpu_to_scr(goalp);
4330
4331	if (direction == DMA_BIDIRECTIONAL)
4332		cp->phys.header.savep =
4333			cpu_to_scr(NCB_SCRIPTH_PHYS (np, data_io));
4334	else
4335		cp->phys.header.savep= cpu_to_scr(lastp);
4336
4337	/*
4338	**	Save the initial data pointer in order to be able
4339	**	to redo the command.
4340	*/
4341	cp->startp = cp->phys.header.savep;
4342
4343	/*----------------------------------------------------
4344	**
4345	**	fill in ccb
4346	**
4347	**----------------------------------------------------
4348	**
4349	**
4350	**	physical -> virtual backlink
4351	**	Generic SCSI command
4352	*/
4353
4354	/*
4355	**	Startqueue
4356	*/
4357	cp->start.schedule.l_paddr   = cpu_to_scr(NCB_SCRIPT_PHYS (np, select));
4358	cp->restart.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_dsa));
4359	/*
4360	**	select
4361	*/
4362	cp->phys.select.sel_id		= sdev_id(sdev);
4363	cp->phys.select.sel_scntl3	= tp->wval;
4364	cp->phys.select.sel_sxfer	= tp->sval;
4365	/*
4366	**	message
4367	*/
4368	cp->phys.smsg.addr		= cpu_to_scr(CCB_PHYS (cp, scsi_smsg));
4369	cp->phys.smsg.size		= cpu_to_scr(msglen);
4370
4371	/*
4372	**	command
4373	*/
4374	memcpy(cp->cdb_buf, cmd->cmnd, min_t(int, cmd->cmd_len, sizeof(cp->cdb_buf)));
4375	cp->phys.cmd.addr		= cpu_to_scr(CCB_PHYS (cp, cdb_buf[0]));
4376	cp->phys.cmd.size		= cpu_to_scr(cmd->cmd_len);
4377
4378	/*
4379	**	status
4380	*/
4381	cp->actualquirks		= 0;
4382	cp->host_status			= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
4383	cp->scsi_status			= S_ILLEGAL;
4384	cp->parity_status		= 0;
4385
4386	cp->xerr_status			= XE_OK;
4387#if 0
4388	cp->sync_status			= tp->sval;
4389	cp->wide_status			= tp->wval;
4390#endif
4391
4392	/*----------------------------------------------------
4393	**
4394	**	Critical region: start this job.
4395	**
4396	**----------------------------------------------------
4397	*/
4398
4399	/* activate this job.  */
4400	cp->magic		= CCB_MAGIC;
4401
4402	/*
4403	**	insert next CCBs into start queue.
4404	**	2 max at a time is enough to flush the CCB wait queue.
4405	*/
4406	cp->auto_sense = 0;
4407	if (lp)
4408		ncr_start_next_ccb(np, lp, 2);
4409	else
4410		ncr_put_start_queue(np, cp);
4411
4412	/* Command is successfully queued.  */
4413
4414	return DID_OK;
4415}
4416
4417
4418/*==========================================================
4419**
4420**
4421**	Insert a CCB into the start queue and wake up the
4422**	SCRIPTS processor.
4423**
4424**
4425**==========================================================
4426*/
4427
4428static void ncr_start_next_ccb(struct ncb *np, struct lcb *lp, int maxn)
4429{
4430	struct list_head *qp;
4431	struct ccb *cp;
4432
4433	if (lp->held_ccb)
4434		return;
4435
4436	while (maxn-- && lp->queuedccbs < lp->queuedepth) {
4437		qp = ncr_list_pop(&lp->wait_ccbq);
4438		if (!qp)
4439			break;
4440		++lp->queuedccbs;
4441		cp = list_entry(qp, struct ccb, link_ccbq);
4442		list_add_tail(qp, &lp->busy_ccbq);
4443		lp->jump_ccb[cp->tag == NO_TAG ? 0 : cp->tag] =
4444			cpu_to_scr(CCB_PHYS (cp, restart));
4445		ncr_put_start_queue(np, cp);
4446	}
4447}
4448
4449static void ncr_put_start_queue(struct ncb *np, struct ccb *cp)
4450{
4451	u16	qidx;
4452
4453	/*
4454	**	insert into start queue.
4455	*/
4456	if (!np->squeueput) np->squeueput = 1;
4457	qidx = np->squeueput + 2;
4458	if (qidx >= MAX_START + MAX_START) qidx = 1;
4459
4460	np->scripth->tryloop [qidx] = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle));
4461	MEMORY_BARRIER();
4462	np->scripth->tryloop [np->squeueput] = cpu_to_scr(CCB_PHYS (cp, start));
4463
4464	np->squeueput = qidx;
4465	++np->queuedccbs;
4466	cp->queued = 1;
4467
4468	if (DEBUG_FLAGS & DEBUG_QUEUE)
4469		printk ("%s: queuepos=%d.\n", ncr_name (np), np->squeueput);
4470
4471	/*
4472	**	Script processor may be waiting for reselect.
4473	**	Wake it up.
4474	*/
4475	MEMORY_BARRIER();
4476	OUTB (nc_istat, SIGP);
4477}
4478
4479
4480static int ncr_reset_scsi_bus(struct ncb *np, int enab_int, int settle_delay)
4481{
4482	u32 term;
4483	int retv = 0;
4484
4485	np->settle_time	= jiffies + settle_delay * HZ;
4486
4487	if (bootverbose > 1)
4488		printk("%s: resetting, "
4489			"command processing suspended for %d seconds\n",
4490			ncr_name(np), settle_delay);
4491
4492	ncr_chip_reset(np, 100);
4493	udelay(2000);	/* The 895 needs time for the bus mode to settle */
4494	if (enab_int)
4495		OUTW (nc_sien, RST);
4496	/*
4497	**	Enable Tolerant, reset IRQD if present and
4498	**	properly set IRQ mode, prior to resetting the bus.
4499	*/
4500	OUTB (nc_stest3, TE);
4501	OUTB (nc_scntl1, CRST);
4502	udelay(200);
4503
4504	if (!driver_setup.bus_check)
4505		goto out;
4506	/*
4507	**	Check for no terminators or SCSI bus shorts to ground.
4508	**	Read SCSI data bus, data parity bits and control signals.
4509	**	We are expecting RESET to be TRUE and other signals to be
4510	**	FALSE.
4511	*/
4512
4513	term =	INB(nc_sstat0);
4514	term =	((term & 2) << 7) + ((term & 1) << 17);	/* rst sdp0 */
4515	term |= ((INB(nc_sstat2) & 0x01) << 26) |	/* sdp1     */
4516		((INW(nc_sbdl) & 0xff)   << 9)  |	/* d7-0     */
4517		((INW(nc_sbdl) & 0xff00) << 10) |	/* d15-8    */
4518		INB(nc_sbcl);	/* req ack bsy sel atn msg cd io    */
4519
4520	if (!(np->features & FE_WIDE))
4521		term &= 0x3ffff;
4522
4523	if (term != (2<<7)) {
4524		printk("%s: suspicious SCSI data while resetting the BUS.\n",
4525			ncr_name(np));
4526		printk("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
4527			"0x%lx, expecting 0x%lx\n",
4528			ncr_name(np),
4529			(np->features & FE_WIDE) ? "dp1,d15-8," : "",
4530			(u_long)term, (u_long)(2<<7));
4531		if (driver_setup.bus_check == 1)
4532			retv = 1;
4533	}
4534out:
4535	OUTB (nc_scntl1, 0);
4536	return retv;
4537}
4538
4539/*
4540 * Start reset process.
4541 * If reset in progress do nothing.
4542 * The interrupt handler will reinitialize the chip.
4543 * The timeout handler will wait for settle_time before
4544 * clearing it and so resuming command processing.
4545 */
4546static void ncr_start_reset(struct ncb *np)
4547{
4548	if (!np->settle_time) {
4549		ncr_reset_scsi_bus(np, 1, driver_setup.settle_delay);
4550 	}
4551}
4552
4553/*==========================================================
4554**
4555**
4556**	Reset the SCSI BUS.
4557**	This is called from the generic SCSI driver.
4558**
4559**
4560**==========================================================
4561*/
4562static int ncr_reset_bus (struct ncb *np, struct scsi_cmnd *cmd, int sync_reset)
4563{
4564/*	struct scsi_device        *device    = cmd->device; */
4565	struct ccb *cp;
4566	int found;
4567
4568/*
4569 * Return immediately if reset is in progress.
4570 */
4571	if (np->settle_time) {
4572		return FAILED;
4573	}
4574/*
4575 * Start the reset process.
4576 * The script processor is then assumed to be stopped.
4577 * Commands will now be queued in the waiting list until a settle
4578 * delay of 2 seconds will be completed.
4579 */
4580	ncr_start_reset(np);
4581/*
4582 * First, look in the wakeup list
4583 */
4584	for (found=0, cp=np->ccb; cp; cp=cp->link_ccb) {
4585		/*
4586		**	look for the ccb of this command.
4587		*/
4588		if (cp->host_status == HS_IDLE) continue;
4589		if (cp->cmd == cmd) {
4590			found = 1;
4591			break;
4592		}
4593	}
4594/*
4595 * Then, look in the waiting list
4596 */
4597	if (!found && retrieve_from_waiting_list(0, np, cmd))
4598		found = 1;
4599/*
4600 * Wake-up all awaiting commands with DID_RESET.
4601 */
4602	reset_waiting_list(np);
4603/*
4604 * Wake-up all pending commands with HS_RESET -> DID_RESET.
4605 */
4606	ncr_wakeup(np, HS_RESET);
4607/*
4608 * If the involved command was not in a driver queue, and the
4609 * scsi driver told us reset is synchronous, and the command is not
4610 * currently in the waiting list, complete it with DID_RESET status,
4611 * in order to keep it alive.
4612 */
4613	if (!found && sync_reset && !retrieve_from_waiting_list(0, np, cmd)) {
4614		cmd->result = ScsiResult(DID_RESET, 0);
4615		ncr_queue_done_cmd(np, cmd);
4616	}
4617
4618	return SUCCESS;
4619}
4620
4621#if 0 /* unused and broken.. */
4622/*==========================================================
4623**
4624**
4625**	Abort an SCSI command.
4626**	This is called from the generic SCSI driver.
4627**
4628**
4629**==========================================================
4630*/
4631static int ncr_abort_command (struct ncb *np, struct scsi_cmnd *cmd)
4632{
4633/*	struct scsi_device        *device    = cmd->device; */
4634	struct ccb *cp;
4635	int found;
4636	int retv;
4637
4638/*
4639 * First, look for the scsi command in the waiting list
4640 */
4641	if (remove_from_waiting_list(np, cmd)) {
4642		cmd->result = ScsiResult(DID_ABORT, 0);
4643		ncr_queue_done_cmd(np, cmd);
4644		return SCSI_ABORT_SUCCESS;
4645	}
4646
4647/*
4648 * Then, look in the wakeup list
4649 */
4650	for (found=0, cp=np->ccb; cp; cp=cp->link_ccb) {
4651		/*
4652		**	look for the ccb of this command.
4653		*/
4654		if (cp->host_status == HS_IDLE) continue;
4655		if (cp->cmd == cmd) {
4656			found = 1;
4657			break;
4658		}
4659	}
4660
4661	if (!found) {
4662		return SCSI_ABORT_NOT_RUNNING;
4663	}
4664
4665	if (np->settle_time) {
4666		return SCSI_ABORT_SNOOZE;
4667	}
4668
4669	/*
4670	**	If the CCB is active, patch schedule jumps for the
4671	**	script to abort the command.
4672	*/
4673
4674	switch(cp->host_status) {
4675	case HS_BUSY:
4676	case HS_NEGOTIATE:
4677		printk ("%s: abort ccb=%p (cancel)\n", ncr_name (np), cp);
4678			cp->start.schedule.l_paddr =
4679				cpu_to_scr(NCB_SCRIPTH_PHYS (np, cancel));
4680		retv = SCSI_ABORT_PENDING;
4681		break;
4682	case HS_DISCONNECT:
4683		cp->restart.schedule.l_paddr =
4684				cpu_to_scr(NCB_SCRIPTH_PHYS (np, abort));
4685		retv = SCSI_ABORT_PENDING;
4686		break;
4687	default:
4688		retv = SCSI_ABORT_NOT_RUNNING;
4689		break;
4690
4691	}
4692
4693	/*
4694	**      If there are no requests, the script
4695	**      processor will sleep on SEL_WAIT_RESEL.
4696	**      Let's wake it up, since it may have to work.
4697	*/
4698	OUTB (nc_istat, SIGP);
4699
4700	return retv;
4701}
4702#endif
4703
4704static void ncr_detach(struct ncb *np)
4705{
4706	struct ccb *cp;
4707	struct tcb *tp;
4708	struct lcb *lp;
4709	int target, lun;
4710	int i;
4711	char inst_name[16];
4712
4713	/* Local copy so we don't access np after freeing it! */
4714	strlcpy(inst_name, ncr_name(np), sizeof(inst_name));
4715
4716	printk("%s: releasing host resources\n", ncr_name(np));
4717
4718/*
4719**	Stop the ncr_timeout process
4720**	Set release_stage to 1 and wait that ncr_timeout() set it to 2.
4721*/
4722
4723#ifdef DEBUG_NCR53C8XX
4724	printk("%s: stopping the timer\n", ncr_name(np));
4725#endif
4726	np->release_stage = 1;
4727	for (i = 50 ; i && np->release_stage != 2 ; i--)
4728		mdelay(100);
4729	if (np->release_stage != 2)
4730		printk("%s: the timer seems to be already stopped\n", ncr_name(np));
4731	else np->release_stage = 2;
4732
4733/*
4734**	Disable chip interrupts
4735*/
4736
4737#ifdef DEBUG_NCR53C8XX
4738	printk("%s: disabling chip interrupts\n", ncr_name(np));
4739#endif
4740	OUTW (nc_sien , 0);
4741	OUTB (nc_dien , 0);
4742
4743	/*
4744	**	Reset NCR chip
4745	**	Restore bios setting for automatic clock detection.
4746	*/
4747
4748	printk("%s: resetting chip\n", ncr_name(np));
4749	ncr_chip_reset(np, 100);
4750
4751	OUTB(nc_dmode,	np->sv_dmode);
4752	OUTB(nc_dcntl,	np->sv_dcntl);
4753	OUTB(nc_ctest0,	np->sv_ctest0);
4754	OUTB(nc_ctest3,	np->sv_ctest3);
4755	OUTB(nc_ctest4,	np->sv_ctest4);
4756	OUTB(nc_ctest5,	np->sv_ctest5);
4757	OUTB(nc_gpcntl,	np->sv_gpcntl);
4758	OUTB(nc_stest2,	np->sv_stest2);
4759
4760	ncr_selectclock(np, np->sv_scntl3);
4761
4762	/*
4763	**	Free allocated ccb(s)
4764	*/
4765
4766	while ((cp=np->ccb->link_ccb) != NULL) {
4767		np->ccb->link_ccb = cp->link_ccb;
4768		if (cp->host_status) {
4769		printk("%s: shall free an active ccb (host_status=%d)\n",
4770			ncr_name(np), cp->host_status);
4771		}
4772#ifdef DEBUG_NCR53C8XX
4773	printk("%s: freeing ccb (%lx)\n", ncr_name(np), (u_long) cp);
4774#endif
4775		m_free_dma(cp, sizeof(*cp), "CCB");
4776	}
4777
4778	/* Free allocated tp(s) */
4779
4780	for (target = 0; target < MAX_TARGET ; target++) {
4781		tp=&np->target[target];
4782		for (lun = 0 ; lun < MAX_LUN ; lun++) {
4783			lp = tp->lp[lun];
4784			if (lp) {
4785#ifdef DEBUG_NCR53C8XX
4786	printk("%s: freeing lp (%lx)\n", ncr_name(np), (u_long) lp);
4787#endif
4788				if (lp->jump_ccb != &lp->jump_ccb_0)
4789					m_free_dma(lp->jump_ccb,256,"JUMP_CCB");
4790				m_free_dma(lp, sizeof(*lp), "LCB");
4791			}
4792		}
4793	}
4794
4795	if (np->scripth0)
4796		m_free_dma(np->scripth0, sizeof(struct scripth), "SCRIPTH");
4797	if (np->script0)
4798		m_free_dma(np->script0, sizeof(struct script), "SCRIPT");
4799	if (np->ccb)
4800		m_free_dma(np->ccb, sizeof(struct ccb), "CCB");
4801	m_free_dma(np, sizeof(struct ncb), "NCB");
4802
4803	printk("%s: host resources successfully released\n", inst_name);
4804}
4805
4806/*==========================================================
4807**
4808**
4809**	Complete execution of a SCSI command.
4810**	Signal completion to the generic SCSI driver.
4811**
4812**
4813**==========================================================
4814*/
4815
4816void ncr_complete (struct ncb *np, struct ccb *cp)
4817{
4818	struct scsi_cmnd *cmd;
4819	struct tcb *tp;
4820	struct lcb *lp;
4821
4822	/*
4823	**	Sanity check
4824	*/
4825
4826	if (!cp || cp->magic != CCB_MAGIC || !cp->cmd)
4827		return;
4828
4829	/*
4830	**	Print minimal debug information.
4831	*/
4832
4833	if (DEBUG_FLAGS & DEBUG_TINY)
4834		printk ("CCB=%lx STAT=%x/%x\n", (unsigned long)cp,
4835			cp->host_status,cp->scsi_status);
4836
4837	/*
4838	**	Get command, target and lun pointers.
4839	*/
4840
4841	cmd = cp->cmd;
4842	cp->cmd = NULL;
4843	tp = &np->target[cmd->device->id];
4844	lp = tp->lp[cmd->device->lun];
4845
4846	/*
4847	**	We donnot queue more than 1 ccb per target
4848	**	with negotiation at any time. If this ccb was
4849	**	used for negotiation, clear this info in the tcb.
4850	*/
4851
4852	if (cp == tp->nego_cp)
4853		tp->nego_cp = NULL;
4854
4855	/*
4856	**	If auto-sense performed, change scsi status.
4857	*/
4858	if (cp->auto_sense) {
4859		cp->scsi_status = cp->auto_sense;
4860	}
4861
4862	/*
4863	**	If we were recovering from queue full or performing
4864	**	auto-sense, requeue skipped CCBs to the wait queue.
4865	*/
4866
4867	if (lp && lp->held_ccb) {
4868		if (cp == lp->held_ccb) {
4869			list_splice_init(&lp->skip_ccbq, &lp->wait_ccbq);
4870			lp->held_ccb = NULL;
4871		}
4872	}
4873
4874	/*
4875	**	Check for parity errors.
4876	*/
4877
4878	if (cp->parity_status > 1) {
4879		PRINT_ADDR(cmd, "%d parity error(s).\n",cp->parity_status);
4880	}
4881
4882	/*
4883	**	Check for extended errors.
4884	*/
4885
4886	if (cp->xerr_status != XE_OK) {
4887		switch (cp->xerr_status) {
4888		case XE_EXTRA_DATA:
4889			PRINT_ADDR(cmd, "extraneous data discarded.\n");
4890			break;
4891		case XE_BAD_PHASE:
4892			PRINT_ADDR(cmd, "invalid scsi phase (4/5).\n");
4893			break;
4894		default:
4895			PRINT_ADDR(cmd, "extended error %d.\n",
4896					cp->xerr_status);
4897			break;
4898		}
4899		if (cp->host_status==HS_COMPLETE)
4900			cp->host_status = HS_FAIL;
4901	}
4902
4903	/*
4904	**	Print out any error for debugging purpose.
4905	*/
4906	if (DEBUG_FLAGS & (DEBUG_RESULT|DEBUG_TINY)) {
4907		if (cp->host_status!=HS_COMPLETE || cp->scsi_status!=S_GOOD) {
4908			PRINT_ADDR(cmd, "ERROR: cmd=%x host_status=%x "
4909					"scsi_status=%x\n", cmd->cmnd[0],
4910					cp->host_status, cp->scsi_status);
4911		}
4912	}
4913
4914	/*
4915	**	Check the status.
4916	*/
4917	if (   (cp->host_status == HS_COMPLETE)
4918		&& (cp->scsi_status == S_GOOD ||
4919		    cp->scsi_status == S_COND_MET)) {
4920		/*
4921		 *	All went well (GOOD status).
4922		 *	CONDITION MET status is returned on
4923		 *	`Pre-Fetch' or `Search data' success.
4924		 */
4925		cmd->result = ScsiResult(DID_OK, cp->scsi_status);
4926
4927		/*
4928		**	@RESID@
4929		**	Could dig out the correct value for resid,
4930		**	but it would be quite complicated.
4931		*/
4932		/* if (cp->phys.header.lastp != cp->phys.header.goalp) */
4933
4934		/*
4935		**	Allocate the lcb if not yet.
4936		*/
4937		if (!lp)
4938			ncr_alloc_lcb (np, cmd->device->id, cmd->device->lun);
4939
4940		tp->bytes     += cp->data_len;
4941		tp->transfers ++;
4942
4943		/*
4944		**	If tags was reduced due to queue full,
4945		**	increase tags if 1000 good status received.
4946		*/
4947		if (lp && lp->usetags && lp->numtags < lp->maxtags) {
4948			++lp->num_good;
4949			if (lp->num_good >= 1000) {
4950				lp->num_good = 0;
4951				++lp->numtags;
4952				ncr_setup_tags (np, cmd->device);
4953			}
4954		}
4955	} else if ((cp->host_status == HS_COMPLETE)
4956		&& (cp->scsi_status == S_CHECK_COND)) {
4957		/*
4958		**   Check condition code
4959		*/
4960		cmd->result = ScsiResult(DID_OK, S_CHECK_COND);
4961
4962		/*
4963		**	Copy back sense data to caller's buffer.
4964		*/
4965		memcpy(cmd->sense_buffer, cp->sense_buf,
4966		       min_t(size_t, SCSI_SENSE_BUFFERSIZE,
4967			     sizeof(cp->sense_buf)));
4968
4969		if (DEBUG_FLAGS & (DEBUG_RESULT|DEBUG_TINY)) {
4970			u_char *p = cmd->sense_buffer;
4971			int i;
4972			PRINT_ADDR(cmd, "sense data:");
4973			for (i=0; i<14; i++) printk (" %x", *p++);
4974			printk (".\n");
4975		}
4976	} else if ((cp->host_status == HS_COMPLETE)
4977		&& (cp->scsi_status == S_CONFLICT)) {
4978		/*
4979		**   Reservation Conflict condition code
4980		*/
4981		cmd->result = ScsiResult(DID_OK, S_CONFLICT);
4982
4983	} else if ((cp->host_status == HS_COMPLETE)
4984		&& (cp->scsi_status == S_BUSY ||
4985		    cp->scsi_status == S_QUEUE_FULL)) {
4986
4987		/*
4988		**   Target is busy.
4989		*/
4990		cmd->result = ScsiResult(DID_OK, cp->scsi_status);
4991
4992	} else if ((cp->host_status == HS_SEL_TIMEOUT)
4993		|| (cp->host_status == HS_TIMEOUT)) {
4994
4995		/*
4996		**   No response
4997		*/
4998		cmd->result = ScsiResult(DID_TIME_OUT, cp->scsi_status);
4999
5000	} else if (cp->host_status == HS_RESET) {
5001
5002		/*
5003		**   SCSI bus reset
5004		*/
5005		cmd->result = ScsiResult(DID_RESET, cp->scsi_status);
5006
5007	} else if (cp->host_status == HS_ABORTED) {
5008
5009		/*
5010		**   Transfer aborted
5011		*/
5012		cmd->result = ScsiResult(DID_ABORT, cp->scsi_status);
5013
5014	} else {
5015
5016		/*
5017		**  Other protocol messes
5018		*/
5019		PRINT_ADDR(cmd, "COMMAND FAILED (%x %x) @%p.\n",
5020			cp->host_status, cp->scsi_status, cp);
5021
5022		cmd->result = ScsiResult(DID_ERROR, cp->scsi_status);
5023	}
5024
5025	/*
5026	**	trace output
5027	*/
5028
5029	if (tp->usrflag & UF_TRACE) {
5030		u_char * p;
5031		int i;
5032		PRINT_ADDR(cmd, " CMD:");
5033		p = (u_char*) &cmd->cmnd[0];
5034		for (i=0; i<cmd->cmd_len; i++) printk (" %x", *p++);
5035
5036		if (cp->host_status==HS_COMPLETE) {
5037			switch (cp->scsi_status) {
5038			case S_GOOD:
5039				printk ("  GOOD");
5040				break;
5041			case S_CHECK_COND:
5042				printk ("  SENSE:");
5043				p = (u_char*) &cmd->sense_buffer;
5044				for (i=0; i<14; i++)
5045					printk (" %x", *p++);
5046				break;
5047			default:
5048				printk ("  STAT: %x\n", cp->scsi_status);
5049				break;
5050			}
5051		} else printk ("  HOSTERROR: %x", cp->host_status);
5052		printk ("\n");
5053	}
5054
5055	/*
5056	**	Free this ccb
5057	*/
5058	ncr_free_ccb (np, cp);
5059
5060	/*
5061	**	requeue awaiting scsi commands for this lun.
5062	*/
5063	if (lp && lp->queuedccbs < lp->queuedepth &&
5064	    !list_empty(&lp->wait_ccbq))
5065		ncr_start_next_ccb(np, lp, 2);
5066
5067	/*
5068	**	requeue awaiting scsi commands for this controller.
5069	*/
5070	if (np->waiting_list)
5071		requeue_waiting_list(np);
5072
5073	/*
5074	**	signal completion to generic driver.
5075	*/
5076	ncr_queue_done_cmd(np, cmd);
5077}
5078
5079/*==========================================================
5080**
5081**
5082**	Signal all (or one) control block done.
5083**
5084**
5085**==========================================================
5086*/
5087
5088/*
5089**	This CCB has been skipped by the NCR.
5090**	Queue it in the corresponding unit queue.
5091*/
5092static void ncr_ccb_skipped(struct ncb *np, struct ccb *cp)
5093{
5094	struct tcb *tp = &np->target[cp->target];
5095	struct lcb *lp = tp->lp[cp->lun];
5096
5097	if (lp && cp != np->ccb) {
5098		cp->host_status &= ~HS_SKIPMASK;
5099		cp->start.schedule.l_paddr =
5100			cpu_to_scr(NCB_SCRIPT_PHYS (np, select));
5101		list_move_tail(&cp->link_ccbq, &lp->skip_ccbq);
5102		if (cp->queued) {
5103			--lp->queuedccbs;
5104		}
5105	}
5106	if (cp->queued) {
5107		--np->queuedccbs;
5108		cp->queued = 0;
5109	}
5110}
5111
5112/*
5113**	The NCR has completed CCBs.
5114**	Look at the DONE QUEUE if enabled, otherwise scan all CCBs
5115*/
5116void ncr_wakeup_done (struct ncb *np)
5117{
5118	struct ccb *cp;
5119#ifdef SCSI_NCR_CCB_DONE_SUPPORT
5120	int i, j;
5121
5122	i = np->ccb_done_ic;
5123	while (1) {
5124		j = i+1;
5125		if (j >= MAX_DONE)
5126			j = 0;
5127
5128		cp = np->ccb_done[j];
5129		if (!CCB_DONE_VALID(cp))
5130			break;
5131
5132		np->ccb_done[j] = (struct ccb *)CCB_DONE_EMPTY;
5133		np->scripth->done_queue[5*j + 4] =
5134				cpu_to_scr(NCB_SCRIPT_PHYS (np, done_plug));
5135		MEMORY_BARRIER();
5136		np->scripth->done_queue[5*i + 4] =
5137				cpu_to_scr(NCB_SCRIPT_PHYS (np, done_end));
5138
5139		if (cp->host_status & HS_DONEMASK)
5140			ncr_complete (np, cp);
5141		else if (cp->host_status & HS_SKIPMASK)
5142			ncr_ccb_skipped (np, cp);
5143
5144		i = j;
5145	}
5146	np->ccb_done_ic = i;
5147#else
5148	cp = np->ccb;
5149	while (cp) {
5150		if (cp->host_status & HS_DONEMASK)
5151			ncr_complete (np, cp);
5152		else if (cp->host_status & HS_SKIPMASK)
5153			ncr_ccb_skipped (np, cp);
5154		cp = cp->link_ccb;
5155	}
5156#endif
5157}
5158
5159/*
5160**	Complete all active CCBs.
5161*/
5162void ncr_wakeup (struct ncb *np, u_long code)
5163{
5164	struct ccb *cp = np->ccb;
5165
5166	while (cp) {
5167		if (cp->host_status != HS_IDLE) {
5168			cp->host_status = code;
5169			ncr_complete (np, cp);
5170		}
5171		cp = cp->link_ccb;
5172	}
5173}
5174
5175/*
5176** Reset ncr chip.
5177*/
5178
5179/* Some initialisation must be done immediately following reset, for 53c720,
5180 * at least.  EA (dcntl bit 5) isn't set here as it is set once only in
5181 * the _detect function.
5182 */
5183static void ncr_chip_reset(struct ncb *np, int delay)
5184{
5185	OUTB (nc_istat,  SRST);
5186	udelay(delay);
5187	OUTB (nc_istat,  0   );
5188
5189	if (np->features & FE_EHP)
5190		OUTB (nc_ctest0, EHP);
5191	if (np->features & FE_MUX)
5192		OUTB (nc_ctest4, MUX);
5193}
5194
5195
5196/*==========================================================
5197**
5198**
5199**	Start NCR chip.
5200**
5201**
5202**==========================================================
5203*/
5204
5205void ncr_init (struct ncb *np, int reset, char * msg, u_long code)
5206{
5207 	int	i;
5208
5209 	/*
5210	**	Reset chip if asked, otherwise just clear fifos.
5211 	*/
5212
5213	if (reset) {
5214		OUTB (nc_istat,  SRST);
5215		udelay(100);
5216	}
5217	else {
5218		OUTB (nc_stest3, TE|CSF);
5219		OUTONB (nc_ctest3, CLF);
5220	}
5221
5222	/*
5223	**	Message.
5224	*/
5225
5226	if (msg) printk (KERN_INFO "%s: restart (%s).\n", ncr_name (np), msg);
5227
5228	/*
5229	**	Clear Start Queue
5230	*/
5231	np->queuedepth = MAX_START - 1;	/* 1 entry needed as end marker */
5232	for (i = 1; i < MAX_START + MAX_START; i += 2)
5233		np->scripth0->tryloop[i] =
5234				cpu_to_scr(NCB_SCRIPT_PHYS (np, idle));
5235
5236	/*
5237	**	Start at first entry.
5238	*/
5239	np->squeueput = 0;
5240	np->script0->startpos[0] = cpu_to_scr(NCB_SCRIPTH_PHYS (np, tryloop));
5241
5242#ifdef SCSI_NCR_CCB_DONE_SUPPORT
5243	/*
5244	**	Clear Done Queue
5245	*/
5246	for (i = 0; i < MAX_DONE; i++) {
5247		np->ccb_done[i] = (struct ccb *)CCB_DONE_EMPTY;
5248		np->scripth0->done_queue[5*i + 4] =
5249			cpu_to_scr(NCB_SCRIPT_PHYS (np, done_end));
5250	}
5251#endif
5252
5253	/*
5254	**	Start at first entry.
5255	*/
5256	np->script0->done_pos[0] = cpu_to_scr(NCB_SCRIPTH_PHYS (np,done_queue));
5257	np->ccb_done_ic = MAX_DONE-1;
5258	np->scripth0->done_queue[5*(MAX_DONE-1) + 4] =
5259			cpu_to_scr(NCB_SCRIPT_PHYS (np, done_plug));
5260
5261	/*
5262	**	Wakeup all pending jobs.
5263	*/
5264	ncr_wakeup (np, code);
5265
5266	/*
5267	**	Init chip.
5268	*/
5269
5270	/*
5271	** Remove reset; big delay because the 895 needs time for the
5272	** bus mode to settle
5273	*/
5274	ncr_chip_reset(np, 2000);
5275
5276	OUTB (nc_scntl0, np->rv_scntl0 | 0xc0);
5277					/*  full arb., ena parity, par->ATN  */
5278	OUTB (nc_scntl1, 0x00);		/*  odd parity, and remove CRST!! */
5279
5280	ncr_selectclock(np, np->rv_scntl3);	/* Select SCSI clock */
5281
5282	OUTB (nc_scid  , RRE|np->myaddr);	/* Adapter SCSI address */
5283	OUTW (nc_respid, 1ul<<np->myaddr);	/* Id to respond to */
5284	OUTB (nc_istat , SIGP	);		/*  Signal Process */
5285	OUTB (nc_dmode , np->rv_dmode);		/* Burst length, dma mode */
5286	OUTB (nc_ctest5, np->rv_ctest5);	/* Large fifo + large burst */
5287
5288	OUTB (nc_dcntl , NOCOM|np->rv_dcntl);	/* Protect SFBR */
5289	OUTB (nc_ctest0, np->rv_ctest0);	/* 720: CDIS and EHP */
5290	OUTB (nc_ctest3, np->rv_ctest3);	/* Write and invalidate */
5291	OUTB (nc_ctest4, np->rv_ctest4);	/* Master parity checking */
5292
5293	OUTB (nc_stest2, EXT|np->rv_stest2);	/* Extended Sreq/Sack filtering */
5294	OUTB (nc_stest3, TE);			/* TolerANT enable */
5295	OUTB (nc_stime0, 0x0c	);		/* HTH disabled  STO 0.25 sec */
5296
5297	/*
5298	**	Disable disconnects.
5299	*/
5300
5301	np->disc = 0;
5302
5303	/*
5304	**    Enable GPIO0 pin for writing if LED support.
5305	*/
5306
5307	if (np->features & FE_LED0) {
5308		OUTOFFB (nc_gpcntl, 0x01);
5309	}
5310
5311	/*
5312	**      enable ints
5313	*/
5314
5315	OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
5316	OUTB (nc_dien , MDPE|BF|ABRT|SSI|SIR|IID);
5317
5318	/*
5319	**	Fill in target structure.
5320	**	Reinitialize usrsync.
5321	**	Reinitialize usrwide.
5322	**	Prepare sync negotiation according to actual SCSI bus mode.
5323	*/
5324
5325	for (i=0;i<MAX_TARGET;i++) {
5326		struct tcb *tp = &np->target[i];
5327
5328		tp->sval    = 0;
5329		tp->wval    = np->rv_scntl3;
5330
5331		if (tp->usrsync != 255) {
5332			if (tp->usrsync <= np->maxsync) {
5333				if (tp->usrsync < np->minsync) {
5334					tp->usrsync = np->minsync;
5335				}
5336			}
5337			else
5338				tp->usrsync = 255;
5339		}
5340
5341		if (tp->usrwide > np->maxwide)
5342			tp->usrwide = np->maxwide;
5343
5344	}
5345
5346	/*
5347	**    Start script processor.
5348	*/
5349	if (np->paddr2) {
5350		if (bootverbose)
5351			printk ("%s: Downloading SCSI SCRIPTS.\n",
5352				ncr_name(np));
5353		OUTL (nc_scratcha, vtobus(np->script0));
5354		OUTL_DSP (NCB_SCRIPTH_PHYS (np, start_ram));
5355	}
5356	else
5357		OUTL_DSP (NCB_SCRIPT_PHYS (np, start));
5358}
5359
5360/*==========================================================
5361**
5362**	Prepare the negotiation values for wide and
5363**	synchronous transfers.
5364**
5365**==========================================================
5366*/
5367
5368static void ncr_negotiate (struct ncb* np, struct tcb* tp)
5369{
5370	/*
5371	**	minsync unit is 4ns !
5372	*/
5373
5374	u_long minsync = tp->usrsync;
5375
5376	/*
5377	**	SCSI bus mode limit
5378	*/
5379
5380	if (np->scsi_mode && np->scsi_mode == SMODE_SE) {
5381		if (minsync < 12) minsync = 12;
5382	}
5383
5384	/*
5385	**	our limit ..
5386	*/
5387
5388	if (minsync < np->minsync)
5389		minsync = np->minsync;
5390
5391	/*
5392	**	divider limit
5393	*/
5394
5395	if (minsync > np->maxsync)
5396		minsync = 255;
5397
5398	if (tp->maxoffs > np->maxoffs)
5399		tp->maxoffs = np->maxoffs;
5400
5401	tp->minsync = minsync;
5402	tp->maxoffs = (minsync<255 ? tp->maxoffs : 0);
5403
5404	/*
5405	**	period=0: has to negotiate sync transfer
5406	*/
5407
5408	tp->period=0;
5409
5410	/*
5411	**	widedone=0: has to negotiate wide transfer
5412	*/
5413	tp->widedone=0;
5414}
5415
5416/*==========================================================
5417**
5418**	Get clock factor and sync divisor for a given
5419**	synchronous factor period.
5420**	Returns the clock factor (in sxfer) and scntl3
5421**	synchronous divisor field.
5422**
5423**==========================================================
5424*/
5425
5426static void ncr_getsync(struct ncb *np, u_char sfac, u_char *fakp, u_char *scntl3p)
5427{
5428	u_long	clk = np->clock_khz;	/* SCSI clock frequency in kHz	*/
5429	int	div = np->clock_divn;	/* Number of divisors supported	*/
5430	u_long	fak;			/* Sync factor in sxfer		*/
5431	u_long	per;			/* Period in tenths of ns	*/
5432	u_long	kpc;			/* (per * clk)			*/
5433
5434	/*
5435	**	Compute the synchronous period in tenths of nano-seconds
5436	*/
5437	if	(sfac <= 10)	per = 250;
5438	else if	(sfac == 11)	per = 303;
5439	else if	(sfac == 12)	per = 500;
5440	else			per = 40 * sfac;
5441
5442	/*
5443	**	Look for the greatest clock divisor that allows an
5444	**	input speed faster than the period.
5445	*/
5446	kpc = per * clk;
5447	while (--div > 0)
5448		if (kpc >= (div_10M[div] << 2)) break;
5449
5450	/*
5451	**	Calculate the lowest clock factor that allows an output
5452	**	speed not faster than the period.
5453	*/
5454	fak = (kpc - 1) / div_10M[div] + 1;
5455
5456#if 0	/* This optimization does not seem very useful */
5457
5458	per = (fak * div_10M[div]) / clk;
5459
5460	/*
5461	**	Why not to try the immediate lower divisor and to choose
5462	**	the one that allows the fastest output speed ?
5463	**	We don't want input speed too much greater than output speed.
5464	*/
5465	if (div >= 1 && fak < 8) {
5466		u_long fak2, per2;
5467		fak2 = (kpc - 1) / div_10M[div-1] + 1;
5468		per2 = (fak2 * div_10M[div-1]) / clk;
5469		if (per2 < per && fak2 <= 8) {
5470			fak = fak2;
5471			per = per2;
5472			--div;
5473		}
5474	}
5475#endif
5476
5477	if (fak < 4) fak = 4;	/* Should never happen, too bad ... */
5478
5479	/*
5480	**	Compute and return sync parameters for the ncr
5481	*/
5482	*fakp		= fak - 4;
5483	*scntl3p	= ((div+1) << 4) + (sfac < 25 ? 0x80 : 0);
5484}
5485
5486
5487/*==========================================================
5488**
5489**	Set actual values, sync status and patch all ccbs of
5490**	a target according to new sync/wide agreement.
5491**
5492**==========================================================
5493*/
5494
5495static void ncr_set_sync_wide_status (struct ncb *np, u_char target)
5496{
5497	struct ccb *cp;
5498	struct tcb *tp = &np->target[target];
5499
5500	/*
5501	**	set actual value and sync_status
5502	*/
5503	OUTB (nc_sxfer, tp->sval);
5504	np->sync_st = tp->sval;
5505	OUTB (nc_scntl3, tp->wval);
5506	np->wide_st = tp->wval;
5507
5508	/*
5509	**	patch ALL ccbs of this target.
5510	*/
5511	for (cp = np->ccb; cp; cp = cp->link_ccb) {
5512		if (!cp->cmd) continue;
5513		if (scmd_id(cp->cmd) != target) continue;
5514#if 0
5515		cp->sync_status = tp->sval;
5516		cp->wide_status = tp->wval;
5517#endif
5518		cp->phys.select.sel_scntl3 = tp->wval;
5519		cp->phys.select.sel_sxfer  = tp->sval;
5520	}
5521}
5522
5523/*==========================================================
5524**
5525**	Switch sync mode for current job and it's target
5526**
5527**==========================================================
5528*/
5529
5530static void ncr_setsync (struct ncb *np, struct ccb *cp, u_char scntl3, u_char sxfer)
5531{
5532	struct scsi_cmnd *cmd = cp->cmd;
5533	struct tcb *tp;
5534	u_char target = INB (nc_sdid) & 0x0f;
5535	u_char idiv;
5536
5537	BUG_ON(target != (scmd_id(cmd) & 0xf));
5538
5539	tp = &np->target[target];
5540
5541	if (!scntl3 || !(sxfer & 0x1f))
5542		scntl3 = np->rv_scntl3;
5543	scntl3 = (scntl3 & 0xf0) | (tp->wval & EWS) | (np->rv_scntl3 & 0x07);
5544
5545	/*
5546	**	Deduce the value of controller sync period from scntl3.
5547	**	period is in tenths of nano-seconds.
5548	*/
5549
5550	idiv = ((scntl3 >> 4) & 0x7);
5551	if ((sxfer & 0x1f) && idiv)
5552		tp->period = (((sxfer>>5)+4)*div_10M[idiv-1])/np->clock_khz;
5553	else
5554		tp->period = 0xffff;
5555
5556	/* Stop there if sync parameters are unchanged */
5557	if (tp->sval == sxfer && tp->wval == scntl3)
5558		return;
5559	tp->sval = sxfer;
5560	tp->wval = scntl3;
5561
5562	if (sxfer & 0x01f) {
5563		/* Disable extended Sreq/Sack filtering */
5564		if (tp->period <= 2000)
5565			OUTOFFB(nc_stest2, EXT);
5566	}
5567
5568	spi_display_xfer_agreement(tp->starget);
5569
5570	/*
5571	**	set actual value and sync_status
5572	**	patch ALL ccbs of this target.
5573	*/
5574	ncr_set_sync_wide_status(np, target);
5575}
5576
5577/*==========================================================
5578**
5579**	Switch wide mode for current job and it's target
5580**	SCSI specs say: a SCSI device that accepts a WDTR
5581**	message shall reset the synchronous agreement to
5582**	asynchronous mode.
5583**
5584**==========================================================
5585*/
5586
5587static void ncr_setwide (struct ncb *np, struct ccb *cp, u_char wide, u_char ack)
5588{
5589	struct scsi_cmnd *cmd = cp->cmd;
5590	u16 target = INB (nc_sdid) & 0x0f;
5591	struct tcb *tp;
5592	u_char	scntl3;
5593	u_char	sxfer;
5594
5595	BUG_ON(target != (scmd_id(cmd) & 0xf));
5596
5597	tp = &np->target[target];
5598	tp->widedone  =  wide+1;
5599	scntl3 = (tp->wval & (~EWS)) | (wide ? EWS : 0);
5600
5601	sxfer = ack ? 0 : tp->sval;
5602
5603	/*
5604	**	 Stop there if sync/wide parameters are unchanged
5605	*/
5606	if (tp->sval == sxfer && tp->wval == scntl3) return;
5607	tp->sval = sxfer;
5608	tp->wval = scntl3;
5609
5610	/*
5611	**	Bells and whistles   ;-)
5612	*/
5613	if (bootverbose >= 2) {
5614		dev_info(&cmd->device->sdev_target->dev, "WIDE SCSI %sabled.\n",
5615				(scntl3 & EWS) ? "en" : "dis");
5616	}
5617
5618	/*
5619	**	set actual value and sync_status
5620	**	patch ALL ccbs of this target.
5621	*/
5622	ncr_set_sync_wide_status(np, target);
5623}
5624
5625/*==========================================================
5626**
5627**	Switch tagged mode for a target.
5628**
5629**==========================================================
5630*/
5631
5632static void ncr_setup_tags (struct ncb *np, struct scsi_device *sdev)
5633{
5634	unsigned char tn = sdev->id, ln = sdev->lun;
5635	struct tcb *tp = &np->target[tn];
5636	struct lcb *lp = tp->lp[ln];
5637	u_char   reqtags, maxdepth;
5638
5639	/*
5640	**	Just in case ...
5641	*/
5642	if ((!tp) || (!lp) || !sdev)
5643		return;
5644
5645	/*
5646	**	If SCSI device queue depth is not yet set, leave here.
5647	*/
5648	if (!lp->scdev_depth)
5649		return;
5650
5651	/*
5652	**	Donnot allow more tags than the SCSI driver can queue
5653	**	for this device.
5654	**	Donnot allow more tags than we can handle.
5655	*/
5656	maxdepth = lp->scdev_depth;
5657	if (maxdepth > lp->maxnxs)	maxdepth    = lp->maxnxs;
5658	if (lp->maxtags > maxdepth)	lp->maxtags = maxdepth;
5659	if (lp->numtags > maxdepth)	lp->numtags = maxdepth;
5660
5661	/*
5662	**	only devices conformant to ANSI Version >= 2
5663	**	only devices capable of tagged commands
5664	**	only if enabled by user ..
5665	*/
5666	if (sdev->tagged_supported && lp->numtags > 1) {
5667		reqtags = lp->numtags;
5668	} else {
5669		reqtags = 1;
5670	}
5671
5672	/*
5673	**	Update max number of tags
5674	*/
5675	lp->numtags = reqtags;
5676	if (lp->numtags > lp->maxtags)
5677		lp->maxtags = lp->numtags;
5678
5679	/*
5680	**	If we want to switch tag mode, we must wait
5681	**	for no CCB to be active.
5682	*/
5683	if	(reqtags > 1 && lp->usetags) {	 /* Stay in tagged mode    */
5684		if (lp->queuedepth == reqtags)	 /* Already announced	   */
5685			return;
5686		lp->queuedepth	= reqtags;
5687	}
5688	else if	(reqtags <= 1 && !lp->usetags) { /* Stay in untagged mode  */
5689		lp->queuedepth	= reqtags;
5690		return;
5691	}
5692	else {					 /* Want to switch tag mode */
5693		if (lp->busyccbs)		 /* If not yet safe, return */
5694			return;
5695		lp->queuedepth	= reqtags;
5696		lp->usetags	= reqtags > 1 ? 1 : 0;
5697	}
5698
5699	/*
5700	**	Patch the lun mini-script, according to tag mode.
5701	*/
5702	lp->jump_tag.l_paddr = lp->usetags?
5703			cpu_to_scr(NCB_SCRIPT_PHYS(np, resel_tag)) :
5704			cpu_to_scr(NCB_SCRIPT_PHYS(np, resel_notag));
5705
5706	/*
5707	**	Announce change to user.
5708	*/
5709	if (bootverbose) {
5710		if (lp->usetags) {
5711			dev_info(&sdev->sdev_gendev,
5712				"tagged command queue depth set to %d\n",
5713				reqtags);
5714		} else {
5715			dev_info(&sdev->sdev_gendev,
5716					"tagged command queueing disabled\n");
5717		}
5718	}
5719}
5720
5721/*==========================================================
5722**
5723**
5724**	ncr timeout handler.
5725**
5726**
5727**==========================================================
5728**
5729**	Misused to keep the driver running when
5730**	interrupts are not configured correctly.
5731**
5732**----------------------------------------------------------
5733*/
5734
5735static void ncr_timeout (struct ncb *np)
5736{
5737	u_long	thistime = jiffies;
5738
5739	/*
5740	**	If release process in progress, let's go
5741	**	Set the release stage from 1 to 2 to synchronize
5742	**	with the release process.
5743	*/
5744
5745	if (np->release_stage) {
5746		if (np->release_stage == 1) np->release_stage = 2;
5747		return;
5748	}
5749
5750	np->timer.expires = jiffies + SCSI_NCR_TIMER_INTERVAL;
5751	add_timer(&np->timer);
5752
5753	/*
5754	**	If we are resetting the ncr, wait for settle_time before
5755	**	clearing it. Then command processing will be resumed.
5756	*/
5757	if (np->settle_time) {
5758		if (np->settle_time <= thistime) {
5759			if (bootverbose > 1)
5760				printk("%s: command processing resumed\n", ncr_name(np));
5761			np->settle_time	= 0;
5762			np->disc	= 1;
5763			requeue_waiting_list(np);
5764		}
5765		return;
5766	}
5767
5768	/*
5769	**	Since the generic scsi driver only allows us 0.5 second
5770	**	to perform abort of a command, we must look at ccbs about
5771	**	every 0.25 second.
5772	*/
5773	if (np->lasttime + 4*HZ < thistime) {
5774		/*
5775		**	block ncr interrupts
5776		*/
5777		np->lasttime = thistime;
5778	}
5779
5780#ifdef SCSI_NCR_BROKEN_INTR
5781	if (INB(nc_istat) & (INTF|SIP|DIP)) {
5782
5783		/*
5784		**	Process pending interrupts.
5785		*/
5786		if (DEBUG_FLAGS & DEBUG_TINY) printk ("{");
5787		ncr_exception (np);
5788		if (DEBUG_FLAGS & DEBUG_TINY) printk ("}");
5789	}
5790#endif /* SCSI_NCR_BROKEN_INTR */
5791}
5792
5793/*==========================================================
5794**
5795**	log message for real hard errors
5796**
5797**	"ncr0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc)."
5798**	"	      reg: r0 r1 r2 r3 r4 r5 r6 ..... rf."
5799**
5800**	exception register:
5801**		ds:	dstat
5802**		si:	sist
5803**
5804**	SCSI bus lines:
5805**		so:	control lines as driver by NCR.
5806**		si:	control lines as seen by NCR.
5807**		sd:	scsi data lines as seen by NCR.
5808**
5809**	wide/fastmode:
5810**		sxfer:	(see the manual)
5811**		scntl3:	(see the manual)
5812**
5813**	current script command:
5814**		dsp:	script address (relative to start of script).
5815**		dbc:	first word of script command.
5816**
5817**	First 16 register of the chip:
5818**		r0..rf
5819**
5820**==========================================================
5821*/
5822
5823static void ncr_log_hard_error(struct ncb *np, u16 sist, u_char dstat)
5824{
5825	u32	dsp;
5826	int	script_ofs;
5827	int	script_size;
5828	char	*script_name;
5829	u_char	*script_base;
5830	int	i;
5831
5832	dsp	= INL (nc_dsp);
5833
5834	if (dsp > np->p_script && dsp <= np->p_script + sizeof(struct script)) {
5835		script_ofs	= dsp - np->p_script;
5836		script_size	= sizeof(struct script);
5837		script_base	= (u_char *) np->script0;
5838		script_name	= "script";
5839	}
5840	else if (np->p_scripth < dsp &&
5841		 dsp <= np->p_scripth + sizeof(struct scripth)) {
5842		script_ofs	= dsp - np->p_scripth;
5843		script_size	= sizeof(struct scripth);
5844		script_base	= (u_char *) np->scripth0;
5845		script_name	= "scripth";
5846	} else {
5847		script_ofs	= dsp;
5848		script_size	= 0;
5849		script_base	= NULL;
5850		script_name	= "mem";
5851	}
5852
5853	printk ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n",
5854		ncr_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist,
5855		(unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl), (unsigned)INB (nc_sbdl),
5856		(unsigned)INB (nc_sxfer),(unsigned)INB (nc_scntl3), script_name, script_ofs,
5857		(unsigned)INL (nc_dbc));
5858
5859	if (((script_ofs & 3) == 0) &&
5860	    (unsigned)script_ofs < script_size) {
5861		printk ("%s: script cmd = %08x\n", ncr_name(np),
5862			scr_to_cpu((int) *(ncrcmd *)(script_base + script_ofs)));
5863	}
5864
5865	printk ("%s: regdump:", ncr_name(np));
5866	for (i=0; i<16;i++)
5867            printk (" %02x", (unsigned)INB_OFF(i));
5868	printk (".\n");
5869}
5870
5871/*============================================================
5872**
5873**	ncr chip exception handler.
5874**
5875**============================================================
5876**
5877**	In normal cases, interrupt conditions occur one at a
5878**	time. The ncr is able to stack in some extra registers
5879**	other interrupts that will occur after the first one.
5880**	But, several interrupts may occur at the same time.
5881**
5882**	We probably should only try to deal with the normal
5883**	case, but it seems that multiple interrupts occur in
5884**	some cases that are not abnormal at all.
5885**
5886**	The most frequent interrupt condition is Phase Mismatch.
5887**	We should want to service this interrupt quickly.
5888**	A SCSI parity error may be delivered at the same time.
5889**	The SIR interrupt is not very frequent in this driver,
5890**	since the INTFLY is likely used for command completion
5891**	signaling.
5892**	The Selection Timeout interrupt may be triggered with
5893**	IID and/or UDC.
5894**	The SBMC interrupt (SCSI Bus Mode Change) may probably
5895**	occur at any time.
5896**
5897**	This handler try to deal as cleverly as possible with all
5898**	the above.
5899**
5900**============================================================
5901*/
5902
5903void ncr_exception (struct ncb *np)
5904{
5905	u_char	istat, dstat;
5906	u16	sist;
5907	int	i;
5908
5909	/*
5910	**	interrupt on the fly ?
5911	**	Since the global header may be copied back to a CCB
5912	**	using a posted PCI memory write, the last operation on
5913	**	the istat register is a READ in order to flush posted
5914	**	PCI write commands.
5915	*/
5916	istat = INB (nc_istat);
5917	if (istat & INTF) {
5918		OUTB (nc_istat, (istat & SIGP) | INTF);
5919		istat = INB (nc_istat);
5920		if (DEBUG_FLAGS & DEBUG_TINY) printk ("F ");
5921		ncr_wakeup_done (np);
5922	}
5923
5924	if (!(istat & (SIP|DIP)))
5925		return;
5926
5927	if (istat & CABRT)
5928		OUTB (nc_istat, CABRT);
5929
5930	/*
5931	**	Steinbach's Guideline for Systems Programming:
5932	**	Never test for an error condition you don't know how to handle.
5933	*/
5934
5935	sist  = (istat & SIP) ? INW (nc_sist)  : 0;
5936	dstat = (istat & DIP) ? INB (nc_dstat) : 0;
5937
5938	if (DEBUG_FLAGS & DEBUG_TINY)
5939		printk ("<%d|%x:%x|%x:%x>",
5940			(int)INB(nc_scr0),
5941			dstat,sist,
5942			(unsigned)INL(nc_dsp),
5943			(unsigned)INL(nc_dbc));
5944
5945	/*========================================================
5946	**	First, interrupts we want to service cleanly.
5947	**
5948	**	Phase mismatch is the most frequent interrupt, and
5949	**	so we have to service it as quickly and as cleanly
5950	**	as possible.
5951	**	Programmed interrupts are rarely used in this driver,
5952	**	but we must handle them cleanly anyway.
5953	**	We try to deal with PAR and SBMC combined with
5954	**	some other interrupt(s).
5955	**=========================================================
5956	*/
5957
5958	if (!(sist  & (STO|GEN|HTH|SGE|UDC|RST)) &&
5959	    !(dstat & (MDPE|BF|ABRT|IID))) {
5960		if ((sist & SBMC) && ncr_int_sbmc (np))
5961			return;
5962		if ((sist & PAR)  && ncr_int_par  (np))
5963			return;
5964		if (sist & MA) {
5965			ncr_int_ma (np);
5966			return;
5967		}
5968		if (dstat & SIR) {
5969			ncr_int_sir (np);
5970			return;
5971		}
5972		/*
5973		**  DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 2.
5974		*/
5975		if (!(sist & (SBMC|PAR)) && !(dstat & SSI)) {
5976			printk(	"%s: unknown interrupt(s) ignored, "
5977				"ISTAT=%x DSTAT=%x SIST=%x\n",
5978				ncr_name(np), istat, dstat, sist);
5979			return;
5980		}
5981		OUTONB_STD ();
5982		return;
5983	}
5984
5985	/*========================================================
5986	**	Now, interrupts that need some fixing up.
5987	**	Order and multiple interrupts is so less important.
5988	**
5989	**	If SRST has been asserted, we just reset the chip.
5990	**
5991	**	Selection is intirely handled by the chip. If the
5992	**	chip says STO, we trust it. Seems some other
5993	**	interrupts may occur at the same time (UDC, IID), so
5994	**	we ignore them. In any case we do enough fix-up
5995	**	in the service routine.
5996	**	We just exclude some fatal dma errors.
5997	**=========================================================
5998	*/
5999
6000	if (sist & RST) {
6001		ncr_init (np, 1, bootverbose ? "scsi reset" : NULL, HS_RESET);
6002		return;
6003	}
6004
6005	if ((sist & STO) &&
6006		!(dstat & (MDPE|BF|ABRT))) {
6007	/*
6008	**	DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 1.
6009	*/
6010		OUTONB (nc_ctest3, CLF);
6011
6012		ncr_int_sto (np);
6013		return;
6014	}
6015
6016	/*=========================================================
6017	**	Now, interrupts we are not able to recover cleanly.
6018	**	(At least for the moment).
6019	**
6020	**	Do the register dump.
6021	**	Log message for real hard errors.
6022	**	Clear all fifos.
6023	**	For MDPE, BF, ABORT, IID, SGE and HTH we reset the
6024	**	BUS and the chip.
6025	**	We are more soft for UDC.
6026	**=========================================================
6027	*/
6028
6029	if (time_after(jiffies, np->regtime)) {
6030		np->regtime = jiffies + 10*HZ;
6031		for (i = 0; i<sizeof(np->regdump); i++)
6032			((char*)&np->regdump)[i] = INB_OFF(i);
6033		np->regdump.nc_dstat = dstat;
6034		np->regdump.nc_sist  = sist;
6035	}
6036
6037	ncr_log_hard_error(np, sist, dstat);
6038
6039	printk ("%s: have to clear fifos.\n", ncr_name (np));
6040	OUTB (nc_stest3, TE|CSF);
6041	OUTONB (nc_ctest3, CLF);
6042
6043	if ((sist & (SGE)) ||
6044		(dstat & (MDPE|BF|ABRT|IID))) {
6045		ncr_start_reset(np);
6046		return;
6047	}
6048
6049	if (sist & HTH) {
6050		printk ("%s: handshake timeout\n", ncr_name(np));
6051		ncr_start_reset(np);
6052		return;
6053	}
6054
6055	if (sist & UDC) {
6056		printk ("%s: unexpected disconnect\n", ncr_name(np));
6057		OUTB (HS_PRT, HS_UNEXPECTED);
6058		OUTL_DSP (NCB_SCRIPT_PHYS (np, cleanup));
6059		return;
6060	}
6061
6062	/*=========================================================
6063	**	We just miss the cause of the interrupt. :(
6064	**	Print a message. The timeout will do the real work.
6065	**=========================================================
6066	*/
6067	printk ("%s: unknown interrupt\n", ncr_name(np));
6068}
6069
6070/*==========================================================
6071**
6072**	ncr chip exception handler for selection timeout
6073**
6074**==========================================================
6075**
6076**	There seems to be a bug in the 53c810.
6077**	Although a STO-Interrupt is pending,
6078**	it continues executing script commands.
6079**	But it will fail and interrupt (IID) on
6080**	the next instruction where it's looking
6081**	for a valid phase.
6082**
6083**----------------------------------------------------------
6084*/
6085
6086void ncr_int_sto (struct ncb *np)
6087{
6088	u_long dsa;
6089	struct ccb *cp;
6090	if (DEBUG_FLAGS & DEBUG_TINY) printk ("T");
6091
6092	/*
6093	**	look for ccb and set the status.
6094	*/
6095
6096	dsa = INL (nc_dsa);
6097	cp = np->ccb;
6098	while (cp && (CCB_PHYS (cp, phys) != dsa))
6099		cp = cp->link_ccb;
6100
6101	if (cp) {
6102		cp-> host_status = HS_SEL_TIMEOUT;
6103		ncr_complete (np, cp);
6104	}
6105
6106	/*
6107	**	repair start queue and jump to start point.
6108	*/
6109
6110	OUTL_DSP (NCB_SCRIPTH_PHYS (np, sto_restart));
6111	return;
6112}
6113
6114/*==========================================================
6115**
6116**	ncr chip exception handler for SCSI bus mode change
6117**
6118**==========================================================
6119**
6120**	spi2-r12 11.2.3 says a transceiver mode change must
6121**	generate a reset event and a device that detects a reset
6122**	event shall initiate a hard reset. It says also that a
6123**	device that detects a mode change shall set data transfer
6124**	mode to eight bit asynchronous, etc...
6125**	So, just resetting should be enough.
6126**
6127**
6128**----------------------------------------------------------
6129*/
6130
6131static int ncr_int_sbmc (struct ncb *np)
6132{
6133	u_char scsi_mode = INB (nc_stest4) & SMODE;
6134
6135	if (scsi_mode != np->scsi_mode) {
6136		printk("%s: SCSI bus mode change from %x to %x.\n",
6137			ncr_name(np), np->scsi_mode, scsi_mode);
6138
6139		np->scsi_mode = scsi_mode;
6140
6141
6142		/*
6143		**	Suspend command processing for 1 second and
6144		**	reinitialize all except the chip.
6145		*/
6146		np->settle_time	= jiffies + HZ;
6147		ncr_init (np, 0, bootverbose ? "scsi mode change" : NULL, HS_RESET);
6148		return 1;
6149	}
6150	return 0;
6151}
6152
6153/*==========================================================
6154**
6155**	ncr chip exception handler for SCSI parity error.
6156**
6157**==========================================================
6158**
6159**
6160**----------------------------------------------------------
6161*/
6162
6163static int ncr_int_par (struct ncb *np)
6164{
6165	u_char	hsts	= INB (HS_PRT);
6166	u32	dbc	= INL (nc_dbc);
6167	u_char	sstat1	= INB (nc_sstat1);
6168	int phase	= -1;
6169	int msg		= -1;
6170	u32 jmp;
6171
6172	printk("%s: SCSI parity error detected: SCR1=%d DBC=%x SSTAT1=%x\n",
6173		ncr_name(np), hsts, dbc, sstat1);
6174
6175	/*
6176	 *	Ignore the interrupt if the NCR is not connected
6177	 *	to the SCSI bus, since the right work should have
6178	 *	been done on unexpected disconnection handling.
6179	 */
6180	if (!(INB (nc_scntl1) & ISCON))
6181		return 0;
6182
6183	/*
6184	 *	If the nexus is not clearly identified, reset the bus.
6185	 *	We will try to do better later.
6186	 */
6187	if (hsts & HS_INVALMASK)
6188		goto reset_all;
6189
6190	/*
6191	 *	If the SCSI parity error occurs in MSG IN phase, prepare a
6192	 *	MSG PARITY message. Otherwise, prepare a INITIATOR DETECTED
6193	 *	ERROR message and let the device decide to retry the command
6194	 *	or to terminate with check condition. If we were in MSG IN
6195	 *	phase waiting for the response of a negotiation, we will
6196	 *	get SIR_NEGO_FAILED at dispatch.
6197	 */
6198	if (!(dbc & 0xc0000000))
6199		phase = (dbc >> 24) & 7;
6200	if (phase == 7)
6201		msg = MSG_PARITY_ERROR;
6202	else
6203		msg = INITIATOR_ERROR;
6204
6205
6206	/*
6207	 *	If the NCR stopped on a MOVE ^ DATA_IN, we jump to a
6208	 *	script that will ignore all data in bytes until phase
6209	 *	change, since we are not sure the chip will wait the phase
6210	 *	change prior to delivering the interrupt.
6211	 */
6212	if (phase == 1)
6213		jmp = NCB_SCRIPTH_PHYS (np, par_err_data_in);
6214	else
6215		jmp = NCB_SCRIPTH_PHYS (np, par_err_other);
6216
6217	OUTONB (nc_ctest3, CLF );	/* clear dma fifo  */
6218	OUTB (nc_stest3, TE|CSF);	/* clear scsi fifo */
6219
6220	np->msgout[0] = msg;
6221	OUTL_DSP (jmp);
6222	return 1;
6223
6224reset_all:
6225	ncr_start_reset(np);
6226	return 1;
6227}
6228
6229/*==========================================================
6230**
6231**
6232**	ncr chip exception handler for phase errors.
6233**
6234**
6235**==========================================================
6236**
6237**	We have to construct a new transfer descriptor,
6238**	to transfer the rest of the current block.
6239**
6240**----------------------------------------------------------
6241*/
6242
6243static void ncr_int_ma (struct ncb *np)
6244{
6245	u32	dbc;
6246	u32	rest;
6247	u32	dsp;
6248	u32	dsa;
6249	u32	nxtdsp;
6250	u32	newtmp;
6251	u32	*vdsp;
6252	u32	oadr, olen;
6253	u32	*tblp;
6254	ncrcmd *newcmd;
6255	u_char	cmd, sbcl;
6256	struct ccb *cp;
6257
6258	dsp	= INL (nc_dsp);
6259	dbc	= INL (nc_dbc);
6260	sbcl	= INB (nc_sbcl);
6261
6262	cmd	= dbc >> 24;
6263	rest	= dbc & 0xffffff;
6264
6265	/*
6266	**	Take into account dma fifo and various buffers and latches,
6267	**	only if the interrupted phase is an OUTPUT phase.
6268	*/
6269
6270	if ((cmd & 1) == 0) {
6271		u_char	ctest5, ss0, ss2;
6272		u16	delta;
6273
6274		ctest5 = (np->rv_ctest5 & DFS) ? INB (nc_ctest5) : 0;
6275		if (ctest5 & DFS)
6276			delta=(((ctest5 << 8) | (INB (nc_dfifo) & 0xff)) - rest) & 0x3ff;
6277		else
6278			delta=(INB (nc_dfifo) - rest) & 0x7f;
6279
6280		/*
6281		**	The data in the dma fifo has not been transferred to
6282		**	the target -> add the amount to the rest
6283		**	and clear the data.
6284		**	Check the sstat2 register in case of wide transfer.
6285		*/
6286
6287		rest += delta;
6288		ss0  = INB (nc_sstat0);
6289		if (ss0 & OLF) rest++;
6290		if (ss0 & ORF) rest++;
6291		if (INB(nc_scntl3) & EWS) {
6292			ss2 = INB (nc_sstat2);
6293			if (ss2 & OLF1) rest++;
6294			if (ss2 & ORF1) rest++;
6295		}
6296
6297		if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
6298			printk ("P%x%x RL=%d D=%d SS0=%x ", cmd&7, sbcl&7,
6299				(unsigned) rest, (unsigned) delta, ss0);
6300
6301	} else	{
6302		if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
6303			printk ("P%x%x RL=%d ", cmd&7, sbcl&7, rest);
6304	}
6305
6306	/*
6307	**	Clear fifos.
6308	*/
6309	OUTONB (nc_ctest3, CLF );	/* clear dma fifo  */
6310	OUTB (nc_stest3, TE|CSF);	/* clear scsi fifo */
6311
6312	/*
6313	**	locate matching cp.
6314	**	if the interrupted phase is DATA IN or DATA OUT,
6315	**	trust the global header.
6316	*/
6317	dsa = INL (nc_dsa);
6318	if (!(cmd & 6)) {
6319		cp = np->header.cp;
6320		if (CCB_PHYS(cp, phys) != dsa)
6321			cp = NULL;
6322	} else {
6323		cp  = np->ccb;
6324		while (cp && (CCB_PHYS (cp, phys) != dsa))
6325			cp = cp->link_ccb;
6326	}
6327
6328	/*
6329	**	try to find the interrupted script command,
6330	**	and the address at which to continue.
6331	*/
6332	vdsp	= NULL;
6333	nxtdsp	= 0;
6334	if	(dsp >  np->p_script &&
6335		 dsp <= np->p_script + sizeof(struct script)) {
6336		vdsp = (u32 *)((char*)np->script0 + (dsp-np->p_script-8));
6337		nxtdsp = dsp;
6338	}
6339	else if	(dsp >  np->p_scripth &&
6340		 dsp <= np->p_scripth + sizeof(struct scripth)) {
6341		vdsp = (u32 *)((char*)np->scripth0 + (dsp-np->p_scripth-8));
6342		nxtdsp = dsp;
6343	}
6344	else if (cp) {
6345		if	(dsp == CCB_PHYS (cp, patch[2])) {
6346			vdsp = &cp->patch[0];
6347			nxtdsp = scr_to_cpu(vdsp[3]);
6348		}
6349		else if (dsp == CCB_PHYS (cp, patch[6])) {
6350			vdsp = &cp->patch[4];
6351			nxtdsp = scr_to_cpu(vdsp[3]);
6352		}
6353	}
6354
6355	/*
6356	**	log the information
6357	*/
6358
6359	if (DEBUG_FLAGS & DEBUG_PHASE) {
6360		printk ("\nCP=%p CP2=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
6361			cp, np->header.cp,
6362			(unsigned)dsp,
6363			(unsigned)nxtdsp, vdsp, cmd);
6364	}
6365
6366	/*
6367	**	cp=0 means that the DSA does not point to a valid control
6368	**	block. This should not happen since we donnot use multi-byte
6369	**	move while we are being reselected ot after command complete.
6370	**	We are not able to recover from such a phase error.
6371	*/
6372	if (!cp) {
6373		printk ("%s: SCSI phase error fixup: "
6374			"CCB already dequeued (0x%08lx)\n",
6375			ncr_name (np), (u_long) np->header.cp);
6376		goto reset_all;
6377	}
6378
6379	/*
6380	**	get old startaddress and old length.
6381	*/
6382
6383	oadr = scr_to_cpu(vdsp[1]);
6384
6385	if (cmd & 0x10) {	/* Table indirect */
6386		tblp = (u32 *) ((char*) &cp->phys + oadr);
6387		olen = scr_to_cpu(tblp[0]);
6388		oadr = scr_to_cpu(tblp[1]);
6389	} else {
6390		tblp = (u32 *) 0;
6391		olen = scr_to_cpu(vdsp[0]) & 0xffffff;
6392	}
6393
6394	if (DEBUG_FLAGS & DEBUG_PHASE) {
6395		printk ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
6396			(unsigned) (scr_to_cpu(vdsp[0]) >> 24),
6397			tblp,
6398			(unsigned) olen,
6399			(unsigned) oadr);
6400	}
6401
6402	/*
6403	**	check cmd against assumed interrupted script command.
6404	*/
6405
6406	if (cmd != (scr_to_cpu(vdsp[0]) >> 24)) {
6407		PRINT_ADDR(cp->cmd, "internal error: cmd=%02x != %02x=(vdsp[0] "
6408				">> 24)\n", cmd, scr_to_cpu(vdsp[0]) >> 24);
6409
6410		goto reset_all;
6411	}
6412
6413	/*
6414	**	cp != np->header.cp means that the header of the CCB
6415	**	currently being processed has not yet been copied to
6416	**	the global header area. That may happen if the device did
6417	**	not accept all our messages after having been selected.
6418	*/
6419	if (cp != np->header.cp) {
6420		printk ("%s: SCSI phase error fixup: "
6421			"CCB address mismatch (0x%08lx != 0x%08lx)\n",
6422			ncr_name (np), (u_long) cp, (u_long) np->header.cp);
6423	}
6424
6425	/*
6426	**	if old phase not dataphase, leave here.
6427	*/
6428
6429	if (cmd & 0x06) {
6430		PRINT_ADDR(cp->cmd, "phase change %x-%x %d@%08x resid=%d.\n",
6431			cmd&7, sbcl&7, (unsigned)olen,
6432			(unsigned)oadr, (unsigned)rest);
6433		goto unexpected_phase;
6434	}
6435
6436	/*
6437	**	choose the correct patch area.
6438	**	if savep points to one, choose the other.
6439	*/
6440
6441	newcmd = cp->patch;
6442	newtmp = CCB_PHYS (cp, patch);
6443	if (newtmp == scr_to_cpu(cp->phys.header.savep)) {
6444		newcmd = &cp->patch[4];
6445		newtmp = CCB_PHYS (cp, patch[4]);
6446	}
6447
6448	/*
6449	**	fillin the commands
6450	*/
6451
6452	newcmd[0] = cpu_to_scr(((cmd & 0x0f) << 24) | rest);
6453	newcmd[1] = cpu_to_scr(oadr + olen - rest);
6454	newcmd[2] = cpu_to_scr(SCR_JUMP);
6455	newcmd[3] = cpu_to_scr(nxtdsp);
6456
6457	if (DEBUG_FLAGS & DEBUG_PHASE) {
6458		PRINT_ADDR(cp->cmd, "newcmd[%d] %x %x %x %x.\n",
6459			(int) (newcmd - cp->patch),
6460			(unsigned)scr_to_cpu(newcmd[0]),
6461			(unsigned)scr_to_cpu(newcmd[1]),
6462			(unsigned)scr_to_cpu(newcmd[2]),
6463			(unsigned)scr_to_cpu(newcmd[3]));
6464	}
6465	/*
6466	**	fake the return address (to the patch).
6467	**	and restart script processor at dispatcher.
6468	*/
6469	OUTL (nc_temp, newtmp);
6470	OUTL_DSP (NCB_SCRIPT_PHYS (np, dispatch));
6471	return;
6472
6473	/*
6474	**	Unexpected phase changes that occurs when the current phase
6475	**	is not a DATA IN or DATA OUT phase are due to error conditions.
6476	**	Such event may only happen when the SCRIPTS is using a
6477	**	multibyte SCSI MOVE.
6478	**
6479	**	Phase change		Some possible cause
6480	**
6481	**	COMMAND  --> MSG IN	SCSI parity error detected by target.
6482	**	COMMAND  --> STATUS	Bad command or refused by target.
6483	**	MSG OUT  --> MSG IN     Message rejected by target.
6484	**	MSG OUT  --> COMMAND    Bogus target that discards extended
6485	**				negotiation messages.
6486	**
6487	**	The code below does not care of the new phase and so
6488	**	trusts the target. Why to annoy it ?
6489	**	If the interrupted phase is COMMAND phase, we restart at
6490	**	dispatcher.
6491	**	If a target does not get all the messages after selection,
6492	**	the code assumes blindly that the target discards extended
6493	**	messages and clears the negotiation status.
6494	**	If the target does not want all our response to negotiation,
6495	**	we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
6496	**	bloat for such a should_not_happen situation).
6497	**	In all other situation, we reset the BUS.
6498	**	Are these assumptions reasonable ? (Wait and see ...)
6499	*/
6500unexpected_phase:
6501	dsp -= 8;
6502	nxtdsp = 0;
6503
6504	switch (cmd & 7) {
6505	case 2:	/* COMMAND phase */
6506		nxtdsp = NCB_SCRIPT_PHYS (np, dispatch);
6507		break;
6508#if 0
6509	case 3:	/* STATUS  phase */
6510		nxtdsp = NCB_SCRIPT_PHYS (np, dispatch);
6511		break;
6512#endif
6513	case 6:	/* MSG OUT phase */
6514		np->scripth->nxtdsp_go_on[0] = cpu_to_scr(dsp + 8);
6515		if	(dsp == NCB_SCRIPT_PHYS (np, send_ident)) {
6516			cp->host_status = HS_BUSY;
6517			nxtdsp = NCB_SCRIPTH_PHYS (np, clratn_go_on);
6518		}
6519		else if	(dsp == NCB_SCRIPTH_PHYS (np, send_wdtr) ||
6520			 dsp == NCB_SCRIPTH_PHYS (np, send_sdtr)) {
6521			nxtdsp = NCB_SCRIPTH_PHYS (np, nego_bad_phase);
6522		}
6523		break;
6524#if 0
6525	case 7:	/* MSG IN  phase */
6526		nxtdsp = NCB_SCRIPT_PHYS (np, clrack);
6527		break;
6528#endif
6529	}
6530
6531	if (nxtdsp) {
6532		OUTL_DSP (nxtdsp);
6533		return;
6534	}
6535
6536reset_all:
6537	ncr_start_reset(np);
6538}
6539
6540
6541static void ncr_sir_to_redo(struct ncb *np, int num, struct ccb *cp)
6542{
6543	struct scsi_cmnd *cmd	= cp->cmd;
6544	struct tcb *tp	= &np->target[cmd->device->id];
6545	struct lcb *lp	= tp->lp[cmd->device->lun];
6546	struct list_head *qp;
6547	struct ccb *	cp2;
6548	int		disc_cnt = 0;
6549	int		busy_cnt = 0;
6550	u32		startp;
6551	u_char		s_status = INB (SS_PRT);
6552
6553	/*
6554	**	Let the SCRIPTS processor skip all not yet started CCBs,
6555	**	and count disconnected CCBs. Since the busy queue is in
6556	**	the same order as the chip start queue, disconnected CCBs
6557	**	are before cp and busy ones after.
6558	*/
6559	if (lp) {
6560		qp = lp->busy_ccbq.prev;
6561		while (qp != &lp->busy_ccbq) {
6562			cp2 = list_entry(qp, struct ccb, link_ccbq);
6563			qp  = qp->prev;
6564			++busy_cnt;
6565			if (cp2 == cp)
6566				break;
6567			cp2->start.schedule.l_paddr =
6568			cpu_to_scr(NCB_SCRIPTH_PHYS (np, skip));
6569		}
6570		lp->held_ccb = cp;	/* Requeue when this one completes */
6571		disc_cnt = lp->queuedccbs - busy_cnt;
6572	}
6573
6574	switch(s_status) {
6575	default:	/* Just for safety, should never happen */
6576	case S_QUEUE_FULL:
6577		/*
6578		**	Decrease number of tags to the number of
6579		**	disconnected commands.
6580		*/
6581		if (!lp)
6582			goto out;
6583		if (bootverbose >= 1) {
6584			PRINT_ADDR(cmd, "QUEUE FULL! %d busy, %d disconnected "
6585					"CCBs\n", busy_cnt, disc_cnt);
6586		}
6587		if (disc_cnt < lp->numtags) {
6588			lp->numtags	= disc_cnt > 2 ? disc_cnt : 2;
6589			lp->num_good	= 0;
6590			ncr_setup_tags (np, cmd->device);
6591		}
6592		/*
6593		**	Requeue the command to the start queue.
6594		**	If any disconnected commands,
6595		**		Clear SIGP.
6596		**		Jump to reselect.
6597		*/
6598		cp->phys.header.savep = cp->startp;
6599		cp->host_status = HS_BUSY;
6600		cp->scsi_status = S_ILLEGAL;
6601
6602		ncr_put_start_queue(np, cp);
6603		if (disc_cnt)
6604			INB (nc_ctest2);		/* Clear SIGP */
6605		OUTL_DSP (NCB_SCRIPT_PHYS (np, reselect));
6606		return;
6607	case S_TERMINATED:
6608	case S_CHECK_COND:
6609		/*
6610		**	If we were requesting sense, give up.
6611		*/
6612		if (cp->auto_sense)
6613			goto out;
6614
6615		/*
6616		**	Device returned CHECK CONDITION status.
6617		**	Prepare all needed data strutures for getting
6618		**	sense data.
6619		**
6620		**	identify message
6621		*/
6622		cp->scsi_smsg2[0]	= IDENTIFY(0, cmd->device->lun);
6623		cp->phys.smsg.addr	= cpu_to_scr(CCB_PHYS (cp, scsi_smsg2));
6624		cp->phys.smsg.size	= cpu_to_scr(1);
6625
6626		/*
6627		**	sense command
6628		*/
6629		cp->phys.cmd.addr	= cpu_to_scr(CCB_PHYS (cp, sensecmd));
6630		cp->phys.cmd.size	= cpu_to_scr(6);
6631
6632		/*
6633		**	patch requested size into sense command
6634		*/
6635		cp->sensecmd[0]		= 0x03;
6636		cp->sensecmd[1]		= (cmd->device->lun & 0x7) << 5;
6637		cp->sensecmd[4]		= sizeof(cp->sense_buf);
6638
6639		/*
6640		**	sense data
6641		*/
6642		memset(cp->sense_buf, 0, sizeof(cp->sense_buf));
6643		cp->phys.sense.addr	= cpu_to_scr(CCB_PHYS(cp,sense_buf[0]));
6644		cp->phys.sense.size	= cpu_to_scr(sizeof(cp->sense_buf));
6645
6646		/*
6647		**	requeue the command.
6648		*/
6649		startp = cpu_to_scr(NCB_SCRIPTH_PHYS (np, sdata_in));
6650
6651		cp->phys.header.savep	= startp;
6652		cp->phys.header.goalp	= startp + 24;
6653		cp->phys.header.lastp	= startp;
6654		cp->phys.header.wgoalp	= startp + 24;
6655		cp->phys.header.wlastp	= startp;
6656
6657		cp->host_status = HS_BUSY;
6658		cp->scsi_status = S_ILLEGAL;
6659		cp->auto_sense	= s_status;
6660
6661		cp->start.schedule.l_paddr =
6662			cpu_to_scr(NCB_SCRIPT_PHYS (np, select));
6663
6664		/*
6665		**	Select without ATN for quirky devices.
6666		*/
6667		if (cmd->device->select_no_atn)
6668			cp->start.schedule.l_paddr =
6669			cpu_to_scr(NCB_SCRIPTH_PHYS (np, select_no_atn));
6670
6671		ncr_put_start_queue(np, cp);
6672
6673		OUTL_DSP (NCB_SCRIPT_PHYS (np, start));
6674		return;
6675	}
6676
6677out:
6678	OUTONB_STD ();
6679	return;
6680}
6681
6682
6683/*==========================================================
6684**
6685**
6686**      ncr chip exception handler for programmed interrupts.
6687**
6688**
6689**==========================================================
6690*/
6691
6692void ncr_int_sir (struct ncb *np)
6693{
6694	u_char scntl3;
6695	u_char chg, ofs, per, fak, wide;
6696	u_char num = INB (nc_dsps);
6697	struct ccb *cp=NULL;
6698	u_long	dsa    = INL (nc_dsa);
6699	u_char	target = INB (nc_sdid) & 0x0f;
6700	struct tcb *tp     = &np->target[target];
6701	struct scsi_target *starget = tp->starget;
6702
6703	if (DEBUG_FLAGS & DEBUG_TINY) printk ("I#%d", num);
6704
6705	switch (num) {
6706	case SIR_INTFLY:
6707		/*
6708		**	This is used for HP Zalon/53c720 where INTFLY
6709		**	operation is currently broken.
6710		*/
6711		ncr_wakeup_done(np);
6712#ifdef SCSI_NCR_CCB_DONE_SUPPORT
6713		OUTL(nc_dsp, NCB_SCRIPT_PHYS (np, done_end) + 8);
6714#else
6715		OUTL(nc_dsp, NCB_SCRIPT_PHYS (np, start));
6716#endif
6717		return;
6718	case SIR_RESEL_NO_MSG_IN:
6719	case SIR_RESEL_NO_IDENTIFY:
6720		/*
6721		**	If devices reselecting without sending an IDENTIFY
6722		**	message still exist, this should help.
6723		**	We just assume lun=0, 1 CCB, no tag.
6724		*/
6725		if (tp->lp[0]) {
6726			OUTL_DSP (scr_to_cpu(tp->lp[0]->jump_ccb[0]));
6727			return;
6728		}
6729	case SIR_RESEL_BAD_TARGET:	/* Will send a TARGET RESET message */
6730	case SIR_RESEL_BAD_LUN:		/* Will send a TARGET RESET message */
6731	case SIR_RESEL_BAD_I_T_L_Q:	/* Will send an ABORT TAG message   */
6732	case SIR_RESEL_BAD_I_T_L:	/* Will send an ABORT message	    */
6733		printk ("%s:%d: SIR %d, "
6734			"incorrect nexus identification on reselection\n",
6735			ncr_name (np), target, num);
6736		goto out;
6737	case SIR_DONE_OVERFLOW:
6738		printk ("%s:%d: SIR %d, "
6739			"CCB done queue overflow\n",
6740			ncr_name (np), target, num);
6741		goto out;
6742	case SIR_BAD_STATUS:
6743		cp = np->header.cp;
6744		if (!cp || CCB_PHYS (cp, phys) != dsa)
6745			goto out;
6746		ncr_sir_to_redo(np, num, cp);
6747		return;
6748	default:
6749		/*
6750		**	lookup the ccb
6751		*/
6752		cp = np->ccb;
6753		while (cp && (CCB_PHYS (cp, phys) != dsa))
6754			cp = cp->link_ccb;
6755
6756		BUG_ON(!cp);
6757		BUG_ON(cp != np->header.cp);
6758
6759		if (!cp || cp != np->header.cp)
6760			goto out;
6761	}
6762
6763	switch (num) {
6764/*-----------------------------------------------------------------------------
6765**
6766**	Was Sie schon immer ueber transfermode negotiation wissen wollten ...
6767**	("Everything you've always wanted to know about transfer mode
6768**	  negotiation")
6769**
6770**	We try to negotiate sync and wide transfer only after
6771**	a successful inquire command. We look at byte 7 of the
6772**	inquire data to determine the capabilities of the target.
6773**
6774**	When we try to negotiate, we append the negotiation message
6775**	to the identify and (maybe) simple tag message.
6776**	The host status field is set to HS_NEGOTIATE to mark this
6777**	situation.
6778**
6779**	If the target doesn't answer this message immediately
6780**	(as required by the standard), the SIR_NEGO_FAIL interrupt
6781**	will be raised eventually.
6782**	The handler removes the HS_NEGOTIATE status, and sets the
6783**	negotiated value to the default (async / nowide).
6784**
6785**	If we receive a matching answer immediately, we check it
6786**	for validity, and set the values.
6787**
6788**	If we receive a Reject message immediately, we assume the
6789**	negotiation has failed, and fall back to standard values.
6790**
6791**	If we receive a negotiation message while not in HS_NEGOTIATE
6792**	state, it's a target initiated negotiation. We prepare a
6793**	(hopefully) valid answer, set our parameters, and send back
6794**	this answer to the target.
6795**
6796**	If the target doesn't fetch the answer (no message out phase),
6797**	we assume the negotiation has failed, and fall back to default
6798**	settings.
6799**
6800**	When we set the values, we adjust them in all ccbs belonging
6801**	to this target, in the controller's register, and in the "phys"
6802**	field of the controller's struct ncb.
6803**
6804**	Possible cases:		   hs  sir   msg_in value  send   goto
6805**	We try to negotiate:
6806**	-> target doesn't msgin    NEG FAIL  noop   defa.  -      dispatch
6807**	-> target rejected our msg NEG FAIL  reject defa.  -      dispatch
6808**	-> target answered  (ok)   NEG SYNC  sdtr   set    -      clrack
6809**	-> target answered (!ok)   NEG SYNC  sdtr   defa.  REJ--->msg_bad
6810**	-> target answered  (ok)   NEG WIDE  wdtr   set    -      clrack
6811**	-> target answered (!ok)   NEG WIDE  wdtr   defa.  REJ--->msg_bad
6812**	-> any other msgin	   NEG FAIL  noop   defa.  -      dispatch
6813**
6814**	Target tries to negotiate:
6815**	-> incoming message	   --- SYNC  sdtr   set    SDTR   -
6816**	-> incoming message	   --- WIDE  wdtr   set    WDTR   -
6817**      We sent our answer:
6818**	-> target doesn't msgout   --- PROTO ?      defa.  -      dispatch
6819**
6820**-----------------------------------------------------------------------------
6821*/
6822
6823	case SIR_NEGO_FAILED:
6824		/*-------------------------------------------------------
6825		**
6826		**	Negotiation failed.
6827		**	Target doesn't send an answer message,
6828		**	or target rejected our message.
6829		**
6830		**      Remove negotiation request.
6831		**
6832		**-------------------------------------------------------
6833		*/
6834		OUTB (HS_PRT, HS_BUSY);
6835
6836		/* fall through */
6837
6838	case SIR_NEGO_PROTO:
6839		/*-------------------------------------------------------
6840		**
6841		**	Negotiation failed.
6842		**	Target doesn't fetch the answer message.
6843		**
6844		**-------------------------------------------------------
6845		*/
6846
6847		if (DEBUG_FLAGS & DEBUG_NEGO) {
6848			PRINT_ADDR(cp->cmd, "negotiation failed sir=%x "
6849					"status=%x.\n", num, cp->nego_status);
6850		}
6851
6852		/*
6853		**	any error in negotiation:
6854		**	fall back to default mode.
6855		*/
6856		switch (cp->nego_status) {
6857
6858		case NS_SYNC:
6859			spi_period(starget) = 0;
6860			spi_offset(starget) = 0;
6861			ncr_setsync (np, cp, 0, 0xe0);
6862			break;
6863
6864		case NS_WIDE:
6865			spi_width(starget) = 0;
6866			ncr_setwide (np, cp, 0, 0);
6867			break;
6868
6869		}
6870		np->msgin [0] = NOP;
6871		np->msgout[0] = NOP;
6872		cp->nego_status = 0;
6873		break;
6874
6875	case SIR_NEGO_SYNC:
6876		if (DEBUG_FLAGS & DEBUG_NEGO) {
6877			ncr_print_msg(cp, "sync msgin", np->msgin);
6878		}
6879
6880		chg = 0;
6881		per = np->msgin[3];
6882		ofs = np->msgin[4];
6883		if (ofs==0) per=255;
6884
6885		/*
6886		**      if target sends SDTR message,
6887		**	      it CAN transfer synch.
6888		*/
6889
6890		if (ofs && starget)
6891			spi_support_sync(starget) = 1;
6892
6893		/*
6894		**	check values against driver limits.
6895		*/
6896
6897		if (per < np->minsync)
6898			{chg = 1; per = np->minsync;}
6899		if (per < tp->minsync)
6900			{chg = 1; per = tp->minsync;}
6901		if (ofs > tp->maxoffs)
6902			{chg = 1; ofs = tp->maxoffs;}
6903
6904		/*
6905		**	Check against controller limits.
6906		*/
6907		fak	= 7;
6908		scntl3	= 0;
6909		if (ofs != 0) {
6910			ncr_getsync(np, per, &fak, &scntl3);
6911			if (fak > 7) {
6912				chg = 1;
6913				ofs = 0;
6914			}
6915		}
6916		if (ofs == 0) {
6917			fak	= 7;
6918			per	= 0;
6919			scntl3	= 0;
6920			tp->minsync = 0;
6921		}
6922
6923		if (DEBUG_FLAGS & DEBUG_NEGO) {
6924			PRINT_ADDR(cp->cmd, "sync: per=%d scntl3=0x%x ofs=%d "
6925				"fak=%d chg=%d.\n", per, scntl3, ofs, fak, chg);
6926		}
6927
6928		if (INB (HS_PRT) == HS_NEGOTIATE) {
6929			OUTB (HS_PRT, HS_BUSY);
6930			switch (cp->nego_status) {
6931
6932			case NS_SYNC:
6933				/* This was an answer message */
6934				if (chg) {
6935					/* Answer wasn't acceptable.  */
6936					spi_period(starget) = 0;
6937					spi_offset(starget) = 0;
6938					ncr_setsync(np, cp, 0, 0xe0);
6939					OUTL_DSP(NCB_SCRIPT_PHYS (np, msg_bad));
6940				} else {
6941					/* Answer is ok.  */
6942					spi_period(starget) = per;
6943					spi_offset(starget) = ofs;
6944					ncr_setsync(np, cp, scntl3, (fak<<5)|ofs);
6945					OUTL_DSP(NCB_SCRIPT_PHYS (np, clrack));
6946				}
6947				return;
6948
6949			case NS_WIDE:
6950				spi_width(starget) = 0;
6951				ncr_setwide(np, cp, 0, 0);
6952				break;
6953			}
6954		}
6955
6956		/*
6957		**	It was a request. Set value and
6958		**      prepare an answer message
6959		*/
6960
6961		spi_period(starget) = per;
6962		spi_offset(starget) = ofs;
6963		ncr_setsync(np, cp, scntl3, (fak<<5)|ofs);
6964
6965		spi_populate_sync_msg(np->msgout, per, ofs);
6966		cp->nego_status = NS_SYNC;
6967
6968		if (DEBUG_FLAGS & DEBUG_NEGO) {
6969			ncr_print_msg(cp, "sync msgout", np->msgout);
6970		}
6971
6972		if (!ofs) {
6973			OUTL_DSP (NCB_SCRIPT_PHYS (np, msg_bad));
6974			return;
6975		}
6976		np->msgin [0] = NOP;
6977
6978		break;
6979
6980	case SIR_NEGO_WIDE:
6981		/*
6982		**	Wide request message received.
6983		*/
6984		if (DEBUG_FLAGS & DEBUG_NEGO) {
6985			ncr_print_msg(cp, "wide msgin", np->msgin);
6986		}
6987
6988		/*
6989		**	get requested values.
6990		*/
6991
6992		chg  = 0;
6993		wide = np->msgin[3];
6994
6995		/*
6996		**      if target sends WDTR message,
6997		**	      it CAN transfer wide.
6998		*/
6999
7000		if (wide && starget)
7001			spi_support_wide(starget) = 1;
7002
7003		/*
7004		**	check values against driver limits.
7005		*/
7006
7007		if (wide > tp->usrwide)
7008			{chg = 1; wide = tp->usrwide;}
7009
7010		if (DEBUG_FLAGS & DEBUG_NEGO) {
7011			PRINT_ADDR(cp->cmd, "wide: wide=%d chg=%d.\n", wide,
7012					chg);
7013		}
7014
7015		if (INB (HS_PRT) == HS_NEGOTIATE) {
7016			OUTB (HS_PRT, HS_BUSY);
7017			switch (cp->nego_status) {
7018
7019			case NS_WIDE:
7020				/*
7021				**      This was an answer message
7022				*/
7023				if (chg) {
7024					/* Answer wasn't acceptable.  */
7025					spi_width(starget) = 0;
7026					ncr_setwide(np, cp, 0, 1);
7027					OUTL_DSP (NCB_SCRIPT_PHYS (np, msg_bad));
7028				} else {
7029					/* Answer is ok.  */
7030					spi_width(starget) = wide;
7031					ncr_setwide(np, cp, wide, 1);
7032					OUTL_DSP (NCB_SCRIPT_PHYS (np, clrack));
7033				}
7034				return;
7035
7036			case NS_SYNC:
7037				spi_period(starget) = 0;
7038				spi_offset(starget) = 0;
7039				ncr_setsync(np, cp, 0, 0xe0);
7040				break;
7041			}
7042		}
7043
7044		/*
7045		**	It was a request, set value and
7046		**      prepare an answer message
7047		*/
7048
7049		spi_width(starget) = wide;
7050		ncr_setwide(np, cp, wide, 1);
7051		spi_populate_width_msg(np->msgout, wide);
7052
7053		np->msgin [0] = NOP;
7054
7055		cp->nego_status = NS_WIDE;
7056
7057		if (DEBUG_FLAGS & DEBUG_NEGO) {
7058			ncr_print_msg(cp, "wide msgout", np->msgin);
7059		}
7060		break;
7061
7062/*--------------------------------------------------------------------
7063**
7064**	Processing of special messages
7065**
7066**--------------------------------------------------------------------
7067*/
7068
7069	case SIR_REJECT_RECEIVED:
7070		/*-----------------------------------------------
7071		**
7072		**	We received a MESSAGE_REJECT.
7073		**
7074		**-----------------------------------------------
7075		*/
7076
7077		PRINT_ADDR(cp->cmd, "MESSAGE_REJECT received (%x:%x).\n",
7078			(unsigned)scr_to_cpu(np->lastmsg), np->msgout[0]);
7079		break;
7080
7081	case SIR_REJECT_SENT:
7082		/*-----------------------------------------------
7083		**
7084		**	We received an unknown message
7085		**
7086		**-----------------------------------------------
7087		*/
7088
7089		ncr_print_msg(cp, "MESSAGE_REJECT sent for", np->msgin);
7090		break;
7091
7092/*--------------------------------------------------------------------
7093**
7094**	Processing of special messages
7095**
7096**--------------------------------------------------------------------
7097*/
7098
7099	case SIR_IGN_RESIDUE:
7100		/*-----------------------------------------------
7101		**
7102		**	We received an IGNORE RESIDUE message,
7103		**	which couldn't be handled by the script.
7104		**
7105		**-----------------------------------------------
7106		*/
7107
7108		PRINT_ADDR(cp->cmd, "IGNORE_WIDE_RESIDUE received, but not yet "
7109				"implemented.\n");
7110		break;
7111#if 0
7112	case SIR_MISSING_SAVE:
7113		/*-----------------------------------------------
7114		**
7115		**	We received an DISCONNECT message,
7116		**	but the datapointer wasn't saved before.
7117		**
7118		**-----------------------------------------------
7119		*/
7120
7121		PRINT_ADDR(cp->cmd, "DISCONNECT received, but datapointer "
7122				"not saved: data=%x save=%x goal=%x.\n",
7123			(unsigned) INL (nc_temp),
7124			(unsigned) scr_to_cpu(np->header.savep),
7125			(unsigned) scr_to_cpu(np->header.goalp));
7126		break;
7127#endif
7128	}
7129
7130out:
7131	OUTONB_STD ();
7132}
7133
7134/*==========================================================
7135**
7136**
7137**	Acquire a control block
7138**
7139**
7140**==========================================================
7141*/
7142
7143static struct ccb *ncr_get_ccb(struct ncb *np, struct scsi_cmnd *cmd)
7144{
7145	u_char tn = cmd->device->id;
7146	u_char ln = cmd->device->lun;
7147	struct tcb *tp = &np->target[tn];
7148	struct lcb *lp = tp->lp[ln];
7149	u_char tag = NO_TAG;
7150	struct ccb *cp = NULL;
7151
7152	/*
7153	**	Lun structure available ?
7154	*/
7155	if (lp) {
7156		struct list_head *qp;
7157		/*
7158		**	Keep from using more tags than we can handle.
7159		*/
7160		if (lp->usetags && lp->busyccbs >= lp->maxnxs)
7161			return NULL;
7162
7163		/*
7164		**	Allocate a new CCB if needed.
7165		*/
7166		if (list_empty(&lp->free_ccbq))
7167			ncr_alloc_ccb(np, tn, ln);
7168
7169		/*
7170		**	Look for free CCB
7171		*/
7172		qp = ncr_list_pop(&lp->free_ccbq);
7173		if (qp) {
7174			cp = list_entry(qp, struct ccb, link_ccbq);
7175			if (cp->magic) {
7176				PRINT_ADDR(cmd, "ccb free list corrupted "
7177						"(@%p)\n", cp);
7178				cp = NULL;
7179			} else {
7180				list_add_tail(qp, &lp->wait_ccbq);
7181				++lp->busyccbs;
7182			}
7183		}
7184
7185		/*
7186		**	If a CCB is available,
7187		**	Get a tag for this nexus if required.
7188		*/
7189		if (cp) {
7190			if (lp->usetags)
7191				tag = lp->cb_tags[lp->ia_tag];
7192		}
7193		else if (lp->actccbs > 0)
7194			return NULL;
7195	}
7196
7197	/*
7198	**	if nothing available, take the default.
7199	*/
7200	if (!cp)
7201		cp = np->ccb;
7202
7203	/*
7204	**	Wait until available.
7205	*/
7206#if 0
7207	while (cp->magic) {
7208		if (flags & SCSI_NOSLEEP) break;
7209		if (tsleep ((caddr_t)cp, PRIBIO|PCATCH, "ncr", 0))
7210			break;
7211	}
7212#endif
7213
7214	if (cp->magic)
7215		return NULL;
7216
7217	cp->magic = 1;
7218
7219	/*
7220	**	Move to next available tag if tag used.
7221	*/
7222	if (lp) {
7223		if (tag != NO_TAG) {
7224			++lp->ia_tag;
7225			if (lp->ia_tag == MAX_TAGS)
7226				lp->ia_tag = 0;
7227			lp->tags_umap |= (((tagmap_t) 1) << tag);
7228		}
7229	}
7230
7231	/*
7232	**	Remember all informations needed to free this CCB.
7233	*/
7234	cp->tag	   = tag;
7235	cp->target = tn;
7236	cp->lun    = ln;
7237
7238	if (DEBUG_FLAGS & DEBUG_TAGS) {
7239		PRINT_ADDR(cmd, "ccb @%p using tag %d.\n", cp, tag);
7240	}
7241
7242	return cp;
7243}
7244
7245/*==========================================================
7246**
7247**
7248**	Release one control block
7249**
7250**
7251**==========================================================
7252*/
7253
7254static void ncr_free_ccb (struct ncb *np, struct ccb *cp)
7255{
7256	struct tcb *tp = &np->target[cp->target];
7257	struct lcb *lp = tp->lp[cp->lun];
7258
7259	if (DEBUG_FLAGS & DEBUG_TAGS) {
7260		PRINT_ADDR(cp->cmd, "ccb @%p freeing tag %d.\n", cp, cp->tag);
7261	}
7262
7263	/*
7264	**	If lun control block available,
7265	**	decrement active commands and increment credit,
7266	**	free the tag if any and remove the JUMP for reselect.
7267	*/
7268	if (lp) {
7269		if (cp->tag != NO_TAG) {
7270			lp->cb_tags[lp->if_tag++] = cp->tag;
7271			if (lp->if_tag == MAX_TAGS)
7272				lp->if_tag = 0;
7273			lp->tags_umap &= ~(((tagmap_t) 1) << cp->tag);
7274			lp->tags_smap &= lp->tags_umap;
7275			lp->jump_ccb[cp->tag] =
7276				cpu_to_scr(NCB_SCRIPTH_PHYS(np, bad_i_t_l_q));
7277		} else {
7278			lp->jump_ccb[0] =
7279				cpu_to_scr(NCB_SCRIPTH_PHYS(np, bad_i_t_l));
7280		}
7281	}
7282
7283	/*
7284	**	Make this CCB available.
7285	*/
7286
7287	if (lp) {
7288		if (cp != np->ccb)
7289			list_move(&cp->link_ccbq, &lp->free_ccbq);
7290		--lp->busyccbs;
7291		if (cp->queued) {
7292			--lp->queuedccbs;
7293		}
7294	}
7295	cp -> host_status = HS_IDLE;
7296	cp -> magic = 0;
7297	if (cp->queued) {
7298		--np->queuedccbs;
7299		cp->queued = 0;
7300	}
7301
7302#if 0
7303	if (cp == np->ccb)
7304		wakeup ((caddr_t) cp);
7305#endif
7306}
7307
7308
7309#define ncr_reg_bus_addr(r) (np->paddr + offsetof (struct ncr_reg, r))
7310
7311/*------------------------------------------------------------------------
7312**	Initialize the fixed part of a CCB structure.
7313**------------------------------------------------------------------------
7314**------------------------------------------------------------------------
7315*/
7316static void ncr_init_ccb(struct ncb *np, struct ccb *cp)
7317{
7318	ncrcmd copy_4 = np->features & FE_PFEN ? SCR_COPY(4) : SCR_COPY_F(4);
7319
7320	/*
7321	**	Remember virtual and bus address of this ccb.
7322	*/
7323	cp->p_ccb 	   = vtobus(cp);
7324	cp->phys.header.cp = cp;
7325
7326	/*
7327	**	This allows list_del to work for the default ccb.
7328	*/
7329	INIT_LIST_HEAD(&cp->link_ccbq);
7330
7331	/*
7332	**	Initialyze the start and restart launch script.
7333	**
7334	**	COPY(4) @(...p_phys), @(dsa)
7335	**	JUMP @(sched_point)
7336	*/
7337	cp->start.setup_dsa[0]	 = cpu_to_scr(copy_4);
7338	cp->start.setup_dsa[1]	 = cpu_to_scr(CCB_PHYS(cp, start.p_phys));
7339	cp->start.setup_dsa[2]	 = cpu_to_scr(ncr_reg_bus_addr(nc_dsa));
7340	cp->start.schedule.l_cmd = cpu_to_scr(SCR_JUMP);
7341	cp->start.p_phys	 = cpu_to_scr(CCB_PHYS(cp, phys));
7342
7343	memcpy(&cp->restart, &cp->start, sizeof(cp->restart));
7344
7345	cp->start.schedule.l_paddr   = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle));
7346	cp->restart.schedule.l_paddr = cpu_to_scr(NCB_SCRIPTH_PHYS (np, abort));
7347}
7348
7349
7350/*------------------------------------------------------------------------
7351**	Allocate a CCB and initialize its fixed part.
7352**------------------------------------------------------------------------
7353**------------------------------------------------------------------------
7354*/
7355static void ncr_alloc_ccb(struct ncb *np, u_char tn, u_char ln)
7356{
7357	struct tcb *tp = &np->target[tn];
7358	struct lcb *lp = tp->lp[ln];
7359	struct ccb *cp = NULL;
7360
7361	/*
7362	**	Allocate memory for this CCB.
7363	*/
7364	cp = m_calloc_dma(sizeof(struct ccb), "CCB");
7365	if (!cp)
7366		return;
7367
7368	/*
7369	**	Count it and initialyze it.
7370	*/
7371	lp->actccbs++;
7372	np->actccbs++;
7373	memset(cp, 0, sizeof (*cp));
7374	ncr_init_ccb(np, cp);
7375
7376	/*
7377	**	Chain into wakeup list and free ccb queue and take it
7378	**	into account for tagged commands.
7379	*/
7380	cp->link_ccb      = np->ccb->link_ccb;
7381	np->ccb->link_ccb = cp;
7382
7383	list_add(&cp->link_ccbq, &lp->free_ccbq);
7384}
7385
7386/*==========================================================
7387**
7388**
7389**      Allocation of resources for Targets/Luns/Tags.
7390**
7391**
7392**==========================================================
7393*/
7394
7395
7396/*------------------------------------------------------------------------
7397**	Target control block initialisation.
7398**------------------------------------------------------------------------
7399**	This data structure is fully initialized after a SCSI command
7400**	has been successfully completed for this target.
7401**	It contains a SCRIPT that is called on target reselection.
7402**------------------------------------------------------------------------
7403*/
7404static void ncr_init_tcb (struct ncb *np, u_char tn)
7405{
7406	struct tcb *tp = &np->target[tn];
7407	ncrcmd copy_1 = np->features & FE_PFEN ? SCR_COPY(1) : SCR_COPY_F(1);
7408	int th = tn & 3;
7409	int i;
7410
7411	/*
7412	**	Jump to next tcb if SFBR does not match this target.
7413	**	JUMP  IF (SFBR != #target#), @(next tcb)
7414	*/
7415	tp->jump_tcb.l_cmd   =
7416		cpu_to_scr((SCR_JUMP ^ IFFALSE (DATA (0x80 + tn))));
7417	tp->jump_tcb.l_paddr = np->jump_tcb[th].l_paddr;
7418
7419	/*
7420	**	Load the synchronous transfer register.
7421	**	COPY @(tp->sval), @(sxfer)
7422	*/
7423	tp->getscr[0] =	cpu_to_scr(copy_1);
7424	tp->getscr[1] = cpu_to_scr(vtobus (&tp->sval));
7425#ifdef SCSI_NCR_BIG_ENDIAN
7426	tp->getscr[2] = cpu_to_scr(ncr_reg_bus_addr(nc_sxfer) ^ 3);
7427#else
7428	tp->getscr[2] = cpu_to_scr(ncr_reg_bus_addr(nc_sxfer));
7429#endif
7430
7431	/*
7432	**	Load the timing register.
7433	**	COPY @(tp->wval), @(scntl3)
7434	*/
7435	tp->getscr[3] =	cpu_to_scr(copy_1);
7436	tp->getscr[4] = cpu_to_scr(vtobus (&tp->wval));
7437#ifdef SCSI_NCR_BIG_ENDIAN
7438	tp->getscr[5] = cpu_to_scr(ncr_reg_bus_addr(nc_scntl3) ^ 3);
7439#else
7440	tp->getscr[5] = cpu_to_scr(ncr_reg_bus_addr(nc_scntl3));
7441#endif
7442
7443	/*
7444	**	Get the IDENTIFY message and the lun.
7445	**	CALL @script(resel_lun)
7446	*/
7447	tp->call_lun.l_cmd   = cpu_to_scr(SCR_CALL);
7448	tp->call_lun.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_lun));
7449
7450	/*
7451	**	Look for the lun control block of this nexus.
7452	**	For i = 0 to 3
7453	**		JUMP ^ IFTRUE (MASK (i, 3)), @(next_lcb)
7454	*/
7455	for (i = 0 ; i < 4 ; i++) {
7456		tp->jump_lcb[i].l_cmd   =
7457				cpu_to_scr((SCR_JUMP ^ IFTRUE (MASK (i, 3))));
7458		tp->jump_lcb[i].l_paddr =
7459				cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_identify));
7460	}
7461
7462	/*
7463	**	Link this target control block to the JUMP chain.
7464	*/
7465	np->jump_tcb[th].l_paddr = cpu_to_scr(vtobus (&tp->jump_tcb));
7466
7467	/*
7468	**	These assert's should be moved at driver initialisations.
7469	*/
7470#ifdef SCSI_NCR_BIG_ENDIAN
7471	BUG_ON(((offsetof(struct ncr_reg, nc_sxfer) ^
7472		 offsetof(struct tcb    , sval    )) &3) != 3);
7473	BUG_ON(((offsetof(struct ncr_reg, nc_scntl3) ^
7474		 offsetof(struct tcb    , wval    )) &3) != 3);
7475#else
7476	BUG_ON(((offsetof(struct ncr_reg, nc_sxfer) ^
7477		 offsetof(struct tcb    , sval    )) &3) != 0);
7478	BUG_ON(((offsetof(struct ncr_reg, nc_scntl3) ^
7479		 offsetof(struct tcb    , wval    )) &3) != 0);
7480#endif
7481}
7482
7483
7484/*------------------------------------------------------------------------
7485**	Lun control block allocation and initialization.
7486**------------------------------------------------------------------------
7487**	This data structure is allocated and initialized after a SCSI
7488**	command has been successfully completed for this target/lun.
7489**------------------------------------------------------------------------
7490*/
7491static struct lcb *ncr_alloc_lcb (struct ncb *np, u_char tn, u_char ln)
7492{
7493	struct tcb *tp = &np->target[tn];
7494	struct lcb *lp = tp->lp[ln];
7495	ncrcmd copy_4 = np->features & FE_PFEN ? SCR_COPY(4) : SCR_COPY_F(4);
7496	int lh = ln & 3;
7497
7498	/*
7499	**	Already done, return.
7500	*/
7501	if (lp)
7502		return lp;
7503
7504	/*
7505	**	Allocate the lcb.
7506	*/
7507	lp = m_calloc_dma(sizeof(struct lcb), "LCB");
7508	if (!lp)
7509		goto fail;
7510	memset(lp, 0, sizeof(*lp));
7511	tp->lp[ln] = lp;
7512
7513	/*
7514	**	Initialize the target control block if not yet.
7515	*/
7516	if (!tp->jump_tcb.l_cmd)
7517		ncr_init_tcb(np, tn);
7518
7519	/*
7520	**	Initialize the CCB queue headers.
7521	*/
7522	INIT_LIST_HEAD(&lp->free_ccbq);
7523	INIT_LIST_HEAD(&lp->busy_ccbq);
7524	INIT_LIST_HEAD(&lp->wait_ccbq);
7525	INIT_LIST_HEAD(&lp->skip_ccbq);
7526
7527	/*
7528	**	Set max CCBs to 1 and use the default 1 entry
7529	**	jump table by default.
7530	*/
7531	lp->maxnxs	= 1;
7532	lp->jump_ccb	= &lp->jump_ccb_0;
7533	lp->p_jump_ccb	= cpu_to_scr(vtobus(lp->jump_ccb));
7534
7535	/*
7536	**	Initilialyze the reselect script:
7537	**
7538	**	Jump to next lcb if SFBR does not match this lun.
7539	**	Load TEMP with the CCB direct jump table bus address.
7540	**	Get the SIMPLE TAG message and the tag.
7541	**
7542	**	JUMP  IF (SFBR != #lun#), @(next lcb)
7543	**	COPY @(lp->p_jump_ccb),	  @(temp)
7544	**	JUMP @script(resel_notag)
7545	*/
7546	lp->jump_lcb.l_cmd   =
7547		cpu_to_scr((SCR_JUMP ^ IFFALSE (MASK (0x80+ln, 0xff))));
7548	lp->jump_lcb.l_paddr = tp->jump_lcb[lh].l_paddr;
7549
7550	lp->load_jump_ccb[0] = cpu_to_scr(copy_4);
7551	lp->load_jump_ccb[1] = cpu_to_scr(vtobus (&lp->p_jump_ccb));
7552	lp->load_jump_ccb[2] = cpu_to_scr(ncr_reg_bus_addr(nc_temp));
7553
7554	lp->jump_tag.l_cmd   = cpu_to_scr(SCR_JUMP);
7555	lp->jump_tag.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_notag));
7556
7557	/*
7558	**	Link this lun control block to the JUMP chain.
7559	*/
7560	tp->jump_lcb[lh].l_paddr = cpu_to_scr(vtobus (&lp->jump_lcb));
7561
7562	/*
7563	**	Initialize command queuing control.
7564	*/
7565	lp->busyccbs	= 1;
7566	lp->queuedccbs	= 1;
7567	lp->queuedepth	= 1;
7568fail:
7569	return lp;
7570}
7571
7572
7573/*------------------------------------------------------------------------
7574**	Lun control block setup on INQUIRY data received.
7575**------------------------------------------------------------------------
7576**	We only support WIDE, SYNC for targets and CMDQ for logical units.
7577**	This setup is done on each INQUIRY since we are expecting user
7578**	will play with CHANGE DEFINITION commands. :-)
7579**------------------------------------------------------------------------
7580*/
7581static struct lcb *ncr_setup_lcb (struct ncb *np, struct scsi_device *sdev)
7582{
7583	unsigned char tn = sdev->id, ln = sdev->lun;
7584	struct tcb *tp = &np->target[tn];
7585	struct lcb *lp = tp->lp[ln];
7586
7587	/* If no lcb, try to allocate it.  */
7588	if (!lp && !(lp = ncr_alloc_lcb(np, tn, ln)))
7589		goto fail;
7590
7591	/*
7592	**	If unit supports tagged commands, allocate the
7593	**	CCB JUMP table if not yet.
7594	*/
7595	if (sdev->tagged_supported && lp->jump_ccb == &lp->jump_ccb_0) {
7596		int i;
7597		lp->jump_ccb = m_calloc_dma(256, "JUMP_CCB");
7598		if (!lp->jump_ccb) {
7599			lp->jump_ccb = &lp->jump_ccb_0;
7600			goto fail;
7601		}
7602		lp->p_jump_ccb = cpu_to_scr(vtobus(lp->jump_ccb));
7603		for (i = 0 ; i < 64 ; i++)
7604			lp->jump_ccb[i] =
7605				cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_i_t_l_q));
7606		for (i = 0 ; i < MAX_TAGS ; i++)
7607			lp->cb_tags[i] = i;
7608		lp->maxnxs = MAX_TAGS;
7609		lp->tags_stime = jiffies + 3*HZ;
7610		ncr_setup_tags (np, sdev);
7611	}
7612
7613
7614fail:
7615	return lp;
7616}
7617
7618/*==========================================================
7619**
7620**
7621**	Build Scatter Gather Block
7622**
7623**
7624**==========================================================
7625**
7626**	The transfer area may be scattered among
7627**	several non adjacent physical pages.
7628**
7629**	We may use MAX_SCATTER blocks.
7630**
7631**----------------------------------------------------------
7632*/
7633
7634/*
7635**	We try to reduce the number of interrupts caused
7636**	by unexpected phase changes due to disconnects.
7637**	A typical harddisk may disconnect before ANY block.
7638**	If we wanted to avoid unexpected phase changes at all
7639**	we had to use a break point every 512 bytes.
7640**	Of course the number of scatter/gather blocks is
7641**	limited.
7642**	Under Linux, the scatter/gatter blocks are provided by
7643**	the generic driver. We just have to copy addresses and
7644**	sizes to the data segment array.
7645*/
7646
7647static int ncr_scatter(struct ncb *np, struct ccb *cp, struct scsi_cmnd *cmd)
7648{
7649	int segment	= 0;
7650	int use_sg	= scsi_sg_count(cmd);
7651
7652	cp->data_len	= 0;
7653
7654	use_sg = map_scsi_sg_data(np, cmd);
7655	if (use_sg > 0) {
7656		struct scatterlist *sg;
7657		struct scr_tblmove *data;
7658
7659		if (use_sg > MAX_SCATTER) {
7660			unmap_scsi_data(np, cmd);
7661			return -1;
7662		}
7663
7664		data = &cp->phys.data[MAX_SCATTER - use_sg];
7665
7666		scsi_for_each_sg(cmd, sg, use_sg, segment) {
7667			dma_addr_t baddr = sg_dma_address(sg);
7668			unsigned int len = sg_dma_len(sg);
7669
7670			ncr_build_sge(np, &data[segment], baddr, len);
7671			cp->data_len += len;
7672		}
7673	} else
7674		segment = -2;
7675
7676	return segment;
7677}
7678
7679/*==========================================================
7680**
7681**
7682**	Test the bus snoop logic :-(
7683**
7684**	Has to be called with interrupts disabled.
7685**
7686**
7687**==========================================================
7688*/
7689
7690static int __init ncr_regtest (struct ncb* np)
7691{
7692	register volatile u32 data;
7693	/*
7694	**	ncr registers may NOT be cached.
7695	**	write 0xffffffff to a read only register area,
7696	**	and try to read it back.
7697	*/
7698	data = 0xffffffff;
7699	OUTL_OFF(offsetof(struct ncr_reg, nc_dstat), data);
7700	data = INL_OFF(offsetof(struct ncr_reg, nc_dstat));
7701#if 1
7702	if (data == 0xffffffff) {
7703#else
7704	if ((data & 0xe2f0fffd) != 0x02000080) {
7705#endif
7706		printk ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
7707			(unsigned) data);
7708		return (0x10);
7709	}
7710	return (0);
7711}
7712
7713static int __init ncr_snooptest (struct ncb* np)
7714{
7715	u32	ncr_rd, ncr_wr, ncr_bk, host_rd, host_wr, pc;
7716	int	i, err=0;
7717	if (np->reg) {
7718		err |= ncr_regtest (np);
7719		if (err)
7720			return (err);
7721	}
7722
7723	/* init */
7724	pc  = NCB_SCRIPTH_PHYS (np, snooptest);
7725	host_wr = 1;
7726	ncr_wr  = 2;
7727	/*
7728	**	Set memory and register.
7729	*/
7730	np->ncr_cache = cpu_to_scr(host_wr);
7731	OUTL (nc_temp, ncr_wr);
7732	/*
7733	**	Start script (exchange values)
7734	*/
7735	OUTL_DSP (pc);
7736	/*
7737	**	Wait 'til done (with timeout)
7738	*/
7739	for (i=0; i<NCR_SNOOP_TIMEOUT; i++)
7740		if (INB(nc_istat) & (INTF|SIP|DIP))
7741			break;
7742	/*
7743	**	Save termination position.
7744	*/
7745	pc = INL (nc_dsp);
7746	/*
7747	**	Read memory and register.
7748	*/
7749	host_rd = scr_to_cpu(np->ncr_cache);
7750	ncr_rd  = INL (nc_scratcha);
7751	ncr_bk  = INL (nc_temp);
7752	/*
7753	**	Reset ncr chip
7754	*/
7755	ncr_chip_reset(np, 100);
7756	/*
7757	**	check for timeout
7758	*/
7759	if (i>=NCR_SNOOP_TIMEOUT) {
7760		printk ("CACHE TEST FAILED: timeout.\n");
7761		return (0x20);
7762	}
7763	/*
7764	**	Check termination position.
7765	*/
7766	if (pc != NCB_SCRIPTH_PHYS (np, snoopend)+8) {
7767		printk ("CACHE TEST FAILED: script execution failed.\n");
7768		printk ("start=%08lx, pc=%08lx, end=%08lx\n",
7769			(u_long) NCB_SCRIPTH_PHYS (np, snooptest), (u_long) pc,
7770			(u_long) NCB_SCRIPTH_PHYS (np, snoopend) +8);
7771		return (0x40);
7772	}
7773	/*
7774	**	Show results.
7775	*/
7776	if (host_wr != ncr_rd) {
7777		printk ("CACHE TEST FAILED: host wrote %d, ncr read %d.\n",
7778			(int) host_wr, (int) ncr_rd);
7779		err |= 1;
7780	}
7781	if (host_rd != ncr_wr) {
7782		printk ("CACHE TEST FAILED: ncr wrote %d, host read %d.\n",
7783			(int) ncr_wr, (int) host_rd);
7784		err |= 2;
7785	}
7786	if (ncr_bk != ncr_wr) {
7787		printk ("CACHE TEST FAILED: ncr wrote %d, read back %d.\n",
7788			(int) ncr_wr, (int) ncr_bk);
7789		err |= 4;
7790	}
7791	return (err);
7792}
7793
7794/*==========================================================
7795**
7796**	Determine the ncr's clock frequency.
7797**	This is essential for the negotiation
7798**	of the synchronous transfer rate.
7799**
7800**==========================================================
7801**
7802**	Note: we have to return the correct value.
7803**	THERE IS NO SAFE DEFAULT VALUE.
7804**
7805**	Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
7806**	53C860 and 53C875 rev. 1 support fast20 transfers but
7807**	do not have a clock doubler and so are provided with a
7808**	80 MHz clock. All other fast20 boards incorporate a doubler
7809**	and so should be delivered with a 40 MHz clock.
7810**	The future fast40 chips (895/895) use a 40 Mhz base clock
7811**	and provide a clock quadrupler (160 Mhz). The code below
7812**	tries to deal as cleverly as possible with all this stuff.
7813**
7814**----------------------------------------------------------
7815*/
7816
7817/*
7818 *	Select NCR SCSI clock frequency
7819 */
7820static void ncr_selectclock(struct ncb *np, u_char scntl3)
7821{
7822	if (np->multiplier < 2) {
7823		OUTB(nc_scntl3,	scntl3);
7824		return;
7825	}
7826
7827	if (bootverbose >= 2)
7828		printk ("%s: enabling clock multiplier\n", ncr_name(np));
7829
7830	OUTB(nc_stest1, DBLEN);	   /* Enable clock multiplier		  */
7831	if (np->multiplier > 2) {  /* Poll bit 5 of stest4 for quadrupler */
7832		int i = 20;
7833		while (!(INB(nc_stest4) & LCKFRQ) && --i > 0)
7834			udelay(20);
7835		if (!i)
7836			printk("%s: the chip cannot lock the frequency\n", ncr_name(np));
7837	} else			/* Wait 20 micro-seconds for doubler	*/
7838		udelay(20);
7839	OUTB(nc_stest3, HSC);		/* Halt the scsi clock		*/
7840	OUTB(nc_scntl3,	scntl3);
7841	OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier	*/
7842	OUTB(nc_stest3, 0x00);		/* Restart scsi clock 		*/
7843}
7844
7845
7846/*
7847 *	calculate NCR SCSI clock frequency (in KHz)
7848 */
7849static unsigned __init ncrgetfreq (struct ncb *np, int gen)
7850{
7851	unsigned ms = 0;
7852	char count = 0;
7853
7854	/*
7855	 * Measure GEN timer delay in order
7856	 * to calculate SCSI clock frequency
7857	 *
7858	 * This code will never execute too
7859	 * many loop iterations (if DELAY is
7860	 * reasonably correct). It could get
7861	 * too low a delay (too high a freq.)
7862	 * if the CPU is slow executing the
7863	 * loop for some reason (an NMI, for
7864	 * example). For this reason we will
7865	 * if multiple measurements are to be
7866	 * performed trust the higher delay
7867	 * (lower frequency returned).
7868	 */
7869	OUTB (nc_stest1, 0);	/* make sure clock doubler is OFF */
7870	OUTW (nc_sien , 0);	/* mask all scsi interrupts */
7871	(void) INW (nc_sist);	/* clear pending scsi interrupt */
7872	OUTB (nc_dien , 0);	/* mask all dma interrupts */
7873	(void) INW (nc_sist);	/* another one, just to be sure :) */
7874	OUTB (nc_scntl3, 4);	/* set pre-scaler to divide by 3 */
7875	OUTB (nc_stime1, 0);	/* disable general purpose timer */
7876	OUTB (nc_stime1, gen);	/* set to nominal delay of 1<<gen * 125us */
7877	while (!(INW(nc_sist) & GEN) && ms++ < 100000) {
7878		for (count = 0; count < 10; count ++)
7879			udelay(100);	/* count ms */
7880	}
7881	OUTB (nc_stime1, 0);	/* disable general purpose timer */
7882 	/*
7883 	 * set prescaler to divide by whatever 0 means
7884 	 * 0 ought to choose divide by 2, but appears
7885 	 * to set divide by 3.5 mode in my 53c810 ...
7886 	 */
7887 	OUTB (nc_scntl3, 0);
7888
7889	if (bootverbose >= 2)
7890		printk ("%s: Delay (GEN=%d): %u msec\n", ncr_name(np), gen, ms);
7891  	/*
7892 	 * adjust for prescaler, and convert into KHz
7893  	 */
7894	return ms ? ((1 << gen) * 4340) / ms : 0;
7895}
7896
7897/*
7898 *	Get/probe NCR SCSI clock frequency
7899 */
7900static void __init ncr_getclock (struct ncb *np, int mult)
7901{
7902	unsigned char scntl3 = INB(nc_scntl3);
7903	unsigned char stest1 = INB(nc_stest1);
7904	unsigned f1;
7905
7906	np->multiplier = 1;
7907	f1 = 40000;
7908
7909	/*
7910	**	True with 875 or 895 with clock multiplier selected
7911	*/
7912	if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
7913		if (bootverbose >= 2)
7914			printk ("%s: clock multiplier found\n", ncr_name(np));
7915		np->multiplier = mult;
7916	}
7917
7918	/*
7919	**	If multiplier not found or scntl3 not 7,5,3,
7920	**	reset chip and get frequency from general purpose timer.
7921	**	Otherwise trust scntl3 BIOS setting.
7922	*/
7923	if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
7924		unsigned f2;
7925
7926		ncr_chip_reset(np, 5);
7927
7928		(void) ncrgetfreq (np, 11);	/* throw away first result */
7929		f1 = ncrgetfreq (np, 11);
7930		f2 = ncrgetfreq (np, 11);
7931
7932		if(bootverbose)
7933			printk ("%s: NCR clock is %uKHz, %uKHz\n", ncr_name(np), f1, f2);
7934
7935		if (f1 > f2) f1 = f2;		/* trust lower result	*/
7936
7937		if	(f1 <	45000)		f1 =  40000;
7938		else if (f1 <	55000)		f1 =  50000;
7939		else				f1 =  80000;
7940
7941		if (f1 < 80000 && mult > 1) {
7942			if (bootverbose >= 2)
7943				printk ("%s: clock multiplier assumed\n", ncr_name(np));
7944			np->multiplier	= mult;
7945		}
7946	} else {
7947		if	((scntl3 & 7) == 3)	f1 =  40000;
7948		else if	((scntl3 & 7) == 5)	f1 =  80000;
7949		else 				f1 = 160000;
7950
7951		f1 /= np->multiplier;
7952	}
7953
7954	/*
7955	**	Compute controller synchronous parameters.
7956	*/
7957	f1		*= np->multiplier;
7958	np->clock_khz	= f1;
7959}
7960
7961/*===================== LINUX ENTRY POINTS SECTION ==========================*/
7962
7963static int ncr53c8xx_slave_alloc(struct scsi_device *device)
7964{
7965	struct Scsi_Host *host = device->host;
7966	struct ncb *np = ((struct host_data *) host->hostdata)->ncb;
7967	struct tcb *tp = &np->target[device->id];
7968	tp->starget = device->sdev_target;
7969
7970	return 0;
7971}
7972
7973static int ncr53c8xx_slave_configure(struct scsi_device *device)
7974{
7975	struct Scsi_Host *host = device->host;
7976	struct ncb *np = ((struct host_data *) host->hostdata)->ncb;
7977	struct tcb *tp = &np->target[device->id];
7978	struct lcb *lp = tp->lp[device->lun];
7979	int numtags, depth_to_use;
7980
7981	ncr_setup_lcb(np, device);
7982
7983	/*
7984	**	Select queue depth from driver setup.
7985	**	Donnot use more than configured by user.
7986	**	Use at least 2.
7987	**	Donnot use more than our maximum.
7988	*/
7989	numtags = device_queue_depth(np->unit, device->id, device->lun);
7990	if (numtags > tp->usrtags)
7991		numtags = tp->usrtags;
7992	if (!device->tagged_supported)
7993		numtags = 1;
7994	depth_to_use = numtags;
7995	if (depth_to_use < 2)
7996		depth_to_use = 2;
7997	if (depth_to_use > MAX_TAGS)
7998		depth_to_use = MAX_TAGS;
7999
8000	scsi_change_queue_depth(device, depth_to_use);
8001
8002	/*
8003	**	Since the queue depth is not tunable under Linux,
8004	**	we need to know this value in order not to
8005	**	announce stupid things to user.
8006	**
8007	**	XXX(hch): As of Linux 2.6 it certainly _is_ tunable..
8008	**		  In fact we just tuned it, or did I miss
8009	**		  something important? :)
8010	*/
8011	if (lp) {
8012		lp->numtags = lp->maxtags = numtags;
8013		lp->scdev_depth = depth_to_use;
8014	}
8015	ncr_setup_tags (np, device);
8016
8017#ifdef DEBUG_NCR53C8XX
8018	printk("ncr53c8xx_select_queue_depth: host=%d, id=%d, lun=%d, depth=%d\n",
8019	       np->unit, device->id, device->lun, depth_to_use);
8020#endif
8021
8022	if (spi_support_sync(device->sdev_target) &&
8023	    !spi_initial_dv(device->sdev_target))
8024		spi_dv_device(device);
8025	return 0;
8026}
8027
8028static int ncr53c8xx_queue_command_lck (struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *))
8029{
8030     struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb;
8031     unsigned long flags;
8032     int sts;
8033
8034#ifdef DEBUG_NCR53C8XX
8035printk("ncr53c8xx_queue_command\n");
8036#endif
8037
8038     cmd->scsi_done     = done;
8039     cmd->host_scribble = NULL;
8040     cmd->__data_mapped = 0;
8041     cmd->__data_mapping = 0;
8042
8043     spin_lock_irqsave(&np->smp_lock, flags);
8044
8045     if ((sts = ncr_queue_command(np, cmd)) != DID_OK) {
8046	  cmd->result = ScsiResult(sts, 0);
8047#ifdef DEBUG_NCR53C8XX
8048printk("ncr53c8xx : command not queued - result=%d\n", sts);
8049#endif
8050     }
8051#ifdef DEBUG_NCR53C8XX
8052     else
8053printk("ncr53c8xx : command successfully queued\n");
8054#endif
8055
8056     spin_unlock_irqrestore(&np->smp_lock, flags);
8057
8058     if (sts != DID_OK) {
8059          unmap_scsi_data(np, cmd);
8060          done(cmd);
8061	  sts = 0;
8062     }
8063
8064     return sts;
8065}
8066
8067static DEF_SCSI_QCMD(ncr53c8xx_queue_command)
8068
8069irqreturn_t ncr53c8xx_intr(int irq, void *dev_id)
8070{
8071     unsigned long flags;
8072     struct Scsi_Host *shost = (struct Scsi_Host *)dev_id;
8073     struct host_data *host_data = (struct host_data *)shost->hostdata;
8074     struct ncb *np = host_data->ncb;
8075     struct scsi_cmnd *done_list;
8076
8077#ifdef DEBUG_NCR53C8XX
8078     printk("ncr53c8xx : interrupt received\n");
8079#endif
8080
8081     if (DEBUG_FLAGS & DEBUG_TINY) printk ("[");
8082
8083     spin_lock_irqsave(&np->smp_lock, flags);
8084     ncr_exception(np);
8085     done_list     = np->done_list;
8086     np->done_list = NULL;
8087     spin_unlock_irqrestore(&np->smp_lock, flags);
8088
8089     if (DEBUG_FLAGS & DEBUG_TINY) printk ("]\n");
8090
8091     if (done_list)
8092	     ncr_flush_done_cmds(done_list);
8093     return IRQ_HANDLED;
8094}
8095
8096static void ncr53c8xx_timeout(unsigned long npref)
8097{
8098	struct ncb *np = (struct ncb *) npref;
8099	unsigned long flags;
8100	struct scsi_cmnd *done_list;
8101
8102	spin_lock_irqsave(&np->smp_lock, flags);
8103	ncr_timeout(np);
8104	done_list     = np->done_list;
8105	np->done_list = NULL;
8106	spin_unlock_irqrestore(&np->smp_lock, flags);
8107
8108	if (done_list)
8109		ncr_flush_done_cmds(done_list);
8110}
8111
8112static int ncr53c8xx_bus_reset(struct scsi_cmnd *cmd)
8113{
8114	struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb;
8115	int sts;
8116	unsigned long flags;
8117	struct scsi_cmnd *done_list;
8118
8119	/*
8120	 * If the mid-level driver told us reset is synchronous, it seems
8121	 * that we must call the done() callback for the involved command,
8122	 * even if this command was not queued to the low-level driver,
8123	 * before returning SUCCESS.
8124	 */
8125
8126	spin_lock_irqsave(&np->smp_lock, flags);
8127	sts = ncr_reset_bus(np, cmd, 1);
8128
8129	done_list     = np->done_list;
8130	np->done_list = NULL;
8131	spin_unlock_irqrestore(&np->smp_lock, flags);
8132
8133	ncr_flush_done_cmds(done_list);
8134
8135	return sts;
8136}
8137
8138#if 0 /* unused and broken */
8139static int ncr53c8xx_abort(struct scsi_cmnd *cmd)
8140{
8141	struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb;
8142	int sts;
8143	unsigned long flags;
8144	struct scsi_cmnd *done_list;
8145
8146	printk("ncr53c8xx_abort\n");
8147
8148	NCR_LOCK_NCB(np, flags);
8149
8150	sts = ncr_abort_command(np, cmd);
8151out:
8152	done_list     = np->done_list;
8153	np->done_list = NULL;
8154	NCR_UNLOCK_NCB(np, flags);
8155
8156	ncr_flush_done_cmds(done_list);
8157
8158	return sts;
8159}
8160#endif
8161
8162
8163/*
8164**	Scsi command waiting list management.
8165**
8166**	It may happen that we cannot insert a scsi command into the start queue,
8167**	in the following circumstances.
8168** 		Too few preallocated ccb(s),
8169**		maxtags < cmd_per_lun of the Linux host control block,
8170**		etc...
8171**	Such scsi commands are inserted into a waiting list.
8172**	When a scsi command complete, we try to requeue the commands of the
8173**	waiting list.
8174*/
8175
8176#define next_wcmd host_scribble
8177
8178static void insert_into_waiting_list(struct ncb *np, struct scsi_cmnd *cmd)
8179{
8180	struct scsi_cmnd *wcmd;
8181
8182#ifdef DEBUG_WAITING_LIST
8183	printk("%s: cmd %lx inserted into waiting list\n", ncr_name(np), (u_long) cmd);
8184#endif
8185	cmd->next_wcmd = NULL;
8186	if (!(wcmd = np->waiting_list)) np->waiting_list = cmd;
8187	else {
8188		while (wcmd->next_wcmd)
8189			wcmd = (struct scsi_cmnd *) wcmd->next_wcmd;
8190		wcmd->next_wcmd = (char *) cmd;
8191	}
8192}
8193
8194static struct scsi_cmnd *retrieve_from_waiting_list(int to_remove, struct ncb *np, struct scsi_cmnd *cmd)
8195{
8196	struct scsi_cmnd **pcmd = &np->waiting_list;
8197
8198	while (*pcmd) {
8199		if (cmd == *pcmd) {
8200			if (to_remove) {
8201				*pcmd = (struct scsi_cmnd *) cmd->next_wcmd;
8202				cmd->next_wcmd = NULL;
8203			}
8204#ifdef DEBUG_WAITING_LIST
8205	printk("%s: cmd %lx retrieved from waiting list\n", ncr_name(np), (u_long) cmd);
8206#endif
8207			return cmd;
8208		}
8209		pcmd = (struct scsi_cmnd **) &(*pcmd)->next_wcmd;
8210	}
8211	return NULL;
8212}
8213
8214static void process_waiting_list(struct ncb *np, int sts)
8215{
8216	struct scsi_cmnd *waiting_list, *wcmd;
8217
8218	waiting_list = np->waiting_list;
8219	np->waiting_list = NULL;
8220
8221#ifdef DEBUG_WAITING_LIST
8222	if (waiting_list) printk("%s: waiting_list=%lx processing sts=%d\n", ncr_name(np), (u_long) waiting_list, sts);
8223#endif
8224	while ((wcmd = waiting_list) != NULL) {
8225		waiting_list = (struct scsi_cmnd *) wcmd->next_wcmd;
8226		wcmd->next_wcmd = NULL;
8227		if (sts == DID_OK) {
8228#ifdef DEBUG_WAITING_LIST
8229	printk("%s: cmd %lx trying to requeue\n", ncr_name(np), (u_long) wcmd);
8230#endif
8231			sts = ncr_queue_command(np, wcmd);
8232		}
8233		if (sts != DID_OK) {
8234#ifdef DEBUG_WAITING_LIST
8235	printk("%s: cmd %lx done forced sts=%d\n", ncr_name(np), (u_long) wcmd, sts);
8236#endif
8237			wcmd->result = ScsiResult(sts, 0);
8238			ncr_queue_done_cmd(np, wcmd);
8239		}
8240	}
8241}
8242
8243#undef next_wcmd
8244
8245static ssize_t show_ncr53c8xx_revision(struct device *dev,
8246				       struct device_attribute *attr, char *buf)
8247{
8248	struct Scsi_Host *host = class_to_shost(dev);
8249	struct host_data *host_data = (struct host_data *)host->hostdata;
8250
8251	return snprintf(buf, 20, "0x%x\n", host_data->ncb->revision_id);
8252}
8253
8254static struct device_attribute ncr53c8xx_revision_attr = {
8255	.attr	= { .name = "revision", .mode = S_IRUGO, },
8256	.show	= show_ncr53c8xx_revision,
8257};
8258
8259static struct device_attribute *ncr53c8xx_host_attrs[] = {
8260	&ncr53c8xx_revision_attr,
8261	NULL
8262};
8263
8264/*==========================================================
8265**
8266**	Boot command line.
8267**
8268**==========================================================
8269*/
8270#ifdef	MODULE
8271char *ncr53c8xx;	/* command line passed by insmod */
8272module_param(ncr53c8xx, charp, 0);
8273#endif
8274
8275#ifndef MODULE
8276static int __init ncr53c8xx_setup(char *str)
8277{
8278	return sym53c8xx__setup(str);
8279}
8280
8281__setup("ncr53c8xx=", ncr53c8xx_setup);
8282#endif
8283
8284
8285/*
8286 *	Host attach and initialisations.
8287 *
8288 *	Allocate host data and ncb structure.
8289 *	Request IO region and remap MMIO region.
8290 *	Do chip initialization.
8291 *	If all is OK, install interrupt handling and
8292 *	start the timer daemon.
8293 */
8294struct Scsi_Host * __init ncr_attach(struct scsi_host_template *tpnt,
8295					int unit, struct ncr_device *device)
8296{
8297	struct host_data *host_data;
8298	struct ncb *np = NULL;
8299	struct Scsi_Host *instance = NULL;
8300	u_long flags = 0;
8301	int i;
8302
8303	if (!tpnt->name)
8304		tpnt->name	= SCSI_NCR_DRIVER_NAME;
8305	if (!tpnt->shost_attrs)
8306		tpnt->shost_attrs = ncr53c8xx_host_attrs;
8307
8308	tpnt->queuecommand	= ncr53c8xx_queue_command;
8309	tpnt->slave_configure	= ncr53c8xx_slave_configure;
8310	tpnt->slave_alloc	= ncr53c8xx_slave_alloc;
8311	tpnt->eh_bus_reset_handler = ncr53c8xx_bus_reset;
8312	tpnt->can_queue		= SCSI_NCR_CAN_QUEUE;
8313	tpnt->this_id		= 7;
8314	tpnt->sg_tablesize	= SCSI_NCR_SG_TABLESIZE;
8315	tpnt->cmd_per_lun	= SCSI_NCR_CMD_PER_LUN;
8316	tpnt->use_clustering	= ENABLE_CLUSTERING;
8317
8318	if (device->differential)
8319		driver_setup.diff_support = device->differential;
8320
8321	printk(KERN_INFO "ncr53c720-%d: rev 0x%x irq %d\n",
8322		unit, device->chip.revision_id, device->slot.irq);
8323
8324	instance = scsi_host_alloc(tpnt, sizeof(*host_data));
8325	if (!instance)
8326	        goto attach_error;
8327	host_data = (struct host_data *) instance->hostdata;
8328
8329	np = __m_calloc_dma(device->dev, sizeof(struct ncb), "NCB");
8330	if (!np)
8331		goto attach_error;
8332	spin_lock_init(&np->smp_lock);
8333	np->dev = device->dev;
8334	np->p_ncb = vtobus(np);
8335	host_data->ncb = np;
8336
8337	np->ccb = m_calloc_dma(sizeof(struct ccb), "CCB");
8338	if (!np->ccb)
8339		goto attach_error;
8340
8341	/* Store input information in the host data structure.  */
8342	np->unit	= unit;
8343	np->verbose	= driver_setup.verbose;
8344	sprintf(np->inst_name, "ncr53c720-%d", np->unit);
8345	np->revision_id	= device->chip.revision_id;
8346	np->features	= device->chip.features;
8347	np->clock_divn	= device->chip.nr_divisor;
8348	np->maxoffs	= device->chip.offset_max;
8349	np->maxburst	= device->chip.burst_max;
8350	np->myaddr	= device->host_id;
8351
8352	/* Allocate SCRIPTS areas.  */
8353	np->script0 = m_calloc_dma(sizeof(struct script), "SCRIPT");
8354	if (!np->script0)
8355		goto attach_error;
8356	np->scripth0 = m_calloc_dma(sizeof(struct scripth), "SCRIPTH");
8357	if (!np->scripth0)
8358		goto attach_error;
8359
8360	init_timer(&np->timer);
8361	np->timer.data     = (unsigned long) np;
8362	np->timer.function = ncr53c8xx_timeout;
8363
8364	/* Try to map the controller chip to virtual and physical memory. */
8365
8366	np->paddr	= device->slot.base;
8367	np->paddr2	= (np->features & FE_RAM) ? device->slot.base_2 : 0;
8368
8369	if (device->slot.base_v)
8370		np->vaddr = device->slot.base_v;
8371	else
8372		np->vaddr = ioremap(device->slot.base_c, 128);
8373
8374	if (!np->vaddr) {
8375		printk(KERN_ERR
8376			"%s: can't map memory mapped IO region\n",ncr_name(np));
8377		goto attach_error;
8378	} else {
8379		if (bootverbose > 1)
8380			printk(KERN_INFO
8381				"%s: using memory mapped IO at virtual address 0x%lx\n", ncr_name(np), (u_long) np->vaddr);
8382	}
8383
8384	/* Make the controller's registers available.  Now the INB INW INL
8385	 * OUTB OUTW OUTL macros can be used safely.
8386	 */
8387
8388	np->reg = (struct ncr_reg __iomem *)np->vaddr;
8389
8390	/* Do chip dependent initialization.  */
8391	ncr_prepare_setting(np);
8392
8393	if (np->paddr2 && sizeof(struct script) > 4096) {
8394		np->paddr2 = 0;
8395		printk(KERN_WARNING "%s: script too large, NOT using on chip RAM.\n",
8396			ncr_name(np));
8397	}
8398
8399	instance->max_channel	= 0;
8400	instance->this_id       = np->myaddr;
8401	instance->max_id	= np->maxwide ? 16 : 8;
8402	instance->max_lun	= SCSI_NCR_MAX_LUN;
8403	instance->base		= (unsigned long) np->reg;
8404	instance->irq		= device->slot.irq;
8405	instance->unique_id	= device->slot.base;
8406	instance->dma_channel	= 0;
8407	instance->cmd_per_lun	= MAX_TAGS;
8408	instance->can_queue	= (MAX_START-4);
8409	/* This can happen if you forget to call ncr53c8xx_init from
8410	 * your module_init */
8411	BUG_ON(!ncr53c8xx_transport_template);
8412	instance->transportt	= ncr53c8xx_transport_template;
8413
8414	/* Patch script to physical addresses */
8415	ncr_script_fill(&script0, &scripth0);
8416
8417	np->scripth	= np->scripth0;
8418	np->p_scripth	= vtobus(np->scripth);
8419	np->p_script	= (np->paddr2) ?  np->paddr2 : vtobus(np->script0);
8420
8421	ncr_script_copy_and_bind(np, (ncrcmd *) &script0,
8422			(ncrcmd *) np->script0, sizeof(struct script));
8423	ncr_script_copy_and_bind(np, (ncrcmd *) &scripth0,
8424			(ncrcmd *) np->scripth0, sizeof(struct scripth));
8425	np->ccb->p_ccb	= vtobus (np->ccb);
8426
8427	/* Patch the script for LED support.  */
8428
8429	if (np->features & FE_LED0) {
8430		np->script0->idle[0]  =
8431				cpu_to_scr(SCR_REG_REG(gpreg, SCR_OR,  0x01));
8432		np->script0->reselected[0] =
8433				cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe));
8434		np->script0->start[0] =
8435				cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe));
8436	}
8437
8438	/*
8439	 * Look for the target control block of this nexus.
8440	 * For i = 0 to 3
8441	 *   JUMP ^ IFTRUE (MASK (i, 3)), @(next_lcb)
8442	 */
8443	for (i = 0 ; i < 4 ; i++) {
8444		np->jump_tcb[i].l_cmd   =
8445				cpu_to_scr((SCR_JUMP ^ IFTRUE (MASK (i, 3))));
8446		np->jump_tcb[i].l_paddr =
8447				cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_target));
8448	}
8449
8450	ncr_chip_reset(np, 100);
8451
8452	/* Now check the cache handling of the chipset.  */
8453
8454	if (ncr_snooptest(np)) {
8455		printk(KERN_ERR "CACHE INCORRECTLY CONFIGURED.\n");
8456		goto attach_error;
8457	}
8458
8459	/* Install the interrupt handler.  */
8460	np->irq = device->slot.irq;
8461
8462	/* Initialize the fixed part of the default ccb.  */
8463	ncr_init_ccb(np, np->ccb);
8464
8465	/*
8466	 * After SCSI devices have been opened, we cannot reset the bus
8467	 * safely, so we do it here.  Interrupt handler does the real work.
8468	 * Process the reset exception if interrupts are not enabled yet.
8469	 * Then enable disconnects.
8470	 */
8471	spin_lock_irqsave(&np->smp_lock, flags);
8472	if (ncr_reset_scsi_bus(np, 0, driver_setup.settle_delay) != 0) {
8473		printk(KERN_ERR "%s: FATAL ERROR: CHECK SCSI BUS - CABLES, TERMINATION, DEVICE POWER etc.!\n", ncr_name(np));
8474
8475		spin_unlock_irqrestore(&np->smp_lock, flags);
8476		goto attach_error;
8477	}
8478	ncr_exception(np);
8479
8480	np->disc = 1;
8481
8482	/*
8483	 * The middle-level SCSI driver does not wait for devices to settle.
8484	 * Wait synchronously if more than 2 seconds.
8485	 */
8486	if (driver_setup.settle_delay > 2) {
8487		printk(KERN_INFO "%s: waiting %d seconds for scsi devices to settle...\n",
8488			ncr_name(np), driver_setup.settle_delay);
8489		mdelay(1000 * driver_setup.settle_delay);
8490	}
8491
8492	/* start the timeout daemon */
8493	np->lasttime=0;
8494	ncr_timeout (np);
8495
8496	/* use SIMPLE TAG messages by default */
8497#ifdef SCSI_NCR_ALWAYS_SIMPLE_TAG
8498	np->order = SIMPLE_QUEUE_TAG;
8499#endif
8500
8501	spin_unlock_irqrestore(&np->smp_lock, flags);
8502
8503	return instance;
8504
8505 attach_error:
8506	if (!instance)
8507		return NULL;
8508	printk(KERN_INFO "%s: detaching...\n", ncr_name(np));
8509	if (!np)
8510		goto unregister;
8511	if (np->scripth0)
8512		m_free_dma(np->scripth0, sizeof(struct scripth), "SCRIPTH");
8513	if (np->script0)
8514		m_free_dma(np->script0, sizeof(struct script), "SCRIPT");
8515	if (np->ccb)
8516		m_free_dma(np->ccb, sizeof(struct ccb), "CCB");
8517	m_free_dma(np, sizeof(struct ncb), "NCB");
8518	host_data->ncb = NULL;
8519
8520 unregister:
8521	scsi_host_put(instance);
8522
8523	return NULL;
8524}
8525
8526
8527void ncr53c8xx_release(struct Scsi_Host *host)
8528{
8529	struct host_data *host_data = shost_priv(host);
8530#ifdef DEBUG_NCR53C8XX
8531	printk("ncr53c8xx: release\n");
8532#endif
8533	if (host_data->ncb)
8534		ncr_detach(host_data->ncb);
8535	scsi_host_put(host);
8536}
8537
8538static void ncr53c8xx_set_period(struct scsi_target *starget, int period)
8539{
8540	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
8541	struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
8542	struct tcb *tp = &np->target[starget->id];
8543
8544	if (period > np->maxsync)
8545		period = np->maxsync;
8546	else if (period < np->minsync)
8547		period = np->minsync;
8548
8549	tp->usrsync = period;
8550
8551	ncr_negotiate(np, tp);
8552}
8553
8554static void ncr53c8xx_set_offset(struct scsi_target *starget, int offset)
8555{
8556	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
8557	struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
8558	struct tcb *tp = &np->target[starget->id];
8559
8560	if (offset > np->maxoffs)
8561		offset = np->maxoffs;
8562	else if (offset < 0)
8563		offset = 0;
8564
8565	tp->maxoffs = offset;
8566
8567	ncr_negotiate(np, tp);
8568}
8569
8570static void ncr53c8xx_set_width(struct scsi_target *starget, int width)
8571{
8572	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
8573	struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
8574	struct tcb *tp = &np->target[starget->id];
8575
8576	if (width > np->maxwide)
8577		width = np->maxwide;
8578	else if (width < 0)
8579		width = 0;
8580
8581	tp->usrwide = width;
8582
8583	ncr_negotiate(np, tp);
8584}
8585
8586static void ncr53c8xx_get_signalling(struct Scsi_Host *shost)
8587{
8588	struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
8589	enum spi_signal_type type;
8590
8591	switch (np->scsi_mode) {
8592	case SMODE_SE:
8593		type = SPI_SIGNAL_SE;
8594		break;
8595	case SMODE_HVD:
8596		type = SPI_SIGNAL_HVD;
8597		break;
8598	default:
8599		type = SPI_SIGNAL_UNKNOWN;
8600		break;
8601	}
8602	spi_signalling(shost) = type;
8603}
8604
8605static struct spi_function_template ncr53c8xx_transport_functions =  {
8606	.set_period	= ncr53c8xx_set_period,
8607	.show_period	= 1,
8608	.set_offset	= ncr53c8xx_set_offset,
8609	.show_offset	= 1,
8610	.set_width	= ncr53c8xx_set_width,
8611	.show_width	= 1,
8612	.get_signalling	= ncr53c8xx_get_signalling,
8613};
8614
8615int __init ncr53c8xx_init(void)
8616{
8617	ncr53c8xx_transport_template = spi_attach_transport(&ncr53c8xx_transport_functions);
8618	if (!ncr53c8xx_transport_template)
8619		return -ENODEV;
8620	return 0;
8621}
8622
8623void ncr53c8xx_exit(void)
8624{
8625	spi_release_transport(ncr53c8xx_transport_template);
8626}
8627