1/*
2 * Serial Attached SCSI (SAS) Expander discovery and configuration
3 *
4 * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6 *
7 * This file is licensed under GPLv2.
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of the
12 * License, or (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22 *
23 */
24
25#include <linux/scatterlist.h>
26#include <linux/blkdev.h>
27#include <linux/slab.h>
28
29#include "sas_internal.h"
30
31#include <scsi/sas_ata.h>
32#include <scsi/scsi_transport.h>
33#include <scsi/scsi_transport_sas.h>
34#include "../scsi_sas_internal.h"
35
36static int sas_discover_expander(struct domain_device *dev);
37static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
38static int sas_configure_phy(struct domain_device *dev, int phy_id,
39			     u8 *sas_addr, int include);
40static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
41
42/* ---------- SMP task management ---------- */
43
44static void smp_task_timedout(unsigned long _task)
45{
46	struct sas_task *task = (void *) _task;
47	unsigned long flags;
48
49	spin_lock_irqsave(&task->task_state_lock, flags);
50	if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
51		task->task_state_flags |= SAS_TASK_STATE_ABORTED;
52	spin_unlock_irqrestore(&task->task_state_lock, flags);
53
54	complete(&task->slow_task->completion);
55}
56
57static void smp_task_done(struct sas_task *task)
58{
59	if (!del_timer(&task->slow_task->timer))
60		return;
61	complete(&task->slow_task->completion);
62}
63
64/* Give it some long enough timeout. In seconds. */
65#define SMP_TIMEOUT 10
66
67static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
68			    void *resp, int resp_size)
69{
70	int res, retry;
71	struct sas_task *task = NULL;
72	struct sas_internal *i =
73		to_sas_internal(dev->port->ha->core.shost->transportt);
74
75	mutex_lock(&dev->ex_dev.cmd_mutex);
76	for (retry = 0; retry < 3; retry++) {
77		if (test_bit(SAS_DEV_GONE, &dev->state)) {
78			res = -ECOMM;
79			break;
80		}
81
82		task = sas_alloc_slow_task(GFP_KERNEL);
83		if (!task) {
84			res = -ENOMEM;
85			break;
86		}
87		task->dev = dev;
88		task->task_proto = dev->tproto;
89		sg_init_one(&task->smp_task.smp_req, req, req_size);
90		sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
91
92		task->task_done = smp_task_done;
93
94		task->slow_task->timer.data = (unsigned long) task;
95		task->slow_task->timer.function = smp_task_timedout;
96		task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
97		add_timer(&task->slow_task->timer);
98
99		res = i->dft->lldd_execute_task(task, GFP_KERNEL);
100
101		if (res) {
102			del_timer(&task->slow_task->timer);
103			SAS_DPRINTK("executing SMP task failed:%d\n", res);
104			break;
105		}
106
107		wait_for_completion(&task->slow_task->completion);
108		res = -ECOMM;
109		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
110			SAS_DPRINTK("smp task timed out or aborted\n");
111			i->dft->lldd_abort_task(task);
112			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
113				SAS_DPRINTK("SMP task aborted and not done\n");
114				break;
115			}
116		}
117		if (task->task_status.resp == SAS_TASK_COMPLETE &&
118		    task->task_status.stat == SAM_STAT_GOOD) {
119			res = 0;
120			break;
121		}
122		if (task->task_status.resp == SAS_TASK_COMPLETE &&
123		    task->task_status.stat == SAS_DATA_UNDERRUN) {
124			/* no error, but return the number of bytes of
125			 * underrun */
126			res = task->task_status.residual;
127			break;
128		}
129		if (task->task_status.resp == SAS_TASK_COMPLETE &&
130		    task->task_status.stat == SAS_DATA_OVERRUN) {
131			res = -EMSGSIZE;
132			break;
133		}
134		if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
135		    task->task_status.stat == SAS_DEVICE_UNKNOWN)
136			break;
137		else {
138			SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
139				    "status 0x%x\n", __func__,
140				    SAS_ADDR(dev->sas_addr),
141				    task->task_status.resp,
142				    task->task_status.stat);
143			sas_free_task(task);
144			task = NULL;
145		}
146	}
147	mutex_unlock(&dev->ex_dev.cmd_mutex);
148
149	BUG_ON(retry == 3 && task != NULL);
150	sas_free_task(task);
151	return res;
152}
153
154/* ---------- Allocations ---------- */
155
156static inline void *alloc_smp_req(int size)
157{
158	u8 *p = kzalloc(size, GFP_KERNEL);
159	if (p)
160		p[0] = SMP_REQUEST;
161	return p;
162}
163
164static inline void *alloc_smp_resp(int size)
165{
166	return kzalloc(size, GFP_KERNEL);
167}
168
169static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
170{
171	switch (phy->routing_attr) {
172	case TABLE_ROUTING:
173		if (dev->ex_dev.t2t_supp)
174			return 'U';
175		else
176			return 'T';
177	case DIRECT_ROUTING:
178		return 'D';
179	case SUBTRACTIVE_ROUTING:
180		return 'S';
181	default:
182		return '?';
183	}
184}
185
186static enum sas_device_type to_dev_type(struct discover_resp *dr)
187{
188	/* This is detecting a failure to transmit initial dev to host
189	 * FIS as described in section J.5 of sas-2 r16
190	 */
191	if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
192	    dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
193		return SAS_SATA_PENDING;
194	else
195		return dr->attached_dev_type;
196}
197
198static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
199{
200	enum sas_device_type dev_type;
201	enum sas_linkrate linkrate;
202	u8 sas_addr[SAS_ADDR_SIZE];
203	struct smp_resp *resp = rsp;
204	struct discover_resp *dr = &resp->disc;
205	struct sas_ha_struct *ha = dev->port->ha;
206	struct expander_device *ex = &dev->ex_dev;
207	struct ex_phy *phy = &ex->ex_phy[phy_id];
208	struct sas_rphy *rphy = dev->rphy;
209	bool new_phy = !phy->phy;
210	char *type;
211
212	if (new_phy) {
213		if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
214			return;
215		phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
216
217		/* FIXME: error_handling */
218		BUG_ON(!phy->phy);
219	}
220
221	switch (resp->result) {
222	case SMP_RESP_PHY_VACANT:
223		phy->phy_state = PHY_VACANT;
224		break;
225	default:
226		phy->phy_state = PHY_NOT_PRESENT;
227		break;
228	case SMP_RESP_FUNC_ACC:
229		phy->phy_state = PHY_EMPTY; /* do not know yet */
230		break;
231	}
232
233	/* check if anything important changed to squelch debug */
234	dev_type = phy->attached_dev_type;
235	linkrate  = phy->linkrate;
236	memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
237
238	/* Handle vacant phy - rest of dr data is not valid so skip it */
239	if (phy->phy_state == PHY_VACANT) {
240		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
241		phy->attached_dev_type = SAS_PHY_UNUSED;
242		if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
243			phy->phy_id = phy_id;
244			goto skip;
245		} else
246			goto out;
247	}
248
249	phy->attached_dev_type = to_dev_type(dr);
250	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
251		goto out;
252	phy->phy_id = phy_id;
253	phy->linkrate = dr->linkrate;
254	phy->attached_sata_host = dr->attached_sata_host;
255	phy->attached_sata_dev  = dr->attached_sata_dev;
256	phy->attached_sata_ps   = dr->attached_sata_ps;
257	phy->attached_iproto = dr->iproto << 1;
258	phy->attached_tproto = dr->tproto << 1;
259	/* help some expanders that fail to zero sas_address in the 'no
260	 * device' case
261	 */
262	if (phy->attached_dev_type == SAS_PHY_UNUSED ||
263	    phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
264		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
265	else
266		memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
267	phy->attached_phy_id = dr->attached_phy_id;
268	phy->phy_change_count = dr->change_count;
269	phy->routing_attr = dr->routing_attr;
270	phy->virtual = dr->virtual;
271	phy->last_da_index = -1;
272
273	phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
274	phy->phy->identify.device_type = dr->attached_dev_type;
275	phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
276	phy->phy->identify.target_port_protocols = phy->attached_tproto;
277	if (!phy->attached_tproto && dr->attached_sata_dev)
278		phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
279	phy->phy->identify.phy_identifier = phy_id;
280	phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
281	phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
282	phy->phy->minimum_linkrate = dr->pmin_linkrate;
283	phy->phy->maximum_linkrate = dr->pmax_linkrate;
284	phy->phy->negotiated_linkrate = phy->linkrate;
285
286 skip:
287	if (new_phy)
288		if (sas_phy_add(phy->phy)) {
289			sas_phy_free(phy->phy);
290			return;
291		}
292
293 out:
294	switch (phy->attached_dev_type) {
295	case SAS_SATA_PENDING:
296		type = "stp pending";
297		break;
298	case SAS_PHY_UNUSED:
299		type = "no device";
300		break;
301	case SAS_END_DEVICE:
302		if (phy->attached_iproto) {
303			if (phy->attached_tproto)
304				type = "host+target";
305			else
306				type = "host";
307		} else {
308			if (dr->attached_sata_dev)
309				type = "stp";
310			else
311				type = "ssp";
312		}
313		break;
314	case SAS_EDGE_EXPANDER_DEVICE:
315	case SAS_FANOUT_EXPANDER_DEVICE:
316		type = "smp";
317		break;
318	default:
319		type = "unknown";
320	}
321
322	/* this routine is polled by libata error recovery so filter
323	 * unimportant messages
324	 */
325	if (new_phy || phy->attached_dev_type != dev_type ||
326	    phy->linkrate != linkrate ||
327	    SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
328		/* pass */;
329	else
330		return;
331
332	/* if the attached device type changed and ata_eh is active,
333	 * make sure we run revalidation when eh completes (see:
334	 * sas_enable_revalidation)
335	 */
336	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
337		set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
338
339	SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
340		    test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
341		    SAS_ADDR(dev->sas_addr), phy->phy_id,
342		    sas_route_char(dev, phy), phy->linkrate,
343		    SAS_ADDR(phy->attached_sas_addr), type);
344}
345
346/* check if we have an existing attached ata device on this expander phy */
347struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
348{
349	struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
350	struct domain_device *dev;
351	struct sas_rphy *rphy;
352
353	if (!ex_phy->port)
354		return NULL;
355
356	rphy = ex_phy->port->rphy;
357	if (!rphy)
358		return NULL;
359
360	dev = sas_find_dev_by_rphy(rphy);
361
362	if (dev && dev_is_sata(dev))
363		return dev;
364
365	return NULL;
366}
367
368#define DISCOVER_REQ_SIZE  16
369#define DISCOVER_RESP_SIZE 56
370
371static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
372				      u8 *disc_resp, int single)
373{
374	struct discover_resp *dr;
375	int res;
376
377	disc_req[9] = single;
378
379	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
380			       disc_resp, DISCOVER_RESP_SIZE);
381	if (res)
382		return res;
383	dr = &((struct smp_resp *)disc_resp)->disc;
384	if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
385		sas_printk("Found loopback topology, just ignore it!\n");
386		return 0;
387	}
388	sas_set_ex_phy(dev, single, disc_resp);
389	return 0;
390}
391
392int sas_ex_phy_discover(struct domain_device *dev, int single)
393{
394	struct expander_device *ex = &dev->ex_dev;
395	int  res = 0;
396	u8   *disc_req;
397	u8   *disc_resp;
398
399	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
400	if (!disc_req)
401		return -ENOMEM;
402
403	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
404	if (!disc_resp) {
405		kfree(disc_req);
406		return -ENOMEM;
407	}
408
409	disc_req[1] = SMP_DISCOVER;
410
411	if (0 <= single && single < ex->num_phys) {
412		res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
413	} else {
414		int i;
415
416		for (i = 0; i < ex->num_phys; i++) {
417			res = sas_ex_phy_discover_helper(dev, disc_req,
418							 disc_resp, i);
419			if (res)
420				goto out_err;
421		}
422	}
423out_err:
424	kfree(disc_resp);
425	kfree(disc_req);
426	return res;
427}
428
429static int sas_expander_discover(struct domain_device *dev)
430{
431	struct expander_device *ex = &dev->ex_dev;
432	int res = -ENOMEM;
433
434	ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
435	if (!ex->ex_phy)
436		return -ENOMEM;
437
438	res = sas_ex_phy_discover(dev, -1);
439	if (res)
440		goto out_err;
441
442	return 0;
443 out_err:
444	kfree(ex->ex_phy);
445	ex->ex_phy = NULL;
446	return res;
447}
448
449#define MAX_EXPANDER_PHYS 128
450
451static void ex_assign_report_general(struct domain_device *dev,
452					    struct smp_resp *resp)
453{
454	struct report_general_resp *rg = &resp->rg;
455
456	dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
457	dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
458	dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
459	dev->ex_dev.t2t_supp = rg->t2t_supp;
460	dev->ex_dev.conf_route_table = rg->conf_route_table;
461	dev->ex_dev.configuring = rg->configuring;
462	memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
463}
464
465#define RG_REQ_SIZE   8
466#define RG_RESP_SIZE 32
467
468static int sas_ex_general(struct domain_device *dev)
469{
470	u8 *rg_req;
471	struct smp_resp *rg_resp;
472	int res;
473	int i;
474
475	rg_req = alloc_smp_req(RG_REQ_SIZE);
476	if (!rg_req)
477		return -ENOMEM;
478
479	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
480	if (!rg_resp) {
481		kfree(rg_req);
482		return -ENOMEM;
483	}
484
485	rg_req[1] = SMP_REPORT_GENERAL;
486
487	for (i = 0; i < 5; i++) {
488		res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
489				       RG_RESP_SIZE);
490
491		if (res) {
492			SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
493				    SAS_ADDR(dev->sas_addr), res);
494			goto out;
495		} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
496			SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
497				    SAS_ADDR(dev->sas_addr), rg_resp->result);
498			res = rg_resp->result;
499			goto out;
500		}
501
502		ex_assign_report_general(dev, rg_resp);
503
504		if (dev->ex_dev.configuring) {
505			SAS_DPRINTK("RG: ex %llx self-configuring...\n",
506				    SAS_ADDR(dev->sas_addr));
507			schedule_timeout_interruptible(5*HZ);
508		} else
509			break;
510	}
511out:
512	kfree(rg_req);
513	kfree(rg_resp);
514	return res;
515}
516
517static void ex_assign_manuf_info(struct domain_device *dev, void
518					*_mi_resp)
519{
520	u8 *mi_resp = _mi_resp;
521	struct sas_rphy *rphy = dev->rphy;
522	struct sas_expander_device *edev = rphy_to_expander_device(rphy);
523
524	memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
525	memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
526	memcpy(edev->product_rev, mi_resp + 36,
527	       SAS_EXPANDER_PRODUCT_REV_LEN);
528
529	if (mi_resp[8] & 1) {
530		memcpy(edev->component_vendor_id, mi_resp + 40,
531		       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
532		edev->component_id = mi_resp[48] << 8 | mi_resp[49];
533		edev->component_revision_id = mi_resp[50];
534	}
535}
536
537#define MI_REQ_SIZE   8
538#define MI_RESP_SIZE 64
539
540static int sas_ex_manuf_info(struct domain_device *dev)
541{
542	u8 *mi_req;
543	u8 *mi_resp;
544	int res;
545
546	mi_req = alloc_smp_req(MI_REQ_SIZE);
547	if (!mi_req)
548		return -ENOMEM;
549
550	mi_resp = alloc_smp_resp(MI_RESP_SIZE);
551	if (!mi_resp) {
552		kfree(mi_req);
553		return -ENOMEM;
554	}
555
556	mi_req[1] = SMP_REPORT_MANUF_INFO;
557
558	res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
559	if (res) {
560		SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
561			    SAS_ADDR(dev->sas_addr), res);
562		goto out;
563	} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
564		SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
565			    SAS_ADDR(dev->sas_addr), mi_resp[2]);
566		goto out;
567	}
568
569	ex_assign_manuf_info(dev, mi_resp);
570out:
571	kfree(mi_req);
572	kfree(mi_resp);
573	return res;
574}
575
576#define PC_REQ_SIZE  44
577#define PC_RESP_SIZE 8
578
579int sas_smp_phy_control(struct domain_device *dev, int phy_id,
580			enum phy_func phy_func,
581			struct sas_phy_linkrates *rates)
582{
583	u8 *pc_req;
584	u8 *pc_resp;
585	int res;
586
587	pc_req = alloc_smp_req(PC_REQ_SIZE);
588	if (!pc_req)
589		return -ENOMEM;
590
591	pc_resp = alloc_smp_resp(PC_RESP_SIZE);
592	if (!pc_resp) {
593		kfree(pc_req);
594		return -ENOMEM;
595	}
596
597	pc_req[1] = SMP_PHY_CONTROL;
598	pc_req[9] = phy_id;
599	pc_req[10]= phy_func;
600	if (rates) {
601		pc_req[32] = rates->minimum_linkrate << 4;
602		pc_req[33] = rates->maximum_linkrate << 4;
603	}
604
605	res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
606
607	kfree(pc_resp);
608	kfree(pc_req);
609	return res;
610}
611
612static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
613{
614	struct expander_device *ex = &dev->ex_dev;
615	struct ex_phy *phy = &ex->ex_phy[phy_id];
616
617	sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
618	phy->linkrate = SAS_PHY_DISABLED;
619}
620
621static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
622{
623	struct expander_device *ex = &dev->ex_dev;
624	int i;
625
626	for (i = 0; i < ex->num_phys; i++) {
627		struct ex_phy *phy = &ex->ex_phy[i];
628
629		if (phy->phy_state == PHY_VACANT ||
630		    phy->phy_state == PHY_NOT_PRESENT)
631			continue;
632
633		if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
634			sas_ex_disable_phy(dev, i);
635	}
636}
637
638static int sas_dev_present_in_domain(struct asd_sas_port *port,
639					    u8 *sas_addr)
640{
641	struct domain_device *dev;
642
643	if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
644		return 1;
645	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
646		if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
647			return 1;
648	}
649	return 0;
650}
651
652#define RPEL_REQ_SIZE	16
653#define RPEL_RESP_SIZE	32
654int sas_smp_get_phy_events(struct sas_phy *phy)
655{
656	int res;
657	u8 *req;
658	u8 *resp;
659	struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
660	struct domain_device *dev = sas_find_dev_by_rphy(rphy);
661
662	req = alloc_smp_req(RPEL_REQ_SIZE);
663	if (!req)
664		return -ENOMEM;
665
666	resp = alloc_smp_resp(RPEL_RESP_SIZE);
667	if (!resp) {
668		kfree(req);
669		return -ENOMEM;
670	}
671
672	req[1] = SMP_REPORT_PHY_ERR_LOG;
673	req[9] = phy->number;
674
675	res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
676			            resp, RPEL_RESP_SIZE);
677
678	if (!res)
679		goto out;
680
681	phy->invalid_dword_count = scsi_to_u32(&resp[12]);
682	phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
683	phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
684	phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
685
686 out:
687	kfree(resp);
688	return res;
689
690}
691
692#ifdef CONFIG_SCSI_SAS_ATA
693
694#define RPS_REQ_SIZE  16
695#define RPS_RESP_SIZE 60
696
697int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
698			    struct smp_resp *rps_resp)
699{
700	int res;
701	u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
702	u8 *resp = (u8 *)rps_resp;
703
704	if (!rps_req)
705		return -ENOMEM;
706
707	rps_req[1] = SMP_REPORT_PHY_SATA;
708	rps_req[9] = phy_id;
709
710	res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
711			            rps_resp, RPS_RESP_SIZE);
712
713	/* 0x34 is the FIS type for the D2H fis.  There's a potential
714	 * standards cockup here.  sas-2 explicitly specifies the FIS
715	 * should be encoded so that FIS type is in resp[24].
716	 * However, some expanders endian reverse this.  Undo the
717	 * reversal here */
718	if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
719		int i;
720
721		for (i = 0; i < 5; i++) {
722			int j = 24 + (i*4);
723			u8 a, b;
724			a = resp[j + 0];
725			b = resp[j + 1];
726			resp[j + 0] = resp[j + 3];
727			resp[j + 1] = resp[j + 2];
728			resp[j + 2] = b;
729			resp[j + 3] = a;
730		}
731	}
732
733	kfree(rps_req);
734	return res;
735}
736#endif
737
738static void sas_ex_get_linkrate(struct domain_device *parent,
739				       struct domain_device *child,
740				       struct ex_phy *parent_phy)
741{
742	struct expander_device *parent_ex = &parent->ex_dev;
743	struct sas_port *port;
744	int i;
745
746	child->pathways = 0;
747
748	port = parent_phy->port;
749
750	for (i = 0; i < parent_ex->num_phys; i++) {
751		struct ex_phy *phy = &parent_ex->ex_phy[i];
752
753		if (phy->phy_state == PHY_VACANT ||
754		    phy->phy_state == PHY_NOT_PRESENT)
755			continue;
756
757		if (SAS_ADDR(phy->attached_sas_addr) ==
758		    SAS_ADDR(child->sas_addr)) {
759
760			child->min_linkrate = min(parent->min_linkrate,
761						  phy->linkrate);
762			child->max_linkrate = max(parent->max_linkrate,
763						  phy->linkrate);
764			child->pathways++;
765			sas_port_add_phy(port, phy->phy);
766		}
767	}
768	child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
769	child->pathways = min(child->pathways, parent->pathways);
770}
771
772static struct domain_device *sas_ex_discover_end_dev(
773	struct domain_device *parent, int phy_id)
774{
775	struct expander_device *parent_ex = &parent->ex_dev;
776	struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
777	struct domain_device *child = NULL;
778	struct sas_rphy *rphy;
779	int res;
780
781	if (phy->attached_sata_host || phy->attached_sata_ps)
782		return NULL;
783
784	child = sas_alloc_device();
785	if (!child)
786		return NULL;
787
788	kref_get(&parent->kref);
789	child->parent = parent;
790	child->port   = parent->port;
791	child->iproto = phy->attached_iproto;
792	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
793	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
794	if (!phy->port) {
795		phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
796		if (unlikely(!phy->port))
797			goto out_err;
798		if (unlikely(sas_port_add(phy->port) != 0)) {
799			sas_port_free(phy->port);
800			goto out_err;
801		}
802	}
803	sas_ex_get_linkrate(parent, child, phy);
804	sas_device_set_phy(child, phy->port);
805
806#ifdef CONFIG_SCSI_SAS_ATA
807	if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
808		res = sas_get_ata_info(child, phy);
809		if (res)
810			goto out_free;
811
812		sas_init_dev(child);
813		res = sas_ata_init(child);
814		if (res)
815			goto out_free;
816		rphy = sas_end_device_alloc(phy->port);
817		if (!rphy)
818			goto out_free;
819
820		child->rphy = rphy;
821		get_device(&rphy->dev);
822
823		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
824
825		res = sas_discover_sata(child);
826		if (res) {
827			SAS_DPRINTK("sas_discover_sata() for device %16llx at "
828				    "%016llx:0x%x returned 0x%x\n",
829				    SAS_ADDR(child->sas_addr),
830				    SAS_ADDR(parent->sas_addr), phy_id, res);
831			goto out_list_del;
832		}
833	} else
834#endif
835	  if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
836		child->dev_type = SAS_END_DEVICE;
837		rphy = sas_end_device_alloc(phy->port);
838		/* FIXME: error handling */
839		if (unlikely(!rphy))
840			goto out_free;
841		child->tproto = phy->attached_tproto;
842		sas_init_dev(child);
843
844		child->rphy = rphy;
845		get_device(&rphy->dev);
846		sas_fill_in_rphy(child, rphy);
847
848		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
849
850		res = sas_discover_end_dev(child);
851		if (res) {
852			SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
853				    "at %016llx:0x%x returned 0x%x\n",
854				    SAS_ADDR(child->sas_addr),
855				    SAS_ADDR(parent->sas_addr), phy_id, res);
856			goto out_list_del;
857		}
858	} else {
859		SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
860			    phy->attached_tproto, SAS_ADDR(parent->sas_addr),
861			    phy_id);
862		goto out_free;
863	}
864
865	list_add_tail(&child->siblings, &parent_ex->children);
866	return child;
867
868 out_list_del:
869	sas_rphy_free(child->rphy);
870	list_del(&child->disco_list_node);
871	spin_lock_irq(&parent->port->dev_list_lock);
872	list_del(&child->dev_list_node);
873	spin_unlock_irq(&parent->port->dev_list_lock);
874 out_free:
875	sas_port_delete(phy->port);
876 out_err:
877	phy->port = NULL;
878	sas_put_device(child);
879	return NULL;
880}
881
882/* See if this phy is part of a wide port */
883static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
884{
885	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
886	int i;
887
888	for (i = 0; i < parent->ex_dev.num_phys; i++) {
889		struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
890
891		if (ephy == phy)
892			continue;
893
894		if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
895			    SAS_ADDR_SIZE) && ephy->port) {
896			sas_port_add_phy(ephy->port, phy->phy);
897			phy->port = ephy->port;
898			phy->phy_state = PHY_DEVICE_DISCOVERED;
899			return true;
900		}
901	}
902
903	return false;
904}
905
906static struct domain_device *sas_ex_discover_expander(
907	struct domain_device *parent, int phy_id)
908{
909	struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
910	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
911	struct domain_device *child = NULL;
912	struct sas_rphy *rphy;
913	struct sas_expander_device *edev;
914	struct asd_sas_port *port;
915	int res;
916
917	if (phy->routing_attr == DIRECT_ROUTING) {
918		SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
919			    "allowed\n",
920			    SAS_ADDR(parent->sas_addr), phy_id,
921			    SAS_ADDR(phy->attached_sas_addr),
922			    phy->attached_phy_id);
923		return NULL;
924	}
925	child = sas_alloc_device();
926	if (!child)
927		return NULL;
928
929	phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
930	/* FIXME: better error handling */
931	BUG_ON(sas_port_add(phy->port) != 0);
932
933
934	switch (phy->attached_dev_type) {
935	case SAS_EDGE_EXPANDER_DEVICE:
936		rphy = sas_expander_alloc(phy->port,
937					  SAS_EDGE_EXPANDER_DEVICE);
938		break;
939	case SAS_FANOUT_EXPANDER_DEVICE:
940		rphy = sas_expander_alloc(phy->port,
941					  SAS_FANOUT_EXPANDER_DEVICE);
942		break;
943	default:
944		rphy = NULL;	/* shut gcc up */
945		BUG();
946	}
947	port = parent->port;
948	child->rphy = rphy;
949	get_device(&rphy->dev);
950	edev = rphy_to_expander_device(rphy);
951	child->dev_type = phy->attached_dev_type;
952	kref_get(&parent->kref);
953	child->parent = parent;
954	child->port = port;
955	child->iproto = phy->attached_iproto;
956	child->tproto = phy->attached_tproto;
957	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
958	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
959	sas_ex_get_linkrate(parent, child, phy);
960	edev->level = parent_ex->level + 1;
961	parent->port->disc.max_level = max(parent->port->disc.max_level,
962					   edev->level);
963	sas_init_dev(child);
964	sas_fill_in_rphy(child, rphy);
965	sas_rphy_add(rphy);
966
967	spin_lock_irq(&parent->port->dev_list_lock);
968	list_add_tail(&child->dev_list_node, &parent->port->dev_list);
969	spin_unlock_irq(&parent->port->dev_list_lock);
970
971	res = sas_discover_expander(child);
972	if (res) {
973		sas_rphy_delete(rphy);
974		spin_lock_irq(&parent->port->dev_list_lock);
975		list_del(&child->dev_list_node);
976		spin_unlock_irq(&parent->port->dev_list_lock);
977		sas_put_device(child);
978		return NULL;
979	}
980	list_add_tail(&child->siblings, &parent->ex_dev.children);
981	return child;
982}
983
984static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
985{
986	struct expander_device *ex = &dev->ex_dev;
987	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
988	struct domain_device *child = NULL;
989	int res = 0;
990
991	/* Phy state */
992	if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
993		if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
994			res = sas_ex_phy_discover(dev, phy_id);
995		if (res)
996			return res;
997	}
998
999	/* Parent and domain coherency */
1000	if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1001			     SAS_ADDR(dev->port->sas_addr))) {
1002		sas_add_parent_port(dev, phy_id);
1003		return 0;
1004	}
1005	if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1006			    SAS_ADDR(dev->parent->sas_addr))) {
1007		sas_add_parent_port(dev, phy_id);
1008		if (ex_phy->routing_attr == TABLE_ROUTING)
1009			sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1010		return 0;
1011	}
1012
1013	if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1014		sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1015
1016	if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1017		if (ex_phy->routing_attr == DIRECT_ROUTING) {
1018			memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1019			sas_configure_routing(dev, ex_phy->attached_sas_addr);
1020		}
1021		return 0;
1022	} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1023		return 0;
1024
1025	if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1026	    ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1027	    ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1028	    ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1029		SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
1030			    "phy 0x%x\n", ex_phy->attached_dev_type,
1031			    SAS_ADDR(dev->sas_addr),
1032			    phy_id);
1033		return 0;
1034	}
1035
1036	res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1037	if (res) {
1038		SAS_DPRINTK("configure routing for dev %016llx "
1039			    "reported 0x%x. Forgotten\n",
1040			    SAS_ADDR(ex_phy->attached_sas_addr), res);
1041		sas_disable_routing(dev, ex_phy->attached_sas_addr);
1042		return res;
1043	}
1044
1045	if (sas_ex_join_wide_port(dev, phy_id)) {
1046		SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1047			    phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1048		return res;
1049	}
1050
1051	switch (ex_phy->attached_dev_type) {
1052	case SAS_END_DEVICE:
1053	case SAS_SATA_PENDING:
1054		child = sas_ex_discover_end_dev(dev, phy_id);
1055		break;
1056	case SAS_FANOUT_EXPANDER_DEVICE:
1057		if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1058			SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
1059				    "attached to ex %016llx phy 0x%x\n",
1060				    SAS_ADDR(ex_phy->attached_sas_addr),
1061				    ex_phy->attached_phy_id,
1062				    SAS_ADDR(dev->sas_addr),
1063				    phy_id);
1064			sas_ex_disable_phy(dev, phy_id);
1065			break;
1066		} else
1067			memcpy(dev->port->disc.fanout_sas_addr,
1068			       ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1069		/* fallthrough */
1070	case SAS_EDGE_EXPANDER_DEVICE:
1071		child = sas_ex_discover_expander(dev, phy_id);
1072		break;
1073	default:
1074		break;
1075	}
1076
1077	if (child) {
1078		int i;
1079
1080		for (i = 0; i < ex->num_phys; i++) {
1081			if (ex->ex_phy[i].phy_state == PHY_VACANT ||
1082			    ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
1083				continue;
1084			/*
1085			 * Due to races, the phy might not get added to the
1086			 * wide port, so we add the phy to the wide port here.
1087			 */
1088			if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
1089			    SAS_ADDR(child->sas_addr)) {
1090				ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
1091				if (sas_ex_join_wide_port(dev, i))
1092					SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1093						    i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
1094
1095			}
1096		}
1097	}
1098
1099	return res;
1100}
1101
1102static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1103{
1104	struct expander_device *ex = &dev->ex_dev;
1105	int i;
1106
1107	for (i = 0; i < ex->num_phys; i++) {
1108		struct ex_phy *phy = &ex->ex_phy[i];
1109
1110		if (phy->phy_state == PHY_VACANT ||
1111		    phy->phy_state == PHY_NOT_PRESENT)
1112			continue;
1113
1114		if ((phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1115		     phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE) &&
1116		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1117
1118			memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1119
1120			return 1;
1121		}
1122	}
1123	return 0;
1124}
1125
1126static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1127{
1128	struct expander_device *ex = &dev->ex_dev;
1129	struct domain_device *child;
1130	u8 sub_addr[8] = {0, };
1131
1132	list_for_each_entry(child, &ex->children, siblings) {
1133		if (child->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1134		    child->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1135			continue;
1136		if (sub_addr[0] == 0) {
1137			sas_find_sub_addr(child, sub_addr);
1138			continue;
1139		} else {
1140			u8 s2[8];
1141
1142			if (sas_find_sub_addr(child, s2) &&
1143			    (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1144
1145				SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1146					    "diverges from subtractive "
1147					    "boundary %016llx\n",
1148					    SAS_ADDR(dev->sas_addr),
1149					    SAS_ADDR(child->sas_addr),
1150					    SAS_ADDR(s2),
1151					    SAS_ADDR(sub_addr));
1152
1153				sas_ex_disable_port(child, s2);
1154			}
1155		}
1156	}
1157	return 0;
1158}
1159/**
1160 * sas_ex_discover_devices -- discover devices attached to this expander
1161 * dev: pointer to the expander domain device
1162 * single: if you want to do a single phy, else set to -1;
1163 *
1164 * Configure this expander for use with its devices and register the
1165 * devices of this expander.
1166 */
1167static int sas_ex_discover_devices(struct domain_device *dev, int single)
1168{
1169	struct expander_device *ex = &dev->ex_dev;
1170	int i = 0, end = ex->num_phys;
1171	int res = 0;
1172
1173	if (0 <= single && single < end) {
1174		i = single;
1175		end = i+1;
1176	}
1177
1178	for ( ; i < end; i++) {
1179		struct ex_phy *ex_phy = &ex->ex_phy[i];
1180
1181		if (ex_phy->phy_state == PHY_VACANT ||
1182		    ex_phy->phy_state == PHY_NOT_PRESENT ||
1183		    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1184			continue;
1185
1186		switch (ex_phy->linkrate) {
1187		case SAS_PHY_DISABLED:
1188		case SAS_PHY_RESET_PROBLEM:
1189		case SAS_SATA_PORT_SELECTOR:
1190			continue;
1191		default:
1192			res = sas_ex_discover_dev(dev, i);
1193			if (res)
1194				break;
1195			continue;
1196		}
1197	}
1198
1199	if (!res)
1200		sas_check_level_subtractive_boundary(dev);
1201
1202	return res;
1203}
1204
1205static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1206{
1207	struct expander_device *ex = &dev->ex_dev;
1208	int i;
1209	u8  *sub_sas_addr = NULL;
1210
1211	if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1212		return 0;
1213
1214	for (i = 0; i < ex->num_phys; i++) {
1215		struct ex_phy *phy = &ex->ex_phy[i];
1216
1217		if (phy->phy_state == PHY_VACANT ||
1218		    phy->phy_state == PHY_NOT_PRESENT)
1219			continue;
1220
1221		if ((phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE ||
1222		     phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE) &&
1223		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1224
1225			if (!sub_sas_addr)
1226				sub_sas_addr = &phy->attached_sas_addr[0];
1227			else if (SAS_ADDR(sub_sas_addr) !=
1228				 SAS_ADDR(phy->attached_sas_addr)) {
1229
1230				SAS_DPRINTK("ex %016llx phy 0x%x "
1231					    "diverges(%016llx) on subtractive "
1232					    "boundary(%016llx). Disabled\n",
1233					    SAS_ADDR(dev->sas_addr), i,
1234					    SAS_ADDR(phy->attached_sas_addr),
1235					    SAS_ADDR(sub_sas_addr));
1236				sas_ex_disable_phy(dev, i);
1237			}
1238		}
1239	}
1240	return 0;
1241}
1242
1243static void sas_print_parent_topology_bug(struct domain_device *child,
1244						 struct ex_phy *parent_phy,
1245						 struct ex_phy *child_phy)
1246{
1247	static const char *ex_type[] = {
1248		[SAS_EDGE_EXPANDER_DEVICE] = "edge",
1249		[SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1250	};
1251	struct domain_device *parent = child->parent;
1252
1253	sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx "
1254		   "phy 0x%x has %c:%c routing link!\n",
1255
1256		   ex_type[parent->dev_type],
1257		   SAS_ADDR(parent->sas_addr),
1258		   parent_phy->phy_id,
1259
1260		   ex_type[child->dev_type],
1261		   SAS_ADDR(child->sas_addr),
1262		   child_phy->phy_id,
1263
1264		   sas_route_char(parent, parent_phy),
1265		   sas_route_char(child, child_phy));
1266}
1267
1268static int sas_check_eeds(struct domain_device *child,
1269				 struct ex_phy *parent_phy,
1270				 struct ex_phy *child_phy)
1271{
1272	int res = 0;
1273	struct domain_device *parent = child->parent;
1274
1275	if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1276		res = -ENODEV;
1277		SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1278			    "phy S:0x%x, while there is a fanout ex %016llx\n",
1279			    SAS_ADDR(parent->sas_addr),
1280			    parent_phy->phy_id,
1281			    SAS_ADDR(child->sas_addr),
1282			    child_phy->phy_id,
1283			    SAS_ADDR(parent->port->disc.fanout_sas_addr));
1284	} else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1285		memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1286		       SAS_ADDR_SIZE);
1287		memcpy(parent->port->disc.eeds_b, child->sas_addr,
1288		       SAS_ADDR_SIZE);
1289	} else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1290		    SAS_ADDR(parent->sas_addr)) ||
1291		   (SAS_ADDR(parent->port->disc.eeds_a) ==
1292		    SAS_ADDR(child->sas_addr)))
1293		   &&
1294		   ((SAS_ADDR(parent->port->disc.eeds_b) ==
1295		     SAS_ADDR(parent->sas_addr)) ||
1296		    (SAS_ADDR(parent->port->disc.eeds_b) ==
1297		     SAS_ADDR(child->sas_addr))))
1298		;
1299	else {
1300		res = -ENODEV;
1301		SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1302			    "phy 0x%x link forms a third EEDS!\n",
1303			    SAS_ADDR(parent->sas_addr),
1304			    parent_phy->phy_id,
1305			    SAS_ADDR(child->sas_addr),
1306			    child_phy->phy_id);
1307	}
1308
1309	return res;
1310}
1311
1312/* Here we spill over 80 columns.  It is intentional.
1313 */
1314static int sas_check_parent_topology(struct domain_device *child)
1315{
1316	struct expander_device *child_ex = &child->ex_dev;
1317	struct expander_device *parent_ex;
1318	int i;
1319	int res = 0;
1320
1321	if (!child->parent)
1322		return 0;
1323
1324	if (child->parent->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1325	    child->parent->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1326		return 0;
1327
1328	parent_ex = &child->parent->ex_dev;
1329
1330	for (i = 0; i < parent_ex->num_phys; i++) {
1331		struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1332		struct ex_phy *child_phy;
1333
1334		if (parent_phy->phy_state == PHY_VACANT ||
1335		    parent_phy->phy_state == PHY_NOT_PRESENT)
1336			continue;
1337
1338		if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1339			continue;
1340
1341		child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1342
1343		switch (child->parent->dev_type) {
1344		case SAS_EDGE_EXPANDER_DEVICE:
1345			if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1346				if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1347				    child_phy->routing_attr != TABLE_ROUTING) {
1348					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1349					res = -ENODEV;
1350				}
1351			} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1352				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1353					res = sas_check_eeds(child, parent_phy, child_phy);
1354				} else if (child_phy->routing_attr != TABLE_ROUTING) {
1355					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1356					res = -ENODEV;
1357				}
1358			} else if (parent_phy->routing_attr == TABLE_ROUTING) {
1359				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1360				    (child_phy->routing_attr == TABLE_ROUTING &&
1361				     child_ex->t2t_supp && parent_ex->t2t_supp)) {
1362					/* All good */;
1363				} else {
1364					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1365					res = -ENODEV;
1366				}
1367			}
1368			break;
1369		case SAS_FANOUT_EXPANDER_DEVICE:
1370			if (parent_phy->routing_attr != TABLE_ROUTING ||
1371			    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1372				sas_print_parent_topology_bug(child, parent_phy, child_phy);
1373				res = -ENODEV;
1374			}
1375			break;
1376		default:
1377			break;
1378		}
1379	}
1380
1381	return res;
1382}
1383
1384#define RRI_REQ_SIZE  16
1385#define RRI_RESP_SIZE 44
1386
1387static int sas_configure_present(struct domain_device *dev, int phy_id,
1388				 u8 *sas_addr, int *index, int *present)
1389{
1390	int i, res = 0;
1391	struct expander_device *ex = &dev->ex_dev;
1392	struct ex_phy *phy = &ex->ex_phy[phy_id];
1393	u8 *rri_req;
1394	u8 *rri_resp;
1395
1396	*present = 0;
1397	*index = 0;
1398
1399	rri_req = alloc_smp_req(RRI_REQ_SIZE);
1400	if (!rri_req)
1401		return -ENOMEM;
1402
1403	rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1404	if (!rri_resp) {
1405		kfree(rri_req);
1406		return -ENOMEM;
1407	}
1408
1409	rri_req[1] = SMP_REPORT_ROUTE_INFO;
1410	rri_req[9] = phy_id;
1411
1412	for (i = 0; i < ex->max_route_indexes ; i++) {
1413		*(__be16 *)(rri_req+6) = cpu_to_be16(i);
1414		res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1415				       RRI_RESP_SIZE);
1416		if (res)
1417			goto out;
1418		res = rri_resp[2];
1419		if (res == SMP_RESP_NO_INDEX) {
1420			SAS_DPRINTK("overflow of indexes: dev %016llx "
1421				    "phy 0x%x index 0x%x\n",
1422				    SAS_ADDR(dev->sas_addr), phy_id, i);
1423			goto out;
1424		} else if (res != SMP_RESP_FUNC_ACC) {
1425			SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1426				    "result 0x%x\n", __func__,
1427				    SAS_ADDR(dev->sas_addr), phy_id, i, res);
1428			goto out;
1429		}
1430		if (SAS_ADDR(sas_addr) != 0) {
1431			if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1432				*index = i;
1433				if ((rri_resp[12] & 0x80) == 0x80)
1434					*present = 0;
1435				else
1436					*present = 1;
1437				goto out;
1438			} else if (SAS_ADDR(rri_resp+16) == 0) {
1439				*index = i;
1440				*present = 0;
1441				goto out;
1442			}
1443		} else if (SAS_ADDR(rri_resp+16) == 0 &&
1444			   phy->last_da_index < i) {
1445			phy->last_da_index = i;
1446			*index = i;
1447			*present = 0;
1448			goto out;
1449		}
1450	}
1451	res = -1;
1452out:
1453	kfree(rri_req);
1454	kfree(rri_resp);
1455	return res;
1456}
1457
1458#define CRI_REQ_SIZE  44
1459#define CRI_RESP_SIZE  8
1460
1461static int sas_configure_set(struct domain_device *dev, int phy_id,
1462			     u8 *sas_addr, int index, int include)
1463{
1464	int res;
1465	u8 *cri_req;
1466	u8 *cri_resp;
1467
1468	cri_req = alloc_smp_req(CRI_REQ_SIZE);
1469	if (!cri_req)
1470		return -ENOMEM;
1471
1472	cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1473	if (!cri_resp) {
1474		kfree(cri_req);
1475		return -ENOMEM;
1476	}
1477
1478	cri_req[1] = SMP_CONF_ROUTE_INFO;
1479	*(__be16 *)(cri_req+6) = cpu_to_be16(index);
1480	cri_req[9] = phy_id;
1481	if (SAS_ADDR(sas_addr) == 0 || !include)
1482		cri_req[12] |= 0x80;
1483	memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1484
1485	res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1486			       CRI_RESP_SIZE);
1487	if (res)
1488		goto out;
1489	res = cri_resp[2];
1490	if (res == SMP_RESP_NO_INDEX) {
1491		SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1492			    "index 0x%x\n",
1493			    SAS_ADDR(dev->sas_addr), phy_id, index);
1494	}
1495out:
1496	kfree(cri_req);
1497	kfree(cri_resp);
1498	return res;
1499}
1500
1501static int sas_configure_phy(struct domain_device *dev, int phy_id,
1502				    u8 *sas_addr, int include)
1503{
1504	int index;
1505	int present;
1506	int res;
1507
1508	res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1509	if (res)
1510		return res;
1511	if (include ^ present)
1512		return sas_configure_set(dev, phy_id, sas_addr, index,include);
1513
1514	return res;
1515}
1516
1517/**
1518 * sas_configure_parent -- configure routing table of parent
1519 * parent: parent expander
1520 * child: child expander
1521 * sas_addr: SAS port identifier of device directly attached to child
1522 */
1523static int sas_configure_parent(struct domain_device *parent,
1524				struct domain_device *child,
1525				u8 *sas_addr, int include)
1526{
1527	struct expander_device *ex_parent = &parent->ex_dev;
1528	int res = 0;
1529	int i;
1530
1531	if (parent->parent) {
1532		res = sas_configure_parent(parent->parent, parent, sas_addr,
1533					   include);
1534		if (res)
1535			return res;
1536	}
1537
1538	if (ex_parent->conf_route_table == 0) {
1539		SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1540			    SAS_ADDR(parent->sas_addr));
1541		return 0;
1542	}
1543
1544	for (i = 0; i < ex_parent->num_phys; i++) {
1545		struct ex_phy *phy = &ex_parent->ex_phy[i];
1546
1547		if ((phy->routing_attr == TABLE_ROUTING) &&
1548		    (SAS_ADDR(phy->attached_sas_addr) ==
1549		     SAS_ADDR(child->sas_addr))) {
1550			res = sas_configure_phy(parent, i, sas_addr, include);
1551			if (res)
1552				return res;
1553		}
1554	}
1555
1556	return res;
1557}
1558
1559/**
1560 * sas_configure_routing -- configure routing
1561 * dev: expander device
1562 * sas_addr: port identifier of device directly attached to the expander device
1563 */
1564static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1565{
1566	if (dev->parent)
1567		return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1568	return 0;
1569}
1570
1571static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1572{
1573	if (dev->parent)
1574		return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1575	return 0;
1576}
1577
1578/**
1579 * sas_discover_expander -- expander discovery
1580 * @ex: pointer to expander domain device
1581 *
1582 * See comment in sas_discover_sata().
1583 */
1584static int sas_discover_expander(struct domain_device *dev)
1585{
1586	int res;
1587
1588	res = sas_notify_lldd_dev_found(dev);
1589	if (res)
1590		return res;
1591
1592	res = sas_ex_general(dev);
1593	if (res)
1594		goto out_err;
1595	res = sas_ex_manuf_info(dev);
1596	if (res)
1597		goto out_err;
1598
1599	res = sas_expander_discover(dev);
1600	if (res) {
1601		SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1602			    SAS_ADDR(dev->sas_addr), res);
1603		goto out_err;
1604	}
1605
1606	sas_check_ex_subtractive_boundary(dev);
1607	res = sas_check_parent_topology(dev);
1608	if (res)
1609		goto out_err;
1610	return 0;
1611out_err:
1612	sas_notify_lldd_dev_gone(dev);
1613	return res;
1614}
1615
1616static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1617{
1618	int res = 0;
1619	struct domain_device *dev;
1620
1621	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1622		if (dev->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1623		    dev->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1624			struct sas_expander_device *ex =
1625				rphy_to_expander_device(dev->rphy);
1626
1627			if (level == ex->level)
1628				res = sas_ex_discover_devices(dev, -1);
1629			else if (level > 0)
1630				res = sas_ex_discover_devices(port->port_dev, -1);
1631
1632		}
1633	}
1634
1635	return res;
1636}
1637
1638static int sas_ex_bfs_disc(struct asd_sas_port *port)
1639{
1640	int res;
1641	int level;
1642
1643	do {
1644		level = port->disc.max_level;
1645		res = sas_ex_level_discovery(port, level);
1646		mb();
1647	} while (level < port->disc.max_level);
1648
1649	return res;
1650}
1651
1652int sas_discover_root_expander(struct domain_device *dev)
1653{
1654	int res;
1655	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1656
1657	res = sas_rphy_add(dev->rphy);
1658	if (res)
1659		goto out_err;
1660
1661	ex->level = dev->port->disc.max_level; /* 0 */
1662	res = sas_discover_expander(dev);
1663	if (res)
1664		goto out_err2;
1665
1666	sas_ex_bfs_disc(dev->port);
1667
1668	return res;
1669
1670out_err2:
1671	sas_rphy_remove(dev->rphy);
1672out_err:
1673	return res;
1674}
1675
1676/* ---------- Domain revalidation ---------- */
1677
1678static int sas_get_phy_discover(struct domain_device *dev,
1679				int phy_id, struct smp_resp *disc_resp)
1680{
1681	int res;
1682	u8 *disc_req;
1683
1684	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1685	if (!disc_req)
1686		return -ENOMEM;
1687
1688	disc_req[1] = SMP_DISCOVER;
1689	disc_req[9] = phy_id;
1690
1691	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1692			       disc_resp, DISCOVER_RESP_SIZE);
1693	if (res)
1694		goto out;
1695	else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1696		res = disc_resp->result;
1697		goto out;
1698	}
1699out:
1700	kfree(disc_req);
1701	return res;
1702}
1703
1704static int sas_get_phy_change_count(struct domain_device *dev,
1705				    int phy_id, int *pcc)
1706{
1707	int res;
1708	struct smp_resp *disc_resp;
1709
1710	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1711	if (!disc_resp)
1712		return -ENOMEM;
1713
1714	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1715	if (!res)
1716		*pcc = disc_resp->disc.change_count;
1717
1718	kfree(disc_resp);
1719	return res;
1720}
1721
1722static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1723				    u8 *sas_addr, enum sas_device_type *type)
1724{
1725	int res;
1726	struct smp_resp *disc_resp;
1727	struct discover_resp *dr;
1728
1729	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1730	if (!disc_resp)
1731		return -ENOMEM;
1732	dr = &disc_resp->disc;
1733
1734	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1735	if (res == 0) {
1736		memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8);
1737		*type = to_dev_type(dr);
1738		if (*type == 0)
1739			memset(sas_addr, 0, 8);
1740	}
1741	kfree(disc_resp);
1742	return res;
1743}
1744
1745static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1746			      int from_phy, bool update)
1747{
1748	struct expander_device *ex = &dev->ex_dev;
1749	int res = 0;
1750	int i;
1751
1752	for (i = from_phy; i < ex->num_phys; i++) {
1753		int phy_change_count = 0;
1754
1755		res = sas_get_phy_change_count(dev, i, &phy_change_count);
1756		switch (res) {
1757		case SMP_RESP_PHY_VACANT:
1758		case SMP_RESP_NO_PHY:
1759			continue;
1760		case SMP_RESP_FUNC_ACC:
1761			break;
1762		default:
1763			return res;
1764		}
1765
1766		if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1767			if (update)
1768				ex->ex_phy[i].phy_change_count =
1769					phy_change_count;
1770			*phy_id = i;
1771			return 0;
1772		}
1773	}
1774	return 0;
1775}
1776
1777static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1778{
1779	int res;
1780	u8  *rg_req;
1781	struct smp_resp  *rg_resp;
1782
1783	rg_req = alloc_smp_req(RG_REQ_SIZE);
1784	if (!rg_req)
1785		return -ENOMEM;
1786
1787	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1788	if (!rg_resp) {
1789		kfree(rg_req);
1790		return -ENOMEM;
1791	}
1792
1793	rg_req[1] = SMP_REPORT_GENERAL;
1794
1795	res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1796			       RG_RESP_SIZE);
1797	if (res)
1798		goto out;
1799	if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1800		res = rg_resp->result;
1801		goto out;
1802	}
1803
1804	*ecc = be16_to_cpu(rg_resp->rg.change_count);
1805out:
1806	kfree(rg_resp);
1807	kfree(rg_req);
1808	return res;
1809}
1810/**
1811 * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1812 * @dev:domain device to be detect.
1813 * @src_dev: the device which originated BROADCAST(CHANGE).
1814 *
1815 * Add self-configuration expander support. Suppose two expander cascading,
1816 * when the first level expander is self-configuring, hotplug the disks in
1817 * second level expander, BROADCAST(CHANGE) will not only be originated
1818 * in the second level expander, but also be originated in the first level
1819 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1820 * expander changed count in two level expanders will all increment at least
1821 * once, but the phy which chang count has changed is the source device which
1822 * we concerned.
1823 */
1824
1825static int sas_find_bcast_dev(struct domain_device *dev,
1826			      struct domain_device **src_dev)
1827{
1828	struct expander_device *ex = &dev->ex_dev;
1829	int ex_change_count = -1;
1830	int phy_id = -1;
1831	int res;
1832	struct domain_device *ch;
1833
1834	res = sas_get_ex_change_count(dev, &ex_change_count);
1835	if (res)
1836		goto out;
1837	if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1838		/* Just detect if this expander phys phy change count changed,
1839		* in order to determine if this expander originate BROADCAST,
1840		* and do not update phy change count field in our structure.
1841		*/
1842		res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1843		if (phy_id != -1) {
1844			*src_dev = dev;
1845			ex->ex_change_count = ex_change_count;
1846			SAS_DPRINTK("Expander phy change count has changed\n");
1847			return res;
1848		} else
1849			SAS_DPRINTK("Expander phys DID NOT change\n");
1850	}
1851	list_for_each_entry(ch, &ex->children, siblings) {
1852		if (ch->dev_type == SAS_EDGE_EXPANDER_DEVICE || ch->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1853			res = sas_find_bcast_dev(ch, src_dev);
1854			if (*src_dev)
1855				return res;
1856		}
1857	}
1858out:
1859	return res;
1860}
1861
1862static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1863{
1864	struct expander_device *ex = &dev->ex_dev;
1865	struct domain_device *child, *n;
1866
1867	list_for_each_entry_safe(child, n, &ex->children, siblings) {
1868		set_bit(SAS_DEV_GONE, &child->state);
1869		if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1870		    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1871			sas_unregister_ex_tree(port, child);
1872		else
1873			sas_unregister_dev(port, child);
1874	}
1875	sas_unregister_dev(port, dev);
1876}
1877
1878static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1879					 int phy_id, bool last)
1880{
1881	struct expander_device *ex_dev = &parent->ex_dev;
1882	struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1883	struct domain_device *child, *n, *found = NULL;
1884	if (last) {
1885		list_for_each_entry_safe(child, n,
1886			&ex_dev->children, siblings) {
1887			if (SAS_ADDR(child->sas_addr) ==
1888			    SAS_ADDR(phy->attached_sas_addr)) {
1889				set_bit(SAS_DEV_GONE, &child->state);
1890				if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1891				    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1892					sas_unregister_ex_tree(parent->port, child);
1893				else
1894					sas_unregister_dev(parent->port, child);
1895				found = child;
1896				break;
1897			}
1898		}
1899		sas_disable_routing(parent, phy->attached_sas_addr);
1900	}
1901	memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1902	if (phy->port) {
1903		sas_port_delete_phy(phy->port, phy->phy);
1904		sas_device_set_phy(found, phy->port);
1905		if (phy->port->num_phys == 0)
1906			sas_port_delete(phy->port);
1907		phy->port = NULL;
1908	}
1909}
1910
1911static int sas_discover_bfs_by_root_level(struct domain_device *root,
1912					  const int level)
1913{
1914	struct expander_device *ex_root = &root->ex_dev;
1915	struct domain_device *child;
1916	int res = 0;
1917
1918	list_for_each_entry(child, &ex_root->children, siblings) {
1919		if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1920		    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1921			struct sas_expander_device *ex =
1922				rphy_to_expander_device(child->rphy);
1923
1924			if (level > ex->level)
1925				res = sas_discover_bfs_by_root_level(child,
1926								     level);
1927			else if (level == ex->level)
1928				res = sas_ex_discover_devices(child, -1);
1929		}
1930	}
1931	return res;
1932}
1933
1934static int sas_discover_bfs_by_root(struct domain_device *dev)
1935{
1936	int res;
1937	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1938	int level = ex->level+1;
1939
1940	res = sas_ex_discover_devices(dev, -1);
1941	if (res)
1942		goto out;
1943	do {
1944		res = sas_discover_bfs_by_root_level(dev, level);
1945		mb();
1946		level += 1;
1947	} while (level <= dev->port->disc.max_level);
1948out:
1949	return res;
1950}
1951
1952static int sas_discover_new(struct domain_device *dev, int phy_id)
1953{
1954	struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1955	struct domain_device *child;
1956	int res;
1957
1958	SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1959		    SAS_ADDR(dev->sas_addr), phy_id);
1960	res = sas_ex_phy_discover(dev, phy_id);
1961	if (res)
1962		return res;
1963
1964	if (sas_ex_join_wide_port(dev, phy_id))
1965		return 0;
1966
1967	res = sas_ex_discover_devices(dev, phy_id);
1968	if (res)
1969		return res;
1970	list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1971		if (SAS_ADDR(child->sas_addr) ==
1972		    SAS_ADDR(ex_phy->attached_sas_addr)) {
1973			if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1974			    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1975				res = sas_discover_bfs_by_root(child);
1976			break;
1977		}
1978	}
1979	return res;
1980}
1981
1982static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1983{
1984	if (old == new)
1985		return true;
1986
1987	/* treat device directed resets as flutter, if we went
1988	 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1989	 */
1990	if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
1991	    (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
1992		return true;
1993
1994	return false;
1995}
1996
1997static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
1998{
1999	struct expander_device *ex = &dev->ex_dev;
2000	struct ex_phy *phy = &ex->ex_phy[phy_id];
2001	enum sas_device_type type = SAS_PHY_UNUSED;
2002	u8 sas_addr[8];
2003	int res;
2004
2005	memset(sas_addr, 0, 8);
2006	res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
2007	switch (res) {
2008	case SMP_RESP_NO_PHY:
2009		phy->phy_state = PHY_NOT_PRESENT;
2010		sas_unregister_devs_sas_addr(dev, phy_id, last);
2011		return res;
2012	case SMP_RESP_PHY_VACANT:
2013		phy->phy_state = PHY_VACANT;
2014		sas_unregister_devs_sas_addr(dev, phy_id, last);
2015		return res;
2016	case SMP_RESP_FUNC_ACC:
2017		break;
2018	case -ECOMM:
2019		break;
2020	default:
2021		return res;
2022	}
2023
2024	if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2025		phy->phy_state = PHY_EMPTY;
2026		sas_unregister_devs_sas_addr(dev, phy_id, last);
2027		return res;
2028	} else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2029		   dev_type_flutter(type, phy->attached_dev_type)) {
2030		struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2031		char *action = "";
2032
2033		sas_ex_phy_discover(dev, phy_id);
2034
2035		if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2036			action = ", needs recovery";
2037		SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n",
2038			    SAS_ADDR(dev->sas_addr), phy_id, action);
2039		return res;
2040	}
2041
2042	/* delete the old link */
2043	if (SAS_ADDR(phy->attached_sas_addr) &&
2044	    SAS_ADDR(sas_addr) != SAS_ADDR(phy->attached_sas_addr)) {
2045		SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n",
2046			    SAS_ADDR(dev->sas_addr), phy_id,
2047			    SAS_ADDR(phy->attached_sas_addr));
2048		sas_unregister_devs_sas_addr(dev, phy_id, last);
2049	}
2050
2051	return sas_discover_new(dev, phy_id);
2052}
2053
2054/**
2055 * sas_rediscover - revalidate the domain.
2056 * @dev:domain device to be detect.
2057 * @phy_id: the phy id will be detected.
2058 *
2059 * NOTE: this process _must_ quit (return) as soon as any connection
2060 * errors are encountered.  Connection recovery is done elsewhere.
2061 * Discover process only interrogates devices in order to discover the
2062 * domain.For plugging out, we un-register the device only when it is
2063 * the last phy in the port, for other phys in this port, we just delete it
2064 * from the port.For inserting, we do discovery when it is the
2065 * first phy,for other phys in this port, we add it to the port to
2066 * forming the wide-port.
2067 */
2068static int sas_rediscover(struct domain_device *dev, const int phy_id)
2069{
2070	struct expander_device *ex = &dev->ex_dev;
2071	struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2072	int res = 0;
2073	int i;
2074	bool last = true;	/* is this the last phy of the port */
2075
2076	SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2077		    SAS_ADDR(dev->sas_addr), phy_id);
2078
2079	if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2080		for (i = 0; i < ex->num_phys; i++) {
2081			struct ex_phy *phy = &ex->ex_phy[i];
2082
2083			if (i == phy_id)
2084				continue;
2085			if (SAS_ADDR(phy->attached_sas_addr) ==
2086			    SAS_ADDR(changed_phy->attached_sas_addr)) {
2087				SAS_DPRINTK("phy%d part of wide port with "
2088					    "phy%d\n", phy_id, i);
2089				last = false;
2090				break;
2091			}
2092		}
2093		res = sas_rediscover_dev(dev, phy_id, last);
2094	} else
2095		res = sas_discover_new(dev, phy_id);
2096	return res;
2097}
2098
2099/**
2100 * sas_revalidate_domain -- revalidate the domain
2101 * @port: port to the domain of interest
2102 *
2103 * NOTE: this process _must_ quit (return) as soon as any connection
2104 * errors are encountered.  Connection recovery is done elsewhere.
2105 * Discover process only interrogates devices in order to discover the
2106 * domain.
2107 */
2108int sas_ex_revalidate_domain(struct domain_device *port_dev)
2109{
2110	int res;
2111	struct domain_device *dev = NULL;
2112
2113	res = sas_find_bcast_dev(port_dev, &dev);
2114	while (res == 0 && dev) {
2115		struct expander_device *ex = &dev->ex_dev;
2116		int i = 0, phy_id;
2117
2118		do {
2119			phy_id = -1;
2120			res = sas_find_bcast_phy(dev, &phy_id, i, true);
2121			if (phy_id == -1)
2122				break;
2123			res = sas_rediscover(dev, phy_id);
2124			i = phy_id + 1;
2125		} while (i < ex->num_phys);
2126
2127		dev = NULL;
2128		res = sas_find_bcast_dev(port_dev, &dev);
2129	}
2130	return res;
2131}
2132
2133int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
2134		    struct request *req)
2135{
2136	struct domain_device *dev;
2137	int ret, type;
2138	struct request *rsp = req->next_rq;
2139
2140	if (!rsp) {
2141		printk("%s: space for a smp response is missing\n",
2142		       __func__);
2143		return -EINVAL;
2144	}
2145
2146	/* no rphy means no smp target support (ie aic94xx host) */
2147	if (!rphy)
2148		return sas_smp_host_handler(shost, req, rsp);
2149
2150	type = rphy->identify.device_type;
2151
2152	if (type != SAS_EDGE_EXPANDER_DEVICE &&
2153	    type != SAS_FANOUT_EXPANDER_DEVICE) {
2154		printk("%s: can we send a smp request to a device?\n",
2155		       __func__);
2156		return -EINVAL;
2157	}
2158
2159	dev = sas_find_dev_by_rphy(rphy);
2160	if (!dev) {
2161		printk("%s: fail to find a domain_device?\n", __func__);
2162		return -EINVAL;
2163	}
2164
2165	/* do we need to support multiple segments? */
2166	if (bio_multiple_segments(req->bio) ||
2167	    bio_multiple_segments(rsp->bio)) {
2168		printk("%s: multiple segments req %u, rsp %u\n",
2169		       __func__, blk_rq_bytes(req), blk_rq_bytes(rsp));
2170		return -EINVAL;
2171	}
2172
2173	ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req),
2174			       bio_data(rsp->bio), blk_rq_bytes(rsp));
2175	if (ret > 0) {
2176		/* positive number is the untransferred residual */
2177		rsp->resid_len = ret;
2178		req->resid_len = 0;
2179		ret = 0;
2180	} else if (ret == 0) {
2181		rsp->resid_len = 0;
2182		req->resid_len = 0;
2183	}
2184
2185	return ret;
2186}
2187