1/*
2 * This file is part of the Chelsio FCoE driver for Linux.
3 *
4 * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses.  You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 *     Redistribution and use in source and binary forms, with or
13 *     without modification, are permitted provided that the following
14 *     conditions are met:
15 *
16 *      - Redistributions of source code must retain the above
17 *        copyright notice, this list of conditions and the following
18 *        disclaimer.
19 *
20 *      - Redistributions in binary form must reproduce the above
21 *        copyright notice, this list of conditions and the following
22 *        disclaimer in the documentation and/or other materials
23 *        provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35#include <linux/pci.h>
36#include <linux/pci_regs.h>
37#include <linux/firmware.h>
38#include <linux/stddef.h>
39#include <linux/delay.h>
40#include <linux/string.h>
41#include <linux/compiler.h>
42#include <linux/jiffies.h>
43#include <linux/kernel.h>
44#include <linux/log2.h>
45
46#include "csio_hw.h"
47#include "csio_lnode.h"
48#include "csio_rnode.h"
49
50int csio_dbg_level = 0xFEFF;
51unsigned int csio_port_mask = 0xf;
52
53/* Default FW event queue entries. */
54static uint32_t csio_evtq_sz = CSIO_EVTQ_SIZE;
55
56/* Default MSI param level */
57int csio_msi = 2;
58
59/* FCoE function instances */
60static int dev_num;
61
62/* FCoE Adapter types & its description */
63static const struct csio_adap_desc csio_t5_fcoe_adapters[] = {
64	{"T580-Dbg 10G", "Chelsio T580-Dbg 10G [FCoE]"},
65	{"T520-CR 10G", "Chelsio T520-CR 10G [FCoE]"},
66	{"T522-CR 10G/1G", "Chelsio T522-CR 10G/1G [FCoE]"},
67	{"T540-CR 10G", "Chelsio T540-CR 10G [FCoE]"},
68	{"T520-BCH 10G", "Chelsio T520-BCH 10G [FCoE]"},
69	{"T540-BCH 10G", "Chelsio T540-BCH 10G [FCoE]"},
70	{"T540-CH 10G", "Chelsio T540-CH 10G [FCoE]"},
71	{"T520-SO 10G", "Chelsio T520-SO 10G [FCoE]"},
72	{"T520-CX4 10G", "Chelsio T520-CX4 10G [FCoE]"},
73	{"T520-BT 10G", "Chelsio T520-BT 10G [FCoE]"},
74	{"T504-BT 1G", "Chelsio T504-BT 1G [FCoE]"},
75	{"B520-SR 10G", "Chelsio B520-SR 10G [FCoE]"},
76	{"B504-BT 1G", "Chelsio B504-BT 1G [FCoE]"},
77	{"T580-CR 10G", "Chelsio T580-CR 10G [FCoE]"},
78	{"T540-LP-CR 10G", "Chelsio T540-LP-CR 10G [FCoE]"},
79	{"AMSTERDAM 10G", "Chelsio AMSTERDAM 10G [FCoE]"},
80	{"T580-LP-CR 40G", "Chelsio T580-LP-CR 40G [FCoE]"},
81	{"T520-LL-CR 10G", "Chelsio T520-LL-CR 10G [FCoE]"},
82	{"T560-CR 40G", "Chelsio T560-CR 40G [FCoE]"},
83	{"T580-CR 40G", "Chelsio T580-CR 40G [FCoE]"},
84	{"T580-SO 40G", "Chelsio T580-SO 40G [FCoE]"},
85	{"T502-BT 1G", "Chelsio T502-BT 1G [FCoE]"}
86};
87
88static void csio_mgmtm_cleanup(struct csio_mgmtm *);
89static void csio_hw_mbm_cleanup(struct csio_hw *);
90
91/* State machine forward declarations */
92static void csio_hws_uninit(struct csio_hw *, enum csio_hw_ev);
93static void csio_hws_configuring(struct csio_hw *, enum csio_hw_ev);
94static void csio_hws_initializing(struct csio_hw *, enum csio_hw_ev);
95static void csio_hws_ready(struct csio_hw *, enum csio_hw_ev);
96static void csio_hws_quiescing(struct csio_hw *, enum csio_hw_ev);
97static void csio_hws_quiesced(struct csio_hw *, enum csio_hw_ev);
98static void csio_hws_resetting(struct csio_hw *, enum csio_hw_ev);
99static void csio_hws_removing(struct csio_hw *, enum csio_hw_ev);
100static void csio_hws_pcierr(struct csio_hw *, enum csio_hw_ev);
101
102static void csio_hw_initialize(struct csio_hw *hw);
103static void csio_evtq_stop(struct csio_hw *hw);
104static void csio_evtq_start(struct csio_hw *hw);
105
106int csio_is_hw_ready(struct csio_hw *hw)
107{
108	return csio_match_state(hw, csio_hws_ready);
109}
110
111int csio_is_hw_removing(struct csio_hw *hw)
112{
113	return csio_match_state(hw, csio_hws_removing);
114}
115
116
117/*
118 *	csio_hw_wait_op_done_val - wait until an operation is completed
119 *	@hw: the HW module
120 *	@reg: the register to check for completion
121 *	@mask: a single-bit field within @reg that indicates completion
122 *	@polarity: the value of the field when the operation is completed
123 *	@attempts: number of check iterations
124 *	@delay: delay in usecs between iterations
125 *	@valp: where to store the value of the register at completion time
126 *
127 *	Wait until an operation is completed by checking a bit in a register
128 *	up to @attempts times.  If @valp is not NULL the value of the register
129 *	at the time it indicated completion is stored there.  Returns 0 if the
130 *	operation completes and	-EAGAIN	otherwise.
131 */
132int
133csio_hw_wait_op_done_val(struct csio_hw *hw, int reg, uint32_t mask,
134			 int polarity, int attempts, int delay, uint32_t *valp)
135{
136	uint32_t val;
137	while (1) {
138		val = csio_rd_reg32(hw, reg);
139
140		if (!!(val & mask) == polarity) {
141			if (valp)
142				*valp = val;
143			return 0;
144		}
145
146		if (--attempts == 0)
147			return -EAGAIN;
148		if (delay)
149			udelay(delay);
150	}
151}
152
153/*
154 *	csio_hw_tp_wr_bits_indirect - set/clear bits in an indirect TP register
155 *	@hw: the adapter
156 *	@addr: the indirect TP register address
157 *	@mask: specifies the field within the register to modify
158 *	@val: new value for the field
159 *
160 *	Sets a field of an indirect TP register to the given value.
161 */
162void
163csio_hw_tp_wr_bits_indirect(struct csio_hw *hw, unsigned int addr,
164			unsigned int mask, unsigned int val)
165{
166	csio_wr_reg32(hw, addr, TP_PIO_ADDR_A);
167	val |= csio_rd_reg32(hw, TP_PIO_DATA_A) & ~mask;
168	csio_wr_reg32(hw, val, TP_PIO_DATA_A);
169}
170
171void
172csio_set_reg_field(struct csio_hw *hw, uint32_t reg, uint32_t mask,
173		   uint32_t value)
174{
175	uint32_t val = csio_rd_reg32(hw, reg) & ~mask;
176
177	csio_wr_reg32(hw, val | value, reg);
178	/* Flush */
179	csio_rd_reg32(hw, reg);
180
181}
182
183static int
184csio_memory_write(struct csio_hw *hw, int mtype, u32 addr, u32 len, u32 *buf)
185{
186	return hw->chip_ops->chip_memory_rw(hw, MEMWIN_CSIOSTOR, mtype,
187					    addr, len, buf, 0);
188}
189
190/*
191 * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
192 */
193#define EEPROM_MAX_RD_POLL	40
194#define EEPROM_MAX_WR_POLL	6
195#define EEPROM_STAT_ADDR	0x7bfc
196#define VPD_BASE		0x400
197#define VPD_BASE_OLD		0
198#define VPD_LEN			1024
199#define VPD_INFO_FLD_HDR_SIZE	3
200
201/*
202 *	csio_hw_seeprom_read - read a serial EEPROM location
203 *	@hw: hw to read
204 *	@addr: EEPROM virtual address
205 *	@data: where to store the read data
206 *
207 *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
208 *	VPD capability.  Note that this function must be called with a virtual
209 *	address.
210 */
211static int
212csio_hw_seeprom_read(struct csio_hw *hw, uint32_t addr, uint32_t *data)
213{
214	uint16_t val = 0;
215	int attempts = EEPROM_MAX_RD_POLL;
216	uint32_t base = hw->params.pci.vpd_cap_addr;
217
218	if (addr >= EEPROMVSIZE || (addr & 3))
219		return -EINVAL;
220
221	pci_write_config_word(hw->pdev, base + PCI_VPD_ADDR, (uint16_t)addr);
222
223	do {
224		udelay(10);
225		pci_read_config_word(hw->pdev, base + PCI_VPD_ADDR, &val);
226	} while (!(val & PCI_VPD_ADDR_F) && --attempts);
227
228	if (!(val & PCI_VPD_ADDR_F)) {
229		csio_err(hw, "reading EEPROM address 0x%x failed\n", addr);
230		return -EINVAL;
231	}
232
233	pci_read_config_dword(hw->pdev, base + PCI_VPD_DATA, data);
234	*data = le32_to_cpu(*(__le32 *)data);
235
236	return 0;
237}
238
239/*
240 * Partial EEPROM Vital Product Data structure.  Includes only the ID and
241 * VPD-R sections.
242 */
243struct t4_vpd_hdr {
244	u8  id_tag;
245	u8  id_len[2];
246	u8  id_data[ID_LEN];
247	u8  vpdr_tag;
248	u8  vpdr_len[2];
249};
250
251/*
252 *	csio_hw_get_vpd_keyword_val - Locates an information field keyword in
253 *				      the VPD
254 *	@v: Pointer to buffered vpd data structure
255 *	@kw: The keyword to search for
256 *
257 *	Returns the value of the information field keyword or
258 *	-EINVAL otherwise.
259 */
260static int
261csio_hw_get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw)
262{
263	int32_t i;
264	int32_t offset , len;
265	const uint8_t *buf = &v->id_tag;
266	const uint8_t *vpdr_len = &v->vpdr_tag;
267	offset = sizeof(struct t4_vpd_hdr);
268	len =  (uint16_t)vpdr_len[1] + ((uint16_t)vpdr_len[2] << 8);
269
270	if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN)
271		return -EINVAL;
272
273	for (i = offset; (i + VPD_INFO_FLD_HDR_SIZE) <= (offset + len);) {
274		if (memcmp(buf + i , kw, 2) == 0) {
275			i += VPD_INFO_FLD_HDR_SIZE;
276			return i;
277		}
278
279		i += VPD_INFO_FLD_HDR_SIZE + buf[i+2];
280	}
281
282	return -EINVAL;
283}
284
285static int
286csio_pci_capability(struct pci_dev *pdev, int cap, int *pos)
287{
288	*pos = pci_find_capability(pdev, cap);
289	if (*pos)
290		return 0;
291
292	return -1;
293}
294
295/*
296 *	csio_hw_get_vpd_params - read VPD parameters from VPD EEPROM
297 *	@hw: HW module
298 *	@p: where to store the parameters
299 *
300 *	Reads card parameters stored in VPD EEPROM.
301 */
302static int
303csio_hw_get_vpd_params(struct csio_hw *hw, struct csio_vpd *p)
304{
305	int i, ret, ec, sn, addr;
306	uint8_t *vpd, csum;
307	const struct t4_vpd_hdr *v;
308	/* To get around compilation warning from strstrip */
309	char *s;
310
311	if (csio_is_valid_vpd(hw))
312		return 0;
313
314	ret = csio_pci_capability(hw->pdev, PCI_CAP_ID_VPD,
315				  &hw->params.pci.vpd_cap_addr);
316	if (ret)
317		return -EINVAL;
318
319	vpd = kzalloc(VPD_LEN, GFP_ATOMIC);
320	if (vpd == NULL)
321		return -ENOMEM;
322
323	/*
324	 * Card information normally starts at VPD_BASE but early cards had
325	 * it at 0.
326	 */
327	ret = csio_hw_seeprom_read(hw, VPD_BASE, (uint32_t *)(vpd));
328	addr = *vpd == 0x82 ? VPD_BASE : VPD_BASE_OLD;
329
330	for (i = 0; i < VPD_LEN; i += 4) {
331		ret = csio_hw_seeprom_read(hw, addr + i, (uint32_t *)(vpd + i));
332		if (ret) {
333			kfree(vpd);
334			return ret;
335		}
336	}
337
338	/* Reset the VPD flag! */
339	hw->flags &= (~CSIO_HWF_VPD_VALID);
340
341	v = (const struct t4_vpd_hdr *)vpd;
342
343#define FIND_VPD_KW(var, name) do { \
344	var = csio_hw_get_vpd_keyword_val(v, name); \
345	if (var < 0) { \
346		csio_err(hw, "missing VPD keyword " name "\n"); \
347		kfree(vpd); \
348		return -EINVAL; \
349	} \
350} while (0)
351
352	FIND_VPD_KW(i, "RV");
353	for (csum = 0; i >= 0; i--)
354		csum += vpd[i];
355
356	if (csum) {
357		csio_err(hw, "corrupted VPD EEPROM, actual csum %u\n", csum);
358		kfree(vpd);
359		return -EINVAL;
360	}
361	FIND_VPD_KW(ec, "EC");
362	FIND_VPD_KW(sn, "SN");
363#undef FIND_VPD_KW
364
365	memcpy(p->id, v->id_data, ID_LEN);
366	s = strstrip(p->id);
367	memcpy(p->ec, vpd + ec, EC_LEN);
368	s = strstrip(p->ec);
369	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
370	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
371	s = strstrip(p->sn);
372
373	csio_valid_vpd_copied(hw);
374
375	kfree(vpd);
376	return 0;
377}
378
379/*
380 *	csio_hw_sf1_read - read data from the serial flash
381 *	@hw: the HW module
382 *	@byte_cnt: number of bytes to read
383 *	@cont: whether another operation will be chained
384 *      @lock: whether to lock SF for PL access only
385 *	@valp: where to store the read data
386 *
387 *	Reads up to 4 bytes of data from the serial flash.  The location of
388 *	the read needs to be specified prior to calling this by issuing the
389 *	appropriate commands to the serial flash.
390 */
391static int
392csio_hw_sf1_read(struct csio_hw *hw, uint32_t byte_cnt, int32_t cont,
393		 int32_t lock, uint32_t *valp)
394{
395	int ret;
396
397	if (!byte_cnt || byte_cnt > 4)
398		return -EINVAL;
399	if (csio_rd_reg32(hw, SF_OP_A) & SF_BUSY_F)
400		return -EBUSY;
401
402	csio_wr_reg32(hw,  SF_LOCK_V(lock) | SF_CONT_V(cont) |
403		      BYTECNT_V(byte_cnt - 1), SF_OP_A);
404	ret = csio_hw_wait_op_done_val(hw, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS,
405				       10, NULL);
406	if (!ret)
407		*valp = csio_rd_reg32(hw, SF_DATA_A);
408	return ret;
409}
410
411/*
412 *	csio_hw_sf1_write - write data to the serial flash
413 *	@hw: the HW module
414 *	@byte_cnt: number of bytes to write
415 *	@cont: whether another operation will be chained
416 *      @lock: whether to lock SF for PL access only
417 *	@val: value to write
418 *
419 *	Writes up to 4 bytes of data to the serial flash.  The location of
420 *	the write needs to be specified prior to calling this by issuing the
421 *	appropriate commands to the serial flash.
422 */
423static int
424csio_hw_sf1_write(struct csio_hw *hw, uint32_t byte_cnt, uint32_t cont,
425		  int32_t lock, uint32_t val)
426{
427	if (!byte_cnt || byte_cnt > 4)
428		return -EINVAL;
429	if (csio_rd_reg32(hw, SF_OP_A) & SF_BUSY_F)
430		return -EBUSY;
431
432	csio_wr_reg32(hw, val, SF_DATA_A);
433	csio_wr_reg32(hw, SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) |
434		      OP_V(1) | SF_LOCK_V(lock), SF_OP_A);
435
436	return csio_hw_wait_op_done_val(hw, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS,
437					10, NULL);
438}
439
440/*
441 *	csio_hw_flash_wait_op - wait for a flash operation to complete
442 *	@hw: the HW module
443 *	@attempts: max number of polls of the status register
444 *	@delay: delay between polls in ms
445 *
446 *	Wait for a flash operation to complete by polling the status register.
447 */
448static int
449csio_hw_flash_wait_op(struct csio_hw *hw, int32_t attempts, int32_t delay)
450{
451	int ret;
452	uint32_t status;
453
454	while (1) {
455		ret = csio_hw_sf1_write(hw, 1, 1, 1, SF_RD_STATUS);
456		if (ret != 0)
457			return ret;
458
459		ret = csio_hw_sf1_read(hw, 1, 0, 1, &status);
460		if (ret != 0)
461			return ret;
462
463		if (!(status & 1))
464			return 0;
465		if (--attempts == 0)
466			return -EAGAIN;
467		if (delay)
468			msleep(delay);
469	}
470}
471
472/*
473 *	csio_hw_read_flash - read words from serial flash
474 *	@hw: the HW module
475 *	@addr: the start address for the read
476 *	@nwords: how many 32-bit words to read
477 *	@data: where to store the read data
478 *	@byte_oriented: whether to store data as bytes or as words
479 *
480 *	Read the specified number of 32-bit words from the serial flash.
481 *	If @byte_oriented is set the read data is stored as a byte array
482 *	(i.e., big-endian), otherwise as 32-bit words in the platform's
483 *	natural endianess.
484 */
485static int
486csio_hw_read_flash(struct csio_hw *hw, uint32_t addr, uint32_t nwords,
487		  uint32_t *data, int32_t byte_oriented)
488{
489	int ret;
490
491	if (addr + nwords * sizeof(uint32_t) > hw->params.sf_size || (addr & 3))
492		return -EINVAL;
493
494	addr = swab32(addr) | SF_RD_DATA_FAST;
495
496	ret = csio_hw_sf1_write(hw, 4, 1, 0, addr);
497	if (ret != 0)
498		return ret;
499
500	ret = csio_hw_sf1_read(hw, 1, 1, 0, data);
501	if (ret != 0)
502		return ret;
503
504	for ( ; nwords; nwords--, data++) {
505		ret = csio_hw_sf1_read(hw, 4, nwords > 1, nwords == 1, data);
506		if (nwords == 1)
507			csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
508		if (ret)
509			return ret;
510		if (byte_oriented)
511			*data = (__force __u32) htonl(*data);
512	}
513	return 0;
514}
515
516/*
517 *	csio_hw_write_flash - write up to a page of data to the serial flash
518 *	@hw: the hw
519 *	@addr: the start address to write
520 *	@n: length of data to write in bytes
521 *	@data: the data to write
522 *
523 *	Writes up to a page of data (256 bytes) to the serial flash starting
524 *	at the given address.  All the data must be written to the same page.
525 */
526static int
527csio_hw_write_flash(struct csio_hw *hw, uint32_t addr,
528		    uint32_t n, const uint8_t *data)
529{
530	int ret = -EINVAL;
531	uint32_t buf[64];
532	uint32_t i, c, left, val, offset = addr & 0xff;
533
534	if (addr >= hw->params.sf_size || offset + n > SF_PAGE_SIZE)
535		return -EINVAL;
536
537	val = swab32(addr) | SF_PROG_PAGE;
538
539	ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
540	if (ret != 0)
541		goto unlock;
542
543	ret = csio_hw_sf1_write(hw, 4, 1, 1, val);
544	if (ret != 0)
545		goto unlock;
546
547	for (left = n; left; left -= c) {
548		c = min(left, 4U);
549		for (val = 0, i = 0; i < c; ++i)
550			val = (val << 8) + *data++;
551
552		ret = csio_hw_sf1_write(hw, c, c != left, 1, val);
553		if (ret)
554			goto unlock;
555	}
556	ret = csio_hw_flash_wait_op(hw, 8, 1);
557	if (ret)
558		goto unlock;
559
560	csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
561
562	/* Read the page to verify the write succeeded */
563	ret = csio_hw_read_flash(hw, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
564	if (ret)
565		return ret;
566
567	if (memcmp(data - n, (uint8_t *)buf + offset, n)) {
568		csio_err(hw,
569			 "failed to correctly write the flash page at %#x\n",
570			 addr);
571		return -EINVAL;
572	}
573
574	return 0;
575
576unlock:
577	csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
578	return ret;
579}
580
581/*
582 *	csio_hw_flash_erase_sectors - erase a range of flash sectors
583 *	@hw: the HW module
584 *	@start: the first sector to erase
585 *	@end: the last sector to erase
586 *
587 *	Erases the sectors in the given inclusive range.
588 */
589static int
590csio_hw_flash_erase_sectors(struct csio_hw *hw, int32_t start, int32_t end)
591{
592	int ret = 0;
593
594	while (start <= end) {
595
596		ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
597		if (ret != 0)
598			goto out;
599
600		ret = csio_hw_sf1_write(hw, 4, 0, 1,
601					SF_ERASE_SECTOR | (start << 8));
602		if (ret != 0)
603			goto out;
604
605		ret = csio_hw_flash_wait_op(hw, 14, 500);
606		if (ret != 0)
607			goto out;
608
609		start++;
610	}
611out:
612	if (ret)
613		csio_err(hw, "erase of flash sector %d failed, error %d\n",
614			 start, ret);
615	csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
616	return 0;
617}
618
619static void
620csio_hw_print_fw_version(struct csio_hw *hw, char *str)
621{
622	csio_info(hw, "%s: %u.%u.%u.%u\n", str,
623		    FW_HDR_FW_VER_MAJOR_G(hw->fwrev),
624		    FW_HDR_FW_VER_MINOR_G(hw->fwrev),
625		    FW_HDR_FW_VER_MICRO_G(hw->fwrev),
626		    FW_HDR_FW_VER_BUILD_G(hw->fwrev));
627}
628
629/*
630 * csio_hw_get_fw_version - read the firmware version
631 * @hw: HW module
632 * @vers: where to place the version
633 *
634 * Reads the FW version from flash.
635 */
636static int
637csio_hw_get_fw_version(struct csio_hw *hw, uint32_t *vers)
638{
639	return csio_hw_read_flash(hw, FLASH_FW_START +
640				  offsetof(struct fw_hdr, fw_ver), 1,
641				  vers, 0);
642}
643
644/*
645 *	csio_hw_get_tp_version - read the TP microcode version
646 *	@hw: HW module
647 *	@vers: where to place the version
648 *
649 *	Reads the TP microcode version from flash.
650 */
651static int
652csio_hw_get_tp_version(struct csio_hw *hw, u32 *vers)
653{
654	return csio_hw_read_flash(hw, FLASH_FW_START +
655			offsetof(struct fw_hdr, tp_microcode_ver), 1,
656			vers, 0);
657}
658
659/*
660 * csio_hw_fw_dload - download firmware.
661 * @hw: HW module
662 * @fw_data: firmware image to write.
663 * @size: image size
664 *
665 * Write the supplied firmware image to the card's serial flash.
666 */
667static int
668csio_hw_fw_dload(struct csio_hw *hw, uint8_t *fw_data, uint32_t size)
669{
670	uint32_t csum;
671	int32_t addr;
672	int ret;
673	uint32_t i;
674	uint8_t first_page[SF_PAGE_SIZE];
675	const __be32 *p = (const __be32 *)fw_data;
676	struct fw_hdr *hdr = (struct fw_hdr *)fw_data;
677	uint32_t sf_sec_size;
678
679	if ((!hw->params.sf_size) || (!hw->params.sf_nsec)) {
680		csio_err(hw, "Serial Flash data invalid\n");
681		return -EINVAL;
682	}
683
684	if (!size) {
685		csio_err(hw, "FW image has no data\n");
686		return -EINVAL;
687	}
688
689	if (size & 511) {
690		csio_err(hw, "FW image size not multiple of 512 bytes\n");
691		return -EINVAL;
692	}
693
694	if (ntohs(hdr->len512) * 512 != size) {
695		csio_err(hw, "FW image size differs from size in FW header\n");
696		return -EINVAL;
697	}
698
699	if (size > FLASH_FW_MAX_SIZE) {
700		csio_err(hw, "FW image too large, max is %u bytes\n",
701			    FLASH_FW_MAX_SIZE);
702		return -EINVAL;
703	}
704
705	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
706		csum += ntohl(p[i]);
707
708	if (csum != 0xffffffff) {
709		csio_err(hw, "corrupted firmware image, checksum %#x\n", csum);
710		return -EINVAL;
711	}
712
713	sf_sec_size = hw->params.sf_size / hw->params.sf_nsec;
714	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
715
716	csio_dbg(hw, "Erasing sectors... start:%d end:%d\n",
717			  FLASH_FW_START_SEC, FLASH_FW_START_SEC + i - 1);
718
719	ret = csio_hw_flash_erase_sectors(hw, FLASH_FW_START_SEC,
720					  FLASH_FW_START_SEC + i - 1);
721	if (ret) {
722		csio_err(hw, "Flash Erase failed\n");
723		goto out;
724	}
725
726	/*
727	 * We write the correct version at the end so the driver can see a bad
728	 * version if the FW write fails.  Start by writing a copy of the
729	 * first page with a bad version.
730	 */
731	memcpy(first_page, fw_data, SF_PAGE_SIZE);
732	((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
733	ret = csio_hw_write_flash(hw, FLASH_FW_START, SF_PAGE_SIZE, first_page);
734	if (ret)
735		goto out;
736
737	csio_dbg(hw, "Writing Flash .. start:%d end:%d\n",
738		    FW_IMG_START, FW_IMG_START + size);
739
740	addr = FLASH_FW_START;
741	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
742		addr += SF_PAGE_SIZE;
743		fw_data += SF_PAGE_SIZE;
744		ret = csio_hw_write_flash(hw, addr, SF_PAGE_SIZE, fw_data);
745		if (ret)
746			goto out;
747	}
748
749	ret = csio_hw_write_flash(hw,
750				  FLASH_FW_START +
751					offsetof(struct fw_hdr, fw_ver),
752				  sizeof(hdr->fw_ver),
753				  (const uint8_t *)&hdr->fw_ver);
754
755out:
756	if (ret)
757		csio_err(hw, "firmware download failed, error %d\n", ret);
758	return ret;
759}
760
761static int
762csio_hw_get_flash_params(struct csio_hw *hw)
763{
764	int ret;
765	uint32_t info = 0;
766
767	ret = csio_hw_sf1_write(hw, 1, 1, 0, SF_RD_ID);
768	if (!ret)
769		ret = csio_hw_sf1_read(hw, 3, 0, 1, &info);
770	csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
771	if (ret != 0)
772		return ret;
773
774	if ((info & 0xff) != 0x20)		/* not a Numonix flash */
775		return -EINVAL;
776	info >>= 16;				/* log2 of size */
777	if (info >= 0x14 && info < 0x18)
778		hw->params.sf_nsec = 1 << (info - 16);
779	else if (info == 0x18)
780		hw->params.sf_nsec = 64;
781	else
782		return -EINVAL;
783	hw->params.sf_size = 1 << info;
784
785	return 0;
786}
787
788/*****************************************************************************/
789/* HW State machine assists                                                  */
790/*****************************************************************************/
791
792static int
793csio_hw_dev_ready(struct csio_hw *hw)
794{
795	uint32_t reg;
796	int cnt = 6;
797
798	while (((reg = csio_rd_reg32(hw, PL_WHOAMI_A)) == 0xFFFFFFFF) &&
799	       (--cnt != 0))
800		mdelay(100);
801
802	if ((cnt == 0) && (((int32_t)(SOURCEPF_G(reg)) < 0) ||
803			   (SOURCEPF_G(reg) >= CSIO_MAX_PFN))) {
804		csio_err(hw, "PL_WHOAMI returned 0x%x, cnt:%d\n", reg, cnt);
805		return -EIO;
806	}
807
808	hw->pfn = SOURCEPF_G(reg);
809
810	return 0;
811}
812
813/*
814 * csio_do_hello - Perform the HELLO FW Mailbox command and process response.
815 * @hw: HW module
816 * @state: Device state
817 *
818 * FW_HELLO_CMD has to be polled for completion.
819 */
820static int
821csio_do_hello(struct csio_hw *hw, enum csio_dev_state *state)
822{
823	struct csio_mb	*mbp;
824	int	rv = 0;
825	enum fw_retval retval;
826	uint8_t mpfn;
827	char state_str[16];
828	int retries = FW_CMD_HELLO_RETRIES;
829
830	memset(state_str, 0, sizeof(state_str));
831
832	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
833	if (!mbp) {
834		rv = -ENOMEM;
835		CSIO_INC_STATS(hw, n_err_nomem);
836		goto out;
837	}
838
839retry:
840	csio_mb_hello(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn,
841		      hw->pfn, CSIO_MASTER_MAY, NULL);
842
843	rv = csio_mb_issue(hw, mbp);
844	if (rv) {
845		csio_err(hw, "failed to issue HELLO cmd. ret:%d.\n", rv);
846		goto out_free_mb;
847	}
848
849	csio_mb_process_hello_rsp(hw, mbp, &retval, state, &mpfn);
850	if (retval != FW_SUCCESS) {
851		csio_err(hw, "HELLO cmd failed with ret: %d\n", retval);
852		rv = -EINVAL;
853		goto out_free_mb;
854	}
855
856	/* Firmware has designated us to be master */
857	if (hw->pfn == mpfn) {
858		hw->flags |= CSIO_HWF_MASTER;
859	} else if (*state == CSIO_DEV_STATE_UNINIT) {
860		/*
861		 * If we're not the Master PF then we need to wait around for
862		 * the Master PF Driver to finish setting up the adapter.
863		 *
864		 * Note that we also do this wait if we're a non-Master-capable
865		 * PF and there is no current Master PF; a Master PF may show up
866		 * momentarily and we wouldn't want to fail pointlessly.  (This
867		 * can happen when an OS loads lots of different drivers rapidly
868		 * at the same time). In this case, the Master PF returned by
869		 * the firmware will be PCIE_FW_MASTER_MASK so the test below
870		 * will work ...
871		 */
872
873		int waiting = FW_CMD_HELLO_TIMEOUT;
874
875		/*
876		 * Wait for the firmware to either indicate an error or
877		 * initialized state.  If we see either of these we bail out
878		 * and report the issue to the caller.  If we exhaust the
879		 * "hello timeout" and we haven't exhausted our retries, try
880		 * again.  Otherwise bail with a timeout error.
881		 */
882		for (;;) {
883			uint32_t pcie_fw;
884
885			spin_unlock_irq(&hw->lock);
886			msleep(50);
887			spin_lock_irq(&hw->lock);
888			waiting -= 50;
889
890			/*
891			 * If neither Error nor Initialialized are indicated
892			 * by the firmware keep waiting till we exaust our
893			 * timeout ... and then retry if we haven't exhausted
894			 * our retries ...
895			 */
896			pcie_fw = csio_rd_reg32(hw, PCIE_FW_A);
897			if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
898				if (waiting <= 0) {
899					if (retries-- > 0)
900						goto retry;
901
902					rv = -ETIMEDOUT;
903					break;
904				}
905				continue;
906			}
907
908			/*
909			 * We either have an Error or Initialized condition
910			 * report errors preferentially.
911			 */
912			if (state) {
913				if (pcie_fw & PCIE_FW_ERR_F) {
914					*state = CSIO_DEV_STATE_ERR;
915					rv = -ETIMEDOUT;
916				} else if (pcie_fw & PCIE_FW_INIT_F)
917					*state = CSIO_DEV_STATE_INIT;
918			}
919
920			/*
921			 * If we arrived before a Master PF was selected and
922			 * there's not a valid Master PF, grab its identity
923			 * for our caller.
924			 */
925			if (mpfn == PCIE_FW_MASTER_M &&
926			    (pcie_fw & PCIE_FW_MASTER_VLD_F))
927				mpfn = PCIE_FW_MASTER_G(pcie_fw);
928			break;
929		}
930		hw->flags &= ~CSIO_HWF_MASTER;
931	}
932
933	switch (*state) {
934	case CSIO_DEV_STATE_UNINIT:
935		strcpy(state_str, "Initializing");
936		break;
937	case CSIO_DEV_STATE_INIT:
938		strcpy(state_str, "Initialized");
939		break;
940	case CSIO_DEV_STATE_ERR:
941		strcpy(state_str, "Error");
942		break;
943	default:
944		strcpy(state_str, "Unknown");
945		break;
946	}
947
948	if (hw->pfn == mpfn)
949		csio_info(hw, "PF: %d, Coming up as MASTER, HW state: %s\n",
950			hw->pfn, state_str);
951	else
952		csio_info(hw,
953		    "PF: %d, Coming up as SLAVE, Master PF: %d, HW state: %s\n",
954		    hw->pfn, mpfn, state_str);
955
956out_free_mb:
957	mempool_free(mbp, hw->mb_mempool);
958out:
959	return rv;
960}
961
962/*
963 * csio_do_bye - Perform the BYE FW Mailbox command and process response.
964 * @hw: HW module
965 *
966 */
967static int
968csio_do_bye(struct csio_hw *hw)
969{
970	struct csio_mb	*mbp;
971	enum fw_retval retval;
972
973	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
974	if (!mbp) {
975		CSIO_INC_STATS(hw, n_err_nomem);
976		return -ENOMEM;
977	}
978
979	csio_mb_bye(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
980
981	if (csio_mb_issue(hw, mbp)) {
982		csio_err(hw, "Issue of BYE command failed\n");
983		mempool_free(mbp, hw->mb_mempool);
984		return -EINVAL;
985	}
986
987	retval = csio_mb_fw_retval(mbp);
988	if (retval != FW_SUCCESS) {
989		mempool_free(mbp, hw->mb_mempool);
990		return -EINVAL;
991	}
992
993	mempool_free(mbp, hw->mb_mempool);
994
995	return 0;
996}
997
998/*
999 * csio_do_reset- Perform the device reset.
1000 * @hw: HW module
1001 * @fw_rst: FW reset
1002 *
1003 * If fw_rst is set, issues FW reset mbox cmd otherwise
1004 * does PIO reset.
1005 * Performs reset of the function.
1006 */
1007static int
1008csio_do_reset(struct csio_hw *hw, bool fw_rst)
1009{
1010	struct csio_mb	*mbp;
1011	enum fw_retval retval;
1012
1013	if (!fw_rst) {
1014		/* PIO reset */
1015		csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
1016		mdelay(2000);
1017		return 0;
1018	}
1019
1020	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1021	if (!mbp) {
1022		CSIO_INC_STATS(hw, n_err_nomem);
1023		return -ENOMEM;
1024	}
1025
1026	csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
1027		      PIORSTMODE_F | PIORST_F, 0, NULL);
1028
1029	if (csio_mb_issue(hw, mbp)) {
1030		csio_err(hw, "Issue of RESET command failed.n");
1031		mempool_free(mbp, hw->mb_mempool);
1032		return -EINVAL;
1033	}
1034
1035	retval = csio_mb_fw_retval(mbp);
1036	if (retval != FW_SUCCESS) {
1037		csio_err(hw, "RESET cmd failed with ret:0x%x.\n", retval);
1038		mempool_free(mbp, hw->mb_mempool);
1039		return -EINVAL;
1040	}
1041
1042	mempool_free(mbp, hw->mb_mempool);
1043
1044	return 0;
1045}
1046
1047static int
1048csio_hw_validate_caps(struct csio_hw *hw, struct csio_mb *mbp)
1049{
1050	struct fw_caps_config_cmd *rsp = (struct fw_caps_config_cmd *)mbp->mb;
1051	uint16_t caps;
1052
1053	caps = ntohs(rsp->fcoecaps);
1054
1055	if (!(caps & FW_CAPS_CONFIG_FCOE_INITIATOR)) {
1056		csio_err(hw, "No FCoE Initiator capability in the firmware.\n");
1057		return -EINVAL;
1058	}
1059
1060	if (!(caps & FW_CAPS_CONFIG_FCOE_CTRL_OFLD)) {
1061		csio_err(hw, "No FCoE Control Offload capability\n");
1062		return -EINVAL;
1063	}
1064
1065	return 0;
1066}
1067
1068/*
1069 *	csio_hw_fw_halt - issue a reset/halt to FW and put uP into RESET
1070 *	@hw: the HW module
1071 *	@mbox: mailbox to use for the FW RESET command (if desired)
1072 *	@force: force uP into RESET even if FW RESET command fails
1073 *
1074 *	Issues a RESET command to firmware (if desired) with a HALT indication
1075 *	and then puts the microprocessor into RESET state.  The RESET command
1076 *	will only be issued if a legitimate mailbox is provided (mbox <=
1077 *	PCIE_FW_MASTER_MASK).
1078 *
1079 *	This is generally used in order for the host to safely manipulate the
1080 *	adapter without fear of conflicting with whatever the firmware might
1081 *	be doing.  The only way out of this state is to RESTART the firmware
1082 *	...
1083 */
1084static int
1085csio_hw_fw_halt(struct csio_hw *hw, uint32_t mbox, int32_t force)
1086{
1087	enum fw_retval retval = 0;
1088
1089	/*
1090	 * If a legitimate mailbox is provided, issue a RESET command
1091	 * with a HALT indication.
1092	 */
1093	if (mbox <= PCIE_FW_MASTER_M) {
1094		struct csio_mb	*mbp;
1095
1096		mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1097		if (!mbp) {
1098			CSIO_INC_STATS(hw, n_err_nomem);
1099			return -ENOMEM;
1100		}
1101
1102		csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
1103			      PIORSTMODE_F | PIORST_F, FW_RESET_CMD_HALT_F,
1104			      NULL);
1105
1106		if (csio_mb_issue(hw, mbp)) {
1107			csio_err(hw, "Issue of RESET command failed!\n");
1108			mempool_free(mbp, hw->mb_mempool);
1109			return -EINVAL;
1110		}
1111
1112		retval = csio_mb_fw_retval(mbp);
1113		mempool_free(mbp, hw->mb_mempool);
1114	}
1115
1116	/*
1117	 * Normally we won't complete the operation if the firmware RESET
1118	 * command fails but if our caller insists we'll go ahead and put the
1119	 * uP into RESET.  This can be useful if the firmware is hung or even
1120	 * missing ...  We'll have to take the risk of putting the uP into
1121	 * RESET without the cooperation of firmware in that case.
1122	 *
1123	 * We also force the firmware's HALT flag to be on in case we bypassed
1124	 * the firmware RESET command above or we're dealing with old firmware
1125	 * which doesn't have the HALT capability.  This will serve as a flag
1126	 * for the incoming firmware to know that it's coming out of a HALT
1127	 * rather than a RESET ... if it's new enough to understand that ...
1128	 */
1129	if (retval == 0 || force) {
1130		csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
1131		csio_set_reg_field(hw, PCIE_FW_A, PCIE_FW_HALT_F,
1132				   PCIE_FW_HALT_F);
1133	}
1134
1135	/*
1136	 * And we always return the result of the firmware RESET command
1137	 * even when we force the uP into RESET ...
1138	 */
1139	return retval ? -EINVAL : 0;
1140}
1141
1142/*
1143 *	csio_hw_fw_restart - restart the firmware by taking the uP out of RESET
1144 *	@hw: the HW module
1145 *	@reset: if we want to do a RESET to restart things
1146 *
1147 *	Restart firmware previously halted by csio_hw_fw_halt().  On successful
1148 *	return the previous PF Master remains as the new PF Master and there
1149 *	is no need to issue a new HELLO command, etc.
1150 *
1151 *	We do this in two ways:
1152 *
1153 *	 1. If we're dealing with newer firmware we'll simply want to take
1154 *	    the chip's microprocessor out of RESET.  This will cause the
1155 *	    firmware to start up from its start vector.  And then we'll loop
1156 *	    until the firmware indicates it's started again (PCIE_FW.HALT
1157 *	    reset to 0) or we timeout.
1158 *
1159 *	 2. If we're dealing with older firmware then we'll need to RESET
1160 *	    the chip since older firmware won't recognize the PCIE_FW.HALT
1161 *	    flag and automatically RESET itself on startup.
1162 */
1163static int
1164csio_hw_fw_restart(struct csio_hw *hw, uint32_t mbox, int32_t reset)
1165{
1166	if (reset) {
1167		/*
1168		 * Since we're directing the RESET instead of the firmware
1169		 * doing it automatically, we need to clear the PCIE_FW.HALT
1170		 * bit.
1171		 */
1172		csio_set_reg_field(hw, PCIE_FW_A, PCIE_FW_HALT_F, 0);
1173
1174		/*
1175		 * If we've been given a valid mailbox, first try to get the
1176		 * firmware to do the RESET.  If that works, great and we can
1177		 * return success.  Otherwise, if we haven't been given a
1178		 * valid mailbox or the RESET command failed, fall back to
1179		 * hitting the chip with a hammer.
1180		 */
1181		if (mbox <= PCIE_FW_MASTER_M) {
1182			csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, 0);
1183			msleep(100);
1184			if (csio_do_reset(hw, true) == 0)
1185				return 0;
1186		}
1187
1188		csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
1189		msleep(2000);
1190	} else {
1191		int ms;
1192
1193		csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, 0);
1194		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
1195			if (!(csio_rd_reg32(hw, PCIE_FW_A) & PCIE_FW_HALT_F))
1196				return 0;
1197			msleep(100);
1198			ms += 100;
1199		}
1200		return -ETIMEDOUT;
1201	}
1202	return 0;
1203}
1204
1205/*
1206 *	csio_hw_fw_upgrade - perform all of the steps necessary to upgrade FW
1207 *	@hw: the HW module
1208 *	@mbox: mailbox to use for the FW RESET command (if desired)
1209 *	@fw_data: the firmware image to write
1210 *	@size: image size
1211 *	@force: force upgrade even if firmware doesn't cooperate
1212 *
1213 *	Perform all of the steps necessary for upgrading an adapter's
1214 *	firmware image.  Normally this requires the cooperation of the
1215 *	existing firmware in order to halt all existing activities
1216 *	but if an invalid mailbox token is passed in we skip that step
1217 *	(though we'll still put the adapter microprocessor into RESET in
1218 *	that case).
1219 *
1220 *	On successful return the new firmware will have been loaded and
1221 *	the adapter will have been fully RESET losing all previous setup
1222 *	state.  On unsuccessful return the adapter may be completely hosed ...
1223 *	positive errno indicates that the adapter is ~probably~ intact, a
1224 *	negative errno indicates that things are looking bad ...
1225 */
1226static int
1227csio_hw_fw_upgrade(struct csio_hw *hw, uint32_t mbox,
1228		  const u8 *fw_data, uint32_t size, int32_t force)
1229{
1230	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
1231	int reset, ret;
1232
1233	ret = csio_hw_fw_halt(hw, mbox, force);
1234	if (ret != 0 && !force)
1235		return ret;
1236
1237	ret = csio_hw_fw_dload(hw, (uint8_t *) fw_data, size);
1238	if (ret != 0)
1239		return ret;
1240
1241	/*
1242	 * Older versions of the firmware don't understand the new
1243	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
1244	 * restart.  So for newly loaded older firmware we'll have to do the
1245	 * RESET for it so it starts up on a clean slate.  We can tell if
1246	 * the newly loaded firmware will handle this right by checking
1247	 * its header flags to see if it advertises the capability.
1248	 */
1249	reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
1250	return csio_hw_fw_restart(hw, mbox, reset);
1251}
1252
1253/*
1254 * csio_get_device_params - Get device parameters.
1255 * @hw: HW module
1256 *
1257 */
1258static int
1259csio_get_device_params(struct csio_hw *hw)
1260{
1261	struct csio_wrm *wrm	= csio_hw_to_wrm(hw);
1262	struct csio_mb	*mbp;
1263	enum fw_retval retval;
1264	u32 param[6];
1265	int i, j = 0;
1266
1267	/* Initialize portids to -1 */
1268	for (i = 0; i < CSIO_MAX_PPORTS; i++)
1269		hw->pport[i].portid = -1;
1270
1271	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1272	if (!mbp) {
1273		CSIO_INC_STATS(hw, n_err_nomem);
1274		return -ENOMEM;
1275	}
1276
1277	/* Get port vec information. */
1278	param[0] = FW_PARAM_DEV(PORTVEC);
1279
1280	/* Get Core clock. */
1281	param[1] = FW_PARAM_DEV(CCLK);
1282
1283	/* Get EQ id start and end. */
1284	param[2] = FW_PARAM_PFVF(EQ_START);
1285	param[3] = FW_PARAM_PFVF(EQ_END);
1286
1287	/* Get IQ id start and end. */
1288	param[4] = FW_PARAM_PFVF(IQFLINT_START);
1289	param[5] = FW_PARAM_PFVF(IQFLINT_END);
1290
1291	csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
1292		       ARRAY_SIZE(param), param, NULL, false, NULL);
1293	if (csio_mb_issue(hw, mbp)) {
1294		csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
1295		mempool_free(mbp, hw->mb_mempool);
1296		return -EINVAL;
1297	}
1298
1299	csio_mb_process_read_params_rsp(hw, mbp, &retval,
1300			ARRAY_SIZE(param), param);
1301	if (retval != FW_SUCCESS) {
1302		csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
1303				retval);
1304		mempool_free(mbp, hw->mb_mempool);
1305		return -EINVAL;
1306	}
1307
1308	/* cache the information. */
1309	hw->port_vec = param[0];
1310	hw->vpd.cclk = param[1];
1311	wrm->fw_eq_start = param[2];
1312	wrm->fw_iq_start = param[4];
1313
1314	/* Using FW configured max iqs & eqs */
1315	if ((hw->flags & CSIO_HWF_USING_SOFT_PARAMS) ||
1316		!csio_is_hw_master(hw)) {
1317		hw->cfg_niq = param[5] - param[4] + 1;
1318		hw->cfg_neq = param[3] - param[2] + 1;
1319		csio_dbg(hw, "Using fwconfig max niqs %d neqs %d\n",
1320			hw->cfg_niq, hw->cfg_neq);
1321	}
1322
1323	hw->port_vec &= csio_port_mask;
1324
1325	hw->num_pports	= hweight32(hw->port_vec);
1326
1327	csio_dbg(hw, "Port vector: 0x%x, #ports: %d\n",
1328		    hw->port_vec, hw->num_pports);
1329
1330	for (i = 0; i < hw->num_pports; i++) {
1331		while ((hw->port_vec & (1 << j)) == 0)
1332			j++;
1333		hw->pport[i].portid = j++;
1334		csio_dbg(hw, "Found Port:%d\n", hw->pport[i].portid);
1335	}
1336	mempool_free(mbp, hw->mb_mempool);
1337
1338	return 0;
1339}
1340
1341
1342/*
1343 * csio_config_device_caps - Get and set device capabilities.
1344 * @hw: HW module
1345 *
1346 */
1347static int
1348csio_config_device_caps(struct csio_hw *hw)
1349{
1350	struct csio_mb	*mbp;
1351	enum fw_retval retval;
1352	int rv = -EINVAL;
1353
1354	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1355	if (!mbp) {
1356		CSIO_INC_STATS(hw, n_err_nomem);
1357		return -ENOMEM;
1358	}
1359
1360	/* Get device capabilities */
1361	csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, 0, 0, 0, 0, NULL);
1362
1363	if (csio_mb_issue(hw, mbp)) {
1364		csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(r) failed!\n");
1365		goto out;
1366	}
1367
1368	retval = csio_mb_fw_retval(mbp);
1369	if (retval != FW_SUCCESS) {
1370		csio_err(hw, "FW_CAPS_CONFIG_CMD(r) returned %d!\n", retval);
1371		goto out;
1372	}
1373
1374	/* Validate device capabilities */
1375	rv = csio_hw_validate_caps(hw, mbp);
1376	if (rv != 0)
1377		goto out;
1378
1379	/* Don't config device capabilities if already configured */
1380	if (hw->fw_state == CSIO_DEV_STATE_INIT) {
1381		rv = 0;
1382		goto out;
1383	}
1384
1385	/* Write back desired device capabilities */
1386	csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, true, true,
1387			    false, true, NULL);
1388
1389	if (csio_mb_issue(hw, mbp)) {
1390		csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(w) failed!\n");
1391		goto out;
1392	}
1393
1394	retval = csio_mb_fw_retval(mbp);
1395	if (retval != FW_SUCCESS) {
1396		csio_err(hw, "FW_CAPS_CONFIG_CMD(w) returned %d!\n", retval);
1397		goto out;
1398	}
1399
1400	rv = 0;
1401out:
1402	mempool_free(mbp, hw->mb_mempool);
1403	return rv;
1404}
1405
1406/*
1407 * csio_enable_ports - Bring up all available ports.
1408 * @hw: HW module.
1409 *
1410 */
1411static int
1412csio_enable_ports(struct csio_hw *hw)
1413{
1414	struct csio_mb  *mbp;
1415	enum fw_retval retval;
1416	uint8_t portid;
1417	int i;
1418
1419	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1420	if (!mbp) {
1421		CSIO_INC_STATS(hw, n_err_nomem);
1422		return -ENOMEM;
1423	}
1424
1425	for (i = 0; i < hw->num_pports; i++) {
1426		portid = hw->pport[i].portid;
1427
1428		/* Read PORT information */
1429		csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid,
1430			     false, 0, 0, NULL);
1431
1432		if (csio_mb_issue(hw, mbp)) {
1433			csio_err(hw, "failed to issue FW_PORT_CMD(r) port:%d\n",
1434				 portid);
1435			mempool_free(mbp, hw->mb_mempool);
1436			return -EINVAL;
1437		}
1438
1439		csio_mb_process_read_port_rsp(hw, mbp, &retval,
1440					      &hw->pport[i].pcap);
1441		if (retval != FW_SUCCESS) {
1442			csio_err(hw, "FW_PORT_CMD(r) port:%d failed: 0x%x\n",
1443				 portid, retval);
1444			mempool_free(mbp, hw->mb_mempool);
1445			return -EINVAL;
1446		}
1447
1448		/* Write back PORT information */
1449		csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid, true,
1450			     (PAUSE_RX | PAUSE_TX), hw->pport[i].pcap, NULL);
1451
1452		if (csio_mb_issue(hw, mbp)) {
1453			csio_err(hw, "failed to issue FW_PORT_CMD(w) port:%d\n",
1454				 portid);
1455			mempool_free(mbp, hw->mb_mempool);
1456			return -EINVAL;
1457		}
1458
1459		retval = csio_mb_fw_retval(mbp);
1460		if (retval != FW_SUCCESS) {
1461			csio_err(hw, "FW_PORT_CMD(w) port:%d failed :0x%x\n",
1462				 portid, retval);
1463			mempool_free(mbp, hw->mb_mempool);
1464			return -EINVAL;
1465		}
1466
1467	} /* For all ports */
1468
1469	mempool_free(mbp, hw->mb_mempool);
1470
1471	return 0;
1472}
1473
1474/*
1475 * csio_get_fcoe_resinfo - Read fcoe fw resource info.
1476 * @hw: HW module
1477 * Issued with lock held.
1478 */
1479static int
1480csio_get_fcoe_resinfo(struct csio_hw *hw)
1481{
1482	struct csio_fcoe_res_info *res_info = &hw->fres_info;
1483	struct fw_fcoe_res_info_cmd *rsp;
1484	struct csio_mb  *mbp;
1485	enum fw_retval retval;
1486
1487	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1488	if (!mbp) {
1489		CSIO_INC_STATS(hw, n_err_nomem);
1490		return -ENOMEM;
1491	}
1492
1493	/* Get FCoE FW resource information */
1494	csio_fcoe_read_res_info_init_mb(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
1495
1496	if (csio_mb_issue(hw, mbp)) {
1497		csio_err(hw, "failed to issue FW_FCOE_RES_INFO_CMD\n");
1498		mempool_free(mbp, hw->mb_mempool);
1499		return -EINVAL;
1500	}
1501
1502	rsp = (struct fw_fcoe_res_info_cmd *)(mbp->mb);
1503	retval = FW_CMD_RETVAL_G(ntohl(rsp->retval_len16));
1504	if (retval != FW_SUCCESS) {
1505		csio_err(hw, "FW_FCOE_RES_INFO_CMD failed with ret x%x\n",
1506			 retval);
1507		mempool_free(mbp, hw->mb_mempool);
1508		return -EINVAL;
1509	}
1510
1511	res_info->e_d_tov = ntohs(rsp->e_d_tov);
1512	res_info->r_a_tov_seq = ntohs(rsp->r_a_tov_seq);
1513	res_info->r_a_tov_els = ntohs(rsp->r_a_tov_els);
1514	res_info->r_r_tov = ntohs(rsp->r_r_tov);
1515	res_info->max_xchgs = ntohl(rsp->max_xchgs);
1516	res_info->max_ssns = ntohl(rsp->max_ssns);
1517	res_info->used_xchgs = ntohl(rsp->used_xchgs);
1518	res_info->used_ssns = ntohl(rsp->used_ssns);
1519	res_info->max_fcfs = ntohl(rsp->max_fcfs);
1520	res_info->max_vnps = ntohl(rsp->max_vnps);
1521	res_info->used_fcfs = ntohl(rsp->used_fcfs);
1522	res_info->used_vnps = ntohl(rsp->used_vnps);
1523
1524	csio_dbg(hw, "max ssns:%d max xchgs:%d\n", res_info->max_ssns,
1525						  res_info->max_xchgs);
1526	mempool_free(mbp, hw->mb_mempool);
1527
1528	return 0;
1529}
1530
1531static int
1532csio_hw_check_fwconfig(struct csio_hw *hw, u32 *param)
1533{
1534	struct csio_mb	*mbp;
1535	enum fw_retval retval;
1536	u32 _param[1];
1537
1538	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1539	if (!mbp) {
1540		CSIO_INC_STATS(hw, n_err_nomem);
1541		return -ENOMEM;
1542	}
1543
1544	/*
1545	 * Find out whether we're dealing with a version of
1546	 * the firmware which has configuration file support.
1547	 */
1548	_param[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
1549		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
1550
1551	csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
1552		       ARRAY_SIZE(_param), _param, NULL, false, NULL);
1553	if (csio_mb_issue(hw, mbp)) {
1554		csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
1555		mempool_free(mbp, hw->mb_mempool);
1556		return -EINVAL;
1557	}
1558
1559	csio_mb_process_read_params_rsp(hw, mbp, &retval,
1560			ARRAY_SIZE(_param), _param);
1561	if (retval != FW_SUCCESS) {
1562		csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
1563				retval);
1564		mempool_free(mbp, hw->mb_mempool);
1565		return -EINVAL;
1566	}
1567
1568	mempool_free(mbp, hw->mb_mempool);
1569	*param = _param[0];
1570
1571	return 0;
1572}
1573
1574static int
1575csio_hw_flash_config(struct csio_hw *hw, u32 *fw_cfg_param, char *path)
1576{
1577	int ret = 0;
1578	const struct firmware *cf;
1579	struct pci_dev *pci_dev = hw->pdev;
1580	struct device *dev = &pci_dev->dev;
1581	unsigned int mtype = 0, maddr = 0;
1582	uint32_t *cfg_data;
1583	int value_to_add = 0;
1584
1585	if (request_firmware(&cf, FW_CFG_NAME_T5, dev) < 0) {
1586		csio_err(hw, "could not find config file %s, err: %d\n",
1587			 FW_CFG_NAME_T5, ret);
1588		return -ENOENT;
1589	}
1590
1591	if (cf->size%4 != 0)
1592		value_to_add = 4 - (cf->size % 4);
1593
1594	cfg_data = kzalloc(cf->size+value_to_add, GFP_KERNEL);
1595	if (cfg_data == NULL) {
1596		ret = -ENOMEM;
1597		goto leave;
1598	}
1599
1600	memcpy((void *)cfg_data, (const void *)cf->data, cf->size);
1601	if (csio_hw_check_fwconfig(hw, fw_cfg_param) != 0) {
1602		ret = -EINVAL;
1603		goto leave;
1604	}
1605
1606	mtype = FW_PARAMS_PARAM_Y_G(*fw_cfg_param);
1607	maddr = FW_PARAMS_PARAM_Z_G(*fw_cfg_param) << 16;
1608
1609	ret = csio_memory_write(hw, mtype, maddr,
1610				cf->size + value_to_add, cfg_data);
1611
1612	if ((ret == 0) && (value_to_add != 0)) {
1613		union {
1614			u32 word;
1615			char buf[4];
1616		} last;
1617		size_t size = cf->size & ~0x3;
1618		int i;
1619
1620		last.word = cfg_data[size >> 2];
1621		for (i = value_to_add; i < 4; i++)
1622			last.buf[i] = 0;
1623		ret = csio_memory_write(hw, mtype, maddr + size, 4, &last.word);
1624	}
1625	if (ret == 0) {
1626		csio_info(hw, "config file upgraded to %s\n",
1627			  FW_CFG_NAME_T5);
1628		snprintf(path, 64, "%s%s", "/lib/firmware/", FW_CFG_NAME_T5);
1629	}
1630
1631leave:
1632	kfree(cfg_data);
1633	release_firmware(cf);
1634	return ret;
1635}
1636
1637/*
1638 * HW initialization: contact FW, obtain config, perform basic init.
1639 *
1640 * If the firmware we're dealing with has Configuration File support, then
1641 * we use that to perform all configuration -- either using the configuration
1642 * file stored in flash on the adapter or using a filesystem-local file
1643 * if available.
1644 *
1645 * If we don't have configuration file support in the firmware, then we'll
1646 * have to set things up the old fashioned way with hard-coded register
1647 * writes and firmware commands ...
1648 */
1649
1650/*
1651 * Attempt to initialize the HW via a Firmware Configuration File.
1652 */
1653static int
1654csio_hw_use_fwconfig(struct csio_hw *hw, int reset, u32 *fw_cfg_param)
1655{
1656	struct csio_mb	*mbp = NULL;
1657	struct fw_caps_config_cmd *caps_cmd;
1658	unsigned int mtype, maddr;
1659	int rv = -EINVAL;
1660	uint32_t finiver = 0, finicsum = 0, cfcsum = 0;
1661	char path[64];
1662	char *config_name = NULL;
1663
1664	/*
1665	 * Reset device if necessary
1666	 */
1667	if (reset) {
1668		rv = csio_do_reset(hw, true);
1669		if (rv != 0)
1670			goto bye;
1671	}
1672
1673	/*
1674	 * If we have a configuration file in host ,
1675	 * then use that.  Otherwise, use the configuration file stored
1676	 * in the HW flash ...
1677	 */
1678	spin_unlock_irq(&hw->lock);
1679	rv = csio_hw_flash_config(hw, fw_cfg_param, path);
1680	spin_lock_irq(&hw->lock);
1681	if (rv != 0) {
1682		/*
1683		 * config file was not found. Use default
1684		 * config file from flash.
1685		 */
1686		config_name = "On FLASH";
1687		mtype = FW_MEMTYPE_CF_FLASH;
1688		maddr = hw->chip_ops->chip_flash_cfg_addr(hw);
1689	} else {
1690		config_name = path;
1691		mtype = FW_PARAMS_PARAM_Y_G(*fw_cfg_param);
1692		maddr = FW_PARAMS_PARAM_Z_G(*fw_cfg_param) << 16;
1693	}
1694
1695	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1696	if (!mbp) {
1697		CSIO_INC_STATS(hw, n_err_nomem);
1698		return -ENOMEM;
1699	}
1700	/*
1701	 * Tell the firmware to process the indicated Configuration File.
1702	 * If there are no errors and the caller has provided return value
1703	 * pointers for the [fini] section version, checksum and computed
1704	 * checksum, pass those back to the caller.
1705	 */
1706	caps_cmd = (struct fw_caps_config_cmd *)(mbp->mb);
1707	CSIO_INIT_MBP(mbp, caps_cmd, CSIO_MB_DEFAULT_TMO, hw, NULL, 1);
1708	caps_cmd->op_to_write =
1709		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
1710		      FW_CMD_REQUEST_F |
1711		      FW_CMD_READ_F);
1712	caps_cmd->cfvalid_to_len16 =
1713		htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
1714		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
1715		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
1716		      FW_LEN16(*caps_cmd));
1717
1718	if (csio_mb_issue(hw, mbp)) {
1719		rv = -EINVAL;
1720		goto bye;
1721	}
1722
1723	rv = csio_mb_fw_retval(mbp);
1724	 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
1725	  * Configuration File in FLASH), our last gasp effort is to use the
1726	  * Firmware Configuration File which is embedded in the
1727	  * firmware.  A very few early versions of the firmware didn't
1728	  * have one embedded but we can ignore those.
1729	  */
1730	if (rv == ENOENT) {
1731		CSIO_INIT_MBP(mbp, caps_cmd, CSIO_MB_DEFAULT_TMO, hw, NULL, 1);
1732		caps_cmd->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
1733					      FW_CMD_REQUEST_F |
1734					      FW_CMD_READ_F);
1735		caps_cmd->cfvalid_to_len16 = htonl(FW_LEN16(*caps_cmd));
1736
1737		if (csio_mb_issue(hw, mbp)) {
1738			rv = -EINVAL;
1739			goto bye;
1740		}
1741
1742		rv = csio_mb_fw_retval(mbp);
1743		config_name = "Firmware Default";
1744	}
1745	if (rv != FW_SUCCESS)
1746		goto bye;
1747
1748	finiver = ntohl(caps_cmd->finiver);
1749	finicsum = ntohl(caps_cmd->finicsum);
1750	cfcsum = ntohl(caps_cmd->cfcsum);
1751
1752	/*
1753	 * And now tell the firmware to use the configuration we just loaded.
1754	 */
1755	caps_cmd->op_to_write =
1756		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
1757		      FW_CMD_REQUEST_F |
1758		      FW_CMD_WRITE_F);
1759	caps_cmd->cfvalid_to_len16 = htonl(FW_LEN16(*caps_cmd));
1760
1761	if (csio_mb_issue(hw, mbp)) {
1762		rv = -EINVAL;
1763		goto bye;
1764	}
1765
1766	rv = csio_mb_fw_retval(mbp);
1767	if (rv != FW_SUCCESS) {
1768		csio_dbg(hw, "FW_CAPS_CONFIG_CMD returned %d!\n", rv);
1769		goto bye;
1770	}
1771
1772	mempool_free(mbp, hw->mb_mempool);
1773	if (finicsum != cfcsum) {
1774		csio_warn(hw,
1775		      "Config File checksum mismatch: csum=%#x, computed=%#x\n",
1776		      finicsum, cfcsum);
1777	}
1778
1779	/* Validate device capabilities */
1780	rv = csio_hw_validate_caps(hw, mbp);
1781	if (rv != 0)
1782		goto bye;
1783	/*
1784	 * Note that we're operating with parameters
1785	 * not supplied by the driver, rather than from hard-wired
1786	 * initialization constants buried in the driver.
1787	 */
1788	hw->flags |= CSIO_HWF_USING_SOFT_PARAMS;
1789
1790	/* device parameters */
1791	rv = csio_get_device_params(hw);
1792	if (rv != 0)
1793		goto bye;
1794
1795	/* Configure SGE */
1796	csio_wr_sge_init(hw);
1797
1798	/*
1799	 * And finally tell the firmware to initialize itself using the
1800	 * parameters from the Configuration File.
1801	 */
1802	/* Post event to notify completion of configuration */
1803	csio_post_event(&hw->sm, CSIO_HWE_INIT);
1804
1805	csio_info(hw, "Successfully configure using Firmware "
1806		  "Configuration File %s, version %#x, computed checksum %#x\n",
1807		  config_name, finiver, cfcsum);
1808	return 0;
1809
1810	/*
1811	 * Something bad happened.  Return the error ...
1812	 */
1813bye:
1814	if (mbp)
1815		mempool_free(mbp, hw->mb_mempool);
1816	hw->flags &= ~CSIO_HWF_USING_SOFT_PARAMS;
1817	csio_warn(hw, "Configuration file error %d\n", rv);
1818	return rv;
1819}
1820
1821/* Is the given firmware API compatible with the one the driver was compiled
1822 * with?
1823 */
1824static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
1825{
1826
1827	/* short circuit if it's the exact same firmware version */
1828	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
1829		return 1;
1830
1831#define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
1832	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
1833	    SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
1834		return 1;
1835#undef SAME_INTF
1836
1837	return 0;
1838}
1839
1840/* The firmware in the filesystem is usable, but should it be installed?
1841 * This routine explains itself in detail if it indicates the filesystem
1842 * firmware should be installed.
1843 */
1844static int csio_should_install_fs_fw(struct csio_hw *hw, int card_fw_usable,
1845				int k, int c)
1846{
1847	const char *reason;
1848
1849	if (!card_fw_usable) {
1850		reason = "incompatible or unusable";
1851		goto install;
1852	}
1853
1854	if (k > c) {
1855		reason = "older than the version supported with this driver";
1856		goto install;
1857	}
1858
1859	return 0;
1860
1861install:
1862	csio_err(hw, "firmware on card (%u.%u.%u.%u) is %s, "
1863		"installing firmware %u.%u.%u.%u on card.\n",
1864		FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
1865		FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
1866		FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
1867		FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
1868
1869	return 1;
1870}
1871
1872static struct fw_info fw_info_array[] = {
1873	{
1874		.chip = CHELSIO_T5,
1875		.fs_name = FW_CFG_NAME_T5,
1876		.fw_mod_name = FW_FNAME_T5,
1877		.fw_hdr = {
1878			.chip = FW_HDR_CHIP_T5,
1879			.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
1880			.intfver_nic = FW_INTFVER(T5, NIC),
1881			.intfver_vnic = FW_INTFVER(T5, VNIC),
1882			.intfver_ri = FW_INTFVER(T5, RI),
1883			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
1884			.intfver_fcoe = FW_INTFVER(T5, FCOE),
1885		},
1886	}
1887};
1888
1889static struct fw_info *find_fw_info(int chip)
1890{
1891	int i;
1892
1893	for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
1894		if (fw_info_array[i].chip == chip)
1895			return &fw_info_array[i];
1896	}
1897	return NULL;
1898}
1899
1900static int csio_hw_prep_fw(struct csio_hw *hw, struct fw_info *fw_info,
1901	       const u8 *fw_data, unsigned int fw_size,
1902	       struct fw_hdr *card_fw, enum csio_dev_state state,
1903	       int *reset)
1904{
1905	int ret, card_fw_usable, fs_fw_usable;
1906	const struct fw_hdr *fs_fw;
1907	const struct fw_hdr *drv_fw;
1908
1909	drv_fw = &fw_info->fw_hdr;
1910
1911	/* Read the header of the firmware on the card */
1912	ret = csio_hw_read_flash(hw, FLASH_FW_START,
1913			    sizeof(*card_fw) / sizeof(uint32_t),
1914			    (uint32_t *)card_fw, 1);
1915	if (ret == 0) {
1916		card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
1917	} else {
1918		csio_err(hw,
1919			"Unable to read card's firmware header: %d\n", ret);
1920		card_fw_usable = 0;
1921	}
1922
1923	if (fw_data != NULL) {
1924		fs_fw = (const void *)fw_data;
1925		fs_fw_usable = fw_compatible(drv_fw, fs_fw);
1926	} else {
1927		fs_fw = NULL;
1928		fs_fw_usable = 0;
1929	}
1930
1931	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
1932	    (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
1933		/* Common case: the firmware on the card is an exact match and
1934		 * the filesystem one is an exact match too, or the filesystem
1935		 * one is absent/incompatible.
1936		 */
1937	} else if (fs_fw_usable && state == CSIO_DEV_STATE_UNINIT &&
1938		   csio_should_install_fs_fw(hw, card_fw_usable,
1939					be32_to_cpu(fs_fw->fw_ver),
1940					be32_to_cpu(card_fw->fw_ver))) {
1941		ret = csio_hw_fw_upgrade(hw, hw->pfn, fw_data,
1942				     fw_size, 0);
1943		if (ret != 0) {
1944			csio_err(hw,
1945				"failed to install firmware: %d\n", ret);
1946			goto bye;
1947		}
1948
1949		/* Installed successfully, update the cached header too. */
1950		memcpy(card_fw, fs_fw, sizeof(*card_fw));
1951		card_fw_usable = 1;
1952		*reset = 0;	/* already reset as part of load_fw */
1953	}
1954
1955	if (!card_fw_usable) {
1956		uint32_t d, c, k;
1957
1958		d = be32_to_cpu(drv_fw->fw_ver);
1959		c = be32_to_cpu(card_fw->fw_ver);
1960		k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
1961
1962		csio_err(hw, "Cannot find a usable firmware: "
1963			"chip state %d, "
1964			"driver compiled with %d.%d.%d.%d, "
1965			"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
1966			state,
1967			FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
1968			FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
1969			FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
1970			FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
1971			FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
1972			FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
1973		ret = EINVAL;
1974		goto bye;
1975	}
1976
1977	/* We're using whatever's on the card and it's known to be good. */
1978	hw->fwrev = be32_to_cpu(card_fw->fw_ver);
1979	hw->tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
1980
1981bye:
1982	return ret;
1983}
1984
1985/*
1986 * Returns -EINVAL if attempts to flash the firmware failed
1987 * else returns 0,
1988 * if flashing was not attempted because the card had the
1989 * latest firmware ECANCELED is returned
1990 */
1991static int
1992csio_hw_flash_fw(struct csio_hw *hw, int *reset)
1993{
1994	int ret = -ECANCELED;
1995	const struct firmware *fw;
1996	struct fw_info *fw_info;
1997	struct fw_hdr *card_fw;
1998	struct pci_dev *pci_dev = hw->pdev;
1999	struct device *dev = &pci_dev->dev ;
2000	const u8 *fw_data = NULL;
2001	unsigned int fw_size = 0;
2002
2003	/* This is the firmware whose headers the driver was compiled
2004	 * against
2005	 */
2006	fw_info = find_fw_info(CHELSIO_CHIP_VERSION(hw->chip_id));
2007	if (fw_info == NULL) {
2008		csio_err(hw,
2009			"unable to get firmware info for chip %d.\n",
2010			CHELSIO_CHIP_VERSION(hw->chip_id));
2011		return -EINVAL;
2012	}
2013
2014	if (request_firmware(&fw, FW_FNAME_T5, dev) < 0) {
2015		csio_err(hw, "could not find firmware image %s, err: %d\n",
2016			 FW_FNAME_T5, ret);
2017	} else {
2018		fw_data = fw->data;
2019		fw_size = fw->size;
2020	}
2021
2022	/* allocate memory to read the header of the firmware on the
2023	 * card
2024	 */
2025	card_fw = kmalloc(sizeof(*card_fw), GFP_KERNEL);
2026
2027	/* upgrade FW logic */
2028	ret = csio_hw_prep_fw(hw, fw_info, fw_data, fw_size, card_fw,
2029			 hw->fw_state, reset);
2030
2031	/* Cleaning up */
2032	if (fw != NULL)
2033		release_firmware(fw);
2034	kfree(card_fw);
2035	return ret;
2036}
2037
2038/*
2039 * csio_hw_configure - Configure HW
2040 * @hw - HW module
2041 *
2042 */
2043static void
2044csio_hw_configure(struct csio_hw *hw)
2045{
2046	int reset = 1;
2047	int rv;
2048	u32 param[1];
2049
2050	rv = csio_hw_dev_ready(hw);
2051	if (rv != 0) {
2052		CSIO_INC_STATS(hw, n_err_fatal);
2053		csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2054		goto out;
2055	}
2056
2057	/* HW version */
2058	hw->chip_ver = (char)csio_rd_reg32(hw, PL_REV_A);
2059
2060	/* Needed for FW download */
2061	rv = csio_hw_get_flash_params(hw);
2062	if (rv != 0) {
2063		csio_err(hw, "Failed to get serial flash params rv:%d\n", rv);
2064		csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2065		goto out;
2066	}
2067
2068	/* Set PCIe completion timeout to 4 seconds */
2069	if (pci_is_pcie(hw->pdev))
2070		pcie_capability_clear_and_set_word(hw->pdev, PCI_EXP_DEVCTL2,
2071				PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
2072
2073	hw->chip_ops->chip_set_mem_win(hw, MEMWIN_CSIOSTOR);
2074
2075	rv = csio_hw_get_fw_version(hw, &hw->fwrev);
2076	if (rv != 0)
2077		goto out;
2078
2079	csio_hw_print_fw_version(hw, "Firmware revision");
2080
2081	rv = csio_do_hello(hw, &hw->fw_state);
2082	if (rv != 0) {
2083		CSIO_INC_STATS(hw, n_err_fatal);
2084		csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2085		goto out;
2086	}
2087
2088	/* Read vpd */
2089	rv = csio_hw_get_vpd_params(hw, &hw->vpd);
2090	if (rv != 0)
2091		goto out;
2092
2093	csio_hw_get_fw_version(hw, &hw->fwrev);
2094	csio_hw_get_tp_version(hw, &hw->tp_vers);
2095	if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2096
2097			/* Do firmware update */
2098		spin_unlock_irq(&hw->lock);
2099		rv = csio_hw_flash_fw(hw, &reset);
2100		spin_lock_irq(&hw->lock);
2101
2102		if (rv != 0)
2103			goto out;
2104
2105		/* If the firmware doesn't support Configuration Files,
2106		 * return an error.
2107		 */
2108		rv = csio_hw_check_fwconfig(hw, param);
2109		if (rv != 0) {
2110			csio_info(hw, "Firmware doesn't support "
2111				  "Firmware Configuration files\n");
2112			goto out;
2113		}
2114
2115		/* The firmware provides us with a memory buffer where we can
2116		 * load a Configuration File from the host if we want to
2117		 * override the Configuration File in flash.
2118		 */
2119		rv = csio_hw_use_fwconfig(hw, reset, param);
2120		if (rv == -ENOENT) {
2121			csio_info(hw, "Could not initialize "
2122				  "adapter, error%d\n", rv);
2123			goto out;
2124		}
2125		if (rv != 0) {
2126			csio_info(hw, "Could not initialize "
2127				  "adapter, error%d\n", rv);
2128			goto out;
2129		}
2130
2131	} else {
2132		if (hw->fw_state == CSIO_DEV_STATE_INIT) {
2133
2134			hw->flags |= CSIO_HWF_USING_SOFT_PARAMS;
2135
2136			/* device parameters */
2137			rv = csio_get_device_params(hw);
2138			if (rv != 0)
2139				goto out;
2140
2141			/* Get device capabilities */
2142			rv = csio_config_device_caps(hw);
2143			if (rv != 0)
2144				goto out;
2145
2146			/* Configure SGE */
2147			csio_wr_sge_init(hw);
2148
2149			/* Post event to notify completion of configuration */
2150			csio_post_event(&hw->sm, CSIO_HWE_INIT);
2151			goto out;
2152		}
2153	} /* if not master */
2154
2155out:
2156	return;
2157}
2158
2159/*
2160 * csio_hw_initialize - Initialize HW
2161 * @hw - HW module
2162 *
2163 */
2164static void
2165csio_hw_initialize(struct csio_hw *hw)
2166{
2167	struct csio_mb	*mbp;
2168	enum fw_retval retval;
2169	int rv;
2170	int i;
2171
2172	if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2173		mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
2174		if (!mbp)
2175			goto out;
2176
2177		csio_mb_initialize(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
2178
2179		if (csio_mb_issue(hw, mbp)) {
2180			csio_err(hw, "Issue of FW_INITIALIZE_CMD failed!\n");
2181			goto free_and_out;
2182		}
2183
2184		retval = csio_mb_fw_retval(mbp);
2185		if (retval != FW_SUCCESS) {
2186			csio_err(hw, "FW_INITIALIZE_CMD returned 0x%x!\n",
2187				 retval);
2188			goto free_and_out;
2189		}
2190
2191		mempool_free(mbp, hw->mb_mempool);
2192	}
2193
2194	rv = csio_get_fcoe_resinfo(hw);
2195	if (rv != 0) {
2196		csio_err(hw, "Failed to read fcoe resource info: %d\n", rv);
2197		goto out;
2198	}
2199
2200	spin_unlock_irq(&hw->lock);
2201	rv = csio_config_queues(hw);
2202	spin_lock_irq(&hw->lock);
2203
2204	if (rv != 0) {
2205		csio_err(hw, "Config of queues failed!: %d\n", rv);
2206		goto out;
2207	}
2208
2209	for (i = 0; i < hw->num_pports; i++)
2210		hw->pport[i].mod_type = FW_PORT_MOD_TYPE_NA;
2211
2212	if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2213		rv = csio_enable_ports(hw);
2214		if (rv != 0) {
2215			csio_err(hw, "Failed to enable ports: %d\n", rv);
2216			goto out;
2217		}
2218	}
2219
2220	csio_post_event(&hw->sm, CSIO_HWE_INIT_DONE);
2221	return;
2222
2223free_and_out:
2224	mempool_free(mbp, hw->mb_mempool);
2225out:
2226	return;
2227}
2228
2229#define PF_INTR_MASK (PFSW_F | PFCIM_F)
2230
2231/*
2232 * csio_hw_intr_enable - Enable HW interrupts
2233 * @hw: Pointer to HW module.
2234 *
2235 * Enable interrupts in HW registers.
2236 */
2237static void
2238csio_hw_intr_enable(struct csio_hw *hw)
2239{
2240	uint16_t vec = (uint16_t)csio_get_mb_intr_idx(csio_hw_to_mbm(hw));
2241	uint32_t pf = SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2242	uint32_t pl = csio_rd_reg32(hw, PL_INT_ENABLE_A);
2243
2244	/*
2245	 * Set aivec for MSI/MSIX. PCIE_PF_CFG.INTXType is set up
2246	 * by FW, so do nothing for INTX.
2247	 */
2248	if (hw->intr_mode == CSIO_IM_MSIX)
2249		csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG_A),
2250				   AIVEC_V(AIVEC_M), vec);
2251	else if (hw->intr_mode == CSIO_IM_MSI)
2252		csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG_A),
2253				   AIVEC_V(AIVEC_M), 0);
2254
2255	csio_wr_reg32(hw, PF_INTR_MASK, MYPF_REG(PL_PF_INT_ENABLE_A));
2256
2257	/* Turn on MB interrupts - this will internally flush PIO as well */
2258	csio_mb_intr_enable(hw);
2259
2260	/* These are common registers - only a master can modify them */
2261	if (csio_is_hw_master(hw)) {
2262		/*
2263		 * Disable the Serial FLASH interrupt, if enabled!
2264		 */
2265		pl &= (~SF_F);
2266		csio_wr_reg32(hw, pl, PL_INT_ENABLE_A);
2267
2268		csio_wr_reg32(hw, ERR_CPL_EXCEED_IQE_SIZE_F |
2269			      EGRESS_SIZE_ERR_F | ERR_INVALID_CIDX_INC_F |
2270			      ERR_CPL_OPCODE_0_F | ERR_DROPPED_DB_F |
2271			      ERR_DATA_CPL_ON_HIGH_QID1_F |
2272			      ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
2273			      ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
2274			      ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
2275			      ERR_EGR_CTXT_PRIO_F | INGRESS_SIZE_ERR_F,
2276			      SGE_INT_ENABLE3_A);
2277		csio_set_reg_field(hw, PL_INT_MAP0_A, 0, 1 << pf);
2278	}
2279
2280	hw->flags |= CSIO_HWF_HW_INTR_ENABLED;
2281
2282}
2283
2284/*
2285 * csio_hw_intr_disable - Disable HW interrupts
2286 * @hw: Pointer to HW module.
2287 *
2288 * Turn off Mailbox and PCI_PF_CFG interrupts.
2289 */
2290void
2291csio_hw_intr_disable(struct csio_hw *hw)
2292{
2293	uint32_t pf = SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2294
2295	if (!(hw->flags & CSIO_HWF_HW_INTR_ENABLED))
2296		return;
2297
2298	hw->flags &= ~CSIO_HWF_HW_INTR_ENABLED;
2299
2300	csio_wr_reg32(hw, 0, MYPF_REG(PL_PF_INT_ENABLE_A));
2301	if (csio_is_hw_master(hw))
2302		csio_set_reg_field(hw, PL_INT_MAP0_A, 1 << pf, 0);
2303
2304	/* Turn off MB interrupts */
2305	csio_mb_intr_disable(hw);
2306
2307}
2308
2309void
2310csio_hw_fatal_err(struct csio_hw *hw)
2311{
2312	csio_set_reg_field(hw, SGE_CONTROL_A, GLOBALENABLE_F, 0);
2313	csio_hw_intr_disable(hw);
2314
2315	/* Do not reset HW, we may need FW state for debugging */
2316	csio_fatal(hw, "HW Fatal error encountered!\n");
2317}
2318
2319/*****************************************************************************/
2320/* START: HW SM                                                              */
2321/*****************************************************************************/
2322/*
2323 * csio_hws_uninit - Uninit state
2324 * @hw - HW module
2325 * @evt - Event
2326 *
2327 */
2328static void
2329csio_hws_uninit(struct csio_hw *hw, enum csio_hw_ev evt)
2330{
2331	hw->prev_evt = hw->cur_evt;
2332	hw->cur_evt = evt;
2333	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2334
2335	switch (evt) {
2336	case CSIO_HWE_CFG:
2337		csio_set_state(&hw->sm, csio_hws_configuring);
2338		csio_hw_configure(hw);
2339		break;
2340
2341	default:
2342		CSIO_INC_STATS(hw, n_evt_unexp);
2343		break;
2344	}
2345}
2346
2347/*
2348 * csio_hws_configuring - Configuring state
2349 * @hw - HW module
2350 * @evt - Event
2351 *
2352 */
2353static void
2354csio_hws_configuring(struct csio_hw *hw, enum csio_hw_ev evt)
2355{
2356	hw->prev_evt = hw->cur_evt;
2357	hw->cur_evt = evt;
2358	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2359
2360	switch (evt) {
2361	case CSIO_HWE_INIT:
2362		csio_set_state(&hw->sm, csio_hws_initializing);
2363		csio_hw_initialize(hw);
2364		break;
2365
2366	case CSIO_HWE_INIT_DONE:
2367		csio_set_state(&hw->sm, csio_hws_ready);
2368		/* Fan out event to all lnode SMs */
2369		csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
2370		break;
2371
2372	case CSIO_HWE_FATAL:
2373		csio_set_state(&hw->sm, csio_hws_uninit);
2374		break;
2375
2376	case CSIO_HWE_PCI_REMOVE:
2377		csio_do_bye(hw);
2378		break;
2379	default:
2380		CSIO_INC_STATS(hw, n_evt_unexp);
2381		break;
2382	}
2383}
2384
2385/*
2386 * csio_hws_initializing - Initialiazing state
2387 * @hw - HW module
2388 * @evt - Event
2389 *
2390 */
2391static void
2392csio_hws_initializing(struct csio_hw *hw, enum csio_hw_ev evt)
2393{
2394	hw->prev_evt = hw->cur_evt;
2395	hw->cur_evt = evt;
2396	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2397
2398	switch (evt) {
2399	case CSIO_HWE_INIT_DONE:
2400		csio_set_state(&hw->sm, csio_hws_ready);
2401
2402		/* Fan out event to all lnode SMs */
2403		csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
2404
2405		/* Enable interrupts */
2406		csio_hw_intr_enable(hw);
2407		break;
2408
2409	case CSIO_HWE_FATAL:
2410		csio_set_state(&hw->sm, csio_hws_uninit);
2411		break;
2412
2413	case CSIO_HWE_PCI_REMOVE:
2414		csio_do_bye(hw);
2415		break;
2416
2417	default:
2418		CSIO_INC_STATS(hw, n_evt_unexp);
2419		break;
2420	}
2421}
2422
2423/*
2424 * csio_hws_ready - Ready state
2425 * @hw - HW module
2426 * @evt - Event
2427 *
2428 */
2429static void
2430csio_hws_ready(struct csio_hw *hw, enum csio_hw_ev evt)
2431{
2432	/* Remember the event */
2433	hw->evtflag = evt;
2434
2435	hw->prev_evt = hw->cur_evt;
2436	hw->cur_evt = evt;
2437	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2438
2439	switch (evt) {
2440	case CSIO_HWE_HBA_RESET:
2441	case CSIO_HWE_FW_DLOAD:
2442	case CSIO_HWE_SUSPEND:
2443	case CSIO_HWE_PCI_REMOVE:
2444	case CSIO_HWE_PCIERR_DETECTED:
2445		csio_set_state(&hw->sm, csio_hws_quiescing);
2446		/* cleanup all outstanding cmds */
2447		if (evt == CSIO_HWE_HBA_RESET ||
2448		    evt == CSIO_HWE_PCIERR_DETECTED)
2449			csio_scsim_cleanup_io(csio_hw_to_scsim(hw), false);
2450		else
2451			csio_scsim_cleanup_io(csio_hw_to_scsim(hw), true);
2452
2453		csio_hw_intr_disable(hw);
2454		csio_hw_mbm_cleanup(hw);
2455		csio_evtq_stop(hw);
2456		csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWSTOP);
2457		csio_evtq_flush(hw);
2458		csio_mgmtm_cleanup(csio_hw_to_mgmtm(hw));
2459		csio_post_event(&hw->sm, CSIO_HWE_QUIESCED);
2460		break;
2461
2462	case CSIO_HWE_FATAL:
2463		csio_set_state(&hw->sm, csio_hws_uninit);
2464		break;
2465
2466	default:
2467		CSIO_INC_STATS(hw, n_evt_unexp);
2468		break;
2469	}
2470}
2471
2472/*
2473 * csio_hws_quiescing - Quiescing state
2474 * @hw - HW module
2475 * @evt - Event
2476 *
2477 */
2478static void
2479csio_hws_quiescing(struct csio_hw *hw, enum csio_hw_ev evt)
2480{
2481	hw->prev_evt = hw->cur_evt;
2482	hw->cur_evt = evt;
2483	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2484
2485	switch (evt) {
2486	case CSIO_HWE_QUIESCED:
2487		switch (hw->evtflag) {
2488		case CSIO_HWE_FW_DLOAD:
2489			csio_set_state(&hw->sm, csio_hws_resetting);
2490			/* Download firmware */
2491			/* Fall through */
2492
2493		case CSIO_HWE_HBA_RESET:
2494			csio_set_state(&hw->sm, csio_hws_resetting);
2495			/* Start reset of the HBA */
2496			csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWRESET);
2497			csio_wr_destroy_queues(hw, false);
2498			csio_do_reset(hw, false);
2499			csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET_DONE);
2500			break;
2501
2502		case CSIO_HWE_PCI_REMOVE:
2503			csio_set_state(&hw->sm, csio_hws_removing);
2504			csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREMOVE);
2505			csio_wr_destroy_queues(hw, true);
2506			/* Now send the bye command */
2507			csio_do_bye(hw);
2508			break;
2509
2510		case CSIO_HWE_SUSPEND:
2511			csio_set_state(&hw->sm, csio_hws_quiesced);
2512			break;
2513
2514		case CSIO_HWE_PCIERR_DETECTED:
2515			csio_set_state(&hw->sm, csio_hws_pcierr);
2516			csio_wr_destroy_queues(hw, false);
2517			break;
2518
2519		default:
2520			CSIO_INC_STATS(hw, n_evt_unexp);
2521			break;
2522
2523		}
2524		break;
2525
2526	default:
2527		CSIO_INC_STATS(hw, n_evt_unexp);
2528		break;
2529	}
2530}
2531
2532/*
2533 * csio_hws_quiesced - Quiesced state
2534 * @hw - HW module
2535 * @evt - Event
2536 *
2537 */
2538static void
2539csio_hws_quiesced(struct csio_hw *hw, enum csio_hw_ev evt)
2540{
2541	hw->prev_evt = hw->cur_evt;
2542	hw->cur_evt = evt;
2543	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2544
2545	switch (evt) {
2546	case CSIO_HWE_RESUME:
2547		csio_set_state(&hw->sm, csio_hws_configuring);
2548		csio_hw_configure(hw);
2549		break;
2550
2551	default:
2552		CSIO_INC_STATS(hw, n_evt_unexp);
2553		break;
2554	}
2555}
2556
2557/*
2558 * csio_hws_resetting - HW Resetting state
2559 * @hw - HW module
2560 * @evt - Event
2561 *
2562 */
2563static void
2564csio_hws_resetting(struct csio_hw *hw, enum csio_hw_ev evt)
2565{
2566	hw->prev_evt = hw->cur_evt;
2567	hw->cur_evt = evt;
2568	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2569
2570	switch (evt) {
2571	case CSIO_HWE_HBA_RESET_DONE:
2572		csio_evtq_start(hw);
2573		csio_set_state(&hw->sm, csio_hws_configuring);
2574		csio_hw_configure(hw);
2575		break;
2576
2577	default:
2578		CSIO_INC_STATS(hw, n_evt_unexp);
2579		break;
2580	}
2581}
2582
2583/*
2584 * csio_hws_removing - PCI Hotplug removing state
2585 * @hw - HW module
2586 * @evt - Event
2587 *
2588 */
2589static void
2590csio_hws_removing(struct csio_hw *hw, enum csio_hw_ev evt)
2591{
2592	hw->prev_evt = hw->cur_evt;
2593	hw->cur_evt = evt;
2594	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2595
2596	switch (evt) {
2597	case CSIO_HWE_HBA_RESET:
2598		if (!csio_is_hw_master(hw))
2599			break;
2600		/*
2601		 * The BYE should have alerady been issued, so we cant
2602		 * use the mailbox interface. Hence we use the PL_RST
2603		 * register directly.
2604		 */
2605		csio_err(hw, "Resetting HW and waiting 2 seconds...\n");
2606		csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
2607		mdelay(2000);
2608		break;
2609
2610	/* Should never receive any new events */
2611	default:
2612		CSIO_INC_STATS(hw, n_evt_unexp);
2613		break;
2614
2615	}
2616}
2617
2618/*
2619 * csio_hws_pcierr - PCI Error state
2620 * @hw - HW module
2621 * @evt - Event
2622 *
2623 */
2624static void
2625csio_hws_pcierr(struct csio_hw *hw, enum csio_hw_ev evt)
2626{
2627	hw->prev_evt = hw->cur_evt;
2628	hw->cur_evt = evt;
2629	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2630
2631	switch (evt) {
2632	case CSIO_HWE_PCIERR_SLOT_RESET:
2633		csio_evtq_start(hw);
2634		csio_set_state(&hw->sm, csio_hws_configuring);
2635		csio_hw_configure(hw);
2636		break;
2637
2638	default:
2639		CSIO_INC_STATS(hw, n_evt_unexp);
2640		break;
2641	}
2642}
2643
2644/*****************************************************************************/
2645/* END: HW SM                                                                */
2646/*****************************************************************************/
2647
2648/*
2649 *	csio_handle_intr_status - table driven interrupt handler
2650 *	@hw: HW instance
2651 *	@reg: the interrupt status register to process
2652 *	@acts: table of interrupt actions
2653 *
2654 *	A table driven interrupt handler that applies a set of masks to an
2655 *	interrupt status word and performs the corresponding actions if the
2656 *	interrupts described by the mask have occured.  The actions include
2657 *	optionally emitting a warning or alert message. The table is terminated
2658 *	by an entry specifying mask 0.  Returns the number of fatal interrupt
2659 *	conditions.
2660 */
2661int
2662csio_handle_intr_status(struct csio_hw *hw, unsigned int reg,
2663				 const struct intr_info *acts)
2664{
2665	int fatal = 0;
2666	unsigned int mask = 0;
2667	unsigned int status = csio_rd_reg32(hw, reg);
2668
2669	for ( ; acts->mask; ++acts) {
2670		if (!(status & acts->mask))
2671			continue;
2672		if (acts->fatal) {
2673			fatal++;
2674			csio_fatal(hw, "Fatal %s (0x%x)\n",
2675				    acts->msg, status & acts->mask);
2676		} else if (acts->msg)
2677			csio_info(hw, "%s (0x%x)\n",
2678				    acts->msg, status & acts->mask);
2679		mask |= acts->mask;
2680	}
2681	status &= mask;
2682	if (status)                           /* clear processed interrupts */
2683		csio_wr_reg32(hw, status, reg);
2684	return fatal;
2685}
2686
2687/*
2688 * TP interrupt handler.
2689 */
2690static void csio_tp_intr_handler(struct csio_hw *hw)
2691{
2692	static struct intr_info tp_intr_info[] = {
2693		{ 0x3fffffff, "TP parity error", -1, 1 },
2694		{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
2695		{ 0, NULL, 0, 0 }
2696	};
2697
2698	if (csio_handle_intr_status(hw, TP_INT_CAUSE_A, tp_intr_info))
2699		csio_hw_fatal_err(hw);
2700}
2701
2702/*
2703 * SGE interrupt handler.
2704 */
2705static void csio_sge_intr_handler(struct csio_hw *hw)
2706{
2707	uint64_t v;
2708
2709	static struct intr_info sge_intr_info[] = {
2710		{ ERR_CPL_EXCEED_IQE_SIZE_F,
2711		  "SGE received CPL exceeding IQE size", -1, 1 },
2712		{ ERR_INVALID_CIDX_INC_F,
2713		  "SGE GTS CIDX increment too large", -1, 0 },
2714		{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
2715		{ ERR_DROPPED_DB_F, "SGE doorbell dropped", -1, 0 },
2716		{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
2717		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
2718		{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
2719		  0 },
2720		{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
2721		  0 },
2722		{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
2723		  0 },
2724		{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
2725		  0 },
2726		{ ERR_ING_CTXT_PRIO_F,
2727		  "SGE too many priority ingress contexts", -1, 0 },
2728		{ ERR_EGR_CTXT_PRIO_F,
2729		  "SGE too many priority egress contexts", -1, 0 },
2730		{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
2731		{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
2732		{ 0, NULL, 0, 0 }
2733	};
2734
2735	v = (uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE1_A) |
2736	    ((uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE2_A) << 32);
2737	if (v) {
2738		csio_fatal(hw, "SGE parity error (%#llx)\n",
2739			    (unsigned long long)v);
2740		csio_wr_reg32(hw, (uint32_t)(v & 0xFFFFFFFF),
2741						SGE_INT_CAUSE1_A);
2742		csio_wr_reg32(hw, (uint32_t)(v >> 32), SGE_INT_CAUSE2_A);
2743	}
2744
2745	v |= csio_handle_intr_status(hw, SGE_INT_CAUSE3_A, sge_intr_info);
2746
2747	if (csio_handle_intr_status(hw, SGE_INT_CAUSE3_A, sge_intr_info) ||
2748	    v != 0)
2749		csio_hw_fatal_err(hw);
2750}
2751
2752#define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
2753		      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
2754#define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
2755		      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
2756
2757/*
2758 * CIM interrupt handler.
2759 */
2760static void csio_cim_intr_handler(struct csio_hw *hw)
2761{
2762	static struct intr_info cim_intr_info[] = {
2763		{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
2764		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
2765		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
2766		{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
2767		{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
2768		{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
2769		{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
2770		{ 0, NULL, 0, 0 }
2771	};
2772	static struct intr_info cim_upintr_info[] = {
2773		{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
2774		{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
2775		{ ILLWRINT_F, "CIM illegal write", -1, 1 },
2776		{ ILLRDINT_F, "CIM illegal read", -1, 1 },
2777		{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
2778		{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
2779		{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
2780		{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
2781		{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
2782		{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
2783		{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
2784		{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
2785		{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
2786		{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
2787		{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
2788		{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
2789		{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
2790		{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
2791		{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
2792		{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
2793		{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
2794		{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
2795		{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
2796		{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
2797		{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
2798		{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
2799		{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
2800		{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
2801		{ 0, NULL, 0, 0 }
2802	};
2803
2804	int fat;
2805
2806	fat = csio_handle_intr_status(hw, CIM_HOST_INT_CAUSE_A,
2807				      cim_intr_info) +
2808	      csio_handle_intr_status(hw, CIM_HOST_UPACC_INT_CAUSE_A,
2809				      cim_upintr_info);
2810	if (fat)
2811		csio_hw_fatal_err(hw);
2812}
2813
2814/*
2815 * ULP RX interrupt handler.
2816 */
2817static void csio_ulprx_intr_handler(struct csio_hw *hw)
2818{
2819	static struct intr_info ulprx_intr_info[] = {
2820		{ 0x1800000, "ULPRX context error", -1, 1 },
2821		{ 0x7fffff, "ULPRX parity error", -1, 1 },
2822		{ 0, NULL, 0, 0 }
2823	};
2824
2825	if (csio_handle_intr_status(hw, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
2826		csio_hw_fatal_err(hw);
2827}
2828
2829/*
2830 * ULP TX interrupt handler.
2831 */
2832static void csio_ulptx_intr_handler(struct csio_hw *hw)
2833{
2834	static struct intr_info ulptx_intr_info[] = {
2835		{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
2836		  0 },
2837		{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
2838		  0 },
2839		{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
2840		  0 },
2841		{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
2842		  0 },
2843		{ 0xfffffff, "ULPTX parity error", -1, 1 },
2844		{ 0, NULL, 0, 0 }
2845	};
2846
2847	if (csio_handle_intr_status(hw, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
2848		csio_hw_fatal_err(hw);
2849}
2850
2851/*
2852 * PM TX interrupt handler.
2853 */
2854static void csio_pmtx_intr_handler(struct csio_hw *hw)
2855{
2856	static struct intr_info pmtx_intr_info[] = {
2857		{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
2858		{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
2859		{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
2860		{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
2861		{ 0xffffff0, "PMTX framing error", -1, 1 },
2862		{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
2863		{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error", -1,
2864		  1 },
2865		{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
2866		{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
2867		{ 0, NULL, 0, 0 }
2868	};
2869
2870	if (csio_handle_intr_status(hw, PM_TX_INT_CAUSE_A, pmtx_intr_info))
2871		csio_hw_fatal_err(hw);
2872}
2873
2874/*
2875 * PM RX interrupt handler.
2876 */
2877static void csio_pmrx_intr_handler(struct csio_hw *hw)
2878{
2879	static struct intr_info pmrx_intr_info[] = {
2880		{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
2881		{ 0x3ffff0, "PMRX framing error", -1, 1 },
2882		{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
2883		{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error", -1,
2884		  1 },
2885		{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
2886		{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
2887		{ 0, NULL, 0, 0 }
2888	};
2889
2890	if (csio_handle_intr_status(hw, PM_RX_INT_CAUSE_A, pmrx_intr_info))
2891		csio_hw_fatal_err(hw);
2892}
2893
2894/*
2895 * CPL switch interrupt handler.
2896 */
2897static void csio_cplsw_intr_handler(struct csio_hw *hw)
2898{
2899	static struct intr_info cplsw_intr_info[] = {
2900		{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
2901		{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
2902		{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
2903		{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
2904		{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
2905		{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
2906		{ 0, NULL, 0, 0 }
2907	};
2908
2909	if (csio_handle_intr_status(hw, CPL_INTR_CAUSE_A, cplsw_intr_info))
2910		csio_hw_fatal_err(hw);
2911}
2912
2913/*
2914 * LE interrupt handler.
2915 */
2916static void csio_le_intr_handler(struct csio_hw *hw)
2917{
2918	static struct intr_info le_intr_info[] = {
2919		{ LIPMISS_F, "LE LIP miss", -1, 0 },
2920		{ LIP0_F, "LE 0 LIP error", -1, 0 },
2921		{ PARITYERR_F, "LE parity error", -1, 1 },
2922		{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
2923		{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
2924		{ 0, NULL, 0, 0 }
2925	};
2926
2927	if (csio_handle_intr_status(hw, LE_DB_INT_CAUSE_A, le_intr_info))
2928		csio_hw_fatal_err(hw);
2929}
2930
2931/*
2932 * MPS interrupt handler.
2933 */
2934static void csio_mps_intr_handler(struct csio_hw *hw)
2935{
2936	static struct intr_info mps_rx_intr_info[] = {
2937		{ 0xffffff, "MPS Rx parity error", -1, 1 },
2938		{ 0, NULL, 0, 0 }
2939	};
2940	static struct intr_info mps_tx_intr_info[] = {
2941		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
2942		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
2943		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
2944		  -1, 1 },
2945		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
2946		  -1, 1 },
2947		{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
2948		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
2949		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
2950		{ 0, NULL, 0, 0 }
2951	};
2952	static struct intr_info mps_trc_intr_info[] = {
2953		{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
2954		{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
2955		  -1, 1 },
2956		{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
2957		{ 0, NULL, 0, 0 }
2958	};
2959	static struct intr_info mps_stat_sram_intr_info[] = {
2960		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
2961		{ 0, NULL, 0, 0 }
2962	};
2963	static struct intr_info mps_stat_tx_intr_info[] = {
2964		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
2965		{ 0, NULL, 0, 0 }
2966	};
2967	static struct intr_info mps_stat_rx_intr_info[] = {
2968		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
2969		{ 0, NULL, 0, 0 }
2970	};
2971	static struct intr_info mps_cls_intr_info[] = {
2972		{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
2973		{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
2974		{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
2975		{ 0, NULL, 0, 0 }
2976	};
2977
2978	int fat;
2979
2980	fat = csio_handle_intr_status(hw, MPS_RX_PERR_INT_CAUSE_A,
2981				      mps_rx_intr_info) +
2982	      csio_handle_intr_status(hw, MPS_TX_INT_CAUSE_A,
2983				      mps_tx_intr_info) +
2984	      csio_handle_intr_status(hw, MPS_TRC_INT_CAUSE_A,
2985				      mps_trc_intr_info) +
2986	      csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
2987				      mps_stat_sram_intr_info) +
2988	      csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
2989				      mps_stat_tx_intr_info) +
2990	      csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
2991				      mps_stat_rx_intr_info) +
2992	      csio_handle_intr_status(hw, MPS_CLS_INT_CAUSE_A,
2993				      mps_cls_intr_info);
2994
2995	csio_wr_reg32(hw, 0, MPS_INT_CAUSE_A);
2996	csio_rd_reg32(hw, MPS_INT_CAUSE_A);                    /* flush */
2997	if (fat)
2998		csio_hw_fatal_err(hw);
2999}
3000
3001#define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
3002		      ECC_UE_INT_CAUSE_F)
3003
3004/*
3005 * EDC/MC interrupt handler.
3006 */
3007static void csio_mem_intr_handler(struct csio_hw *hw, int idx)
3008{
3009	static const char name[3][5] = { "EDC0", "EDC1", "MC" };
3010
3011	unsigned int addr, cnt_addr, v;
3012
3013	if (idx <= MEM_EDC1) {
3014		addr = EDC_REG(EDC_INT_CAUSE_A, idx);
3015		cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
3016	} else {
3017		addr = MC_INT_CAUSE_A;
3018		cnt_addr = MC_ECC_STATUS_A;
3019	}
3020
3021	v = csio_rd_reg32(hw, addr) & MEM_INT_MASK;
3022	if (v & PERR_INT_CAUSE_F)
3023		csio_fatal(hw, "%s FIFO parity error\n", name[idx]);
3024	if (v & ECC_CE_INT_CAUSE_F) {
3025		uint32_t cnt = ECC_CECNT_G(csio_rd_reg32(hw, cnt_addr));
3026
3027		csio_wr_reg32(hw, ECC_CECNT_V(ECC_CECNT_M), cnt_addr);
3028		csio_warn(hw, "%u %s correctable ECC data error%s\n",
3029			    cnt, name[idx], cnt > 1 ? "s" : "");
3030	}
3031	if (v & ECC_UE_INT_CAUSE_F)
3032		csio_fatal(hw, "%s uncorrectable ECC data error\n", name[idx]);
3033
3034	csio_wr_reg32(hw, v, addr);
3035	if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
3036		csio_hw_fatal_err(hw);
3037}
3038
3039/*
3040 * MA interrupt handler.
3041 */
3042static void csio_ma_intr_handler(struct csio_hw *hw)
3043{
3044	uint32_t v, status = csio_rd_reg32(hw, MA_INT_CAUSE_A);
3045
3046	if (status & MEM_PERR_INT_CAUSE_F)
3047		csio_fatal(hw, "MA parity error, parity status %#x\n",
3048			    csio_rd_reg32(hw, MA_PARITY_ERROR_STATUS_A));
3049	if (status & MEM_WRAP_INT_CAUSE_F) {
3050		v = csio_rd_reg32(hw, MA_INT_WRAP_STATUS_A);
3051		csio_fatal(hw,
3052		   "MA address wrap-around error by client %u to address %#x\n",
3053		   MEM_WRAP_CLIENT_NUM_G(v), MEM_WRAP_ADDRESS_G(v) << 4);
3054	}
3055	csio_wr_reg32(hw, status, MA_INT_CAUSE_A);
3056	csio_hw_fatal_err(hw);
3057}
3058
3059/*
3060 * SMB interrupt handler.
3061 */
3062static void csio_smb_intr_handler(struct csio_hw *hw)
3063{
3064	static struct intr_info smb_intr_info[] = {
3065		{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
3066		{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
3067		{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
3068		{ 0, NULL, 0, 0 }
3069	};
3070
3071	if (csio_handle_intr_status(hw, SMB_INT_CAUSE_A, smb_intr_info))
3072		csio_hw_fatal_err(hw);
3073}
3074
3075/*
3076 * NC-SI interrupt handler.
3077 */
3078static void csio_ncsi_intr_handler(struct csio_hw *hw)
3079{
3080	static struct intr_info ncsi_intr_info[] = {
3081		{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
3082		{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
3083		{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
3084		{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
3085		{ 0, NULL, 0, 0 }
3086	};
3087
3088	if (csio_handle_intr_status(hw, NCSI_INT_CAUSE_A, ncsi_intr_info))
3089		csio_hw_fatal_err(hw);
3090}
3091
3092/*
3093 * XGMAC interrupt handler.
3094 */
3095static void csio_xgmac_intr_handler(struct csio_hw *hw, int port)
3096{
3097	uint32_t v = csio_rd_reg32(hw, T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A));
3098
3099	v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
3100	if (!v)
3101		return;
3102
3103	if (v & TXFIFO_PRTY_ERR_F)
3104		csio_fatal(hw, "XGMAC %d Tx FIFO parity error\n", port);
3105	if (v & RXFIFO_PRTY_ERR_F)
3106		csio_fatal(hw, "XGMAC %d Rx FIFO parity error\n", port);
3107	csio_wr_reg32(hw, v, T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A));
3108	csio_hw_fatal_err(hw);
3109}
3110
3111/*
3112 * PL interrupt handler.
3113 */
3114static void csio_pl_intr_handler(struct csio_hw *hw)
3115{
3116	static struct intr_info pl_intr_info[] = {
3117		{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
3118		{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
3119		{ 0, NULL, 0, 0 }
3120	};
3121
3122	if (csio_handle_intr_status(hw, PL_PL_INT_CAUSE_A, pl_intr_info))
3123		csio_hw_fatal_err(hw);
3124}
3125
3126/*
3127 *	csio_hw_slow_intr_handler - control path interrupt handler
3128 *	@hw: HW module
3129 *
3130 *	Interrupt handler for non-data global interrupt events, e.g., errors.
3131 *	The designation 'slow' is because it involves register reads, while
3132 *	data interrupts typically don't involve any MMIOs.
3133 */
3134int
3135csio_hw_slow_intr_handler(struct csio_hw *hw)
3136{
3137	uint32_t cause = csio_rd_reg32(hw, PL_INT_CAUSE_A);
3138
3139	if (!(cause & CSIO_GLBL_INTR_MASK)) {
3140		CSIO_INC_STATS(hw, n_plint_unexp);
3141		return 0;
3142	}
3143
3144	csio_dbg(hw, "Slow interrupt! cause: 0x%x\n", cause);
3145
3146	CSIO_INC_STATS(hw, n_plint_cnt);
3147
3148	if (cause & CIM_F)
3149		csio_cim_intr_handler(hw);
3150
3151	if (cause & MPS_F)
3152		csio_mps_intr_handler(hw);
3153
3154	if (cause & NCSI_F)
3155		csio_ncsi_intr_handler(hw);
3156
3157	if (cause & PL_F)
3158		csio_pl_intr_handler(hw);
3159
3160	if (cause & SMB_F)
3161		csio_smb_intr_handler(hw);
3162
3163	if (cause & XGMAC0_F)
3164		csio_xgmac_intr_handler(hw, 0);
3165
3166	if (cause & XGMAC1_F)
3167		csio_xgmac_intr_handler(hw, 1);
3168
3169	if (cause & XGMAC_KR0_F)
3170		csio_xgmac_intr_handler(hw, 2);
3171
3172	if (cause & XGMAC_KR1_F)
3173		csio_xgmac_intr_handler(hw, 3);
3174
3175	if (cause & PCIE_F)
3176		hw->chip_ops->chip_pcie_intr_handler(hw);
3177
3178	if (cause & MC_F)
3179		csio_mem_intr_handler(hw, MEM_MC);
3180
3181	if (cause & EDC0_F)
3182		csio_mem_intr_handler(hw, MEM_EDC0);
3183
3184	if (cause & EDC1_F)
3185		csio_mem_intr_handler(hw, MEM_EDC1);
3186
3187	if (cause & LE_F)
3188		csio_le_intr_handler(hw);
3189
3190	if (cause & TP_F)
3191		csio_tp_intr_handler(hw);
3192
3193	if (cause & MA_F)
3194		csio_ma_intr_handler(hw);
3195
3196	if (cause & PM_TX_F)
3197		csio_pmtx_intr_handler(hw);
3198
3199	if (cause & PM_RX_F)
3200		csio_pmrx_intr_handler(hw);
3201
3202	if (cause & ULP_RX_F)
3203		csio_ulprx_intr_handler(hw);
3204
3205	if (cause & CPL_SWITCH_F)
3206		csio_cplsw_intr_handler(hw);
3207
3208	if (cause & SGE_F)
3209		csio_sge_intr_handler(hw);
3210
3211	if (cause & ULP_TX_F)
3212		csio_ulptx_intr_handler(hw);
3213
3214	/* Clear the interrupts just processed for which we are the master. */
3215	csio_wr_reg32(hw, cause & CSIO_GLBL_INTR_MASK, PL_INT_CAUSE_A);
3216	csio_rd_reg32(hw, PL_INT_CAUSE_A); /* flush */
3217
3218	return 1;
3219}
3220
3221/*****************************************************************************
3222 * HW <--> mailbox interfacing routines.
3223 ****************************************************************************/
3224/*
3225 * csio_mberr_worker - Worker thread (dpc) for mailbox/error completions
3226 *
3227 * @data: Private data pointer.
3228 *
3229 * Called from worker thread context.
3230 */
3231static void
3232csio_mberr_worker(void *data)
3233{
3234	struct csio_hw *hw = (struct csio_hw *)data;
3235	struct csio_mbm *mbm = &hw->mbm;
3236	LIST_HEAD(cbfn_q);
3237	struct csio_mb *mbp_next;
3238	int rv;
3239
3240	del_timer_sync(&mbm->timer);
3241
3242	spin_lock_irq(&hw->lock);
3243	if (list_empty(&mbm->cbfn_q)) {
3244		spin_unlock_irq(&hw->lock);
3245		return;
3246	}
3247
3248	list_splice_tail_init(&mbm->cbfn_q, &cbfn_q);
3249	mbm->stats.n_cbfnq = 0;
3250
3251	/* Try to start waiting mailboxes */
3252	if (!list_empty(&mbm->req_q)) {
3253		mbp_next = list_first_entry(&mbm->req_q, struct csio_mb, list);
3254		list_del_init(&mbp_next->list);
3255
3256		rv = csio_mb_issue(hw, mbp_next);
3257		if (rv != 0)
3258			list_add_tail(&mbp_next->list, &mbm->req_q);
3259		else
3260			CSIO_DEC_STATS(mbm, n_activeq);
3261	}
3262	spin_unlock_irq(&hw->lock);
3263
3264	/* Now callback completions */
3265	csio_mb_completions(hw, &cbfn_q);
3266}
3267
3268/*
3269 * csio_hw_mb_timer - Top-level Mailbox timeout handler.
3270 *
3271 * @data: private data pointer
3272 *
3273 **/
3274static void
3275csio_hw_mb_timer(uintptr_t data)
3276{
3277	struct csio_hw *hw = (struct csio_hw *)data;
3278	struct csio_mb *mbp = NULL;
3279
3280	spin_lock_irq(&hw->lock);
3281	mbp = csio_mb_tmo_handler(hw);
3282	spin_unlock_irq(&hw->lock);
3283
3284	/* Call back the function for the timed-out Mailbox */
3285	if (mbp)
3286		mbp->mb_cbfn(hw, mbp);
3287
3288}
3289
3290/*
3291 * csio_hw_mbm_cleanup - Cleanup Mailbox module.
3292 * @hw: HW module
3293 *
3294 * Called with lock held, should exit with lock held.
3295 * Cancels outstanding mailboxes (waiting, in-flight) and gathers them
3296 * into a local queue. Drops lock and calls the completions. Holds
3297 * lock and returns.
3298 */
3299static void
3300csio_hw_mbm_cleanup(struct csio_hw *hw)
3301{
3302	LIST_HEAD(cbfn_q);
3303
3304	csio_mb_cancel_all(hw, &cbfn_q);
3305
3306	spin_unlock_irq(&hw->lock);
3307	csio_mb_completions(hw, &cbfn_q);
3308	spin_lock_irq(&hw->lock);
3309}
3310
3311/*****************************************************************************
3312 * Event handling
3313 ****************************************************************************/
3314int
3315csio_enqueue_evt(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
3316			uint16_t len)
3317{
3318	struct csio_evt_msg *evt_entry = NULL;
3319
3320	if (type >= CSIO_EVT_MAX)
3321		return -EINVAL;
3322
3323	if (len > CSIO_EVT_MSG_SIZE)
3324		return -EINVAL;
3325
3326	if (hw->flags & CSIO_HWF_FWEVT_STOP)
3327		return -EINVAL;
3328
3329	if (list_empty(&hw->evt_free_q)) {
3330		csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
3331			 type, len);
3332		return -ENOMEM;
3333	}
3334
3335	evt_entry = list_first_entry(&hw->evt_free_q,
3336				     struct csio_evt_msg, list);
3337	list_del_init(&evt_entry->list);
3338
3339	/* copy event msg and queue the event */
3340	evt_entry->type = type;
3341	memcpy((void *)evt_entry->data, evt_msg, len);
3342	list_add_tail(&evt_entry->list, &hw->evt_active_q);
3343
3344	CSIO_DEC_STATS(hw, n_evt_freeq);
3345	CSIO_INC_STATS(hw, n_evt_activeq);
3346
3347	return 0;
3348}
3349
3350static int
3351csio_enqueue_evt_lock(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
3352			uint16_t len, bool msg_sg)
3353{
3354	struct csio_evt_msg *evt_entry = NULL;
3355	struct csio_fl_dma_buf *fl_sg;
3356	uint32_t off = 0;
3357	unsigned long flags;
3358	int n, ret = 0;
3359
3360	if (type >= CSIO_EVT_MAX)
3361		return -EINVAL;
3362
3363	if (len > CSIO_EVT_MSG_SIZE)
3364		return -EINVAL;
3365
3366	spin_lock_irqsave(&hw->lock, flags);
3367	if (hw->flags & CSIO_HWF_FWEVT_STOP) {
3368		ret = -EINVAL;
3369		goto out;
3370	}
3371
3372	if (list_empty(&hw->evt_free_q)) {
3373		csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
3374			 type, len);
3375		ret = -ENOMEM;
3376		goto out;
3377	}
3378
3379	evt_entry = list_first_entry(&hw->evt_free_q,
3380				     struct csio_evt_msg, list);
3381	list_del_init(&evt_entry->list);
3382
3383	/* copy event msg and queue the event */
3384	evt_entry->type = type;
3385
3386	/* If Payload in SG list*/
3387	if (msg_sg) {
3388		fl_sg = (struct csio_fl_dma_buf *) evt_msg;
3389		for (n = 0; (n < CSIO_MAX_FLBUF_PER_IQWR && off < len); n++) {
3390			memcpy((void *)((uintptr_t)evt_entry->data + off),
3391				fl_sg->flbufs[n].vaddr,
3392				fl_sg->flbufs[n].len);
3393			off += fl_sg->flbufs[n].len;
3394		}
3395	} else
3396		memcpy((void *)evt_entry->data, evt_msg, len);
3397
3398	list_add_tail(&evt_entry->list, &hw->evt_active_q);
3399	CSIO_DEC_STATS(hw, n_evt_freeq);
3400	CSIO_INC_STATS(hw, n_evt_activeq);
3401out:
3402	spin_unlock_irqrestore(&hw->lock, flags);
3403	return ret;
3404}
3405
3406static void
3407csio_free_evt(struct csio_hw *hw, struct csio_evt_msg *evt_entry)
3408{
3409	if (evt_entry) {
3410		spin_lock_irq(&hw->lock);
3411		list_del_init(&evt_entry->list);
3412		list_add_tail(&evt_entry->list, &hw->evt_free_q);
3413		CSIO_DEC_STATS(hw, n_evt_activeq);
3414		CSIO_INC_STATS(hw, n_evt_freeq);
3415		spin_unlock_irq(&hw->lock);
3416	}
3417}
3418
3419void
3420csio_evtq_flush(struct csio_hw *hw)
3421{
3422	uint32_t count;
3423	count = 30;
3424	while (hw->flags & CSIO_HWF_FWEVT_PENDING && count--) {
3425		spin_unlock_irq(&hw->lock);
3426		msleep(2000);
3427		spin_lock_irq(&hw->lock);
3428	}
3429
3430	CSIO_DB_ASSERT(!(hw->flags & CSIO_HWF_FWEVT_PENDING));
3431}
3432
3433static void
3434csio_evtq_stop(struct csio_hw *hw)
3435{
3436	hw->flags |= CSIO_HWF_FWEVT_STOP;
3437}
3438
3439static void
3440csio_evtq_start(struct csio_hw *hw)
3441{
3442	hw->flags &= ~CSIO_HWF_FWEVT_STOP;
3443}
3444
3445static void
3446csio_evtq_cleanup(struct csio_hw *hw)
3447{
3448	struct list_head *evt_entry, *next_entry;
3449
3450	/* Release outstanding events from activeq to freeq*/
3451	if (!list_empty(&hw->evt_active_q))
3452		list_splice_tail_init(&hw->evt_active_q, &hw->evt_free_q);
3453
3454	hw->stats.n_evt_activeq = 0;
3455	hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
3456
3457	/* Freeup event entry */
3458	list_for_each_safe(evt_entry, next_entry, &hw->evt_free_q) {
3459		kfree(evt_entry);
3460		CSIO_DEC_STATS(hw, n_evt_freeq);
3461	}
3462
3463	hw->stats.n_evt_freeq = 0;
3464}
3465
3466
3467static void
3468csio_process_fwevtq_entry(struct csio_hw *hw, void *wr, uint32_t len,
3469			  struct csio_fl_dma_buf *flb, void *priv)
3470{
3471	__u8 op;
3472	void *msg = NULL;
3473	uint32_t msg_len = 0;
3474	bool msg_sg = 0;
3475
3476	op = ((struct rss_header *) wr)->opcode;
3477	if (op == CPL_FW6_PLD) {
3478		CSIO_INC_STATS(hw, n_cpl_fw6_pld);
3479		if (!flb || !flb->totlen) {
3480			CSIO_INC_STATS(hw, n_cpl_unexp);
3481			return;
3482		}
3483
3484		msg = (void *) flb;
3485		msg_len = flb->totlen;
3486		msg_sg = 1;
3487	} else if (op == CPL_FW6_MSG || op == CPL_FW4_MSG) {
3488
3489		CSIO_INC_STATS(hw, n_cpl_fw6_msg);
3490		/* skip RSS header */
3491		msg = (void *)((uintptr_t)wr + sizeof(__be64));
3492		msg_len = (op == CPL_FW6_MSG) ? sizeof(struct cpl_fw6_msg) :
3493			   sizeof(struct cpl_fw4_msg);
3494	} else {
3495		csio_warn(hw, "unexpected CPL %#x on FW event queue\n", op);
3496		CSIO_INC_STATS(hw, n_cpl_unexp);
3497		return;
3498	}
3499
3500	/*
3501	 * Enqueue event to EventQ. Events processing happens
3502	 * in Event worker thread context
3503	 */
3504	if (csio_enqueue_evt_lock(hw, CSIO_EVT_FW, msg,
3505				  (uint16_t)msg_len, msg_sg))
3506		CSIO_INC_STATS(hw, n_evt_drop);
3507}
3508
3509void
3510csio_evtq_worker(struct work_struct *work)
3511{
3512	struct csio_hw *hw = container_of(work, struct csio_hw, evtq_work);
3513	struct list_head *evt_entry, *next_entry;
3514	LIST_HEAD(evt_q);
3515	struct csio_evt_msg	*evt_msg;
3516	struct cpl_fw6_msg *msg;
3517	struct csio_rnode *rn;
3518	int rv = 0;
3519	uint8_t evtq_stop = 0;
3520
3521	csio_dbg(hw, "event worker thread active evts#%d\n",
3522		 hw->stats.n_evt_activeq);
3523
3524	spin_lock_irq(&hw->lock);
3525	while (!list_empty(&hw->evt_active_q)) {
3526		list_splice_tail_init(&hw->evt_active_q, &evt_q);
3527		spin_unlock_irq(&hw->lock);
3528
3529		list_for_each_safe(evt_entry, next_entry, &evt_q) {
3530			evt_msg = (struct csio_evt_msg *) evt_entry;
3531
3532			/* Drop events if queue is STOPPED */
3533			spin_lock_irq(&hw->lock);
3534			if (hw->flags & CSIO_HWF_FWEVT_STOP)
3535				evtq_stop = 1;
3536			spin_unlock_irq(&hw->lock);
3537			if (evtq_stop) {
3538				CSIO_INC_STATS(hw, n_evt_drop);
3539				goto free_evt;
3540			}
3541
3542			switch (evt_msg->type) {
3543			case CSIO_EVT_FW:
3544				msg = (struct cpl_fw6_msg *)(evt_msg->data);
3545
3546				if ((msg->opcode == CPL_FW6_MSG ||
3547				     msg->opcode == CPL_FW4_MSG) &&
3548				    !msg->type) {
3549					rv = csio_mb_fwevt_handler(hw,
3550								msg->data);
3551					if (!rv)
3552						break;
3553					/* Handle any remaining fw events */
3554					csio_fcoe_fwevt_handler(hw,
3555							msg->opcode, msg->data);
3556				} else if (msg->opcode == CPL_FW6_PLD) {
3557
3558					csio_fcoe_fwevt_handler(hw,
3559							msg->opcode, msg->data);
3560				} else {
3561					csio_warn(hw,
3562					     "Unhandled FW msg op %x type %x\n",
3563						  msg->opcode, msg->type);
3564					CSIO_INC_STATS(hw, n_evt_drop);
3565				}
3566				break;
3567
3568			case CSIO_EVT_MBX:
3569				csio_mberr_worker(hw);
3570				break;
3571
3572			case CSIO_EVT_DEV_LOSS:
3573				memcpy(&rn, evt_msg->data, sizeof(rn));
3574				csio_rnode_devloss_handler(rn);
3575				break;
3576
3577			default:
3578				csio_warn(hw, "Unhandled event %x on evtq\n",
3579					  evt_msg->type);
3580				CSIO_INC_STATS(hw, n_evt_unexp);
3581				break;
3582			}
3583free_evt:
3584			csio_free_evt(hw, evt_msg);
3585		}
3586
3587		spin_lock_irq(&hw->lock);
3588	}
3589	hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
3590	spin_unlock_irq(&hw->lock);
3591}
3592
3593int
3594csio_fwevtq_handler(struct csio_hw *hw)
3595{
3596	int rv;
3597
3598	if (csio_q_iqid(hw, hw->fwevt_iq_idx) == CSIO_MAX_QID) {
3599		CSIO_INC_STATS(hw, n_int_stray);
3600		return -EINVAL;
3601	}
3602
3603	rv = csio_wr_process_iq_idx(hw, hw->fwevt_iq_idx,
3604			   csio_process_fwevtq_entry, NULL);
3605	return rv;
3606}
3607
3608/****************************************************************************
3609 * Entry points
3610 ****************************************************************************/
3611
3612/* Management module */
3613/*
3614 * csio_mgmt_req_lookup - Lookup the given IO req exist in Active Q.
3615 * mgmt - mgmt module
3616 * @io_req - io request
3617 *
3618 * Return - 0:if given IO Req exists in active Q.
3619 *          -EINVAL  :if lookup fails.
3620 */
3621int
3622csio_mgmt_req_lookup(struct csio_mgmtm *mgmtm, struct csio_ioreq *io_req)
3623{
3624	struct list_head *tmp;
3625
3626	/* Lookup ioreq in the ACTIVEQ */
3627	list_for_each(tmp, &mgmtm->active_q) {
3628		if (io_req == (struct csio_ioreq *)tmp)
3629			return 0;
3630	}
3631	return -EINVAL;
3632}
3633
3634#define	ECM_MIN_TMO	1000	/* Minimum timeout value for req */
3635
3636/*
3637 * csio_mgmts_tmo_handler - MGMT IO Timeout handler.
3638 * @data - Event data.
3639 *
3640 * Return - none.
3641 */
3642static void
3643csio_mgmt_tmo_handler(uintptr_t data)
3644{
3645	struct csio_mgmtm *mgmtm = (struct csio_mgmtm *) data;
3646	struct list_head *tmp;
3647	struct csio_ioreq *io_req;
3648
3649	csio_dbg(mgmtm->hw, "Mgmt timer invoked!\n");
3650
3651	spin_lock_irq(&mgmtm->hw->lock);
3652
3653	list_for_each(tmp, &mgmtm->active_q) {
3654		io_req = (struct csio_ioreq *) tmp;
3655		io_req->tmo -= min_t(uint32_t, io_req->tmo, ECM_MIN_TMO);
3656
3657		if (!io_req->tmo) {
3658			/* Dequeue the request from retry Q. */
3659			tmp = csio_list_prev(tmp);
3660			list_del_init(&io_req->sm.sm_list);
3661			if (io_req->io_cbfn) {
3662				/* io_req will be freed by completion handler */
3663				io_req->wr_status = -ETIMEDOUT;
3664				io_req->io_cbfn(mgmtm->hw, io_req);
3665			} else {
3666				CSIO_DB_ASSERT(0);
3667			}
3668		}
3669	}
3670
3671	/* If retry queue is not empty, re-arm timer */
3672	if (!list_empty(&mgmtm->active_q))
3673		mod_timer(&mgmtm->mgmt_timer,
3674			  jiffies + msecs_to_jiffies(ECM_MIN_TMO));
3675	spin_unlock_irq(&mgmtm->hw->lock);
3676}
3677
3678static void
3679csio_mgmtm_cleanup(struct csio_mgmtm *mgmtm)
3680{
3681	struct csio_hw *hw = mgmtm->hw;
3682	struct csio_ioreq *io_req;
3683	struct list_head *tmp;
3684	uint32_t count;
3685
3686	count = 30;
3687	/* Wait for all outstanding req to complete gracefully */
3688	while ((!list_empty(&mgmtm->active_q)) && count--) {
3689		spin_unlock_irq(&hw->lock);
3690		msleep(2000);
3691		spin_lock_irq(&hw->lock);
3692	}
3693
3694	/* release outstanding req from ACTIVEQ */
3695	list_for_each(tmp, &mgmtm->active_q) {
3696		io_req = (struct csio_ioreq *) tmp;
3697		tmp = csio_list_prev(tmp);
3698		list_del_init(&io_req->sm.sm_list);
3699		mgmtm->stats.n_active--;
3700		if (io_req->io_cbfn) {
3701			/* io_req will be freed by completion handler */
3702			io_req->wr_status = -ETIMEDOUT;
3703			io_req->io_cbfn(mgmtm->hw, io_req);
3704		}
3705	}
3706}
3707
3708/*
3709 * csio_mgmt_init - Mgmt module init entry point
3710 * @mgmtsm - mgmt module
3711 * @hw	 - HW module
3712 *
3713 * Initialize mgmt timer, resource wait queue, active queue,
3714 * completion q. Allocate Egress and Ingress
3715 * WR queues and save off the queue index returned by the WR
3716 * module for future use. Allocate and save off mgmt reqs in the
3717 * mgmt_req_freelist for future use. Make sure their SM is initialized
3718 * to uninit state.
3719 * Returns: 0 - on success
3720 *          -ENOMEM   - on error.
3721 */
3722static int
3723csio_mgmtm_init(struct csio_mgmtm *mgmtm, struct csio_hw *hw)
3724{
3725	struct timer_list *timer = &mgmtm->mgmt_timer;
3726
3727	init_timer(timer);
3728	timer->function = csio_mgmt_tmo_handler;
3729	timer->data = (unsigned long)mgmtm;
3730
3731	INIT_LIST_HEAD(&mgmtm->active_q);
3732	INIT_LIST_HEAD(&mgmtm->cbfn_q);
3733
3734	mgmtm->hw = hw;
3735	/*mgmtm->iq_idx = hw->fwevt_iq_idx;*/
3736
3737	return 0;
3738}
3739
3740/*
3741 * csio_mgmtm_exit - MGMT module exit entry point
3742 * @mgmtsm - mgmt module
3743 *
3744 * This function called during MGMT module uninit.
3745 * Stop timers, free ioreqs allocated.
3746 * Returns: None
3747 *
3748 */
3749static void
3750csio_mgmtm_exit(struct csio_mgmtm *mgmtm)
3751{
3752	del_timer_sync(&mgmtm->mgmt_timer);
3753}
3754
3755
3756/**
3757 * csio_hw_start - Kicks off the HW State machine
3758 * @hw:		Pointer to HW module.
3759 *
3760 * It is assumed that the initialization is a synchronous operation.
3761 * So when we return afer posting the event, the HW SM should be in
3762 * the ready state, if there were no errors during init.
3763 */
3764int
3765csio_hw_start(struct csio_hw *hw)
3766{
3767	spin_lock_irq(&hw->lock);
3768	csio_post_event(&hw->sm, CSIO_HWE_CFG);
3769	spin_unlock_irq(&hw->lock);
3770
3771	if (csio_is_hw_ready(hw))
3772		return 0;
3773	else
3774		return -EINVAL;
3775}
3776
3777int
3778csio_hw_stop(struct csio_hw *hw)
3779{
3780	csio_post_event(&hw->sm, CSIO_HWE_PCI_REMOVE);
3781
3782	if (csio_is_hw_removing(hw))
3783		return 0;
3784	else
3785		return -EINVAL;
3786}
3787
3788/* Max reset retries */
3789#define CSIO_MAX_RESET_RETRIES	3
3790
3791/**
3792 * csio_hw_reset - Reset the hardware
3793 * @hw:		HW module.
3794 *
3795 * Caller should hold lock across this function.
3796 */
3797int
3798csio_hw_reset(struct csio_hw *hw)
3799{
3800	if (!csio_is_hw_master(hw))
3801		return -EPERM;
3802
3803	if (hw->rst_retries >= CSIO_MAX_RESET_RETRIES) {
3804		csio_dbg(hw, "Max hw reset attempts reached..");
3805		return -EINVAL;
3806	}
3807
3808	hw->rst_retries++;
3809	csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET);
3810
3811	if (csio_is_hw_ready(hw)) {
3812		hw->rst_retries = 0;
3813		hw->stats.n_reset_start = jiffies_to_msecs(jiffies);
3814		return 0;
3815	} else
3816		return -EINVAL;
3817}
3818
3819/*
3820 * csio_hw_get_device_id - Caches the Adapter's vendor & device id.
3821 * @hw: HW module.
3822 */
3823static void
3824csio_hw_get_device_id(struct csio_hw *hw)
3825{
3826	/* Is the adapter device id cached already ?*/
3827	if (csio_is_dev_id_cached(hw))
3828		return;
3829
3830	/* Get the PCI vendor & device id */
3831	pci_read_config_word(hw->pdev, PCI_VENDOR_ID,
3832			     &hw->params.pci.vendor_id);
3833	pci_read_config_word(hw->pdev, PCI_DEVICE_ID,
3834			     &hw->params.pci.device_id);
3835
3836	csio_dev_id_cached(hw);
3837	hw->chip_id = (hw->params.pci.device_id & CSIO_HW_CHIP_MASK);
3838
3839} /* csio_hw_get_device_id */
3840
3841/*
3842 * csio_hw_set_description - Set the model, description of the hw.
3843 * @hw: HW module.
3844 * @ven_id: PCI Vendor ID
3845 * @dev_id: PCI Device ID
3846 */
3847static void
3848csio_hw_set_description(struct csio_hw *hw, uint16_t ven_id, uint16_t dev_id)
3849{
3850	uint32_t adap_type, prot_type;
3851
3852	if (ven_id == CSIO_VENDOR_ID) {
3853		prot_type = (dev_id & CSIO_ASIC_DEVID_PROTO_MASK);
3854		adap_type = (dev_id & CSIO_ASIC_DEVID_TYPE_MASK);
3855
3856		if (prot_type == CSIO_T5_FCOE_ASIC) {
3857			memcpy(hw->hw_ver,
3858			       csio_t5_fcoe_adapters[adap_type].model_no, 16);
3859			memcpy(hw->model_desc,
3860			       csio_t5_fcoe_adapters[adap_type].description,
3861			       32);
3862		} else {
3863			char tempName[32] = "Chelsio FCoE Controller";
3864			memcpy(hw->model_desc, tempName, 32);
3865		}
3866	}
3867} /* csio_hw_set_description */
3868
3869/**
3870 * csio_hw_init - Initialize HW module.
3871 * @hw:		Pointer to HW module.
3872 *
3873 * Initialize the members of the HW module.
3874 */
3875int
3876csio_hw_init(struct csio_hw *hw)
3877{
3878	int rv = -EINVAL;
3879	uint32_t i;
3880	uint16_t ven_id, dev_id;
3881	struct csio_evt_msg	*evt_entry;
3882
3883	INIT_LIST_HEAD(&hw->sm.sm_list);
3884	csio_init_state(&hw->sm, csio_hws_uninit);
3885	spin_lock_init(&hw->lock);
3886	INIT_LIST_HEAD(&hw->sln_head);
3887
3888	/* Get the PCI vendor & device id */
3889	csio_hw_get_device_id(hw);
3890
3891	strcpy(hw->name, CSIO_HW_NAME);
3892
3893	/* Initialize the HW chip ops T5 specific ops */
3894	hw->chip_ops = &t5_ops;
3895
3896	/* Set the model & its description */
3897
3898	ven_id = hw->params.pci.vendor_id;
3899	dev_id = hw->params.pci.device_id;
3900
3901	csio_hw_set_description(hw, ven_id, dev_id);
3902
3903	/* Initialize default log level */
3904	hw->params.log_level = (uint32_t) csio_dbg_level;
3905
3906	csio_set_fwevt_intr_idx(hw, -1);
3907	csio_set_nondata_intr_idx(hw, -1);
3908
3909	/* Init all the modules: Mailbox, WorkRequest and Transport */
3910	if (csio_mbm_init(csio_hw_to_mbm(hw), hw, csio_hw_mb_timer))
3911		goto err;
3912
3913	rv = csio_wrm_init(csio_hw_to_wrm(hw), hw);
3914	if (rv)
3915		goto err_mbm_exit;
3916
3917	rv = csio_scsim_init(csio_hw_to_scsim(hw), hw);
3918	if (rv)
3919		goto err_wrm_exit;
3920
3921	rv = csio_mgmtm_init(csio_hw_to_mgmtm(hw), hw);
3922	if (rv)
3923		goto err_scsim_exit;
3924	/* Pre-allocate evtq and initialize them */
3925	INIT_LIST_HEAD(&hw->evt_active_q);
3926	INIT_LIST_HEAD(&hw->evt_free_q);
3927	for (i = 0; i < csio_evtq_sz; i++) {
3928
3929		evt_entry = kzalloc(sizeof(struct csio_evt_msg), GFP_KERNEL);
3930		if (!evt_entry) {
3931			csio_err(hw, "Failed to initialize eventq");
3932			goto err_evtq_cleanup;
3933		}
3934
3935		list_add_tail(&evt_entry->list, &hw->evt_free_q);
3936		CSIO_INC_STATS(hw, n_evt_freeq);
3937	}
3938
3939	hw->dev_num = dev_num;
3940	dev_num++;
3941
3942	return 0;
3943
3944err_evtq_cleanup:
3945	csio_evtq_cleanup(hw);
3946	csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
3947err_scsim_exit:
3948	csio_scsim_exit(csio_hw_to_scsim(hw));
3949err_wrm_exit:
3950	csio_wrm_exit(csio_hw_to_wrm(hw), hw);
3951err_mbm_exit:
3952	csio_mbm_exit(csio_hw_to_mbm(hw));
3953err:
3954	return rv;
3955}
3956
3957/**
3958 * csio_hw_exit - Un-initialize HW module.
3959 * @hw:		Pointer to HW module.
3960 *
3961 */
3962void
3963csio_hw_exit(struct csio_hw *hw)
3964{
3965	csio_evtq_cleanup(hw);
3966	csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
3967	csio_scsim_exit(csio_hw_to_scsim(hw));
3968	csio_wrm_exit(csio_hw_to_wrm(hw), hw);
3969	csio_mbm_exit(csio_hw_to_mbm(hw));
3970}
3971