1#define DRV_NAME "advansys"
2#define ASC_VERSION "3.4"	/* AdvanSys Driver Version */
3
4/*
5 * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
6 *
7 * Copyright (c) 1995-2000 Advanced System Products, Inc.
8 * Copyright (c) 2000-2001 ConnectCom Solutions, Inc.
9 * Copyright (c) 2007 Matthew Wilcox <matthew@wil.cx>
10 * All Rights Reserved.
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 */
17
18/*
19 * As of March 8, 2000 Advanced System Products, Inc. (AdvanSys)
20 * changed its name to ConnectCom Solutions, Inc.
21 * On June 18, 2001 Initio Corp. acquired ConnectCom's SCSI assets
22 */
23
24#include <linux/module.h>
25#include <linux/string.h>
26#include <linux/kernel.h>
27#include <linux/types.h>
28#include <linux/ioport.h>
29#include <linux/interrupt.h>
30#include <linux/delay.h>
31#include <linux/slab.h>
32#include <linux/mm.h>
33#include <linux/proc_fs.h>
34#include <linux/init.h>
35#include <linux/blkdev.h>
36#include <linux/isa.h>
37#include <linux/eisa.h>
38#include <linux/pci.h>
39#include <linux/spinlock.h>
40#include <linux/dma-mapping.h>
41#include <linux/firmware.h>
42
43#include <asm/io.h>
44#include <asm/dma.h>
45
46#include <scsi/scsi_cmnd.h>
47#include <scsi/scsi_device.h>
48#include <scsi/scsi_tcq.h>
49#include <scsi/scsi.h>
50#include <scsi/scsi_host.h>
51
52/* FIXME:
53 *
54 *  1. Although all of the necessary command mapping places have the
55 *     appropriate dma_map.. APIs, the driver still processes its internal
56 *     queue using bus_to_virt() and virt_to_bus() which are illegal under
57 *     the API.  The entire queue processing structure will need to be
58 *     altered to fix this.
59 *  2. Need to add memory mapping workaround. Test the memory mapping.
60 *     If it doesn't work revert to I/O port access. Can a test be done
61 *     safely?
62 *  3. Handle an interrupt not working. Keep an interrupt counter in
63 *     the interrupt handler. In the timeout function if the interrupt
64 *     has not occurred then print a message and run in polled mode.
65 *  4. Need to add support for target mode commands, cf. CAM XPT.
66 *  5. check DMA mapping functions for failure
67 *  6. Use scsi_transport_spi
68 *  7. advansys_info is not safe against multiple simultaneous callers
69 *  8. Add module_param to override ISA/VLB ioport array
70 */
71#warning this driver is still not properly converted to the DMA API
72
73/* Enable driver /proc statistics. */
74#define ADVANSYS_STATS
75
76/* Enable driver tracing. */
77#undef ADVANSYS_DEBUG
78
79/*
80 * Portable Data Types
81 *
82 * Any instance where a 32-bit long or pointer type is assumed
83 * for precision or HW defined structures, the following define
84 * types must be used. In Linux the char, short, and int types
85 * are all consistent at 8, 16, and 32 bits respectively. Pointers
86 * and long types are 64 bits on Alpha and UltraSPARC.
87 */
88#define ASC_PADDR __u32		/* Physical/Bus address data type. */
89#define ASC_VADDR __u32		/* Virtual address data type. */
90#define ASC_DCNT  __u32		/* Unsigned Data count type. */
91#define ASC_SDCNT __s32		/* Signed Data count type. */
92
93typedef unsigned char uchar;
94
95#ifndef TRUE
96#define TRUE     (1)
97#endif
98#ifndef FALSE
99#define FALSE    (0)
100#endif
101
102#define ERR      (-1)
103#define UW_ERR   (uint)(0xFFFF)
104#define isodd_word(val)   ((((uint)val) & (uint)0x0001) != 0)
105
106#define PCI_VENDOR_ID_ASP		0x10cd
107#define PCI_DEVICE_ID_ASP_1200A		0x1100
108#define PCI_DEVICE_ID_ASP_ABP940	0x1200
109#define PCI_DEVICE_ID_ASP_ABP940U	0x1300
110#define PCI_DEVICE_ID_ASP_ABP940UW	0x2300
111#define PCI_DEVICE_ID_38C0800_REV1	0x2500
112#define PCI_DEVICE_ID_38C1600_REV1	0x2700
113
114/*
115 * Enable CC_VERY_LONG_SG_LIST to support up to 64K element SG lists.
116 * The SRB structure will have to be changed and the ASC_SRB2SCSIQ()
117 * macro re-defined to be able to obtain a ASC_SCSI_Q pointer from the
118 * SRB structure.
119 */
120#define CC_VERY_LONG_SG_LIST 0
121#define ASC_SRB2SCSIQ(srb_ptr)  (srb_ptr)
122
123#define PortAddr                 unsigned int	/* port address size  */
124#define inp(port)                inb(port)
125#define outp(port, byte)         outb((byte), (port))
126
127#define inpw(port)               inw(port)
128#define outpw(port, word)        outw((word), (port))
129
130#define ASC_MAX_SG_QUEUE    7
131#define ASC_MAX_SG_LIST     255
132
133#define ASC_CS_TYPE  unsigned short
134
135#define ASC_IS_ISA          (0x0001)
136#define ASC_IS_ISAPNP       (0x0081)
137#define ASC_IS_EISA         (0x0002)
138#define ASC_IS_PCI          (0x0004)
139#define ASC_IS_PCI_ULTRA    (0x0104)
140#define ASC_IS_PCMCIA       (0x0008)
141#define ASC_IS_MCA          (0x0020)
142#define ASC_IS_VL           (0x0040)
143#define ASC_IS_WIDESCSI_16  (0x0100)
144#define ASC_IS_WIDESCSI_32  (0x0200)
145#define ASC_IS_BIG_ENDIAN   (0x8000)
146
147#define ASC_CHIP_MIN_VER_VL      (0x01)
148#define ASC_CHIP_MAX_VER_VL      (0x07)
149#define ASC_CHIP_MIN_VER_PCI     (0x09)
150#define ASC_CHIP_MAX_VER_PCI     (0x0F)
151#define ASC_CHIP_VER_PCI_BIT     (0x08)
152#define ASC_CHIP_MIN_VER_ISA     (0x11)
153#define ASC_CHIP_MIN_VER_ISA_PNP (0x21)
154#define ASC_CHIP_MAX_VER_ISA     (0x27)
155#define ASC_CHIP_VER_ISA_BIT     (0x30)
156#define ASC_CHIP_VER_ISAPNP_BIT  (0x20)
157#define ASC_CHIP_VER_ASYN_BUG    (0x21)
158#define ASC_CHIP_VER_PCI             0x08
159#define ASC_CHIP_VER_PCI_ULTRA_3150  (ASC_CHIP_VER_PCI | 0x02)
160#define ASC_CHIP_VER_PCI_ULTRA_3050  (ASC_CHIP_VER_PCI | 0x03)
161#define ASC_CHIP_MIN_VER_EISA (0x41)
162#define ASC_CHIP_MAX_VER_EISA (0x47)
163#define ASC_CHIP_VER_EISA_BIT (0x40)
164#define ASC_CHIP_LATEST_VER_EISA   ((ASC_CHIP_MIN_VER_EISA - 1) + 3)
165#define ASC_MAX_VL_DMA_COUNT    (0x07FFFFFFL)
166#define ASC_MAX_PCI_DMA_COUNT   (0xFFFFFFFFL)
167#define ASC_MAX_ISA_DMA_COUNT   (0x00FFFFFFL)
168
169#define ASC_SCSI_ID_BITS  3
170#define ASC_SCSI_TIX_TYPE     uchar
171#define ASC_ALL_DEVICE_BIT_SET  0xFF
172#define ASC_SCSI_BIT_ID_TYPE  uchar
173#define ASC_MAX_TID       7
174#define ASC_MAX_LUN       7
175#define ASC_SCSI_WIDTH_BIT_SET  0xFF
176#define ASC_MAX_SENSE_LEN   32
177#define ASC_MIN_SENSE_LEN   14
178#define ASC_SCSI_RESET_HOLD_TIME_US  60
179
180/*
181 * Narrow boards only support 12-byte commands, while wide boards
182 * extend to 16-byte commands.
183 */
184#define ASC_MAX_CDB_LEN     12
185#define ADV_MAX_CDB_LEN     16
186
187#define MS_SDTR_LEN    0x03
188#define MS_WDTR_LEN    0x02
189
190#define ASC_SG_LIST_PER_Q   7
191#define QS_FREE        0x00
192#define QS_READY       0x01
193#define QS_DISC1       0x02
194#define QS_DISC2       0x04
195#define QS_BUSY        0x08
196#define QS_ABORTED     0x40
197#define QS_DONE        0x80
198#define QC_NO_CALLBACK   0x01
199#define QC_SG_SWAP_QUEUE 0x02
200#define QC_SG_HEAD       0x04
201#define QC_DATA_IN       0x08
202#define QC_DATA_OUT      0x10
203#define QC_URGENT        0x20
204#define QC_MSG_OUT       0x40
205#define QC_REQ_SENSE     0x80
206#define QCSG_SG_XFER_LIST  0x02
207#define QCSG_SG_XFER_MORE  0x04
208#define QCSG_SG_XFER_END   0x08
209#define QD_IN_PROGRESS       0x00
210#define QD_NO_ERROR          0x01
211#define QD_ABORTED_BY_HOST   0x02
212#define QD_WITH_ERROR        0x04
213#define QD_INVALID_REQUEST   0x80
214#define QD_INVALID_HOST_NUM  0x81
215#define QD_INVALID_DEVICE    0x82
216#define QD_ERR_INTERNAL      0xFF
217#define QHSTA_NO_ERROR               0x00
218#define QHSTA_M_SEL_TIMEOUT          0x11
219#define QHSTA_M_DATA_OVER_RUN        0x12
220#define QHSTA_M_DATA_UNDER_RUN       0x12
221#define QHSTA_M_UNEXPECTED_BUS_FREE  0x13
222#define QHSTA_M_BAD_BUS_PHASE_SEQ    0x14
223#define QHSTA_D_QDONE_SG_LIST_CORRUPTED 0x21
224#define QHSTA_D_ASC_DVC_ERROR_CODE_SET  0x22
225#define QHSTA_D_HOST_ABORT_FAILED       0x23
226#define QHSTA_D_EXE_SCSI_Q_FAILED       0x24
227#define QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT 0x25
228#define QHSTA_D_ASPI_NO_BUF_POOL        0x26
229#define QHSTA_M_WTM_TIMEOUT         0x41
230#define QHSTA_M_BAD_CMPL_STATUS_IN  0x42
231#define QHSTA_M_NO_AUTO_REQ_SENSE   0x43
232#define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
233#define QHSTA_M_TARGET_STATUS_BUSY  0x45
234#define QHSTA_M_BAD_TAG_CODE        0x46
235#define QHSTA_M_BAD_QUEUE_FULL_OR_BUSY  0x47
236#define QHSTA_M_HUNG_REQ_SCSI_BUS_RESET 0x48
237#define QHSTA_D_LRAM_CMP_ERROR        0x81
238#define QHSTA_M_MICRO_CODE_ERROR_HALT 0xA1
239#define ASC_FLAG_SCSIQ_REQ        0x01
240#define ASC_FLAG_BIOS_SCSIQ_REQ   0x02
241#define ASC_FLAG_BIOS_ASYNC_IO    0x04
242#define ASC_FLAG_SRB_LINEAR_ADDR  0x08
243#define ASC_FLAG_WIN16            0x10
244#define ASC_FLAG_WIN32            0x20
245#define ASC_FLAG_ISA_OVER_16MB    0x40
246#define ASC_FLAG_DOS_VM_CALLBACK  0x80
247#define ASC_TAG_FLAG_EXTRA_BYTES               0x10
248#define ASC_TAG_FLAG_DISABLE_DISCONNECT        0x04
249#define ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX  0x08
250#define ASC_TAG_FLAG_DISABLE_CHK_COND_INT_HOST 0x40
251#define ASC_SCSIQ_CPY_BEG              4
252#define ASC_SCSIQ_SGHD_CPY_BEG         2
253#define ASC_SCSIQ_B_FWD                0
254#define ASC_SCSIQ_B_BWD                1
255#define ASC_SCSIQ_B_STATUS             2
256#define ASC_SCSIQ_B_QNO                3
257#define ASC_SCSIQ_B_CNTL               4
258#define ASC_SCSIQ_B_SG_QUEUE_CNT       5
259#define ASC_SCSIQ_D_DATA_ADDR          8
260#define ASC_SCSIQ_D_DATA_CNT          12
261#define ASC_SCSIQ_B_SENSE_LEN         20
262#define ASC_SCSIQ_DONE_INFO_BEG       22
263#define ASC_SCSIQ_D_SRBPTR            22
264#define ASC_SCSIQ_B_TARGET_IX         26
265#define ASC_SCSIQ_B_CDB_LEN           28
266#define ASC_SCSIQ_B_TAG_CODE          29
267#define ASC_SCSIQ_W_VM_ID             30
268#define ASC_SCSIQ_DONE_STATUS         32
269#define ASC_SCSIQ_HOST_STATUS         33
270#define ASC_SCSIQ_SCSI_STATUS         34
271#define ASC_SCSIQ_CDB_BEG             36
272#define ASC_SCSIQ_DW_REMAIN_XFER_ADDR 56
273#define ASC_SCSIQ_DW_REMAIN_XFER_CNT  60
274#define ASC_SCSIQ_B_FIRST_SG_WK_QP    48
275#define ASC_SCSIQ_B_SG_WK_QP          49
276#define ASC_SCSIQ_B_SG_WK_IX          50
277#define ASC_SCSIQ_W_ALT_DC1           52
278#define ASC_SCSIQ_B_LIST_CNT          6
279#define ASC_SCSIQ_B_CUR_LIST_CNT      7
280#define ASC_SGQ_B_SG_CNTL             4
281#define ASC_SGQ_B_SG_HEAD_QP          5
282#define ASC_SGQ_B_SG_LIST_CNT         6
283#define ASC_SGQ_B_SG_CUR_LIST_CNT     7
284#define ASC_SGQ_LIST_BEG              8
285#define ASC_DEF_SCSI1_QNG    4
286#define ASC_MAX_SCSI1_QNG    4
287#define ASC_DEF_SCSI2_QNG    16
288#define ASC_MAX_SCSI2_QNG    32
289#define ASC_TAG_CODE_MASK    0x23
290#define ASC_STOP_REQ_RISC_STOP      0x01
291#define ASC_STOP_ACK_RISC_STOP      0x03
292#define ASC_STOP_CLEAN_UP_BUSY_Q    0x10
293#define ASC_STOP_CLEAN_UP_DISC_Q    0x20
294#define ASC_STOP_HOST_REQ_RISC_HALT 0x40
295#define ASC_TIDLUN_TO_IX(tid, lun)  (ASC_SCSI_TIX_TYPE)((tid) + ((lun)<<ASC_SCSI_ID_BITS))
296#define ASC_TID_TO_TARGET_ID(tid)   (ASC_SCSI_BIT_ID_TYPE)(0x01 << (tid))
297#define ASC_TIX_TO_TARGET_ID(tix)   (0x01 << ((tix) & ASC_MAX_TID))
298#define ASC_TIX_TO_TID(tix)         ((tix) & ASC_MAX_TID)
299#define ASC_TID_TO_TIX(tid)         ((tid) & ASC_MAX_TID)
300#define ASC_TIX_TO_LUN(tix)         (((tix) >> ASC_SCSI_ID_BITS) & ASC_MAX_LUN)
301#define ASC_QNO_TO_QADDR(q_no)      ((ASC_QADR_BEG)+((int)(q_no) << 6))
302
303typedef struct asc_scsiq_1 {
304	uchar status;
305	uchar q_no;
306	uchar cntl;
307	uchar sg_queue_cnt;
308	uchar target_id;
309	uchar target_lun;
310	ASC_PADDR data_addr;
311	ASC_DCNT data_cnt;
312	ASC_PADDR sense_addr;
313	uchar sense_len;
314	uchar extra_bytes;
315} ASC_SCSIQ_1;
316
317typedef struct asc_scsiq_2 {
318	ASC_VADDR srb_ptr;
319	uchar target_ix;
320	uchar flag;
321	uchar cdb_len;
322	uchar tag_code;
323	ushort vm_id;
324} ASC_SCSIQ_2;
325
326typedef struct asc_scsiq_3 {
327	uchar done_stat;
328	uchar host_stat;
329	uchar scsi_stat;
330	uchar scsi_msg;
331} ASC_SCSIQ_3;
332
333typedef struct asc_scsiq_4 {
334	uchar cdb[ASC_MAX_CDB_LEN];
335	uchar y_first_sg_list_qp;
336	uchar y_working_sg_qp;
337	uchar y_working_sg_ix;
338	uchar y_res;
339	ushort x_req_count;
340	ushort x_reconnect_rtn;
341	ASC_PADDR x_saved_data_addr;
342	ASC_DCNT x_saved_data_cnt;
343} ASC_SCSIQ_4;
344
345typedef struct asc_q_done_info {
346	ASC_SCSIQ_2 d2;
347	ASC_SCSIQ_3 d3;
348	uchar q_status;
349	uchar q_no;
350	uchar cntl;
351	uchar sense_len;
352	uchar extra_bytes;
353	uchar res;
354	ASC_DCNT remain_bytes;
355} ASC_QDONE_INFO;
356
357typedef struct asc_sg_list {
358	ASC_PADDR addr;
359	ASC_DCNT bytes;
360} ASC_SG_LIST;
361
362typedef struct asc_sg_head {
363	ushort entry_cnt;
364	ushort queue_cnt;
365	ushort entry_to_copy;
366	ushort res;
367	ASC_SG_LIST sg_list[0];
368} ASC_SG_HEAD;
369
370typedef struct asc_scsi_q {
371	ASC_SCSIQ_1 q1;
372	ASC_SCSIQ_2 q2;
373	uchar *cdbptr;
374	ASC_SG_HEAD *sg_head;
375	ushort remain_sg_entry_cnt;
376	ushort next_sg_index;
377} ASC_SCSI_Q;
378
379typedef struct asc_scsi_req_q {
380	ASC_SCSIQ_1 r1;
381	ASC_SCSIQ_2 r2;
382	uchar *cdbptr;
383	ASC_SG_HEAD *sg_head;
384	uchar *sense_ptr;
385	ASC_SCSIQ_3 r3;
386	uchar cdb[ASC_MAX_CDB_LEN];
387	uchar sense[ASC_MIN_SENSE_LEN];
388} ASC_SCSI_REQ_Q;
389
390typedef struct asc_scsi_bios_req_q {
391	ASC_SCSIQ_1 r1;
392	ASC_SCSIQ_2 r2;
393	uchar *cdbptr;
394	ASC_SG_HEAD *sg_head;
395	uchar *sense_ptr;
396	ASC_SCSIQ_3 r3;
397	uchar cdb[ASC_MAX_CDB_LEN];
398	uchar sense[ASC_MIN_SENSE_LEN];
399} ASC_SCSI_BIOS_REQ_Q;
400
401typedef struct asc_risc_q {
402	uchar fwd;
403	uchar bwd;
404	ASC_SCSIQ_1 i1;
405	ASC_SCSIQ_2 i2;
406	ASC_SCSIQ_3 i3;
407	ASC_SCSIQ_4 i4;
408} ASC_RISC_Q;
409
410typedef struct asc_sg_list_q {
411	uchar seq_no;
412	uchar q_no;
413	uchar cntl;
414	uchar sg_head_qp;
415	uchar sg_list_cnt;
416	uchar sg_cur_list_cnt;
417} ASC_SG_LIST_Q;
418
419typedef struct asc_risc_sg_list_q {
420	uchar fwd;
421	uchar bwd;
422	ASC_SG_LIST_Q sg;
423	ASC_SG_LIST sg_list[7];
424} ASC_RISC_SG_LIST_Q;
425
426#define ASCQ_ERR_Q_STATUS             0x0D
427#define ASCQ_ERR_CUR_QNG              0x17
428#define ASCQ_ERR_SG_Q_LINKS           0x18
429#define ASCQ_ERR_ISR_RE_ENTRY         0x1A
430#define ASCQ_ERR_CRITICAL_RE_ENTRY    0x1B
431#define ASCQ_ERR_ISR_ON_CRITICAL      0x1C
432
433/*
434 * Warning code values are set in ASC_DVC_VAR  'warn_code'.
435 */
436#define ASC_WARN_NO_ERROR             0x0000
437#define ASC_WARN_IO_PORT_ROTATE       0x0001
438#define ASC_WARN_EEPROM_CHKSUM        0x0002
439#define ASC_WARN_IRQ_MODIFIED         0x0004
440#define ASC_WARN_AUTO_CONFIG          0x0008
441#define ASC_WARN_CMD_QNG_CONFLICT     0x0010
442#define ASC_WARN_EEPROM_RECOVER       0x0020
443#define ASC_WARN_CFG_MSW_RECOVER      0x0040
444
445/*
446 * Error code values are set in {ASC/ADV}_DVC_VAR  'err_code'.
447 */
448#define ASC_IERR_NO_CARRIER		0x0001	/* No more carrier memory */
449#define ASC_IERR_MCODE_CHKSUM		0x0002	/* micro code check sum error */
450#define ASC_IERR_SET_PC_ADDR		0x0004
451#define ASC_IERR_START_STOP_CHIP	0x0008	/* start/stop chip failed */
452#define ASC_IERR_ILLEGAL_CONNECTION	0x0010	/* Illegal cable connection */
453#define ASC_IERR_SINGLE_END_DEVICE	0x0020	/* SE device on DIFF bus */
454#define ASC_IERR_REVERSED_CABLE		0x0040	/* Narrow flat cable reversed */
455#define ASC_IERR_SET_SCSI_ID		0x0080	/* set SCSI ID failed */
456#define ASC_IERR_HVD_DEVICE		0x0100	/* HVD device on LVD port */
457#define ASC_IERR_BAD_SIGNATURE		0x0200	/* signature not found */
458#define ASC_IERR_NO_BUS_TYPE		0x0400
459#define ASC_IERR_BIST_PRE_TEST		0x0800	/* BIST pre-test error */
460#define ASC_IERR_BIST_RAM_TEST		0x1000	/* BIST RAM test error */
461#define ASC_IERR_BAD_CHIPTYPE		0x2000	/* Invalid chip_type setting */
462
463#define ASC_DEF_MAX_TOTAL_QNG   (0xF0)
464#define ASC_MIN_TAG_Q_PER_DVC   (0x04)
465#define ASC_MIN_FREE_Q        (0x02)
466#define ASC_MIN_TOTAL_QNG     ((ASC_MAX_SG_QUEUE)+(ASC_MIN_FREE_Q))
467#define ASC_MAX_TOTAL_QNG 240
468#define ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG 16
469#define ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG   8
470#define ASC_MAX_PCI_INRAM_TOTAL_QNG  20
471#define ASC_MAX_INRAM_TAG_QNG   16
472#define ASC_IOADR_GAP   0x10
473#define ASC_SYN_MAX_OFFSET         0x0F
474#define ASC_DEF_SDTR_OFFSET        0x0F
475#define ASC_SDTR_ULTRA_PCI_10MB_INDEX  0x02
476#define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41
477
478/* The narrow chip only supports a limited selection of transfer rates.
479 * These are encoded in the range 0..7 or 0..15 depending whether the chip
480 * is Ultra-capable or not.  These tables let us convert from one to the other.
481 */
482static const unsigned char asc_syn_xfer_period[8] = {
483	25, 30, 35, 40, 50, 60, 70, 85
484};
485
486static const unsigned char asc_syn_ultra_xfer_period[16] = {
487	12, 19, 25, 32, 38, 44, 50, 57, 63, 69, 75, 82, 88, 94, 100, 107
488};
489
490typedef struct ext_msg {
491	uchar msg_type;
492	uchar msg_len;
493	uchar msg_req;
494	union {
495		struct {
496			uchar sdtr_xfer_period;
497			uchar sdtr_req_ack_offset;
498		} sdtr;
499		struct {
500			uchar wdtr_width;
501		} wdtr;
502		struct {
503			uchar mdp_b3;
504			uchar mdp_b2;
505			uchar mdp_b1;
506			uchar mdp_b0;
507		} mdp;
508	} u_ext_msg;
509	uchar res;
510} EXT_MSG;
511
512#define xfer_period     u_ext_msg.sdtr.sdtr_xfer_period
513#define req_ack_offset  u_ext_msg.sdtr.sdtr_req_ack_offset
514#define wdtr_width      u_ext_msg.wdtr.wdtr_width
515#define mdp_b3          u_ext_msg.mdp_b3
516#define mdp_b2          u_ext_msg.mdp_b2
517#define mdp_b1          u_ext_msg.mdp_b1
518#define mdp_b0          u_ext_msg.mdp_b0
519
520typedef struct asc_dvc_cfg {
521	ASC_SCSI_BIT_ID_TYPE can_tagged_qng;
522	ASC_SCSI_BIT_ID_TYPE cmd_qng_enabled;
523	ASC_SCSI_BIT_ID_TYPE disc_enable;
524	ASC_SCSI_BIT_ID_TYPE sdtr_enable;
525	uchar chip_scsi_id;
526	uchar isa_dma_speed;
527	uchar isa_dma_channel;
528	uchar chip_version;
529	ushort mcode_date;
530	ushort mcode_version;
531	uchar max_tag_qng[ASC_MAX_TID + 1];
532	uchar sdtr_period_offset[ASC_MAX_TID + 1];
533	uchar adapter_info[6];
534} ASC_DVC_CFG;
535
536#define ASC_DEF_DVC_CNTL       0xFFFF
537#define ASC_DEF_CHIP_SCSI_ID   7
538#define ASC_DEF_ISA_DMA_SPEED  4
539#define ASC_INIT_STATE_BEG_GET_CFG   0x0001
540#define ASC_INIT_STATE_END_GET_CFG   0x0002
541#define ASC_INIT_STATE_BEG_SET_CFG   0x0004
542#define ASC_INIT_STATE_END_SET_CFG   0x0008
543#define ASC_INIT_STATE_BEG_LOAD_MC   0x0010
544#define ASC_INIT_STATE_END_LOAD_MC   0x0020
545#define ASC_INIT_STATE_BEG_INQUIRY   0x0040
546#define ASC_INIT_STATE_END_INQUIRY   0x0080
547#define ASC_INIT_RESET_SCSI_DONE     0x0100
548#define ASC_INIT_STATE_WITHOUT_EEP   0x8000
549#define ASC_BUG_FIX_IF_NOT_DWB       0x0001
550#define ASC_BUG_FIX_ASYN_USE_SYN     0x0002
551#define ASC_MIN_TAGGED_CMD  7
552#define ASC_MAX_SCSI_RESET_WAIT      30
553#define ASC_OVERRUN_BSIZE		64
554
555struct asc_dvc_var;		/* Forward Declaration. */
556
557typedef struct asc_dvc_var {
558	PortAddr iop_base;
559	ushort err_code;
560	ushort dvc_cntl;
561	ushort bug_fix_cntl;
562	ushort bus_type;
563	ASC_SCSI_BIT_ID_TYPE init_sdtr;
564	ASC_SCSI_BIT_ID_TYPE sdtr_done;
565	ASC_SCSI_BIT_ID_TYPE use_tagged_qng;
566	ASC_SCSI_BIT_ID_TYPE unit_not_ready;
567	ASC_SCSI_BIT_ID_TYPE queue_full_or_busy;
568	ASC_SCSI_BIT_ID_TYPE start_motor;
569	uchar *overrun_buf;
570	dma_addr_t overrun_dma;
571	uchar scsi_reset_wait;
572	uchar chip_no;
573	char is_in_int;
574	uchar max_total_qng;
575	uchar cur_total_qng;
576	uchar in_critical_cnt;
577	uchar last_q_shortage;
578	ushort init_state;
579	uchar cur_dvc_qng[ASC_MAX_TID + 1];
580	uchar max_dvc_qng[ASC_MAX_TID + 1];
581	ASC_SCSI_Q *scsiq_busy_head[ASC_MAX_TID + 1];
582	ASC_SCSI_Q *scsiq_busy_tail[ASC_MAX_TID + 1];
583	const uchar *sdtr_period_tbl;
584	ASC_DVC_CFG *cfg;
585	ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer_always;
586	char redo_scam;
587	ushort res2;
588	uchar dos_int13_table[ASC_MAX_TID + 1];
589	ASC_DCNT max_dma_count;
590	ASC_SCSI_BIT_ID_TYPE no_scam;
591	ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer;
592	uchar min_sdtr_index;
593	uchar max_sdtr_index;
594	struct asc_board *drv_ptr;
595	int ptr_map_count;
596	void **ptr_map;
597	ASC_DCNT uc_break;
598} ASC_DVC_VAR;
599
600typedef struct asc_dvc_inq_info {
601	uchar type[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
602} ASC_DVC_INQ_INFO;
603
604typedef struct asc_cap_info {
605	ASC_DCNT lba;
606	ASC_DCNT blk_size;
607} ASC_CAP_INFO;
608
609typedef struct asc_cap_info_array {
610	ASC_CAP_INFO cap_info[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
611} ASC_CAP_INFO_ARRAY;
612
613#define ASC_MCNTL_NO_SEL_TIMEOUT  (ushort)0x0001
614#define ASC_MCNTL_NULL_TARGET     (ushort)0x0002
615#define ASC_CNTL_INITIATOR         (ushort)0x0001
616#define ASC_CNTL_BIOS_GT_1GB       (ushort)0x0002
617#define ASC_CNTL_BIOS_GT_2_DISK    (ushort)0x0004
618#define ASC_CNTL_BIOS_REMOVABLE    (ushort)0x0008
619#define ASC_CNTL_NO_SCAM           (ushort)0x0010
620#define ASC_CNTL_INT_MULTI_Q       (ushort)0x0080
621#define ASC_CNTL_NO_LUN_SUPPORT    (ushort)0x0040
622#define ASC_CNTL_NO_VERIFY_COPY    (ushort)0x0100
623#define ASC_CNTL_RESET_SCSI        (ushort)0x0200
624#define ASC_CNTL_INIT_INQUIRY      (ushort)0x0400
625#define ASC_CNTL_INIT_VERBOSE      (ushort)0x0800
626#define ASC_CNTL_SCSI_PARITY       (ushort)0x1000
627#define ASC_CNTL_BURST_MODE        (ushort)0x2000
628#define ASC_CNTL_SDTR_ENABLE_ULTRA (ushort)0x4000
629#define ASC_EEP_DVC_CFG_BEG_VL    2
630#define ASC_EEP_MAX_DVC_ADDR_VL   15
631#define ASC_EEP_DVC_CFG_BEG      32
632#define ASC_EEP_MAX_DVC_ADDR     45
633#define ASC_EEP_MAX_RETRY        20
634
635/*
636 * These macros keep the chip SCSI id and ISA DMA speed
637 * bitfields in board order. C bitfields aren't portable
638 * between big and little-endian platforms so they are
639 * not used.
640 */
641
642#define ASC_EEP_GET_CHIP_ID(cfg)    ((cfg)->id_speed & 0x0f)
643#define ASC_EEP_GET_DMA_SPD(cfg)    (((cfg)->id_speed & 0xf0) >> 4)
644#define ASC_EEP_SET_CHIP_ID(cfg, sid) \
645   ((cfg)->id_speed = ((cfg)->id_speed & 0xf0) | ((sid) & ASC_MAX_TID))
646#define ASC_EEP_SET_DMA_SPD(cfg, spd) \
647   ((cfg)->id_speed = ((cfg)->id_speed & 0x0f) | ((spd) & 0x0f) << 4)
648
649typedef struct asceep_config {
650	ushort cfg_lsw;
651	ushort cfg_msw;
652	uchar init_sdtr;
653	uchar disc_enable;
654	uchar use_cmd_qng;
655	uchar start_motor;
656	uchar max_total_qng;
657	uchar max_tag_qng;
658	uchar bios_scan;
659	uchar power_up_wait;
660	uchar no_scam;
661	uchar id_speed;		/* low order 4 bits is chip scsi id */
662	/* high order 4 bits is isa dma speed */
663	uchar dos_int13_table[ASC_MAX_TID + 1];
664	uchar adapter_info[6];
665	ushort cntl;
666	ushort chksum;
667} ASCEEP_CONFIG;
668
669#define ASC_EEP_CMD_READ          0x80
670#define ASC_EEP_CMD_WRITE         0x40
671#define ASC_EEP_CMD_WRITE_ABLE    0x30
672#define ASC_EEP_CMD_WRITE_DISABLE 0x00
673#define ASCV_MSGOUT_BEG         0x0000
674#define ASCV_MSGOUT_SDTR_PERIOD (ASCV_MSGOUT_BEG+3)
675#define ASCV_MSGOUT_SDTR_OFFSET (ASCV_MSGOUT_BEG+4)
676#define ASCV_BREAK_SAVED_CODE   (ushort)0x0006
677#define ASCV_MSGIN_BEG          (ASCV_MSGOUT_BEG+8)
678#define ASCV_MSGIN_SDTR_PERIOD  (ASCV_MSGIN_BEG+3)
679#define ASCV_MSGIN_SDTR_OFFSET  (ASCV_MSGIN_BEG+4)
680#define ASCV_SDTR_DATA_BEG      (ASCV_MSGIN_BEG+8)
681#define ASCV_SDTR_DONE_BEG      (ASCV_SDTR_DATA_BEG+8)
682#define ASCV_MAX_DVC_QNG_BEG    (ushort)0x0020
683#define ASCV_BREAK_ADDR           (ushort)0x0028
684#define ASCV_BREAK_NOTIFY_COUNT   (ushort)0x002A
685#define ASCV_BREAK_CONTROL        (ushort)0x002C
686#define ASCV_BREAK_HIT_COUNT      (ushort)0x002E
687
688#define ASCV_ASCDVC_ERR_CODE_W  (ushort)0x0030
689#define ASCV_MCODE_CHKSUM_W   (ushort)0x0032
690#define ASCV_MCODE_SIZE_W     (ushort)0x0034
691#define ASCV_STOP_CODE_B      (ushort)0x0036
692#define ASCV_DVC_ERR_CODE_B   (ushort)0x0037
693#define ASCV_OVERRUN_PADDR_D  (ushort)0x0038
694#define ASCV_OVERRUN_BSIZE_D  (ushort)0x003C
695#define ASCV_HALTCODE_W       (ushort)0x0040
696#define ASCV_CHKSUM_W         (ushort)0x0042
697#define ASCV_MC_DATE_W        (ushort)0x0044
698#define ASCV_MC_VER_W         (ushort)0x0046
699#define ASCV_NEXTRDY_B        (ushort)0x0048
700#define ASCV_DONENEXT_B       (ushort)0x0049
701#define ASCV_USE_TAGGED_QNG_B (ushort)0x004A
702#define ASCV_SCSIBUSY_B       (ushort)0x004B
703#define ASCV_Q_DONE_IN_PROGRESS_B  (ushort)0x004C
704#define ASCV_CURCDB_B         (ushort)0x004D
705#define ASCV_RCLUN_B          (ushort)0x004E
706#define ASCV_BUSY_QHEAD_B     (ushort)0x004F
707#define ASCV_DISC1_QHEAD_B    (ushort)0x0050
708#define ASCV_DISC_ENABLE_B    (ushort)0x0052
709#define ASCV_CAN_TAGGED_QNG_B (ushort)0x0053
710#define ASCV_HOSTSCSI_ID_B    (ushort)0x0055
711#define ASCV_MCODE_CNTL_B     (ushort)0x0056
712#define ASCV_NULL_TARGET_B    (ushort)0x0057
713#define ASCV_FREE_Q_HEAD_W    (ushort)0x0058
714#define ASCV_DONE_Q_TAIL_W    (ushort)0x005A
715#define ASCV_FREE_Q_HEAD_B    (ushort)(ASCV_FREE_Q_HEAD_W+1)
716#define ASCV_DONE_Q_TAIL_B    (ushort)(ASCV_DONE_Q_TAIL_W+1)
717#define ASCV_HOST_FLAG_B      (ushort)0x005D
718#define ASCV_TOTAL_READY_Q_B  (ushort)0x0064
719#define ASCV_VER_SERIAL_B     (ushort)0x0065
720#define ASCV_HALTCODE_SAVED_W (ushort)0x0066
721#define ASCV_WTM_FLAG_B       (ushort)0x0068
722#define ASCV_RISC_FLAG_B      (ushort)0x006A
723#define ASCV_REQ_SG_LIST_QP   (ushort)0x006B
724#define ASC_HOST_FLAG_IN_ISR        0x01
725#define ASC_HOST_FLAG_ACK_INT       0x02
726#define ASC_RISC_FLAG_GEN_INT      0x01
727#define ASC_RISC_FLAG_REQ_SG_LIST  0x02
728#define IOP_CTRL         (0x0F)
729#define IOP_STATUS       (0x0E)
730#define IOP_INT_ACK      IOP_STATUS
731#define IOP_REG_IFC      (0x0D)
732#define IOP_SYN_OFFSET    (0x0B)
733#define IOP_EXTRA_CONTROL (0x0D)
734#define IOP_REG_PC        (0x0C)
735#define IOP_RAM_ADDR      (0x0A)
736#define IOP_RAM_DATA      (0x08)
737#define IOP_EEP_DATA      (0x06)
738#define IOP_EEP_CMD       (0x07)
739#define IOP_VERSION       (0x03)
740#define IOP_CONFIG_HIGH   (0x04)
741#define IOP_CONFIG_LOW    (0x02)
742#define IOP_SIG_BYTE      (0x01)
743#define IOP_SIG_WORD      (0x00)
744#define IOP_REG_DC1      (0x0E)
745#define IOP_REG_DC0      (0x0C)
746#define IOP_REG_SB       (0x0B)
747#define IOP_REG_DA1      (0x0A)
748#define IOP_REG_DA0      (0x08)
749#define IOP_REG_SC       (0x09)
750#define IOP_DMA_SPEED    (0x07)
751#define IOP_REG_FLAG     (0x07)
752#define IOP_FIFO_H       (0x06)
753#define IOP_FIFO_L       (0x04)
754#define IOP_REG_ID       (0x05)
755#define IOP_REG_QP       (0x03)
756#define IOP_REG_IH       (0x02)
757#define IOP_REG_IX       (0x01)
758#define IOP_REG_AX       (0x00)
759#define IFC_REG_LOCK      (0x00)
760#define IFC_REG_UNLOCK    (0x09)
761#define IFC_WR_EN_FILTER  (0x10)
762#define IFC_RD_NO_EEPROM  (0x10)
763#define IFC_SLEW_RATE     (0x20)
764#define IFC_ACT_NEG       (0x40)
765#define IFC_INP_FILTER    (0x80)
766#define IFC_INIT_DEFAULT  (IFC_ACT_NEG | IFC_REG_UNLOCK)
767#define SC_SEL   (uchar)(0x80)
768#define SC_BSY   (uchar)(0x40)
769#define SC_ACK   (uchar)(0x20)
770#define SC_REQ   (uchar)(0x10)
771#define SC_ATN   (uchar)(0x08)
772#define SC_IO    (uchar)(0x04)
773#define SC_CD    (uchar)(0x02)
774#define SC_MSG   (uchar)(0x01)
775#define SEC_SCSI_CTL         (uchar)(0x80)
776#define SEC_ACTIVE_NEGATE    (uchar)(0x40)
777#define SEC_SLEW_RATE        (uchar)(0x20)
778#define SEC_ENABLE_FILTER    (uchar)(0x10)
779#define ASC_HALT_EXTMSG_IN     (ushort)0x8000
780#define ASC_HALT_CHK_CONDITION (ushort)0x8100
781#define ASC_HALT_SS_QUEUE_FULL (ushort)0x8200
782#define ASC_HALT_DISABLE_ASYN_USE_SYN_FIX  (ushort)0x8300
783#define ASC_HALT_ENABLE_ASYN_USE_SYN_FIX   (ushort)0x8400
784#define ASC_HALT_SDTR_REJECTED (ushort)0x4000
785#define ASC_HALT_HOST_COPY_SG_LIST_TO_RISC ( ushort )0x2000
786#define ASC_MAX_QNO        0xF8
787#define ASC_DATA_SEC_BEG   (ushort)0x0080
788#define ASC_DATA_SEC_END   (ushort)0x0080
789#define ASC_CODE_SEC_BEG   (ushort)0x0080
790#define ASC_CODE_SEC_END   (ushort)0x0080
791#define ASC_QADR_BEG       (0x4000)
792#define ASC_QADR_USED      (ushort)(ASC_MAX_QNO * 64)
793#define ASC_QADR_END       (ushort)0x7FFF
794#define ASC_QLAST_ADR      (ushort)0x7FC0
795#define ASC_QBLK_SIZE      0x40
796#define ASC_BIOS_DATA_QBEG 0xF8
797#define ASC_MIN_ACTIVE_QNO 0x01
798#define ASC_QLINK_END      0xFF
799#define ASC_EEPROM_WORDS   0x10
800#define ASC_MAX_MGS_LEN    0x10
801#define ASC_BIOS_ADDR_DEF  0xDC00
802#define ASC_BIOS_SIZE      0x3800
803#define ASC_BIOS_RAM_OFF   0x3800
804#define ASC_BIOS_RAM_SIZE  0x800
805#define ASC_BIOS_MIN_ADDR  0xC000
806#define ASC_BIOS_MAX_ADDR  0xEC00
807#define ASC_BIOS_BANK_SIZE 0x0400
808#define ASC_MCODE_START_ADDR  0x0080
809#define ASC_CFG0_HOST_INT_ON    0x0020
810#define ASC_CFG0_BIOS_ON        0x0040
811#define ASC_CFG0_VERA_BURST_ON  0x0080
812#define ASC_CFG0_SCSI_PARITY_ON 0x0800
813#define ASC_CFG1_SCSI_TARGET_ON 0x0080
814#define ASC_CFG1_LRAM_8BITS_ON  0x0800
815#define ASC_CFG_MSW_CLR_MASK    0x3080
816#define CSW_TEST1             (ASC_CS_TYPE)0x8000
817#define CSW_AUTO_CONFIG       (ASC_CS_TYPE)0x4000
818#define CSW_RESERVED1         (ASC_CS_TYPE)0x2000
819#define CSW_IRQ_WRITTEN       (ASC_CS_TYPE)0x1000
820#define CSW_33MHZ_SELECTED    (ASC_CS_TYPE)0x0800
821#define CSW_TEST2             (ASC_CS_TYPE)0x0400
822#define CSW_TEST3             (ASC_CS_TYPE)0x0200
823#define CSW_RESERVED2         (ASC_CS_TYPE)0x0100
824#define CSW_DMA_DONE          (ASC_CS_TYPE)0x0080
825#define CSW_FIFO_RDY          (ASC_CS_TYPE)0x0040
826#define CSW_EEP_READ_DONE     (ASC_CS_TYPE)0x0020
827#define CSW_HALTED            (ASC_CS_TYPE)0x0010
828#define CSW_SCSI_RESET_ACTIVE (ASC_CS_TYPE)0x0008
829#define CSW_PARITY_ERR        (ASC_CS_TYPE)0x0004
830#define CSW_SCSI_RESET_LATCH  (ASC_CS_TYPE)0x0002
831#define CSW_INT_PENDING       (ASC_CS_TYPE)0x0001
832#define CIW_CLR_SCSI_RESET_INT (ASC_CS_TYPE)0x1000
833#define CIW_INT_ACK      (ASC_CS_TYPE)0x0100
834#define CIW_TEST1        (ASC_CS_TYPE)0x0200
835#define CIW_TEST2        (ASC_CS_TYPE)0x0400
836#define CIW_SEL_33MHZ    (ASC_CS_TYPE)0x0800
837#define CIW_IRQ_ACT      (ASC_CS_TYPE)0x1000
838#define CC_CHIP_RESET   (uchar)0x80
839#define CC_SCSI_RESET   (uchar)0x40
840#define CC_HALT         (uchar)0x20
841#define CC_SINGLE_STEP  (uchar)0x10
842#define CC_DMA_ABLE     (uchar)0x08
843#define CC_TEST         (uchar)0x04
844#define CC_BANK_ONE     (uchar)0x02
845#define CC_DIAG         (uchar)0x01
846#define ASC_1000_ID0W      0x04C1
847#define ASC_1000_ID0W_FIX  0x00C1
848#define ASC_1000_ID1B      0x25
849#define ASC_EISA_REV_IOP_MASK  (0x0C83)
850#define ASC_EISA_CFG_IOP_MASK  (0x0C86)
851#define ASC_GET_EISA_SLOT(iop)  (PortAddr)((iop) & 0xF000)
852#define INS_HALTINT        (ushort)0x6281
853#define INS_HALT           (ushort)0x6280
854#define INS_SINT           (ushort)0x6200
855#define INS_RFLAG_WTM      (ushort)0x7380
856#define ASC_MC_SAVE_CODE_WSIZE  0x500
857#define ASC_MC_SAVE_DATA_WSIZE  0x40
858
859typedef struct asc_mc_saved {
860	ushort data[ASC_MC_SAVE_DATA_WSIZE];
861	ushort code[ASC_MC_SAVE_CODE_WSIZE];
862} ASC_MC_SAVED;
863
864#define AscGetQDoneInProgress(port)         AscReadLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B)
865#define AscPutQDoneInProgress(port, val)    AscWriteLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B, val)
866#define AscGetVarFreeQHead(port)            AscReadLramWord((port), ASCV_FREE_Q_HEAD_W)
867#define AscGetVarDoneQTail(port)            AscReadLramWord((port), ASCV_DONE_Q_TAIL_W)
868#define AscPutVarFreeQHead(port, val)       AscWriteLramWord((port), ASCV_FREE_Q_HEAD_W, val)
869#define AscPutVarDoneQTail(port, val)       AscWriteLramWord((port), ASCV_DONE_Q_TAIL_W, val)
870#define AscGetRiscVarFreeQHead(port)        AscReadLramByte((port), ASCV_NEXTRDY_B)
871#define AscGetRiscVarDoneQTail(port)        AscReadLramByte((port), ASCV_DONENEXT_B)
872#define AscPutRiscVarFreeQHead(port, val)   AscWriteLramByte((port), ASCV_NEXTRDY_B, val)
873#define AscPutRiscVarDoneQTail(port, val)   AscWriteLramByte((port), ASCV_DONENEXT_B, val)
874#define AscPutMCodeSDTRDoneAtID(port, id, data)  AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id), (data))
875#define AscGetMCodeSDTRDoneAtID(port, id)        AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id))
876#define AscPutMCodeInitSDTRAtID(port, id, data)  AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id), data)
877#define AscGetMCodeInitSDTRAtID(port, id)        AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id))
878#define AscGetChipSignatureByte(port)     (uchar)inp((port)+IOP_SIG_BYTE)
879#define AscGetChipSignatureWord(port)     (ushort)inpw((port)+IOP_SIG_WORD)
880#define AscGetChipVerNo(port)             (uchar)inp((port)+IOP_VERSION)
881#define AscGetChipCfgLsw(port)            (ushort)inpw((port)+IOP_CONFIG_LOW)
882#define AscGetChipCfgMsw(port)            (ushort)inpw((port)+IOP_CONFIG_HIGH)
883#define AscSetChipCfgLsw(port, data)      outpw((port)+IOP_CONFIG_LOW, data)
884#define AscSetChipCfgMsw(port, data)      outpw((port)+IOP_CONFIG_HIGH, data)
885#define AscGetChipEEPCmd(port)            (uchar)inp((port)+IOP_EEP_CMD)
886#define AscSetChipEEPCmd(port, data)      outp((port)+IOP_EEP_CMD, data)
887#define AscGetChipEEPData(port)           (ushort)inpw((port)+IOP_EEP_DATA)
888#define AscSetChipEEPData(port, data)     outpw((port)+IOP_EEP_DATA, data)
889#define AscGetChipLramAddr(port)          (ushort)inpw((PortAddr)((port)+IOP_RAM_ADDR))
890#define AscSetChipLramAddr(port, addr)    outpw((PortAddr)((port)+IOP_RAM_ADDR), addr)
891#define AscGetChipLramData(port)          (ushort)inpw((port)+IOP_RAM_DATA)
892#define AscSetChipLramData(port, data)    outpw((port)+IOP_RAM_DATA, data)
893#define AscGetChipIFC(port)               (uchar)inp((port)+IOP_REG_IFC)
894#define AscSetChipIFC(port, data)          outp((port)+IOP_REG_IFC, data)
895#define AscGetChipStatus(port)            (ASC_CS_TYPE)inpw((port)+IOP_STATUS)
896#define AscSetChipStatus(port, cs_val)    outpw((port)+IOP_STATUS, cs_val)
897#define AscGetChipControl(port)           (uchar)inp((port)+IOP_CTRL)
898#define AscSetChipControl(port, cc_val)   outp((port)+IOP_CTRL, cc_val)
899#define AscGetChipSyn(port)               (uchar)inp((port)+IOP_SYN_OFFSET)
900#define AscSetChipSyn(port, data)         outp((port)+IOP_SYN_OFFSET, data)
901#define AscSetPCAddr(port, data)          outpw((port)+IOP_REG_PC, data)
902#define AscGetPCAddr(port)                (ushort)inpw((port)+IOP_REG_PC)
903#define AscIsIntPending(port)             (AscGetChipStatus(port) & (CSW_INT_PENDING | CSW_SCSI_RESET_LATCH))
904#define AscGetChipScsiID(port)            ((AscGetChipCfgLsw(port) >> 8) & ASC_MAX_TID)
905#define AscGetExtraControl(port)          (uchar)inp((port)+IOP_EXTRA_CONTROL)
906#define AscSetExtraControl(port, data)    outp((port)+IOP_EXTRA_CONTROL, data)
907#define AscReadChipAX(port)               (ushort)inpw((port)+IOP_REG_AX)
908#define AscWriteChipAX(port, data)        outpw((port)+IOP_REG_AX, data)
909#define AscReadChipIX(port)               (uchar)inp((port)+IOP_REG_IX)
910#define AscWriteChipIX(port, data)        outp((port)+IOP_REG_IX, data)
911#define AscReadChipIH(port)               (ushort)inpw((port)+IOP_REG_IH)
912#define AscWriteChipIH(port, data)        outpw((port)+IOP_REG_IH, data)
913#define AscReadChipQP(port)               (uchar)inp((port)+IOP_REG_QP)
914#define AscWriteChipQP(port, data)        outp((port)+IOP_REG_QP, data)
915#define AscReadChipFIFO_L(port)           (ushort)inpw((port)+IOP_REG_FIFO_L)
916#define AscWriteChipFIFO_L(port, data)    outpw((port)+IOP_REG_FIFO_L, data)
917#define AscReadChipFIFO_H(port)           (ushort)inpw((port)+IOP_REG_FIFO_H)
918#define AscWriteChipFIFO_H(port, data)    outpw((port)+IOP_REG_FIFO_H, data)
919#define AscReadChipDmaSpeed(port)         (uchar)inp((port)+IOP_DMA_SPEED)
920#define AscWriteChipDmaSpeed(port, data)  outp((port)+IOP_DMA_SPEED, data)
921#define AscReadChipDA0(port)              (ushort)inpw((port)+IOP_REG_DA0)
922#define AscWriteChipDA0(port)             outpw((port)+IOP_REG_DA0, data)
923#define AscReadChipDA1(port)              (ushort)inpw((port)+IOP_REG_DA1)
924#define AscWriteChipDA1(port)             outpw((port)+IOP_REG_DA1, data)
925#define AscReadChipDC0(port)              (ushort)inpw((port)+IOP_REG_DC0)
926#define AscWriteChipDC0(port)             outpw((port)+IOP_REG_DC0, data)
927#define AscReadChipDC1(port)              (ushort)inpw((port)+IOP_REG_DC1)
928#define AscWriteChipDC1(port)             outpw((port)+IOP_REG_DC1, data)
929#define AscReadChipDvcID(port)            (uchar)inp((port)+IOP_REG_ID)
930#define AscWriteChipDvcID(port, data)     outp((port)+IOP_REG_ID, data)
931
932/*
933 * Portable Data Types
934 *
935 * Any instance where a 32-bit long or pointer type is assumed
936 * for precision or HW defined structures, the following define
937 * types must be used. In Linux the char, short, and int types
938 * are all consistent at 8, 16, and 32 bits respectively. Pointers
939 * and long types are 64 bits on Alpha and UltraSPARC.
940 */
941#define ADV_PADDR __u32		/* Physical address data type. */
942#define ADV_VADDR __u32		/* Virtual address data type. */
943#define ADV_DCNT  __u32		/* Unsigned Data count type. */
944#define ADV_SDCNT __s32		/* Signed Data count type. */
945
946/*
947 * These macros are used to convert a virtual address to a
948 * 32-bit value. This currently can be used on Linux Alpha
949 * which uses 64-bit virtual address but a 32-bit bus address.
950 * This is likely to break in the future, but doing this now
951 * will give us time to change the HW and FW to handle 64-bit
952 * addresses.
953 */
954#define ADV_VADDR_TO_U32   virt_to_bus
955#define ADV_U32_TO_VADDR   bus_to_virt
956
957#define AdvPortAddr  void __iomem *	/* Virtual memory address size */
958
959/*
960 * Define Adv Library required memory access macros.
961 */
962#define ADV_MEM_READB(addr) readb(addr)
963#define ADV_MEM_READW(addr) readw(addr)
964#define ADV_MEM_WRITEB(addr, byte) writeb(byte, addr)
965#define ADV_MEM_WRITEW(addr, word) writew(word, addr)
966#define ADV_MEM_WRITEDW(addr, dword) writel(dword, addr)
967
968#define ADV_CARRIER_COUNT (ASC_DEF_MAX_HOST_QNG + 15)
969
970/*
971 * Define total number of simultaneous maximum element scatter-gather
972 * request blocks per wide adapter. ASC_DEF_MAX_HOST_QNG (253) is the
973 * maximum number of outstanding commands per wide host adapter. Each
974 * command uses one or more ADV_SG_BLOCK each with 15 scatter-gather
975 * elements. Allow each command to have at least one ADV_SG_BLOCK structure.
976 * This allows about 15 commands to have the maximum 17 ADV_SG_BLOCK
977 * structures or 255 scatter-gather elements.
978 */
979#define ADV_TOT_SG_BLOCK        ASC_DEF_MAX_HOST_QNG
980
981/*
982 * Define maximum number of scatter-gather elements per request.
983 */
984#define ADV_MAX_SG_LIST         255
985#define NO_OF_SG_PER_BLOCK              15
986
987#define ADV_EEP_DVC_CFG_BEGIN           (0x00)
988#define ADV_EEP_DVC_CFG_END             (0x15)
989#define ADV_EEP_DVC_CTL_BEGIN           (0x16)	/* location of OEM name */
990#define ADV_EEP_MAX_WORD_ADDR           (0x1E)
991
992#define ADV_EEP_DELAY_MS                100
993
994#define ADV_EEPROM_BIG_ENDIAN          0x8000	/* EEPROM Bit 15 */
995#define ADV_EEPROM_BIOS_ENABLE         0x4000	/* EEPROM Bit 14 */
996/*
997 * For the ASC3550 Bit 13 is Termination Polarity control bit.
998 * For later ICs Bit 13 controls whether the CIS (Card Information
999 * Service Section) is loaded from EEPROM.
1000 */
1001#define ADV_EEPROM_TERM_POL            0x2000	/* EEPROM Bit 13 */
1002#define ADV_EEPROM_CIS_LD              0x2000	/* EEPROM Bit 13 */
1003/*
1004 * ASC38C1600 Bit 11
1005 *
1006 * If EEPROM Bit 11 is 0 for Function 0, then Function 0 will specify
1007 * INT A in the PCI Configuration Space Int Pin field. If it is 1, then
1008 * Function 0 will specify INT B.
1009 *
1010 * If EEPROM Bit 11 is 0 for Function 1, then Function 1 will specify
1011 * INT B in the PCI Configuration Space Int Pin field. If it is 1, then
1012 * Function 1 will specify INT A.
1013 */
1014#define ADV_EEPROM_INTAB               0x0800	/* EEPROM Bit 11 */
1015
1016typedef struct adveep_3550_config {
1017	/* Word Offset, Description */
1018
1019	ushort cfg_lsw;		/* 00 power up initialization */
1020	/*  bit 13 set - Term Polarity Control */
1021	/*  bit 14 set - BIOS Enable */
1022	/*  bit 15 set - Big Endian Mode */
1023	ushort cfg_msw;		/* 01 unused      */
1024	ushort disc_enable;	/* 02 disconnect enable */
1025	ushort wdtr_able;	/* 03 Wide DTR able */
1026	ushort sdtr_able;	/* 04 Synchronous DTR able */
1027	ushort start_motor;	/* 05 send start up motor */
1028	ushort tagqng_able;	/* 06 tag queuing able */
1029	ushort bios_scan;	/* 07 BIOS device control */
1030	ushort scam_tolerant;	/* 08 no scam */
1031
1032	uchar adapter_scsi_id;	/* 09 Host Adapter ID */
1033	uchar bios_boot_delay;	/*    power up wait */
1034
1035	uchar scsi_reset_delay;	/* 10 reset delay */
1036	uchar bios_id_lun;	/*    first boot device scsi id & lun */
1037	/*    high nibble is lun */
1038	/*    low nibble is scsi id */
1039
1040	uchar termination;	/* 11 0 - automatic */
1041	/*    1 - low off / high off */
1042	/*    2 - low off / high on */
1043	/*    3 - low on  / high on */
1044	/*    There is no low on  / high off */
1045
1046	uchar reserved1;	/*    reserved byte (not used) */
1047
1048	ushort bios_ctrl;	/* 12 BIOS control bits */
1049	/*  bit 0  BIOS don't act as initiator. */
1050	/*  bit 1  BIOS > 1 GB support */
1051	/*  bit 2  BIOS > 2 Disk Support */
1052	/*  bit 3  BIOS don't support removables */
1053	/*  bit 4  BIOS support bootable CD */
1054	/*  bit 5  BIOS scan enabled */
1055	/*  bit 6  BIOS support multiple LUNs */
1056	/*  bit 7  BIOS display of message */
1057	/*  bit 8  SCAM disabled */
1058	/*  bit 9  Reset SCSI bus during init. */
1059	/*  bit 10 */
1060	/*  bit 11 No verbose initialization. */
1061	/*  bit 12 SCSI parity enabled */
1062	/*  bit 13 */
1063	/*  bit 14 */
1064	/*  bit 15 */
1065	ushort ultra_able;	/* 13 ULTRA speed able */
1066	ushort reserved2;	/* 14 reserved */
1067	uchar max_host_qng;	/* 15 maximum host queuing */
1068	uchar max_dvc_qng;	/*    maximum per device queuing */
1069	ushort dvc_cntl;	/* 16 control bit for driver */
1070	ushort bug_fix;		/* 17 control bit for bug fix */
1071	ushort serial_number_word1;	/* 18 Board serial number word 1 */
1072	ushort serial_number_word2;	/* 19 Board serial number word 2 */
1073	ushort serial_number_word3;	/* 20 Board serial number word 3 */
1074	ushort check_sum;	/* 21 EEP check sum */
1075	uchar oem_name[16];	/* 22 OEM name */
1076	ushort dvc_err_code;	/* 30 last device driver error code */
1077	ushort adv_err_code;	/* 31 last uc and Adv Lib error code */
1078	ushort adv_err_addr;	/* 32 last uc error address */
1079	ushort saved_dvc_err_code;	/* 33 saved last dev. driver error code   */
1080	ushort saved_adv_err_code;	/* 34 saved last uc and Adv Lib error code */
1081	ushort saved_adv_err_addr;	/* 35 saved last uc error address         */
1082	ushort num_of_err;	/* 36 number of error */
1083} ADVEEP_3550_CONFIG;
1084
1085typedef struct adveep_38C0800_config {
1086	/* Word Offset, Description */
1087
1088	ushort cfg_lsw;		/* 00 power up initialization */
1089	/*  bit 13 set - Load CIS */
1090	/*  bit 14 set - BIOS Enable */
1091	/*  bit 15 set - Big Endian Mode */
1092	ushort cfg_msw;		/* 01 unused      */
1093	ushort disc_enable;	/* 02 disconnect enable */
1094	ushort wdtr_able;	/* 03 Wide DTR able */
1095	ushort sdtr_speed1;	/* 04 SDTR Speed TID 0-3 */
1096	ushort start_motor;	/* 05 send start up motor */
1097	ushort tagqng_able;	/* 06 tag queuing able */
1098	ushort bios_scan;	/* 07 BIOS device control */
1099	ushort scam_tolerant;	/* 08 no scam */
1100
1101	uchar adapter_scsi_id;	/* 09 Host Adapter ID */
1102	uchar bios_boot_delay;	/*    power up wait */
1103
1104	uchar scsi_reset_delay;	/* 10 reset delay */
1105	uchar bios_id_lun;	/*    first boot device scsi id & lun */
1106	/*    high nibble is lun */
1107	/*    low nibble is scsi id */
1108
1109	uchar termination_se;	/* 11 0 - automatic */
1110	/*    1 - low off / high off */
1111	/*    2 - low off / high on */
1112	/*    3 - low on  / high on */
1113	/*    There is no low on  / high off */
1114
1115	uchar termination_lvd;	/* 11 0 - automatic */
1116	/*    1 - low off / high off */
1117	/*    2 - low off / high on */
1118	/*    3 - low on  / high on */
1119	/*    There is no low on  / high off */
1120
1121	ushort bios_ctrl;	/* 12 BIOS control bits */
1122	/*  bit 0  BIOS don't act as initiator. */
1123	/*  bit 1  BIOS > 1 GB support */
1124	/*  bit 2  BIOS > 2 Disk Support */
1125	/*  bit 3  BIOS don't support removables */
1126	/*  bit 4  BIOS support bootable CD */
1127	/*  bit 5  BIOS scan enabled */
1128	/*  bit 6  BIOS support multiple LUNs */
1129	/*  bit 7  BIOS display of message */
1130	/*  bit 8  SCAM disabled */
1131	/*  bit 9  Reset SCSI bus during init. */
1132	/*  bit 10 */
1133	/*  bit 11 No verbose initialization. */
1134	/*  bit 12 SCSI parity enabled */
1135	/*  bit 13 */
1136	/*  bit 14 */
1137	/*  bit 15 */
1138	ushort sdtr_speed2;	/* 13 SDTR speed TID 4-7 */
1139	ushort sdtr_speed3;	/* 14 SDTR speed TID 8-11 */
1140	uchar max_host_qng;	/* 15 maximum host queueing */
1141	uchar max_dvc_qng;	/*    maximum per device queuing */
1142	ushort dvc_cntl;	/* 16 control bit for driver */
1143	ushort sdtr_speed4;	/* 17 SDTR speed 4 TID 12-15 */
1144	ushort serial_number_word1;	/* 18 Board serial number word 1 */
1145	ushort serial_number_word2;	/* 19 Board serial number word 2 */
1146	ushort serial_number_word3;	/* 20 Board serial number word 3 */
1147	ushort check_sum;	/* 21 EEP check sum */
1148	uchar oem_name[16];	/* 22 OEM name */
1149	ushort dvc_err_code;	/* 30 last device driver error code */
1150	ushort adv_err_code;	/* 31 last uc and Adv Lib error code */
1151	ushort adv_err_addr;	/* 32 last uc error address */
1152	ushort saved_dvc_err_code;	/* 33 saved last dev. driver error code   */
1153	ushort saved_adv_err_code;	/* 34 saved last uc and Adv Lib error code */
1154	ushort saved_adv_err_addr;	/* 35 saved last uc error address         */
1155	ushort reserved36;	/* 36 reserved */
1156	ushort reserved37;	/* 37 reserved */
1157	ushort reserved38;	/* 38 reserved */
1158	ushort reserved39;	/* 39 reserved */
1159	ushort reserved40;	/* 40 reserved */
1160	ushort reserved41;	/* 41 reserved */
1161	ushort reserved42;	/* 42 reserved */
1162	ushort reserved43;	/* 43 reserved */
1163	ushort reserved44;	/* 44 reserved */
1164	ushort reserved45;	/* 45 reserved */
1165	ushort reserved46;	/* 46 reserved */
1166	ushort reserved47;	/* 47 reserved */
1167	ushort reserved48;	/* 48 reserved */
1168	ushort reserved49;	/* 49 reserved */
1169	ushort reserved50;	/* 50 reserved */
1170	ushort reserved51;	/* 51 reserved */
1171	ushort reserved52;	/* 52 reserved */
1172	ushort reserved53;	/* 53 reserved */
1173	ushort reserved54;	/* 54 reserved */
1174	ushort reserved55;	/* 55 reserved */
1175	ushort cisptr_lsw;	/* 56 CIS PTR LSW */
1176	ushort cisprt_msw;	/* 57 CIS PTR MSW */
1177	ushort subsysvid;	/* 58 SubSystem Vendor ID */
1178	ushort subsysid;	/* 59 SubSystem ID */
1179	ushort reserved60;	/* 60 reserved */
1180	ushort reserved61;	/* 61 reserved */
1181	ushort reserved62;	/* 62 reserved */
1182	ushort reserved63;	/* 63 reserved */
1183} ADVEEP_38C0800_CONFIG;
1184
1185typedef struct adveep_38C1600_config {
1186	/* Word Offset, Description */
1187
1188	ushort cfg_lsw;		/* 00 power up initialization */
1189	/*  bit 11 set - Func. 0 INTB, Func. 1 INTA */
1190	/*       clear - Func. 0 INTA, Func. 1 INTB */
1191	/*  bit 13 set - Load CIS */
1192	/*  bit 14 set - BIOS Enable */
1193	/*  bit 15 set - Big Endian Mode */
1194	ushort cfg_msw;		/* 01 unused */
1195	ushort disc_enable;	/* 02 disconnect enable */
1196	ushort wdtr_able;	/* 03 Wide DTR able */
1197	ushort sdtr_speed1;	/* 04 SDTR Speed TID 0-3 */
1198	ushort start_motor;	/* 05 send start up motor */
1199	ushort tagqng_able;	/* 06 tag queuing able */
1200	ushort bios_scan;	/* 07 BIOS device control */
1201	ushort scam_tolerant;	/* 08 no scam */
1202
1203	uchar adapter_scsi_id;	/* 09 Host Adapter ID */
1204	uchar bios_boot_delay;	/*    power up wait */
1205
1206	uchar scsi_reset_delay;	/* 10 reset delay */
1207	uchar bios_id_lun;	/*    first boot device scsi id & lun */
1208	/*    high nibble is lun */
1209	/*    low nibble is scsi id */
1210
1211	uchar termination_se;	/* 11 0 - automatic */
1212	/*    1 - low off / high off */
1213	/*    2 - low off / high on */
1214	/*    3 - low on  / high on */
1215	/*    There is no low on  / high off */
1216
1217	uchar termination_lvd;	/* 11 0 - automatic */
1218	/*    1 - low off / high off */
1219	/*    2 - low off / high on */
1220	/*    3 - low on  / high on */
1221	/*    There is no low on  / high off */
1222
1223	ushort bios_ctrl;	/* 12 BIOS control bits */
1224	/*  bit 0  BIOS don't act as initiator. */
1225	/*  bit 1  BIOS > 1 GB support */
1226	/*  bit 2  BIOS > 2 Disk Support */
1227	/*  bit 3  BIOS don't support removables */
1228	/*  bit 4  BIOS support bootable CD */
1229	/*  bit 5  BIOS scan enabled */
1230	/*  bit 6  BIOS support multiple LUNs */
1231	/*  bit 7  BIOS display of message */
1232	/*  bit 8  SCAM disabled */
1233	/*  bit 9  Reset SCSI bus during init. */
1234	/*  bit 10 Basic Integrity Checking disabled */
1235	/*  bit 11 No verbose initialization. */
1236	/*  bit 12 SCSI parity enabled */
1237	/*  bit 13 AIPP (Asyn. Info. Ph. Prot.) dis. */
1238	/*  bit 14 */
1239	/*  bit 15 */
1240	ushort sdtr_speed2;	/* 13 SDTR speed TID 4-7 */
1241	ushort sdtr_speed3;	/* 14 SDTR speed TID 8-11 */
1242	uchar max_host_qng;	/* 15 maximum host queueing */
1243	uchar max_dvc_qng;	/*    maximum per device queuing */
1244	ushort dvc_cntl;	/* 16 control bit for driver */
1245	ushort sdtr_speed4;	/* 17 SDTR speed 4 TID 12-15 */
1246	ushort serial_number_word1;	/* 18 Board serial number word 1 */
1247	ushort serial_number_word2;	/* 19 Board serial number word 2 */
1248	ushort serial_number_word3;	/* 20 Board serial number word 3 */
1249	ushort check_sum;	/* 21 EEP check sum */
1250	uchar oem_name[16];	/* 22 OEM name */
1251	ushort dvc_err_code;	/* 30 last device driver error code */
1252	ushort adv_err_code;	/* 31 last uc and Adv Lib error code */
1253	ushort adv_err_addr;	/* 32 last uc error address */
1254	ushort saved_dvc_err_code;	/* 33 saved last dev. driver error code   */
1255	ushort saved_adv_err_code;	/* 34 saved last uc and Adv Lib error code */
1256	ushort saved_adv_err_addr;	/* 35 saved last uc error address         */
1257	ushort reserved36;	/* 36 reserved */
1258	ushort reserved37;	/* 37 reserved */
1259	ushort reserved38;	/* 38 reserved */
1260	ushort reserved39;	/* 39 reserved */
1261	ushort reserved40;	/* 40 reserved */
1262	ushort reserved41;	/* 41 reserved */
1263	ushort reserved42;	/* 42 reserved */
1264	ushort reserved43;	/* 43 reserved */
1265	ushort reserved44;	/* 44 reserved */
1266	ushort reserved45;	/* 45 reserved */
1267	ushort reserved46;	/* 46 reserved */
1268	ushort reserved47;	/* 47 reserved */
1269	ushort reserved48;	/* 48 reserved */
1270	ushort reserved49;	/* 49 reserved */
1271	ushort reserved50;	/* 50 reserved */
1272	ushort reserved51;	/* 51 reserved */
1273	ushort reserved52;	/* 52 reserved */
1274	ushort reserved53;	/* 53 reserved */
1275	ushort reserved54;	/* 54 reserved */
1276	ushort reserved55;	/* 55 reserved */
1277	ushort cisptr_lsw;	/* 56 CIS PTR LSW */
1278	ushort cisprt_msw;	/* 57 CIS PTR MSW */
1279	ushort subsysvid;	/* 58 SubSystem Vendor ID */
1280	ushort subsysid;	/* 59 SubSystem ID */
1281	ushort reserved60;	/* 60 reserved */
1282	ushort reserved61;	/* 61 reserved */
1283	ushort reserved62;	/* 62 reserved */
1284	ushort reserved63;	/* 63 reserved */
1285} ADVEEP_38C1600_CONFIG;
1286
1287/*
1288 * EEPROM Commands
1289 */
1290#define ASC_EEP_CMD_DONE             0x0200
1291
1292/* bios_ctrl */
1293#define BIOS_CTRL_BIOS               0x0001
1294#define BIOS_CTRL_EXTENDED_XLAT      0x0002
1295#define BIOS_CTRL_GT_2_DISK          0x0004
1296#define BIOS_CTRL_BIOS_REMOVABLE     0x0008
1297#define BIOS_CTRL_BOOTABLE_CD        0x0010
1298#define BIOS_CTRL_MULTIPLE_LUN       0x0040
1299#define BIOS_CTRL_DISPLAY_MSG        0x0080
1300#define BIOS_CTRL_NO_SCAM            0x0100
1301#define BIOS_CTRL_RESET_SCSI_BUS     0x0200
1302#define BIOS_CTRL_INIT_VERBOSE       0x0800
1303#define BIOS_CTRL_SCSI_PARITY        0x1000
1304#define BIOS_CTRL_AIPP_DIS           0x2000
1305
1306#define ADV_3550_MEMSIZE   0x2000	/* 8 KB Internal Memory */
1307
1308#define ADV_38C0800_MEMSIZE  0x4000	/* 16 KB Internal Memory */
1309
1310/*
1311 * XXX - Since ASC38C1600 Rev.3 has a local RAM failure issue, there is
1312 * a special 16K Adv Library and Microcode version. After the issue is
1313 * resolved, should restore 32K support.
1314 *
1315 * #define ADV_38C1600_MEMSIZE  0x8000L   * 32 KB Internal Memory *
1316 */
1317#define ADV_38C1600_MEMSIZE  0x4000	/* 16 KB Internal Memory */
1318
1319/*
1320 * Byte I/O register address from base of 'iop_base'.
1321 */
1322#define IOPB_INTR_STATUS_REG    0x00
1323#define IOPB_CHIP_ID_1          0x01
1324#define IOPB_INTR_ENABLES       0x02
1325#define IOPB_CHIP_TYPE_REV      0x03
1326#define IOPB_RES_ADDR_4         0x04
1327#define IOPB_RES_ADDR_5         0x05
1328#define IOPB_RAM_DATA           0x06
1329#define IOPB_RES_ADDR_7         0x07
1330#define IOPB_FLAG_REG           0x08
1331#define IOPB_RES_ADDR_9         0x09
1332#define IOPB_RISC_CSR           0x0A
1333#define IOPB_RES_ADDR_B         0x0B
1334#define IOPB_RES_ADDR_C         0x0C
1335#define IOPB_RES_ADDR_D         0x0D
1336#define IOPB_SOFT_OVER_WR       0x0E
1337#define IOPB_RES_ADDR_F         0x0F
1338#define IOPB_MEM_CFG            0x10
1339#define IOPB_RES_ADDR_11        0x11
1340#define IOPB_GPIO_DATA          0x12
1341#define IOPB_RES_ADDR_13        0x13
1342#define IOPB_FLASH_PAGE         0x14
1343#define IOPB_RES_ADDR_15        0x15
1344#define IOPB_GPIO_CNTL          0x16
1345#define IOPB_RES_ADDR_17        0x17
1346#define IOPB_FLASH_DATA         0x18
1347#define IOPB_RES_ADDR_19        0x19
1348#define IOPB_RES_ADDR_1A        0x1A
1349#define IOPB_RES_ADDR_1B        0x1B
1350#define IOPB_RES_ADDR_1C        0x1C
1351#define IOPB_RES_ADDR_1D        0x1D
1352#define IOPB_RES_ADDR_1E        0x1E
1353#define IOPB_RES_ADDR_1F        0x1F
1354#define IOPB_DMA_CFG0           0x20
1355#define IOPB_DMA_CFG1           0x21
1356#define IOPB_TICKLE             0x22
1357#define IOPB_DMA_REG_WR         0x23
1358#define IOPB_SDMA_STATUS        0x24
1359#define IOPB_SCSI_BYTE_CNT      0x25
1360#define IOPB_HOST_BYTE_CNT      0x26
1361#define IOPB_BYTE_LEFT_TO_XFER  0x27
1362#define IOPB_BYTE_TO_XFER_0     0x28
1363#define IOPB_BYTE_TO_XFER_1     0x29
1364#define IOPB_BYTE_TO_XFER_2     0x2A
1365#define IOPB_BYTE_TO_XFER_3     0x2B
1366#define IOPB_ACC_GRP            0x2C
1367#define IOPB_RES_ADDR_2D        0x2D
1368#define IOPB_DEV_ID             0x2E
1369#define IOPB_RES_ADDR_2F        0x2F
1370#define IOPB_SCSI_DATA          0x30
1371#define IOPB_RES_ADDR_31        0x31
1372#define IOPB_RES_ADDR_32        0x32
1373#define IOPB_SCSI_DATA_HSHK     0x33
1374#define IOPB_SCSI_CTRL          0x34
1375#define IOPB_RES_ADDR_35        0x35
1376#define IOPB_RES_ADDR_36        0x36
1377#define IOPB_RES_ADDR_37        0x37
1378#define IOPB_RAM_BIST           0x38
1379#define IOPB_PLL_TEST           0x39
1380#define IOPB_PCI_INT_CFG        0x3A
1381#define IOPB_RES_ADDR_3B        0x3B
1382#define IOPB_RFIFO_CNT          0x3C
1383#define IOPB_RES_ADDR_3D        0x3D
1384#define IOPB_RES_ADDR_3E        0x3E
1385#define IOPB_RES_ADDR_3F        0x3F
1386
1387/*
1388 * Word I/O register address from base of 'iop_base'.
1389 */
1390#define IOPW_CHIP_ID_0          0x00	/* CID0  */
1391#define IOPW_CTRL_REG           0x02	/* CC    */
1392#define IOPW_RAM_ADDR           0x04	/* LA    */
1393#define IOPW_RAM_DATA           0x06	/* LD    */
1394#define IOPW_RES_ADDR_08        0x08
1395#define IOPW_RISC_CSR           0x0A	/* CSR   */
1396#define IOPW_SCSI_CFG0          0x0C	/* CFG0  */
1397#define IOPW_SCSI_CFG1          0x0E	/* CFG1  */
1398#define IOPW_RES_ADDR_10        0x10
1399#define IOPW_SEL_MASK           0x12	/* SM    */
1400#define IOPW_RES_ADDR_14        0x14
1401#define IOPW_FLASH_ADDR         0x16	/* FA    */
1402#define IOPW_RES_ADDR_18        0x18
1403#define IOPW_EE_CMD             0x1A	/* EC    */
1404#define IOPW_EE_DATA            0x1C	/* ED    */
1405#define IOPW_SFIFO_CNT          0x1E	/* SFC   */
1406#define IOPW_RES_ADDR_20        0x20
1407#define IOPW_Q_BASE             0x22	/* QB    */
1408#define IOPW_QP                 0x24	/* QP    */
1409#define IOPW_IX                 0x26	/* IX    */
1410#define IOPW_SP                 0x28	/* SP    */
1411#define IOPW_PC                 0x2A	/* PC    */
1412#define IOPW_RES_ADDR_2C        0x2C
1413#define IOPW_RES_ADDR_2E        0x2E
1414#define IOPW_SCSI_DATA          0x30	/* SD    */
1415#define IOPW_SCSI_DATA_HSHK     0x32	/* SDH   */
1416#define IOPW_SCSI_CTRL          0x34	/* SC    */
1417#define IOPW_HSHK_CFG           0x36	/* HCFG  */
1418#define IOPW_SXFR_STATUS        0x36	/* SXS   */
1419#define IOPW_SXFR_CNTL          0x38	/* SXL   */
1420#define IOPW_SXFR_CNTH          0x3A	/* SXH   */
1421#define IOPW_RES_ADDR_3C        0x3C
1422#define IOPW_RFIFO_DATA         0x3E	/* RFD   */
1423
1424/*
1425 * Doubleword I/O register address from base of 'iop_base'.
1426 */
1427#define IOPDW_RES_ADDR_0         0x00
1428#define IOPDW_RAM_DATA           0x04
1429#define IOPDW_RES_ADDR_8         0x08
1430#define IOPDW_RES_ADDR_C         0x0C
1431#define IOPDW_RES_ADDR_10        0x10
1432#define IOPDW_COMMA              0x14
1433#define IOPDW_COMMB              0x18
1434#define IOPDW_RES_ADDR_1C        0x1C
1435#define IOPDW_SDMA_ADDR0         0x20
1436#define IOPDW_SDMA_ADDR1         0x24
1437#define IOPDW_SDMA_COUNT         0x28
1438#define IOPDW_SDMA_ERROR         0x2C
1439#define IOPDW_RDMA_ADDR0         0x30
1440#define IOPDW_RDMA_ADDR1         0x34
1441#define IOPDW_RDMA_COUNT         0x38
1442#define IOPDW_RDMA_ERROR         0x3C
1443
1444#define ADV_CHIP_ID_BYTE         0x25
1445#define ADV_CHIP_ID_WORD         0x04C1
1446
1447#define ADV_INTR_ENABLE_HOST_INTR                   0x01
1448#define ADV_INTR_ENABLE_SEL_INTR                    0x02
1449#define ADV_INTR_ENABLE_DPR_INTR                    0x04
1450#define ADV_INTR_ENABLE_RTA_INTR                    0x08
1451#define ADV_INTR_ENABLE_RMA_INTR                    0x10
1452#define ADV_INTR_ENABLE_RST_INTR                    0x20
1453#define ADV_INTR_ENABLE_DPE_INTR                    0x40
1454#define ADV_INTR_ENABLE_GLOBAL_INTR                 0x80
1455
1456#define ADV_INTR_STATUS_INTRA            0x01
1457#define ADV_INTR_STATUS_INTRB            0x02
1458#define ADV_INTR_STATUS_INTRC            0x04
1459
1460#define ADV_RISC_CSR_STOP           (0x0000)
1461#define ADV_RISC_TEST_COND          (0x2000)
1462#define ADV_RISC_CSR_RUN            (0x4000)
1463#define ADV_RISC_CSR_SINGLE_STEP    (0x8000)
1464
1465#define ADV_CTRL_REG_HOST_INTR      0x0100
1466#define ADV_CTRL_REG_SEL_INTR       0x0200
1467#define ADV_CTRL_REG_DPR_INTR       0x0400
1468#define ADV_CTRL_REG_RTA_INTR       0x0800
1469#define ADV_CTRL_REG_RMA_INTR       0x1000
1470#define ADV_CTRL_REG_RES_BIT14      0x2000
1471#define ADV_CTRL_REG_DPE_INTR       0x4000
1472#define ADV_CTRL_REG_POWER_DONE     0x8000
1473#define ADV_CTRL_REG_ANY_INTR       0xFF00
1474
1475#define ADV_CTRL_REG_CMD_RESET             0x00C6
1476#define ADV_CTRL_REG_CMD_WR_IO_REG         0x00C5
1477#define ADV_CTRL_REG_CMD_RD_IO_REG         0x00C4
1478#define ADV_CTRL_REG_CMD_WR_PCI_CFG_SPACE  0x00C3
1479#define ADV_CTRL_REG_CMD_RD_PCI_CFG_SPACE  0x00C2
1480
1481#define ADV_TICKLE_NOP                      0x00
1482#define ADV_TICKLE_A                        0x01
1483#define ADV_TICKLE_B                        0x02
1484#define ADV_TICKLE_C                        0x03
1485
1486#define AdvIsIntPending(port) \
1487    (AdvReadWordRegister(port, IOPW_CTRL_REG) & ADV_CTRL_REG_HOST_INTR)
1488
1489/*
1490 * SCSI_CFG0 Register bit definitions
1491 */
1492#define TIMER_MODEAB    0xC000	/* Watchdog, Second, and Select. Timer Ctrl. */
1493#define PARITY_EN       0x2000	/* Enable SCSI Parity Error detection */
1494#define EVEN_PARITY     0x1000	/* Select Even Parity */
1495#define WD_LONG         0x0800	/* Watchdog Interval, 1: 57 min, 0: 13 sec */
1496#define QUEUE_128       0x0400	/* Queue Size, 1: 128 byte, 0: 64 byte */
1497#define PRIM_MODE       0x0100	/* Primitive SCSI mode */
1498#define SCAM_EN         0x0080	/* Enable SCAM selection */
1499#define SEL_TMO_LONG    0x0040	/* Sel/Resel Timeout, 1: 400 ms, 0: 1.6 ms */
1500#define CFRM_ID         0x0020	/* SCAM id sel. confirm., 1: fast, 0: 6.4 ms */
1501#define OUR_ID_EN       0x0010	/* Enable OUR_ID bits */
1502#define OUR_ID          0x000F	/* SCSI ID */
1503
1504/*
1505 * SCSI_CFG1 Register bit definitions
1506 */
1507#define BIG_ENDIAN      0x8000	/* Enable Big Endian Mode MIO:15, EEP:15 */
1508#define TERM_POL        0x2000	/* Terminator Polarity Ctrl. MIO:13, EEP:13 */
1509#define SLEW_RATE       0x1000	/* SCSI output buffer slew rate */
1510#define FILTER_SEL      0x0C00	/* Filter Period Selection */
1511#define  FLTR_DISABLE    0x0000	/* Input Filtering Disabled */
1512#define  FLTR_11_TO_20NS 0x0800	/* Input Filtering 11ns to 20ns */
1513#define  FLTR_21_TO_39NS 0x0C00	/* Input Filtering 21ns to 39ns */
1514#define ACTIVE_DBL      0x0200	/* Disable Active Negation */
1515#define DIFF_MODE       0x0100	/* SCSI differential Mode (Read-Only) */
1516#define DIFF_SENSE      0x0080	/* 1: No SE cables, 0: SE cable (Read-Only) */
1517#define TERM_CTL_SEL    0x0040	/* Enable TERM_CTL_H and TERM_CTL_L */
1518#define TERM_CTL        0x0030	/* External SCSI Termination Bits */
1519#define  TERM_CTL_H      0x0020	/* Enable External SCSI Upper Termination */
1520#define  TERM_CTL_L      0x0010	/* Enable External SCSI Lower Termination */
1521#define CABLE_DETECT    0x000F	/* External SCSI Cable Connection Status */
1522
1523/*
1524 * Addendum for ASC-38C0800 Chip
1525 *
1526 * The ASC-38C1600 Chip uses the same definitions except that the
1527 * bus mode override bits [12:10] have been moved to byte register
1528 * offset 0xE (IOPB_SOFT_OVER_WR) bits [12:10]. The [12:10] bits in
1529 * SCSI_CFG1 are read-only and always available. Bit 14 (DIS_TERM_DRV)
1530 * is not needed. The [12:10] bits in IOPB_SOFT_OVER_WR are write-only.
1531 * Also each ASC-38C1600 function or channel uses only cable bits [5:4]
1532 * and [1:0]. Bits [14], [7:6], [3:2] are unused.
1533 */
1534#define DIS_TERM_DRV    0x4000	/* 1: Read c_det[3:0], 0: cannot read */
1535#define HVD_LVD_SE      0x1C00	/* Device Detect Bits */
1536#define  HVD             0x1000	/* HVD Device Detect */
1537#define  LVD             0x0800	/* LVD Device Detect */
1538#define  SE              0x0400	/* SE Device Detect */
1539#define TERM_LVD        0x00C0	/* LVD Termination Bits */
1540#define  TERM_LVD_HI     0x0080	/* Enable LVD Upper Termination */
1541#define  TERM_LVD_LO     0x0040	/* Enable LVD Lower Termination */
1542#define TERM_SE         0x0030	/* SE Termination Bits */
1543#define  TERM_SE_HI      0x0020	/* Enable SE Upper Termination */
1544#define  TERM_SE_LO      0x0010	/* Enable SE Lower Termination */
1545#define C_DET_LVD       0x000C	/* LVD Cable Detect Bits */
1546#define  C_DET3          0x0008	/* Cable Detect for LVD External Wide */
1547#define  C_DET2          0x0004	/* Cable Detect for LVD Internal Wide */
1548#define C_DET_SE        0x0003	/* SE Cable Detect Bits */
1549#define  C_DET1          0x0002	/* Cable Detect for SE Internal Wide */
1550#define  C_DET0          0x0001	/* Cable Detect for SE Internal Narrow */
1551
1552#define CABLE_ILLEGAL_A 0x7
1553    /* x 0 0 0  | on  on | Illegal (all 3 connectors are used) */
1554
1555#define CABLE_ILLEGAL_B 0xB
1556    /* 0 x 0 0  | on  on | Illegal (all 3 connectors are used) */
1557
1558/*
1559 * MEM_CFG Register bit definitions
1560 */
1561#define BIOS_EN         0x40	/* BIOS Enable MIO:14,EEP:14 */
1562#define FAST_EE_CLK     0x20	/* Diagnostic Bit */
1563#define RAM_SZ          0x1C	/* Specify size of RAM to RISC */
1564#define  RAM_SZ_2KB      0x00	/* 2 KB */
1565#define  RAM_SZ_4KB      0x04	/* 4 KB */
1566#define  RAM_SZ_8KB      0x08	/* 8 KB */
1567#define  RAM_SZ_16KB     0x0C	/* 16 KB */
1568#define  RAM_SZ_32KB     0x10	/* 32 KB */
1569#define  RAM_SZ_64KB     0x14	/* 64 KB */
1570
1571/*
1572 * DMA_CFG0 Register bit definitions
1573 *
1574 * This register is only accessible to the host.
1575 */
1576#define BC_THRESH_ENB   0x80	/* PCI DMA Start Conditions */
1577#define FIFO_THRESH     0x70	/* PCI DMA FIFO Threshold */
1578#define  FIFO_THRESH_16B  0x00	/* 16 bytes */
1579#define  FIFO_THRESH_32B  0x20	/* 32 bytes */
1580#define  FIFO_THRESH_48B  0x30	/* 48 bytes */
1581#define  FIFO_THRESH_64B  0x40	/* 64 bytes */
1582#define  FIFO_THRESH_80B  0x50	/* 80 bytes (default) */
1583#define  FIFO_THRESH_96B  0x60	/* 96 bytes */
1584#define  FIFO_THRESH_112B 0x70	/* 112 bytes */
1585#define START_CTL       0x0C	/* DMA start conditions */
1586#define  START_CTL_TH    0x00	/* Wait threshold level (default) */
1587#define  START_CTL_ID    0x04	/* Wait SDMA/SBUS idle */
1588#define  START_CTL_THID  0x08	/* Wait threshold and SDMA/SBUS idle */
1589#define  START_CTL_EMFU  0x0C	/* Wait SDMA FIFO empty/full */
1590#define READ_CMD        0x03	/* Memory Read Method */
1591#define  READ_CMD_MR     0x00	/* Memory Read */
1592#define  READ_CMD_MRL    0x02	/* Memory Read Long */
1593#define  READ_CMD_MRM    0x03	/* Memory Read Multiple (default) */
1594
1595/*
1596 * ASC-38C0800 RAM BIST Register bit definitions
1597 */
1598#define RAM_TEST_MODE         0x80
1599#define PRE_TEST_MODE         0x40
1600#define NORMAL_MODE           0x00
1601#define RAM_TEST_DONE         0x10
1602#define RAM_TEST_STATUS       0x0F
1603#define  RAM_TEST_HOST_ERROR   0x08
1604#define  RAM_TEST_INTRAM_ERROR 0x04
1605#define  RAM_TEST_RISC_ERROR   0x02
1606#define  RAM_TEST_SCSI_ERROR   0x01
1607#define  RAM_TEST_SUCCESS      0x00
1608#define PRE_TEST_VALUE        0x05
1609#define NORMAL_VALUE          0x00
1610
1611/*
1612 * ASC38C1600 Definitions
1613 *
1614 * IOPB_PCI_INT_CFG Bit Field Definitions
1615 */
1616
1617#define INTAB_LD        0x80	/* Value loaded from EEPROM Bit 11. */
1618
1619/*
1620 * Bit 1 can be set to change the interrupt for the Function to operate in
1621 * Totem Pole mode. By default Bit 1 is 0 and the interrupt operates in
1622 * Open Drain mode. Both functions of the ASC38C1600 must be set to the same
1623 * mode, otherwise the operating mode is undefined.
1624 */
1625#define TOTEMPOLE       0x02
1626
1627/*
1628 * Bit 0 can be used to change the Int Pin for the Function. The value is
1629 * 0 by default for both Functions with Function 0 using INT A and Function
1630 * B using INT B. For Function 0 if set, INT B is used. For Function 1 if set,
1631 * INT A is used.
1632 *
1633 * EEPROM Word 0 Bit 11 for each Function may change the initial Int Pin
1634 * value specified in the PCI Configuration Space.
1635 */
1636#define INTAB           0x01
1637
1638/*
1639 * Adv Library Status Definitions
1640 */
1641#define ADV_TRUE        1
1642#define ADV_FALSE       0
1643#define ADV_SUCCESS     1
1644#define ADV_BUSY        0
1645#define ADV_ERROR       (-1)
1646
1647/*
1648 * ADV_DVC_VAR 'warn_code' values
1649 */
1650#define ASC_WARN_BUSRESET_ERROR         0x0001	/* SCSI Bus Reset error */
1651#define ASC_WARN_EEPROM_CHKSUM          0x0002	/* EEP check sum error */
1652#define ASC_WARN_EEPROM_TERMINATION     0x0004	/* EEP termination bad field */
1653#define ASC_WARN_ERROR                  0xFFFF	/* ADV_ERROR return */
1654
1655#define ADV_MAX_TID                     15	/* max. target identifier */
1656#define ADV_MAX_LUN                     7	/* max. logical unit number */
1657
1658/*
1659 * Fixed locations of microcode operating variables.
1660 */
1661#define ASC_MC_CODE_BEGIN_ADDR          0x0028	/* microcode start address */
1662#define ASC_MC_CODE_END_ADDR            0x002A	/* microcode end address */
1663#define ASC_MC_CODE_CHK_SUM             0x002C	/* microcode code checksum */
1664#define ASC_MC_VERSION_DATE             0x0038	/* microcode version */
1665#define ASC_MC_VERSION_NUM              0x003A	/* microcode number */
1666#define ASC_MC_BIOSMEM                  0x0040	/* BIOS RISC Memory Start */
1667#define ASC_MC_BIOSLEN                  0x0050	/* BIOS RISC Memory Length */
1668#define ASC_MC_BIOS_SIGNATURE           0x0058	/* BIOS Signature 0x55AA */
1669#define ASC_MC_BIOS_VERSION             0x005A	/* BIOS Version (2 bytes) */
1670#define ASC_MC_SDTR_SPEED1              0x0090	/* SDTR Speed for TID 0-3 */
1671#define ASC_MC_SDTR_SPEED2              0x0092	/* SDTR Speed for TID 4-7 */
1672#define ASC_MC_SDTR_SPEED3              0x0094	/* SDTR Speed for TID 8-11 */
1673#define ASC_MC_SDTR_SPEED4              0x0096	/* SDTR Speed for TID 12-15 */
1674#define ASC_MC_CHIP_TYPE                0x009A
1675#define ASC_MC_INTRB_CODE               0x009B
1676#define ASC_MC_WDTR_ABLE                0x009C
1677#define ASC_MC_SDTR_ABLE                0x009E
1678#define ASC_MC_TAGQNG_ABLE              0x00A0
1679#define ASC_MC_DISC_ENABLE              0x00A2
1680#define ASC_MC_IDLE_CMD_STATUS          0x00A4
1681#define ASC_MC_IDLE_CMD                 0x00A6
1682#define ASC_MC_IDLE_CMD_PARAMETER       0x00A8
1683#define ASC_MC_DEFAULT_SCSI_CFG0        0x00AC
1684#define ASC_MC_DEFAULT_SCSI_CFG1        0x00AE
1685#define ASC_MC_DEFAULT_MEM_CFG          0x00B0
1686#define ASC_MC_DEFAULT_SEL_MASK         0x00B2
1687#define ASC_MC_SDTR_DONE                0x00B6
1688#define ASC_MC_NUMBER_OF_QUEUED_CMD     0x00C0
1689#define ASC_MC_NUMBER_OF_MAX_CMD        0x00D0
1690#define ASC_MC_DEVICE_HSHK_CFG_TABLE    0x0100
1691#define ASC_MC_CONTROL_FLAG             0x0122	/* Microcode control flag. */
1692#define ASC_MC_WDTR_DONE                0x0124
1693#define ASC_MC_CAM_MODE_MASK            0x015E	/* CAM mode TID bitmask. */
1694#define ASC_MC_ICQ                      0x0160
1695#define ASC_MC_IRQ                      0x0164
1696#define ASC_MC_PPR_ABLE                 0x017A
1697
1698/*
1699 * BIOS LRAM variable absolute offsets.
1700 */
1701#define BIOS_CODESEG    0x54
1702#define BIOS_CODELEN    0x56
1703#define BIOS_SIGNATURE  0x58
1704#define BIOS_VERSION    0x5A
1705
1706/*
1707 * Microcode Control Flags
1708 *
1709 * Flags set by the Adv Library in RISC variable 'control_flag' (0x122)
1710 * and handled by the microcode.
1711 */
1712#define CONTROL_FLAG_IGNORE_PERR        0x0001	/* Ignore DMA Parity Errors */
1713#define CONTROL_FLAG_ENABLE_AIPP        0x0002	/* Enabled AIPP checking. */
1714
1715/*
1716 * ASC_MC_DEVICE_HSHK_CFG_TABLE microcode table or HSHK_CFG register format
1717 */
1718#define HSHK_CFG_WIDE_XFR       0x8000
1719#define HSHK_CFG_RATE           0x0F00
1720#define HSHK_CFG_OFFSET         0x001F
1721
1722#define ASC_DEF_MAX_HOST_QNG    0xFD	/* Max. number of host commands (253) */
1723#define ASC_DEF_MIN_HOST_QNG    0x10	/* Min. number of host commands (16) */
1724#define ASC_DEF_MAX_DVC_QNG     0x3F	/* Max. number commands per device (63) */
1725#define ASC_DEF_MIN_DVC_QNG     0x04	/* Min. number commands per device (4) */
1726
1727#define ASC_QC_DATA_CHECK  0x01	/* Require ASC_QC_DATA_OUT set or clear. */
1728#define ASC_QC_DATA_OUT    0x02	/* Data out DMA transfer. */
1729#define ASC_QC_START_MOTOR 0x04	/* Send auto-start motor before request. */
1730#define ASC_QC_NO_OVERRUN  0x08	/* Don't report overrun. */
1731#define ASC_QC_FREEZE_TIDQ 0x10	/* Freeze TID queue after request. XXX TBD */
1732
1733#define ASC_QSC_NO_DISC     0x01	/* Don't allow disconnect for request. */
1734#define ASC_QSC_NO_TAGMSG   0x02	/* Don't allow tag queuing for request. */
1735#define ASC_QSC_NO_SYNC     0x04	/* Don't use Synch. transfer on request. */
1736#define ASC_QSC_NO_WIDE     0x08	/* Don't use Wide transfer on request. */
1737#define ASC_QSC_REDO_DTR    0x10	/* Renegotiate WDTR/SDTR before request. */
1738/*
1739 * Note: If a Tag Message is to be sent and neither ASC_QSC_HEAD_TAG or
1740 * ASC_QSC_ORDERED_TAG is set, then a Simple Tag Message (0x20) is used.
1741 */
1742#define ASC_QSC_HEAD_TAG    0x40	/* Use Head Tag Message (0x21). */
1743#define ASC_QSC_ORDERED_TAG 0x80	/* Use Ordered Tag Message (0x22). */
1744
1745/*
1746 * All fields here are accessed by the board microcode and need to be
1747 * little-endian.
1748 */
1749typedef struct adv_carr_t {
1750	ADV_VADDR carr_va;	/* Carrier Virtual Address */
1751	ADV_PADDR carr_pa;	/* Carrier Physical Address */
1752	ADV_VADDR areq_vpa;	/* ASC_SCSI_REQ_Q Virtual or Physical Address */
1753	/*
1754	 * next_vpa [31:4]            Carrier Virtual or Physical Next Pointer
1755	 *
1756	 * next_vpa [3:1]             Reserved Bits
1757	 * next_vpa [0]               Done Flag set in Response Queue.
1758	 */
1759	ADV_VADDR next_vpa;
1760} ADV_CARR_T;
1761
1762/*
1763 * Mask used to eliminate low 4 bits of carrier 'next_vpa' field.
1764 */
1765#define ASC_NEXT_VPA_MASK       0xFFFFFFF0
1766
1767#define ASC_RQ_DONE             0x00000001
1768#define ASC_RQ_GOOD             0x00000002
1769#define ASC_CQ_STOPPER          0x00000000
1770
1771#define ASC_GET_CARRP(carrp) ((carrp) & ASC_NEXT_VPA_MASK)
1772
1773#define ADV_CARRIER_NUM_PAGE_CROSSING \
1774    (((ADV_CARRIER_COUNT * sizeof(ADV_CARR_T)) + (PAGE_SIZE - 1))/PAGE_SIZE)
1775
1776#define ADV_CARRIER_BUFSIZE \
1777    ((ADV_CARRIER_COUNT + ADV_CARRIER_NUM_PAGE_CROSSING) * sizeof(ADV_CARR_T))
1778
1779/*
1780 * ASC_SCSI_REQ_Q 'a_flag' definitions
1781 *
1782 * The Adv Library should limit use to the lower nibble (4 bits) of
1783 * a_flag. Drivers are free to use the upper nibble (4 bits) of a_flag.
1784 */
1785#define ADV_POLL_REQUEST                0x01	/* poll for request completion */
1786#define ADV_SCSIQ_DONE                  0x02	/* request done */
1787#define ADV_DONT_RETRY                  0x08	/* don't do retry */
1788
1789#define ADV_CHIP_ASC3550          0x01	/* Ultra-Wide IC */
1790#define ADV_CHIP_ASC38C0800       0x02	/* Ultra2-Wide/LVD IC */
1791#define ADV_CHIP_ASC38C1600       0x03	/* Ultra3-Wide/LVD2 IC */
1792
1793/*
1794 * Adapter temporary configuration structure
1795 *
1796 * This structure can be discarded after initialization. Don't add
1797 * fields here needed after initialization.
1798 *
1799 * Field naming convention:
1800 *
1801 *  *_enable indicates the field enables or disables a feature. The
1802 *  value of the field is never reset.
1803 */
1804typedef struct adv_dvc_cfg {
1805	ushort disc_enable;	/* enable disconnection */
1806	uchar chip_version;	/* chip version */
1807	uchar termination;	/* Term. Ctrl. bits 6-5 of SCSI_CFG1 register */
1808	ushort control_flag;	/* Microcode Control Flag */
1809	ushort mcode_date;	/* Microcode date */
1810	ushort mcode_version;	/* Microcode version */
1811	ushort serial1;		/* EEPROM serial number word 1 */
1812	ushort serial2;		/* EEPROM serial number word 2 */
1813	ushort serial3;		/* EEPROM serial number word 3 */
1814} ADV_DVC_CFG;
1815
1816struct adv_dvc_var;
1817struct adv_scsi_req_q;
1818
1819typedef struct asc_sg_block {
1820	uchar reserved1;
1821	uchar reserved2;
1822	uchar reserved3;
1823	uchar sg_cnt;		/* Valid entries in block. */
1824	ADV_PADDR sg_ptr;	/* Pointer to next sg block. */
1825	struct {
1826		ADV_PADDR sg_addr;	/* SG element address. */
1827		ADV_DCNT sg_count;	/* SG element count. */
1828	} sg_list[NO_OF_SG_PER_BLOCK];
1829} ADV_SG_BLOCK;
1830
1831/*
1832 * ADV_SCSI_REQ_Q - microcode request structure
1833 *
1834 * All fields in this structure up to byte 60 are used by the microcode.
1835 * The microcode makes assumptions about the size and ordering of fields
1836 * in this structure. Do not change the structure definition here without
1837 * coordinating the change with the microcode.
1838 *
1839 * All fields accessed by microcode must be maintained in little_endian
1840 * order.
1841 */
1842typedef struct adv_scsi_req_q {
1843	uchar cntl;		/* Ucode flags and state (ASC_MC_QC_*). */
1844	uchar target_cmd;
1845	uchar target_id;	/* Device target identifier. */
1846	uchar target_lun;	/* Device target logical unit number. */
1847	ADV_PADDR data_addr;	/* Data buffer physical address. */
1848	ADV_DCNT data_cnt;	/* Data count. Ucode sets to residual. */
1849	ADV_PADDR sense_addr;
1850	ADV_PADDR carr_pa;
1851	uchar mflag;
1852	uchar sense_len;
1853	uchar cdb_len;		/* SCSI CDB length. Must <= 16 bytes. */
1854	uchar scsi_cntl;
1855	uchar done_status;	/* Completion status. */
1856	uchar scsi_status;	/* SCSI status byte. */
1857	uchar host_status;	/* Ucode host status. */
1858	uchar sg_working_ix;
1859	uchar cdb[12];		/* SCSI CDB bytes 0-11. */
1860	ADV_PADDR sg_real_addr;	/* SG list physical address. */
1861	ADV_PADDR scsiq_rptr;
1862	uchar cdb16[4];		/* SCSI CDB bytes 12-15. */
1863	ADV_VADDR scsiq_ptr;
1864	ADV_VADDR carr_va;
1865	/*
1866	 * End of microcode structure - 60 bytes. The rest of the structure
1867	 * is used by the Adv Library and ignored by the microcode.
1868	 */
1869	ADV_VADDR srb_ptr;
1870	ADV_SG_BLOCK *sg_list_ptr;	/* SG list virtual address. */
1871	char *vdata_addr;	/* Data buffer virtual address. */
1872	uchar a_flag;
1873	uchar pad[2];		/* Pad out to a word boundary. */
1874} ADV_SCSI_REQ_Q;
1875
1876/*
1877 * The following two structures are used to process Wide Board requests.
1878 *
1879 * The ADV_SCSI_REQ_Q structure in adv_req_t is passed to the Adv Library
1880 * and microcode with the ADV_SCSI_REQ_Q field 'srb_ptr' pointing to the
1881 * adv_req_t. The adv_req_t structure 'cmndp' field in turn points to the
1882 * Mid-Level SCSI request structure.
1883 *
1884 * Zero or more ADV_SG_BLOCK are used with each ADV_SCSI_REQ_Q. Each
1885 * ADV_SG_BLOCK structure holds 15 scatter-gather elements. Under Linux
1886 * up to 255 scatter-gather elements may be used per request or
1887 * ADV_SCSI_REQ_Q.
1888 *
1889 * Both structures must be 32 byte aligned.
1890 */
1891typedef struct adv_sgblk {
1892	ADV_SG_BLOCK sg_block;	/* Sgblock structure. */
1893	uchar align[32];	/* Sgblock structure padding. */
1894	struct adv_sgblk *next_sgblkp;	/* Next scatter-gather structure. */
1895} adv_sgblk_t;
1896
1897typedef struct adv_req {
1898	ADV_SCSI_REQ_Q scsi_req_q;	/* Adv Library request structure. */
1899	uchar align[32];	/* Request structure padding. */
1900	struct scsi_cmnd *cmndp;	/* Mid-Level SCSI command pointer. */
1901	adv_sgblk_t *sgblkp;	/* Adv Library scatter-gather pointer. */
1902	struct adv_req *next_reqp;	/* Next Request Structure. */
1903} adv_req_t;
1904
1905/*
1906 * Adapter operation variable structure.
1907 *
1908 * One structure is required per host adapter.
1909 *
1910 * Field naming convention:
1911 *
1912 *  *_able indicates both whether a feature should be enabled or disabled
1913 *  and whether a device isi capable of the feature. At initialization
1914 *  this field may be set, but later if a device is found to be incapable
1915 *  of the feature, the field is cleared.
1916 */
1917typedef struct adv_dvc_var {
1918	AdvPortAddr iop_base;	/* I/O port address */
1919	ushort err_code;	/* fatal error code */
1920	ushort bios_ctrl;	/* BIOS control word, EEPROM word 12 */
1921	ushort wdtr_able;	/* try WDTR for a device */
1922	ushort sdtr_able;	/* try SDTR for a device */
1923	ushort ultra_able;	/* try SDTR Ultra speed for a device */
1924	ushort sdtr_speed1;	/* EEPROM SDTR Speed for TID 0-3   */
1925	ushort sdtr_speed2;	/* EEPROM SDTR Speed for TID 4-7   */
1926	ushort sdtr_speed3;	/* EEPROM SDTR Speed for TID 8-11  */
1927	ushort sdtr_speed4;	/* EEPROM SDTR Speed for TID 12-15 */
1928	ushort tagqng_able;	/* try tagged queuing with a device */
1929	ushort ppr_able;	/* PPR message capable per TID bitmask. */
1930	uchar max_dvc_qng;	/* maximum number of tagged commands per device */
1931	ushort start_motor;	/* start motor command allowed */
1932	uchar scsi_reset_wait;	/* delay in seconds after scsi bus reset */
1933	uchar chip_no;		/* should be assigned by caller */
1934	uchar max_host_qng;	/* maximum number of Q'ed command allowed */
1935	ushort no_scam;		/* scam_tolerant of EEPROM */
1936	struct asc_board *drv_ptr;	/* driver pointer to private structure */
1937	uchar chip_scsi_id;	/* chip SCSI target ID */
1938	uchar chip_type;
1939	uchar bist_err_code;
1940	ADV_CARR_T *carrier_buf;
1941	ADV_CARR_T *carr_freelist;	/* Carrier free list. */
1942	ADV_CARR_T *icq_sp;	/* Initiator command queue stopper pointer. */
1943	ADV_CARR_T *irq_sp;	/* Initiator response queue stopper pointer. */
1944	ushort carr_pending_cnt;	/* Count of pending carriers. */
1945	struct adv_req *orig_reqp;	/* adv_req_t memory block. */
1946	/*
1947	 * Note: The following fields will not be used after initialization. The
1948	 * driver may discard the buffer after initialization is done.
1949	 */
1950	ADV_DVC_CFG *cfg;	/* temporary configuration structure  */
1951} ADV_DVC_VAR;
1952
1953/*
1954 * Microcode idle loop commands
1955 */
1956#define IDLE_CMD_COMPLETED           0
1957#define IDLE_CMD_STOP_CHIP           0x0001
1958#define IDLE_CMD_STOP_CHIP_SEND_INT  0x0002
1959#define IDLE_CMD_SEND_INT            0x0004
1960#define IDLE_CMD_ABORT               0x0008
1961#define IDLE_CMD_DEVICE_RESET        0x0010
1962#define IDLE_CMD_SCSI_RESET_START    0x0020	/* Assert SCSI Bus Reset */
1963#define IDLE_CMD_SCSI_RESET_END      0x0040	/* Deassert SCSI Bus Reset */
1964#define IDLE_CMD_SCSIREQ             0x0080
1965
1966#define IDLE_CMD_STATUS_SUCCESS      0x0001
1967#define IDLE_CMD_STATUS_FAILURE      0x0002
1968
1969/*
1970 * AdvSendIdleCmd() flag definitions.
1971 */
1972#define ADV_NOWAIT     0x01
1973
1974/*
1975 * Wait loop time out values.
1976 */
1977#define SCSI_WAIT_100_MSEC           100UL	/* 100 milliseconds */
1978#define SCSI_US_PER_MSEC             1000	/* microseconds per millisecond */
1979#define SCSI_MAX_RETRY               10	/* retry count */
1980
1981#define ADV_ASYNC_RDMA_FAILURE          0x01	/* Fatal RDMA failure. */
1982#define ADV_ASYNC_SCSI_BUS_RESET_DET    0x02	/* Detected SCSI Bus Reset. */
1983#define ADV_ASYNC_CARRIER_READY_FAILURE 0x03	/* Carrier Ready failure. */
1984#define ADV_RDMA_IN_CARR_AND_Q_INVALID  0x04	/* RDMAed-in data invalid. */
1985
1986#define ADV_HOST_SCSI_BUS_RESET      0x80	/* Host Initiated SCSI Bus Reset. */
1987
1988/* Read byte from a register. */
1989#define AdvReadByteRegister(iop_base, reg_off) \
1990     (ADV_MEM_READB((iop_base) + (reg_off)))
1991
1992/* Write byte to a register. */
1993#define AdvWriteByteRegister(iop_base, reg_off, byte) \
1994     (ADV_MEM_WRITEB((iop_base) + (reg_off), (byte)))
1995
1996/* Read word (2 bytes) from a register. */
1997#define AdvReadWordRegister(iop_base, reg_off) \
1998     (ADV_MEM_READW((iop_base) + (reg_off)))
1999
2000/* Write word (2 bytes) to a register. */
2001#define AdvWriteWordRegister(iop_base, reg_off, word) \
2002     (ADV_MEM_WRITEW((iop_base) + (reg_off), (word)))
2003
2004/* Write dword (4 bytes) to a register. */
2005#define AdvWriteDWordRegister(iop_base, reg_off, dword) \
2006     (ADV_MEM_WRITEDW((iop_base) + (reg_off), (dword)))
2007
2008/* Read byte from LRAM. */
2009#define AdvReadByteLram(iop_base, addr, byte) \
2010do { \
2011    ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
2012    (byte) = ADV_MEM_READB((iop_base) + IOPB_RAM_DATA); \
2013} while (0)
2014
2015/* Write byte to LRAM. */
2016#define AdvWriteByteLram(iop_base, addr, byte) \
2017    (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2018     ADV_MEM_WRITEB((iop_base) + IOPB_RAM_DATA, (byte)))
2019
2020/* Read word (2 bytes) from LRAM. */
2021#define AdvReadWordLram(iop_base, addr, word) \
2022do { \
2023    ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
2024    (word) = (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)); \
2025} while (0)
2026
2027/* Write word (2 bytes) to LRAM. */
2028#define AdvWriteWordLram(iop_base, addr, word) \
2029    (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2030     ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
2031
2032/* Write little-endian double word (4 bytes) to LRAM */
2033/* Because of unspecified C language ordering don't use auto-increment. */
2034#define AdvWriteDWordLramNoSwap(iop_base, addr, dword) \
2035    ((ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2036      ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
2037                     cpu_to_le16((ushort) ((dword) & 0xFFFF)))), \
2038     (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \
2039      ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
2040                     cpu_to_le16((ushort) ((dword >> 16) & 0xFFFF)))))
2041
2042/* Read word (2 bytes) from LRAM assuming that the address is already set. */
2043#define AdvReadWordAutoIncLram(iop_base) \
2044     (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA))
2045
2046/* Write word (2 bytes) to LRAM assuming that the address is already set. */
2047#define AdvWriteWordAutoIncLram(iop_base, word) \
2048     (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
2049
2050/*
2051 * Define macro to check for Condor signature.
2052 *
2053 * Evaluate to ADV_TRUE if a Condor chip is found the specified port
2054 * address 'iop_base'. Otherwise evalue to ADV_FALSE.
2055 */
2056#define AdvFindSignature(iop_base) \
2057    (((AdvReadByteRegister((iop_base), IOPB_CHIP_ID_1) == \
2058    ADV_CHIP_ID_BYTE) && \
2059     (AdvReadWordRegister((iop_base), IOPW_CHIP_ID_0) == \
2060    ADV_CHIP_ID_WORD)) ?  ADV_TRUE : ADV_FALSE)
2061
2062/*
2063 * Define macro to Return the version number of the chip at 'iop_base'.
2064 *
2065 * The second parameter 'bus_type' is currently unused.
2066 */
2067#define AdvGetChipVersion(iop_base, bus_type) \
2068    AdvReadByteRegister((iop_base), IOPB_CHIP_TYPE_REV)
2069
2070/*
2071 * Abort an SRB in the chip's RISC Memory. The 'srb_ptr' argument must
2072 * match the ASC_SCSI_REQ_Q 'srb_ptr' field.
2073 *
2074 * If the request has not yet been sent to the device it will simply be
2075 * aborted from RISC memory. If the request is disconnected it will be
2076 * aborted on reselection by sending an Abort Message to the target ID.
2077 *
2078 * Return value:
2079 *      ADV_TRUE(1) - Queue was successfully aborted.
2080 *      ADV_FALSE(0) - Queue was not found on the active queue list.
2081 */
2082#define AdvAbortQueue(asc_dvc, scsiq) \
2083        AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_ABORT, \
2084                       (ADV_DCNT) (scsiq))
2085
2086/*
2087 * Send a Bus Device Reset Message to the specified target ID.
2088 *
2089 * All outstanding commands will be purged if sending the
2090 * Bus Device Reset Message is successful.
2091 *
2092 * Return Value:
2093 *      ADV_TRUE(1) - All requests on the target are purged.
2094 *      ADV_FALSE(0) - Couldn't issue Bus Device Reset Message; Requests
2095 *                     are not purged.
2096 */
2097#define AdvResetDevice(asc_dvc, target_id) \
2098        AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_DEVICE_RESET, \
2099                    (ADV_DCNT) (target_id))
2100
2101/*
2102 * SCSI Wide Type definition.
2103 */
2104#define ADV_SCSI_BIT_ID_TYPE   ushort
2105
2106/*
2107 * AdvInitScsiTarget() 'cntl_flag' options.
2108 */
2109#define ADV_SCAN_LUN           0x01
2110#define ADV_CAPINFO_NOLUN      0x02
2111
2112/*
2113 * Convert target id to target id bit mask.
2114 */
2115#define ADV_TID_TO_TIDMASK(tid)   (0x01 << ((tid) & ADV_MAX_TID))
2116
2117/*
2118 * ASC_SCSI_REQ_Q 'done_status' and 'host_status' return values.
2119 */
2120
2121#define QD_NO_STATUS         0x00	/* Request not completed yet. */
2122#define QD_NO_ERROR          0x01
2123#define QD_ABORTED_BY_HOST   0x02
2124#define QD_WITH_ERROR        0x04
2125
2126#define QHSTA_NO_ERROR              0x00
2127#define QHSTA_M_SEL_TIMEOUT         0x11
2128#define QHSTA_M_DATA_OVER_RUN       0x12
2129#define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
2130#define QHSTA_M_QUEUE_ABORTED       0x15
2131#define QHSTA_M_SXFR_SDMA_ERR       0x16	/* SXFR_STATUS SCSI DMA Error */
2132#define QHSTA_M_SXFR_SXFR_PERR      0x17	/* SXFR_STATUS SCSI Bus Parity Error */
2133#define QHSTA_M_RDMA_PERR           0x18	/* RISC PCI DMA parity error */
2134#define QHSTA_M_SXFR_OFF_UFLW       0x19	/* SXFR_STATUS Offset Underflow */
2135#define QHSTA_M_SXFR_OFF_OFLW       0x20	/* SXFR_STATUS Offset Overflow */
2136#define QHSTA_M_SXFR_WD_TMO         0x21	/* SXFR_STATUS Watchdog Timeout */
2137#define QHSTA_M_SXFR_DESELECTED     0x22	/* SXFR_STATUS Deselected */
2138/* Note: QHSTA_M_SXFR_XFR_OFLW is identical to QHSTA_M_DATA_OVER_RUN. */
2139#define QHSTA_M_SXFR_XFR_OFLW       0x12	/* SXFR_STATUS Transfer Overflow */
2140#define QHSTA_M_SXFR_XFR_PH_ERR     0x24	/* SXFR_STATUS Transfer Phase Error */
2141#define QHSTA_M_SXFR_UNKNOWN_ERROR  0x25	/* SXFR_STATUS Unknown Error */
2142#define QHSTA_M_SCSI_BUS_RESET      0x30	/* Request aborted from SBR */
2143#define QHSTA_M_SCSI_BUS_RESET_UNSOL 0x31	/* Request aborted from unsol. SBR */
2144#define QHSTA_M_BUS_DEVICE_RESET    0x32	/* Request aborted from BDR */
2145#define QHSTA_M_DIRECTION_ERR       0x35	/* Data Phase mismatch */
2146#define QHSTA_M_DIRECTION_ERR_HUNG  0x36	/* Data Phase mismatch and bus hang */
2147#define QHSTA_M_WTM_TIMEOUT         0x41
2148#define QHSTA_M_BAD_CMPL_STATUS_IN  0x42
2149#define QHSTA_M_NO_AUTO_REQ_SENSE   0x43
2150#define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
2151#define QHSTA_M_INVALID_DEVICE      0x45	/* Bad target ID */
2152#define QHSTA_M_FROZEN_TIDQ         0x46	/* TID Queue frozen. */
2153#define QHSTA_M_SGBACKUP_ERROR      0x47	/* Scatter-Gather backup error */
2154
2155/* Return the address that is aligned at the next doubleword >= to 'addr'. */
2156#define ADV_8BALIGN(addr)      (((ulong) (addr) + 0x7) & ~0x7)
2157#define ADV_16BALIGN(addr)     (((ulong) (addr) + 0xF) & ~0xF)
2158#define ADV_32BALIGN(addr)     (((ulong) (addr) + 0x1F) & ~0x1F)
2159
2160/*
2161 * Total contiguous memory needed for driver SG blocks.
2162 *
2163 * ADV_MAX_SG_LIST must be defined by a driver. It is the maximum
2164 * number of scatter-gather elements the driver supports in a
2165 * single request.
2166 */
2167
2168#define ADV_SG_LIST_MAX_BYTE_SIZE \
2169         (sizeof(ADV_SG_BLOCK) * \
2170          ((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK))
2171
2172/* struct asc_board flags */
2173#define ASC_IS_WIDE_BOARD       0x04	/* AdvanSys Wide Board */
2174
2175#define ASC_NARROW_BOARD(boardp) (((boardp)->flags & ASC_IS_WIDE_BOARD) == 0)
2176
2177#define NO_ISA_DMA              0xff	/* No ISA DMA Channel Used */
2178
2179#define ASC_INFO_SIZE           128	/* advansys_info() line size */
2180
2181/* Asc Library return codes */
2182#define ASC_TRUE        1
2183#define ASC_FALSE       0
2184#define ASC_NOERROR     1
2185#define ASC_BUSY        0
2186#define ASC_ERROR       (-1)
2187
2188/* struct scsi_cmnd function return codes */
2189#define STATUS_BYTE(byte)   (byte)
2190#define MSG_BYTE(byte)      ((byte) << 8)
2191#define HOST_BYTE(byte)     ((byte) << 16)
2192#define DRIVER_BYTE(byte)   ((byte) << 24)
2193
2194#define ASC_STATS(shost, counter) ASC_STATS_ADD(shost, counter, 1)
2195#ifndef ADVANSYS_STATS
2196#define ASC_STATS_ADD(shost, counter, count)
2197#else /* ADVANSYS_STATS */
2198#define ASC_STATS_ADD(shost, counter, count) \
2199	(((struct asc_board *) shost_priv(shost))->asc_stats.counter += (count))
2200#endif /* ADVANSYS_STATS */
2201
2202/* If the result wraps when calculating tenths, return 0. */
2203#define ASC_TENTHS(num, den) \
2204    (((10 * ((num)/(den))) > (((num) * 10)/(den))) ? \
2205    0 : ((((num) * 10)/(den)) - (10 * ((num)/(den)))))
2206
2207/*
2208 * Display a message to the console.
2209 */
2210#define ASC_PRINT(s) \
2211    { \
2212        printk("advansys: "); \
2213        printk(s); \
2214    }
2215
2216#define ASC_PRINT1(s, a1) \
2217    { \
2218        printk("advansys: "); \
2219        printk((s), (a1)); \
2220    }
2221
2222#define ASC_PRINT2(s, a1, a2) \
2223    { \
2224        printk("advansys: "); \
2225        printk((s), (a1), (a2)); \
2226    }
2227
2228#define ASC_PRINT3(s, a1, a2, a3) \
2229    { \
2230        printk("advansys: "); \
2231        printk((s), (a1), (a2), (a3)); \
2232    }
2233
2234#define ASC_PRINT4(s, a1, a2, a3, a4) \
2235    { \
2236        printk("advansys: "); \
2237        printk((s), (a1), (a2), (a3), (a4)); \
2238    }
2239
2240#ifndef ADVANSYS_DEBUG
2241
2242#define ASC_DBG(lvl, s...)
2243#define ASC_DBG_PRT_SCSI_HOST(lvl, s)
2244#define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp)
2245#define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2246#define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone)
2247#define ADV_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2248#define ASC_DBG_PRT_HEX(lvl, name, start, length)
2249#define ASC_DBG_PRT_CDB(lvl, cdb, len)
2250#define ASC_DBG_PRT_SENSE(lvl, sense, len)
2251#define ASC_DBG_PRT_INQUIRY(lvl, inq, len)
2252
2253#else /* ADVANSYS_DEBUG */
2254
2255/*
2256 * Debugging Message Levels:
2257 * 0: Errors Only
2258 * 1: High-Level Tracing
2259 * 2-N: Verbose Tracing
2260 */
2261
2262#define ASC_DBG(lvl, format, arg...) {					\
2263	if (asc_dbglvl >= (lvl))					\
2264		printk(KERN_DEBUG "%s: %s: " format, DRV_NAME,		\
2265			__func__ , ## arg);				\
2266}
2267
2268#define ASC_DBG_PRT_SCSI_HOST(lvl, s) \
2269    { \
2270        if (asc_dbglvl >= (lvl)) { \
2271            asc_prt_scsi_host(s); \
2272        } \
2273    }
2274
2275#define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) \
2276    { \
2277        if (asc_dbglvl >= (lvl)) { \
2278            asc_prt_asc_scsi_q(scsiqp); \
2279        } \
2280    }
2281
2282#define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) \
2283    { \
2284        if (asc_dbglvl >= (lvl)) { \
2285            asc_prt_asc_qdone_info(qdone); \
2286        } \
2287    }
2288
2289#define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) \
2290    { \
2291        if (asc_dbglvl >= (lvl)) { \
2292            asc_prt_adv_scsi_req_q(scsiqp); \
2293        } \
2294    }
2295
2296#define ASC_DBG_PRT_HEX(lvl, name, start, length) \
2297    { \
2298        if (asc_dbglvl >= (lvl)) { \
2299            asc_prt_hex((name), (start), (length)); \
2300        } \
2301    }
2302
2303#define ASC_DBG_PRT_CDB(lvl, cdb, len) \
2304        ASC_DBG_PRT_HEX((lvl), "CDB", (uchar *) (cdb), (len));
2305
2306#define ASC_DBG_PRT_SENSE(lvl, sense, len) \
2307        ASC_DBG_PRT_HEX((lvl), "SENSE", (uchar *) (sense), (len));
2308
2309#define ASC_DBG_PRT_INQUIRY(lvl, inq, len) \
2310        ASC_DBG_PRT_HEX((lvl), "INQUIRY", (uchar *) (inq), (len));
2311#endif /* ADVANSYS_DEBUG */
2312
2313#ifdef ADVANSYS_STATS
2314
2315/* Per board statistics structure */
2316struct asc_stats {
2317	/* Driver Entrypoint Statistics */
2318	ADV_DCNT queuecommand;	/* # calls to advansys_queuecommand() */
2319	ADV_DCNT reset;		/* # calls to advansys_eh_bus_reset() */
2320	ADV_DCNT biosparam;	/* # calls to advansys_biosparam() */
2321	ADV_DCNT interrupt;	/* # advansys_interrupt() calls */
2322	ADV_DCNT callback;	/* # calls to asc/adv_isr_callback() */
2323	ADV_DCNT done;		/* # calls to request's scsi_done function */
2324	ADV_DCNT build_error;	/* # asc/adv_build_req() ASC_ERROR returns. */
2325	ADV_DCNT adv_build_noreq;	/* # adv_build_req() adv_req_t alloc. fail. */
2326	ADV_DCNT adv_build_nosg;	/* # adv_build_req() adv_sgblk_t alloc. fail. */
2327	/* AscExeScsiQueue()/AdvExeScsiQueue() Statistics */
2328	ADV_DCNT exe_noerror;	/* # ASC_NOERROR returns. */
2329	ADV_DCNT exe_busy;	/* # ASC_BUSY returns. */
2330	ADV_DCNT exe_error;	/* # ASC_ERROR returns. */
2331	ADV_DCNT exe_unknown;	/* # unknown returns. */
2332	/* Data Transfer Statistics */
2333	ADV_DCNT xfer_cnt;	/* # I/O requests received */
2334	ADV_DCNT xfer_elem;	/* # scatter-gather elements */
2335	ADV_DCNT xfer_sect;	/* # 512-byte blocks */
2336};
2337#endif /* ADVANSYS_STATS */
2338
2339/*
2340 * Structure allocated for each board.
2341 *
2342 * This structure is allocated by scsi_host_alloc() at the end
2343 * of the 'Scsi_Host' structure starting at the 'hostdata'
2344 * field. It is guaranteed to be allocated from DMA-able memory.
2345 */
2346struct asc_board {
2347	struct device *dev;
2348	uint flags;		/* Board flags */
2349	unsigned int irq;
2350	union {
2351		ASC_DVC_VAR asc_dvc_var;	/* Narrow board */
2352		ADV_DVC_VAR adv_dvc_var;	/* Wide board */
2353	} dvc_var;
2354	union {
2355		ASC_DVC_CFG asc_dvc_cfg;	/* Narrow board */
2356		ADV_DVC_CFG adv_dvc_cfg;	/* Wide board */
2357	} dvc_cfg;
2358	ushort asc_n_io_port;	/* Number I/O ports. */
2359	ADV_SCSI_BIT_ID_TYPE init_tidmask;	/* Target init./valid mask */
2360	ushort reqcnt[ADV_MAX_TID + 1];	/* Starvation request count */
2361	ADV_SCSI_BIT_ID_TYPE queue_full;	/* Queue full mask */
2362	ushort queue_full_cnt[ADV_MAX_TID + 1];	/* Queue full count */
2363	union {
2364		ASCEEP_CONFIG asc_eep;	/* Narrow EEPROM config. */
2365		ADVEEP_3550_CONFIG adv_3550_eep;	/* 3550 EEPROM config. */
2366		ADVEEP_38C0800_CONFIG adv_38C0800_eep;	/* 38C0800 EEPROM config. */
2367		ADVEEP_38C1600_CONFIG adv_38C1600_eep;	/* 38C1600 EEPROM config. */
2368	} eep_config;
2369	ulong last_reset;	/* Saved last reset time */
2370	/* /proc/scsi/advansys/[0...] */
2371#ifdef ADVANSYS_STATS
2372	struct asc_stats asc_stats;	/* Board statistics */
2373#endif				/* ADVANSYS_STATS */
2374	/*
2375	 * The following fields are used only for Narrow Boards.
2376	 */
2377	uchar sdtr_data[ASC_MAX_TID + 1];	/* SDTR information */
2378	/*
2379	 * The following fields are used only for Wide Boards.
2380	 */
2381	void __iomem *ioremap_addr;	/* I/O Memory remap address. */
2382	ushort ioport;		/* I/O Port address. */
2383	adv_req_t *adv_reqp;	/* Request structures. */
2384	adv_sgblk_t *adv_sgblkp;	/* Scatter-gather structures. */
2385	ushort bios_signature;	/* BIOS Signature. */
2386	ushort bios_version;	/* BIOS Version. */
2387	ushort bios_codeseg;	/* BIOS Code Segment. */
2388	ushort bios_codelen;	/* BIOS Code Segment Length. */
2389};
2390
2391#define asc_dvc_to_board(asc_dvc) container_of(asc_dvc, struct asc_board, \
2392							dvc_var.asc_dvc_var)
2393#define adv_dvc_to_board(adv_dvc) container_of(adv_dvc, struct asc_board, \
2394							dvc_var.adv_dvc_var)
2395#define adv_dvc_to_pdev(adv_dvc) to_pci_dev(adv_dvc_to_board(adv_dvc)->dev)
2396
2397#ifdef ADVANSYS_DEBUG
2398static int asc_dbglvl = 3;
2399
2400/*
2401 * asc_prt_asc_dvc_var()
2402 */
2403static void asc_prt_asc_dvc_var(ASC_DVC_VAR *h)
2404{
2405	printk("ASC_DVC_VAR at addr 0x%lx\n", (ulong)h);
2406
2407	printk(" iop_base 0x%x, err_code 0x%x, dvc_cntl 0x%x, bug_fix_cntl "
2408	       "%d,\n", h->iop_base, h->err_code, h->dvc_cntl, h->bug_fix_cntl);
2409
2410	printk(" bus_type %d, init_sdtr 0x%x,\n", h->bus_type,
2411		(unsigned)h->init_sdtr);
2412
2413	printk(" sdtr_done 0x%x, use_tagged_qng 0x%x, unit_not_ready 0x%x, "
2414	       "chip_no 0x%x,\n", (unsigned)h->sdtr_done,
2415	       (unsigned)h->use_tagged_qng, (unsigned)h->unit_not_ready,
2416	       (unsigned)h->chip_no);
2417
2418	printk(" queue_full_or_busy 0x%x, start_motor 0x%x, scsi_reset_wait "
2419	       "%u,\n", (unsigned)h->queue_full_or_busy,
2420	       (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2421
2422	printk(" is_in_int %u, max_total_qng %u, cur_total_qng %u, "
2423	       "in_critical_cnt %u,\n", (unsigned)h->is_in_int,
2424	       (unsigned)h->max_total_qng, (unsigned)h->cur_total_qng,
2425	       (unsigned)h->in_critical_cnt);
2426
2427	printk(" last_q_shortage %u, init_state 0x%x, no_scam 0x%x, "
2428	       "pci_fix_asyn_xfer 0x%x,\n", (unsigned)h->last_q_shortage,
2429	       (unsigned)h->init_state, (unsigned)h->no_scam,
2430	       (unsigned)h->pci_fix_asyn_xfer);
2431
2432	printk(" cfg 0x%lx\n", (ulong)h->cfg);
2433}
2434
2435/*
2436 * asc_prt_asc_dvc_cfg()
2437 */
2438static void asc_prt_asc_dvc_cfg(ASC_DVC_CFG *h)
2439{
2440	printk("ASC_DVC_CFG at addr 0x%lx\n", (ulong)h);
2441
2442	printk(" can_tagged_qng 0x%x, cmd_qng_enabled 0x%x,\n",
2443	       h->can_tagged_qng, h->cmd_qng_enabled);
2444	printk(" disc_enable 0x%x, sdtr_enable 0x%x,\n",
2445	       h->disc_enable, h->sdtr_enable);
2446
2447	printk(" chip_scsi_id %d, isa_dma_speed %d, isa_dma_channel %d, "
2448		"chip_version %d,\n", h->chip_scsi_id, h->isa_dma_speed,
2449		h->isa_dma_channel, h->chip_version);
2450
2451	printk(" mcode_date 0x%x, mcode_version %d\n",
2452		h->mcode_date, h->mcode_version);
2453}
2454
2455/*
2456 * asc_prt_adv_dvc_var()
2457 *
2458 * Display an ADV_DVC_VAR structure.
2459 */
2460static void asc_prt_adv_dvc_var(ADV_DVC_VAR *h)
2461{
2462	printk(" ADV_DVC_VAR at addr 0x%lx\n", (ulong)h);
2463
2464	printk("  iop_base 0x%lx, err_code 0x%x, ultra_able 0x%x\n",
2465	       (ulong)h->iop_base, h->err_code, (unsigned)h->ultra_able);
2466
2467	printk("  sdtr_able 0x%x, wdtr_able 0x%x\n",
2468	       (unsigned)h->sdtr_able, (unsigned)h->wdtr_able);
2469
2470	printk("  start_motor 0x%x, scsi_reset_wait 0x%x\n",
2471	       (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2472
2473	printk("  max_host_qng %u, max_dvc_qng %u, carr_freelist 0x%lxn\n",
2474	       (unsigned)h->max_host_qng, (unsigned)h->max_dvc_qng,
2475	       (ulong)h->carr_freelist);
2476
2477	printk("  icq_sp 0x%lx, irq_sp 0x%lx\n",
2478	       (ulong)h->icq_sp, (ulong)h->irq_sp);
2479
2480	printk("  no_scam 0x%x, tagqng_able 0x%x\n",
2481	       (unsigned)h->no_scam, (unsigned)h->tagqng_able);
2482
2483	printk("  chip_scsi_id 0x%x, cfg 0x%lx\n",
2484	       (unsigned)h->chip_scsi_id, (ulong)h->cfg);
2485}
2486
2487/*
2488 * asc_prt_adv_dvc_cfg()
2489 *
2490 * Display an ADV_DVC_CFG structure.
2491 */
2492static void asc_prt_adv_dvc_cfg(ADV_DVC_CFG *h)
2493{
2494	printk(" ADV_DVC_CFG at addr 0x%lx\n", (ulong)h);
2495
2496	printk("  disc_enable 0x%x, termination 0x%x\n",
2497	       h->disc_enable, h->termination);
2498
2499	printk("  chip_version 0x%x, mcode_date 0x%x\n",
2500	       h->chip_version, h->mcode_date);
2501
2502	printk("  mcode_version 0x%x, control_flag 0x%x\n",
2503	       h->mcode_version, h->control_flag);
2504}
2505
2506/*
2507 * asc_prt_scsi_host()
2508 */
2509static void asc_prt_scsi_host(struct Scsi_Host *s)
2510{
2511	struct asc_board *boardp = shost_priv(s);
2512
2513	printk("Scsi_Host at addr 0x%p, device %s\n", s, dev_name(boardp->dev));
2514	printk(" host_busy %u, host_no %d,\n",
2515	       atomic_read(&s->host_busy), s->host_no);
2516
2517	printk(" base 0x%lx, io_port 0x%lx, irq %d,\n",
2518	       (ulong)s->base, (ulong)s->io_port, boardp->irq);
2519
2520	printk(" dma_channel %d, this_id %d, can_queue %d,\n",
2521	       s->dma_channel, s->this_id, s->can_queue);
2522
2523	printk(" cmd_per_lun %d, sg_tablesize %d, unchecked_isa_dma %d\n",
2524	       s->cmd_per_lun, s->sg_tablesize, s->unchecked_isa_dma);
2525
2526	if (ASC_NARROW_BOARD(boardp)) {
2527		asc_prt_asc_dvc_var(&boardp->dvc_var.asc_dvc_var);
2528		asc_prt_asc_dvc_cfg(&boardp->dvc_cfg.asc_dvc_cfg);
2529	} else {
2530		asc_prt_adv_dvc_var(&boardp->dvc_var.adv_dvc_var);
2531		asc_prt_adv_dvc_cfg(&boardp->dvc_cfg.adv_dvc_cfg);
2532	}
2533}
2534
2535/*
2536 * asc_prt_hex()
2537 *
2538 * Print hexadecimal output in 4 byte groupings 32 bytes
2539 * or 8 double-words per line.
2540 */
2541static void asc_prt_hex(char *f, uchar *s, int l)
2542{
2543	int i;
2544	int j;
2545	int k;
2546	int m;
2547
2548	printk("%s: (%d bytes)\n", f, l);
2549
2550	for (i = 0; i < l; i += 32) {
2551
2552		/* Display a maximum of 8 double-words per line. */
2553		if ((k = (l - i) / 4) >= 8) {
2554			k = 8;
2555			m = 0;
2556		} else {
2557			m = (l - i) % 4;
2558		}
2559
2560		for (j = 0; j < k; j++) {
2561			printk(" %2.2X%2.2X%2.2X%2.2X",
2562			       (unsigned)s[i + (j * 4)],
2563			       (unsigned)s[i + (j * 4) + 1],
2564			       (unsigned)s[i + (j * 4) + 2],
2565			       (unsigned)s[i + (j * 4) + 3]);
2566		}
2567
2568		switch (m) {
2569		case 0:
2570		default:
2571			break;
2572		case 1:
2573			printk(" %2.2X", (unsigned)s[i + (j * 4)]);
2574			break;
2575		case 2:
2576			printk(" %2.2X%2.2X",
2577			       (unsigned)s[i + (j * 4)],
2578			       (unsigned)s[i + (j * 4) + 1]);
2579			break;
2580		case 3:
2581			printk(" %2.2X%2.2X%2.2X",
2582			       (unsigned)s[i + (j * 4) + 1],
2583			       (unsigned)s[i + (j * 4) + 2],
2584			       (unsigned)s[i + (j * 4) + 3]);
2585			break;
2586		}
2587
2588		printk("\n");
2589	}
2590}
2591
2592/*
2593 * asc_prt_asc_scsi_q()
2594 */
2595static void asc_prt_asc_scsi_q(ASC_SCSI_Q *q)
2596{
2597	ASC_SG_HEAD *sgp;
2598	int i;
2599
2600	printk("ASC_SCSI_Q at addr 0x%lx\n", (ulong)q);
2601
2602	printk
2603	    (" target_ix 0x%x, target_lun %u, srb_ptr 0x%lx, tag_code 0x%x,\n",
2604	     q->q2.target_ix, q->q1.target_lun, (ulong)q->q2.srb_ptr,
2605	     q->q2.tag_code);
2606
2607	printk
2608	    (" data_addr 0x%lx, data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2609	     (ulong)le32_to_cpu(q->q1.data_addr),
2610	     (ulong)le32_to_cpu(q->q1.data_cnt),
2611	     (ulong)le32_to_cpu(q->q1.sense_addr), q->q1.sense_len);
2612
2613	printk(" cdbptr 0x%lx, cdb_len %u, sg_head 0x%lx, sg_queue_cnt %u\n",
2614	       (ulong)q->cdbptr, q->q2.cdb_len,
2615	       (ulong)q->sg_head, q->q1.sg_queue_cnt);
2616
2617	if (q->sg_head) {
2618		sgp = q->sg_head;
2619		printk("ASC_SG_HEAD at addr 0x%lx\n", (ulong)sgp);
2620		printk(" entry_cnt %u, queue_cnt %u\n", sgp->entry_cnt,
2621		       sgp->queue_cnt);
2622		for (i = 0; i < sgp->entry_cnt; i++) {
2623			printk(" [%u]: addr 0x%lx, bytes %lu\n",
2624			       i, (ulong)le32_to_cpu(sgp->sg_list[i].addr),
2625			       (ulong)le32_to_cpu(sgp->sg_list[i].bytes));
2626		}
2627
2628	}
2629}
2630
2631/*
2632 * asc_prt_asc_qdone_info()
2633 */
2634static void asc_prt_asc_qdone_info(ASC_QDONE_INFO *q)
2635{
2636	printk("ASC_QDONE_INFO at addr 0x%lx\n", (ulong)q);
2637	printk(" srb_ptr 0x%lx, target_ix %u, cdb_len %u, tag_code %u,\n",
2638	       (ulong)q->d2.srb_ptr, q->d2.target_ix, q->d2.cdb_len,
2639	       q->d2.tag_code);
2640	printk
2641	    (" done_stat 0x%x, host_stat 0x%x, scsi_stat 0x%x, scsi_msg 0x%x\n",
2642	     q->d3.done_stat, q->d3.host_stat, q->d3.scsi_stat, q->d3.scsi_msg);
2643}
2644
2645/*
2646 * asc_prt_adv_sgblock()
2647 *
2648 * Display an ADV_SG_BLOCK structure.
2649 */
2650static void asc_prt_adv_sgblock(int sgblockno, ADV_SG_BLOCK *b)
2651{
2652	int i;
2653
2654	printk(" ASC_SG_BLOCK at addr 0x%lx (sgblockno %d)\n",
2655	       (ulong)b, sgblockno);
2656	printk("  sg_cnt %u, sg_ptr 0x%lx\n",
2657	       b->sg_cnt, (ulong)le32_to_cpu(b->sg_ptr));
2658	BUG_ON(b->sg_cnt > NO_OF_SG_PER_BLOCK);
2659	if (b->sg_ptr != 0)
2660		BUG_ON(b->sg_cnt != NO_OF_SG_PER_BLOCK);
2661	for (i = 0; i < b->sg_cnt; i++) {
2662		printk("  [%u]: sg_addr 0x%lx, sg_count 0x%lx\n",
2663		       i, (ulong)b->sg_list[i].sg_addr,
2664		       (ulong)b->sg_list[i].sg_count);
2665	}
2666}
2667
2668/*
2669 * asc_prt_adv_scsi_req_q()
2670 *
2671 * Display an ADV_SCSI_REQ_Q structure.
2672 */
2673static void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q *q)
2674{
2675	int sg_blk_cnt;
2676	struct asc_sg_block *sg_ptr;
2677
2678	printk("ADV_SCSI_REQ_Q at addr 0x%lx\n", (ulong)q);
2679
2680	printk("  target_id %u, target_lun %u, srb_ptr 0x%lx, a_flag 0x%x\n",
2681	       q->target_id, q->target_lun, (ulong)q->srb_ptr, q->a_flag);
2682
2683	printk("  cntl 0x%x, data_addr 0x%lx, vdata_addr 0x%lx\n",
2684	       q->cntl, (ulong)le32_to_cpu(q->data_addr), (ulong)q->vdata_addr);
2685
2686	printk("  data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2687	       (ulong)le32_to_cpu(q->data_cnt),
2688	       (ulong)le32_to_cpu(q->sense_addr), q->sense_len);
2689
2690	printk
2691	    ("  cdb_len %u, done_status 0x%x, host_status 0x%x, scsi_status 0x%x\n",
2692	     q->cdb_len, q->done_status, q->host_status, q->scsi_status);
2693
2694	printk("  sg_working_ix 0x%x, target_cmd %u\n",
2695	       q->sg_working_ix, q->target_cmd);
2696
2697	printk("  scsiq_rptr 0x%lx, sg_real_addr 0x%lx, sg_list_ptr 0x%lx\n",
2698	       (ulong)le32_to_cpu(q->scsiq_rptr),
2699	       (ulong)le32_to_cpu(q->sg_real_addr), (ulong)q->sg_list_ptr);
2700
2701	/* Display the request's ADV_SG_BLOCK structures. */
2702	if (q->sg_list_ptr != NULL) {
2703		sg_blk_cnt = 0;
2704		while (1) {
2705			/*
2706			 * 'sg_ptr' is a physical address. Convert it to a virtual
2707			 * address by indexing 'sg_blk_cnt' into the virtual address
2708			 * array 'sg_list_ptr'.
2709			 *
2710			 * XXX - Assumes all SG physical blocks are virtually contiguous.
2711			 */
2712			sg_ptr =
2713			    &(((ADV_SG_BLOCK *)(q->sg_list_ptr))[sg_blk_cnt]);
2714			asc_prt_adv_sgblock(sg_blk_cnt, sg_ptr);
2715			if (sg_ptr->sg_ptr == 0) {
2716				break;
2717			}
2718			sg_blk_cnt++;
2719		}
2720	}
2721}
2722#endif /* ADVANSYS_DEBUG */
2723
2724/*
2725 * The advansys chip/microcode contains a 32-bit identifier for each command
2726 * known as the 'srb'.  I don't know what it stands for.  The driver used
2727 * to encode the scsi_cmnd pointer by calling virt_to_bus and retrieve it
2728 * with bus_to_virt.  Now the driver keeps a per-host map of integers to
2729 * pointers.  It auto-expands when full, unless it can't allocate memory.
2730 * Note that an srb of 0 is treated specially by the chip/firmware, hence
2731 * the return of i+1 in this routine, and the corresponding subtraction in
2732 * the inverse routine.
2733 */
2734#define BAD_SRB 0
2735static u32 advansys_ptr_to_srb(struct asc_dvc_var *asc_dvc, void *ptr)
2736{
2737	int i;
2738	void **new_ptr;
2739
2740	for (i = 0; i < asc_dvc->ptr_map_count; i++) {
2741		if (!asc_dvc->ptr_map[i])
2742			goto out;
2743	}
2744
2745	if (asc_dvc->ptr_map_count == 0)
2746		asc_dvc->ptr_map_count = 1;
2747	else
2748		asc_dvc->ptr_map_count *= 2;
2749
2750	new_ptr = krealloc(asc_dvc->ptr_map,
2751			asc_dvc->ptr_map_count * sizeof(void *), GFP_ATOMIC);
2752	if (!new_ptr)
2753		return BAD_SRB;
2754	asc_dvc->ptr_map = new_ptr;
2755 out:
2756	ASC_DBG(3, "Putting ptr %p into array offset %d\n", ptr, i);
2757	asc_dvc->ptr_map[i] = ptr;
2758	return i + 1;
2759}
2760
2761static void * advansys_srb_to_ptr(struct asc_dvc_var *asc_dvc, u32 srb)
2762{
2763	void *ptr;
2764
2765	srb--;
2766	if (srb >= asc_dvc->ptr_map_count) {
2767		printk("advansys: bad SRB %u, max %u\n", srb,
2768							asc_dvc->ptr_map_count);
2769		return NULL;
2770	}
2771	ptr = asc_dvc->ptr_map[srb];
2772	asc_dvc->ptr_map[srb] = NULL;
2773	ASC_DBG(3, "Returning ptr %p from array offset %d\n", ptr, srb);
2774	return ptr;
2775}
2776
2777/*
2778 * advansys_info()
2779 *
2780 * Return suitable for printing on the console with the argument
2781 * adapter's configuration information.
2782 *
2783 * Note: The information line should not exceed ASC_INFO_SIZE bytes,
2784 * otherwise the static 'info' array will be overrun.
2785 */
2786static const char *advansys_info(struct Scsi_Host *shost)
2787{
2788	static char info[ASC_INFO_SIZE];
2789	struct asc_board *boardp = shost_priv(shost);
2790	ASC_DVC_VAR *asc_dvc_varp;
2791	ADV_DVC_VAR *adv_dvc_varp;
2792	char *busname;
2793	char *widename = NULL;
2794
2795	if (ASC_NARROW_BOARD(boardp)) {
2796		asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
2797		ASC_DBG(1, "begin\n");
2798		if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
2799			if ((asc_dvc_varp->bus_type & ASC_IS_ISAPNP) ==
2800			    ASC_IS_ISAPNP) {
2801				busname = "ISA PnP";
2802			} else {
2803				busname = "ISA";
2804			}
2805			sprintf(info,
2806				"AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X, DMA 0x%X",
2807				ASC_VERSION, busname,
2808				(ulong)shost->io_port,
2809				(ulong)shost->io_port + ASC_IOADR_GAP - 1,
2810				boardp->irq, shost->dma_channel);
2811		} else {
2812			if (asc_dvc_varp->bus_type & ASC_IS_VL) {
2813				busname = "VL";
2814			} else if (asc_dvc_varp->bus_type & ASC_IS_EISA) {
2815				busname = "EISA";
2816			} else if (asc_dvc_varp->bus_type & ASC_IS_PCI) {
2817				if ((asc_dvc_varp->bus_type & ASC_IS_PCI_ULTRA)
2818				    == ASC_IS_PCI_ULTRA) {
2819					busname = "PCI Ultra";
2820				} else {
2821					busname = "PCI";
2822				}
2823			} else {
2824				busname = "?";
2825				shost_printk(KERN_ERR, shost, "unknown bus "
2826					"type %d\n", asc_dvc_varp->bus_type);
2827			}
2828			sprintf(info,
2829				"AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X",
2830				ASC_VERSION, busname, (ulong)shost->io_port,
2831				(ulong)shost->io_port + ASC_IOADR_GAP - 1,
2832				boardp->irq);
2833		}
2834	} else {
2835		/*
2836		 * Wide Adapter Information
2837		 *
2838		 * Memory-mapped I/O is used instead of I/O space to access
2839		 * the adapter, but display the I/O Port range. The Memory
2840		 * I/O address is displayed through the driver /proc file.
2841		 */
2842		adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
2843		if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2844			widename = "Ultra-Wide";
2845		} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2846			widename = "Ultra2-Wide";
2847		} else {
2848			widename = "Ultra3-Wide";
2849		}
2850		sprintf(info,
2851			"AdvanSys SCSI %s: PCI %s: PCIMEM 0x%lX-0x%lX, IRQ 0x%X",
2852			ASC_VERSION, widename, (ulong)adv_dvc_varp->iop_base,
2853			(ulong)adv_dvc_varp->iop_base + boardp->asc_n_io_port - 1, boardp->irq);
2854	}
2855	BUG_ON(strlen(info) >= ASC_INFO_SIZE);
2856	ASC_DBG(1, "end\n");
2857	return info;
2858}
2859
2860#ifdef CONFIG_PROC_FS
2861
2862/*
2863 * asc_prt_board_devices()
2864 *
2865 * Print driver information for devices attached to the board.
2866 */
2867static void asc_prt_board_devices(struct seq_file *m, struct Scsi_Host *shost)
2868{
2869	struct asc_board *boardp = shost_priv(shost);
2870	int chip_scsi_id;
2871	int i;
2872
2873	seq_printf(m,
2874		   "\nDevice Information for AdvanSys SCSI Host %d:\n",
2875		   shost->host_no);
2876
2877	if (ASC_NARROW_BOARD(boardp)) {
2878		chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
2879	} else {
2880		chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
2881	}
2882
2883	seq_puts(m, "Target IDs Detected:");
2884	for (i = 0; i <= ADV_MAX_TID; i++) {
2885		if (boardp->init_tidmask & ADV_TID_TO_TIDMASK(i))
2886			seq_printf(m, " %X,", i);
2887	}
2888	seq_printf(m, " (%X=Host Adapter)\n", chip_scsi_id);
2889}
2890
2891/*
2892 * Display Wide Board BIOS Information.
2893 */
2894static void asc_prt_adv_bios(struct seq_file *m, struct Scsi_Host *shost)
2895{
2896	struct asc_board *boardp = shost_priv(shost);
2897	ushort major, minor, letter;
2898
2899	seq_puts(m, "\nROM BIOS Version: ");
2900
2901	/*
2902	 * If the BIOS saved a valid signature, then fill in
2903	 * the BIOS code segment base address.
2904	 */
2905	if (boardp->bios_signature != 0x55AA) {
2906		seq_puts(m, "Disabled or Pre-3.1\n"
2907			"BIOS either disabled or Pre-3.1. If it is pre-3.1, then a newer version\n"
2908			"can be found at the ConnectCom FTP site: ftp://ftp.connectcom.net/pub\n");
2909	} else {
2910		major = (boardp->bios_version >> 12) & 0xF;
2911		minor = (boardp->bios_version >> 8) & 0xF;
2912		letter = (boardp->bios_version & 0xFF);
2913
2914		seq_printf(m, "%d.%d%c\n",
2915				   major, minor,
2916				   letter >= 26 ? '?' : letter + 'A');
2917		/*
2918		 * Current available ROM BIOS release is 3.1I for UW
2919		 * and 3.2I for U2W. This code doesn't differentiate
2920		 * UW and U2W boards.
2921		 */
2922		if (major < 3 || (major <= 3 && minor < 1) ||
2923		    (major <= 3 && minor <= 1 && letter < ('I' - 'A'))) {
2924			seq_puts(m, "Newer version of ROM BIOS is available at the ConnectCom FTP site:\n"
2925				"ftp://ftp.connectcom.net/pub\n");
2926		}
2927	}
2928}
2929
2930/*
2931 * Add serial number to information bar if signature AAh
2932 * is found in at bit 15-9 (7 bits) of word 1.
2933 *
2934 * Serial Number consists fo 12 alpha-numeric digits.
2935 *
2936 *       1 - Product type (A,B,C,D..)  Word0: 15-13 (3 bits)
2937 *       2 - MFG Location (A,B,C,D..)  Word0: 12-10 (3 bits)
2938 *     3-4 - Product ID (0-99)         Word0: 9-0 (10 bits)
2939 *       5 - Product revision (A-J)    Word0:  "         "
2940 *
2941 *           Signature                 Word1: 15-9 (7 bits)
2942 *       6 - Year (0-9)                Word1: 8-6 (3 bits) & Word2: 15 (1 bit)
2943 *     7-8 - Week of the year (1-52)   Word1: 5-0 (6 bits)
2944 *
2945 *    9-12 - Serial Number (A001-Z999) Word2: 14-0 (15 bits)
2946 *
2947 * Note 1: Only production cards will have a serial number.
2948 *
2949 * Note 2: Signature is most significant 7 bits (0xFE).
2950 *
2951 * Returns ASC_TRUE if serial number found, otherwise returns ASC_FALSE.
2952 */
2953static int asc_get_eeprom_string(ushort *serialnum, uchar *cp)
2954{
2955	ushort w, num;
2956
2957	if ((serialnum[1] & 0xFE00) != ((ushort)0xAA << 8)) {
2958		return ASC_FALSE;
2959	} else {
2960		/*
2961		 * First word - 6 digits.
2962		 */
2963		w = serialnum[0];
2964
2965		/* Product type - 1st digit. */
2966		if ((*cp = 'A' + ((w & 0xE000) >> 13)) == 'H') {
2967			/* Product type is P=Prototype */
2968			*cp += 0x8;
2969		}
2970		cp++;
2971
2972		/* Manufacturing location - 2nd digit. */
2973		*cp++ = 'A' + ((w & 0x1C00) >> 10);
2974
2975		/* Product ID - 3rd, 4th digits. */
2976		num = w & 0x3FF;
2977		*cp++ = '0' + (num / 100);
2978		num %= 100;
2979		*cp++ = '0' + (num / 10);
2980
2981		/* Product revision - 5th digit. */
2982		*cp++ = 'A' + (num % 10);
2983
2984		/*
2985		 * Second word
2986		 */
2987		w = serialnum[1];
2988
2989		/*
2990		 * Year - 6th digit.
2991		 *
2992		 * If bit 15 of third word is set, then the
2993		 * last digit of the year is greater than 7.
2994		 */
2995		if (serialnum[2] & 0x8000) {
2996			*cp++ = '8' + ((w & 0x1C0) >> 6);
2997		} else {
2998			*cp++ = '0' + ((w & 0x1C0) >> 6);
2999		}
3000
3001		/* Week of year - 7th, 8th digits. */
3002		num = w & 0x003F;
3003		*cp++ = '0' + num / 10;
3004		num %= 10;
3005		*cp++ = '0' + num;
3006
3007		/*
3008		 * Third word
3009		 */
3010		w = serialnum[2] & 0x7FFF;
3011
3012		/* Serial number - 9th digit. */
3013		*cp++ = 'A' + (w / 1000);
3014
3015		/* 10th, 11th, 12th digits. */
3016		num = w % 1000;
3017		*cp++ = '0' + num / 100;
3018		num %= 100;
3019		*cp++ = '0' + num / 10;
3020		num %= 10;
3021		*cp++ = '0' + num;
3022
3023		*cp = '\0';	/* Null Terminate the string. */
3024		return ASC_TRUE;
3025	}
3026}
3027
3028/*
3029 * asc_prt_asc_board_eeprom()
3030 *
3031 * Print board EEPROM configuration.
3032 */
3033static void asc_prt_asc_board_eeprom(struct seq_file *m, struct Scsi_Host *shost)
3034{
3035	struct asc_board *boardp = shost_priv(shost);
3036	ASC_DVC_VAR *asc_dvc_varp;
3037	ASCEEP_CONFIG *ep;
3038	int i;
3039#ifdef CONFIG_ISA
3040	int isa_dma_speed[] = { 10, 8, 7, 6, 5, 4, 3, 2 };
3041#endif /* CONFIG_ISA */
3042	uchar serialstr[13];
3043
3044	asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
3045	ep = &boardp->eep_config.asc_eep;
3046
3047	seq_printf(m,
3048		   "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
3049		   shost->host_no);
3050
3051	if (asc_get_eeprom_string((ushort *)&ep->adapter_info[0], serialstr)
3052	    == ASC_TRUE)
3053		seq_printf(m, " Serial Number: %s\n", serialstr);
3054	else if (ep->adapter_info[5] == 0xBB)
3055		seq_puts(m,
3056			 " Default Settings Used for EEPROM-less Adapter.\n");
3057	else
3058		seq_puts(m, " Serial Number Signature Not Present.\n");
3059
3060	seq_printf(m,
3061		   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3062		   ASC_EEP_GET_CHIP_ID(ep), ep->max_total_qng,
3063		   ep->max_tag_qng);
3064
3065	seq_printf(m,
3066		   " cntl 0x%x, no_scam 0x%x\n", ep->cntl, ep->no_scam);
3067
3068	seq_puts(m, " Target ID:           ");
3069	for (i = 0; i <= ASC_MAX_TID; i++)
3070		seq_printf(m, " %d", i);
3071
3072	seq_puts(m, "\n Disconnects:         ");
3073	for (i = 0; i <= ASC_MAX_TID; i++)
3074		seq_printf(m, " %c",
3075			   (ep->disc_enable & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3076
3077	seq_puts(m, "\n Command Queuing:     ");
3078	for (i = 0; i <= ASC_MAX_TID; i++)
3079		seq_printf(m, " %c",
3080			   (ep->use_cmd_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3081
3082	seq_puts(m, "\n Start Motor:         ");
3083	for (i = 0; i <= ASC_MAX_TID; i++)
3084		seq_printf(m, " %c",
3085			   (ep->start_motor & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3086
3087	seq_puts(m, "\n Synchronous Transfer:");
3088	for (i = 0; i <= ASC_MAX_TID; i++)
3089		seq_printf(m, " %c",
3090			   (ep->init_sdtr & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3091	seq_putc(m, '\n');
3092
3093#ifdef CONFIG_ISA
3094	if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
3095		seq_printf(m,
3096			   " Host ISA DMA speed:   %d MB/S\n",
3097			   isa_dma_speed[ASC_EEP_GET_DMA_SPD(ep)]);
3098	}
3099#endif /* CONFIG_ISA */
3100}
3101
3102/*
3103 * asc_prt_adv_board_eeprom()
3104 *
3105 * Print board EEPROM configuration.
3106 */
3107static void asc_prt_adv_board_eeprom(struct seq_file *m, struct Scsi_Host *shost)
3108{
3109	struct asc_board *boardp = shost_priv(shost);
3110	ADV_DVC_VAR *adv_dvc_varp;
3111	int i;
3112	char *termstr;
3113	uchar serialstr[13];
3114	ADVEEP_3550_CONFIG *ep_3550 = NULL;
3115	ADVEEP_38C0800_CONFIG *ep_38C0800 = NULL;
3116	ADVEEP_38C1600_CONFIG *ep_38C1600 = NULL;
3117	ushort word;
3118	ushort *wordp;
3119	ushort sdtr_speed = 0;
3120
3121	adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
3122	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3123		ep_3550 = &boardp->eep_config.adv_3550_eep;
3124	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3125		ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
3126	} else {
3127		ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
3128	}
3129
3130	seq_printf(m,
3131		   "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
3132		   shost->host_no);
3133
3134	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3135		wordp = &ep_3550->serial_number_word1;
3136	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3137		wordp = &ep_38C0800->serial_number_word1;
3138	} else {
3139		wordp = &ep_38C1600->serial_number_word1;
3140	}
3141
3142	if (asc_get_eeprom_string(wordp, serialstr) == ASC_TRUE)
3143		seq_printf(m, " Serial Number: %s\n", serialstr);
3144	else
3145		seq_puts(m, " Serial Number Signature Not Present.\n");
3146
3147	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550)
3148		seq_printf(m,
3149			   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3150			   ep_3550->adapter_scsi_id,
3151			   ep_3550->max_host_qng, ep_3550->max_dvc_qng);
3152	else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800)
3153		seq_printf(m,
3154			   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3155			   ep_38C0800->adapter_scsi_id,
3156			   ep_38C0800->max_host_qng,
3157			   ep_38C0800->max_dvc_qng);
3158	else
3159		seq_printf(m,
3160			   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3161			   ep_38C1600->adapter_scsi_id,
3162			   ep_38C1600->max_host_qng,
3163			   ep_38C1600->max_dvc_qng);
3164	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3165		word = ep_3550->termination;
3166	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3167		word = ep_38C0800->termination_lvd;
3168	} else {
3169		word = ep_38C1600->termination_lvd;
3170	}
3171	switch (word) {
3172	case 1:
3173		termstr = "Low Off/High Off";
3174		break;
3175	case 2:
3176		termstr = "Low Off/High On";
3177		break;
3178	case 3:
3179		termstr = "Low On/High On";
3180		break;
3181	default:
3182	case 0:
3183		termstr = "Automatic";
3184		break;
3185	}
3186
3187	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550)
3188		seq_printf(m,
3189			   " termination: %u (%s), bios_ctrl: 0x%x\n",
3190			   ep_3550->termination, termstr,
3191			   ep_3550->bios_ctrl);
3192	else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800)
3193		seq_printf(m,
3194			   " termination: %u (%s), bios_ctrl: 0x%x\n",
3195			   ep_38C0800->termination_lvd, termstr,
3196			   ep_38C0800->bios_ctrl);
3197	else
3198		seq_printf(m,
3199			   " termination: %u (%s), bios_ctrl: 0x%x\n",
3200			   ep_38C1600->termination_lvd, termstr,
3201			   ep_38C1600->bios_ctrl);
3202
3203	seq_puts(m, " Target ID:           ");
3204	for (i = 0; i <= ADV_MAX_TID; i++)
3205		seq_printf(m, " %X", i);
3206	seq_putc(m, '\n');
3207
3208	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3209		word = ep_3550->disc_enable;
3210	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3211		word = ep_38C0800->disc_enable;
3212	} else {
3213		word = ep_38C1600->disc_enable;
3214	}
3215	seq_puts(m, " Disconnects:         ");
3216	for (i = 0; i <= ADV_MAX_TID; i++)
3217		seq_printf(m, " %c",
3218			   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3219	seq_putc(m, '\n');
3220
3221	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3222		word = ep_3550->tagqng_able;
3223	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3224		word = ep_38C0800->tagqng_able;
3225	} else {
3226		word = ep_38C1600->tagqng_able;
3227	}
3228	seq_puts(m, " Command Queuing:     ");
3229	for (i = 0; i <= ADV_MAX_TID; i++)
3230		seq_printf(m, " %c",
3231			   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3232	seq_putc(m, '\n');
3233
3234	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3235		word = ep_3550->start_motor;
3236	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3237		word = ep_38C0800->start_motor;
3238	} else {
3239		word = ep_38C1600->start_motor;
3240	}
3241	seq_puts(m, " Start Motor:         ");
3242	for (i = 0; i <= ADV_MAX_TID; i++)
3243		seq_printf(m, " %c",
3244			   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3245	seq_putc(m, '\n');
3246
3247	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3248		seq_puts(m, " Synchronous Transfer:");
3249		for (i = 0; i <= ADV_MAX_TID; i++)
3250			seq_printf(m, " %c",
3251				   (ep_3550->sdtr_able & ADV_TID_TO_TIDMASK(i)) ?
3252				   'Y' : 'N');
3253		seq_putc(m, '\n');
3254	}
3255
3256	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3257		seq_puts(m, " Ultra Transfer:      ");
3258		for (i = 0; i <= ADV_MAX_TID; i++)
3259			seq_printf(m, " %c",
3260				   (ep_3550->ultra_able & ADV_TID_TO_TIDMASK(i))
3261				   ? 'Y' : 'N');
3262		seq_putc(m, '\n');
3263	}
3264
3265	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3266		word = ep_3550->wdtr_able;
3267	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3268		word = ep_38C0800->wdtr_able;
3269	} else {
3270		word = ep_38C1600->wdtr_able;
3271	}
3272	seq_puts(m, " Wide Transfer:       ");
3273	for (i = 0; i <= ADV_MAX_TID; i++)
3274		seq_printf(m, " %c",
3275			   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3276	seq_putc(m, '\n');
3277
3278	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800 ||
3279	    adv_dvc_varp->chip_type == ADV_CHIP_ASC38C1600) {
3280		seq_puts(m, " Synchronous Transfer Speed (Mhz):\n  ");
3281		for (i = 0; i <= ADV_MAX_TID; i++) {
3282			char *speed_str;
3283
3284			if (i == 0) {
3285				sdtr_speed = adv_dvc_varp->sdtr_speed1;
3286			} else if (i == 4) {
3287				sdtr_speed = adv_dvc_varp->sdtr_speed2;
3288			} else if (i == 8) {
3289				sdtr_speed = adv_dvc_varp->sdtr_speed3;
3290			} else if (i == 12) {
3291				sdtr_speed = adv_dvc_varp->sdtr_speed4;
3292			}
3293			switch (sdtr_speed & ADV_MAX_TID) {
3294			case 0:
3295				speed_str = "Off";
3296				break;
3297			case 1:
3298				speed_str = "  5";
3299				break;
3300			case 2:
3301				speed_str = " 10";
3302				break;
3303			case 3:
3304				speed_str = " 20";
3305				break;
3306			case 4:
3307				speed_str = " 40";
3308				break;
3309			case 5:
3310				speed_str = " 80";
3311				break;
3312			default:
3313				speed_str = "Unk";
3314				break;
3315			}
3316			seq_printf(m, "%X:%s ", i, speed_str);
3317			if (i == 7)
3318				seq_puts(m, "\n  ");
3319			sdtr_speed >>= 4;
3320		}
3321		seq_putc(m, '\n');
3322	}
3323}
3324
3325/*
3326 * asc_prt_driver_conf()
3327 */
3328static void asc_prt_driver_conf(struct seq_file *m, struct Scsi_Host *shost)
3329{
3330	struct asc_board *boardp = shost_priv(shost);
3331	int chip_scsi_id;
3332
3333	seq_printf(m,
3334		"\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n",
3335		shost->host_no);
3336
3337	seq_printf(m,
3338		   " host_busy %u, max_id %u, max_lun %llu, max_channel %u\n",
3339		   atomic_read(&shost->host_busy), shost->max_id,
3340		   shost->max_lun, shost->max_channel);
3341
3342	seq_printf(m,
3343		   " unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n",
3344		   shost->unique_id, shost->can_queue, shost->this_id,
3345		   shost->sg_tablesize, shost->cmd_per_lun);
3346
3347	seq_printf(m,
3348		   " unchecked_isa_dma %d, use_clustering %d\n",
3349		   shost->unchecked_isa_dma, shost->use_clustering);
3350
3351	seq_printf(m,
3352		   " flags 0x%x, last_reset 0x%lx, jiffies 0x%lx, asc_n_io_port 0x%x\n",
3353		   boardp->flags, boardp->last_reset, jiffies,
3354		   boardp->asc_n_io_port);
3355
3356	seq_printf(m, " io_port 0x%lx\n", shost->io_port);
3357
3358	if (ASC_NARROW_BOARD(boardp)) {
3359		chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
3360	} else {
3361		chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
3362	}
3363}
3364
3365/*
3366 * asc_prt_asc_board_info()
3367 *
3368 * Print dynamic board configuration information.
3369 */
3370static void asc_prt_asc_board_info(struct seq_file *m, struct Scsi_Host *shost)
3371{
3372	struct asc_board *boardp = shost_priv(shost);
3373	int chip_scsi_id;
3374	ASC_DVC_VAR *v;
3375	ASC_DVC_CFG *c;
3376	int i;
3377	int renegotiate = 0;
3378
3379	v = &boardp->dvc_var.asc_dvc_var;
3380	c = &boardp->dvc_cfg.asc_dvc_cfg;
3381	chip_scsi_id = c->chip_scsi_id;
3382
3383	seq_printf(m,
3384		   "\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3385		   shost->host_no);
3386
3387	seq_printf(m, " chip_version %u, mcode_date 0x%x, "
3388		   "mcode_version 0x%x, err_code %u\n",
3389		   c->chip_version, c->mcode_date, c->mcode_version,
3390		   v->err_code);
3391
3392	/* Current number of commands waiting for the host. */
3393	seq_printf(m,
3394		   " Total Command Pending: %d\n", v->cur_total_qng);
3395
3396	seq_puts(m, " Command Queuing:");
3397	for (i = 0; i <= ASC_MAX_TID; i++) {
3398		if ((chip_scsi_id == i) ||
3399		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3400			continue;
3401		}
3402		seq_printf(m, " %X:%c",
3403			   i,
3404			   (v->use_tagged_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3405	}
3406
3407	/* Current number of commands waiting for a device. */
3408	seq_puts(m, "\n Command Queue Pending:");
3409	for (i = 0; i <= ASC_MAX_TID; i++) {
3410		if ((chip_scsi_id == i) ||
3411		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3412			continue;
3413		}
3414		seq_printf(m, " %X:%u", i, v->cur_dvc_qng[i]);
3415	}
3416
3417	/* Current limit on number of commands that can be sent to a device. */
3418	seq_puts(m, "\n Command Queue Limit:");
3419	for (i = 0; i <= ASC_MAX_TID; i++) {
3420		if ((chip_scsi_id == i) ||
3421		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3422			continue;
3423		}
3424		seq_printf(m, " %X:%u", i, v->max_dvc_qng[i]);
3425	}
3426
3427	/* Indicate whether the device has returned queue full status. */
3428	seq_puts(m, "\n Command Queue Full:");
3429	for (i = 0; i <= ASC_MAX_TID; i++) {
3430		if ((chip_scsi_id == i) ||
3431		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3432			continue;
3433		}
3434		if (boardp->queue_full & ADV_TID_TO_TIDMASK(i))
3435			seq_printf(m, " %X:Y-%d",
3436				   i, boardp->queue_full_cnt[i]);
3437		else
3438			seq_printf(m, " %X:N", i);
3439	}
3440
3441	seq_puts(m, "\n Synchronous Transfer:");
3442	for (i = 0; i <= ASC_MAX_TID; i++) {
3443		if ((chip_scsi_id == i) ||
3444		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3445			continue;
3446		}
3447		seq_printf(m, " %X:%c",
3448			   i,
3449			   (v->sdtr_done & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3450	}
3451	seq_putc(m, '\n');
3452
3453	for (i = 0; i <= ASC_MAX_TID; i++) {
3454		uchar syn_period_ix;
3455
3456		if ((chip_scsi_id == i) ||
3457		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3458		    ((v->init_sdtr & ADV_TID_TO_TIDMASK(i)) == 0)) {
3459			continue;
3460		}
3461
3462		seq_printf(m, "  %X:", i);
3463
3464		if ((boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET) == 0) {
3465			seq_puts(m, " Asynchronous");
3466		} else {
3467			syn_period_ix =
3468			    (boardp->sdtr_data[i] >> 4) & (v->max_sdtr_index -
3469							   1);
3470
3471			seq_printf(m,
3472				   " Transfer Period Factor: %d (%d.%d Mhz),",
3473				   v->sdtr_period_tbl[syn_period_ix],
3474				   250 / v->sdtr_period_tbl[syn_period_ix],
3475				   ASC_TENTHS(250,
3476					      v->sdtr_period_tbl[syn_period_ix]));
3477
3478			seq_printf(m, " REQ/ACK Offset: %d",
3479				   boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET);
3480		}
3481
3482		if ((v->sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3483			seq_puts(m, "*\n");
3484			renegotiate = 1;
3485		} else {
3486			seq_putc(m, '\n');
3487		}
3488	}
3489
3490	if (renegotiate) {
3491		seq_puts(m, " * = Re-negotiation pending before next command.\n");
3492	}
3493}
3494
3495/*
3496 * asc_prt_adv_board_info()
3497 *
3498 * Print dynamic board configuration information.
3499 */
3500static void asc_prt_adv_board_info(struct seq_file *m, struct Scsi_Host *shost)
3501{
3502	struct asc_board *boardp = shost_priv(shost);
3503	int i;
3504	ADV_DVC_VAR *v;
3505	ADV_DVC_CFG *c;
3506	AdvPortAddr iop_base;
3507	ushort chip_scsi_id;
3508	ushort lramword;
3509	uchar lrambyte;
3510	ushort tagqng_able;
3511	ushort sdtr_able, wdtr_able;
3512	ushort wdtr_done, sdtr_done;
3513	ushort period = 0;
3514	int renegotiate = 0;
3515
3516	v = &boardp->dvc_var.adv_dvc_var;
3517	c = &boardp->dvc_cfg.adv_dvc_cfg;
3518	iop_base = v->iop_base;
3519	chip_scsi_id = v->chip_scsi_id;
3520
3521	seq_printf(m,
3522		   "\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3523		   shost->host_no);
3524
3525	seq_printf(m,
3526		   " iop_base 0x%lx, cable_detect: %X, err_code %u\n",
3527		   (unsigned long)v->iop_base,
3528		   AdvReadWordRegister(iop_base,IOPW_SCSI_CFG1) & CABLE_DETECT,
3529		   v->err_code);
3530
3531	seq_printf(m, " chip_version %u, mcode_date 0x%x, "
3532		   "mcode_version 0x%x\n", c->chip_version,
3533		   c->mcode_date, c->mcode_version);
3534
3535	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
3536	seq_puts(m, " Queuing Enabled:");
3537	for (i = 0; i <= ADV_MAX_TID; i++) {
3538		if ((chip_scsi_id == i) ||
3539		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3540			continue;
3541		}
3542
3543		seq_printf(m, " %X:%c",
3544			   i,
3545			   (tagqng_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3546	}
3547
3548	seq_puts(m, "\n Queue Limit:");
3549	for (i = 0; i <= ADV_MAX_TID; i++) {
3550		if ((chip_scsi_id == i) ||
3551		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3552			continue;
3553		}
3554
3555		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + i,
3556				lrambyte);
3557
3558		seq_printf(m, " %X:%d", i, lrambyte);
3559	}
3560
3561	seq_puts(m, "\n Command Pending:");
3562	for (i = 0; i <= ADV_MAX_TID; i++) {
3563		if ((chip_scsi_id == i) ||
3564		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3565			continue;
3566		}
3567
3568		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_QUEUED_CMD + i,
3569				lrambyte);
3570
3571		seq_printf(m, " %X:%d", i, lrambyte);
3572	}
3573	seq_putc(m, '\n');
3574
3575	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
3576	seq_puts(m, " Wide Enabled:");
3577	for (i = 0; i <= ADV_MAX_TID; i++) {
3578		if ((chip_scsi_id == i) ||
3579		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3580			continue;
3581		}
3582
3583		seq_printf(m, " %X:%c",
3584			   i,
3585			   (wdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3586	}
3587	seq_putc(m, '\n');
3588
3589	AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, wdtr_done);
3590	seq_puts(m, " Transfer Bit Width:");
3591	for (i = 0; i <= ADV_MAX_TID; i++) {
3592		if ((chip_scsi_id == i) ||
3593		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3594			continue;
3595		}
3596
3597		AdvReadWordLram(iop_base,
3598				ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3599				lramword);
3600
3601		seq_printf(m, " %X:%d",
3602			   i, (lramword & 0x8000) ? 16 : 8);
3603
3604		if ((wdtr_able & ADV_TID_TO_TIDMASK(i)) &&
3605		    (wdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3606			seq_putc(m, '*');
3607			renegotiate = 1;
3608		}
3609	}
3610	seq_putc(m, '\n');
3611
3612	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
3613	seq_puts(m, " Synchronous Enabled:");
3614	for (i = 0; i <= ADV_MAX_TID; i++) {
3615		if ((chip_scsi_id == i) ||
3616		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3617			continue;
3618		}
3619
3620		seq_printf(m, " %X:%c",
3621			   i,
3622			   (sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3623	}
3624	seq_putc(m, '\n');
3625
3626	AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, sdtr_done);
3627	for (i = 0; i <= ADV_MAX_TID; i++) {
3628
3629		AdvReadWordLram(iop_base,
3630				ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3631				lramword);
3632		lramword &= ~0x8000;
3633
3634		if ((chip_scsi_id == i) ||
3635		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3636		    ((sdtr_able & ADV_TID_TO_TIDMASK(i)) == 0)) {
3637			continue;
3638		}
3639
3640		seq_printf(m, "  %X:", i);
3641
3642		if ((lramword & 0x1F) == 0) {	/* Check for REQ/ACK Offset 0. */
3643			seq_puts(m, " Asynchronous");
3644		} else {
3645			seq_puts(m, " Transfer Period Factor: ");
3646
3647			if ((lramword & 0x1F00) == 0x1100) {	/* 80 Mhz */
3648				seq_puts(m, "9 (80.0 Mhz),");
3649			} else if ((lramword & 0x1F00) == 0x1000) {	/* 40 Mhz */
3650				seq_puts(m, "10 (40.0 Mhz),");
3651			} else {	/* 20 Mhz or below. */
3652
3653				period = (((lramword >> 8) * 25) + 50) / 4;
3654
3655				if (period == 0) {	/* Should never happen. */
3656					seq_printf(m, "%d (? Mhz), ", period);
3657				} else {
3658					seq_printf(m,
3659						   "%d (%d.%d Mhz),",
3660						   period, 250 / period,
3661						   ASC_TENTHS(250, period));
3662				}
3663			}
3664
3665			seq_printf(m, " REQ/ACK Offset: %d",
3666				   lramword & 0x1F);
3667		}
3668
3669		if ((sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3670			seq_puts(m, "*\n");
3671			renegotiate = 1;
3672		} else {
3673			seq_putc(m, '\n');
3674		}
3675	}
3676
3677	if (renegotiate) {
3678		seq_puts(m, " * = Re-negotiation pending before next command.\n");
3679	}
3680}
3681
3682#ifdef ADVANSYS_STATS
3683/*
3684 * asc_prt_board_stats()
3685 */
3686static void asc_prt_board_stats(struct seq_file *m, struct Scsi_Host *shost)
3687{
3688	struct asc_board *boardp = shost_priv(shost);
3689	struct asc_stats *s = &boardp->asc_stats;
3690
3691	seq_printf(m,
3692		   "\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n",
3693		   shost->host_no);
3694
3695	seq_printf(m,
3696		   " queuecommand %u, reset %u, biosparam %u, interrupt %u\n",
3697		   s->queuecommand, s->reset, s->biosparam,
3698		   s->interrupt);
3699
3700	seq_printf(m,
3701		   " callback %u, done %u, build_error %u, build_noreq %u, build_nosg %u\n",
3702		   s->callback, s->done, s->build_error,
3703		   s->adv_build_noreq, s->adv_build_nosg);
3704
3705	seq_printf(m,
3706		   " exe_noerror %u, exe_busy %u, exe_error %u, exe_unknown %u\n",
3707		   s->exe_noerror, s->exe_busy, s->exe_error,
3708		   s->exe_unknown);
3709
3710	/*
3711	 * Display data transfer statistics.
3712	 */
3713	if (s->xfer_cnt > 0) {
3714		seq_printf(m, " xfer_cnt %u, xfer_elem %u, ",
3715			   s->xfer_cnt, s->xfer_elem);
3716
3717		seq_printf(m, "xfer_bytes %u.%01u kb\n",
3718			   s->xfer_sect / 2, ASC_TENTHS(s->xfer_sect, 2));
3719
3720		/* Scatter gather transfer statistics */
3721		seq_printf(m, " avg_num_elem %u.%01u, ",
3722			   s->xfer_elem / s->xfer_cnt,
3723			   ASC_TENTHS(s->xfer_elem, s->xfer_cnt));
3724
3725		seq_printf(m, "avg_elem_size %u.%01u kb, ",
3726			   (s->xfer_sect / 2) / s->xfer_elem,
3727			   ASC_TENTHS((s->xfer_sect / 2), s->xfer_elem));
3728
3729		seq_printf(m, "avg_xfer_size %u.%01u kb\n",
3730			   (s->xfer_sect / 2) / s->xfer_cnt,
3731			   ASC_TENTHS((s->xfer_sect / 2), s->xfer_cnt));
3732	}
3733}
3734#endif /* ADVANSYS_STATS */
3735
3736/*
3737 * advansys_show_info() - /proc/scsi/advansys/{0,1,2,3,...}
3738 *
3739 * m: seq_file to print into
3740 * shost: Scsi_Host
3741 *
3742 * Return the number of bytes read from or written to a
3743 * /proc/scsi/advansys/[0...] file.
3744 */
3745static int
3746advansys_show_info(struct seq_file *m, struct Scsi_Host *shost)
3747{
3748	struct asc_board *boardp = shost_priv(shost);
3749
3750	ASC_DBG(1, "begin\n");
3751
3752	/*
3753	 * User read of /proc/scsi/advansys/[0...] file.
3754	 */
3755
3756	/*
3757	 * Get board configuration information.
3758	 *
3759	 * advansys_info() returns the board string from its own static buffer.
3760	 */
3761	/* Copy board information. */
3762	seq_printf(m, "%s\n", (char *)advansys_info(shost));
3763	/*
3764	 * Display Wide Board BIOS Information.
3765	 */
3766	if (!ASC_NARROW_BOARD(boardp))
3767		asc_prt_adv_bios(m, shost);
3768
3769	/*
3770	 * Display driver information for each device attached to the board.
3771	 */
3772	asc_prt_board_devices(m, shost);
3773
3774	/*
3775	 * Display EEPROM configuration for the board.
3776	 */
3777	if (ASC_NARROW_BOARD(boardp))
3778		asc_prt_asc_board_eeprom(m, shost);
3779	else
3780		asc_prt_adv_board_eeprom(m, shost);
3781
3782	/*
3783	 * Display driver configuration and information for the board.
3784	 */
3785	asc_prt_driver_conf(m, shost);
3786
3787#ifdef ADVANSYS_STATS
3788	/*
3789	 * Display driver statistics for the board.
3790	 */
3791	asc_prt_board_stats(m, shost);
3792#endif /* ADVANSYS_STATS */
3793
3794	/*
3795	 * Display Asc Library dynamic configuration information
3796	 * for the board.
3797	 */
3798	if (ASC_NARROW_BOARD(boardp))
3799		asc_prt_asc_board_info(m, shost);
3800	else
3801		asc_prt_adv_board_info(m, shost);
3802	return 0;
3803}
3804#endif /* CONFIG_PROC_FS */
3805
3806static void asc_scsi_done(struct scsi_cmnd *scp)
3807{
3808	scsi_dma_unmap(scp);
3809	ASC_STATS(scp->device->host, done);
3810	scp->scsi_done(scp);
3811}
3812
3813static void AscSetBank(PortAddr iop_base, uchar bank)
3814{
3815	uchar val;
3816
3817	val = AscGetChipControl(iop_base) &
3818	    (~
3819	     (CC_SINGLE_STEP | CC_TEST | CC_DIAG | CC_SCSI_RESET |
3820	      CC_CHIP_RESET));
3821	if (bank == 1) {
3822		val |= CC_BANK_ONE;
3823	} else if (bank == 2) {
3824		val |= CC_DIAG | CC_BANK_ONE;
3825	} else {
3826		val &= ~CC_BANK_ONE;
3827	}
3828	AscSetChipControl(iop_base, val);
3829}
3830
3831static void AscSetChipIH(PortAddr iop_base, ushort ins_code)
3832{
3833	AscSetBank(iop_base, 1);
3834	AscWriteChipIH(iop_base, ins_code);
3835	AscSetBank(iop_base, 0);
3836}
3837
3838static int AscStartChip(PortAddr iop_base)
3839{
3840	AscSetChipControl(iop_base, 0);
3841	if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
3842		return (0);
3843	}
3844	return (1);
3845}
3846
3847static int AscStopChip(PortAddr iop_base)
3848{
3849	uchar cc_val;
3850
3851	cc_val =
3852	    AscGetChipControl(iop_base) &
3853	    (~(CC_SINGLE_STEP | CC_TEST | CC_DIAG));
3854	AscSetChipControl(iop_base, (uchar)(cc_val | CC_HALT));
3855	AscSetChipIH(iop_base, INS_HALT);
3856	AscSetChipIH(iop_base, INS_RFLAG_WTM);
3857	if ((AscGetChipStatus(iop_base) & CSW_HALTED) == 0) {
3858		return (0);
3859	}
3860	return (1);
3861}
3862
3863static int AscIsChipHalted(PortAddr iop_base)
3864{
3865	if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
3866		if ((AscGetChipControl(iop_base) & CC_HALT) != 0) {
3867			return (1);
3868		}
3869	}
3870	return (0);
3871}
3872
3873static int AscResetChipAndScsiBus(ASC_DVC_VAR *asc_dvc)
3874{
3875	PortAddr iop_base;
3876	int i = 10;
3877
3878	iop_base = asc_dvc->iop_base;
3879	while ((AscGetChipStatus(iop_base) & CSW_SCSI_RESET_ACTIVE)
3880	       && (i-- > 0)) {
3881		mdelay(100);
3882	}
3883	AscStopChip(iop_base);
3884	AscSetChipControl(iop_base, CC_CHIP_RESET | CC_SCSI_RESET | CC_HALT);
3885	udelay(60);
3886	AscSetChipIH(iop_base, INS_RFLAG_WTM);
3887	AscSetChipIH(iop_base, INS_HALT);
3888	AscSetChipControl(iop_base, CC_CHIP_RESET | CC_HALT);
3889	AscSetChipControl(iop_base, CC_HALT);
3890	mdelay(200);
3891	AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
3892	AscSetChipStatus(iop_base, 0);
3893	return (AscIsChipHalted(iop_base));
3894}
3895
3896static int AscFindSignature(PortAddr iop_base)
3897{
3898	ushort sig_word;
3899
3900	ASC_DBG(1, "AscGetChipSignatureByte(0x%x) 0x%x\n",
3901		 iop_base, AscGetChipSignatureByte(iop_base));
3902	if (AscGetChipSignatureByte(iop_base) == (uchar)ASC_1000_ID1B) {
3903		ASC_DBG(1, "AscGetChipSignatureWord(0x%x) 0x%x\n",
3904			 iop_base, AscGetChipSignatureWord(iop_base));
3905		sig_word = AscGetChipSignatureWord(iop_base);
3906		if ((sig_word == (ushort)ASC_1000_ID0W) ||
3907		    (sig_word == (ushort)ASC_1000_ID0W_FIX)) {
3908			return (1);
3909		}
3910	}
3911	return (0);
3912}
3913
3914static void AscEnableInterrupt(PortAddr iop_base)
3915{
3916	ushort cfg;
3917
3918	cfg = AscGetChipCfgLsw(iop_base);
3919	AscSetChipCfgLsw(iop_base, cfg | ASC_CFG0_HOST_INT_ON);
3920}
3921
3922static void AscDisableInterrupt(PortAddr iop_base)
3923{
3924	ushort cfg;
3925
3926	cfg = AscGetChipCfgLsw(iop_base);
3927	AscSetChipCfgLsw(iop_base, cfg & (~ASC_CFG0_HOST_INT_ON));
3928}
3929
3930static uchar AscReadLramByte(PortAddr iop_base, ushort addr)
3931{
3932	unsigned char byte_data;
3933	unsigned short word_data;
3934
3935	if (isodd_word(addr)) {
3936		AscSetChipLramAddr(iop_base, addr - 1);
3937		word_data = AscGetChipLramData(iop_base);
3938		byte_data = (word_data >> 8) & 0xFF;
3939	} else {
3940		AscSetChipLramAddr(iop_base, addr);
3941		word_data = AscGetChipLramData(iop_base);
3942		byte_data = word_data & 0xFF;
3943	}
3944	return byte_data;
3945}
3946
3947static ushort AscReadLramWord(PortAddr iop_base, ushort addr)
3948{
3949	ushort word_data;
3950
3951	AscSetChipLramAddr(iop_base, addr);
3952	word_data = AscGetChipLramData(iop_base);
3953	return (word_data);
3954}
3955
3956#if CC_VERY_LONG_SG_LIST
3957static ASC_DCNT AscReadLramDWord(PortAddr iop_base, ushort addr)
3958{
3959	ushort val_low, val_high;
3960	ASC_DCNT dword_data;
3961
3962	AscSetChipLramAddr(iop_base, addr);
3963	val_low = AscGetChipLramData(iop_base);
3964	val_high = AscGetChipLramData(iop_base);
3965	dword_data = ((ASC_DCNT) val_high << 16) | (ASC_DCNT) val_low;
3966	return (dword_data);
3967}
3968#endif /* CC_VERY_LONG_SG_LIST */
3969
3970static void
3971AscMemWordSetLram(PortAddr iop_base, ushort s_addr, ushort set_wval, int words)
3972{
3973	int i;
3974
3975	AscSetChipLramAddr(iop_base, s_addr);
3976	for (i = 0; i < words; i++) {
3977		AscSetChipLramData(iop_base, set_wval);
3978	}
3979}
3980
3981static void AscWriteLramWord(PortAddr iop_base, ushort addr, ushort word_val)
3982{
3983	AscSetChipLramAddr(iop_base, addr);
3984	AscSetChipLramData(iop_base, word_val);
3985}
3986
3987static void AscWriteLramByte(PortAddr iop_base, ushort addr, uchar byte_val)
3988{
3989	ushort word_data;
3990
3991	if (isodd_word(addr)) {
3992		addr--;
3993		word_data = AscReadLramWord(iop_base, addr);
3994		word_data &= 0x00FF;
3995		word_data |= (((ushort)byte_val << 8) & 0xFF00);
3996	} else {
3997		word_data = AscReadLramWord(iop_base, addr);
3998		word_data &= 0xFF00;
3999		word_data |= ((ushort)byte_val & 0x00FF);
4000	}
4001	AscWriteLramWord(iop_base, addr, word_data);
4002}
4003
4004/*
4005 * Copy 2 bytes to LRAM.
4006 *
4007 * The source data is assumed to be in little-endian order in memory
4008 * and is maintained in little-endian order when written to LRAM.
4009 */
4010static void
4011AscMemWordCopyPtrToLram(PortAddr iop_base, ushort s_addr,
4012			const uchar *s_buffer, int words)
4013{
4014	int i;
4015
4016	AscSetChipLramAddr(iop_base, s_addr);
4017	for (i = 0; i < 2 * words; i += 2) {
4018		/*
4019		 * On a little-endian system the second argument below
4020		 * produces a little-endian ushort which is written to
4021		 * LRAM in little-endian order. On a big-endian system
4022		 * the second argument produces a big-endian ushort which
4023		 * is "transparently" byte-swapped by outpw() and written
4024		 * in little-endian order to LRAM.
4025		 */
4026		outpw(iop_base + IOP_RAM_DATA,
4027		      ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);
4028	}
4029}
4030
4031/*
4032 * Copy 4 bytes to LRAM.
4033 *
4034 * The source data is assumed to be in little-endian order in memory
4035 * and is maintained in little-endian order when written to LRAM.
4036 */
4037static void
4038AscMemDWordCopyPtrToLram(PortAddr iop_base,
4039			 ushort s_addr, uchar *s_buffer, int dwords)
4040{
4041	int i;
4042
4043	AscSetChipLramAddr(iop_base, s_addr);
4044	for (i = 0; i < 4 * dwords; i += 4) {
4045		outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);	/* LSW */
4046		outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 3] << 8) | s_buffer[i + 2]);	/* MSW */
4047	}
4048}
4049
4050/*
4051 * Copy 2 bytes from LRAM.
4052 *
4053 * The source data is assumed to be in little-endian order in LRAM
4054 * and is maintained in little-endian order when written to memory.
4055 */
4056static void
4057AscMemWordCopyPtrFromLram(PortAddr iop_base,
4058			  ushort s_addr, uchar *d_buffer, int words)
4059{
4060	int i;
4061	ushort word;
4062
4063	AscSetChipLramAddr(iop_base, s_addr);
4064	for (i = 0; i < 2 * words; i += 2) {
4065		word = inpw(iop_base + IOP_RAM_DATA);
4066		d_buffer[i] = word & 0xff;
4067		d_buffer[i + 1] = (word >> 8) & 0xff;
4068	}
4069}
4070
4071static ASC_DCNT AscMemSumLramWord(PortAddr iop_base, ushort s_addr, int words)
4072{
4073	ASC_DCNT sum;
4074	int i;
4075
4076	sum = 0L;
4077	for (i = 0; i < words; i++, s_addr += 2) {
4078		sum += AscReadLramWord(iop_base, s_addr);
4079	}
4080	return (sum);
4081}
4082
4083static ushort AscInitLram(ASC_DVC_VAR *asc_dvc)
4084{
4085	uchar i;
4086	ushort s_addr;
4087	PortAddr iop_base;
4088	ushort warn_code;
4089
4090	iop_base = asc_dvc->iop_base;
4091	warn_code = 0;
4092	AscMemWordSetLram(iop_base, ASC_QADR_BEG, 0,
4093			  (ushort)(((int)(asc_dvc->max_total_qng + 2 + 1) *
4094				    64) >> 1));
4095	i = ASC_MIN_ACTIVE_QNO;
4096	s_addr = ASC_QADR_BEG + ASC_QBLK_SIZE;
4097	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
4098			 (uchar)(i + 1));
4099	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
4100			 (uchar)(asc_dvc->max_total_qng));
4101	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
4102			 (uchar)i);
4103	i++;
4104	s_addr += ASC_QBLK_SIZE;
4105	for (; i < asc_dvc->max_total_qng; i++, s_addr += ASC_QBLK_SIZE) {
4106		AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
4107				 (uchar)(i + 1));
4108		AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
4109				 (uchar)(i - 1));
4110		AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
4111				 (uchar)i);
4112	}
4113	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
4114			 (uchar)ASC_QLINK_END);
4115	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
4116			 (uchar)(asc_dvc->max_total_qng - 1));
4117	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
4118			 (uchar)asc_dvc->max_total_qng);
4119	i++;
4120	s_addr += ASC_QBLK_SIZE;
4121	for (; i <= (uchar)(asc_dvc->max_total_qng + 3);
4122	     i++, s_addr += ASC_QBLK_SIZE) {
4123		AscWriteLramByte(iop_base,
4124				 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_FWD), i);
4125		AscWriteLramByte(iop_base,
4126				 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_BWD), i);
4127		AscWriteLramByte(iop_base,
4128				 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_QNO), i);
4129	}
4130	return warn_code;
4131}
4132
4133static ASC_DCNT
4134AscLoadMicroCode(PortAddr iop_base, ushort s_addr,
4135		 const uchar *mcode_buf, ushort mcode_size)
4136{
4137	ASC_DCNT chksum;
4138	ushort mcode_word_size;
4139	ushort mcode_chksum;
4140
4141	/* Write the microcode buffer starting at LRAM address 0. */
4142	mcode_word_size = (ushort)(mcode_size >> 1);
4143	AscMemWordSetLram(iop_base, s_addr, 0, mcode_word_size);
4144	AscMemWordCopyPtrToLram(iop_base, s_addr, mcode_buf, mcode_word_size);
4145
4146	chksum = AscMemSumLramWord(iop_base, s_addr, mcode_word_size);
4147	ASC_DBG(1, "chksum 0x%lx\n", (ulong)chksum);
4148	mcode_chksum = (ushort)AscMemSumLramWord(iop_base,
4149						 (ushort)ASC_CODE_SEC_BEG,
4150						 (ushort)((mcode_size -
4151							   s_addr - (ushort)
4152							   ASC_CODE_SEC_BEG) /
4153							  2));
4154	ASC_DBG(1, "mcode_chksum 0x%lx\n", (ulong)mcode_chksum);
4155	AscWriteLramWord(iop_base, ASCV_MCODE_CHKSUM_W, mcode_chksum);
4156	AscWriteLramWord(iop_base, ASCV_MCODE_SIZE_W, mcode_size);
4157	return chksum;
4158}
4159
4160static void AscInitQLinkVar(ASC_DVC_VAR *asc_dvc)
4161{
4162	PortAddr iop_base;
4163	int i;
4164	ushort lram_addr;
4165
4166	iop_base = asc_dvc->iop_base;
4167	AscPutRiscVarFreeQHead(iop_base, 1);
4168	AscPutRiscVarDoneQTail(iop_base, asc_dvc->max_total_qng);
4169	AscPutVarFreeQHead(iop_base, 1);
4170	AscPutVarDoneQTail(iop_base, asc_dvc->max_total_qng);
4171	AscWriteLramByte(iop_base, ASCV_BUSY_QHEAD_B,
4172			 (uchar)((int)asc_dvc->max_total_qng + 1));
4173	AscWriteLramByte(iop_base, ASCV_DISC1_QHEAD_B,
4174			 (uchar)((int)asc_dvc->max_total_qng + 2));
4175	AscWriteLramByte(iop_base, (ushort)ASCV_TOTAL_READY_Q_B,
4176			 asc_dvc->max_total_qng);
4177	AscWriteLramWord(iop_base, ASCV_ASCDVC_ERR_CODE_W, 0);
4178	AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
4179	AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 0);
4180	AscWriteLramByte(iop_base, ASCV_SCSIBUSY_B, 0);
4181	AscWriteLramByte(iop_base, ASCV_WTM_FLAG_B, 0);
4182	AscPutQDoneInProgress(iop_base, 0);
4183	lram_addr = ASC_QADR_BEG;
4184	for (i = 0; i < 32; i++, lram_addr += 2) {
4185		AscWriteLramWord(iop_base, lram_addr, 0);
4186	}
4187}
4188
4189static ushort AscInitMicroCodeVar(ASC_DVC_VAR *asc_dvc)
4190{
4191	int i;
4192	ushort warn_code;
4193	PortAddr iop_base;
4194	ASC_PADDR phy_addr;
4195	ASC_DCNT phy_size;
4196	struct asc_board *board = asc_dvc_to_board(asc_dvc);
4197
4198	iop_base = asc_dvc->iop_base;
4199	warn_code = 0;
4200	for (i = 0; i <= ASC_MAX_TID; i++) {
4201		AscPutMCodeInitSDTRAtID(iop_base, i,
4202					asc_dvc->cfg->sdtr_period_offset[i]);
4203	}
4204
4205	AscInitQLinkVar(asc_dvc);
4206	AscWriteLramByte(iop_base, ASCV_DISC_ENABLE_B,
4207			 asc_dvc->cfg->disc_enable);
4208	AscWriteLramByte(iop_base, ASCV_HOSTSCSI_ID_B,
4209			 ASC_TID_TO_TARGET_ID(asc_dvc->cfg->chip_scsi_id));
4210
4211	/* Ensure overrun buffer is aligned on an 8 byte boundary. */
4212	BUG_ON((unsigned long)asc_dvc->overrun_buf & 7);
4213	asc_dvc->overrun_dma = dma_map_single(board->dev, asc_dvc->overrun_buf,
4214					ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
4215	if (dma_mapping_error(board->dev, asc_dvc->overrun_dma)) {
4216		warn_code = -ENOMEM;
4217		goto err_dma_map;
4218	}
4219	phy_addr = cpu_to_le32(asc_dvc->overrun_dma);
4220	AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_PADDR_D,
4221				 (uchar *)&phy_addr, 1);
4222	phy_size = cpu_to_le32(ASC_OVERRUN_BSIZE);
4223	AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_BSIZE_D,
4224				 (uchar *)&phy_size, 1);
4225
4226	asc_dvc->cfg->mcode_date =
4227	    AscReadLramWord(iop_base, (ushort)ASCV_MC_DATE_W);
4228	asc_dvc->cfg->mcode_version =
4229	    AscReadLramWord(iop_base, (ushort)ASCV_MC_VER_W);
4230
4231	AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
4232	if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
4233		asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
4234		warn_code = UW_ERR;
4235		goto err_mcode_start;
4236	}
4237	if (AscStartChip(iop_base) != 1) {
4238		asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
4239		warn_code = UW_ERR;
4240		goto err_mcode_start;
4241	}
4242
4243	return warn_code;
4244
4245err_mcode_start:
4246	dma_unmap_single(board->dev, asc_dvc->overrun_dma,
4247			 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
4248err_dma_map:
4249	asc_dvc->overrun_dma = 0;
4250	return warn_code;
4251}
4252
4253static ushort AscInitAsc1000Driver(ASC_DVC_VAR *asc_dvc)
4254{
4255	const struct firmware *fw;
4256	const char fwname[] = "advansys/mcode.bin";
4257	int err;
4258	unsigned long chksum;
4259	ushort warn_code;
4260	PortAddr iop_base;
4261
4262	iop_base = asc_dvc->iop_base;
4263	warn_code = 0;
4264	if ((asc_dvc->dvc_cntl & ASC_CNTL_RESET_SCSI) &&
4265	    !(asc_dvc->init_state & ASC_INIT_RESET_SCSI_DONE)) {
4266		AscResetChipAndScsiBus(asc_dvc);
4267		mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
4268	}
4269	asc_dvc->init_state |= ASC_INIT_STATE_BEG_LOAD_MC;
4270	if (asc_dvc->err_code != 0)
4271		return UW_ERR;
4272	if (!AscFindSignature(asc_dvc->iop_base)) {
4273		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
4274		return warn_code;
4275	}
4276	AscDisableInterrupt(iop_base);
4277	warn_code |= AscInitLram(asc_dvc);
4278	if (asc_dvc->err_code != 0)
4279		return UW_ERR;
4280
4281	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4282	if (err) {
4283		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4284		       fwname, err);
4285		asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4286		return err;
4287	}
4288	if (fw->size < 4) {
4289		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4290		       fw->size, fwname);
4291		release_firmware(fw);
4292		asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4293		return -EINVAL;
4294	}
4295	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4296		 (fw->data[1] << 8) | fw->data[0];
4297	ASC_DBG(1, "_asc_mcode_chksum 0x%lx\n", (ulong)chksum);
4298	if (AscLoadMicroCode(iop_base, 0, &fw->data[4],
4299			     fw->size - 4) != chksum) {
4300		asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4301		release_firmware(fw);
4302		return warn_code;
4303	}
4304	release_firmware(fw);
4305	warn_code |= AscInitMicroCodeVar(asc_dvc);
4306	if (!asc_dvc->overrun_dma)
4307		return warn_code;
4308	asc_dvc->init_state |= ASC_INIT_STATE_END_LOAD_MC;
4309	AscEnableInterrupt(iop_base);
4310	return warn_code;
4311}
4312
4313/*
4314 * Load the Microcode
4315 *
4316 * Write the microcode image to RISC memory starting at address 0.
4317 *
4318 * The microcode is stored compressed in the following format:
4319 *
4320 *  254 word (508 byte) table indexed by byte code followed
4321 *  by the following byte codes:
4322 *
4323 *    1-Byte Code:
4324 *      00: Emit word 0 in table.
4325 *      01: Emit word 1 in table.
4326 *      .
4327 *      FD: Emit word 253 in table.
4328 *
4329 *    Multi-Byte Code:
4330 *      FE WW WW: (3 byte code) Word to emit is the next word WW WW.
4331 *      FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
4332 *
4333 * Returns 0 or an error if the checksum doesn't match
4334 */
4335static int AdvLoadMicrocode(AdvPortAddr iop_base, const unsigned char *buf,
4336			    int size, int memsize, int chksum)
4337{
4338	int i, j, end, len = 0;
4339	ADV_DCNT sum;
4340
4341	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4342
4343	for (i = 253 * 2; i < size; i++) {
4344		if (buf[i] == 0xff) {
4345			unsigned short word = (buf[i + 3] << 8) | buf[i + 2];
4346			for (j = 0; j < buf[i + 1]; j++) {
4347				AdvWriteWordAutoIncLram(iop_base, word);
4348				len += 2;
4349			}
4350			i += 3;
4351		} else if (buf[i] == 0xfe) {
4352			unsigned short word = (buf[i + 2] << 8) | buf[i + 1];
4353			AdvWriteWordAutoIncLram(iop_base, word);
4354			i += 2;
4355			len += 2;
4356		} else {
4357			unsigned int off = buf[i] * 2;
4358			unsigned short word = (buf[off + 1] << 8) | buf[off];
4359			AdvWriteWordAutoIncLram(iop_base, word);
4360			len += 2;
4361		}
4362	}
4363
4364	end = len;
4365
4366	while (len < memsize) {
4367		AdvWriteWordAutoIncLram(iop_base, 0);
4368		len += 2;
4369	}
4370
4371	/* Verify the microcode checksum. */
4372	sum = 0;
4373	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4374
4375	for (len = 0; len < end; len += 2) {
4376		sum += AdvReadWordAutoIncLram(iop_base);
4377	}
4378
4379	if (sum != chksum)
4380		return ASC_IERR_MCODE_CHKSUM;
4381
4382	return 0;
4383}
4384
4385static void AdvBuildCarrierFreelist(struct adv_dvc_var *asc_dvc)
4386{
4387	ADV_CARR_T *carrp;
4388	ADV_SDCNT buf_size;
4389	ADV_PADDR carr_paddr;
4390
4391	carrp = (ADV_CARR_T *) ADV_16BALIGN(asc_dvc->carrier_buf);
4392	asc_dvc->carr_freelist = NULL;
4393	if (carrp == asc_dvc->carrier_buf) {
4394		buf_size = ADV_CARRIER_BUFSIZE;
4395	} else {
4396		buf_size = ADV_CARRIER_BUFSIZE - sizeof(ADV_CARR_T);
4397	}
4398
4399	do {
4400		/* Get physical address of the carrier 'carrp'. */
4401		carr_paddr = cpu_to_le32(virt_to_bus(carrp));
4402
4403		buf_size -= sizeof(ADV_CARR_T);
4404
4405		carrp->carr_pa = carr_paddr;
4406		carrp->carr_va = cpu_to_le32(ADV_VADDR_TO_U32(carrp));
4407
4408		/*
4409		 * Insert the carrier at the beginning of the freelist.
4410		 */
4411		carrp->next_vpa =
4412			cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->carr_freelist));
4413		asc_dvc->carr_freelist = carrp;
4414
4415		carrp++;
4416	} while (buf_size > 0);
4417}
4418
4419/*
4420 * Send an idle command to the chip and wait for completion.
4421 *
4422 * Command completion is polled for once per microsecond.
4423 *
4424 * The function can be called from anywhere including an interrupt handler.
4425 * But the function is not re-entrant, so it uses the DvcEnter/LeaveCritical()
4426 * functions to prevent reentrancy.
4427 *
4428 * Return Values:
4429 *   ADV_TRUE - command completed successfully
4430 *   ADV_FALSE - command failed
4431 *   ADV_ERROR - command timed out
4432 */
4433static int
4434AdvSendIdleCmd(ADV_DVC_VAR *asc_dvc,
4435	       ushort idle_cmd, ADV_DCNT idle_cmd_parameter)
4436{
4437	int result;
4438	ADV_DCNT i, j;
4439	AdvPortAddr iop_base;
4440
4441	iop_base = asc_dvc->iop_base;
4442
4443	/*
4444	 * Clear the idle command status which is set by the microcode
4445	 * to a non-zero value to indicate when the command is completed.
4446	 * The non-zero result is one of the IDLE_CMD_STATUS_* values
4447	 */
4448	AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, (ushort)0);
4449
4450	/*
4451	 * Write the idle command value after the idle command parameter
4452	 * has been written to avoid a race condition. If the order is not
4453	 * followed, the microcode may process the idle command before the
4454	 * parameters have been written to LRAM.
4455	 */
4456	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IDLE_CMD_PARAMETER,
4457				cpu_to_le32(idle_cmd_parameter));
4458	AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD, idle_cmd);
4459
4460	/*
4461	 * Tickle the RISC to tell it to process the idle command.
4462	 */
4463	AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_B);
4464	if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
4465		/*
4466		 * Clear the tickle value. In the ASC-3550 the RISC flag
4467		 * command 'clr_tickle_b' does not work unless the host
4468		 * value is cleared.
4469		 */
4470		AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_NOP);
4471	}
4472
4473	/* Wait for up to 100 millisecond for the idle command to timeout. */
4474	for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
4475		/* Poll once each microsecond for command completion. */
4476		for (j = 0; j < SCSI_US_PER_MSEC; j++) {
4477			AdvReadWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS,
4478					result);
4479			if (result != 0)
4480				return result;
4481			udelay(1);
4482		}
4483	}
4484
4485	BUG();		/* The idle command should never timeout. */
4486	return ADV_ERROR;
4487}
4488
4489/*
4490 * Reset SCSI Bus and purge all outstanding requests.
4491 *
4492 * Return Value:
4493 *      ADV_TRUE(1) -   All requests are purged and SCSI Bus is reset.
4494 *      ADV_FALSE(0) -  Microcode command failed.
4495 *      ADV_ERROR(-1) - Microcode command timed-out. Microcode or IC
4496 *                      may be hung which requires driver recovery.
4497 */
4498static int AdvResetSB(ADV_DVC_VAR *asc_dvc)
4499{
4500	int status;
4501
4502	/*
4503	 * Send the SCSI Bus Reset idle start idle command which asserts
4504	 * the SCSI Bus Reset signal.
4505	 */
4506	status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_START, 0L);
4507	if (status != ADV_TRUE) {
4508		return status;
4509	}
4510
4511	/*
4512	 * Delay for the specified SCSI Bus Reset hold time.
4513	 *
4514	 * The hold time delay is done on the host because the RISC has no
4515	 * microsecond accurate timer.
4516	 */
4517	udelay(ASC_SCSI_RESET_HOLD_TIME_US);
4518
4519	/*
4520	 * Send the SCSI Bus Reset end idle command which de-asserts
4521	 * the SCSI Bus Reset signal and purges any pending requests.
4522	 */
4523	status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_END, 0L);
4524	if (status != ADV_TRUE) {
4525		return status;
4526	}
4527
4528	mdelay(asc_dvc->scsi_reset_wait * 1000);	/* XXX: msleep? */
4529
4530	return status;
4531}
4532
4533/*
4534 * Initialize the ASC-3550.
4535 *
4536 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
4537 *
4538 * For a non-fatal error return a warning code. If there are no warnings
4539 * then 0 is returned.
4540 *
4541 * Needed after initialization for error recovery.
4542 */
4543static int AdvInitAsc3550Driver(ADV_DVC_VAR *asc_dvc)
4544{
4545	const struct firmware *fw;
4546	const char fwname[] = "advansys/3550.bin";
4547	AdvPortAddr iop_base;
4548	ushort warn_code;
4549	int begin_addr;
4550	int end_addr;
4551	ushort code_sum;
4552	int word;
4553	int i;
4554	int err;
4555	unsigned long chksum;
4556	ushort scsi_cfg1;
4557	uchar tid;
4558	ushort bios_mem[ASC_MC_BIOSLEN / 2];	/* BIOS RISC Memory 0x40-0x8F. */
4559	ushort wdtr_able = 0, sdtr_able, tagqng_able;
4560	uchar max_cmd[ADV_MAX_TID + 1];
4561
4562	/* If there is already an error, don't continue. */
4563	if (asc_dvc->err_code != 0)
4564		return ADV_ERROR;
4565
4566	/*
4567	 * The caller must set 'chip_type' to ADV_CHIP_ASC3550.
4568	 */
4569	if (asc_dvc->chip_type != ADV_CHIP_ASC3550) {
4570		asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
4571		return ADV_ERROR;
4572	}
4573
4574	warn_code = 0;
4575	iop_base = asc_dvc->iop_base;
4576
4577	/*
4578	 * Save the RISC memory BIOS region before writing the microcode.
4579	 * The BIOS may already be loaded and using its RISC LRAM region
4580	 * so its region must be saved and restored.
4581	 *
4582	 * Note: This code makes the assumption, which is currently true,
4583	 * that a chip reset does not clear RISC LRAM.
4584	 */
4585	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4586		AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4587				bios_mem[i]);
4588	}
4589
4590	/*
4591	 * Save current per TID negotiated values.
4592	 */
4593	if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 0x55AA) {
4594		ushort bios_version, major, minor;
4595
4596		bios_version =
4597		    bios_mem[(ASC_MC_BIOS_VERSION - ASC_MC_BIOSMEM) / 2];
4598		major = (bios_version >> 12) & 0xF;
4599		minor = (bios_version >> 8) & 0xF;
4600		if (major < 3 || (major == 3 && minor == 1)) {
4601			/* BIOS 3.1 and earlier location of 'wdtr_able' variable. */
4602			AdvReadWordLram(iop_base, 0x120, wdtr_able);
4603		} else {
4604			AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4605		}
4606	}
4607	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4608	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
4609	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4610		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
4611				max_cmd[tid]);
4612	}
4613
4614	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4615	if (err) {
4616		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4617		       fwname, err);
4618		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4619		return err;
4620	}
4621	if (fw->size < 4) {
4622		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4623		       fw->size, fwname);
4624		release_firmware(fw);
4625		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4626		return -EINVAL;
4627	}
4628	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4629		 (fw->data[1] << 8) | fw->data[0];
4630	asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
4631					     fw->size - 4, ADV_3550_MEMSIZE,
4632					     chksum);
4633	release_firmware(fw);
4634	if (asc_dvc->err_code)
4635		return ADV_ERROR;
4636
4637	/*
4638	 * Restore the RISC memory BIOS region.
4639	 */
4640	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4641		AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4642				 bios_mem[i]);
4643	}
4644
4645	/*
4646	 * Calculate and write the microcode code checksum to the microcode
4647	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
4648	 */
4649	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
4650	AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
4651	code_sum = 0;
4652	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
4653	for (word = begin_addr; word < end_addr; word += 2) {
4654		code_sum += AdvReadWordAutoIncLram(iop_base);
4655	}
4656	AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
4657
4658	/*
4659	 * Read and save microcode version and date.
4660	 */
4661	AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
4662			asc_dvc->cfg->mcode_date);
4663	AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
4664			asc_dvc->cfg->mcode_version);
4665
4666	/*
4667	 * Set the chip type to indicate the ASC3550.
4668	 */
4669	AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC3550);
4670
4671	/*
4672	 * If the PCI Configuration Command Register "Parity Error Response
4673	 * Control" Bit was clear (0), then set the microcode variable
4674	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
4675	 * to ignore DMA parity errors.
4676	 */
4677	if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
4678		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
4679		word |= CONTROL_FLAG_IGNORE_PERR;
4680		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
4681	}
4682
4683	/*
4684	 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO
4685	 * threshold of 128 bytes. This register is only accessible to the host.
4686	 */
4687	AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
4688			     START_CTL_EMFU | READ_CMD_MRM);
4689
4690	/*
4691	 * Microcode operating variables for WDTR, SDTR, and command tag
4692	 * queuing will be set in slave_configure() based on what a
4693	 * device reports it is capable of in Inquiry byte 7.
4694	 *
4695	 * If SCSI Bus Resets have been disabled, then directly set
4696	 * SDTR and WDTR from the EEPROM configuration. This will allow
4697	 * the BIOS and warm boot to work without a SCSI bus hang on
4698	 * the Inquiry caused by host and target mismatched DTR values.
4699	 * Without the SCSI Bus Reset, before an Inquiry a device can't
4700	 * be assumed to be in Asynchronous, Narrow mode.
4701	 */
4702	if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
4703		AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
4704				 asc_dvc->wdtr_able);
4705		AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
4706				 asc_dvc->sdtr_able);
4707	}
4708
4709	/*
4710	 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
4711	 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
4712	 * bitmask. These values determine the maximum SDTR speed negotiated
4713	 * with a device.
4714	 *
4715	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
4716	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
4717	 * without determining here whether the device supports SDTR.
4718	 *
4719	 * 4-bit speed  SDTR speed name
4720	 * ===========  ===============
4721	 * 0000b (0x0)  SDTR disabled
4722	 * 0001b (0x1)  5 Mhz
4723	 * 0010b (0x2)  10 Mhz
4724	 * 0011b (0x3)  20 Mhz (Ultra)
4725	 * 0100b (0x4)  40 Mhz (LVD/Ultra2)
4726	 * 0101b (0x5)  80 Mhz (LVD2/Ultra3)
4727	 * 0110b (0x6)  Undefined
4728	 * .
4729	 * 1111b (0xF)  Undefined
4730	 */
4731	word = 0;
4732	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4733		if (ADV_TID_TO_TIDMASK(tid) & asc_dvc->ultra_able) {
4734			/* Set Ultra speed for TID 'tid'. */
4735			word |= (0x3 << (4 * (tid % 4)));
4736		} else {
4737			/* Set Fast speed for TID 'tid'. */
4738			word |= (0x2 << (4 * (tid % 4)));
4739		}
4740		if (tid == 3) {	/* Check if done with sdtr_speed1. */
4741			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, word);
4742			word = 0;
4743		} else if (tid == 7) {	/* Check if done with sdtr_speed2. */
4744			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, word);
4745			word = 0;
4746		} else if (tid == 11) {	/* Check if done with sdtr_speed3. */
4747			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, word);
4748			word = 0;
4749		} else if (tid == 15) {	/* Check if done with sdtr_speed4. */
4750			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, word);
4751			/* End of loop. */
4752		}
4753	}
4754
4755	/*
4756	 * Set microcode operating variable for the disconnect per TID bitmask.
4757	 */
4758	AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
4759			 asc_dvc->cfg->disc_enable);
4760
4761	/*
4762	 * Set SCSI_CFG0 Microcode Default Value.
4763	 *
4764	 * The microcode will set the SCSI_CFG0 register using this value
4765	 * after it is started below.
4766	 */
4767	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
4768			 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
4769			 asc_dvc->chip_scsi_id);
4770
4771	/*
4772	 * Determine SCSI_CFG1 Microcode Default Value.
4773	 *
4774	 * The microcode will set the SCSI_CFG1 register using this value
4775	 * after it is started below.
4776	 */
4777
4778	/* Read current SCSI_CFG1 Register value. */
4779	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
4780
4781	/*
4782	 * If all three connectors are in use, return an error.
4783	 */
4784	if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
4785	    (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
4786		asc_dvc->err_code |= ASC_IERR_ILLEGAL_CONNECTION;
4787		return ADV_ERROR;
4788	}
4789
4790	/*
4791	 * If the internal narrow cable is reversed all of the SCSI_CTRL
4792	 * register signals will be set. Check for and return an error if
4793	 * this condition is found.
4794	 */
4795	if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
4796		asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
4797		return ADV_ERROR;
4798	}
4799
4800	/*
4801	 * If this is a differential board and a single-ended device
4802	 * is attached to one of the connectors, return an error.
4803	 */
4804	if ((scsi_cfg1 & DIFF_MODE) && (scsi_cfg1 & DIFF_SENSE) == 0) {
4805		asc_dvc->err_code |= ASC_IERR_SINGLE_END_DEVICE;
4806		return ADV_ERROR;
4807	}
4808
4809	/*
4810	 * If automatic termination control is enabled, then set the
4811	 * termination value based on a table listed in a_condor.h.
4812	 *
4813	 * If manual termination was specified with an EEPROM setting
4814	 * then 'termination' was set-up in AdvInitFrom3550EEPROM() and
4815	 * is ready to be 'ored' into SCSI_CFG1.
4816	 */
4817	if (asc_dvc->cfg->termination == 0) {
4818		/*
4819		 * The software always controls termination by setting TERM_CTL_SEL.
4820		 * If TERM_CTL_SEL were set to 0, the hardware would set termination.
4821		 */
4822		asc_dvc->cfg->termination |= TERM_CTL_SEL;
4823
4824		switch (scsi_cfg1 & CABLE_DETECT) {
4825			/* TERM_CTL_H: on, TERM_CTL_L: on */
4826		case 0x3:
4827		case 0x7:
4828		case 0xB:
4829		case 0xD:
4830		case 0xE:
4831		case 0xF:
4832			asc_dvc->cfg->termination |= (TERM_CTL_H | TERM_CTL_L);
4833			break;
4834
4835			/* TERM_CTL_H: on, TERM_CTL_L: off */
4836		case 0x1:
4837		case 0x5:
4838		case 0x9:
4839		case 0xA:
4840		case 0xC:
4841			asc_dvc->cfg->termination |= TERM_CTL_H;
4842			break;
4843
4844			/* TERM_CTL_H: off, TERM_CTL_L: off */
4845		case 0x2:
4846		case 0x6:
4847			break;
4848		}
4849	}
4850
4851	/*
4852	 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
4853	 */
4854	scsi_cfg1 &= ~TERM_CTL;
4855
4856	/*
4857	 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
4858	 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
4859	 * referenced, because the hardware internally inverts
4860	 * the Termination High and Low bits if TERM_POL is set.
4861	 */
4862	scsi_cfg1 |= (TERM_CTL_SEL | (~asc_dvc->cfg->termination & TERM_CTL));
4863
4864	/*
4865	 * Set SCSI_CFG1 Microcode Default Value
4866	 *
4867	 * Set filter value and possibly modified termination control
4868	 * bits in the Microcode SCSI_CFG1 Register Value.
4869	 *
4870	 * The microcode will set the SCSI_CFG1 register using this value
4871	 * after it is started below.
4872	 */
4873	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1,
4874			 FLTR_DISABLE | scsi_cfg1);
4875
4876	/*
4877	 * Set MEM_CFG Microcode Default Value
4878	 *
4879	 * The microcode will set the MEM_CFG register using this value
4880	 * after it is started below.
4881	 *
4882	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
4883	 * are defined.
4884	 *
4885	 * ASC-3550 has 8KB internal memory.
4886	 */
4887	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
4888			 BIOS_EN | RAM_SZ_8KB);
4889
4890	/*
4891	 * Set SEL_MASK Microcode Default Value
4892	 *
4893	 * The microcode will set the SEL_MASK register using this value
4894	 * after it is started below.
4895	 */
4896	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
4897			 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
4898
4899	AdvBuildCarrierFreelist(asc_dvc);
4900
4901	/*
4902	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
4903	 */
4904
4905	if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) {
4906		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
4907		return ADV_ERROR;
4908	}
4909	asc_dvc->carr_freelist = (ADV_CARR_T *)
4910	    ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa));
4911
4912	/*
4913	 * The first command issued will be placed in the stopper carrier.
4914	 */
4915	asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
4916
4917	/*
4918	 * Set RISC ICQ physical address start value.
4919	 */
4920	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
4921
4922	/*
4923	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
4924	 */
4925	if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) {
4926		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
4927		return ADV_ERROR;
4928	}
4929	asc_dvc->carr_freelist = (ADV_CARR_T *)
4930	    ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa));
4931
4932	/*
4933	 * The first command completed by the RISC will be placed in
4934	 * the stopper.
4935	 *
4936	 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
4937	 * completed the RISC will set the ASC_RQ_STOPPER bit.
4938	 */
4939	asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
4940
4941	/*
4942	 * Set RISC IRQ physical address start value.
4943	 */
4944	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
4945	asc_dvc->carr_pending_cnt = 0;
4946
4947	AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
4948			     (ADV_INTR_ENABLE_HOST_INTR |
4949			      ADV_INTR_ENABLE_GLOBAL_INTR));
4950
4951	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
4952	AdvWriteWordRegister(iop_base, IOPW_PC, word);
4953
4954	/* finally, finally, gentlemen, start your engine */
4955	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
4956
4957	/*
4958	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
4959	 * Resets should be performed. The RISC has to be running
4960	 * to issue a SCSI Bus Reset.
4961	 */
4962	if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
4963		/*
4964		 * If the BIOS Signature is present in memory, restore the
4965		 * BIOS Handshake Configuration Table and do not perform
4966		 * a SCSI Bus Reset.
4967		 */
4968		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
4969		    0x55AA) {
4970			/*
4971			 * Restore per TID negotiated values.
4972			 */
4973			AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4974			AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4975			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
4976					 tagqng_able);
4977			for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4978				AdvWriteByteLram(iop_base,
4979						 ASC_MC_NUMBER_OF_MAX_CMD + tid,
4980						 max_cmd[tid]);
4981			}
4982		} else {
4983			if (AdvResetSB(asc_dvc) != ADV_TRUE) {
4984				warn_code = ASC_WARN_BUSRESET_ERROR;
4985			}
4986		}
4987	}
4988
4989	return warn_code;
4990}
4991
4992/*
4993 * Initialize the ASC-38C0800.
4994 *
4995 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
4996 *
4997 * For a non-fatal error return a warning code. If there are no warnings
4998 * then 0 is returned.
4999 *
5000 * Needed after initialization for error recovery.
5001 */
5002static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc)
5003{
5004	const struct firmware *fw;
5005	const char fwname[] = "advansys/38C0800.bin";
5006	AdvPortAddr iop_base;
5007	ushort warn_code;
5008	int begin_addr;
5009	int end_addr;
5010	ushort code_sum;
5011	int word;
5012	int i;
5013	int err;
5014	unsigned long chksum;
5015	ushort scsi_cfg1;
5016	uchar byte;
5017	uchar tid;
5018	ushort bios_mem[ASC_MC_BIOSLEN / 2];	/* BIOS RISC Memory 0x40-0x8F. */
5019	ushort wdtr_able, sdtr_able, tagqng_able;
5020	uchar max_cmd[ADV_MAX_TID + 1];
5021
5022	/* If there is already an error, don't continue. */
5023	if (asc_dvc->err_code != 0)
5024		return ADV_ERROR;
5025
5026	/*
5027	 * The caller must set 'chip_type' to ADV_CHIP_ASC38C0800.
5028	 */
5029	if (asc_dvc->chip_type != ADV_CHIP_ASC38C0800) {
5030		asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
5031		return ADV_ERROR;
5032	}
5033
5034	warn_code = 0;
5035	iop_base = asc_dvc->iop_base;
5036
5037	/*
5038	 * Save the RISC memory BIOS region before writing the microcode.
5039	 * The BIOS may already be loaded and using its RISC LRAM region
5040	 * so its region must be saved and restored.
5041	 *
5042	 * Note: This code makes the assumption, which is currently true,
5043	 * that a chip reset does not clear RISC LRAM.
5044	 */
5045	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5046		AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5047				bios_mem[i]);
5048	}
5049
5050	/*
5051	 * Save current per TID negotiated values.
5052	 */
5053	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5054	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5055	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5056	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5057		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5058				max_cmd[tid]);
5059	}
5060
5061	/*
5062	 * RAM BIST (RAM Built-In Self Test)
5063	 *
5064	 * Address : I/O base + offset 0x38h register (byte).
5065	 * Function: Bit 7-6(RW) : RAM mode
5066	 *                          Normal Mode   : 0x00
5067	 *                          Pre-test Mode : 0x40
5068	 *                          RAM Test Mode : 0x80
5069	 *           Bit 5       : unused
5070	 *           Bit 4(RO)   : Done bit
5071	 *           Bit 3-0(RO) : Status
5072	 *                          Host Error    : 0x08
5073	 *                          Int_RAM Error : 0x04
5074	 *                          RISC Error    : 0x02
5075	 *                          SCSI Error    : 0x01
5076	 *                          No Error      : 0x00
5077	 *
5078	 * Note: RAM BIST code should be put right here, before loading the
5079	 * microcode and after saving the RISC memory BIOS region.
5080	 */
5081
5082	/*
5083	 * LRAM Pre-test
5084	 *
5085	 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
5086	 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
5087	 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
5088	 * to NORMAL_MODE, return an error too.
5089	 */
5090	for (i = 0; i < 2; i++) {
5091		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
5092		mdelay(10);	/* Wait for 10ms before reading back. */
5093		byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5094		if ((byte & RAM_TEST_DONE) == 0
5095		    || (byte & 0x0F) != PRE_TEST_VALUE) {
5096			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5097			return ADV_ERROR;
5098		}
5099
5100		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5101		mdelay(10);	/* Wait for 10ms before reading back. */
5102		if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
5103		    != NORMAL_VALUE) {
5104			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5105			return ADV_ERROR;
5106		}
5107	}
5108
5109	/*
5110	 * LRAM Test - It takes about 1.5 ms to run through the test.
5111	 *
5112	 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
5113	 * If Done bit not set or Status not 0, save register byte, set the
5114	 * err_code, and return an error.
5115	 */
5116	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
5117	mdelay(10);	/* Wait for 10ms before checking status. */
5118
5119	byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5120	if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
5121		/* Get here if Done bit not set or Status not 0. */
5122		asc_dvc->bist_err_code = byte;	/* for BIOS display message */
5123		asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
5124		return ADV_ERROR;
5125	}
5126
5127	/* We need to reset back to normal mode after LRAM test passes. */
5128	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5129
5130	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
5131	if (err) {
5132		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
5133		       fwname, err);
5134		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5135		return err;
5136	}
5137	if (fw->size < 4) {
5138		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
5139		       fw->size, fwname);
5140		release_firmware(fw);
5141		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5142		return -EINVAL;
5143	}
5144	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
5145		 (fw->data[1] << 8) | fw->data[0];
5146	asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
5147					     fw->size - 4, ADV_38C0800_MEMSIZE,
5148					     chksum);
5149	release_firmware(fw);
5150	if (asc_dvc->err_code)
5151		return ADV_ERROR;
5152
5153	/*
5154	 * Restore the RISC memory BIOS region.
5155	 */
5156	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5157		AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5158				 bios_mem[i]);
5159	}
5160
5161	/*
5162	 * Calculate and write the microcode code checksum to the microcode
5163	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5164	 */
5165	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
5166	AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5167	code_sum = 0;
5168	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5169	for (word = begin_addr; word < end_addr; word += 2) {
5170		code_sum += AdvReadWordAutoIncLram(iop_base);
5171	}
5172	AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5173
5174	/*
5175	 * Read microcode version and date.
5176	 */
5177	AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
5178			asc_dvc->cfg->mcode_date);
5179	AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
5180			asc_dvc->cfg->mcode_version);
5181
5182	/*
5183	 * Set the chip type to indicate the ASC38C0800.
5184	 */
5185	AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C0800);
5186
5187	/*
5188	 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5189	 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5190	 * cable detection and then we are able to read C_DET[3:0].
5191	 *
5192	 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5193	 * Microcode Default Value' section below.
5194	 */
5195	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5196	AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
5197			     scsi_cfg1 | DIS_TERM_DRV);
5198
5199	/*
5200	 * If the PCI Configuration Command Register "Parity Error Response
5201	 * Control" Bit was clear (0), then set the microcode variable
5202	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5203	 * to ignore DMA parity errors.
5204	 */
5205	if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5206		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5207		word |= CONTROL_FLAG_IGNORE_PERR;
5208		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5209	}
5210
5211	/*
5212	 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2]
5213	 * bits for the default FIFO threshold.
5214	 *
5215	 * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes.
5216	 *
5217	 * For DMA Errata #4 set the BC_THRESH_ENB bit.
5218	 */
5219	AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5220			     BC_THRESH_ENB | FIFO_THRESH_80B | START_CTL_TH |
5221			     READ_CMD_MRM);
5222
5223	/*
5224	 * Microcode operating variables for WDTR, SDTR, and command tag
5225	 * queuing will be set in slave_configure() based on what a
5226	 * device reports it is capable of in Inquiry byte 7.
5227	 *
5228	 * If SCSI Bus Resets have been disabled, then directly set
5229	 * SDTR and WDTR from the EEPROM configuration. This will allow
5230	 * the BIOS and warm boot to work without a SCSI bus hang on
5231	 * the Inquiry caused by host and target mismatched DTR values.
5232	 * Without the SCSI Bus Reset, before an Inquiry a device can't
5233	 * be assumed to be in Asynchronous, Narrow mode.
5234	 */
5235	if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5236		AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5237				 asc_dvc->wdtr_able);
5238		AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5239				 asc_dvc->sdtr_able);
5240	}
5241
5242	/*
5243	 * Set microcode operating variables for DISC and SDTR_SPEED1,
5244	 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5245	 * configuration values.
5246	 *
5247	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5248	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5249	 * without determining here whether the device supports SDTR.
5250	 */
5251	AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5252			 asc_dvc->cfg->disc_enable);
5253	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
5254	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
5255	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
5256	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
5257
5258	/*
5259	 * Set SCSI_CFG0 Microcode Default Value.
5260	 *
5261	 * The microcode will set the SCSI_CFG0 register using this value
5262	 * after it is started below.
5263	 */
5264	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5265			 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5266			 asc_dvc->chip_scsi_id);
5267
5268	/*
5269	 * Determine SCSI_CFG1 Microcode Default Value.
5270	 *
5271	 * The microcode will set the SCSI_CFG1 register using this value
5272	 * after it is started below.
5273	 */
5274
5275	/* Read current SCSI_CFG1 Register value. */
5276	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5277
5278	/*
5279	 * If the internal narrow cable is reversed all of the SCSI_CTRL
5280	 * register signals will be set. Check for and return an error if
5281	 * this condition is found.
5282	 */
5283	if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5284		asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5285		return ADV_ERROR;
5286	}
5287
5288	/*
5289	 * All kind of combinations of devices attached to one of four
5290	 * connectors are acceptable except HVD device attached. For example,
5291	 * LVD device can be attached to SE connector while SE device attached
5292	 * to LVD connector.  If LVD device attached to SE connector, it only
5293	 * runs up to Ultra speed.
5294	 *
5295	 * If an HVD device is attached to one of LVD connectors, return an
5296	 * error.  However, there is no way to detect HVD device attached to
5297	 * SE connectors.
5298	 */
5299	if (scsi_cfg1 & HVD) {
5300		asc_dvc->err_code = ASC_IERR_HVD_DEVICE;
5301		return ADV_ERROR;
5302	}
5303
5304	/*
5305	 * If either SE or LVD automatic termination control is enabled, then
5306	 * set the termination value based on a table listed in a_condor.h.
5307	 *
5308	 * If manual termination was specified with an EEPROM setting then
5309	 * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready
5310	 * to be 'ored' into SCSI_CFG1.
5311	 */
5312	if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
5313		/* SE automatic termination control is enabled. */
5314		switch (scsi_cfg1 & C_DET_SE) {
5315			/* TERM_SE_HI: on, TERM_SE_LO: on */
5316		case 0x1:
5317		case 0x2:
5318		case 0x3:
5319			asc_dvc->cfg->termination |= TERM_SE;
5320			break;
5321
5322			/* TERM_SE_HI: on, TERM_SE_LO: off */
5323		case 0x0:
5324			asc_dvc->cfg->termination |= TERM_SE_HI;
5325			break;
5326		}
5327	}
5328
5329	if ((asc_dvc->cfg->termination & TERM_LVD) == 0) {
5330		/* LVD automatic termination control is enabled. */
5331		switch (scsi_cfg1 & C_DET_LVD) {
5332			/* TERM_LVD_HI: on, TERM_LVD_LO: on */
5333		case 0x4:
5334		case 0x8:
5335		case 0xC:
5336			asc_dvc->cfg->termination |= TERM_LVD;
5337			break;
5338
5339			/* TERM_LVD_HI: off, TERM_LVD_LO: off */
5340		case 0x0:
5341			break;
5342		}
5343	}
5344
5345	/*
5346	 * Clear any set TERM_SE and TERM_LVD bits.
5347	 */
5348	scsi_cfg1 &= (~TERM_SE & ~TERM_LVD);
5349
5350	/*
5351	 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
5352	 */
5353	scsi_cfg1 |= (~asc_dvc->cfg->termination & 0xF0);
5354
5355	/*
5356	 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE
5357	 * bits and set possibly modified termination control bits in the
5358	 * Microcode SCSI_CFG1 Register Value.
5359	 */
5360	scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL & ~HVD_LVD_SE);
5361
5362	/*
5363	 * Set SCSI_CFG1 Microcode Default Value
5364	 *
5365	 * Set possibly modified termination control and reset DIS_TERM_DRV
5366	 * bits in the Microcode SCSI_CFG1 Register Value.
5367	 *
5368	 * The microcode will set the SCSI_CFG1 register using this value
5369	 * after it is started below.
5370	 */
5371	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
5372
5373	/*
5374	 * Set MEM_CFG Microcode Default Value
5375	 *
5376	 * The microcode will set the MEM_CFG register using this value
5377	 * after it is started below.
5378	 *
5379	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5380	 * are defined.
5381	 *
5382	 * ASC-38C0800 has 16KB internal memory.
5383	 */
5384	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5385			 BIOS_EN | RAM_SZ_16KB);
5386
5387	/*
5388	 * Set SEL_MASK Microcode Default Value
5389	 *
5390	 * The microcode will set the SEL_MASK register using this value
5391	 * after it is started below.
5392	 */
5393	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5394			 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5395
5396	AdvBuildCarrierFreelist(asc_dvc);
5397
5398	/*
5399	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5400	 */
5401
5402	if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) {
5403		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5404		return ADV_ERROR;
5405	}
5406	asc_dvc->carr_freelist = (ADV_CARR_T *)
5407	    ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa));
5408
5409	/*
5410	 * The first command issued will be placed in the stopper carrier.
5411	 */
5412	asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5413
5414	/*
5415	 * Set RISC ICQ physical address start value.
5416	 * carr_pa is LE, must be native before write
5417	 */
5418	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5419
5420	/*
5421	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5422	 */
5423	if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) {
5424		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5425		return ADV_ERROR;
5426	}
5427	asc_dvc->carr_freelist = (ADV_CARR_T *)
5428	    ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa));
5429
5430	/*
5431	 * The first command completed by the RISC will be placed in
5432	 * the stopper.
5433	 *
5434	 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
5435	 * completed the RISC will set the ASC_RQ_STOPPER bit.
5436	 */
5437	asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5438
5439	/*
5440	 * Set RISC IRQ physical address start value.
5441	 *
5442	 * carr_pa is LE, must be native before write *
5443	 */
5444	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5445	asc_dvc->carr_pending_cnt = 0;
5446
5447	AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5448			     (ADV_INTR_ENABLE_HOST_INTR |
5449			      ADV_INTR_ENABLE_GLOBAL_INTR));
5450
5451	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5452	AdvWriteWordRegister(iop_base, IOPW_PC, word);
5453
5454	/* finally, finally, gentlemen, start your engine */
5455	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5456
5457	/*
5458	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5459	 * Resets should be performed. The RISC has to be running
5460	 * to issue a SCSI Bus Reset.
5461	 */
5462	if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5463		/*
5464		 * If the BIOS Signature is present in memory, restore the
5465		 * BIOS Handshake Configuration Table and do not perform
5466		 * a SCSI Bus Reset.
5467		 */
5468		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5469		    0x55AA) {
5470			/*
5471			 * Restore per TID negotiated values.
5472			 */
5473			AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5474			AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5475			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5476					 tagqng_able);
5477			for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5478				AdvWriteByteLram(iop_base,
5479						 ASC_MC_NUMBER_OF_MAX_CMD + tid,
5480						 max_cmd[tid]);
5481			}
5482		} else {
5483			if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5484				warn_code = ASC_WARN_BUSRESET_ERROR;
5485			}
5486		}
5487	}
5488
5489	return warn_code;
5490}
5491
5492/*
5493 * Initialize the ASC-38C1600.
5494 *
5495 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
5496 *
5497 * For a non-fatal error return a warning code. If there are no warnings
5498 * then 0 is returned.
5499 *
5500 * Needed after initialization for error recovery.
5501 */
5502static int AdvInitAsc38C1600Driver(ADV_DVC_VAR *asc_dvc)
5503{
5504	const struct firmware *fw;
5505	const char fwname[] = "advansys/38C1600.bin";
5506	AdvPortAddr iop_base;
5507	ushort warn_code;
5508	int begin_addr;
5509	int end_addr;
5510	ushort code_sum;
5511	long word;
5512	int i;
5513	int err;
5514	unsigned long chksum;
5515	ushort scsi_cfg1;
5516	uchar byte;
5517	uchar tid;
5518	ushort bios_mem[ASC_MC_BIOSLEN / 2];	/* BIOS RISC Memory 0x40-0x8F. */
5519	ushort wdtr_able, sdtr_able, ppr_able, tagqng_able;
5520	uchar max_cmd[ASC_MAX_TID + 1];
5521
5522	/* If there is already an error, don't continue. */
5523	if (asc_dvc->err_code != 0) {
5524		return ADV_ERROR;
5525	}
5526
5527	/*
5528	 * The caller must set 'chip_type' to ADV_CHIP_ASC38C1600.
5529	 */
5530	if (asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
5531		asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
5532		return ADV_ERROR;
5533	}
5534
5535	warn_code = 0;
5536	iop_base = asc_dvc->iop_base;
5537
5538	/*
5539	 * Save the RISC memory BIOS region before writing the microcode.
5540	 * The BIOS may already be loaded and using its RISC LRAM region
5541	 * so its region must be saved and restored.
5542	 *
5543	 * Note: This code makes the assumption, which is currently true,
5544	 * that a chip reset does not clear RISC LRAM.
5545	 */
5546	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5547		AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5548				bios_mem[i]);
5549	}
5550
5551	/*
5552	 * Save current per TID negotiated values.
5553	 */
5554	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5555	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5556	AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5557	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5558	for (tid = 0; tid <= ASC_MAX_TID; tid++) {
5559		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5560				max_cmd[tid]);
5561	}
5562
5563	/*
5564	 * RAM BIST (Built-In Self Test)
5565	 *
5566	 * Address : I/O base + offset 0x38h register (byte).
5567	 * Function: Bit 7-6(RW) : RAM mode
5568	 *                          Normal Mode   : 0x00
5569	 *                          Pre-test Mode : 0x40
5570	 *                          RAM Test Mode : 0x80
5571	 *           Bit 5       : unused
5572	 *           Bit 4(RO)   : Done bit
5573	 *           Bit 3-0(RO) : Status
5574	 *                          Host Error    : 0x08
5575	 *                          Int_RAM Error : 0x04
5576	 *                          RISC Error    : 0x02
5577	 *                          SCSI Error    : 0x01
5578	 *                          No Error      : 0x00
5579	 *
5580	 * Note: RAM BIST code should be put right here, before loading the
5581	 * microcode and after saving the RISC memory BIOS region.
5582	 */
5583
5584	/*
5585	 * LRAM Pre-test
5586	 *
5587	 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
5588	 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
5589	 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
5590	 * to NORMAL_MODE, return an error too.
5591	 */
5592	for (i = 0; i < 2; i++) {
5593		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
5594		mdelay(10);	/* Wait for 10ms before reading back. */
5595		byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5596		if ((byte & RAM_TEST_DONE) == 0
5597		    || (byte & 0x0F) != PRE_TEST_VALUE) {
5598			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5599			return ADV_ERROR;
5600		}
5601
5602		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5603		mdelay(10);	/* Wait for 10ms before reading back. */
5604		if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
5605		    != NORMAL_VALUE) {
5606			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5607			return ADV_ERROR;
5608		}
5609	}
5610
5611	/*
5612	 * LRAM Test - It takes about 1.5 ms to run through the test.
5613	 *
5614	 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
5615	 * If Done bit not set or Status not 0, save register byte, set the
5616	 * err_code, and return an error.
5617	 */
5618	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
5619	mdelay(10);	/* Wait for 10ms before checking status. */
5620
5621	byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5622	if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
5623		/* Get here if Done bit not set or Status not 0. */
5624		asc_dvc->bist_err_code = byte;	/* for BIOS display message */
5625		asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
5626		return ADV_ERROR;
5627	}
5628
5629	/* We need to reset back to normal mode after LRAM test passes. */
5630	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5631
5632	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
5633	if (err) {
5634		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
5635		       fwname, err);
5636		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5637		return err;
5638	}
5639	if (fw->size < 4) {
5640		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
5641		       fw->size, fwname);
5642		release_firmware(fw);
5643		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5644		return -EINVAL;
5645	}
5646	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
5647		 (fw->data[1] << 8) | fw->data[0];
5648	asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
5649					     fw->size - 4, ADV_38C1600_MEMSIZE,
5650					     chksum);
5651	release_firmware(fw);
5652	if (asc_dvc->err_code)
5653		return ADV_ERROR;
5654
5655	/*
5656	 * Restore the RISC memory BIOS region.
5657	 */
5658	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5659		AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5660				 bios_mem[i]);
5661	}
5662
5663	/*
5664	 * Calculate and write the microcode code checksum to the microcode
5665	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5666	 */
5667	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
5668	AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5669	code_sum = 0;
5670	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5671	for (word = begin_addr; word < end_addr; word += 2) {
5672		code_sum += AdvReadWordAutoIncLram(iop_base);
5673	}
5674	AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5675
5676	/*
5677	 * Read microcode version and date.
5678	 */
5679	AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
5680			asc_dvc->cfg->mcode_date);
5681	AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
5682			asc_dvc->cfg->mcode_version);
5683
5684	/*
5685	 * Set the chip type to indicate the ASC38C1600.
5686	 */
5687	AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C1600);
5688
5689	/*
5690	 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5691	 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5692	 * cable detection and then we are able to read C_DET[3:0].
5693	 *
5694	 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5695	 * Microcode Default Value' section below.
5696	 */
5697	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5698	AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
5699			     scsi_cfg1 | DIS_TERM_DRV);
5700
5701	/*
5702	 * If the PCI Configuration Command Register "Parity Error Response
5703	 * Control" Bit was clear (0), then set the microcode variable
5704	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5705	 * to ignore DMA parity errors.
5706	 */
5707	if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5708		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5709		word |= CONTROL_FLAG_IGNORE_PERR;
5710		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5711	}
5712
5713	/*
5714	 * If the BIOS control flag AIPP (Asynchronous Information
5715	 * Phase Protection) disable bit is not set, then set the firmware
5716	 * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable
5717	 * AIPP checking and encoding.
5718	 */
5719	if ((asc_dvc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
5720		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5721		word |= CONTROL_FLAG_ENABLE_AIPP;
5722		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5723	}
5724
5725	/*
5726	 * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4],
5727	 * and START_CTL_TH [3:2].
5728	 */
5729	AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5730			     FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
5731
5732	/*
5733	 * Microcode operating variables for WDTR, SDTR, and command tag
5734	 * queuing will be set in slave_configure() based on what a
5735	 * device reports it is capable of in Inquiry byte 7.
5736	 *
5737	 * If SCSI Bus Resets have been disabled, then directly set
5738	 * SDTR and WDTR from the EEPROM configuration. This will allow
5739	 * the BIOS and warm boot to work without a SCSI bus hang on
5740	 * the Inquiry caused by host and target mismatched DTR values.
5741	 * Without the SCSI Bus Reset, before an Inquiry a device can't
5742	 * be assumed to be in Asynchronous, Narrow mode.
5743	 */
5744	if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5745		AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5746				 asc_dvc->wdtr_able);
5747		AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5748				 asc_dvc->sdtr_able);
5749	}
5750
5751	/*
5752	 * Set microcode operating variables for DISC and SDTR_SPEED1,
5753	 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5754	 * configuration values.
5755	 *
5756	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5757	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5758	 * without determining here whether the device supports SDTR.
5759	 */
5760	AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5761			 asc_dvc->cfg->disc_enable);
5762	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
5763	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
5764	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
5765	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
5766
5767	/*
5768	 * Set SCSI_CFG0 Microcode Default Value.
5769	 *
5770	 * The microcode will set the SCSI_CFG0 register using this value
5771	 * after it is started below.
5772	 */
5773	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5774			 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5775			 asc_dvc->chip_scsi_id);
5776
5777	/*
5778	 * Calculate SCSI_CFG1 Microcode Default Value.
5779	 *
5780	 * The microcode will set the SCSI_CFG1 register using this value
5781	 * after it is started below.
5782	 *
5783	 * Each ASC-38C1600 function has only two cable detect bits.
5784	 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
5785	 */
5786	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5787
5788	/*
5789	 * If the cable is reversed all of the SCSI_CTRL register signals
5790	 * will be set. Check for and return an error if this condition is
5791	 * found.
5792	 */
5793	if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5794		asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5795		return ADV_ERROR;
5796	}
5797
5798	/*
5799	 * Each ASC-38C1600 function has two connectors. Only an HVD device
5800	 * can not be connected to either connector. An LVD device or SE device
5801	 * may be connected to either connecor. If an SE device is connected,
5802	 * then at most Ultra speed (20 Mhz) can be used on both connectors.
5803	 *
5804	 * If an HVD device is attached, return an error.
5805	 */
5806	if (scsi_cfg1 & HVD) {
5807		asc_dvc->err_code |= ASC_IERR_HVD_DEVICE;
5808		return ADV_ERROR;
5809	}
5810
5811	/*
5812	 * Each function in the ASC-38C1600 uses only the SE cable detect and
5813	 * termination because there are two connectors for each function. Each
5814	 * function may use either LVD or SE mode. Corresponding the SE automatic
5815	 * termination control EEPROM bits are used for each function. Each
5816	 * function has its own EEPROM. If SE automatic control is enabled for
5817	 * the function, then set the termination value based on a table listed
5818	 * in a_condor.h.
5819	 *
5820	 * If manual termination is specified in the EEPROM for the function,
5821	 * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is
5822	 * ready to be 'ored' into SCSI_CFG1.
5823	 */
5824	if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
5825		struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
5826		/* SE automatic termination control is enabled. */
5827		switch (scsi_cfg1 & C_DET_SE) {
5828			/* TERM_SE_HI: on, TERM_SE_LO: on */
5829		case 0x1:
5830		case 0x2:
5831		case 0x3:
5832			asc_dvc->cfg->termination |= TERM_SE;
5833			break;
5834
5835		case 0x0:
5836			if (PCI_FUNC(pdev->devfn) == 0) {
5837				/* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
5838			} else {
5839				/* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
5840				asc_dvc->cfg->termination |= TERM_SE_HI;
5841			}
5842			break;
5843		}
5844	}
5845
5846	/*
5847	 * Clear any set TERM_SE bits.
5848	 */
5849	scsi_cfg1 &= ~TERM_SE;
5850
5851	/*
5852	 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
5853	 */
5854	scsi_cfg1 |= (~asc_dvc->cfg->termination & TERM_SE);
5855
5856	/*
5857	 * Clear Big Endian and Terminator Polarity bits and set possibly
5858	 * modified termination control bits in the Microcode SCSI_CFG1
5859	 * Register Value.
5860	 *
5861	 * Big Endian bit is not used even on big endian machines.
5862	 */
5863	scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL);
5864
5865	/*
5866	 * Set SCSI_CFG1 Microcode Default Value
5867	 *
5868	 * Set possibly modified termination control bits in the Microcode
5869	 * SCSI_CFG1 Register Value.
5870	 *
5871	 * The microcode will set the SCSI_CFG1 register using this value
5872	 * after it is started below.
5873	 */
5874	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
5875
5876	/*
5877	 * Set MEM_CFG Microcode Default Value
5878	 *
5879	 * The microcode will set the MEM_CFG register using this value
5880	 * after it is started below.
5881	 *
5882	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5883	 * are defined.
5884	 *
5885	 * ASC-38C1600 has 32KB internal memory.
5886	 *
5887	 * XXX - Since ASC38C1600 Rev.3 has a Local RAM failure issue, we come
5888	 * out a special 16K Adv Library and Microcode version. After the issue
5889	 * resolved, we should turn back to the 32K support. Both a_condor.h and
5890	 * mcode.sas files also need to be updated.
5891	 *
5892	 * AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5893	 *  BIOS_EN | RAM_SZ_32KB);
5894	 */
5895	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5896			 BIOS_EN | RAM_SZ_16KB);
5897
5898	/*
5899	 * Set SEL_MASK Microcode Default Value
5900	 *
5901	 * The microcode will set the SEL_MASK register using this value
5902	 * after it is started below.
5903	 */
5904	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5905			 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5906
5907	AdvBuildCarrierFreelist(asc_dvc);
5908
5909	/*
5910	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5911	 */
5912	if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) {
5913		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5914		return ADV_ERROR;
5915	}
5916	asc_dvc->carr_freelist = (ADV_CARR_T *)
5917	    ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa));
5918
5919	/*
5920	 * The first command issued will be placed in the stopper carrier.
5921	 */
5922	asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5923
5924	/*
5925	 * Set RISC ICQ physical address start value. Initialize the
5926	 * COMMA register to the same value otherwise the RISC will
5927	 * prematurely detect a command is available.
5928	 */
5929	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5930	AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
5931			      le32_to_cpu(asc_dvc->icq_sp->carr_pa));
5932
5933	/*
5934	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5935	 */
5936	if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) {
5937		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5938		return ADV_ERROR;
5939	}
5940	asc_dvc->carr_freelist = (ADV_CARR_T *)
5941	    ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa));
5942
5943	/*
5944	 * The first command completed by the RISC will be placed in
5945	 * the stopper.
5946	 *
5947	 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
5948	 * completed the RISC will set the ASC_RQ_STOPPER bit.
5949	 */
5950	asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5951
5952	/*
5953	 * Set RISC IRQ physical address start value.
5954	 */
5955	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5956	asc_dvc->carr_pending_cnt = 0;
5957
5958	AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5959			     (ADV_INTR_ENABLE_HOST_INTR |
5960			      ADV_INTR_ENABLE_GLOBAL_INTR));
5961	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5962	AdvWriteWordRegister(iop_base, IOPW_PC, word);
5963
5964	/* finally, finally, gentlemen, start your engine */
5965	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5966
5967	/*
5968	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5969	 * Resets should be performed. The RISC has to be running
5970	 * to issue a SCSI Bus Reset.
5971	 */
5972	if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5973		/*
5974		 * If the BIOS Signature is present in memory, restore the
5975		 * per TID microcode operating variables.
5976		 */
5977		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5978		    0x55AA) {
5979			/*
5980			 * Restore per TID negotiated values.
5981			 */
5982			AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5983			AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5984			AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5985			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5986					 tagqng_able);
5987			for (tid = 0; tid <= ASC_MAX_TID; tid++) {
5988				AdvWriteByteLram(iop_base,
5989						 ASC_MC_NUMBER_OF_MAX_CMD + tid,
5990						 max_cmd[tid]);
5991			}
5992		} else {
5993			if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5994				warn_code = ASC_WARN_BUSRESET_ERROR;
5995			}
5996		}
5997	}
5998
5999	return warn_code;
6000}
6001
6002/*
6003 * Reset chip and SCSI Bus.
6004 *
6005 * Return Value:
6006 *      ADV_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
6007 *      ADV_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
6008 */
6009static int AdvResetChipAndSB(ADV_DVC_VAR *asc_dvc)
6010{
6011	int status;
6012	ushort wdtr_able, sdtr_able, tagqng_able;
6013	ushort ppr_able = 0;
6014	uchar tid, max_cmd[ADV_MAX_TID + 1];
6015	AdvPortAddr iop_base;
6016	ushort bios_sig;
6017
6018	iop_base = asc_dvc->iop_base;
6019
6020	/*
6021	 * Save current per TID negotiated values.
6022	 */
6023	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
6024	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
6025	if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
6026		AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
6027	}
6028	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
6029	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
6030		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
6031				max_cmd[tid]);
6032	}
6033
6034	/*
6035	 * Force the AdvInitAsc3550/38C0800Driver() function to
6036	 * perform a SCSI Bus Reset by clearing the BIOS signature word.
6037	 * The initialization functions assumes a SCSI Bus Reset is not
6038	 * needed if the BIOS signature word is present.
6039	 */
6040	AdvReadWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
6041	AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, 0);
6042
6043	/*
6044	 * Stop chip and reset it.
6045	 */
6046	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_STOP);
6047	AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, ADV_CTRL_REG_CMD_RESET);
6048	mdelay(100);
6049	AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
6050			     ADV_CTRL_REG_CMD_WR_IO_REG);
6051
6052	/*
6053	 * Reset Adv Library error code, if any, and try
6054	 * re-initializing the chip.
6055	 */
6056	asc_dvc->err_code = 0;
6057	if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
6058		status = AdvInitAsc38C1600Driver(asc_dvc);
6059	} else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
6060		status = AdvInitAsc38C0800Driver(asc_dvc);
6061	} else {
6062		status = AdvInitAsc3550Driver(asc_dvc);
6063	}
6064
6065	/* Translate initialization return value to status value. */
6066	if (status == 0) {
6067		status = ADV_TRUE;
6068	} else {
6069		status = ADV_FALSE;
6070	}
6071
6072	/*
6073	 * Restore the BIOS signature word.
6074	 */
6075	AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
6076
6077	/*
6078	 * Restore per TID negotiated values.
6079	 */
6080	AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
6081	AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
6082	if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
6083		AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
6084	}
6085	AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
6086	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
6087		AdvWriteByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
6088				 max_cmd[tid]);
6089	}
6090
6091	return status;
6092}
6093
6094/*
6095 * adv_async_callback() - Adv Library asynchronous event callback function.
6096 */
6097static void adv_async_callback(ADV_DVC_VAR *adv_dvc_varp, uchar code)
6098{
6099	switch (code) {
6100	case ADV_ASYNC_SCSI_BUS_RESET_DET:
6101		/*
6102		 * The firmware detected a SCSI Bus reset.
6103		 */
6104		ASC_DBG(0, "ADV_ASYNC_SCSI_BUS_RESET_DET\n");
6105		break;
6106
6107	case ADV_ASYNC_RDMA_FAILURE:
6108		/*
6109		 * Handle RDMA failure by resetting the SCSI Bus and
6110		 * possibly the chip if it is unresponsive. Log the error
6111		 * with a unique code.
6112		 */
6113		ASC_DBG(0, "ADV_ASYNC_RDMA_FAILURE\n");
6114		AdvResetChipAndSB(adv_dvc_varp);
6115		break;
6116
6117	case ADV_HOST_SCSI_BUS_RESET:
6118		/*
6119		 * Host generated SCSI bus reset occurred.
6120		 */
6121		ASC_DBG(0, "ADV_HOST_SCSI_BUS_RESET\n");
6122		break;
6123
6124	default:
6125		ASC_DBG(0, "unknown code 0x%x\n", code);
6126		break;
6127	}
6128}
6129
6130/*
6131 * adv_isr_callback() - Second Level Interrupt Handler called by AdvISR().
6132 *
6133 * Callback function for the Wide SCSI Adv Library.
6134 */
6135static void adv_isr_callback(ADV_DVC_VAR *adv_dvc_varp, ADV_SCSI_REQ_Q *scsiqp)
6136{
6137	struct asc_board *boardp;
6138	adv_req_t *reqp;
6139	adv_sgblk_t *sgblkp;
6140	struct scsi_cmnd *scp;
6141	struct Scsi_Host *shost;
6142	ADV_DCNT resid_cnt;
6143
6144	ASC_DBG(1, "adv_dvc_varp 0x%lx, scsiqp 0x%lx\n",
6145		 (ulong)adv_dvc_varp, (ulong)scsiqp);
6146	ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
6147
6148	/*
6149	 * Get the adv_req_t structure for the command that has been
6150	 * completed. The adv_req_t structure actually contains the
6151	 * completed ADV_SCSI_REQ_Q structure.
6152	 */
6153	reqp = (adv_req_t *)ADV_U32_TO_VADDR(scsiqp->srb_ptr);
6154	ASC_DBG(1, "reqp 0x%lx\n", (ulong)reqp);
6155	if (reqp == NULL) {
6156		ASC_PRINT("adv_isr_callback: reqp is NULL\n");
6157		return;
6158	}
6159
6160	/*
6161	 * Get the struct scsi_cmnd structure and Scsi_Host structure for the
6162	 * command that has been completed.
6163	 *
6164	 * Note: The adv_req_t request structure and adv_sgblk_t structure,
6165	 * if any, are dropped, because a board structure pointer can not be
6166	 * determined.
6167	 */
6168	scp = reqp->cmndp;
6169	ASC_DBG(1, "scp 0x%p\n", scp);
6170	if (scp == NULL) {
6171		ASC_PRINT
6172		    ("adv_isr_callback: scp is NULL; adv_req_t dropped.\n");
6173		return;
6174	}
6175	ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
6176
6177	shost = scp->device->host;
6178	ASC_STATS(shost, callback);
6179	ASC_DBG(1, "shost 0x%p\n", shost);
6180
6181	boardp = shost_priv(shost);
6182	BUG_ON(adv_dvc_varp != &boardp->dvc_var.adv_dvc_var);
6183
6184	/*
6185	 * 'done_status' contains the command's ending status.
6186	 */
6187	switch (scsiqp->done_status) {
6188	case QD_NO_ERROR:
6189		ASC_DBG(2, "QD_NO_ERROR\n");
6190		scp->result = 0;
6191
6192		/*
6193		 * Check for an underrun condition.
6194		 *
6195		 * If there was no error and an underrun condition, then
6196		 * then return the number of underrun bytes.
6197		 */
6198		resid_cnt = le32_to_cpu(scsiqp->data_cnt);
6199		if (scsi_bufflen(scp) != 0 && resid_cnt != 0 &&
6200		    resid_cnt <= scsi_bufflen(scp)) {
6201			ASC_DBG(1, "underrun condition %lu bytes\n",
6202				 (ulong)resid_cnt);
6203			scsi_set_resid(scp, resid_cnt);
6204		}
6205		break;
6206
6207	case QD_WITH_ERROR:
6208		ASC_DBG(2, "QD_WITH_ERROR\n");
6209		switch (scsiqp->host_status) {
6210		case QHSTA_NO_ERROR:
6211			if (scsiqp->scsi_status == SAM_STAT_CHECK_CONDITION) {
6212				ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
6213				ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
6214						  SCSI_SENSE_BUFFERSIZE);
6215				/*
6216				 * Note: The 'status_byte()' macro used by
6217				 * target drivers defined in scsi.h shifts the
6218				 * status byte returned by host drivers right
6219				 * by 1 bit.  This is why target drivers also
6220				 * use right shifted status byte definitions.
6221				 * For instance target drivers use
6222				 * CHECK_CONDITION, defined to 0x1, instead of
6223				 * the SCSI defined check condition value of
6224				 * 0x2. Host drivers are supposed to return
6225				 * the status byte as it is defined by SCSI.
6226				 */
6227				scp->result = DRIVER_BYTE(DRIVER_SENSE) |
6228				    STATUS_BYTE(scsiqp->scsi_status);
6229			} else {
6230				scp->result = STATUS_BYTE(scsiqp->scsi_status);
6231			}
6232			break;
6233
6234		default:
6235			/* Some other QHSTA error occurred. */
6236			ASC_DBG(1, "host_status 0x%x\n", scsiqp->host_status);
6237			scp->result = HOST_BYTE(DID_BAD_TARGET);
6238			break;
6239		}
6240		break;
6241
6242	case QD_ABORTED_BY_HOST:
6243		ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
6244		scp->result =
6245		    HOST_BYTE(DID_ABORT) | STATUS_BYTE(scsiqp->scsi_status);
6246		break;
6247
6248	default:
6249		ASC_DBG(1, "done_status 0x%x\n", scsiqp->done_status);
6250		scp->result =
6251		    HOST_BYTE(DID_ERROR) | STATUS_BYTE(scsiqp->scsi_status);
6252		break;
6253	}
6254
6255	/*
6256	 * If the 'init_tidmask' bit isn't already set for the target and the
6257	 * current request finished normally, then set the bit for the target
6258	 * to indicate that a device is present.
6259	 */
6260	if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
6261	    scsiqp->done_status == QD_NO_ERROR &&
6262	    scsiqp->host_status == QHSTA_NO_ERROR) {
6263		boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
6264	}
6265
6266	asc_scsi_done(scp);
6267
6268	/*
6269	 * Free all 'adv_sgblk_t' structures allocated for the request.
6270	 */
6271	while ((sgblkp = reqp->sgblkp) != NULL) {
6272		/* Remove 'sgblkp' from the request list. */
6273		reqp->sgblkp = sgblkp->next_sgblkp;
6274
6275		/* Add 'sgblkp' to the board free list. */
6276		sgblkp->next_sgblkp = boardp->adv_sgblkp;
6277		boardp->adv_sgblkp = sgblkp;
6278	}
6279
6280	/*
6281	 * Free the adv_req_t structure used with the command by adding
6282	 * it back to the board free list.
6283	 */
6284	reqp->next_reqp = boardp->adv_reqp;
6285	boardp->adv_reqp = reqp;
6286
6287	ASC_DBG(1, "done\n");
6288}
6289
6290/*
6291 * Adv Library Interrupt Service Routine
6292 *
6293 *  This function is called by a driver's interrupt service routine.
6294 *  The function disables and re-enables interrupts.
6295 *
6296 *  When a microcode idle command is completed, the ADV_DVC_VAR
6297 *  'idle_cmd_done' field is set to ADV_TRUE.
6298 *
6299 *  Note: AdvISR() can be called when interrupts are disabled or even
6300 *  when there is no hardware interrupt condition present. It will
6301 *  always check for completed idle commands and microcode requests.
6302 *  This is an important feature that shouldn't be changed because it
6303 *  allows commands to be completed from polling mode loops.
6304 *
6305 * Return:
6306 *   ADV_TRUE(1) - interrupt was pending
6307 *   ADV_FALSE(0) - no interrupt was pending
6308 */
6309static int AdvISR(ADV_DVC_VAR *asc_dvc)
6310{
6311	AdvPortAddr iop_base;
6312	uchar int_stat;
6313	ushort target_bit;
6314	ADV_CARR_T *free_carrp;
6315	ADV_VADDR irq_next_vpa;
6316	ADV_SCSI_REQ_Q *scsiq;
6317
6318	iop_base = asc_dvc->iop_base;
6319
6320	/* Reading the register clears the interrupt. */
6321	int_stat = AdvReadByteRegister(iop_base, IOPB_INTR_STATUS_REG);
6322
6323	if ((int_stat & (ADV_INTR_STATUS_INTRA | ADV_INTR_STATUS_INTRB |
6324			 ADV_INTR_STATUS_INTRC)) == 0) {
6325		return ADV_FALSE;
6326	}
6327
6328	/*
6329	 * Notify the driver of an asynchronous microcode condition by
6330	 * calling the adv_async_callback function. The function
6331	 * is passed the microcode ASC_MC_INTRB_CODE byte value.
6332	 */
6333	if (int_stat & ADV_INTR_STATUS_INTRB) {
6334		uchar intrb_code;
6335
6336		AdvReadByteLram(iop_base, ASC_MC_INTRB_CODE, intrb_code);
6337
6338		if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
6339		    asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
6340			if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
6341			    asc_dvc->carr_pending_cnt != 0) {
6342				AdvWriteByteRegister(iop_base, IOPB_TICKLE,
6343						     ADV_TICKLE_A);
6344				if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
6345					AdvWriteByteRegister(iop_base,
6346							     IOPB_TICKLE,
6347							     ADV_TICKLE_NOP);
6348				}
6349			}
6350		}
6351
6352		adv_async_callback(asc_dvc, intrb_code);
6353	}
6354
6355	/*
6356	 * Check if the IRQ stopper carrier contains a completed request.
6357	 */
6358	while (((irq_next_vpa =
6359		 le32_to_cpu(asc_dvc->irq_sp->next_vpa)) & ASC_RQ_DONE) != 0) {
6360		/*
6361		 * Get a pointer to the newly completed ADV_SCSI_REQ_Q structure.
6362		 * The RISC will have set 'areq_vpa' to a virtual address.
6363		 *
6364		 * The firmware will have copied the ASC_SCSI_REQ_Q.scsiq_ptr
6365		 * field to the carrier ADV_CARR_T.areq_vpa field. The conversion
6366		 * below complements the conversion of ASC_SCSI_REQ_Q.scsiq_ptr'
6367		 * in AdvExeScsiQueue().
6368		 */
6369		scsiq = (ADV_SCSI_REQ_Q *)
6370		    ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->areq_vpa));
6371
6372		/*
6373		 * Request finished with good status and the queue was not
6374		 * DMAed to host memory by the firmware. Set all status fields
6375		 * to indicate good status.
6376		 */
6377		if ((irq_next_vpa & ASC_RQ_GOOD) != 0) {
6378			scsiq->done_status = QD_NO_ERROR;
6379			scsiq->host_status = scsiq->scsi_status = 0;
6380			scsiq->data_cnt = 0L;
6381		}
6382
6383		/*
6384		 * Advance the stopper pointer to the next carrier
6385		 * ignoring the lower four bits. Free the previous
6386		 * stopper carrier.
6387		 */
6388		free_carrp = asc_dvc->irq_sp;
6389		asc_dvc->irq_sp = (ADV_CARR_T *)
6390		    ADV_U32_TO_VADDR(ASC_GET_CARRP(irq_next_vpa));
6391
6392		free_carrp->next_vpa =
6393		    cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->carr_freelist));
6394		asc_dvc->carr_freelist = free_carrp;
6395		asc_dvc->carr_pending_cnt--;
6396
6397		target_bit = ADV_TID_TO_TIDMASK(scsiq->target_id);
6398
6399		/*
6400		 * Clear request microcode control flag.
6401		 */
6402		scsiq->cntl = 0;
6403
6404		/*
6405		 * Notify the driver of the completed request by passing
6406		 * the ADV_SCSI_REQ_Q pointer to its callback function.
6407		 */
6408		scsiq->a_flag |= ADV_SCSIQ_DONE;
6409		adv_isr_callback(asc_dvc, scsiq);
6410		/*
6411		 * Note: After the driver callback function is called, 'scsiq'
6412		 * can no longer be referenced.
6413		 *
6414		 * Fall through and continue processing other completed
6415		 * requests...
6416		 */
6417	}
6418	return ADV_TRUE;
6419}
6420
6421static int AscSetLibErrorCode(ASC_DVC_VAR *asc_dvc, ushort err_code)
6422{
6423	if (asc_dvc->err_code == 0) {
6424		asc_dvc->err_code = err_code;
6425		AscWriteLramWord(asc_dvc->iop_base, ASCV_ASCDVC_ERR_CODE_W,
6426				 err_code);
6427	}
6428	return err_code;
6429}
6430
6431static void AscAckInterrupt(PortAddr iop_base)
6432{
6433	uchar host_flag;
6434	uchar risc_flag;
6435	ushort loop;
6436
6437	loop = 0;
6438	do {
6439		risc_flag = AscReadLramByte(iop_base, ASCV_RISC_FLAG_B);
6440		if (loop++ > 0x7FFF) {
6441			break;
6442		}
6443	} while ((risc_flag & ASC_RISC_FLAG_GEN_INT) != 0);
6444	host_flag =
6445	    AscReadLramByte(iop_base,
6446			    ASCV_HOST_FLAG_B) & (~ASC_HOST_FLAG_ACK_INT);
6447	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
6448			 (uchar)(host_flag | ASC_HOST_FLAG_ACK_INT));
6449	AscSetChipStatus(iop_base, CIW_INT_ACK);
6450	loop = 0;
6451	while (AscGetChipStatus(iop_base) & CSW_INT_PENDING) {
6452		AscSetChipStatus(iop_base, CIW_INT_ACK);
6453		if (loop++ > 3) {
6454			break;
6455		}
6456	}
6457	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
6458}
6459
6460static uchar AscGetSynPeriodIndex(ASC_DVC_VAR *asc_dvc, uchar syn_time)
6461{
6462	const uchar *period_table;
6463	int max_index;
6464	int min_index;
6465	int i;
6466
6467	period_table = asc_dvc->sdtr_period_tbl;
6468	max_index = (int)asc_dvc->max_sdtr_index;
6469	min_index = (int)asc_dvc->min_sdtr_index;
6470	if ((syn_time <= period_table[max_index])) {
6471		for (i = min_index; i < (max_index - 1); i++) {
6472			if (syn_time <= period_table[i]) {
6473				return (uchar)i;
6474			}
6475		}
6476		return (uchar)max_index;
6477	} else {
6478		return (uchar)(max_index + 1);
6479	}
6480}
6481
6482static uchar
6483AscMsgOutSDTR(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar sdtr_offset)
6484{
6485	EXT_MSG sdtr_buf;
6486	uchar sdtr_period_index;
6487	PortAddr iop_base;
6488
6489	iop_base = asc_dvc->iop_base;
6490	sdtr_buf.msg_type = EXTENDED_MESSAGE;
6491	sdtr_buf.msg_len = MS_SDTR_LEN;
6492	sdtr_buf.msg_req = EXTENDED_SDTR;
6493	sdtr_buf.xfer_period = sdtr_period;
6494	sdtr_offset &= ASC_SYN_MAX_OFFSET;
6495	sdtr_buf.req_ack_offset = sdtr_offset;
6496	sdtr_period_index = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
6497	if (sdtr_period_index <= asc_dvc->max_sdtr_index) {
6498		AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
6499					(uchar *)&sdtr_buf,
6500					sizeof(EXT_MSG) >> 1);
6501		return ((sdtr_period_index << 4) | sdtr_offset);
6502	} else {
6503		sdtr_buf.req_ack_offset = 0;
6504		AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
6505					(uchar *)&sdtr_buf,
6506					sizeof(EXT_MSG) >> 1);
6507		return 0;
6508	}
6509}
6510
6511static uchar
6512AscCalSDTRData(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar syn_offset)
6513{
6514	uchar byte;
6515	uchar sdtr_period_ix;
6516
6517	sdtr_period_ix = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
6518	if (sdtr_period_ix > asc_dvc->max_sdtr_index)
6519		return 0xFF;
6520	byte = (sdtr_period_ix << 4) | (syn_offset & ASC_SYN_MAX_OFFSET);
6521	return byte;
6522}
6523
6524static int AscSetChipSynRegAtID(PortAddr iop_base, uchar id, uchar sdtr_data)
6525{
6526	ASC_SCSI_BIT_ID_TYPE org_id;
6527	int i;
6528	int sta = TRUE;
6529
6530	AscSetBank(iop_base, 1);
6531	org_id = AscReadChipDvcID(iop_base);
6532	for (i = 0; i <= ASC_MAX_TID; i++) {
6533		if (org_id == (0x01 << i))
6534			break;
6535	}
6536	org_id = (ASC_SCSI_BIT_ID_TYPE) i;
6537	AscWriteChipDvcID(iop_base, id);
6538	if (AscReadChipDvcID(iop_base) == (0x01 << id)) {
6539		AscSetBank(iop_base, 0);
6540		AscSetChipSyn(iop_base, sdtr_data);
6541		if (AscGetChipSyn(iop_base) != sdtr_data) {
6542			sta = FALSE;
6543		}
6544	} else {
6545		sta = FALSE;
6546	}
6547	AscSetBank(iop_base, 1);
6548	AscWriteChipDvcID(iop_base, org_id);
6549	AscSetBank(iop_base, 0);
6550	return (sta);
6551}
6552
6553static void AscSetChipSDTR(PortAddr iop_base, uchar sdtr_data, uchar tid_no)
6554{
6555	AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
6556	AscPutMCodeSDTRDoneAtID(iop_base, tid_no, sdtr_data);
6557}
6558
6559static int AscIsrChipHalted(ASC_DVC_VAR *asc_dvc)
6560{
6561	EXT_MSG ext_msg;
6562	EXT_MSG out_msg;
6563	ushort halt_q_addr;
6564	int sdtr_accept;
6565	ushort int_halt_code;
6566	ASC_SCSI_BIT_ID_TYPE scsi_busy;
6567	ASC_SCSI_BIT_ID_TYPE target_id;
6568	PortAddr iop_base;
6569	uchar tag_code;
6570	uchar q_status;
6571	uchar halt_qp;
6572	uchar sdtr_data;
6573	uchar target_ix;
6574	uchar q_cntl, tid_no;
6575	uchar cur_dvc_qng;
6576	uchar asyn_sdtr;
6577	uchar scsi_status;
6578	struct asc_board *boardp;
6579
6580	BUG_ON(!asc_dvc->drv_ptr);
6581	boardp = asc_dvc->drv_ptr;
6582
6583	iop_base = asc_dvc->iop_base;
6584	int_halt_code = AscReadLramWord(iop_base, ASCV_HALTCODE_W);
6585
6586	halt_qp = AscReadLramByte(iop_base, ASCV_CURCDB_B);
6587	halt_q_addr = ASC_QNO_TO_QADDR(halt_qp);
6588	target_ix = AscReadLramByte(iop_base,
6589				    (ushort)(halt_q_addr +
6590					     (ushort)ASC_SCSIQ_B_TARGET_IX));
6591	q_cntl = AscReadLramByte(iop_base,
6592			    (ushort)(halt_q_addr + (ushort)ASC_SCSIQ_B_CNTL));
6593	tid_no = ASC_TIX_TO_TID(target_ix);
6594	target_id = (uchar)ASC_TID_TO_TARGET_ID(tid_no);
6595	if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6596		asyn_sdtr = ASYN_SDTR_DATA_FIX_PCI_REV_AB;
6597	} else {
6598		asyn_sdtr = 0;
6599	}
6600	if (int_halt_code == ASC_HALT_DISABLE_ASYN_USE_SYN_FIX) {
6601		if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6602			AscSetChipSDTR(iop_base, 0, tid_no);
6603			boardp->sdtr_data[tid_no] = 0;
6604		}
6605		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6606		return (0);
6607	} else if (int_halt_code == ASC_HALT_ENABLE_ASYN_USE_SYN_FIX) {
6608		if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6609			AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6610			boardp->sdtr_data[tid_no] = asyn_sdtr;
6611		}
6612		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6613		return (0);
6614	} else if (int_halt_code == ASC_HALT_EXTMSG_IN) {
6615		AscMemWordCopyPtrFromLram(iop_base,
6616					  ASCV_MSGIN_BEG,
6617					  (uchar *)&ext_msg,
6618					  sizeof(EXT_MSG) >> 1);
6619
6620		if (ext_msg.msg_type == EXTENDED_MESSAGE &&
6621		    ext_msg.msg_req == EXTENDED_SDTR &&
6622		    ext_msg.msg_len == MS_SDTR_LEN) {
6623			sdtr_accept = TRUE;
6624			if ((ext_msg.req_ack_offset > ASC_SYN_MAX_OFFSET)) {
6625
6626				sdtr_accept = FALSE;
6627				ext_msg.req_ack_offset = ASC_SYN_MAX_OFFSET;
6628			}
6629			if ((ext_msg.xfer_period <
6630			     asc_dvc->sdtr_period_tbl[asc_dvc->min_sdtr_index])
6631			    || (ext_msg.xfer_period >
6632				asc_dvc->sdtr_period_tbl[asc_dvc->
6633							 max_sdtr_index])) {
6634				sdtr_accept = FALSE;
6635				ext_msg.xfer_period =
6636				    asc_dvc->sdtr_period_tbl[asc_dvc->
6637							     min_sdtr_index];
6638			}
6639			if (sdtr_accept) {
6640				sdtr_data =
6641				    AscCalSDTRData(asc_dvc, ext_msg.xfer_period,
6642						   ext_msg.req_ack_offset);
6643				if ((sdtr_data == 0xFF)) {
6644
6645					q_cntl |= QC_MSG_OUT;
6646					asc_dvc->init_sdtr &= ~target_id;
6647					asc_dvc->sdtr_done &= ~target_id;
6648					AscSetChipSDTR(iop_base, asyn_sdtr,
6649						       tid_no);
6650					boardp->sdtr_data[tid_no] = asyn_sdtr;
6651				}
6652			}
6653			if (ext_msg.req_ack_offset == 0) {
6654
6655				q_cntl &= ~QC_MSG_OUT;
6656				asc_dvc->init_sdtr &= ~target_id;
6657				asc_dvc->sdtr_done &= ~target_id;
6658				AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6659			} else {
6660				if (sdtr_accept && (q_cntl & QC_MSG_OUT)) {
6661					q_cntl &= ~QC_MSG_OUT;
6662					asc_dvc->sdtr_done |= target_id;
6663					asc_dvc->init_sdtr |= target_id;
6664					asc_dvc->pci_fix_asyn_xfer &=
6665					    ~target_id;
6666					sdtr_data =
6667					    AscCalSDTRData(asc_dvc,
6668							   ext_msg.xfer_period,
6669							   ext_msg.
6670							   req_ack_offset);
6671					AscSetChipSDTR(iop_base, sdtr_data,
6672						       tid_no);
6673					boardp->sdtr_data[tid_no] = sdtr_data;
6674				} else {
6675					q_cntl |= QC_MSG_OUT;
6676					AscMsgOutSDTR(asc_dvc,
6677						      ext_msg.xfer_period,
6678						      ext_msg.req_ack_offset);
6679					asc_dvc->pci_fix_asyn_xfer &=
6680					    ~target_id;
6681					sdtr_data =
6682					    AscCalSDTRData(asc_dvc,
6683							   ext_msg.xfer_period,
6684							   ext_msg.
6685							   req_ack_offset);
6686					AscSetChipSDTR(iop_base, sdtr_data,
6687						       tid_no);
6688					boardp->sdtr_data[tid_no] = sdtr_data;
6689					asc_dvc->sdtr_done |= target_id;
6690					asc_dvc->init_sdtr |= target_id;
6691				}
6692			}
6693
6694			AscWriteLramByte(iop_base,
6695					 (ushort)(halt_q_addr +
6696						  (ushort)ASC_SCSIQ_B_CNTL),
6697					 q_cntl);
6698			AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6699			return (0);
6700		} else if (ext_msg.msg_type == EXTENDED_MESSAGE &&
6701			   ext_msg.msg_req == EXTENDED_WDTR &&
6702			   ext_msg.msg_len == MS_WDTR_LEN) {
6703
6704			ext_msg.wdtr_width = 0;
6705			AscMemWordCopyPtrToLram(iop_base,
6706						ASCV_MSGOUT_BEG,
6707						(uchar *)&ext_msg,
6708						sizeof(EXT_MSG) >> 1);
6709			q_cntl |= QC_MSG_OUT;
6710			AscWriteLramByte(iop_base,
6711					 (ushort)(halt_q_addr +
6712						  (ushort)ASC_SCSIQ_B_CNTL),
6713					 q_cntl);
6714			AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6715			return (0);
6716		} else {
6717
6718			ext_msg.msg_type = MESSAGE_REJECT;
6719			AscMemWordCopyPtrToLram(iop_base,
6720						ASCV_MSGOUT_BEG,
6721						(uchar *)&ext_msg,
6722						sizeof(EXT_MSG) >> 1);
6723			q_cntl |= QC_MSG_OUT;
6724			AscWriteLramByte(iop_base,
6725					 (ushort)(halt_q_addr +
6726						  (ushort)ASC_SCSIQ_B_CNTL),
6727					 q_cntl);
6728			AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6729			return (0);
6730		}
6731	} else if (int_halt_code == ASC_HALT_CHK_CONDITION) {
6732
6733		q_cntl |= QC_REQ_SENSE;
6734
6735		if ((asc_dvc->init_sdtr & target_id) != 0) {
6736
6737			asc_dvc->sdtr_done &= ~target_id;
6738
6739			sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
6740			q_cntl |= QC_MSG_OUT;
6741			AscMsgOutSDTR(asc_dvc,
6742				      asc_dvc->
6743				      sdtr_period_tbl[(sdtr_data >> 4) &
6744						      (uchar)(asc_dvc->
6745							      max_sdtr_index -
6746							      1)],
6747				      (uchar)(sdtr_data & (uchar)
6748					      ASC_SYN_MAX_OFFSET));
6749		}
6750
6751		AscWriteLramByte(iop_base,
6752				 (ushort)(halt_q_addr +
6753					  (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
6754
6755		tag_code = AscReadLramByte(iop_base,
6756					   (ushort)(halt_q_addr + (ushort)
6757						    ASC_SCSIQ_B_TAG_CODE));
6758		tag_code &= 0xDC;
6759		if ((asc_dvc->pci_fix_asyn_xfer & target_id)
6760		    && !(asc_dvc->pci_fix_asyn_xfer_always & target_id)
6761		    ) {
6762
6763			tag_code |= (ASC_TAG_FLAG_DISABLE_DISCONNECT
6764				     | ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX);
6765
6766		}
6767		AscWriteLramByte(iop_base,
6768				 (ushort)(halt_q_addr +
6769					  (ushort)ASC_SCSIQ_B_TAG_CODE),
6770				 tag_code);
6771
6772		q_status = AscReadLramByte(iop_base,
6773					   (ushort)(halt_q_addr + (ushort)
6774						    ASC_SCSIQ_B_STATUS));
6775		q_status |= (QS_READY | QS_BUSY);
6776		AscWriteLramByte(iop_base,
6777				 (ushort)(halt_q_addr +
6778					  (ushort)ASC_SCSIQ_B_STATUS),
6779				 q_status);
6780
6781		scsi_busy = AscReadLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B);
6782		scsi_busy &= ~target_id;
6783		AscWriteLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B, scsi_busy);
6784
6785		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6786		return (0);
6787	} else if (int_halt_code == ASC_HALT_SDTR_REJECTED) {
6788
6789		AscMemWordCopyPtrFromLram(iop_base,
6790					  ASCV_MSGOUT_BEG,
6791					  (uchar *)&out_msg,
6792					  sizeof(EXT_MSG) >> 1);
6793
6794		if ((out_msg.msg_type == EXTENDED_MESSAGE) &&
6795		    (out_msg.msg_len == MS_SDTR_LEN) &&
6796		    (out_msg.msg_req == EXTENDED_SDTR)) {
6797
6798			asc_dvc->init_sdtr &= ~target_id;
6799			asc_dvc->sdtr_done &= ~target_id;
6800			AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6801			boardp->sdtr_data[tid_no] = asyn_sdtr;
6802		}
6803		q_cntl &= ~QC_MSG_OUT;
6804		AscWriteLramByte(iop_base,
6805				 (ushort)(halt_q_addr +
6806					  (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
6807		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6808		return (0);
6809	} else if (int_halt_code == ASC_HALT_SS_QUEUE_FULL) {
6810
6811		scsi_status = AscReadLramByte(iop_base,
6812					      (ushort)((ushort)halt_q_addr +
6813						       (ushort)
6814						       ASC_SCSIQ_SCSI_STATUS));
6815		cur_dvc_qng =
6816		    AscReadLramByte(iop_base,
6817				    (ushort)((ushort)ASC_QADR_BEG +
6818					     (ushort)target_ix));
6819		if ((cur_dvc_qng > 0) && (asc_dvc->cur_dvc_qng[tid_no] > 0)) {
6820
6821			scsi_busy = AscReadLramByte(iop_base,
6822						    (ushort)ASCV_SCSIBUSY_B);
6823			scsi_busy |= target_id;
6824			AscWriteLramByte(iop_base,
6825					 (ushort)ASCV_SCSIBUSY_B, scsi_busy);
6826			asc_dvc->queue_full_or_busy |= target_id;
6827
6828			if (scsi_status == SAM_STAT_TASK_SET_FULL) {
6829				if (cur_dvc_qng > ASC_MIN_TAGGED_CMD) {
6830					cur_dvc_qng -= 1;
6831					asc_dvc->max_dvc_qng[tid_no] =
6832					    cur_dvc_qng;
6833
6834					AscWriteLramByte(iop_base,
6835							 (ushort)((ushort)
6836								  ASCV_MAX_DVC_QNG_BEG
6837								  + (ushort)
6838								  tid_no),
6839							 cur_dvc_qng);
6840
6841					/*
6842					 * Set the device queue depth to the
6843					 * number of active requests when the
6844					 * QUEUE FULL condition was encountered.
6845					 */
6846					boardp->queue_full |= target_id;
6847					boardp->queue_full_cnt[tid_no] =
6848					    cur_dvc_qng;
6849				}
6850			}
6851		}
6852		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6853		return (0);
6854	}
6855#if CC_VERY_LONG_SG_LIST
6856	else if (int_halt_code == ASC_HALT_HOST_COPY_SG_LIST_TO_RISC) {
6857		uchar q_no;
6858		ushort q_addr;
6859		uchar sg_wk_q_no;
6860		uchar first_sg_wk_q_no;
6861		ASC_SCSI_Q *scsiq;	/* Ptr to driver request. */
6862		ASC_SG_HEAD *sg_head;	/* Ptr to driver SG request. */
6863		ASC_SG_LIST_Q scsi_sg_q;	/* Structure written to queue. */
6864		ushort sg_list_dwords;
6865		ushort sg_entry_cnt;
6866		uchar next_qp;
6867		int i;
6868
6869		q_no = AscReadLramByte(iop_base, (ushort)ASCV_REQ_SG_LIST_QP);
6870		if (q_no == ASC_QLINK_END)
6871			return 0;
6872
6873		q_addr = ASC_QNO_TO_QADDR(q_no);
6874
6875		/*
6876		 * Convert the request's SRB pointer to a host ASC_SCSI_REQ
6877		 * structure pointer using a macro provided by the driver.
6878		 * The ASC_SCSI_REQ pointer provides a pointer to the
6879		 * host ASC_SG_HEAD structure.
6880		 */
6881		/* Read request's SRB pointer. */
6882		scsiq = (ASC_SCSI_Q *)
6883		    ASC_SRB2SCSIQ(ASC_U32_TO_VADDR(AscReadLramDWord(iop_base,
6884								    (ushort)
6885								    (q_addr +
6886								     ASC_SCSIQ_D_SRBPTR))));
6887
6888		/*
6889		 * Get request's first and working SG queue.
6890		 */
6891		sg_wk_q_no = AscReadLramByte(iop_base,
6892					     (ushort)(q_addr +
6893						      ASC_SCSIQ_B_SG_WK_QP));
6894
6895		first_sg_wk_q_no = AscReadLramByte(iop_base,
6896						   (ushort)(q_addr +
6897							    ASC_SCSIQ_B_FIRST_SG_WK_QP));
6898
6899		/*
6900		 * Reset request's working SG queue back to the
6901		 * first SG queue.
6902		 */
6903		AscWriteLramByte(iop_base,
6904				 (ushort)(q_addr +
6905					  (ushort)ASC_SCSIQ_B_SG_WK_QP),
6906				 first_sg_wk_q_no);
6907
6908		sg_head = scsiq->sg_head;
6909
6910		/*
6911		 * Set sg_entry_cnt to the number of SG elements
6912		 * that will be completed on this interrupt.
6913		 *
6914		 * Note: The allocated SG queues contain ASC_MAX_SG_LIST - 1
6915		 * SG elements. The data_cnt and data_addr fields which
6916		 * add 1 to the SG element capacity are not used when
6917		 * restarting SG handling after a halt.
6918		 */
6919		if (scsiq->remain_sg_entry_cnt > (ASC_MAX_SG_LIST - 1)) {
6920			sg_entry_cnt = ASC_MAX_SG_LIST - 1;
6921
6922			/*
6923			 * Keep track of remaining number of SG elements that
6924			 * will need to be handled on the next interrupt.
6925			 */
6926			scsiq->remain_sg_entry_cnt -= (ASC_MAX_SG_LIST - 1);
6927		} else {
6928			sg_entry_cnt = scsiq->remain_sg_entry_cnt;
6929			scsiq->remain_sg_entry_cnt = 0;
6930		}
6931
6932		/*
6933		 * Copy SG elements into the list of allocated SG queues.
6934		 *
6935		 * Last index completed is saved in scsiq->next_sg_index.
6936		 */
6937		next_qp = first_sg_wk_q_no;
6938		q_addr = ASC_QNO_TO_QADDR(next_qp);
6939		scsi_sg_q.sg_head_qp = q_no;
6940		scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
6941		for (i = 0; i < sg_head->queue_cnt; i++) {
6942			scsi_sg_q.seq_no = i + 1;
6943			if (sg_entry_cnt > ASC_SG_LIST_PER_Q) {
6944				sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2);
6945				sg_entry_cnt -= ASC_SG_LIST_PER_Q;
6946				/*
6947				 * After very first SG queue RISC FW uses next
6948				 * SG queue first element then checks sg_list_cnt
6949				 * against zero and then decrements, so set
6950				 * sg_list_cnt 1 less than number of SG elements
6951				 * in each SG queue.
6952				 */
6953				scsi_sg_q.sg_list_cnt = ASC_SG_LIST_PER_Q - 1;
6954				scsi_sg_q.sg_cur_list_cnt =
6955				    ASC_SG_LIST_PER_Q - 1;
6956			} else {
6957				/*
6958				 * This is the last SG queue in the list of
6959				 * allocated SG queues. If there are more
6960				 * SG elements than will fit in the allocated
6961				 * queues, then set the QCSG_SG_XFER_MORE flag.
6962				 */
6963				if (scsiq->remain_sg_entry_cnt != 0) {
6964					scsi_sg_q.cntl |= QCSG_SG_XFER_MORE;
6965				} else {
6966					scsi_sg_q.cntl |= QCSG_SG_XFER_END;
6967				}
6968				/* equals sg_entry_cnt * 2 */
6969				sg_list_dwords = sg_entry_cnt << 1;
6970				scsi_sg_q.sg_list_cnt = sg_entry_cnt - 1;
6971				scsi_sg_q.sg_cur_list_cnt = sg_entry_cnt - 1;
6972				sg_entry_cnt = 0;
6973			}
6974
6975			scsi_sg_q.q_no = next_qp;
6976			AscMemWordCopyPtrToLram(iop_base,
6977						q_addr + ASC_SCSIQ_SGHD_CPY_BEG,
6978						(uchar *)&scsi_sg_q,
6979						sizeof(ASC_SG_LIST_Q) >> 1);
6980
6981			AscMemDWordCopyPtrToLram(iop_base,
6982						 q_addr + ASC_SGQ_LIST_BEG,
6983						 (uchar *)&sg_head->
6984						 sg_list[scsiq->next_sg_index],
6985						 sg_list_dwords);
6986
6987			scsiq->next_sg_index += ASC_SG_LIST_PER_Q;
6988
6989			/*
6990			 * If the just completed SG queue contained the
6991			 * last SG element, then no more SG queues need
6992			 * to be written.
6993			 */
6994			if (scsi_sg_q.cntl & QCSG_SG_XFER_END) {
6995				break;
6996			}
6997
6998			next_qp = AscReadLramByte(iop_base,
6999						  (ushort)(q_addr +
7000							   ASC_SCSIQ_B_FWD));
7001			q_addr = ASC_QNO_TO_QADDR(next_qp);
7002		}
7003
7004		/*
7005		 * Clear the halt condition so the RISC will be restarted
7006		 * after the return.
7007		 */
7008		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7009		return (0);
7010	}
7011#endif /* CC_VERY_LONG_SG_LIST */
7012	return (0);
7013}
7014
7015/*
7016 * void
7017 * DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
7018 *
7019 * Calling/Exit State:
7020 *    none
7021 *
7022 * Description:
7023 *     Input an ASC_QDONE_INFO structure from the chip
7024 */
7025static void
7026DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
7027{
7028	int i;
7029	ushort word;
7030
7031	AscSetChipLramAddr(iop_base, s_addr);
7032	for (i = 0; i < 2 * words; i += 2) {
7033		if (i == 10) {
7034			continue;
7035		}
7036		word = inpw(iop_base + IOP_RAM_DATA);
7037		inbuf[i] = word & 0xff;
7038		inbuf[i + 1] = (word >> 8) & 0xff;
7039	}
7040	ASC_DBG_PRT_HEX(2, "DvcGetQinfo", inbuf, 2 * words);
7041}
7042
7043static uchar
7044_AscCopyLramScsiDoneQ(PortAddr iop_base,
7045		      ushort q_addr,
7046		      ASC_QDONE_INFO *scsiq, ASC_DCNT max_dma_count)
7047{
7048	ushort _val;
7049	uchar sg_queue_cnt;
7050
7051	DvcGetQinfo(iop_base,
7052		    q_addr + ASC_SCSIQ_DONE_INFO_BEG,
7053		    (uchar *)scsiq,
7054		    (sizeof(ASC_SCSIQ_2) + sizeof(ASC_SCSIQ_3)) / 2);
7055
7056	_val = AscReadLramWord(iop_base,
7057			       (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS));
7058	scsiq->q_status = (uchar)_val;
7059	scsiq->q_no = (uchar)(_val >> 8);
7060	_val = AscReadLramWord(iop_base,
7061			       (ushort)(q_addr + (ushort)ASC_SCSIQ_B_CNTL));
7062	scsiq->cntl = (uchar)_val;
7063	sg_queue_cnt = (uchar)(_val >> 8);
7064	_val = AscReadLramWord(iop_base,
7065			       (ushort)(q_addr +
7066					(ushort)ASC_SCSIQ_B_SENSE_LEN));
7067	scsiq->sense_len = (uchar)_val;
7068	scsiq->extra_bytes = (uchar)(_val >> 8);
7069
7070	/*
7071	 * Read high word of remain bytes from alternate location.
7072	 */
7073	scsiq->remain_bytes = (((ADV_DCNT)AscReadLramWord(iop_base,
7074							  (ushort)(q_addr +
7075								   (ushort)
7076								   ASC_SCSIQ_W_ALT_DC1)))
7077			       << 16);
7078	/*
7079	 * Read low word of remain bytes from original location.
7080	 */
7081	scsiq->remain_bytes += AscReadLramWord(iop_base,
7082					       (ushort)(q_addr + (ushort)
7083							ASC_SCSIQ_DW_REMAIN_XFER_CNT));
7084
7085	scsiq->remain_bytes &= max_dma_count;
7086	return sg_queue_cnt;
7087}
7088
7089/*
7090 * asc_isr_callback() - Second Level Interrupt Handler called by AscISR().
7091 *
7092 * Interrupt callback function for the Narrow SCSI Asc Library.
7093 */
7094static void asc_isr_callback(ASC_DVC_VAR *asc_dvc_varp, ASC_QDONE_INFO *qdonep)
7095{
7096	struct asc_board *boardp;
7097	struct scsi_cmnd *scp;
7098	struct Scsi_Host *shost;
7099
7100	ASC_DBG(1, "asc_dvc_varp 0x%p, qdonep 0x%p\n", asc_dvc_varp, qdonep);
7101	ASC_DBG_PRT_ASC_QDONE_INFO(2, qdonep);
7102
7103	scp = advansys_srb_to_ptr(asc_dvc_varp, qdonep->d2.srb_ptr);
7104	if (!scp)
7105		return;
7106
7107	ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
7108
7109	shost = scp->device->host;
7110	ASC_STATS(shost, callback);
7111	ASC_DBG(1, "shost 0x%p\n", shost);
7112
7113	boardp = shost_priv(shost);
7114	BUG_ON(asc_dvc_varp != &boardp->dvc_var.asc_dvc_var);
7115
7116	dma_unmap_single(boardp->dev, scp->SCp.dma_handle,
7117			 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
7118	/*
7119	 * 'qdonep' contains the command's ending status.
7120	 */
7121	switch (qdonep->d3.done_stat) {
7122	case QD_NO_ERROR:
7123		ASC_DBG(2, "QD_NO_ERROR\n");
7124		scp->result = 0;
7125
7126		/*
7127		 * Check for an underrun condition.
7128		 *
7129		 * If there was no error and an underrun condition, then
7130		 * return the number of underrun bytes.
7131		 */
7132		if (scsi_bufflen(scp) != 0 && qdonep->remain_bytes != 0 &&
7133		    qdonep->remain_bytes <= scsi_bufflen(scp)) {
7134			ASC_DBG(1, "underrun condition %u bytes\n",
7135				 (unsigned)qdonep->remain_bytes);
7136			scsi_set_resid(scp, qdonep->remain_bytes);
7137		}
7138		break;
7139
7140	case QD_WITH_ERROR:
7141		ASC_DBG(2, "QD_WITH_ERROR\n");
7142		switch (qdonep->d3.host_stat) {
7143		case QHSTA_NO_ERROR:
7144			if (qdonep->d3.scsi_stat == SAM_STAT_CHECK_CONDITION) {
7145				ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
7146				ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
7147						  SCSI_SENSE_BUFFERSIZE);
7148				/*
7149				 * Note: The 'status_byte()' macro used by
7150				 * target drivers defined in scsi.h shifts the
7151				 * status byte returned by host drivers right
7152				 * by 1 bit.  This is why target drivers also
7153				 * use right shifted status byte definitions.
7154				 * For instance target drivers use
7155				 * CHECK_CONDITION, defined to 0x1, instead of
7156				 * the SCSI defined check condition value of
7157				 * 0x2. Host drivers are supposed to return
7158				 * the status byte as it is defined by SCSI.
7159				 */
7160				scp->result = DRIVER_BYTE(DRIVER_SENSE) |
7161				    STATUS_BYTE(qdonep->d3.scsi_stat);
7162			} else {
7163				scp->result = STATUS_BYTE(qdonep->d3.scsi_stat);
7164			}
7165			break;
7166
7167		default:
7168			/* QHSTA error occurred */
7169			ASC_DBG(1, "host_stat 0x%x\n", qdonep->d3.host_stat);
7170			scp->result = HOST_BYTE(DID_BAD_TARGET);
7171			break;
7172		}
7173		break;
7174
7175	case QD_ABORTED_BY_HOST:
7176		ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
7177		scp->result =
7178		    HOST_BYTE(DID_ABORT) | MSG_BYTE(qdonep->d3.
7179						    scsi_msg) |
7180		    STATUS_BYTE(qdonep->d3.scsi_stat);
7181		break;
7182
7183	default:
7184		ASC_DBG(1, "done_stat 0x%x\n", qdonep->d3.done_stat);
7185		scp->result =
7186		    HOST_BYTE(DID_ERROR) | MSG_BYTE(qdonep->d3.
7187						    scsi_msg) |
7188		    STATUS_BYTE(qdonep->d3.scsi_stat);
7189		break;
7190	}
7191
7192	/*
7193	 * If the 'init_tidmask' bit isn't already set for the target and the
7194	 * current request finished normally, then set the bit for the target
7195	 * to indicate that a device is present.
7196	 */
7197	if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
7198	    qdonep->d3.done_stat == QD_NO_ERROR &&
7199	    qdonep->d3.host_stat == QHSTA_NO_ERROR) {
7200		boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
7201	}
7202
7203	asc_scsi_done(scp);
7204}
7205
7206static int AscIsrQDone(ASC_DVC_VAR *asc_dvc)
7207{
7208	uchar next_qp;
7209	uchar n_q_used;
7210	uchar sg_list_qp;
7211	uchar sg_queue_cnt;
7212	uchar q_cnt;
7213	uchar done_q_tail;
7214	uchar tid_no;
7215	ASC_SCSI_BIT_ID_TYPE scsi_busy;
7216	ASC_SCSI_BIT_ID_TYPE target_id;
7217	PortAddr iop_base;
7218	ushort q_addr;
7219	ushort sg_q_addr;
7220	uchar cur_target_qng;
7221	ASC_QDONE_INFO scsiq_buf;
7222	ASC_QDONE_INFO *scsiq;
7223	int false_overrun;
7224
7225	iop_base = asc_dvc->iop_base;
7226	n_q_used = 1;
7227	scsiq = (ASC_QDONE_INFO *)&scsiq_buf;
7228	done_q_tail = (uchar)AscGetVarDoneQTail(iop_base);
7229	q_addr = ASC_QNO_TO_QADDR(done_q_tail);
7230	next_qp = AscReadLramByte(iop_base,
7231				  (ushort)(q_addr + (ushort)ASC_SCSIQ_B_FWD));
7232	if (next_qp != ASC_QLINK_END) {
7233		AscPutVarDoneQTail(iop_base, next_qp);
7234		q_addr = ASC_QNO_TO_QADDR(next_qp);
7235		sg_queue_cnt = _AscCopyLramScsiDoneQ(iop_base, q_addr, scsiq,
7236						     asc_dvc->max_dma_count);
7237		AscWriteLramByte(iop_base,
7238				 (ushort)(q_addr +
7239					  (ushort)ASC_SCSIQ_B_STATUS),
7240				 (uchar)(scsiq->
7241					 q_status & (uchar)~(QS_READY |
7242							     QS_ABORTED)));
7243		tid_no = ASC_TIX_TO_TID(scsiq->d2.target_ix);
7244		target_id = ASC_TIX_TO_TARGET_ID(scsiq->d2.target_ix);
7245		if ((scsiq->cntl & QC_SG_HEAD) != 0) {
7246			sg_q_addr = q_addr;
7247			sg_list_qp = next_qp;
7248			for (q_cnt = 0; q_cnt < sg_queue_cnt; q_cnt++) {
7249				sg_list_qp = AscReadLramByte(iop_base,
7250							     (ushort)(sg_q_addr
7251								      + (ushort)
7252								      ASC_SCSIQ_B_FWD));
7253				sg_q_addr = ASC_QNO_TO_QADDR(sg_list_qp);
7254				if (sg_list_qp == ASC_QLINK_END) {
7255					AscSetLibErrorCode(asc_dvc,
7256							   ASCQ_ERR_SG_Q_LINKS);
7257					scsiq->d3.done_stat = QD_WITH_ERROR;
7258					scsiq->d3.host_stat =
7259					    QHSTA_D_QDONE_SG_LIST_CORRUPTED;
7260					goto FATAL_ERR_QDONE;
7261				}
7262				AscWriteLramByte(iop_base,
7263						 (ushort)(sg_q_addr + (ushort)
7264							  ASC_SCSIQ_B_STATUS),
7265						 QS_FREE);
7266			}
7267			n_q_used = sg_queue_cnt + 1;
7268			AscPutVarDoneQTail(iop_base, sg_list_qp);
7269		}
7270		if (asc_dvc->queue_full_or_busy & target_id) {
7271			cur_target_qng = AscReadLramByte(iop_base,
7272							 (ushort)((ushort)
7273								  ASC_QADR_BEG
7274								  + (ushort)
7275								  scsiq->d2.
7276								  target_ix));
7277			if (cur_target_qng < asc_dvc->max_dvc_qng[tid_no]) {
7278				scsi_busy = AscReadLramByte(iop_base, (ushort)
7279							    ASCV_SCSIBUSY_B);
7280				scsi_busy &= ~target_id;
7281				AscWriteLramByte(iop_base,
7282						 (ushort)ASCV_SCSIBUSY_B,
7283						 scsi_busy);
7284				asc_dvc->queue_full_or_busy &= ~target_id;
7285			}
7286		}
7287		if (asc_dvc->cur_total_qng >= n_q_used) {
7288			asc_dvc->cur_total_qng -= n_q_used;
7289			if (asc_dvc->cur_dvc_qng[tid_no] != 0) {
7290				asc_dvc->cur_dvc_qng[tid_no]--;
7291			}
7292		} else {
7293			AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CUR_QNG);
7294			scsiq->d3.done_stat = QD_WITH_ERROR;
7295			goto FATAL_ERR_QDONE;
7296		}
7297		if ((scsiq->d2.srb_ptr == 0UL) ||
7298		    ((scsiq->q_status & QS_ABORTED) != 0)) {
7299			return (0x11);
7300		} else if (scsiq->q_status == QS_DONE) {
7301			false_overrun = FALSE;
7302			if (scsiq->extra_bytes != 0) {
7303				scsiq->remain_bytes +=
7304				    (ADV_DCNT)scsiq->extra_bytes;
7305			}
7306			if (scsiq->d3.done_stat == QD_WITH_ERROR) {
7307				if (scsiq->d3.host_stat ==
7308				    QHSTA_M_DATA_OVER_RUN) {
7309					if ((scsiq->
7310					     cntl & (QC_DATA_IN | QC_DATA_OUT))
7311					    == 0) {
7312						scsiq->d3.done_stat =
7313						    QD_NO_ERROR;
7314						scsiq->d3.host_stat =
7315						    QHSTA_NO_ERROR;
7316					} else if (false_overrun) {
7317						scsiq->d3.done_stat =
7318						    QD_NO_ERROR;
7319						scsiq->d3.host_stat =
7320						    QHSTA_NO_ERROR;
7321					}
7322				} else if (scsiq->d3.host_stat ==
7323					   QHSTA_M_HUNG_REQ_SCSI_BUS_RESET) {
7324					AscStopChip(iop_base);
7325					AscSetChipControl(iop_base,
7326							  (uchar)(CC_SCSI_RESET
7327								  | CC_HALT));
7328					udelay(60);
7329					AscSetChipControl(iop_base, CC_HALT);
7330					AscSetChipStatus(iop_base,
7331							 CIW_CLR_SCSI_RESET_INT);
7332					AscSetChipStatus(iop_base, 0);
7333					AscSetChipControl(iop_base, 0);
7334				}
7335			}
7336			if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
7337				asc_isr_callback(asc_dvc, scsiq);
7338			} else {
7339				if ((AscReadLramByte(iop_base,
7340						     (ushort)(q_addr + (ushort)
7341							      ASC_SCSIQ_CDB_BEG))
7342				     == START_STOP)) {
7343					asc_dvc->unit_not_ready &= ~target_id;
7344					if (scsiq->d3.done_stat != QD_NO_ERROR) {
7345						asc_dvc->start_motor &=
7346						    ~target_id;
7347					}
7348				}
7349			}
7350			return (1);
7351		} else {
7352			AscSetLibErrorCode(asc_dvc, ASCQ_ERR_Q_STATUS);
7353 FATAL_ERR_QDONE:
7354			if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
7355				asc_isr_callback(asc_dvc, scsiq);
7356			}
7357			return (0x80);
7358		}
7359	}
7360	return (0);
7361}
7362
7363static int AscISR(ASC_DVC_VAR *asc_dvc)
7364{
7365	ASC_CS_TYPE chipstat;
7366	PortAddr iop_base;
7367	ushort saved_ram_addr;
7368	uchar ctrl_reg;
7369	uchar saved_ctrl_reg;
7370	int int_pending;
7371	int status;
7372	uchar host_flag;
7373
7374	iop_base = asc_dvc->iop_base;
7375	int_pending = FALSE;
7376
7377	if (AscIsIntPending(iop_base) == 0)
7378		return int_pending;
7379
7380	if ((asc_dvc->init_state & ASC_INIT_STATE_END_LOAD_MC) == 0) {
7381		return ERR;
7382	}
7383	if (asc_dvc->in_critical_cnt != 0) {
7384		AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_ON_CRITICAL);
7385		return ERR;
7386	}
7387	if (asc_dvc->is_in_int) {
7388		AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_RE_ENTRY);
7389		return ERR;
7390	}
7391	asc_dvc->is_in_int = TRUE;
7392	ctrl_reg = AscGetChipControl(iop_base);
7393	saved_ctrl_reg = ctrl_reg & (~(CC_SCSI_RESET | CC_CHIP_RESET |
7394				       CC_SINGLE_STEP | CC_DIAG | CC_TEST));
7395	chipstat = AscGetChipStatus(iop_base);
7396	if (chipstat & CSW_SCSI_RESET_LATCH) {
7397		if (!(asc_dvc->bus_type & (ASC_IS_VL | ASC_IS_EISA))) {
7398			int i = 10;
7399			int_pending = TRUE;
7400			asc_dvc->sdtr_done = 0;
7401			saved_ctrl_reg &= (uchar)(~CC_HALT);
7402			while ((AscGetChipStatus(iop_base) &
7403				CSW_SCSI_RESET_ACTIVE) && (i-- > 0)) {
7404				mdelay(100);
7405			}
7406			AscSetChipControl(iop_base, (CC_CHIP_RESET | CC_HALT));
7407			AscSetChipControl(iop_base, CC_HALT);
7408			AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
7409			AscSetChipStatus(iop_base, 0);
7410			chipstat = AscGetChipStatus(iop_base);
7411		}
7412	}
7413	saved_ram_addr = AscGetChipLramAddr(iop_base);
7414	host_flag = AscReadLramByte(iop_base,
7415				    ASCV_HOST_FLAG_B) &
7416	    (uchar)(~ASC_HOST_FLAG_IN_ISR);
7417	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
7418			 (uchar)(host_flag | (uchar)ASC_HOST_FLAG_IN_ISR));
7419	if ((chipstat & CSW_INT_PENDING) || (int_pending)) {
7420		AscAckInterrupt(iop_base);
7421		int_pending = TRUE;
7422		if ((chipstat & CSW_HALTED) && (ctrl_reg & CC_SINGLE_STEP)) {
7423			if (AscIsrChipHalted(asc_dvc) == ERR) {
7424				goto ISR_REPORT_QDONE_FATAL_ERROR;
7425			} else {
7426				saved_ctrl_reg &= (uchar)(~CC_HALT);
7427			}
7428		} else {
7429 ISR_REPORT_QDONE_FATAL_ERROR:
7430			if ((asc_dvc->dvc_cntl & ASC_CNTL_INT_MULTI_Q) != 0) {
7431				while (((status =
7432					 AscIsrQDone(asc_dvc)) & 0x01) != 0) {
7433				}
7434			} else {
7435				do {
7436					if ((status =
7437					     AscIsrQDone(asc_dvc)) == 1) {
7438						break;
7439					}
7440				} while (status == 0x11);
7441			}
7442			if ((status & 0x80) != 0)
7443				int_pending = ERR;
7444		}
7445	}
7446	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
7447	AscSetChipLramAddr(iop_base, saved_ram_addr);
7448	AscSetChipControl(iop_base, saved_ctrl_reg);
7449	asc_dvc->is_in_int = FALSE;
7450	return int_pending;
7451}
7452
7453/*
7454 * advansys_reset()
7455 *
7456 * Reset the bus associated with the command 'scp'.
7457 *
7458 * This function runs its own thread. Interrupts must be blocked but
7459 * sleeping is allowed and no locking other than for host structures is
7460 * required. Returns SUCCESS or FAILED.
7461 */
7462static int advansys_reset(struct scsi_cmnd *scp)
7463{
7464	struct Scsi_Host *shost = scp->device->host;
7465	struct asc_board *boardp = shost_priv(shost);
7466	unsigned long flags;
7467	int status;
7468	int ret = SUCCESS;
7469
7470	ASC_DBG(1, "0x%p\n", scp);
7471
7472	ASC_STATS(shost, reset);
7473
7474	scmd_printk(KERN_INFO, scp, "SCSI bus reset started...\n");
7475
7476	if (ASC_NARROW_BOARD(boardp)) {
7477		ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
7478
7479		/* Reset the chip and SCSI bus. */
7480		ASC_DBG(1, "before AscInitAsc1000Driver()\n");
7481		status = AscInitAsc1000Driver(asc_dvc);
7482
7483		/* Refer to ASC_IERR_* definitions for meaning of 'err_code'. */
7484		if (asc_dvc->err_code || !asc_dvc->overrun_dma) {
7485			scmd_printk(KERN_INFO, scp, "SCSI bus reset error: "
7486				    "0x%x, status: 0x%x\n", asc_dvc->err_code,
7487				    status);
7488			ret = FAILED;
7489		} else if (status) {
7490			scmd_printk(KERN_INFO, scp, "SCSI bus reset warning: "
7491				    "0x%x\n", status);
7492		} else {
7493			scmd_printk(KERN_INFO, scp, "SCSI bus reset "
7494				    "successful\n");
7495		}
7496
7497		ASC_DBG(1, "after AscInitAsc1000Driver()\n");
7498		spin_lock_irqsave(shost->host_lock, flags);
7499	} else {
7500		/*
7501		 * If the suggest reset bus flags are set, then reset the bus.
7502		 * Otherwise only reset the device.
7503		 */
7504		ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
7505
7506		/*
7507		 * Reset the target's SCSI bus.
7508		 */
7509		ASC_DBG(1, "before AdvResetChipAndSB()\n");
7510		switch (AdvResetChipAndSB(adv_dvc)) {
7511		case ASC_TRUE:
7512			scmd_printk(KERN_INFO, scp, "SCSI bus reset "
7513				    "successful\n");
7514			break;
7515		case ASC_FALSE:
7516		default:
7517			scmd_printk(KERN_INFO, scp, "SCSI bus reset error\n");
7518			ret = FAILED;
7519			break;
7520		}
7521		spin_lock_irqsave(shost->host_lock, flags);
7522		AdvISR(adv_dvc);
7523	}
7524
7525	/* Save the time of the most recently completed reset. */
7526	boardp->last_reset = jiffies;
7527	spin_unlock_irqrestore(shost->host_lock, flags);
7528
7529	ASC_DBG(1, "ret %d\n", ret);
7530
7531	return ret;
7532}
7533
7534/*
7535 * advansys_biosparam()
7536 *
7537 * Translate disk drive geometry if the "BIOS greater than 1 GB"
7538 * support is enabled for a drive.
7539 *
7540 * ip (information pointer) is an int array with the following definition:
7541 * ip[0]: heads
7542 * ip[1]: sectors
7543 * ip[2]: cylinders
7544 */
7545static int
7546advansys_biosparam(struct scsi_device *sdev, struct block_device *bdev,
7547		   sector_t capacity, int ip[])
7548{
7549	struct asc_board *boardp = shost_priv(sdev->host);
7550
7551	ASC_DBG(1, "begin\n");
7552	ASC_STATS(sdev->host, biosparam);
7553	if (ASC_NARROW_BOARD(boardp)) {
7554		if ((boardp->dvc_var.asc_dvc_var.dvc_cntl &
7555		     ASC_CNTL_BIOS_GT_1GB) && capacity > 0x200000) {
7556			ip[0] = 255;
7557			ip[1] = 63;
7558		} else {
7559			ip[0] = 64;
7560			ip[1] = 32;
7561		}
7562	} else {
7563		if ((boardp->dvc_var.adv_dvc_var.bios_ctrl &
7564		     BIOS_CTRL_EXTENDED_XLAT) && capacity > 0x200000) {
7565			ip[0] = 255;
7566			ip[1] = 63;
7567		} else {
7568			ip[0] = 64;
7569			ip[1] = 32;
7570		}
7571	}
7572	ip[2] = (unsigned long)capacity / (ip[0] * ip[1]);
7573	ASC_DBG(1, "end\n");
7574	return 0;
7575}
7576
7577/*
7578 * First-level interrupt handler.
7579 *
7580 * 'dev_id' is a pointer to the interrupting adapter's Scsi_Host.
7581 */
7582static irqreturn_t advansys_interrupt(int irq, void *dev_id)
7583{
7584	struct Scsi_Host *shost = dev_id;
7585	struct asc_board *boardp = shost_priv(shost);
7586	irqreturn_t result = IRQ_NONE;
7587
7588	ASC_DBG(2, "boardp 0x%p\n", boardp);
7589	spin_lock(shost->host_lock);
7590	if (ASC_NARROW_BOARD(boardp)) {
7591		if (AscIsIntPending(shost->io_port)) {
7592			result = IRQ_HANDLED;
7593			ASC_STATS(shost, interrupt);
7594			ASC_DBG(1, "before AscISR()\n");
7595			AscISR(&boardp->dvc_var.asc_dvc_var);
7596		}
7597	} else {
7598		ASC_DBG(1, "before AdvISR()\n");
7599		if (AdvISR(&boardp->dvc_var.adv_dvc_var)) {
7600			result = IRQ_HANDLED;
7601			ASC_STATS(shost, interrupt);
7602		}
7603	}
7604	spin_unlock(shost->host_lock);
7605
7606	ASC_DBG(1, "end\n");
7607	return result;
7608}
7609
7610static int AscHostReqRiscHalt(PortAddr iop_base)
7611{
7612	int count = 0;
7613	int sta = 0;
7614	uchar saved_stop_code;
7615
7616	if (AscIsChipHalted(iop_base))
7617		return (1);
7618	saved_stop_code = AscReadLramByte(iop_base, ASCV_STOP_CODE_B);
7619	AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
7620			 ASC_STOP_HOST_REQ_RISC_HALT | ASC_STOP_REQ_RISC_STOP);
7621	do {
7622		if (AscIsChipHalted(iop_base)) {
7623			sta = 1;
7624			break;
7625		}
7626		mdelay(100);
7627	} while (count++ < 20);
7628	AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, saved_stop_code);
7629	return (sta);
7630}
7631
7632static int
7633AscSetRunChipSynRegAtID(PortAddr iop_base, uchar tid_no, uchar sdtr_data)
7634{
7635	int sta = FALSE;
7636
7637	if (AscHostReqRiscHalt(iop_base)) {
7638		sta = AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
7639		AscStartChip(iop_base);
7640	}
7641	return sta;
7642}
7643
7644static void AscAsyncFix(ASC_DVC_VAR *asc_dvc, struct scsi_device *sdev)
7645{
7646	char type = sdev->type;
7647	ASC_SCSI_BIT_ID_TYPE tid_bits = 1 << sdev->id;
7648
7649	if (!(asc_dvc->bug_fix_cntl & ASC_BUG_FIX_ASYN_USE_SYN))
7650		return;
7651	if (asc_dvc->init_sdtr & tid_bits)
7652		return;
7653
7654	if ((type == TYPE_ROM) && (strncmp(sdev->vendor, "HP ", 3) == 0))
7655		asc_dvc->pci_fix_asyn_xfer_always |= tid_bits;
7656
7657	asc_dvc->pci_fix_asyn_xfer |= tid_bits;
7658	if ((type == TYPE_PROCESSOR) || (type == TYPE_SCANNER) ||
7659	    (type == TYPE_ROM) || (type == TYPE_TAPE))
7660		asc_dvc->pci_fix_asyn_xfer &= ~tid_bits;
7661
7662	if (asc_dvc->pci_fix_asyn_xfer & tid_bits)
7663		AscSetRunChipSynRegAtID(asc_dvc->iop_base, sdev->id,
7664					ASYN_SDTR_DATA_FIX_PCI_REV_AB);
7665}
7666
7667static void
7668advansys_narrow_slave_configure(struct scsi_device *sdev, ASC_DVC_VAR *asc_dvc)
7669{
7670	ASC_SCSI_BIT_ID_TYPE tid_bit = 1 << sdev->id;
7671	ASC_SCSI_BIT_ID_TYPE orig_use_tagged_qng = asc_dvc->use_tagged_qng;
7672
7673	if (sdev->lun == 0) {
7674		ASC_SCSI_BIT_ID_TYPE orig_init_sdtr = asc_dvc->init_sdtr;
7675		if ((asc_dvc->cfg->sdtr_enable & tid_bit) && sdev->sdtr) {
7676			asc_dvc->init_sdtr |= tid_bit;
7677		} else {
7678			asc_dvc->init_sdtr &= ~tid_bit;
7679		}
7680
7681		if (orig_init_sdtr != asc_dvc->init_sdtr)
7682			AscAsyncFix(asc_dvc, sdev);
7683	}
7684
7685	if (sdev->tagged_supported) {
7686		if (asc_dvc->cfg->cmd_qng_enabled & tid_bit) {
7687			if (sdev->lun == 0) {
7688				asc_dvc->cfg->can_tagged_qng |= tid_bit;
7689				asc_dvc->use_tagged_qng |= tid_bit;
7690			}
7691			scsi_change_queue_depth(sdev,
7692						asc_dvc->max_dvc_qng[sdev->id]);
7693		}
7694	} else {
7695		if (sdev->lun == 0) {
7696			asc_dvc->cfg->can_tagged_qng &= ~tid_bit;
7697			asc_dvc->use_tagged_qng &= ~tid_bit;
7698		}
7699	}
7700
7701	if ((sdev->lun == 0) &&
7702	    (orig_use_tagged_qng != asc_dvc->use_tagged_qng)) {
7703		AscWriteLramByte(asc_dvc->iop_base, ASCV_DISC_ENABLE_B,
7704				 asc_dvc->cfg->disc_enable);
7705		AscWriteLramByte(asc_dvc->iop_base, ASCV_USE_TAGGED_QNG_B,
7706				 asc_dvc->use_tagged_qng);
7707		AscWriteLramByte(asc_dvc->iop_base, ASCV_CAN_TAGGED_QNG_B,
7708				 asc_dvc->cfg->can_tagged_qng);
7709
7710		asc_dvc->max_dvc_qng[sdev->id] =
7711					asc_dvc->cfg->max_tag_qng[sdev->id];
7712		AscWriteLramByte(asc_dvc->iop_base,
7713				 (ushort)(ASCV_MAX_DVC_QNG_BEG + sdev->id),
7714				 asc_dvc->max_dvc_qng[sdev->id]);
7715	}
7716}
7717
7718/*
7719 * Wide Transfers
7720 *
7721 * If the EEPROM enabled WDTR for the device and the device supports wide
7722 * bus (16 bit) transfers, then turn on the device's 'wdtr_able' bit and
7723 * write the new value to the microcode.
7724 */
7725static void
7726advansys_wide_enable_wdtr(AdvPortAddr iop_base, unsigned short tidmask)
7727{
7728	unsigned short cfg_word;
7729	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
7730	if ((cfg_word & tidmask) != 0)
7731		return;
7732
7733	cfg_word |= tidmask;
7734	AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
7735
7736	/*
7737	 * Clear the microcode SDTR and WDTR negotiation done indicators for
7738	 * the target to cause it to negotiate with the new setting set above.
7739	 * WDTR when accepted causes the target to enter asynchronous mode, so
7740	 * SDTR must be negotiated.
7741	 */
7742	AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7743	cfg_word &= ~tidmask;
7744	AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7745	AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
7746	cfg_word &= ~tidmask;
7747	AdvWriteWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
7748}
7749
7750/*
7751 * Synchronous Transfers
7752 *
7753 * If the EEPROM enabled SDTR for the device and the device
7754 * supports synchronous transfers, then turn on the device's
7755 * 'sdtr_able' bit. Write the new value to the microcode.
7756 */
7757static void
7758advansys_wide_enable_sdtr(AdvPortAddr iop_base, unsigned short tidmask)
7759{
7760	unsigned short cfg_word;
7761	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
7762	if ((cfg_word & tidmask) != 0)
7763		return;
7764
7765	cfg_word |= tidmask;
7766	AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
7767
7768	/*
7769	 * Clear the microcode "SDTR negotiation" done indicator for the
7770	 * target to cause it to negotiate with the new setting set above.
7771	 */
7772	AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7773	cfg_word &= ~tidmask;
7774	AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7775}
7776
7777/*
7778 * PPR (Parallel Protocol Request) Capable
7779 *
7780 * If the device supports DT mode, then it must be PPR capable.
7781 * The PPR message will be used in place of the SDTR and WDTR
7782 * messages to negotiate synchronous speed and offset, transfer
7783 * width, and protocol options.
7784 */
7785static void advansys_wide_enable_ppr(ADV_DVC_VAR *adv_dvc,
7786				AdvPortAddr iop_base, unsigned short tidmask)
7787{
7788	AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
7789	adv_dvc->ppr_able |= tidmask;
7790	AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
7791}
7792
7793static void
7794advansys_wide_slave_configure(struct scsi_device *sdev, ADV_DVC_VAR *adv_dvc)
7795{
7796	AdvPortAddr iop_base = adv_dvc->iop_base;
7797	unsigned short tidmask = 1 << sdev->id;
7798
7799	if (sdev->lun == 0) {
7800		/*
7801		 * Handle WDTR, SDTR, and Tag Queuing. If the feature
7802		 * is enabled in the EEPROM and the device supports the
7803		 * feature, then enable it in the microcode.
7804		 */
7805
7806		if ((adv_dvc->wdtr_able & tidmask) && sdev->wdtr)
7807			advansys_wide_enable_wdtr(iop_base, tidmask);
7808		if ((adv_dvc->sdtr_able & tidmask) && sdev->sdtr)
7809			advansys_wide_enable_sdtr(iop_base, tidmask);
7810		if (adv_dvc->chip_type == ADV_CHIP_ASC38C1600 && sdev->ppr)
7811			advansys_wide_enable_ppr(adv_dvc, iop_base, tidmask);
7812
7813		/*
7814		 * Tag Queuing is disabled for the BIOS which runs in polled
7815		 * mode and would see no benefit from Tag Queuing. Also by
7816		 * disabling Tag Queuing in the BIOS devices with Tag Queuing
7817		 * bugs will at least work with the BIOS.
7818		 */
7819		if ((adv_dvc->tagqng_able & tidmask) &&
7820		    sdev->tagged_supported) {
7821			unsigned short cfg_word;
7822			AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, cfg_word);
7823			cfg_word |= tidmask;
7824			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
7825					 cfg_word);
7826			AdvWriteByteLram(iop_base,
7827					 ASC_MC_NUMBER_OF_MAX_CMD + sdev->id,
7828					 adv_dvc->max_dvc_qng);
7829		}
7830	}
7831
7832	if ((adv_dvc->tagqng_able & tidmask) && sdev->tagged_supported)
7833		scsi_change_queue_depth(sdev, adv_dvc->max_dvc_qng);
7834}
7835
7836/*
7837 * Set the number of commands to queue per device for the
7838 * specified host adapter.
7839 */
7840static int advansys_slave_configure(struct scsi_device *sdev)
7841{
7842	struct asc_board *boardp = shost_priv(sdev->host);
7843
7844	if (ASC_NARROW_BOARD(boardp))
7845		advansys_narrow_slave_configure(sdev,
7846						&boardp->dvc_var.asc_dvc_var);
7847	else
7848		advansys_wide_slave_configure(sdev,
7849						&boardp->dvc_var.adv_dvc_var);
7850
7851	return 0;
7852}
7853
7854static __le32 advansys_get_sense_buffer_dma(struct scsi_cmnd *scp)
7855{
7856	struct asc_board *board = shost_priv(scp->device->host);
7857	scp->SCp.dma_handle = dma_map_single(board->dev, scp->sense_buffer,
7858					     SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
7859	dma_cache_sync(board->dev, scp->sense_buffer,
7860		       SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
7861	return cpu_to_le32(scp->SCp.dma_handle);
7862}
7863
7864static int asc_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
7865			struct asc_scsi_q *asc_scsi_q)
7866{
7867	struct asc_dvc_var *asc_dvc = &boardp->dvc_var.asc_dvc_var;
7868	int use_sg;
7869
7870	memset(asc_scsi_q, 0, sizeof(*asc_scsi_q));
7871
7872	/*
7873	 * Point the ASC_SCSI_Q to the 'struct scsi_cmnd'.
7874	 */
7875	asc_scsi_q->q2.srb_ptr = advansys_ptr_to_srb(asc_dvc, scp);
7876	if (asc_scsi_q->q2.srb_ptr == BAD_SRB) {
7877		scp->result = HOST_BYTE(DID_SOFT_ERROR);
7878		return ASC_ERROR;
7879	}
7880
7881	/*
7882	 * Build the ASC_SCSI_Q request.
7883	 */
7884	asc_scsi_q->cdbptr = &scp->cmnd[0];
7885	asc_scsi_q->q2.cdb_len = scp->cmd_len;
7886	asc_scsi_q->q1.target_id = ASC_TID_TO_TARGET_ID(scp->device->id);
7887	asc_scsi_q->q1.target_lun = scp->device->lun;
7888	asc_scsi_q->q2.target_ix =
7889	    ASC_TIDLUN_TO_IX(scp->device->id, scp->device->lun);
7890	asc_scsi_q->q1.sense_addr = advansys_get_sense_buffer_dma(scp);
7891	asc_scsi_q->q1.sense_len = SCSI_SENSE_BUFFERSIZE;
7892
7893	/*
7894	 * If there are any outstanding requests for the current target,
7895	 * then every 255th request send an ORDERED request. This heuristic
7896	 * tries to retain the benefit of request sorting while preventing
7897	 * request starvation. 255 is the max number of tags or pending commands
7898	 * a device may have outstanding.
7899	 *
7900	 * The request count is incremented below for every successfully
7901	 * started request.
7902	 *
7903	 */
7904	if ((asc_dvc->cur_dvc_qng[scp->device->id] > 0) &&
7905	    (boardp->reqcnt[scp->device->id] % 255) == 0) {
7906		asc_scsi_q->q2.tag_code = ORDERED_QUEUE_TAG;
7907	} else {
7908		asc_scsi_q->q2.tag_code = SIMPLE_QUEUE_TAG;
7909	}
7910
7911	/* Build ASC_SCSI_Q */
7912	use_sg = scsi_dma_map(scp);
7913	if (use_sg != 0) {
7914		int sgcnt;
7915		struct scatterlist *slp;
7916		struct asc_sg_head *asc_sg_head;
7917
7918		if (use_sg > scp->device->host->sg_tablesize) {
7919			scmd_printk(KERN_ERR, scp, "use_sg %d > "
7920				"sg_tablesize %d\n", use_sg,
7921				scp->device->host->sg_tablesize);
7922			scsi_dma_unmap(scp);
7923			scp->result = HOST_BYTE(DID_ERROR);
7924			return ASC_ERROR;
7925		}
7926
7927		asc_sg_head = kzalloc(sizeof(asc_scsi_q->sg_head) +
7928			use_sg * sizeof(struct asc_sg_list), GFP_ATOMIC);
7929		if (!asc_sg_head) {
7930			scsi_dma_unmap(scp);
7931			scp->result = HOST_BYTE(DID_SOFT_ERROR);
7932			return ASC_ERROR;
7933		}
7934
7935		asc_scsi_q->q1.cntl |= QC_SG_HEAD;
7936		asc_scsi_q->sg_head = asc_sg_head;
7937		asc_scsi_q->q1.data_cnt = 0;
7938		asc_scsi_q->q1.data_addr = 0;
7939		/* This is a byte value, otherwise it would need to be swapped. */
7940		asc_sg_head->entry_cnt = asc_scsi_q->q1.sg_queue_cnt = use_sg;
7941		ASC_STATS_ADD(scp->device->host, xfer_elem,
7942			      asc_sg_head->entry_cnt);
7943
7944		/*
7945		 * Convert scatter-gather list into ASC_SG_HEAD list.
7946		 */
7947		scsi_for_each_sg(scp, slp, use_sg, sgcnt) {
7948			asc_sg_head->sg_list[sgcnt].addr =
7949			    cpu_to_le32(sg_dma_address(slp));
7950			asc_sg_head->sg_list[sgcnt].bytes =
7951			    cpu_to_le32(sg_dma_len(slp));
7952			ASC_STATS_ADD(scp->device->host, xfer_sect,
7953				      DIV_ROUND_UP(sg_dma_len(slp), 512));
7954		}
7955	}
7956
7957	ASC_STATS(scp->device->host, xfer_cnt);
7958
7959	ASC_DBG_PRT_ASC_SCSI_Q(2, asc_scsi_q);
7960	ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
7961
7962	return ASC_NOERROR;
7963}
7964
7965/*
7966 * Build scatter-gather list for Adv Library (Wide Board).
7967 *
7968 * Additional ADV_SG_BLOCK structures will need to be allocated
7969 * if the total number of scatter-gather elements exceeds
7970 * NO_OF_SG_PER_BLOCK (15). The ADV_SG_BLOCK structures are
7971 * assumed to be physically contiguous.
7972 *
7973 * Return:
7974 *      ADV_SUCCESS(1) - SG List successfully created
7975 *      ADV_ERROR(-1) - SG List creation failed
7976 */
7977static int
7978adv_get_sglist(struct asc_board *boardp, adv_req_t *reqp, struct scsi_cmnd *scp,
7979	       int use_sg)
7980{
7981	adv_sgblk_t *sgblkp;
7982	ADV_SCSI_REQ_Q *scsiqp;
7983	struct scatterlist *slp;
7984	int sg_elem_cnt;
7985	ADV_SG_BLOCK *sg_block, *prev_sg_block;
7986	ADV_PADDR sg_block_paddr;
7987	int i;
7988
7989	scsiqp = (ADV_SCSI_REQ_Q *)ADV_32BALIGN(&reqp->scsi_req_q);
7990	slp = scsi_sglist(scp);
7991	sg_elem_cnt = use_sg;
7992	prev_sg_block = NULL;
7993	reqp->sgblkp = NULL;
7994
7995	for (;;) {
7996		/*
7997		 * Allocate a 'adv_sgblk_t' structure from the board free
7998		 * list. One 'adv_sgblk_t' structure holds NO_OF_SG_PER_BLOCK
7999		 * (15) scatter-gather elements.
8000		 */
8001		if ((sgblkp = boardp->adv_sgblkp) == NULL) {
8002			ASC_DBG(1, "no free adv_sgblk_t\n");
8003			ASC_STATS(scp->device->host, adv_build_nosg);
8004
8005			/*
8006			 * Allocation failed. Free 'adv_sgblk_t' structures
8007			 * already allocated for the request.
8008			 */
8009			while ((sgblkp = reqp->sgblkp) != NULL) {
8010				/* Remove 'sgblkp' from the request list. */
8011				reqp->sgblkp = sgblkp->next_sgblkp;
8012
8013				/* Add 'sgblkp' to the board free list. */
8014				sgblkp->next_sgblkp = boardp->adv_sgblkp;
8015				boardp->adv_sgblkp = sgblkp;
8016			}
8017			return ASC_BUSY;
8018		}
8019
8020		/* Complete 'adv_sgblk_t' board allocation. */
8021		boardp->adv_sgblkp = sgblkp->next_sgblkp;
8022		sgblkp->next_sgblkp = NULL;
8023
8024		/*
8025		 * Get 8 byte aligned virtual and physical addresses
8026		 * for the allocated ADV_SG_BLOCK structure.
8027		 */
8028		sg_block = (ADV_SG_BLOCK *)ADV_8BALIGN(&sgblkp->sg_block);
8029		sg_block_paddr = virt_to_bus(sg_block);
8030
8031		/*
8032		 * Check if this is the first 'adv_sgblk_t' for the
8033		 * request.
8034		 */
8035		if (reqp->sgblkp == NULL) {
8036			/* Request's first scatter-gather block. */
8037			reqp->sgblkp = sgblkp;
8038
8039			/*
8040			 * Set ADV_SCSI_REQ_T ADV_SG_BLOCK virtual and physical
8041			 * address pointers.
8042			 */
8043			scsiqp->sg_list_ptr = sg_block;
8044			scsiqp->sg_real_addr = cpu_to_le32(sg_block_paddr);
8045		} else {
8046			/* Request's second or later scatter-gather block. */
8047			sgblkp->next_sgblkp = reqp->sgblkp;
8048			reqp->sgblkp = sgblkp;
8049
8050			/*
8051			 * Point the previous ADV_SG_BLOCK structure to
8052			 * the newly allocated ADV_SG_BLOCK structure.
8053			 */
8054			prev_sg_block->sg_ptr = cpu_to_le32(sg_block_paddr);
8055		}
8056
8057		for (i = 0; i < NO_OF_SG_PER_BLOCK; i++) {
8058			sg_block->sg_list[i].sg_addr =
8059					cpu_to_le32(sg_dma_address(slp));
8060			sg_block->sg_list[i].sg_count =
8061					cpu_to_le32(sg_dma_len(slp));
8062			ASC_STATS_ADD(scp->device->host, xfer_sect,
8063				      DIV_ROUND_UP(sg_dma_len(slp), 512));
8064
8065			if (--sg_elem_cnt == 0) {	/* Last ADV_SG_BLOCK and scatter-gather entry. */
8066				sg_block->sg_cnt = i + 1;
8067				sg_block->sg_ptr = 0L;	/* Last ADV_SG_BLOCK in list. */
8068				return ADV_SUCCESS;
8069			}
8070			slp++;
8071		}
8072		sg_block->sg_cnt = NO_OF_SG_PER_BLOCK;
8073		prev_sg_block = sg_block;
8074	}
8075}
8076
8077/*
8078 * Build a request structure for the Adv Library (Wide Board).
8079 *
8080 * If an adv_req_t can not be allocated to issue the request,
8081 * then return ASC_BUSY. If an error occurs, then return ASC_ERROR.
8082 *
8083 * Multi-byte fields in the ASC_SCSI_REQ_Q that are used by the
8084 * microcode for DMA addresses or math operations are byte swapped
8085 * to little-endian order.
8086 */
8087static int
8088adv_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
8089	      ADV_SCSI_REQ_Q **adv_scsiqpp)
8090{
8091	adv_req_t *reqp;
8092	ADV_SCSI_REQ_Q *scsiqp;
8093	int i;
8094	int ret;
8095	int use_sg;
8096
8097	/*
8098	 * Allocate an adv_req_t structure from the board to execute
8099	 * the command.
8100	 */
8101	if (boardp->adv_reqp == NULL) {
8102		ASC_DBG(1, "no free adv_req_t\n");
8103		ASC_STATS(scp->device->host, adv_build_noreq);
8104		return ASC_BUSY;
8105	} else {
8106		reqp = boardp->adv_reqp;
8107		boardp->adv_reqp = reqp->next_reqp;
8108		reqp->next_reqp = NULL;
8109	}
8110
8111	/*
8112	 * Get 32-byte aligned ADV_SCSI_REQ_Q and ADV_SG_BLOCK pointers.
8113	 */
8114	scsiqp = (ADV_SCSI_REQ_Q *)ADV_32BALIGN(&reqp->scsi_req_q);
8115
8116	/*
8117	 * Initialize the structure.
8118	 */
8119	scsiqp->cntl = scsiqp->scsi_cntl = scsiqp->done_status = 0;
8120
8121	/*
8122	 * Set the ADV_SCSI_REQ_Q 'srb_ptr' to point to the adv_req_t structure.
8123	 */
8124	scsiqp->srb_ptr = ADV_VADDR_TO_U32(reqp);
8125
8126	/*
8127	 * Set the adv_req_t 'cmndp' to point to the struct scsi_cmnd structure.
8128	 */
8129	reqp->cmndp = scp;
8130
8131	/*
8132	 * Build the ADV_SCSI_REQ_Q request.
8133	 */
8134
8135	/* Set CDB length and copy it to the request structure.  */
8136	scsiqp->cdb_len = scp->cmd_len;
8137	/* Copy first 12 CDB bytes to cdb[]. */
8138	for (i = 0; i < scp->cmd_len && i < 12; i++) {
8139		scsiqp->cdb[i] = scp->cmnd[i];
8140	}
8141	/* Copy last 4 CDB bytes, if present, to cdb16[]. */
8142	for (; i < scp->cmd_len; i++) {
8143		scsiqp->cdb16[i - 12] = scp->cmnd[i];
8144	}
8145
8146	scsiqp->target_id = scp->device->id;
8147	scsiqp->target_lun = scp->device->lun;
8148
8149	scsiqp->sense_addr = cpu_to_le32(virt_to_bus(&scp->sense_buffer[0]));
8150	scsiqp->sense_len = SCSI_SENSE_BUFFERSIZE;
8151
8152	/* Build ADV_SCSI_REQ_Q */
8153
8154	use_sg = scsi_dma_map(scp);
8155	if (use_sg == 0) {
8156		/* Zero-length transfer */
8157		reqp->sgblkp = NULL;
8158		scsiqp->data_cnt = 0;
8159		scsiqp->vdata_addr = NULL;
8160
8161		scsiqp->data_addr = 0;
8162		scsiqp->sg_list_ptr = NULL;
8163		scsiqp->sg_real_addr = 0;
8164	} else {
8165		if (use_sg > ADV_MAX_SG_LIST) {
8166			scmd_printk(KERN_ERR, scp, "use_sg %d > "
8167				   "ADV_MAX_SG_LIST %d\n", use_sg,
8168				   scp->device->host->sg_tablesize);
8169			scsi_dma_unmap(scp);
8170			scp->result = HOST_BYTE(DID_ERROR);
8171
8172			/*
8173			 * Free the 'adv_req_t' structure by adding it back
8174			 * to the board free list.
8175			 */
8176			reqp->next_reqp = boardp->adv_reqp;
8177			boardp->adv_reqp = reqp;
8178
8179			return ASC_ERROR;
8180		}
8181
8182		scsiqp->data_cnt = cpu_to_le32(scsi_bufflen(scp));
8183
8184		ret = adv_get_sglist(boardp, reqp, scp, use_sg);
8185		if (ret != ADV_SUCCESS) {
8186			/*
8187			 * Free the adv_req_t structure by adding it back to
8188			 * the board free list.
8189			 */
8190			reqp->next_reqp = boardp->adv_reqp;
8191			boardp->adv_reqp = reqp;
8192
8193			return ret;
8194		}
8195
8196		ASC_STATS_ADD(scp->device->host, xfer_elem, use_sg);
8197	}
8198
8199	ASC_STATS(scp->device->host, xfer_cnt);
8200
8201	ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
8202	ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
8203
8204	*adv_scsiqpp = scsiqp;
8205
8206	return ASC_NOERROR;
8207}
8208
8209static int AscSgListToQueue(int sg_list)
8210{
8211	int n_sg_list_qs;
8212
8213	n_sg_list_qs = ((sg_list - 1) / ASC_SG_LIST_PER_Q);
8214	if (((sg_list - 1) % ASC_SG_LIST_PER_Q) != 0)
8215		n_sg_list_qs++;
8216	return n_sg_list_qs + 1;
8217}
8218
8219static uint
8220AscGetNumOfFreeQueue(ASC_DVC_VAR *asc_dvc, uchar target_ix, uchar n_qs)
8221{
8222	uint cur_used_qs;
8223	uint cur_free_qs;
8224	ASC_SCSI_BIT_ID_TYPE target_id;
8225	uchar tid_no;
8226
8227	target_id = ASC_TIX_TO_TARGET_ID(target_ix);
8228	tid_no = ASC_TIX_TO_TID(target_ix);
8229	if ((asc_dvc->unit_not_ready & target_id) ||
8230	    (asc_dvc->queue_full_or_busy & target_id)) {
8231		return 0;
8232	}
8233	if (n_qs == 1) {
8234		cur_used_qs = (uint) asc_dvc->cur_total_qng +
8235		    (uint) asc_dvc->last_q_shortage + (uint) ASC_MIN_FREE_Q;
8236	} else {
8237		cur_used_qs = (uint) asc_dvc->cur_total_qng +
8238		    (uint) ASC_MIN_FREE_Q;
8239	}
8240	if ((uint) (cur_used_qs + n_qs) <= (uint) asc_dvc->max_total_qng) {
8241		cur_free_qs = (uint) asc_dvc->max_total_qng - cur_used_qs;
8242		if (asc_dvc->cur_dvc_qng[tid_no] >=
8243		    asc_dvc->max_dvc_qng[tid_no]) {
8244			return 0;
8245		}
8246		return cur_free_qs;
8247	}
8248	if (n_qs > 1) {
8249		if ((n_qs > asc_dvc->last_q_shortage)
8250		    && (n_qs <= (asc_dvc->max_total_qng - ASC_MIN_FREE_Q))) {
8251			asc_dvc->last_q_shortage = n_qs;
8252		}
8253	}
8254	return 0;
8255}
8256
8257static uchar AscAllocFreeQueue(PortAddr iop_base, uchar free_q_head)
8258{
8259	ushort q_addr;
8260	uchar next_qp;
8261	uchar q_status;
8262
8263	q_addr = ASC_QNO_TO_QADDR(free_q_head);
8264	q_status = (uchar)AscReadLramByte(iop_base,
8265					  (ushort)(q_addr +
8266						   ASC_SCSIQ_B_STATUS));
8267	next_qp = AscReadLramByte(iop_base, (ushort)(q_addr + ASC_SCSIQ_B_FWD));
8268	if (((q_status & QS_READY) == 0) && (next_qp != ASC_QLINK_END))
8269		return next_qp;
8270	return ASC_QLINK_END;
8271}
8272
8273static uchar
8274AscAllocMultipleFreeQueue(PortAddr iop_base, uchar free_q_head, uchar n_free_q)
8275{
8276	uchar i;
8277
8278	for (i = 0; i < n_free_q; i++) {
8279		free_q_head = AscAllocFreeQueue(iop_base, free_q_head);
8280		if (free_q_head == ASC_QLINK_END)
8281			break;
8282	}
8283	return free_q_head;
8284}
8285
8286/*
8287 * void
8288 * DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
8289 *
8290 * Calling/Exit State:
8291 *    none
8292 *
8293 * Description:
8294 *     Output an ASC_SCSI_Q structure to the chip
8295 */
8296static void
8297DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
8298{
8299	int i;
8300
8301	ASC_DBG_PRT_HEX(2, "DvcPutScsiQ", outbuf, 2 * words);
8302	AscSetChipLramAddr(iop_base, s_addr);
8303	for (i = 0; i < 2 * words; i += 2) {
8304		if (i == 4 || i == 20) {
8305			continue;
8306		}
8307		outpw(iop_base + IOP_RAM_DATA,
8308		      ((ushort)outbuf[i + 1] << 8) | outbuf[i]);
8309	}
8310}
8311
8312static int AscPutReadyQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
8313{
8314	ushort q_addr;
8315	uchar tid_no;
8316	uchar sdtr_data;
8317	uchar syn_period_ix;
8318	uchar syn_offset;
8319	PortAddr iop_base;
8320
8321	iop_base = asc_dvc->iop_base;
8322	if (((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) &&
8323	    ((asc_dvc->sdtr_done & scsiq->q1.target_id) == 0)) {
8324		tid_no = ASC_TIX_TO_TID(scsiq->q2.target_ix);
8325		sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
8326		syn_period_ix =
8327		    (sdtr_data >> 4) & (asc_dvc->max_sdtr_index - 1);
8328		syn_offset = sdtr_data & ASC_SYN_MAX_OFFSET;
8329		AscMsgOutSDTR(asc_dvc,
8330			      asc_dvc->sdtr_period_tbl[syn_period_ix],
8331			      syn_offset);
8332		scsiq->q1.cntl |= QC_MSG_OUT;
8333	}
8334	q_addr = ASC_QNO_TO_QADDR(q_no);
8335	if ((scsiq->q1.target_id & asc_dvc->use_tagged_qng) == 0) {
8336		scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG;
8337	}
8338	scsiq->q1.status = QS_FREE;
8339	AscMemWordCopyPtrToLram(iop_base,
8340				q_addr + ASC_SCSIQ_CDB_BEG,
8341				(uchar *)scsiq->cdbptr, scsiq->q2.cdb_len >> 1);
8342
8343	DvcPutScsiQ(iop_base,
8344		    q_addr + ASC_SCSIQ_CPY_BEG,
8345		    (uchar *)&scsiq->q1.cntl,
8346		    ((sizeof(ASC_SCSIQ_1) + sizeof(ASC_SCSIQ_2)) / 2) - 1);
8347	AscWriteLramWord(iop_base,
8348			 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS),
8349			 (ushort)(((ushort)scsiq->q1.
8350				   q_no << 8) | (ushort)QS_READY));
8351	return 1;
8352}
8353
8354static int
8355AscPutReadySgListQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
8356{
8357	int sta;
8358	int i;
8359	ASC_SG_HEAD *sg_head;
8360	ASC_SG_LIST_Q scsi_sg_q;
8361	ASC_DCNT saved_data_addr;
8362	ASC_DCNT saved_data_cnt;
8363	PortAddr iop_base;
8364	ushort sg_list_dwords;
8365	ushort sg_index;
8366	ushort sg_entry_cnt;
8367	ushort q_addr;
8368	uchar next_qp;
8369
8370	iop_base = asc_dvc->iop_base;
8371	sg_head = scsiq->sg_head;
8372	saved_data_addr = scsiq->q1.data_addr;
8373	saved_data_cnt = scsiq->q1.data_cnt;
8374	scsiq->q1.data_addr = (ASC_PADDR) sg_head->sg_list[0].addr;
8375	scsiq->q1.data_cnt = (ASC_DCNT) sg_head->sg_list[0].bytes;
8376#if CC_VERY_LONG_SG_LIST
8377	/*
8378	 * If sg_head->entry_cnt is greater than ASC_MAX_SG_LIST
8379	 * then not all SG elements will fit in the allocated queues.
8380	 * The rest of the SG elements will be copied when the RISC
8381	 * completes the SG elements that fit and halts.
8382	 */
8383	if (sg_head->entry_cnt > ASC_MAX_SG_LIST) {
8384		/*
8385		 * Set sg_entry_cnt to be the number of SG elements that
8386		 * will fit in the allocated SG queues. It is minus 1, because
8387		 * the first SG element is handled above. ASC_MAX_SG_LIST is
8388		 * already inflated by 1 to account for this. For example it
8389		 * may be 50 which is 1 + 7 queues * 7 SG elements.
8390		 */
8391		sg_entry_cnt = ASC_MAX_SG_LIST - 1;
8392
8393		/*
8394		 * Keep track of remaining number of SG elements that will
8395		 * need to be handled from a_isr.c.
8396		 */
8397		scsiq->remain_sg_entry_cnt =
8398		    sg_head->entry_cnt - ASC_MAX_SG_LIST;
8399	} else {
8400#endif /* CC_VERY_LONG_SG_LIST */
8401		/*
8402		 * Set sg_entry_cnt to be the number of SG elements that
8403		 * will fit in the allocated SG queues. It is minus 1, because
8404		 * the first SG element is handled above.
8405		 */
8406		sg_entry_cnt = sg_head->entry_cnt - 1;
8407#if CC_VERY_LONG_SG_LIST
8408	}
8409#endif /* CC_VERY_LONG_SG_LIST */
8410	if (sg_entry_cnt != 0) {
8411		scsiq->q1.cntl |= QC_SG_HEAD;
8412		q_addr = ASC_QNO_TO_QADDR(q_no);
8413		sg_index = 1;
8414		scsiq->q1.sg_queue_cnt = sg_head->queue_cnt;
8415		scsi_sg_q.sg_head_qp = q_no;
8416		scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
8417		for (i = 0; i < sg_head->queue_cnt; i++) {
8418			scsi_sg_q.seq_no = i + 1;
8419			if (sg_entry_cnt > ASC_SG_LIST_PER_Q) {
8420				sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2);
8421				sg_entry_cnt -= ASC_SG_LIST_PER_Q;
8422				if (i == 0) {
8423					scsi_sg_q.sg_list_cnt =
8424					    ASC_SG_LIST_PER_Q;
8425					scsi_sg_q.sg_cur_list_cnt =
8426					    ASC_SG_LIST_PER_Q;
8427				} else {
8428					scsi_sg_q.sg_list_cnt =
8429					    ASC_SG_LIST_PER_Q - 1;
8430					scsi_sg_q.sg_cur_list_cnt =
8431					    ASC_SG_LIST_PER_Q - 1;
8432				}
8433			} else {
8434#if CC_VERY_LONG_SG_LIST
8435				/*
8436				 * This is the last SG queue in the list of
8437				 * allocated SG queues. If there are more
8438				 * SG elements than will fit in the allocated
8439				 * queues, then set the QCSG_SG_XFER_MORE flag.
8440				 */
8441				if (sg_head->entry_cnt > ASC_MAX_SG_LIST) {
8442					scsi_sg_q.cntl |= QCSG_SG_XFER_MORE;
8443				} else {
8444#endif /* CC_VERY_LONG_SG_LIST */
8445					scsi_sg_q.cntl |= QCSG_SG_XFER_END;
8446#if CC_VERY_LONG_SG_LIST
8447				}
8448#endif /* CC_VERY_LONG_SG_LIST */
8449				sg_list_dwords = sg_entry_cnt << 1;
8450				if (i == 0) {
8451					scsi_sg_q.sg_list_cnt = sg_entry_cnt;
8452					scsi_sg_q.sg_cur_list_cnt =
8453					    sg_entry_cnt;
8454				} else {
8455					scsi_sg_q.sg_list_cnt =
8456					    sg_entry_cnt - 1;
8457					scsi_sg_q.sg_cur_list_cnt =
8458					    sg_entry_cnt - 1;
8459				}
8460				sg_entry_cnt = 0;
8461			}
8462			next_qp = AscReadLramByte(iop_base,
8463						  (ushort)(q_addr +
8464							   ASC_SCSIQ_B_FWD));
8465			scsi_sg_q.q_no = next_qp;
8466			q_addr = ASC_QNO_TO_QADDR(next_qp);
8467			AscMemWordCopyPtrToLram(iop_base,
8468						q_addr + ASC_SCSIQ_SGHD_CPY_BEG,
8469						(uchar *)&scsi_sg_q,
8470						sizeof(ASC_SG_LIST_Q) >> 1);
8471			AscMemDWordCopyPtrToLram(iop_base,
8472						 q_addr + ASC_SGQ_LIST_BEG,
8473						 (uchar *)&sg_head->
8474						 sg_list[sg_index],
8475						 sg_list_dwords);
8476			sg_index += ASC_SG_LIST_PER_Q;
8477			scsiq->next_sg_index = sg_index;
8478		}
8479	} else {
8480		scsiq->q1.cntl &= ~QC_SG_HEAD;
8481	}
8482	sta = AscPutReadyQueue(asc_dvc, scsiq, q_no);
8483	scsiq->q1.data_addr = saved_data_addr;
8484	scsiq->q1.data_cnt = saved_data_cnt;
8485	return (sta);
8486}
8487
8488static int
8489AscSendScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar n_q_required)
8490{
8491	PortAddr iop_base;
8492	uchar free_q_head;
8493	uchar next_qp;
8494	uchar tid_no;
8495	uchar target_ix;
8496	int sta;
8497
8498	iop_base = asc_dvc->iop_base;
8499	target_ix = scsiq->q2.target_ix;
8500	tid_no = ASC_TIX_TO_TID(target_ix);
8501	sta = 0;
8502	free_q_head = (uchar)AscGetVarFreeQHead(iop_base);
8503	if (n_q_required > 1) {
8504		next_qp = AscAllocMultipleFreeQueue(iop_base, free_q_head,
8505						    (uchar)n_q_required);
8506		if (next_qp != ASC_QLINK_END) {
8507			asc_dvc->last_q_shortage = 0;
8508			scsiq->sg_head->queue_cnt = n_q_required - 1;
8509			scsiq->q1.q_no = free_q_head;
8510			sta = AscPutReadySgListQueue(asc_dvc, scsiq,
8511						     free_q_head);
8512		}
8513	} else if (n_q_required == 1) {
8514		next_qp = AscAllocFreeQueue(iop_base, free_q_head);
8515		if (next_qp != ASC_QLINK_END) {
8516			scsiq->q1.q_no = free_q_head;
8517			sta = AscPutReadyQueue(asc_dvc, scsiq, free_q_head);
8518		}
8519	}
8520	if (sta == 1) {
8521		AscPutVarFreeQHead(iop_base, next_qp);
8522		asc_dvc->cur_total_qng += n_q_required;
8523		asc_dvc->cur_dvc_qng[tid_no]++;
8524	}
8525	return sta;
8526}
8527
8528#define ASC_SYN_OFFSET_ONE_DISABLE_LIST  16
8529static uchar _syn_offset_one_disable_cmd[ASC_SYN_OFFSET_ONE_DISABLE_LIST] = {
8530	INQUIRY,
8531	REQUEST_SENSE,
8532	READ_CAPACITY,
8533	READ_TOC,
8534	MODE_SELECT,
8535	MODE_SENSE,
8536	MODE_SELECT_10,
8537	MODE_SENSE_10,
8538	0xFF,
8539	0xFF,
8540	0xFF,
8541	0xFF,
8542	0xFF,
8543	0xFF,
8544	0xFF,
8545	0xFF
8546};
8547
8548static int AscExeScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq)
8549{
8550	PortAddr iop_base;
8551	int sta;
8552	int n_q_required;
8553	int disable_syn_offset_one_fix;
8554	int i;
8555	ASC_PADDR addr;
8556	ushort sg_entry_cnt = 0;
8557	ushort sg_entry_cnt_minus_one = 0;
8558	uchar target_ix;
8559	uchar tid_no;
8560	uchar sdtr_data;
8561	uchar extra_bytes;
8562	uchar scsi_cmd;
8563	uchar disable_cmd;
8564	ASC_SG_HEAD *sg_head;
8565	ASC_DCNT data_cnt;
8566
8567	iop_base = asc_dvc->iop_base;
8568	sg_head = scsiq->sg_head;
8569	if (asc_dvc->err_code != 0)
8570		return (ERR);
8571	scsiq->q1.q_no = 0;
8572	if ((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0) {
8573		scsiq->q1.extra_bytes = 0;
8574	}
8575	sta = 0;
8576	target_ix = scsiq->q2.target_ix;
8577	tid_no = ASC_TIX_TO_TID(target_ix);
8578	n_q_required = 1;
8579	if (scsiq->cdbptr[0] == REQUEST_SENSE) {
8580		if ((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) {
8581			asc_dvc->sdtr_done &= ~scsiq->q1.target_id;
8582			sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
8583			AscMsgOutSDTR(asc_dvc,
8584				      asc_dvc->
8585				      sdtr_period_tbl[(sdtr_data >> 4) &
8586						      (uchar)(asc_dvc->
8587							      max_sdtr_index -
8588							      1)],
8589				      (uchar)(sdtr_data & (uchar)
8590					      ASC_SYN_MAX_OFFSET));
8591			scsiq->q1.cntl |= (QC_MSG_OUT | QC_URGENT);
8592		}
8593	}
8594	if (asc_dvc->in_critical_cnt != 0) {
8595		AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CRITICAL_RE_ENTRY);
8596		return (ERR);
8597	}
8598	asc_dvc->in_critical_cnt++;
8599	if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
8600		if ((sg_entry_cnt = sg_head->entry_cnt) == 0) {
8601			asc_dvc->in_critical_cnt--;
8602			return (ERR);
8603		}
8604#if !CC_VERY_LONG_SG_LIST
8605		if (sg_entry_cnt > ASC_MAX_SG_LIST) {
8606			asc_dvc->in_critical_cnt--;
8607			return (ERR);
8608		}
8609#endif /* !CC_VERY_LONG_SG_LIST */
8610		if (sg_entry_cnt == 1) {
8611			scsiq->q1.data_addr =
8612			    (ADV_PADDR)sg_head->sg_list[0].addr;
8613			scsiq->q1.data_cnt =
8614			    (ADV_DCNT)sg_head->sg_list[0].bytes;
8615			scsiq->q1.cntl &= ~(QC_SG_HEAD | QC_SG_SWAP_QUEUE);
8616		}
8617		sg_entry_cnt_minus_one = sg_entry_cnt - 1;
8618	}
8619	scsi_cmd = scsiq->cdbptr[0];
8620	disable_syn_offset_one_fix = FALSE;
8621	if ((asc_dvc->pci_fix_asyn_xfer & scsiq->q1.target_id) &&
8622	    !(asc_dvc->pci_fix_asyn_xfer_always & scsiq->q1.target_id)) {
8623		if (scsiq->q1.cntl & QC_SG_HEAD) {
8624			data_cnt = 0;
8625			for (i = 0; i < sg_entry_cnt; i++) {
8626				data_cnt +=
8627				    (ADV_DCNT)le32_to_cpu(sg_head->sg_list[i].
8628							  bytes);
8629			}
8630		} else {
8631			data_cnt = le32_to_cpu(scsiq->q1.data_cnt);
8632		}
8633		if (data_cnt != 0UL) {
8634			if (data_cnt < 512UL) {
8635				disable_syn_offset_one_fix = TRUE;
8636			} else {
8637				for (i = 0; i < ASC_SYN_OFFSET_ONE_DISABLE_LIST;
8638				     i++) {
8639					disable_cmd =
8640					    _syn_offset_one_disable_cmd[i];
8641					if (disable_cmd == 0xFF) {
8642						break;
8643					}
8644					if (scsi_cmd == disable_cmd) {
8645						disable_syn_offset_one_fix =
8646						    TRUE;
8647						break;
8648					}
8649				}
8650			}
8651		}
8652	}
8653	if (disable_syn_offset_one_fix) {
8654		scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG;
8655		scsiq->q2.tag_code |= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX |
8656				       ASC_TAG_FLAG_DISABLE_DISCONNECT);
8657	} else {
8658		scsiq->q2.tag_code &= 0x27;
8659	}
8660	if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
8661		if (asc_dvc->bug_fix_cntl) {
8662			if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
8663				if ((scsi_cmd == READ_6) ||
8664				    (scsi_cmd == READ_10)) {
8665					addr =
8666					    (ADV_PADDR)le32_to_cpu(sg_head->
8667								   sg_list
8668								   [sg_entry_cnt_minus_one].
8669								   addr) +
8670					    (ADV_DCNT)le32_to_cpu(sg_head->
8671								  sg_list
8672								  [sg_entry_cnt_minus_one].
8673								  bytes);
8674					extra_bytes =
8675					    (uchar)((ushort)addr & 0x0003);
8676					if ((extra_bytes != 0)
8677					    &&
8678					    ((scsiq->q2.
8679					      tag_code &
8680					      ASC_TAG_FLAG_EXTRA_BYTES)
8681					     == 0)) {
8682						scsiq->q2.tag_code |=
8683						    ASC_TAG_FLAG_EXTRA_BYTES;
8684						scsiq->q1.extra_bytes =
8685						    extra_bytes;
8686						data_cnt =
8687						    le32_to_cpu(sg_head->
8688								sg_list
8689								[sg_entry_cnt_minus_one].
8690								bytes);
8691						data_cnt -=
8692						    (ASC_DCNT) extra_bytes;
8693						sg_head->
8694						    sg_list
8695						    [sg_entry_cnt_minus_one].
8696						    bytes =
8697						    cpu_to_le32(data_cnt);
8698					}
8699				}
8700			}
8701		}
8702		sg_head->entry_to_copy = sg_head->entry_cnt;
8703#if CC_VERY_LONG_SG_LIST
8704		/*
8705		 * Set the sg_entry_cnt to the maximum possible. The rest of
8706		 * the SG elements will be copied when the RISC completes the
8707		 * SG elements that fit and halts.
8708		 */
8709		if (sg_entry_cnt > ASC_MAX_SG_LIST) {
8710			sg_entry_cnt = ASC_MAX_SG_LIST;
8711		}
8712#endif /* CC_VERY_LONG_SG_LIST */
8713		n_q_required = AscSgListToQueue(sg_entry_cnt);
8714		if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, n_q_required) >=
8715		     (uint) n_q_required)
8716		    || ((scsiq->q1.cntl & QC_URGENT) != 0)) {
8717			if ((sta =
8718			     AscSendScsiQueue(asc_dvc, scsiq,
8719					      n_q_required)) == 1) {
8720				asc_dvc->in_critical_cnt--;
8721				return (sta);
8722			}
8723		}
8724	} else {
8725		if (asc_dvc->bug_fix_cntl) {
8726			if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
8727				if ((scsi_cmd == READ_6) ||
8728				    (scsi_cmd == READ_10)) {
8729					addr =
8730					    le32_to_cpu(scsiq->q1.data_addr) +
8731					    le32_to_cpu(scsiq->q1.data_cnt);
8732					extra_bytes =
8733					    (uchar)((ushort)addr & 0x0003);
8734					if ((extra_bytes != 0)
8735					    &&
8736					    ((scsiq->q2.
8737					      tag_code &
8738					      ASC_TAG_FLAG_EXTRA_BYTES)
8739					     == 0)) {
8740						data_cnt =
8741						    le32_to_cpu(scsiq->q1.
8742								data_cnt);
8743						if (((ushort)data_cnt & 0x01FF)
8744						    == 0) {
8745							scsiq->q2.tag_code |=
8746							    ASC_TAG_FLAG_EXTRA_BYTES;
8747							data_cnt -= (ASC_DCNT)
8748							    extra_bytes;
8749							scsiq->q1.data_cnt =
8750							    cpu_to_le32
8751							    (data_cnt);
8752							scsiq->q1.extra_bytes =
8753							    extra_bytes;
8754						}
8755					}
8756				}
8757			}
8758		}
8759		n_q_required = 1;
8760		if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, 1) >= 1) ||
8761		    ((scsiq->q1.cntl & QC_URGENT) != 0)) {
8762			if ((sta = AscSendScsiQueue(asc_dvc, scsiq,
8763						    n_q_required)) == 1) {
8764				asc_dvc->in_critical_cnt--;
8765				return (sta);
8766			}
8767		}
8768	}
8769	asc_dvc->in_critical_cnt--;
8770	return (sta);
8771}
8772
8773/*
8774 * AdvExeScsiQueue() - Send a request to the RISC microcode program.
8775 *
8776 *   Allocate a carrier structure, point the carrier to the ADV_SCSI_REQ_Q,
8777 *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
8778 *   RISC to notify it a new command is ready to be executed.
8779 *
8780 * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
8781 * set to SCSI_MAX_RETRY.
8782 *
8783 * Multi-byte fields in the ASC_SCSI_REQ_Q that are used by the microcode
8784 * for DMA addresses or math operations are byte swapped to little-endian
8785 * order.
8786 *
8787 * Return:
8788 *      ADV_SUCCESS(1) - The request was successfully queued.
8789 *      ADV_BUSY(0) -    Resource unavailable; Retry again after pending
8790 *                       request completes.
8791 *      ADV_ERROR(-1) -  Invalid ADV_SCSI_REQ_Q request structure
8792 *                       host IC error.
8793 */
8794static int AdvExeScsiQueue(ADV_DVC_VAR *asc_dvc, ADV_SCSI_REQ_Q *scsiq)
8795{
8796	AdvPortAddr iop_base;
8797	ADV_PADDR req_paddr;
8798	ADV_CARR_T *new_carrp;
8799
8800	/*
8801	 * The ADV_SCSI_REQ_Q 'target_id' field should never exceed ADV_MAX_TID.
8802	 */
8803	if (scsiq->target_id > ADV_MAX_TID) {
8804		scsiq->host_status = QHSTA_M_INVALID_DEVICE;
8805		scsiq->done_status = QD_WITH_ERROR;
8806		return ADV_ERROR;
8807	}
8808
8809	iop_base = asc_dvc->iop_base;
8810
8811	/*
8812	 * Allocate a carrier ensuring at least one carrier always
8813	 * remains on the freelist and initialize fields.
8814	 */
8815	if ((new_carrp = asc_dvc->carr_freelist) == NULL) {
8816		return ADV_BUSY;
8817	}
8818	asc_dvc->carr_freelist = (ADV_CARR_T *)
8819	    ADV_U32_TO_VADDR(le32_to_cpu(new_carrp->next_vpa));
8820	asc_dvc->carr_pending_cnt++;
8821
8822	/*
8823	 * Set the carrier to be a stopper by setting 'next_vpa'
8824	 * to the stopper value. The current stopper will be changed
8825	 * below to point to the new stopper.
8826	 */
8827	new_carrp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
8828
8829	/*
8830	 * Clear the ADV_SCSI_REQ_Q done flag.
8831	 */
8832	scsiq->a_flag &= ~ADV_SCSIQ_DONE;
8833
8834	req_paddr = virt_to_bus(scsiq);
8835	BUG_ON(req_paddr & 31);
8836	/* Wait for assertion before making little-endian */
8837	req_paddr = cpu_to_le32(req_paddr);
8838
8839	/* Save virtual and physical address of ADV_SCSI_REQ_Q and carrier. */
8840	scsiq->scsiq_ptr = cpu_to_le32(ADV_VADDR_TO_U32(scsiq));
8841	scsiq->scsiq_rptr = req_paddr;
8842
8843	scsiq->carr_va = cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->icq_sp));
8844	/*
8845	 * Every ADV_CARR_T.carr_pa is byte swapped to little-endian
8846	 * order during initialization.
8847	 */
8848	scsiq->carr_pa = asc_dvc->icq_sp->carr_pa;
8849
8850	/*
8851	 * Use the current stopper to send the ADV_SCSI_REQ_Q command to
8852	 * the microcode. The newly allocated stopper will become the new
8853	 * stopper.
8854	 */
8855	asc_dvc->icq_sp->areq_vpa = req_paddr;
8856
8857	/*
8858	 * Set the 'next_vpa' pointer for the old stopper to be the
8859	 * physical address of the new stopper. The RISC can only
8860	 * follow physical addresses.
8861	 */
8862	asc_dvc->icq_sp->next_vpa = new_carrp->carr_pa;
8863
8864	/*
8865	 * Set the host adapter stopper pointer to point to the new carrier.
8866	 */
8867	asc_dvc->icq_sp = new_carrp;
8868
8869	if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
8870	    asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
8871		/*
8872		 * Tickle the RISC to tell it to read its Command Queue Head pointer.
8873		 */
8874		AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_A);
8875		if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
8876			/*
8877			 * Clear the tickle value. In the ASC-3550 the RISC flag
8878			 * command 'clr_tickle_a' does not work unless the host
8879			 * value is cleared.
8880			 */
8881			AdvWriteByteRegister(iop_base, IOPB_TICKLE,
8882					     ADV_TICKLE_NOP);
8883		}
8884	} else if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
8885		/*
8886		 * Notify the RISC a carrier is ready by writing the physical
8887		 * address of the new carrier stopper to the COMMA register.
8888		 */
8889		AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
8890				      le32_to_cpu(new_carrp->carr_pa));
8891	}
8892
8893	return ADV_SUCCESS;
8894}
8895
8896/*
8897 * Execute a single 'Scsi_Cmnd'.
8898 */
8899static int asc_execute_scsi_cmnd(struct scsi_cmnd *scp)
8900{
8901	int ret, err_code;
8902	struct asc_board *boardp = shost_priv(scp->device->host);
8903
8904	ASC_DBG(1, "scp 0x%p\n", scp);
8905
8906	if (ASC_NARROW_BOARD(boardp)) {
8907		ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
8908		struct asc_scsi_q asc_scsi_q;
8909
8910		/* asc_build_req() can not return ASC_BUSY. */
8911		ret = asc_build_req(boardp, scp, &asc_scsi_q);
8912		if (ret == ASC_ERROR) {
8913			ASC_STATS(scp->device->host, build_error);
8914			return ASC_ERROR;
8915		}
8916
8917		ret = AscExeScsiQueue(asc_dvc, &asc_scsi_q);
8918		kfree(asc_scsi_q.sg_head);
8919		err_code = asc_dvc->err_code;
8920	} else {
8921		ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
8922		ADV_SCSI_REQ_Q *adv_scsiqp;
8923
8924		switch (adv_build_req(boardp, scp, &adv_scsiqp)) {
8925		case ASC_NOERROR:
8926			ASC_DBG(3, "adv_build_req ASC_NOERROR\n");
8927			break;
8928		case ASC_BUSY:
8929			ASC_DBG(1, "adv_build_req ASC_BUSY\n");
8930			/*
8931			 * The asc_stats fields 'adv_build_noreq' and
8932			 * 'adv_build_nosg' count wide board busy conditions.
8933			 * They are updated in adv_build_req and
8934			 * adv_get_sglist, respectively.
8935			 */
8936			return ASC_BUSY;
8937		case ASC_ERROR:
8938		default:
8939			ASC_DBG(1, "adv_build_req ASC_ERROR\n");
8940			ASC_STATS(scp->device->host, build_error);
8941			return ASC_ERROR;
8942		}
8943
8944		ret = AdvExeScsiQueue(adv_dvc, adv_scsiqp);
8945		err_code = adv_dvc->err_code;
8946	}
8947
8948	switch (ret) {
8949	case ASC_NOERROR:
8950		ASC_STATS(scp->device->host, exe_noerror);
8951		/*
8952		 * Increment monotonically increasing per device
8953		 * successful request counter. Wrapping doesn't matter.
8954		 */
8955		boardp->reqcnt[scp->device->id]++;
8956		ASC_DBG(1, "ExeScsiQueue() ASC_NOERROR\n");
8957		break;
8958	case ASC_BUSY:
8959		ASC_STATS(scp->device->host, exe_busy);
8960		break;
8961	case ASC_ERROR:
8962		scmd_printk(KERN_ERR, scp, "ExeScsiQueue() ASC_ERROR, "
8963			"err_code 0x%x\n", err_code);
8964		ASC_STATS(scp->device->host, exe_error);
8965		scp->result = HOST_BYTE(DID_ERROR);
8966		break;
8967	default:
8968		scmd_printk(KERN_ERR, scp, "ExeScsiQueue() unknown, "
8969			"err_code 0x%x\n", err_code);
8970		ASC_STATS(scp->device->host, exe_unknown);
8971		scp->result = HOST_BYTE(DID_ERROR);
8972		break;
8973	}
8974
8975	ASC_DBG(1, "end\n");
8976	return ret;
8977}
8978
8979/*
8980 * advansys_queuecommand() - interrupt-driven I/O entrypoint.
8981 *
8982 * This function always returns 0. Command return status is saved
8983 * in the 'scp' result field.
8984 */
8985static int
8986advansys_queuecommand_lck(struct scsi_cmnd *scp, void (*done)(struct scsi_cmnd *))
8987{
8988	struct Scsi_Host *shost = scp->device->host;
8989	int asc_res, result = 0;
8990
8991	ASC_STATS(shost, queuecommand);
8992	scp->scsi_done = done;
8993
8994	asc_res = asc_execute_scsi_cmnd(scp);
8995
8996	switch (asc_res) {
8997	case ASC_NOERROR:
8998		break;
8999	case ASC_BUSY:
9000		result = SCSI_MLQUEUE_HOST_BUSY;
9001		break;
9002	case ASC_ERROR:
9003	default:
9004		asc_scsi_done(scp);
9005		break;
9006	}
9007
9008	return result;
9009}
9010
9011static DEF_SCSI_QCMD(advansys_queuecommand)
9012
9013static ushort AscGetEisaChipCfg(PortAddr iop_base)
9014{
9015	PortAddr eisa_cfg_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
9016	    (PortAddr) (ASC_EISA_CFG_IOP_MASK);
9017	return inpw(eisa_cfg_iop);
9018}
9019
9020/*
9021 * Return the BIOS address of the adapter at the specified
9022 * I/O port and with the specified bus type.
9023 */
9024static unsigned short AscGetChipBiosAddress(PortAddr iop_base,
9025					    unsigned short bus_type)
9026{
9027	unsigned short cfg_lsw;
9028	unsigned short bios_addr;
9029
9030	/*
9031	 * The PCI BIOS is re-located by the motherboard BIOS. Because
9032	 * of this the driver can not determine where a PCI BIOS is
9033	 * loaded and executes.
9034	 */
9035	if (bus_type & ASC_IS_PCI)
9036		return 0;
9037
9038	if ((bus_type & ASC_IS_EISA) != 0) {
9039		cfg_lsw = AscGetEisaChipCfg(iop_base);
9040		cfg_lsw &= 0x000F;
9041		bios_addr = ASC_BIOS_MIN_ADDR + cfg_lsw * ASC_BIOS_BANK_SIZE;
9042		return bios_addr;
9043	}
9044
9045	cfg_lsw = AscGetChipCfgLsw(iop_base);
9046
9047	/*
9048	 *  ISA PnP uses the top bit as the 32K BIOS flag
9049	 */
9050	if (bus_type == ASC_IS_ISAPNP)
9051		cfg_lsw &= 0x7FFF;
9052	bios_addr = ASC_BIOS_MIN_ADDR + (cfg_lsw >> 12) * ASC_BIOS_BANK_SIZE;
9053	return bios_addr;
9054}
9055
9056static uchar AscSetChipScsiID(PortAddr iop_base, uchar new_host_id)
9057{
9058	ushort cfg_lsw;
9059
9060	if (AscGetChipScsiID(iop_base) == new_host_id) {
9061		return (new_host_id);
9062	}
9063	cfg_lsw = AscGetChipCfgLsw(iop_base);
9064	cfg_lsw &= 0xF8FF;
9065	cfg_lsw |= (ushort)((new_host_id & ASC_MAX_TID) << 8);
9066	AscSetChipCfgLsw(iop_base, cfg_lsw);
9067	return (AscGetChipScsiID(iop_base));
9068}
9069
9070static unsigned char AscGetChipScsiCtrl(PortAddr iop_base)
9071{
9072	unsigned char sc;
9073
9074	AscSetBank(iop_base, 1);
9075	sc = inp(iop_base + IOP_REG_SC);
9076	AscSetBank(iop_base, 0);
9077	return sc;
9078}
9079
9080static unsigned char AscGetChipVersion(PortAddr iop_base,
9081				       unsigned short bus_type)
9082{
9083	if (bus_type & ASC_IS_EISA) {
9084		PortAddr eisa_iop;
9085		unsigned char revision;
9086		eisa_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
9087		    (PortAddr) ASC_EISA_REV_IOP_MASK;
9088		revision = inp(eisa_iop);
9089		return ASC_CHIP_MIN_VER_EISA - 1 + revision;
9090	}
9091	return AscGetChipVerNo(iop_base);
9092}
9093
9094#ifdef CONFIG_ISA
9095static void AscEnableIsaDma(uchar dma_channel)
9096{
9097	if (dma_channel < 4) {
9098		outp(0x000B, (ushort)(0xC0 | dma_channel));
9099		outp(0x000A, dma_channel);
9100	} else if (dma_channel < 8) {
9101		outp(0x00D6, (ushort)(0xC0 | (dma_channel - 4)));
9102		outp(0x00D4, (ushort)(dma_channel - 4));
9103	}
9104}
9105#endif /* CONFIG_ISA */
9106
9107static int AscStopQueueExe(PortAddr iop_base)
9108{
9109	int count = 0;
9110
9111	if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) == 0) {
9112		AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
9113				 ASC_STOP_REQ_RISC_STOP);
9114		do {
9115			if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) &
9116			    ASC_STOP_ACK_RISC_STOP) {
9117				return (1);
9118			}
9119			mdelay(100);
9120		} while (count++ < 20);
9121	}
9122	return (0);
9123}
9124
9125static ASC_DCNT AscGetMaxDmaCount(ushort bus_type)
9126{
9127	if (bus_type & ASC_IS_ISA)
9128		return ASC_MAX_ISA_DMA_COUNT;
9129	else if (bus_type & (ASC_IS_EISA | ASC_IS_VL))
9130		return ASC_MAX_VL_DMA_COUNT;
9131	return ASC_MAX_PCI_DMA_COUNT;
9132}
9133
9134#ifdef CONFIG_ISA
9135static ushort AscGetIsaDmaChannel(PortAddr iop_base)
9136{
9137	ushort channel;
9138
9139	channel = AscGetChipCfgLsw(iop_base) & 0x0003;
9140	if (channel == 0x03)
9141		return (0);
9142	else if (channel == 0x00)
9143		return (7);
9144	return (channel + 4);
9145}
9146
9147static ushort AscSetIsaDmaChannel(PortAddr iop_base, ushort dma_channel)
9148{
9149	ushort cfg_lsw;
9150	uchar value;
9151
9152	if ((dma_channel >= 5) && (dma_channel <= 7)) {
9153		if (dma_channel == 7)
9154			value = 0x00;
9155		else
9156			value = dma_channel - 4;
9157		cfg_lsw = AscGetChipCfgLsw(iop_base) & 0xFFFC;
9158		cfg_lsw |= value;
9159		AscSetChipCfgLsw(iop_base, cfg_lsw);
9160		return (AscGetIsaDmaChannel(iop_base));
9161	}
9162	return 0;
9163}
9164
9165static uchar AscGetIsaDmaSpeed(PortAddr iop_base)
9166{
9167	uchar speed_value;
9168
9169	AscSetBank(iop_base, 1);
9170	speed_value = AscReadChipDmaSpeed(iop_base);
9171	speed_value &= 0x07;
9172	AscSetBank(iop_base, 0);
9173	return speed_value;
9174}
9175
9176static uchar AscSetIsaDmaSpeed(PortAddr iop_base, uchar speed_value)
9177{
9178	speed_value &= 0x07;
9179	AscSetBank(iop_base, 1);
9180	AscWriteChipDmaSpeed(iop_base, speed_value);
9181	AscSetBank(iop_base, 0);
9182	return AscGetIsaDmaSpeed(iop_base);
9183}
9184#endif /* CONFIG_ISA */
9185
9186static ushort AscInitAscDvcVar(ASC_DVC_VAR *asc_dvc)
9187{
9188	int i;
9189	PortAddr iop_base;
9190	ushort warn_code;
9191	uchar chip_version;
9192
9193	iop_base = asc_dvc->iop_base;
9194	warn_code = 0;
9195	asc_dvc->err_code = 0;
9196	if ((asc_dvc->bus_type &
9197	     (ASC_IS_ISA | ASC_IS_PCI | ASC_IS_EISA | ASC_IS_VL)) == 0) {
9198		asc_dvc->err_code |= ASC_IERR_NO_BUS_TYPE;
9199	}
9200	AscSetChipControl(iop_base, CC_HALT);
9201	AscSetChipStatus(iop_base, 0);
9202	asc_dvc->bug_fix_cntl = 0;
9203	asc_dvc->pci_fix_asyn_xfer = 0;
9204	asc_dvc->pci_fix_asyn_xfer_always = 0;
9205	/* asc_dvc->init_state initialized in AscInitGetConfig(). */
9206	asc_dvc->sdtr_done = 0;
9207	asc_dvc->cur_total_qng = 0;
9208	asc_dvc->is_in_int = 0;
9209	asc_dvc->in_critical_cnt = 0;
9210	asc_dvc->last_q_shortage = 0;
9211	asc_dvc->use_tagged_qng = 0;
9212	asc_dvc->no_scam = 0;
9213	asc_dvc->unit_not_ready = 0;
9214	asc_dvc->queue_full_or_busy = 0;
9215	asc_dvc->redo_scam = 0;
9216	asc_dvc->res2 = 0;
9217	asc_dvc->min_sdtr_index = 0;
9218	asc_dvc->cfg->can_tagged_qng = 0;
9219	asc_dvc->cfg->cmd_qng_enabled = 0;
9220	asc_dvc->dvc_cntl = ASC_DEF_DVC_CNTL;
9221	asc_dvc->init_sdtr = 0;
9222	asc_dvc->max_total_qng = ASC_DEF_MAX_TOTAL_QNG;
9223	asc_dvc->scsi_reset_wait = 3;
9224	asc_dvc->start_motor = ASC_SCSI_WIDTH_BIT_SET;
9225	asc_dvc->max_dma_count = AscGetMaxDmaCount(asc_dvc->bus_type);
9226	asc_dvc->cfg->sdtr_enable = ASC_SCSI_WIDTH_BIT_SET;
9227	asc_dvc->cfg->disc_enable = ASC_SCSI_WIDTH_BIT_SET;
9228	asc_dvc->cfg->chip_scsi_id = ASC_DEF_CHIP_SCSI_ID;
9229	chip_version = AscGetChipVersion(iop_base, asc_dvc->bus_type);
9230	asc_dvc->cfg->chip_version = chip_version;
9231	asc_dvc->sdtr_period_tbl = asc_syn_xfer_period;
9232	asc_dvc->max_sdtr_index = 7;
9233	if ((asc_dvc->bus_type & ASC_IS_PCI) &&
9234	    (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3150)) {
9235		asc_dvc->bus_type = ASC_IS_PCI_ULTRA;
9236		asc_dvc->sdtr_period_tbl = asc_syn_ultra_xfer_period;
9237		asc_dvc->max_sdtr_index = 15;
9238		if (chip_version == ASC_CHIP_VER_PCI_ULTRA_3150) {
9239			AscSetExtraControl(iop_base,
9240					   (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
9241		} else if (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3050) {
9242			AscSetExtraControl(iop_base,
9243					   (SEC_ACTIVE_NEGATE |
9244					    SEC_ENABLE_FILTER));
9245		}
9246	}
9247	if (asc_dvc->bus_type == ASC_IS_PCI) {
9248		AscSetExtraControl(iop_base,
9249				   (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
9250	}
9251
9252	asc_dvc->cfg->isa_dma_speed = ASC_DEF_ISA_DMA_SPEED;
9253#ifdef CONFIG_ISA
9254	if ((asc_dvc->bus_type & ASC_IS_ISA) != 0) {
9255		if (chip_version >= ASC_CHIP_MIN_VER_ISA_PNP) {
9256			AscSetChipIFC(iop_base, IFC_INIT_DEFAULT);
9257			asc_dvc->bus_type = ASC_IS_ISAPNP;
9258		}
9259		asc_dvc->cfg->isa_dma_channel =
9260		    (uchar)AscGetIsaDmaChannel(iop_base);
9261	}
9262#endif /* CONFIG_ISA */
9263	for (i = 0; i <= ASC_MAX_TID; i++) {
9264		asc_dvc->cur_dvc_qng[i] = 0;
9265		asc_dvc->max_dvc_qng[i] = ASC_MAX_SCSI1_QNG;
9266		asc_dvc->scsiq_busy_head[i] = (ASC_SCSI_Q *)0L;
9267		asc_dvc->scsiq_busy_tail[i] = (ASC_SCSI_Q *)0L;
9268		asc_dvc->cfg->max_tag_qng[i] = ASC_MAX_INRAM_TAG_QNG;
9269	}
9270	return warn_code;
9271}
9272
9273static int AscWriteEEPCmdReg(PortAddr iop_base, uchar cmd_reg)
9274{
9275	int retry;
9276
9277	for (retry = 0; retry < ASC_EEP_MAX_RETRY; retry++) {
9278		unsigned char read_back;
9279		AscSetChipEEPCmd(iop_base, cmd_reg);
9280		mdelay(1);
9281		read_back = AscGetChipEEPCmd(iop_base);
9282		if (read_back == cmd_reg)
9283			return 1;
9284	}
9285	return 0;
9286}
9287
9288static void AscWaitEEPRead(void)
9289{
9290	mdelay(1);
9291}
9292
9293static ushort AscReadEEPWord(PortAddr iop_base, uchar addr)
9294{
9295	ushort read_wval;
9296	uchar cmd_reg;
9297
9298	AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
9299	AscWaitEEPRead();
9300	cmd_reg = addr | ASC_EEP_CMD_READ;
9301	AscWriteEEPCmdReg(iop_base, cmd_reg);
9302	AscWaitEEPRead();
9303	read_wval = AscGetChipEEPData(iop_base);
9304	AscWaitEEPRead();
9305	return read_wval;
9306}
9307
9308static ushort AscGetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
9309			      ushort bus_type)
9310{
9311	ushort wval;
9312	ushort sum;
9313	ushort *wbuf;
9314	int cfg_beg;
9315	int cfg_end;
9316	int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
9317	int s_addr;
9318
9319	wbuf = (ushort *)cfg_buf;
9320	sum = 0;
9321	/* Read two config words; Byte-swapping done by AscReadEEPWord(). */
9322	for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9323		*wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
9324		sum += *wbuf;
9325	}
9326	if (bus_type & ASC_IS_VL) {
9327		cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9328		cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9329	} else {
9330		cfg_beg = ASC_EEP_DVC_CFG_BEG;
9331		cfg_end = ASC_EEP_MAX_DVC_ADDR;
9332	}
9333	for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9334		wval = AscReadEEPWord(iop_base, (uchar)s_addr);
9335		if (s_addr <= uchar_end_in_config) {
9336			/*
9337			 * Swap all char fields - must unswap bytes already swapped
9338			 * by AscReadEEPWord().
9339			 */
9340			*wbuf = le16_to_cpu(wval);
9341		} else {
9342			/* Don't swap word field at the end - cntl field. */
9343			*wbuf = wval;
9344		}
9345		sum += wval;	/* Checksum treats all EEPROM data as words. */
9346	}
9347	/*
9348	 * Read the checksum word which will be compared against 'sum'
9349	 * by the caller. Word field already swapped.
9350	 */
9351	*wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
9352	return sum;
9353}
9354
9355static int AscTestExternalLram(ASC_DVC_VAR *asc_dvc)
9356{
9357	PortAddr iop_base;
9358	ushort q_addr;
9359	ushort saved_word;
9360	int sta;
9361
9362	iop_base = asc_dvc->iop_base;
9363	sta = 0;
9364	q_addr = ASC_QNO_TO_QADDR(241);
9365	saved_word = AscReadLramWord(iop_base, q_addr);
9366	AscSetChipLramAddr(iop_base, q_addr);
9367	AscSetChipLramData(iop_base, 0x55AA);
9368	mdelay(10);
9369	AscSetChipLramAddr(iop_base, q_addr);
9370	if (AscGetChipLramData(iop_base) == 0x55AA) {
9371		sta = 1;
9372		AscWriteLramWord(iop_base, q_addr, saved_word);
9373	}
9374	return (sta);
9375}
9376
9377static void AscWaitEEPWrite(void)
9378{
9379	mdelay(20);
9380}
9381
9382static int AscWriteEEPDataReg(PortAddr iop_base, ushort data_reg)
9383{
9384	ushort read_back;
9385	int retry;
9386
9387	retry = 0;
9388	while (TRUE) {
9389		AscSetChipEEPData(iop_base, data_reg);
9390		mdelay(1);
9391		read_back = AscGetChipEEPData(iop_base);
9392		if (read_back == data_reg) {
9393			return (1);
9394		}
9395		if (retry++ > ASC_EEP_MAX_RETRY) {
9396			return (0);
9397		}
9398	}
9399}
9400
9401static ushort AscWriteEEPWord(PortAddr iop_base, uchar addr, ushort word_val)
9402{
9403	ushort read_wval;
9404
9405	read_wval = AscReadEEPWord(iop_base, addr);
9406	if (read_wval != word_val) {
9407		AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_ABLE);
9408		AscWaitEEPRead();
9409		AscWriteEEPDataReg(iop_base, word_val);
9410		AscWaitEEPRead();
9411		AscWriteEEPCmdReg(iop_base,
9412				  (uchar)((uchar)ASC_EEP_CMD_WRITE | addr));
9413		AscWaitEEPWrite();
9414		AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
9415		AscWaitEEPRead();
9416		return (AscReadEEPWord(iop_base, addr));
9417	}
9418	return (read_wval);
9419}
9420
9421static int AscSetEEPConfigOnce(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
9422			       ushort bus_type)
9423{
9424	int n_error;
9425	ushort *wbuf;
9426	ushort word;
9427	ushort sum;
9428	int s_addr;
9429	int cfg_beg;
9430	int cfg_end;
9431	int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
9432
9433	wbuf = (ushort *)cfg_buf;
9434	n_error = 0;
9435	sum = 0;
9436	/* Write two config words; AscWriteEEPWord() will swap bytes. */
9437	for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9438		sum += *wbuf;
9439		if (*wbuf != AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
9440			n_error++;
9441		}
9442	}
9443	if (bus_type & ASC_IS_VL) {
9444		cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9445		cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9446	} else {
9447		cfg_beg = ASC_EEP_DVC_CFG_BEG;
9448		cfg_end = ASC_EEP_MAX_DVC_ADDR;
9449	}
9450	for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9451		if (s_addr <= uchar_end_in_config) {
9452			/*
9453			 * This is a char field. Swap char fields before they are
9454			 * swapped again by AscWriteEEPWord().
9455			 */
9456			word = cpu_to_le16(*wbuf);
9457			if (word !=
9458			    AscWriteEEPWord(iop_base, (uchar)s_addr, word)) {
9459				n_error++;
9460			}
9461		} else {
9462			/* Don't swap word field at the end - cntl field. */
9463			if (*wbuf !=
9464			    AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
9465				n_error++;
9466			}
9467		}
9468		sum += *wbuf;	/* Checksum calculated from word values. */
9469	}
9470	/* Write checksum word. It will be swapped by AscWriteEEPWord(). */
9471	*wbuf = sum;
9472	if (sum != AscWriteEEPWord(iop_base, (uchar)s_addr, sum)) {
9473		n_error++;
9474	}
9475
9476	/* Read EEPROM back again. */
9477	wbuf = (ushort *)cfg_buf;
9478	/*
9479	 * Read two config words; Byte-swapping done by AscReadEEPWord().
9480	 */
9481	for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9482		if (*wbuf != AscReadEEPWord(iop_base, (uchar)s_addr)) {
9483			n_error++;
9484		}
9485	}
9486	if (bus_type & ASC_IS_VL) {
9487		cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9488		cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9489	} else {
9490		cfg_beg = ASC_EEP_DVC_CFG_BEG;
9491		cfg_end = ASC_EEP_MAX_DVC_ADDR;
9492	}
9493	for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9494		if (s_addr <= uchar_end_in_config) {
9495			/*
9496			 * Swap all char fields. Must unswap bytes already swapped
9497			 * by AscReadEEPWord().
9498			 */
9499			word =
9500			    le16_to_cpu(AscReadEEPWord
9501					(iop_base, (uchar)s_addr));
9502		} else {
9503			/* Don't swap word field at the end - cntl field. */
9504			word = AscReadEEPWord(iop_base, (uchar)s_addr);
9505		}
9506		if (*wbuf != word) {
9507			n_error++;
9508		}
9509	}
9510	/* Read checksum; Byte swapping not needed. */
9511	if (AscReadEEPWord(iop_base, (uchar)s_addr) != sum) {
9512		n_error++;
9513	}
9514	return n_error;
9515}
9516
9517static int AscSetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
9518			   ushort bus_type)
9519{
9520	int retry;
9521	int n_error;
9522
9523	retry = 0;
9524	while (TRUE) {
9525		if ((n_error = AscSetEEPConfigOnce(iop_base, cfg_buf,
9526						   bus_type)) == 0) {
9527			break;
9528		}
9529		if (++retry > ASC_EEP_MAX_RETRY) {
9530			break;
9531		}
9532	}
9533	return n_error;
9534}
9535
9536static ushort AscInitFromEEP(ASC_DVC_VAR *asc_dvc)
9537{
9538	ASCEEP_CONFIG eep_config_buf;
9539	ASCEEP_CONFIG *eep_config;
9540	PortAddr iop_base;
9541	ushort chksum;
9542	ushort warn_code;
9543	ushort cfg_msw, cfg_lsw;
9544	int i;
9545	int write_eep = 0;
9546
9547	iop_base = asc_dvc->iop_base;
9548	warn_code = 0;
9549	AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0x00FE);
9550	AscStopQueueExe(iop_base);
9551	if ((AscStopChip(iop_base) == FALSE) ||
9552	    (AscGetChipScsiCtrl(iop_base) != 0)) {
9553		asc_dvc->init_state |= ASC_INIT_RESET_SCSI_DONE;
9554		AscResetChipAndScsiBus(asc_dvc);
9555		mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
9556	}
9557	if (AscIsChipHalted(iop_base) == FALSE) {
9558		asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
9559		return (warn_code);
9560	}
9561	AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
9562	if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
9563		asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
9564		return (warn_code);
9565	}
9566	eep_config = (ASCEEP_CONFIG *)&eep_config_buf;
9567	cfg_msw = AscGetChipCfgMsw(iop_base);
9568	cfg_lsw = AscGetChipCfgLsw(iop_base);
9569	if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
9570		cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9571		warn_code |= ASC_WARN_CFG_MSW_RECOVER;
9572		AscSetChipCfgMsw(iop_base, cfg_msw);
9573	}
9574	chksum = AscGetEEPConfig(iop_base, eep_config, asc_dvc->bus_type);
9575	ASC_DBG(1, "chksum 0x%x\n", chksum);
9576	if (chksum == 0) {
9577		chksum = 0xaa55;
9578	}
9579	if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
9580		warn_code |= ASC_WARN_AUTO_CONFIG;
9581		if (asc_dvc->cfg->chip_version == 3) {
9582			if (eep_config->cfg_lsw != cfg_lsw) {
9583				warn_code |= ASC_WARN_EEPROM_RECOVER;
9584				eep_config->cfg_lsw =
9585				    AscGetChipCfgLsw(iop_base);
9586			}
9587			if (eep_config->cfg_msw != cfg_msw) {
9588				warn_code |= ASC_WARN_EEPROM_RECOVER;
9589				eep_config->cfg_msw =
9590				    AscGetChipCfgMsw(iop_base);
9591			}
9592		}
9593	}
9594	eep_config->cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9595	eep_config->cfg_lsw |= ASC_CFG0_HOST_INT_ON;
9596	ASC_DBG(1, "eep_config->chksum 0x%x\n", eep_config->chksum);
9597	if (chksum != eep_config->chksum) {
9598		if (AscGetChipVersion(iop_base, asc_dvc->bus_type) ==
9599		    ASC_CHIP_VER_PCI_ULTRA_3050) {
9600			ASC_DBG(1, "chksum error ignored; EEPROM-less board\n");
9601			eep_config->init_sdtr = 0xFF;
9602			eep_config->disc_enable = 0xFF;
9603			eep_config->start_motor = 0xFF;
9604			eep_config->use_cmd_qng = 0;
9605			eep_config->max_total_qng = 0xF0;
9606			eep_config->max_tag_qng = 0x20;
9607			eep_config->cntl = 0xBFFF;
9608			ASC_EEP_SET_CHIP_ID(eep_config, 7);
9609			eep_config->no_scam = 0;
9610			eep_config->adapter_info[0] = 0;
9611			eep_config->adapter_info[1] = 0;
9612			eep_config->adapter_info[2] = 0;
9613			eep_config->adapter_info[3] = 0;
9614			eep_config->adapter_info[4] = 0;
9615			/* Indicate EEPROM-less board. */
9616			eep_config->adapter_info[5] = 0xBB;
9617		} else {
9618			ASC_PRINT
9619			    ("AscInitFromEEP: EEPROM checksum error; Will try to re-write EEPROM.\n");
9620			write_eep = 1;
9621			warn_code |= ASC_WARN_EEPROM_CHKSUM;
9622		}
9623	}
9624	asc_dvc->cfg->sdtr_enable = eep_config->init_sdtr;
9625	asc_dvc->cfg->disc_enable = eep_config->disc_enable;
9626	asc_dvc->cfg->cmd_qng_enabled = eep_config->use_cmd_qng;
9627	asc_dvc->cfg->isa_dma_speed = ASC_EEP_GET_DMA_SPD(eep_config);
9628	asc_dvc->start_motor = eep_config->start_motor;
9629	asc_dvc->dvc_cntl = eep_config->cntl;
9630	asc_dvc->no_scam = eep_config->no_scam;
9631	asc_dvc->cfg->adapter_info[0] = eep_config->adapter_info[0];
9632	asc_dvc->cfg->adapter_info[1] = eep_config->adapter_info[1];
9633	asc_dvc->cfg->adapter_info[2] = eep_config->adapter_info[2];
9634	asc_dvc->cfg->adapter_info[3] = eep_config->adapter_info[3];
9635	asc_dvc->cfg->adapter_info[4] = eep_config->adapter_info[4];
9636	asc_dvc->cfg->adapter_info[5] = eep_config->adapter_info[5];
9637	if (!AscTestExternalLram(asc_dvc)) {
9638		if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) ==
9639		     ASC_IS_PCI_ULTRA)) {
9640			eep_config->max_total_qng =
9641			    ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG;
9642			eep_config->max_tag_qng =
9643			    ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG;
9644		} else {
9645			eep_config->cfg_msw |= 0x0800;
9646			cfg_msw |= 0x0800;
9647			AscSetChipCfgMsw(iop_base, cfg_msw);
9648			eep_config->max_total_qng = ASC_MAX_PCI_INRAM_TOTAL_QNG;
9649			eep_config->max_tag_qng = ASC_MAX_INRAM_TAG_QNG;
9650		}
9651	} else {
9652	}
9653	if (eep_config->max_total_qng < ASC_MIN_TOTAL_QNG) {
9654		eep_config->max_total_qng = ASC_MIN_TOTAL_QNG;
9655	}
9656	if (eep_config->max_total_qng > ASC_MAX_TOTAL_QNG) {
9657		eep_config->max_total_qng = ASC_MAX_TOTAL_QNG;
9658	}
9659	if (eep_config->max_tag_qng > eep_config->max_total_qng) {
9660		eep_config->max_tag_qng = eep_config->max_total_qng;
9661	}
9662	if (eep_config->max_tag_qng < ASC_MIN_TAG_Q_PER_DVC) {
9663		eep_config->max_tag_qng = ASC_MIN_TAG_Q_PER_DVC;
9664	}
9665	asc_dvc->max_total_qng = eep_config->max_total_qng;
9666	if ((eep_config->use_cmd_qng & eep_config->disc_enable) !=
9667	    eep_config->use_cmd_qng) {
9668		eep_config->disc_enable = eep_config->use_cmd_qng;
9669		warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
9670	}
9671	ASC_EEP_SET_CHIP_ID(eep_config,
9672			    ASC_EEP_GET_CHIP_ID(eep_config) & ASC_MAX_TID);
9673	asc_dvc->cfg->chip_scsi_id = ASC_EEP_GET_CHIP_ID(eep_config);
9674	if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) &&
9675	    !(asc_dvc->dvc_cntl & ASC_CNTL_SDTR_ENABLE_ULTRA)) {
9676		asc_dvc->min_sdtr_index = ASC_SDTR_ULTRA_PCI_10MB_INDEX;
9677	}
9678
9679	for (i = 0; i <= ASC_MAX_TID; i++) {
9680		asc_dvc->dos_int13_table[i] = eep_config->dos_int13_table[i];
9681		asc_dvc->cfg->max_tag_qng[i] = eep_config->max_tag_qng;
9682		asc_dvc->cfg->sdtr_period_offset[i] =
9683		    (uchar)(ASC_DEF_SDTR_OFFSET |
9684			    (asc_dvc->min_sdtr_index << 4));
9685	}
9686	eep_config->cfg_msw = AscGetChipCfgMsw(iop_base);
9687	if (write_eep) {
9688		if ((i = AscSetEEPConfig(iop_base, eep_config,
9689				     asc_dvc->bus_type)) != 0) {
9690			ASC_PRINT1
9691			    ("AscInitFromEEP: Failed to re-write EEPROM with %d errors.\n",
9692			     i);
9693		} else {
9694			ASC_PRINT
9695			    ("AscInitFromEEP: Successfully re-wrote EEPROM.\n");
9696		}
9697	}
9698	return (warn_code);
9699}
9700
9701static int AscInitGetConfig(struct Scsi_Host *shost)
9702{
9703	struct asc_board *board = shost_priv(shost);
9704	ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
9705	unsigned short warn_code = 0;
9706
9707	asc_dvc->init_state = ASC_INIT_STATE_BEG_GET_CFG;
9708	if (asc_dvc->err_code != 0)
9709		return asc_dvc->err_code;
9710
9711	if (AscFindSignature(asc_dvc->iop_base)) {
9712		warn_code |= AscInitAscDvcVar(asc_dvc);
9713		warn_code |= AscInitFromEEP(asc_dvc);
9714		asc_dvc->init_state |= ASC_INIT_STATE_END_GET_CFG;
9715		if (asc_dvc->scsi_reset_wait > ASC_MAX_SCSI_RESET_WAIT)
9716			asc_dvc->scsi_reset_wait = ASC_MAX_SCSI_RESET_WAIT;
9717	} else {
9718		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
9719	}
9720
9721	switch (warn_code) {
9722	case 0:	/* No error */
9723		break;
9724	case ASC_WARN_IO_PORT_ROTATE:
9725		shost_printk(KERN_WARNING, shost, "I/O port address "
9726				"modified\n");
9727		break;
9728	case ASC_WARN_AUTO_CONFIG:
9729		shost_printk(KERN_WARNING, shost, "I/O port increment switch "
9730				"enabled\n");
9731		break;
9732	case ASC_WARN_EEPROM_CHKSUM:
9733		shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
9734		break;
9735	case ASC_WARN_IRQ_MODIFIED:
9736		shost_printk(KERN_WARNING, shost, "IRQ modified\n");
9737		break;
9738	case ASC_WARN_CMD_QNG_CONFLICT:
9739		shost_printk(KERN_WARNING, shost, "tag queuing enabled w/o "
9740				"disconnects\n");
9741		break;
9742	default:
9743		shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
9744				warn_code);
9745		break;
9746	}
9747
9748	if (asc_dvc->err_code != 0)
9749		shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
9750			"0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
9751
9752	return asc_dvc->err_code;
9753}
9754
9755static int AscInitSetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
9756{
9757	struct asc_board *board = shost_priv(shost);
9758	ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
9759	PortAddr iop_base = asc_dvc->iop_base;
9760	unsigned short cfg_msw;
9761	unsigned short warn_code = 0;
9762
9763	asc_dvc->init_state |= ASC_INIT_STATE_BEG_SET_CFG;
9764	if (asc_dvc->err_code != 0)
9765		return asc_dvc->err_code;
9766	if (!AscFindSignature(asc_dvc->iop_base)) {
9767		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
9768		return asc_dvc->err_code;
9769	}
9770
9771	cfg_msw = AscGetChipCfgMsw(iop_base);
9772	if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
9773		cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9774		warn_code |= ASC_WARN_CFG_MSW_RECOVER;
9775		AscSetChipCfgMsw(iop_base, cfg_msw);
9776	}
9777	if ((asc_dvc->cfg->cmd_qng_enabled & asc_dvc->cfg->disc_enable) !=
9778	    asc_dvc->cfg->cmd_qng_enabled) {
9779		asc_dvc->cfg->disc_enable = asc_dvc->cfg->cmd_qng_enabled;
9780		warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
9781	}
9782	if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
9783		warn_code |= ASC_WARN_AUTO_CONFIG;
9784	}
9785#ifdef CONFIG_PCI
9786	if (asc_dvc->bus_type & ASC_IS_PCI) {
9787		cfg_msw &= 0xFFC0;
9788		AscSetChipCfgMsw(iop_base, cfg_msw);
9789		if ((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) {
9790		} else {
9791			if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
9792			    (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
9793				asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_IF_NOT_DWB;
9794				asc_dvc->bug_fix_cntl |=
9795				    ASC_BUG_FIX_ASYN_USE_SYN;
9796			}
9797		}
9798	} else
9799#endif /* CONFIG_PCI */
9800	if (asc_dvc->bus_type == ASC_IS_ISAPNP) {
9801		if (AscGetChipVersion(iop_base, asc_dvc->bus_type)
9802		    == ASC_CHIP_VER_ASYN_BUG) {
9803			asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_ASYN_USE_SYN;
9804		}
9805	}
9806	if (AscSetChipScsiID(iop_base, asc_dvc->cfg->chip_scsi_id) !=
9807	    asc_dvc->cfg->chip_scsi_id) {
9808		asc_dvc->err_code |= ASC_IERR_SET_SCSI_ID;
9809	}
9810#ifdef CONFIG_ISA
9811	if (asc_dvc->bus_type & ASC_IS_ISA) {
9812		AscSetIsaDmaChannel(iop_base, asc_dvc->cfg->isa_dma_channel);
9813		AscSetIsaDmaSpeed(iop_base, asc_dvc->cfg->isa_dma_speed);
9814	}
9815#endif /* CONFIG_ISA */
9816
9817	asc_dvc->init_state |= ASC_INIT_STATE_END_SET_CFG;
9818
9819	switch (warn_code) {
9820	case 0:	/* No error. */
9821		break;
9822	case ASC_WARN_IO_PORT_ROTATE:
9823		shost_printk(KERN_WARNING, shost, "I/O port address "
9824				"modified\n");
9825		break;
9826	case ASC_WARN_AUTO_CONFIG:
9827		shost_printk(KERN_WARNING, shost, "I/O port increment switch "
9828				"enabled\n");
9829		break;
9830	case ASC_WARN_EEPROM_CHKSUM:
9831		shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
9832		break;
9833	case ASC_WARN_IRQ_MODIFIED:
9834		shost_printk(KERN_WARNING, shost, "IRQ modified\n");
9835		break;
9836	case ASC_WARN_CMD_QNG_CONFLICT:
9837		shost_printk(KERN_WARNING, shost, "tag queuing w/o "
9838				"disconnects\n");
9839		break;
9840	default:
9841		shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
9842				warn_code);
9843		break;
9844	}
9845
9846	if (asc_dvc->err_code != 0)
9847		shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
9848			"0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
9849
9850	return asc_dvc->err_code;
9851}
9852
9853/*
9854 * EEPROM Configuration.
9855 *
9856 * All drivers should use this structure to set the default EEPROM
9857 * configuration. The BIOS now uses this structure when it is built.
9858 * Additional structure information can be found in a_condor.h where
9859 * the structure is defined.
9860 *
9861 * The *_Field_IsChar structs are needed to correct for endianness.
9862 * These values are read from the board 16 bits at a time directly
9863 * into the structs. Because some fields are char, the values will be
9864 * in the wrong order. The *_Field_IsChar tells when to flip the
9865 * bytes. Data read and written to PCI memory is automatically swapped
9866 * on big-endian platforms so char fields read as words are actually being
9867 * unswapped on big-endian platforms.
9868 */
9869static ADVEEP_3550_CONFIG Default_3550_EEPROM_Config = {
9870	ADV_EEPROM_BIOS_ENABLE,	/* cfg_lsw */
9871	0x0000,			/* cfg_msw */
9872	0xFFFF,			/* disc_enable */
9873	0xFFFF,			/* wdtr_able */
9874	0xFFFF,			/* sdtr_able */
9875	0xFFFF,			/* start_motor */
9876	0xFFFF,			/* tagqng_able */
9877	0xFFFF,			/* bios_scan */
9878	0,			/* scam_tolerant */
9879	7,			/* adapter_scsi_id */
9880	0,			/* bios_boot_delay */
9881	3,			/* scsi_reset_delay */
9882	0,			/* bios_id_lun */
9883	0,			/* termination */
9884	0,			/* reserved1 */
9885	0xFFE7,			/* bios_ctrl */
9886	0xFFFF,			/* ultra_able */
9887	0,			/* reserved2 */
9888	ASC_DEF_MAX_HOST_QNG,	/* max_host_qng */
9889	ASC_DEF_MAX_DVC_QNG,	/* max_dvc_qng */
9890	0,			/* dvc_cntl */
9891	0,			/* bug_fix */
9892	0,			/* serial_number_word1 */
9893	0,			/* serial_number_word2 */
9894	0,			/* serial_number_word3 */
9895	0,			/* check_sum */
9896	{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9897	,			/* oem_name[16] */
9898	0,			/* dvc_err_code */
9899	0,			/* adv_err_code */
9900	0,			/* adv_err_addr */
9901	0,			/* saved_dvc_err_code */
9902	0,			/* saved_adv_err_code */
9903	0,			/* saved_adv_err_addr */
9904	0			/* num_of_err */
9905};
9906
9907static ADVEEP_3550_CONFIG ADVEEP_3550_Config_Field_IsChar = {
9908	0,			/* cfg_lsw */
9909	0,			/* cfg_msw */
9910	0,			/* -disc_enable */
9911	0,			/* wdtr_able */
9912	0,			/* sdtr_able */
9913	0,			/* start_motor */
9914	0,			/* tagqng_able */
9915	0,			/* bios_scan */
9916	0,			/* scam_tolerant */
9917	1,			/* adapter_scsi_id */
9918	1,			/* bios_boot_delay */
9919	1,			/* scsi_reset_delay */
9920	1,			/* bios_id_lun */
9921	1,			/* termination */
9922	1,			/* reserved1 */
9923	0,			/* bios_ctrl */
9924	0,			/* ultra_able */
9925	0,			/* reserved2 */
9926	1,			/* max_host_qng */
9927	1,			/* max_dvc_qng */
9928	0,			/* dvc_cntl */
9929	0,			/* bug_fix */
9930	0,			/* serial_number_word1 */
9931	0,			/* serial_number_word2 */
9932	0,			/* serial_number_word3 */
9933	0,			/* check_sum */
9934	{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9935	,			/* oem_name[16] */
9936	0,			/* dvc_err_code */
9937	0,			/* adv_err_code */
9938	0,			/* adv_err_addr */
9939	0,			/* saved_dvc_err_code */
9940	0,			/* saved_adv_err_code */
9941	0,			/* saved_adv_err_addr */
9942	0			/* num_of_err */
9943};
9944
9945static ADVEEP_38C0800_CONFIG Default_38C0800_EEPROM_Config = {
9946	ADV_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
9947	0x0000,			/* 01 cfg_msw */
9948	0xFFFF,			/* 02 disc_enable */
9949	0xFFFF,			/* 03 wdtr_able */
9950	0x4444,			/* 04 sdtr_speed1 */
9951	0xFFFF,			/* 05 start_motor */
9952	0xFFFF,			/* 06 tagqng_able */
9953	0xFFFF,			/* 07 bios_scan */
9954	0,			/* 08 scam_tolerant */
9955	7,			/* 09 adapter_scsi_id */
9956	0,			/*    bios_boot_delay */
9957	3,			/* 10 scsi_reset_delay */
9958	0,			/*    bios_id_lun */
9959	0,			/* 11 termination_se */
9960	0,			/*    termination_lvd */
9961	0xFFE7,			/* 12 bios_ctrl */
9962	0x4444,			/* 13 sdtr_speed2 */
9963	0x4444,			/* 14 sdtr_speed3 */
9964	ASC_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
9965	ASC_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
9966	0,			/* 16 dvc_cntl */
9967	0x4444,			/* 17 sdtr_speed4 */
9968	0,			/* 18 serial_number_word1 */
9969	0,			/* 19 serial_number_word2 */
9970	0,			/* 20 serial_number_word3 */
9971	0,			/* 21 check_sum */
9972	{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9973	,			/* 22-29 oem_name[16] */
9974	0,			/* 30 dvc_err_code */
9975	0,			/* 31 adv_err_code */
9976	0,			/* 32 adv_err_addr */
9977	0,			/* 33 saved_dvc_err_code */
9978	0,			/* 34 saved_adv_err_code */
9979	0,			/* 35 saved_adv_err_addr */
9980	0,			/* 36 reserved */
9981	0,			/* 37 reserved */
9982	0,			/* 38 reserved */
9983	0,			/* 39 reserved */
9984	0,			/* 40 reserved */
9985	0,			/* 41 reserved */
9986	0,			/* 42 reserved */
9987	0,			/* 43 reserved */
9988	0,			/* 44 reserved */
9989	0,			/* 45 reserved */
9990	0,			/* 46 reserved */
9991	0,			/* 47 reserved */
9992	0,			/* 48 reserved */
9993	0,			/* 49 reserved */
9994	0,			/* 50 reserved */
9995	0,			/* 51 reserved */
9996	0,			/* 52 reserved */
9997	0,			/* 53 reserved */
9998	0,			/* 54 reserved */
9999	0,			/* 55 reserved */
10000	0,			/* 56 cisptr_lsw */
10001	0,			/* 57 cisprt_msw */
10002	PCI_VENDOR_ID_ASP,	/* 58 subsysvid */
10003	PCI_DEVICE_ID_38C0800_REV1,	/* 59 subsysid */
10004	0,			/* 60 reserved */
10005	0,			/* 61 reserved */
10006	0,			/* 62 reserved */
10007	0			/* 63 reserved */
10008};
10009
10010static ADVEEP_38C0800_CONFIG ADVEEP_38C0800_Config_Field_IsChar = {
10011	0,			/* 00 cfg_lsw */
10012	0,			/* 01 cfg_msw */
10013	0,			/* 02 disc_enable */
10014	0,			/* 03 wdtr_able */
10015	0,			/* 04 sdtr_speed1 */
10016	0,			/* 05 start_motor */
10017	0,			/* 06 tagqng_able */
10018	0,			/* 07 bios_scan */
10019	0,			/* 08 scam_tolerant */
10020	1,			/* 09 adapter_scsi_id */
10021	1,			/*    bios_boot_delay */
10022	1,			/* 10 scsi_reset_delay */
10023	1,			/*    bios_id_lun */
10024	1,			/* 11 termination_se */
10025	1,			/*    termination_lvd */
10026	0,			/* 12 bios_ctrl */
10027	0,			/* 13 sdtr_speed2 */
10028	0,			/* 14 sdtr_speed3 */
10029	1,			/* 15 max_host_qng */
10030	1,			/*    max_dvc_qng */
10031	0,			/* 16 dvc_cntl */
10032	0,			/* 17 sdtr_speed4 */
10033	0,			/* 18 serial_number_word1 */
10034	0,			/* 19 serial_number_word2 */
10035	0,			/* 20 serial_number_word3 */
10036	0,			/* 21 check_sum */
10037	{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
10038	,			/* 22-29 oem_name[16] */
10039	0,			/* 30 dvc_err_code */
10040	0,			/* 31 adv_err_code */
10041	0,			/* 32 adv_err_addr */
10042	0,			/* 33 saved_dvc_err_code */
10043	0,			/* 34 saved_adv_err_code */
10044	0,			/* 35 saved_adv_err_addr */
10045	0,			/* 36 reserved */
10046	0,			/* 37 reserved */
10047	0,			/* 38 reserved */
10048	0,			/* 39 reserved */
10049	0,			/* 40 reserved */
10050	0,			/* 41 reserved */
10051	0,			/* 42 reserved */
10052	0,			/* 43 reserved */
10053	0,			/* 44 reserved */
10054	0,			/* 45 reserved */
10055	0,			/* 46 reserved */
10056	0,			/* 47 reserved */
10057	0,			/* 48 reserved */
10058	0,			/* 49 reserved */
10059	0,			/* 50 reserved */
10060	0,			/* 51 reserved */
10061	0,			/* 52 reserved */
10062	0,			/* 53 reserved */
10063	0,			/* 54 reserved */
10064	0,			/* 55 reserved */
10065	0,			/* 56 cisptr_lsw */
10066	0,			/* 57 cisprt_msw */
10067	0,			/* 58 subsysvid */
10068	0,			/* 59 subsysid */
10069	0,			/* 60 reserved */
10070	0,			/* 61 reserved */
10071	0,			/* 62 reserved */
10072	0			/* 63 reserved */
10073};
10074
10075static ADVEEP_38C1600_CONFIG Default_38C1600_EEPROM_Config = {
10076	ADV_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
10077	0x0000,			/* 01 cfg_msw */
10078	0xFFFF,			/* 02 disc_enable */
10079	0xFFFF,			/* 03 wdtr_able */
10080	0x5555,			/* 04 sdtr_speed1 */
10081	0xFFFF,			/* 05 start_motor */
10082	0xFFFF,			/* 06 tagqng_able */
10083	0xFFFF,			/* 07 bios_scan */
10084	0,			/* 08 scam_tolerant */
10085	7,			/* 09 adapter_scsi_id */
10086	0,			/*    bios_boot_delay */
10087	3,			/* 10 scsi_reset_delay */
10088	0,			/*    bios_id_lun */
10089	0,			/* 11 termination_se */
10090	0,			/*    termination_lvd */
10091	0xFFE7,			/* 12 bios_ctrl */
10092	0x5555,			/* 13 sdtr_speed2 */
10093	0x5555,			/* 14 sdtr_speed3 */
10094	ASC_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
10095	ASC_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
10096	0,			/* 16 dvc_cntl */
10097	0x5555,			/* 17 sdtr_speed4 */
10098	0,			/* 18 serial_number_word1 */
10099	0,			/* 19 serial_number_word2 */
10100	0,			/* 20 serial_number_word3 */
10101	0,			/* 21 check_sum */
10102	{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
10103	,			/* 22-29 oem_name[16] */
10104	0,			/* 30 dvc_err_code */
10105	0,			/* 31 adv_err_code */
10106	0,			/* 32 adv_err_addr */
10107	0,			/* 33 saved_dvc_err_code */
10108	0,			/* 34 saved_adv_err_code */
10109	0,			/* 35 saved_adv_err_addr */
10110	0,			/* 36 reserved */
10111	0,			/* 37 reserved */
10112	0,			/* 38 reserved */
10113	0,			/* 39 reserved */
10114	0,			/* 40 reserved */
10115	0,			/* 41 reserved */
10116	0,			/* 42 reserved */
10117	0,			/* 43 reserved */
10118	0,			/* 44 reserved */
10119	0,			/* 45 reserved */
10120	0,			/* 46 reserved */
10121	0,			/* 47 reserved */
10122	0,			/* 48 reserved */
10123	0,			/* 49 reserved */
10124	0,			/* 50 reserved */
10125	0,			/* 51 reserved */
10126	0,			/* 52 reserved */
10127	0,			/* 53 reserved */
10128	0,			/* 54 reserved */
10129	0,			/* 55 reserved */
10130	0,			/* 56 cisptr_lsw */
10131	0,			/* 57 cisprt_msw */
10132	PCI_VENDOR_ID_ASP,	/* 58 subsysvid */
10133	PCI_DEVICE_ID_38C1600_REV1,	/* 59 subsysid */
10134	0,			/* 60 reserved */
10135	0,			/* 61 reserved */
10136	0,			/* 62 reserved */
10137	0			/* 63 reserved */
10138};
10139
10140static ADVEEP_38C1600_CONFIG ADVEEP_38C1600_Config_Field_IsChar = {
10141	0,			/* 00 cfg_lsw */
10142	0,			/* 01 cfg_msw */
10143	0,			/* 02 disc_enable */
10144	0,			/* 03 wdtr_able */
10145	0,			/* 04 sdtr_speed1 */
10146	0,			/* 05 start_motor */
10147	0,			/* 06 tagqng_able */
10148	0,			/* 07 bios_scan */
10149	0,			/* 08 scam_tolerant */
10150	1,			/* 09 adapter_scsi_id */
10151	1,			/*    bios_boot_delay */
10152	1,			/* 10 scsi_reset_delay */
10153	1,			/*    bios_id_lun */
10154	1,			/* 11 termination_se */
10155	1,			/*    termination_lvd */
10156	0,			/* 12 bios_ctrl */
10157	0,			/* 13 sdtr_speed2 */
10158	0,			/* 14 sdtr_speed3 */
10159	1,			/* 15 max_host_qng */
10160	1,			/*    max_dvc_qng */
10161	0,			/* 16 dvc_cntl */
10162	0,			/* 17 sdtr_speed4 */
10163	0,			/* 18 serial_number_word1 */
10164	0,			/* 19 serial_number_word2 */
10165	0,			/* 20 serial_number_word3 */
10166	0,			/* 21 check_sum */
10167	{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
10168	,			/* 22-29 oem_name[16] */
10169	0,			/* 30 dvc_err_code */
10170	0,			/* 31 adv_err_code */
10171	0,			/* 32 adv_err_addr */
10172	0,			/* 33 saved_dvc_err_code */
10173	0,			/* 34 saved_adv_err_code */
10174	0,			/* 35 saved_adv_err_addr */
10175	0,			/* 36 reserved */
10176	0,			/* 37 reserved */
10177	0,			/* 38 reserved */
10178	0,			/* 39 reserved */
10179	0,			/* 40 reserved */
10180	0,			/* 41 reserved */
10181	0,			/* 42 reserved */
10182	0,			/* 43 reserved */
10183	0,			/* 44 reserved */
10184	0,			/* 45 reserved */
10185	0,			/* 46 reserved */
10186	0,			/* 47 reserved */
10187	0,			/* 48 reserved */
10188	0,			/* 49 reserved */
10189	0,			/* 50 reserved */
10190	0,			/* 51 reserved */
10191	0,			/* 52 reserved */
10192	0,			/* 53 reserved */
10193	0,			/* 54 reserved */
10194	0,			/* 55 reserved */
10195	0,			/* 56 cisptr_lsw */
10196	0,			/* 57 cisprt_msw */
10197	0,			/* 58 subsysvid */
10198	0,			/* 59 subsysid */
10199	0,			/* 60 reserved */
10200	0,			/* 61 reserved */
10201	0,			/* 62 reserved */
10202	0			/* 63 reserved */
10203};
10204
10205#ifdef CONFIG_PCI
10206/*
10207 * Wait for EEPROM command to complete
10208 */
10209static void AdvWaitEEPCmd(AdvPortAddr iop_base)
10210{
10211	int eep_delay_ms;
10212
10213	for (eep_delay_ms = 0; eep_delay_ms < ADV_EEP_DELAY_MS; eep_delay_ms++) {
10214		if (AdvReadWordRegister(iop_base, IOPW_EE_CMD) &
10215		    ASC_EEP_CMD_DONE) {
10216			break;
10217		}
10218		mdelay(1);
10219	}
10220	if ((AdvReadWordRegister(iop_base, IOPW_EE_CMD) & ASC_EEP_CMD_DONE) ==
10221	    0)
10222		BUG();
10223}
10224
10225/*
10226 * Read the EEPROM from specified location
10227 */
10228static ushort AdvReadEEPWord(AdvPortAddr iop_base, int eep_word_addr)
10229{
10230	AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10231			     ASC_EEP_CMD_READ | eep_word_addr);
10232	AdvWaitEEPCmd(iop_base);
10233	return AdvReadWordRegister(iop_base, IOPW_EE_DATA);
10234}
10235
10236/*
10237 * Write the EEPROM from 'cfg_buf'.
10238 */
10239static void AdvSet3550EEPConfig(AdvPortAddr iop_base,
10240				ADVEEP_3550_CONFIG *cfg_buf)
10241{
10242	ushort *wbuf;
10243	ushort addr, chksum;
10244	ushort *charfields;
10245
10246	wbuf = (ushort *)cfg_buf;
10247	charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
10248	chksum = 0;
10249
10250	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
10251	AdvWaitEEPCmd(iop_base);
10252
10253	/*
10254	 * Write EEPROM from word 0 to word 20.
10255	 */
10256	for (addr = ADV_EEP_DVC_CFG_BEGIN;
10257	     addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
10258		ushort word;
10259
10260		if (*charfields++) {
10261			word = cpu_to_le16(*wbuf);
10262		} else {
10263			word = *wbuf;
10264		}
10265		chksum += *wbuf;	/* Checksum is calculated from word values. */
10266		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10267		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10268				     ASC_EEP_CMD_WRITE | addr);
10269		AdvWaitEEPCmd(iop_base);
10270		mdelay(ADV_EEP_DELAY_MS);
10271	}
10272
10273	/*
10274	 * Write EEPROM checksum at word 21.
10275	 */
10276	AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
10277	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
10278	AdvWaitEEPCmd(iop_base);
10279	wbuf++;
10280	charfields++;
10281
10282	/*
10283	 * Write EEPROM OEM name at words 22 to 29.
10284	 */
10285	for (addr = ADV_EEP_DVC_CTL_BEGIN;
10286	     addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
10287		ushort word;
10288
10289		if (*charfields++) {
10290			word = cpu_to_le16(*wbuf);
10291		} else {
10292			word = *wbuf;
10293		}
10294		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10295		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10296				     ASC_EEP_CMD_WRITE | addr);
10297		AdvWaitEEPCmd(iop_base);
10298	}
10299	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
10300	AdvWaitEEPCmd(iop_base);
10301}
10302
10303/*
10304 * Write the EEPROM from 'cfg_buf'.
10305 */
10306static void AdvSet38C0800EEPConfig(AdvPortAddr iop_base,
10307				   ADVEEP_38C0800_CONFIG *cfg_buf)
10308{
10309	ushort *wbuf;
10310	ushort *charfields;
10311	ushort addr, chksum;
10312
10313	wbuf = (ushort *)cfg_buf;
10314	charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
10315	chksum = 0;
10316
10317	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
10318	AdvWaitEEPCmd(iop_base);
10319
10320	/*
10321	 * Write EEPROM from word 0 to word 20.
10322	 */
10323	for (addr = ADV_EEP_DVC_CFG_BEGIN;
10324	     addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
10325		ushort word;
10326
10327		if (*charfields++) {
10328			word = cpu_to_le16(*wbuf);
10329		} else {
10330			word = *wbuf;
10331		}
10332		chksum += *wbuf;	/* Checksum is calculated from word values. */
10333		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10334		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10335				     ASC_EEP_CMD_WRITE | addr);
10336		AdvWaitEEPCmd(iop_base);
10337		mdelay(ADV_EEP_DELAY_MS);
10338	}
10339
10340	/*
10341	 * Write EEPROM checksum at word 21.
10342	 */
10343	AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
10344	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
10345	AdvWaitEEPCmd(iop_base);
10346	wbuf++;
10347	charfields++;
10348
10349	/*
10350	 * Write EEPROM OEM name at words 22 to 29.
10351	 */
10352	for (addr = ADV_EEP_DVC_CTL_BEGIN;
10353	     addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
10354		ushort word;
10355
10356		if (*charfields++) {
10357			word = cpu_to_le16(*wbuf);
10358		} else {
10359			word = *wbuf;
10360		}
10361		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10362		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10363				     ASC_EEP_CMD_WRITE | addr);
10364		AdvWaitEEPCmd(iop_base);
10365	}
10366	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
10367	AdvWaitEEPCmd(iop_base);
10368}
10369
10370/*
10371 * Write the EEPROM from 'cfg_buf'.
10372 */
10373static void AdvSet38C1600EEPConfig(AdvPortAddr iop_base,
10374				   ADVEEP_38C1600_CONFIG *cfg_buf)
10375{
10376	ushort *wbuf;
10377	ushort *charfields;
10378	ushort addr, chksum;
10379
10380	wbuf = (ushort *)cfg_buf;
10381	charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
10382	chksum = 0;
10383
10384	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
10385	AdvWaitEEPCmd(iop_base);
10386
10387	/*
10388	 * Write EEPROM from word 0 to word 20.
10389	 */
10390	for (addr = ADV_EEP_DVC_CFG_BEGIN;
10391	     addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
10392		ushort word;
10393
10394		if (*charfields++) {
10395			word = cpu_to_le16(*wbuf);
10396		} else {
10397			word = *wbuf;
10398		}
10399		chksum += *wbuf;	/* Checksum is calculated from word values. */
10400		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10401		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10402				     ASC_EEP_CMD_WRITE | addr);
10403		AdvWaitEEPCmd(iop_base);
10404		mdelay(ADV_EEP_DELAY_MS);
10405	}
10406
10407	/*
10408	 * Write EEPROM checksum at word 21.
10409	 */
10410	AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
10411	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
10412	AdvWaitEEPCmd(iop_base);
10413	wbuf++;
10414	charfields++;
10415
10416	/*
10417	 * Write EEPROM OEM name at words 22 to 29.
10418	 */
10419	for (addr = ADV_EEP_DVC_CTL_BEGIN;
10420	     addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
10421		ushort word;
10422
10423		if (*charfields++) {
10424			word = cpu_to_le16(*wbuf);
10425		} else {
10426			word = *wbuf;
10427		}
10428		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10429		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10430				     ASC_EEP_CMD_WRITE | addr);
10431		AdvWaitEEPCmd(iop_base);
10432	}
10433	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
10434	AdvWaitEEPCmd(iop_base);
10435}
10436
10437/*
10438 * Read EEPROM configuration into the specified buffer.
10439 *
10440 * Return a checksum based on the EEPROM configuration read.
10441 */
10442static ushort AdvGet3550EEPConfig(AdvPortAddr iop_base,
10443				  ADVEEP_3550_CONFIG *cfg_buf)
10444{
10445	ushort wval, chksum;
10446	ushort *wbuf;
10447	int eep_addr;
10448	ushort *charfields;
10449
10450	charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
10451	wbuf = (ushort *)cfg_buf;
10452	chksum = 0;
10453
10454	for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10455	     eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10456		wval = AdvReadEEPWord(iop_base, eep_addr);
10457		chksum += wval;	/* Checksum is calculated from word values. */
10458		if (*charfields++) {
10459			*wbuf = le16_to_cpu(wval);
10460		} else {
10461			*wbuf = wval;
10462		}
10463	}
10464	/* Read checksum word. */
10465	*wbuf = AdvReadEEPWord(iop_base, eep_addr);
10466	wbuf++;
10467	charfields++;
10468
10469	/* Read rest of EEPROM not covered by the checksum. */
10470	for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10471	     eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10472		*wbuf = AdvReadEEPWord(iop_base, eep_addr);
10473		if (*charfields++) {
10474			*wbuf = le16_to_cpu(*wbuf);
10475		}
10476	}
10477	return chksum;
10478}
10479
10480/*
10481 * Read EEPROM configuration into the specified buffer.
10482 *
10483 * Return a checksum based on the EEPROM configuration read.
10484 */
10485static ushort AdvGet38C0800EEPConfig(AdvPortAddr iop_base,
10486				     ADVEEP_38C0800_CONFIG *cfg_buf)
10487{
10488	ushort wval, chksum;
10489	ushort *wbuf;
10490	int eep_addr;
10491	ushort *charfields;
10492
10493	charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
10494	wbuf = (ushort *)cfg_buf;
10495	chksum = 0;
10496
10497	for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10498	     eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10499		wval = AdvReadEEPWord(iop_base, eep_addr);
10500		chksum += wval;	/* Checksum is calculated from word values. */
10501		if (*charfields++) {
10502			*wbuf = le16_to_cpu(wval);
10503		} else {
10504			*wbuf = wval;
10505		}
10506	}
10507	/* Read checksum word. */
10508	*wbuf = AdvReadEEPWord(iop_base, eep_addr);
10509	wbuf++;
10510	charfields++;
10511
10512	/* Read rest of EEPROM not covered by the checksum. */
10513	for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10514	     eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10515		*wbuf = AdvReadEEPWord(iop_base, eep_addr);
10516		if (*charfields++) {
10517			*wbuf = le16_to_cpu(*wbuf);
10518		}
10519	}
10520	return chksum;
10521}
10522
10523/*
10524 * Read EEPROM configuration into the specified buffer.
10525 *
10526 * Return a checksum based on the EEPROM configuration read.
10527 */
10528static ushort AdvGet38C1600EEPConfig(AdvPortAddr iop_base,
10529				     ADVEEP_38C1600_CONFIG *cfg_buf)
10530{
10531	ushort wval, chksum;
10532	ushort *wbuf;
10533	int eep_addr;
10534	ushort *charfields;
10535
10536	charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
10537	wbuf = (ushort *)cfg_buf;
10538	chksum = 0;
10539
10540	for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10541	     eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10542		wval = AdvReadEEPWord(iop_base, eep_addr);
10543		chksum += wval;	/* Checksum is calculated from word values. */
10544		if (*charfields++) {
10545			*wbuf = le16_to_cpu(wval);
10546		} else {
10547			*wbuf = wval;
10548		}
10549	}
10550	/* Read checksum word. */
10551	*wbuf = AdvReadEEPWord(iop_base, eep_addr);
10552	wbuf++;
10553	charfields++;
10554
10555	/* Read rest of EEPROM not covered by the checksum. */
10556	for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10557	     eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10558		*wbuf = AdvReadEEPWord(iop_base, eep_addr);
10559		if (*charfields++) {
10560			*wbuf = le16_to_cpu(*wbuf);
10561		}
10562	}
10563	return chksum;
10564}
10565
10566/*
10567 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
10568 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
10569 * all of this is done.
10570 *
10571 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10572 *
10573 * For a non-fatal error return a warning code. If there are no warnings
10574 * then 0 is returned.
10575 *
10576 * Note: Chip is stopped on entry.
10577 */
10578static int AdvInitFrom3550EEP(ADV_DVC_VAR *asc_dvc)
10579{
10580	AdvPortAddr iop_base;
10581	ushort warn_code;
10582	ADVEEP_3550_CONFIG eep_config;
10583
10584	iop_base = asc_dvc->iop_base;
10585
10586	warn_code = 0;
10587
10588	/*
10589	 * Read the board's EEPROM configuration.
10590	 *
10591	 * Set default values if a bad checksum is found.
10592	 */
10593	if (AdvGet3550EEPConfig(iop_base, &eep_config) != eep_config.check_sum) {
10594		warn_code |= ASC_WARN_EEPROM_CHKSUM;
10595
10596		/*
10597		 * Set EEPROM default values.
10598		 */
10599		memcpy(&eep_config, &Default_3550_EEPROM_Config,
10600			sizeof(ADVEEP_3550_CONFIG));
10601
10602		/*
10603		 * Assume the 6 byte board serial number that was read from
10604		 * EEPROM is correct even if the EEPROM checksum failed.
10605		 */
10606		eep_config.serial_number_word3 =
10607		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10608
10609		eep_config.serial_number_word2 =
10610		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10611
10612		eep_config.serial_number_word1 =
10613		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10614
10615		AdvSet3550EEPConfig(iop_base, &eep_config);
10616	}
10617	/*
10618	 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
10619	 * EEPROM configuration that was read.
10620	 *
10621	 * This is the mapping of EEPROM fields to Adv Library fields.
10622	 */
10623	asc_dvc->wdtr_able = eep_config.wdtr_able;
10624	asc_dvc->sdtr_able = eep_config.sdtr_able;
10625	asc_dvc->ultra_able = eep_config.ultra_able;
10626	asc_dvc->tagqng_able = eep_config.tagqng_able;
10627	asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10628	asc_dvc->max_host_qng = eep_config.max_host_qng;
10629	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10630	asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
10631	asc_dvc->start_motor = eep_config.start_motor;
10632	asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10633	asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10634	asc_dvc->no_scam = eep_config.scam_tolerant;
10635	asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
10636	asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
10637	asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
10638
10639	/*
10640	 * Set the host maximum queuing (max. 253, min. 16) and the per device
10641	 * maximum queuing (max. 63, min. 4).
10642	 */
10643	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10644		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10645	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10646		/* If the value is zero, assume it is uninitialized. */
10647		if (eep_config.max_host_qng == 0) {
10648			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10649		} else {
10650			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10651		}
10652	}
10653
10654	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10655		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10656	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10657		/* If the value is zero, assume it is uninitialized. */
10658		if (eep_config.max_dvc_qng == 0) {
10659			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10660		} else {
10661			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10662		}
10663	}
10664
10665	/*
10666	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10667	 * set 'max_dvc_qng' to 'max_host_qng'.
10668	 */
10669	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10670		eep_config.max_dvc_qng = eep_config.max_host_qng;
10671	}
10672
10673	/*
10674	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
10675	 * values based on possibly adjusted EEPROM values.
10676	 */
10677	asc_dvc->max_host_qng = eep_config.max_host_qng;
10678	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10679
10680	/*
10681	 * If the EEPROM 'termination' field is set to automatic (0), then set
10682	 * the ADV_DVC_CFG 'termination' field to automatic also.
10683	 *
10684	 * If the termination is specified with a non-zero 'termination'
10685	 * value check that a legal value is set and set the ADV_DVC_CFG
10686	 * 'termination' field appropriately.
10687	 */
10688	if (eep_config.termination == 0) {
10689		asc_dvc->cfg->termination = 0;	/* auto termination */
10690	} else {
10691		/* Enable manual control with low off / high off. */
10692		if (eep_config.termination == 1) {
10693			asc_dvc->cfg->termination = TERM_CTL_SEL;
10694
10695			/* Enable manual control with low off / high on. */
10696		} else if (eep_config.termination == 2) {
10697			asc_dvc->cfg->termination = TERM_CTL_SEL | TERM_CTL_H;
10698
10699			/* Enable manual control with low on / high on. */
10700		} else if (eep_config.termination == 3) {
10701			asc_dvc->cfg->termination =
10702			    TERM_CTL_SEL | TERM_CTL_H | TERM_CTL_L;
10703		} else {
10704			/*
10705			 * The EEPROM 'termination' field contains a bad value. Use
10706			 * automatic termination instead.
10707			 */
10708			asc_dvc->cfg->termination = 0;
10709			warn_code |= ASC_WARN_EEPROM_TERMINATION;
10710		}
10711	}
10712
10713	return warn_code;
10714}
10715
10716/*
10717 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
10718 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
10719 * all of this is done.
10720 *
10721 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10722 *
10723 * For a non-fatal error return a warning code. If there are no warnings
10724 * then 0 is returned.
10725 *
10726 * Note: Chip is stopped on entry.
10727 */
10728static int AdvInitFrom38C0800EEP(ADV_DVC_VAR *asc_dvc)
10729{
10730	AdvPortAddr iop_base;
10731	ushort warn_code;
10732	ADVEEP_38C0800_CONFIG eep_config;
10733	uchar tid, termination;
10734	ushort sdtr_speed = 0;
10735
10736	iop_base = asc_dvc->iop_base;
10737
10738	warn_code = 0;
10739
10740	/*
10741	 * Read the board's EEPROM configuration.
10742	 *
10743	 * Set default values if a bad checksum is found.
10744	 */
10745	if (AdvGet38C0800EEPConfig(iop_base, &eep_config) !=
10746	    eep_config.check_sum) {
10747		warn_code |= ASC_WARN_EEPROM_CHKSUM;
10748
10749		/*
10750		 * Set EEPROM default values.
10751		 */
10752		memcpy(&eep_config, &Default_38C0800_EEPROM_Config,
10753			sizeof(ADVEEP_38C0800_CONFIG));
10754
10755		/*
10756		 * Assume the 6 byte board serial number that was read from
10757		 * EEPROM is correct even if the EEPROM checksum failed.
10758		 */
10759		eep_config.serial_number_word3 =
10760		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10761
10762		eep_config.serial_number_word2 =
10763		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10764
10765		eep_config.serial_number_word1 =
10766		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10767
10768		AdvSet38C0800EEPConfig(iop_base, &eep_config);
10769	}
10770	/*
10771	 * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the
10772	 * EEPROM configuration that was read.
10773	 *
10774	 * This is the mapping of EEPROM fields to Adv Library fields.
10775	 */
10776	asc_dvc->wdtr_able = eep_config.wdtr_able;
10777	asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
10778	asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
10779	asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
10780	asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
10781	asc_dvc->tagqng_able = eep_config.tagqng_able;
10782	asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10783	asc_dvc->max_host_qng = eep_config.max_host_qng;
10784	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10785	asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
10786	asc_dvc->start_motor = eep_config.start_motor;
10787	asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10788	asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10789	asc_dvc->no_scam = eep_config.scam_tolerant;
10790	asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
10791	asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
10792	asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
10793
10794	/*
10795	 * For every Target ID if any of its 'sdtr_speed[1234]' bits
10796	 * are set, then set an 'sdtr_able' bit for it.
10797	 */
10798	asc_dvc->sdtr_able = 0;
10799	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
10800		if (tid == 0) {
10801			sdtr_speed = asc_dvc->sdtr_speed1;
10802		} else if (tid == 4) {
10803			sdtr_speed = asc_dvc->sdtr_speed2;
10804		} else if (tid == 8) {
10805			sdtr_speed = asc_dvc->sdtr_speed3;
10806		} else if (tid == 12) {
10807			sdtr_speed = asc_dvc->sdtr_speed4;
10808		}
10809		if (sdtr_speed & ADV_MAX_TID) {
10810			asc_dvc->sdtr_able |= (1 << tid);
10811		}
10812		sdtr_speed >>= 4;
10813	}
10814
10815	/*
10816	 * Set the host maximum queuing (max. 253, min. 16) and the per device
10817	 * maximum queuing (max. 63, min. 4).
10818	 */
10819	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10820		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10821	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10822		/* If the value is zero, assume it is uninitialized. */
10823		if (eep_config.max_host_qng == 0) {
10824			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10825		} else {
10826			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10827		}
10828	}
10829
10830	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10831		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10832	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10833		/* If the value is zero, assume it is uninitialized. */
10834		if (eep_config.max_dvc_qng == 0) {
10835			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10836		} else {
10837			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10838		}
10839	}
10840
10841	/*
10842	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10843	 * set 'max_dvc_qng' to 'max_host_qng'.
10844	 */
10845	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10846		eep_config.max_dvc_qng = eep_config.max_host_qng;
10847	}
10848
10849	/*
10850	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
10851	 * values based on possibly adjusted EEPROM values.
10852	 */
10853	asc_dvc->max_host_qng = eep_config.max_host_qng;
10854	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10855
10856	/*
10857	 * If the EEPROM 'termination' field is set to automatic (0), then set
10858	 * the ADV_DVC_CFG 'termination' field to automatic also.
10859	 *
10860	 * If the termination is specified with a non-zero 'termination'
10861	 * value check that a legal value is set and set the ADV_DVC_CFG
10862	 * 'termination' field appropriately.
10863	 */
10864	if (eep_config.termination_se == 0) {
10865		termination = 0;	/* auto termination for SE */
10866	} else {
10867		/* Enable manual control with low off / high off. */
10868		if (eep_config.termination_se == 1) {
10869			termination = 0;
10870
10871			/* Enable manual control with low off / high on. */
10872		} else if (eep_config.termination_se == 2) {
10873			termination = TERM_SE_HI;
10874
10875			/* Enable manual control with low on / high on. */
10876		} else if (eep_config.termination_se == 3) {
10877			termination = TERM_SE;
10878		} else {
10879			/*
10880			 * The EEPROM 'termination_se' field contains a bad value.
10881			 * Use automatic termination instead.
10882			 */
10883			termination = 0;
10884			warn_code |= ASC_WARN_EEPROM_TERMINATION;
10885		}
10886	}
10887
10888	if (eep_config.termination_lvd == 0) {
10889		asc_dvc->cfg->termination = termination;	/* auto termination for LVD */
10890	} else {
10891		/* Enable manual control with low off / high off. */
10892		if (eep_config.termination_lvd == 1) {
10893			asc_dvc->cfg->termination = termination;
10894
10895			/* Enable manual control with low off / high on. */
10896		} else if (eep_config.termination_lvd == 2) {
10897			asc_dvc->cfg->termination = termination | TERM_LVD_HI;
10898
10899			/* Enable manual control with low on / high on. */
10900		} else if (eep_config.termination_lvd == 3) {
10901			asc_dvc->cfg->termination = termination | TERM_LVD;
10902		} else {
10903			/*
10904			 * The EEPROM 'termination_lvd' field contains a bad value.
10905			 * Use automatic termination instead.
10906			 */
10907			asc_dvc->cfg->termination = termination;
10908			warn_code |= ASC_WARN_EEPROM_TERMINATION;
10909		}
10910	}
10911
10912	return warn_code;
10913}
10914
10915/*
10916 * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and
10917 * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while
10918 * all of this is done.
10919 *
10920 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
10921 *
10922 * For a non-fatal error return a warning code. If there are no warnings
10923 * then 0 is returned.
10924 *
10925 * Note: Chip is stopped on entry.
10926 */
10927static int AdvInitFrom38C1600EEP(ADV_DVC_VAR *asc_dvc)
10928{
10929	AdvPortAddr iop_base;
10930	ushort warn_code;
10931	ADVEEP_38C1600_CONFIG eep_config;
10932	uchar tid, termination;
10933	ushort sdtr_speed = 0;
10934
10935	iop_base = asc_dvc->iop_base;
10936
10937	warn_code = 0;
10938
10939	/*
10940	 * Read the board's EEPROM configuration.
10941	 *
10942	 * Set default values if a bad checksum is found.
10943	 */
10944	if (AdvGet38C1600EEPConfig(iop_base, &eep_config) !=
10945	    eep_config.check_sum) {
10946		struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
10947		warn_code |= ASC_WARN_EEPROM_CHKSUM;
10948
10949		/*
10950		 * Set EEPROM default values.
10951		 */
10952		memcpy(&eep_config, &Default_38C1600_EEPROM_Config,
10953			sizeof(ADVEEP_38C1600_CONFIG));
10954
10955		if (PCI_FUNC(pdev->devfn) != 0) {
10956			u8 ints;
10957			/*
10958			 * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60
10959			 * and old Mac system booting problem. The Expansion
10960			 * ROM must be disabled in Function 1 for these systems
10961			 */
10962			eep_config.cfg_lsw &= ~ADV_EEPROM_BIOS_ENABLE;
10963			/*
10964			 * Clear the INTAB (bit 11) if the GPIO 0 input
10965			 * indicates the Function 1 interrupt line is wired
10966			 * to INTB.
10967			 *
10968			 * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input:
10969			 *   1 - Function 1 interrupt line wired to INT A.
10970			 *   0 - Function 1 interrupt line wired to INT B.
10971			 *
10972			 * Note: Function 0 is always wired to INTA.
10973			 * Put all 5 GPIO bits in input mode and then read
10974			 * their input values.
10975			 */
10976			AdvWriteByteRegister(iop_base, IOPB_GPIO_CNTL, 0);
10977			ints = AdvReadByteRegister(iop_base, IOPB_GPIO_DATA);
10978			if ((ints & 0x01) == 0)
10979				eep_config.cfg_lsw &= ~ADV_EEPROM_INTAB;
10980		}
10981
10982		/*
10983		 * Assume the 6 byte board serial number that was read from
10984		 * EEPROM is correct even if the EEPROM checksum failed.
10985		 */
10986		eep_config.serial_number_word3 =
10987			AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10988		eep_config.serial_number_word2 =
10989			AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10990		eep_config.serial_number_word1 =
10991			AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10992
10993		AdvSet38C1600EEPConfig(iop_base, &eep_config);
10994	}
10995
10996	/*
10997	 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
10998	 * EEPROM configuration that was read.
10999	 *
11000	 * This is the mapping of EEPROM fields to Adv Library fields.
11001	 */
11002	asc_dvc->wdtr_able = eep_config.wdtr_able;
11003	asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
11004	asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
11005	asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
11006	asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
11007	asc_dvc->ppr_able = 0;
11008	asc_dvc->tagqng_able = eep_config.tagqng_able;
11009	asc_dvc->cfg->disc_enable = eep_config.disc_enable;
11010	asc_dvc->max_host_qng = eep_config.max_host_qng;
11011	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11012	asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ASC_MAX_TID);
11013	asc_dvc->start_motor = eep_config.start_motor;
11014	asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
11015	asc_dvc->bios_ctrl = eep_config.bios_ctrl;
11016	asc_dvc->no_scam = eep_config.scam_tolerant;
11017
11018	/*
11019	 * For every Target ID if any of its 'sdtr_speed[1234]' bits
11020	 * are set, then set an 'sdtr_able' bit for it.
11021	 */
11022	asc_dvc->sdtr_able = 0;
11023	for (tid = 0; tid <= ASC_MAX_TID; tid++) {
11024		if (tid == 0) {
11025			sdtr_speed = asc_dvc->sdtr_speed1;
11026		} else if (tid == 4) {
11027			sdtr_speed = asc_dvc->sdtr_speed2;
11028		} else if (tid == 8) {
11029			sdtr_speed = asc_dvc->sdtr_speed3;
11030		} else if (tid == 12) {
11031			sdtr_speed = asc_dvc->sdtr_speed4;
11032		}
11033		if (sdtr_speed & ASC_MAX_TID) {
11034			asc_dvc->sdtr_able |= (1 << tid);
11035		}
11036		sdtr_speed >>= 4;
11037	}
11038
11039	/*
11040	 * Set the host maximum queuing (max. 253, min. 16) and the per device
11041	 * maximum queuing (max. 63, min. 4).
11042	 */
11043	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
11044		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11045	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
11046		/* If the value is zero, assume it is uninitialized. */
11047		if (eep_config.max_host_qng == 0) {
11048			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11049		} else {
11050			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
11051		}
11052	}
11053
11054	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
11055		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11056	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
11057		/* If the value is zero, assume it is uninitialized. */
11058		if (eep_config.max_dvc_qng == 0) {
11059			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11060		} else {
11061			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
11062		}
11063	}
11064
11065	/*
11066	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
11067	 * set 'max_dvc_qng' to 'max_host_qng'.
11068	 */
11069	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
11070		eep_config.max_dvc_qng = eep_config.max_host_qng;
11071	}
11072
11073	/*
11074	 * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng'
11075	 * values based on possibly adjusted EEPROM values.
11076	 */
11077	asc_dvc->max_host_qng = eep_config.max_host_qng;
11078	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11079
11080	/*
11081	 * If the EEPROM 'termination' field is set to automatic (0), then set
11082	 * the ASC_DVC_CFG 'termination' field to automatic also.
11083	 *
11084	 * If the termination is specified with a non-zero 'termination'
11085	 * value check that a legal value is set and set the ASC_DVC_CFG
11086	 * 'termination' field appropriately.
11087	 */
11088	if (eep_config.termination_se == 0) {
11089		termination = 0;	/* auto termination for SE */
11090	} else {
11091		/* Enable manual control with low off / high off. */
11092		if (eep_config.termination_se == 1) {
11093			termination = 0;
11094
11095			/* Enable manual control with low off / high on. */
11096		} else if (eep_config.termination_se == 2) {
11097			termination = TERM_SE_HI;
11098
11099			/* Enable manual control with low on / high on. */
11100		} else if (eep_config.termination_se == 3) {
11101			termination = TERM_SE;
11102		} else {
11103			/*
11104			 * The EEPROM 'termination_se' field contains a bad value.
11105			 * Use automatic termination instead.
11106			 */
11107			termination = 0;
11108			warn_code |= ASC_WARN_EEPROM_TERMINATION;
11109		}
11110	}
11111
11112	if (eep_config.termination_lvd == 0) {
11113		asc_dvc->cfg->termination = termination;	/* auto termination for LVD */
11114	} else {
11115		/* Enable manual control with low off / high off. */
11116		if (eep_config.termination_lvd == 1) {
11117			asc_dvc->cfg->termination = termination;
11118
11119			/* Enable manual control with low off / high on. */
11120		} else if (eep_config.termination_lvd == 2) {
11121			asc_dvc->cfg->termination = termination | TERM_LVD_HI;
11122
11123			/* Enable manual control with low on / high on. */
11124		} else if (eep_config.termination_lvd == 3) {
11125			asc_dvc->cfg->termination = termination | TERM_LVD;
11126		} else {
11127			/*
11128			 * The EEPROM 'termination_lvd' field contains a bad value.
11129			 * Use automatic termination instead.
11130			 */
11131			asc_dvc->cfg->termination = termination;
11132			warn_code |= ASC_WARN_EEPROM_TERMINATION;
11133		}
11134	}
11135
11136	return warn_code;
11137}
11138
11139/*
11140 * Initialize the ADV_DVC_VAR structure.
11141 *
11142 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
11143 *
11144 * For a non-fatal error return a warning code. If there are no warnings
11145 * then 0 is returned.
11146 */
11147static int AdvInitGetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
11148{
11149	struct asc_board *board = shost_priv(shost);
11150	ADV_DVC_VAR *asc_dvc = &board->dvc_var.adv_dvc_var;
11151	unsigned short warn_code = 0;
11152	AdvPortAddr iop_base = asc_dvc->iop_base;
11153	u16 cmd;
11154	int status;
11155
11156	asc_dvc->err_code = 0;
11157
11158	/*
11159	 * Save the state of the PCI Configuration Command Register
11160	 * "Parity Error Response Control" Bit. If the bit is clear (0),
11161	 * in AdvInitAsc3550/38C0800Driver() tell the microcode to ignore
11162	 * DMA parity errors.
11163	 */
11164	asc_dvc->cfg->control_flag = 0;
11165	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
11166	if ((cmd & PCI_COMMAND_PARITY) == 0)
11167		asc_dvc->cfg->control_flag |= CONTROL_FLAG_IGNORE_PERR;
11168
11169	asc_dvc->cfg->chip_version =
11170	    AdvGetChipVersion(iop_base, asc_dvc->bus_type);
11171
11172	ASC_DBG(1, "iopb_chip_id_1: 0x%x 0x%x\n",
11173		 (ushort)AdvReadByteRegister(iop_base, IOPB_CHIP_ID_1),
11174		 (ushort)ADV_CHIP_ID_BYTE);
11175
11176	ASC_DBG(1, "iopw_chip_id_0: 0x%x 0x%x\n",
11177		 (ushort)AdvReadWordRegister(iop_base, IOPW_CHIP_ID_0),
11178		 (ushort)ADV_CHIP_ID_WORD);
11179
11180	/*
11181	 * Reset the chip to start and allow register writes.
11182	 */
11183	if (AdvFindSignature(iop_base) == 0) {
11184		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
11185		return ADV_ERROR;
11186	} else {
11187		/*
11188		 * The caller must set 'chip_type' to a valid setting.
11189		 */
11190		if (asc_dvc->chip_type != ADV_CHIP_ASC3550 &&
11191		    asc_dvc->chip_type != ADV_CHIP_ASC38C0800 &&
11192		    asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
11193			asc_dvc->err_code |= ASC_IERR_BAD_CHIPTYPE;
11194			return ADV_ERROR;
11195		}
11196
11197		/*
11198		 * Reset Chip.
11199		 */
11200		AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
11201				     ADV_CTRL_REG_CMD_RESET);
11202		mdelay(100);
11203		AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
11204				     ADV_CTRL_REG_CMD_WR_IO_REG);
11205
11206		if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
11207			status = AdvInitFrom38C1600EEP(asc_dvc);
11208		} else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
11209			status = AdvInitFrom38C0800EEP(asc_dvc);
11210		} else {
11211			status = AdvInitFrom3550EEP(asc_dvc);
11212		}
11213		warn_code |= status;
11214	}
11215
11216	if (warn_code != 0)
11217		shost_printk(KERN_WARNING, shost, "warning: 0x%x\n", warn_code);
11218
11219	if (asc_dvc->err_code)
11220		shost_printk(KERN_ERR, shost, "error code 0x%x\n",
11221				asc_dvc->err_code);
11222
11223	return asc_dvc->err_code;
11224}
11225#endif
11226
11227static struct scsi_host_template advansys_template = {
11228	.proc_name = DRV_NAME,
11229#ifdef CONFIG_PROC_FS
11230	.show_info = advansys_show_info,
11231#endif
11232	.name = DRV_NAME,
11233	.info = advansys_info,
11234	.queuecommand = advansys_queuecommand,
11235	.eh_bus_reset_handler = advansys_reset,
11236	.bios_param = advansys_biosparam,
11237	.slave_configure = advansys_slave_configure,
11238	/*
11239	 * Because the driver may control an ISA adapter 'unchecked_isa_dma'
11240	 * must be set. The flag will be cleared in advansys_board_found
11241	 * for non-ISA adapters.
11242	 */
11243	.unchecked_isa_dma = 1,
11244	/*
11245	 * All adapters controlled by this driver are capable of large
11246	 * scatter-gather lists. According to the mid-level SCSI documentation
11247	 * this obviates any performance gain provided by setting
11248	 * 'use_clustering'. But empirically while CPU utilization is increased
11249	 * by enabling clustering, I/O throughput increases as well.
11250	 */
11251	.use_clustering = ENABLE_CLUSTERING,
11252};
11253
11254static int advansys_wide_init_chip(struct Scsi_Host *shost)
11255{
11256	struct asc_board *board = shost_priv(shost);
11257	struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
11258	int req_cnt = 0;
11259	adv_req_t *reqp = NULL;
11260	int sg_cnt = 0;
11261	adv_sgblk_t *sgp;
11262	int warn_code, err_code;
11263
11264	/*
11265	 * Allocate buffer carrier structures. The total size
11266	 * is about 4 KB, so allocate all at once.
11267	 */
11268	adv_dvc->carrier_buf = kmalloc(ADV_CARRIER_BUFSIZE, GFP_KERNEL);
11269	ASC_DBG(1, "carrier_buf 0x%p\n", adv_dvc->carrier_buf);
11270
11271	if (!adv_dvc->carrier_buf)
11272		goto kmalloc_failed;
11273
11274	/*
11275	 * Allocate up to 'max_host_qng' request structures for the Wide
11276	 * board. The total size is about 16 KB, so allocate all at once.
11277	 * If the allocation fails decrement and try again.
11278	 */
11279	for (req_cnt = adv_dvc->max_host_qng; req_cnt > 0; req_cnt--) {
11280		reqp = kmalloc(sizeof(adv_req_t) * req_cnt, GFP_KERNEL);
11281
11282		ASC_DBG(1, "reqp 0x%p, req_cnt %d, bytes %lu\n", reqp, req_cnt,
11283			 (ulong)sizeof(adv_req_t) * req_cnt);
11284
11285		if (reqp)
11286			break;
11287	}
11288
11289	if (!reqp)
11290		goto kmalloc_failed;
11291
11292	adv_dvc->orig_reqp = reqp;
11293
11294	/*
11295	 * Allocate up to ADV_TOT_SG_BLOCK request structures for
11296	 * the Wide board. Each structure is about 136 bytes.
11297	 */
11298	board->adv_sgblkp = NULL;
11299	for (sg_cnt = 0; sg_cnt < ADV_TOT_SG_BLOCK; sg_cnt++) {
11300		sgp = kmalloc(sizeof(adv_sgblk_t), GFP_KERNEL);
11301
11302		if (!sgp)
11303			break;
11304
11305		sgp->next_sgblkp = board->adv_sgblkp;
11306		board->adv_sgblkp = sgp;
11307
11308	}
11309
11310	ASC_DBG(1, "sg_cnt %d * %lu = %lu bytes\n", sg_cnt, sizeof(adv_sgblk_t),
11311		 sizeof(adv_sgblk_t) * sg_cnt);
11312
11313	if (!board->adv_sgblkp)
11314		goto kmalloc_failed;
11315
11316	/*
11317	 * Point 'adv_reqp' to the request structures and
11318	 * link them together.
11319	 */
11320	req_cnt--;
11321	reqp[req_cnt].next_reqp = NULL;
11322	for (; req_cnt > 0; req_cnt--) {
11323		reqp[req_cnt - 1].next_reqp = &reqp[req_cnt];
11324	}
11325	board->adv_reqp = &reqp[0];
11326
11327	if (adv_dvc->chip_type == ADV_CHIP_ASC3550) {
11328		ASC_DBG(2, "AdvInitAsc3550Driver()\n");
11329		warn_code = AdvInitAsc3550Driver(adv_dvc);
11330	} else if (adv_dvc->chip_type == ADV_CHIP_ASC38C0800) {
11331		ASC_DBG(2, "AdvInitAsc38C0800Driver()\n");
11332		warn_code = AdvInitAsc38C0800Driver(adv_dvc);
11333	} else {
11334		ASC_DBG(2, "AdvInitAsc38C1600Driver()\n");
11335		warn_code = AdvInitAsc38C1600Driver(adv_dvc);
11336	}
11337	err_code = adv_dvc->err_code;
11338
11339	if (warn_code || err_code) {
11340		shost_printk(KERN_WARNING, shost, "error: warn 0x%x, error "
11341			"0x%x\n", warn_code, err_code);
11342	}
11343
11344	goto exit;
11345
11346 kmalloc_failed:
11347	shost_printk(KERN_ERR, shost, "error: kmalloc() failed\n");
11348	err_code = ADV_ERROR;
11349 exit:
11350	return err_code;
11351}
11352
11353static void advansys_wide_free_mem(struct asc_board *board)
11354{
11355	struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
11356	kfree(adv_dvc->carrier_buf);
11357	adv_dvc->carrier_buf = NULL;
11358	kfree(adv_dvc->orig_reqp);
11359	adv_dvc->orig_reqp = board->adv_reqp = NULL;
11360	while (board->adv_sgblkp) {
11361		adv_sgblk_t *sgp = board->adv_sgblkp;
11362		board->adv_sgblkp = sgp->next_sgblkp;
11363		kfree(sgp);
11364	}
11365}
11366
11367static int advansys_board_found(struct Scsi_Host *shost, unsigned int iop,
11368				int bus_type)
11369{
11370	struct pci_dev *pdev;
11371	struct asc_board *boardp = shost_priv(shost);
11372	ASC_DVC_VAR *asc_dvc_varp = NULL;
11373	ADV_DVC_VAR *adv_dvc_varp = NULL;
11374	int share_irq, warn_code, ret;
11375
11376	pdev = (bus_type == ASC_IS_PCI) ? to_pci_dev(boardp->dev) : NULL;
11377
11378	if (ASC_NARROW_BOARD(boardp)) {
11379		ASC_DBG(1, "narrow board\n");
11380		asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
11381		asc_dvc_varp->bus_type = bus_type;
11382		asc_dvc_varp->drv_ptr = boardp;
11383		asc_dvc_varp->cfg = &boardp->dvc_cfg.asc_dvc_cfg;
11384		asc_dvc_varp->iop_base = iop;
11385	} else {
11386#ifdef CONFIG_PCI
11387		adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
11388		adv_dvc_varp->drv_ptr = boardp;
11389		adv_dvc_varp->cfg = &boardp->dvc_cfg.adv_dvc_cfg;
11390		if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW) {
11391			ASC_DBG(1, "wide board ASC-3550\n");
11392			adv_dvc_varp->chip_type = ADV_CHIP_ASC3550;
11393		} else if (pdev->device == PCI_DEVICE_ID_38C0800_REV1) {
11394			ASC_DBG(1, "wide board ASC-38C0800\n");
11395			adv_dvc_varp->chip_type = ADV_CHIP_ASC38C0800;
11396		} else {
11397			ASC_DBG(1, "wide board ASC-38C1600\n");
11398			adv_dvc_varp->chip_type = ADV_CHIP_ASC38C1600;
11399		}
11400
11401		boardp->asc_n_io_port = pci_resource_len(pdev, 1);
11402		boardp->ioremap_addr = pci_ioremap_bar(pdev, 1);
11403		if (!boardp->ioremap_addr) {
11404			shost_printk(KERN_ERR, shost, "ioremap(%lx, %d) "
11405					"returned NULL\n",
11406					(long)pci_resource_start(pdev, 1),
11407					boardp->asc_n_io_port);
11408			ret = -ENODEV;
11409			goto err_shost;
11410		}
11411		adv_dvc_varp->iop_base = (AdvPortAddr)boardp->ioremap_addr;
11412		ASC_DBG(1, "iop_base: 0x%p\n", adv_dvc_varp->iop_base);
11413
11414		/*
11415		 * Even though it isn't used to access wide boards, other
11416		 * than for the debug line below, save I/O Port address so
11417		 * that it can be reported.
11418		 */
11419		boardp->ioport = iop;
11420
11421		ASC_DBG(1, "iopb_chip_id_1 0x%x, iopw_chip_id_0 0x%x\n",
11422				(ushort)inp(iop + 1), (ushort)inpw(iop));
11423#endif /* CONFIG_PCI */
11424	}
11425
11426	if (ASC_NARROW_BOARD(boardp)) {
11427		/*
11428		 * Set the board bus type and PCI IRQ before
11429		 * calling AscInitGetConfig().
11430		 */
11431		switch (asc_dvc_varp->bus_type) {
11432#ifdef CONFIG_ISA
11433		case ASC_IS_ISA:
11434			shost->unchecked_isa_dma = TRUE;
11435			share_irq = 0;
11436			break;
11437		case ASC_IS_VL:
11438			shost->unchecked_isa_dma = FALSE;
11439			share_irq = 0;
11440			break;
11441		case ASC_IS_EISA:
11442			shost->unchecked_isa_dma = FALSE;
11443			share_irq = IRQF_SHARED;
11444			break;
11445#endif /* CONFIG_ISA */
11446#ifdef CONFIG_PCI
11447		case ASC_IS_PCI:
11448			shost->unchecked_isa_dma = FALSE;
11449			share_irq = IRQF_SHARED;
11450			break;
11451#endif /* CONFIG_PCI */
11452		default:
11453			shost_printk(KERN_ERR, shost, "unknown adapter type: "
11454					"%d\n", asc_dvc_varp->bus_type);
11455			shost->unchecked_isa_dma = TRUE;
11456			share_irq = 0;
11457			break;
11458		}
11459
11460		/*
11461		 * NOTE: AscInitGetConfig() may change the board's
11462		 * bus_type value. The bus_type value should no
11463		 * longer be used. If the bus_type field must be
11464		 * referenced only use the bit-wise AND operator "&".
11465		 */
11466		ASC_DBG(2, "AscInitGetConfig()\n");
11467		ret = AscInitGetConfig(shost) ? -ENODEV : 0;
11468	} else {
11469#ifdef CONFIG_PCI
11470		/*
11471		 * For Wide boards set PCI information before calling
11472		 * AdvInitGetConfig().
11473		 */
11474		shost->unchecked_isa_dma = FALSE;
11475		share_irq = IRQF_SHARED;
11476		ASC_DBG(2, "AdvInitGetConfig()\n");
11477
11478		ret = AdvInitGetConfig(pdev, shost) ? -ENODEV : 0;
11479#endif /* CONFIG_PCI */
11480	}
11481
11482	if (ret)
11483		goto err_unmap;
11484
11485	/*
11486	 * Save the EEPROM configuration so that it can be displayed
11487	 * from /proc/scsi/advansys/[0...].
11488	 */
11489	if (ASC_NARROW_BOARD(boardp)) {
11490
11491		ASCEEP_CONFIG *ep;
11492
11493		/*
11494		 * Set the adapter's target id bit in the 'init_tidmask' field.
11495		 */
11496		boardp->init_tidmask |=
11497		    ADV_TID_TO_TIDMASK(asc_dvc_varp->cfg->chip_scsi_id);
11498
11499		/*
11500		 * Save EEPROM settings for the board.
11501		 */
11502		ep = &boardp->eep_config.asc_eep;
11503
11504		ep->init_sdtr = asc_dvc_varp->cfg->sdtr_enable;
11505		ep->disc_enable = asc_dvc_varp->cfg->disc_enable;
11506		ep->use_cmd_qng = asc_dvc_varp->cfg->cmd_qng_enabled;
11507		ASC_EEP_SET_DMA_SPD(ep, asc_dvc_varp->cfg->isa_dma_speed);
11508		ep->start_motor = asc_dvc_varp->start_motor;
11509		ep->cntl = asc_dvc_varp->dvc_cntl;
11510		ep->no_scam = asc_dvc_varp->no_scam;
11511		ep->max_total_qng = asc_dvc_varp->max_total_qng;
11512		ASC_EEP_SET_CHIP_ID(ep, asc_dvc_varp->cfg->chip_scsi_id);
11513		/* 'max_tag_qng' is set to the same value for every device. */
11514		ep->max_tag_qng = asc_dvc_varp->cfg->max_tag_qng[0];
11515		ep->adapter_info[0] = asc_dvc_varp->cfg->adapter_info[0];
11516		ep->adapter_info[1] = asc_dvc_varp->cfg->adapter_info[1];
11517		ep->adapter_info[2] = asc_dvc_varp->cfg->adapter_info[2];
11518		ep->adapter_info[3] = asc_dvc_varp->cfg->adapter_info[3];
11519		ep->adapter_info[4] = asc_dvc_varp->cfg->adapter_info[4];
11520		ep->adapter_info[5] = asc_dvc_varp->cfg->adapter_info[5];
11521
11522		/*
11523		 * Modify board configuration.
11524		 */
11525		ASC_DBG(2, "AscInitSetConfig()\n");
11526		ret = AscInitSetConfig(pdev, shost) ? -ENODEV : 0;
11527		if (ret)
11528			goto err_unmap;
11529	} else {
11530		ADVEEP_3550_CONFIG *ep_3550;
11531		ADVEEP_38C0800_CONFIG *ep_38C0800;
11532		ADVEEP_38C1600_CONFIG *ep_38C1600;
11533
11534		/*
11535		 * Save Wide EEP Configuration Information.
11536		 */
11537		if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
11538			ep_3550 = &boardp->eep_config.adv_3550_eep;
11539
11540			ep_3550->adapter_scsi_id = adv_dvc_varp->chip_scsi_id;
11541			ep_3550->max_host_qng = adv_dvc_varp->max_host_qng;
11542			ep_3550->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
11543			ep_3550->termination = adv_dvc_varp->cfg->termination;
11544			ep_3550->disc_enable = adv_dvc_varp->cfg->disc_enable;
11545			ep_3550->bios_ctrl = adv_dvc_varp->bios_ctrl;
11546			ep_3550->wdtr_able = adv_dvc_varp->wdtr_able;
11547			ep_3550->sdtr_able = adv_dvc_varp->sdtr_able;
11548			ep_3550->ultra_able = adv_dvc_varp->ultra_able;
11549			ep_3550->tagqng_able = adv_dvc_varp->tagqng_able;
11550			ep_3550->start_motor = adv_dvc_varp->start_motor;
11551			ep_3550->scsi_reset_delay =
11552			    adv_dvc_varp->scsi_reset_wait;
11553			ep_3550->serial_number_word1 =
11554			    adv_dvc_varp->cfg->serial1;
11555			ep_3550->serial_number_word2 =
11556			    adv_dvc_varp->cfg->serial2;
11557			ep_3550->serial_number_word3 =
11558			    adv_dvc_varp->cfg->serial3;
11559		} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
11560			ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
11561
11562			ep_38C0800->adapter_scsi_id =
11563			    adv_dvc_varp->chip_scsi_id;
11564			ep_38C0800->max_host_qng = adv_dvc_varp->max_host_qng;
11565			ep_38C0800->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
11566			ep_38C0800->termination_lvd =
11567			    adv_dvc_varp->cfg->termination;
11568			ep_38C0800->disc_enable =
11569			    adv_dvc_varp->cfg->disc_enable;
11570			ep_38C0800->bios_ctrl = adv_dvc_varp->bios_ctrl;
11571			ep_38C0800->wdtr_able = adv_dvc_varp->wdtr_able;
11572			ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
11573			ep_38C0800->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
11574			ep_38C0800->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
11575			ep_38C0800->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
11576			ep_38C0800->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
11577			ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
11578			ep_38C0800->start_motor = adv_dvc_varp->start_motor;
11579			ep_38C0800->scsi_reset_delay =
11580			    adv_dvc_varp->scsi_reset_wait;
11581			ep_38C0800->serial_number_word1 =
11582			    adv_dvc_varp->cfg->serial1;
11583			ep_38C0800->serial_number_word2 =
11584			    adv_dvc_varp->cfg->serial2;
11585			ep_38C0800->serial_number_word3 =
11586			    adv_dvc_varp->cfg->serial3;
11587		} else {
11588			ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
11589
11590			ep_38C1600->adapter_scsi_id =
11591			    adv_dvc_varp->chip_scsi_id;
11592			ep_38C1600->max_host_qng = adv_dvc_varp->max_host_qng;
11593			ep_38C1600->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
11594			ep_38C1600->termination_lvd =
11595			    adv_dvc_varp->cfg->termination;
11596			ep_38C1600->disc_enable =
11597			    adv_dvc_varp->cfg->disc_enable;
11598			ep_38C1600->bios_ctrl = adv_dvc_varp->bios_ctrl;
11599			ep_38C1600->wdtr_able = adv_dvc_varp->wdtr_able;
11600			ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
11601			ep_38C1600->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
11602			ep_38C1600->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
11603			ep_38C1600->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
11604			ep_38C1600->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
11605			ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
11606			ep_38C1600->start_motor = adv_dvc_varp->start_motor;
11607			ep_38C1600->scsi_reset_delay =
11608			    adv_dvc_varp->scsi_reset_wait;
11609			ep_38C1600->serial_number_word1 =
11610			    adv_dvc_varp->cfg->serial1;
11611			ep_38C1600->serial_number_word2 =
11612			    adv_dvc_varp->cfg->serial2;
11613			ep_38C1600->serial_number_word3 =
11614			    adv_dvc_varp->cfg->serial3;
11615		}
11616
11617		/*
11618		 * Set the adapter's target id bit in the 'init_tidmask' field.
11619		 */
11620		boardp->init_tidmask |=
11621		    ADV_TID_TO_TIDMASK(adv_dvc_varp->chip_scsi_id);
11622	}
11623
11624	/*
11625	 * Channels are numbered beginning with 0. For AdvanSys one host
11626	 * structure supports one channel. Multi-channel boards have a
11627	 * separate host structure for each channel.
11628	 */
11629	shost->max_channel = 0;
11630	if (ASC_NARROW_BOARD(boardp)) {
11631		shost->max_id = ASC_MAX_TID + 1;
11632		shost->max_lun = ASC_MAX_LUN + 1;
11633		shost->max_cmd_len = ASC_MAX_CDB_LEN;
11634
11635		shost->io_port = asc_dvc_varp->iop_base;
11636		boardp->asc_n_io_port = ASC_IOADR_GAP;
11637		shost->this_id = asc_dvc_varp->cfg->chip_scsi_id;
11638
11639		/* Set maximum number of queues the adapter can handle. */
11640		shost->can_queue = asc_dvc_varp->max_total_qng;
11641	} else {
11642		shost->max_id = ADV_MAX_TID + 1;
11643		shost->max_lun = ADV_MAX_LUN + 1;
11644		shost->max_cmd_len = ADV_MAX_CDB_LEN;
11645
11646		/*
11647		 * Save the I/O Port address and length even though
11648		 * I/O ports are not used to access Wide boards.
11649		 * Instead the Wide boards are accessed with
11650		 * PCI Memory Mapped I/O.
11651		 */
11652		shost->io_port = iop;
11653
11654		shost->this_id = adv_dvc_varp->chip_scsi_id;
11655
11656		/* Set maximum number of queues the adapter can handle. */
11657		shost->can_queue = adv_dvc_varp->max_host_qng;
11658	}
11659
11660	/*
11661	 * Following v1.3.89, 'cmd_per_lun' is no longer needed
11662	 * and should be set to zero.
11663	 *
11664	 * But because of a bug introduced in v1.3.89 if the driver is
11665	 * compiled as a module and 'cmd_per_lun' is zero, the Mid-Level
11666	 * SCSI function 'allocate_device' will panic. To allow the driver
11667	 * to work as a module in these kernels set 'cmd_per_lun' to 1.
11668	 *
11669	 * Note: This is wrong.  cmd_per_lun should be set to the depth
11670	 * you want on untagged devices always.
11671	 #ifdef MODULE
11672	 */
11673	shost->cmd_per_lun = 1;
11674/* #else
11675            shost->cmd_per_lun = 0;
11676#endif */
11677
11678	/*
11679	 * Set the maximum number of scatter-gather elements the
11680	 * adapter can handle.
11681	 */
11682	if (ASC_NARROW_BOARD(boardp)) {
11683		/*
11684		 * Allow two commands with 'sg_tablesize' scatter-gather
11685		 * elements to be executed simultaneously. This value is
11686		 * the theoretical hardware limit. It may be decreased
11687		 * below.
11688		 */
11689		shost->sg_tablesize =
11690		    (((asc_dvc_varp->max_total_qng - 2) / 2) *
11691		     ASC_SG_LIST_PER_Q) + 1;
11692	} else {
11693		shost->sg_tablesize = ADV_MAX_SG_LIST;
11694	}
11695
11696	/*
11697	 * The value of 'sg_tablesize' can not exceed the SCSI
11698	 * mid-level driver definition of SG_ALL. SG_ALL also
11699	 * must not be exceeded, because it is used to define the
11700	 * size of the scatter-gather table in 'struct asc_sg_head'.
11701	 */
11702	if (shost->sg_tablesize > SG_ALL) {
11703		shost->sg_tablesize = SG_ALL;
11704	}
11705
11706	ASC_DBG(1, "sg_tablesize: %d\n", shost->sg_tablesize);
11707
11708	/* BIOS start address. */
11709	if (ASC_NARROW_BOARD(boardp)) {
11710		shost->base = AscGetChipBiosAddress(asc_dvc_varp->iop_base,
11711						    asc_dvc_varp->bus_type);
11712	} else {
11713		/*
11714		 * Fill-in BIOS board variables. The Wide BIOS saves
11715		 * information in LRAM that is used by the driver.
11716		 */
11717		AdvReadWordLram(adv_dvc_varp->iop_base,
11718				BIOS_SIGNATURE, boardp->bios_signature);
11719		AdvReadWordLram(adv_dvc_varp->iop_base,
11720				BIOS_VERSION, boardp->bios_version);
11721		AdvReadWordLram(adv_dvc_varp->iop_base,
11722				BIOS_CODESEG, boardp->bios_codeseg);
11723		AdvReadWordLram(adv_dvc_varp->iop_base,
11724				BIOS_CODELEN, boardp->bios_codelen);
11725
11726		ASC_DBG(1, "bios_signature 0x%x, bios_version 0x%x\n",
11727			 boardp->bios_signature, boardp->bios_version);
11728
11729		ASC_DBG(1, "bios_codeseg 0x%x, bios_codelen 0x%x\n",
11730			 boardp->bios_codeseg, boardp->bios_codelen);
11731
11732		/*
11733		 * If the BIOS saved a valid signature, then fill in
11734		 * the BIOS code segment base address.
11735		 */
11736		if (boardp->bios_signature == 0x55AA) {
11737			/*
11738			 * Convert x86 realmode code segment to a linear
11739			 * address by shifting left 4.
11740			 */
11741			shost->base = ((ulong)boardp->bios_codeseg << 4);
11742		} else {
11743			shost->base = 0;
11744		}
11745	}
11746
11747	/*
11748	 * Register Board Resources - I/O Port, DMA, IRQ
11749	 */
11750
11751	/* Register DMA Channel for Narrow boards. */
11752	shost->dma_channel = NO_ISA_DMA;	/* Default to no ISA DMA. */
11753#ifdef CONFIG_ISA
11754	if (ASC_NARROW_BOARD(boardp)) {
11755		/* Register DMA channel for ISA bus. */
11756		if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
11757			shost->dma_channel = asc_dvc_varp->cfg->isa_dma_channel;
11758			ret = request_dma(shost->dma_channel, DRV_NAME);
11759			if (ret) {
11760				shost_printk(KERN_ERR, shost, "request_dma() "
11761						"%d failed %d\n",
11762						shost->dma_channel, ret);
11763				goto err_unmap;
11764			}
11765			AscEnableIsaDma(shost->dma_channel);
11766		}
11767	}
11768#endif /* CONFIG_ISA */
11769
11770	/* Register IRQ Number. */
11771	ASC_DBG(2, "request_irq(%d, %p)\n", boardp->irq, shost);
11772
11773	ret = request_irq(boardp->irq, advansys_interrupt, share_irq,
11774			  DRV_NAME, shost);
11775
11776	if (ret) {
11777		if (ret == -EBUSY) {
11778			shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11779					"already in use\n", boardp->irq);
11780		} else if (ret == -EINVAL) {
11781			shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11782					"not valid\n", boardp->irq);
11783		} else {
11784			shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11785					"failed with %d\n", boardp->irq, ret);
11786		}
11787		goto err_free_dma;
11788	}
11789
11790	/*
11791	 * Initialize board RISC chip and enable interrupts.
11792	 */
11793	if (ASC_NARROW_BOARD(boardp)) {
11794		ASC_DBG(2, "AscInitAsc1000Driver()\n");
11795
11796		asc_dvc_varp->overrun_buf = kzalloc(ASC_OVERRUN_BSIZE, GFP_KERNEL);
11797		if (!asc_dvc_varp->overrun_buf) {
11798			ret = -ENOMEM;
11799			goto err_free_irq;
11800		}
11801		warn_code = AscInitAsc1000Driver(asc_dvc_varp);
11802
11803		if (warn_code || asc_dvc_varp->err_code) {
11804			shost_printk(KERN_ERR, shost, "error: init_state 0x%x, "
11805					"warn 0x%x, error 0x%x\n",
11806					asc_dvc_varp->init_state, warn_code,
11807					asc_dvc_varp->err_code);
11808			if (!asc_dvc_varp->overrun_dma) {
11809				ret = -ENODEV;
11810				goto err_free_mem;
11811			}
11812		}
11813	} else {
11814		if (advansys_wide_init_chip(shost)) {
11815			ret = -ENODEV;
11816			goto err_free_mem;
11817		}
11818	}
11819
11820	ASC_DBG_PRT_SCSI_HOST(2, shost);
11821
11822	ret = scsi_add_host(shost, boardp->dev);
11823	if (ret)
11824		goto err_free_mem;
11825
11826	scsi_scan_host(shost);
11827	return 0;
11828
11829 err_free_mem:
11830	if (ASC_NARROW_BOARD(boardp)) {
11831		if (asc_dvc_varp->overrun_dma)
11832			dma_unmap_single(boardp->dev, asc_dvc_varp->overrun_dma,
11833					 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
11834		kfree(asc_dvc_varp->overrun_buf);
11835	} else
11836		advansys_wide_free_mem(boardp);
11837 err_free_irq:
11838	free_irq(boardp->irq, shost);
11839 err_free_dma:
11840#ifdef CONFIG_ISA
11841	if (shost->dma_channel != NO_ISA_DMA)
11842		free_dma(shost->dma_channel);
11843#endif
11844 err_unmap:
11845	if (boardp->ioremap_addr)
11846		iounmap(boardp->ioremap_addr);
11847 err_shost:
11848	return ret;
11849}
11850
11851/*
11852 * advansys_release()
11853 *
11854 * Release resources allocated for a single AdvanSys adapter.
11855 */
11856static int advansys_release(struct Scsi_Host *shost)
11857{
11858	struct asc_board *board = shost_priv(shost);
11859	ASC_DBG(1, "begin\n");
11860	scsi_remove_host(shost);
11861	free_irq(board->irq, shost);
11862#ifdef CONFIG_ISA
11863	if (shost->dma_channel != NO_ISA_DMA) {
11864		ASC_DBG(1, "free_dma()\n");
11865		free_dma(shost->dma_channel);
11866	}
11867#endif
11868	if (ASC_NARROW_BOARD(board)) {
11869		dma_unmap_single(board->dev,
11870					board->dvc_var.asc_dvc_var.overrun_dma,
11871					ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
11872		kfree(board->dvc_var.asc_dvc_var.overrun_buf);
11873	} else {
11874		iounmap(board->ioremap_addr);
11875		advansys_wide_free_mem(board);
11876	}
11877	scsi_host_put(shost);
11878	ASC_DBG(1, "end\n");
11879	return 0;
11880}
11881
11882#define ASC_IOADR_TABLE_MAX_IX  11
11883
11884static PortAddr _asc_def_iop_base[ASC_IOADR_TABLE_MAX_IX] = {
11885	0x100, 0x0110, 0x120, 0x0130, 0x140, 0x0150, 0x0190,
11886	0x0210, 0x0230, 0x0250, 0x0330
11887};
11888
11889/*
11890 * The ISA IRQ number is found in bits 2 and 3 of the CfgLsw.  It decodes as:
11891 * 00: 10
11892 * 01: 11
11893 * 10: 12
11894 * 11: 15
11895 */
11896static unsigned int advansys_isa_irq_no(PortAddr iop_base)
11897{
11898	unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
11899	unsigned int chip_irq = ((cfg_lsw >> 2) & 0x03) + 10;
11900	if (chip_irq == 13)
11901		chip_irq = 15;
11902	return chip_irq;
11903}
11904
11905static int advansys_isa_probe(struct device *dev, unsigned int id)
11906{
11907	int err = -ENODEV;
11908	PortAddr iop_base = _asc_def_iop_base[id];
11909	struct Scsi_Host *shost;
11910	struct asc_board *board;
11911
11912	if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
11913		ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
11914		return -ENODEV;
11915	}
11916	ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
11917	if (!AscFindSignature(iop_base))
11918		goto release_region;
11919	if (!(AscGetChipVersion(iop_base, ASC_IS_ISA) & ASC_CHIP_VER_ISA_BIT))
11920		goto release_region;
11921
11922	err = -ENOMEM;
11923	shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11924	if (!shost)
11925		goto release_region;
11926
11927	board = shost_priv(shost);
11928	board->irq = advansys_isa_irq_no(iop_base);
11929	board->dev = dev;
11930
11931	err = advansys_board_found(shost, iop_base, ASC_IS_ISA);
11932	if (err)
11933		goto free_host;
11934
11935	dev_set_drvdata(dev, shost);
11936	return 0;
11937
11938 free_host:
11939	scsi_host_put(shost);
11940 release_region:
11941	release_region(iop_base, ASC_IOADR_GAP);
11942	return err;
11943}
11944
11945static int advansys_isa_remove(struct device *dev, unsigned int id)
11946{
11947	int ioport = _asc_def_iop_base[id];
11948	advansys_release(dev_get_drvdata(dev));
11949	release_region(ioport, ASC_IOADR_GAP);
11950	return 0;
11951}
11952
11953static struct isa_driver advansys_isa_driver = {
11954	.probe		= advansys_isa_probe,
11955	.remove		= advansys_isa_remove,
11956	.driver = {
11957		.owner	= THIS_MODULE,
11958		.name	= DRV_NAME,
11959	},
11960};
11961
11962/*
11963 * The VLB IRQ number is found in bits 2 to 4 of the CfgLsw.  It decodes as:
11964 * 000: invalid
11965 * 001: 10
11966 * 010: 11
11967 * 011: 12
11968 * 100: invalid
11969 * 101: 14
11970 * 110: 15
11971 * 111: invalid
11972 */
11973static unsigned int advansys_vlb_irq_no(PortAddr iop_base)
11974{
11975	unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
11976	unsigned int chip_irq = ((cfg_lsw >> 2) & 0x07) + 9;
11977	if ((chip_irq < 10) || (chip_irq == 13) || (chip_irq > 15))
11978		return 0;
11979	return chip_irq;
11980}
11981
11982static int advansys_vlb_probe(struct device *dev, unsigned int id)
11983{
11984	int err = -ENODEV;
11985	PortAddr iop_base = _asc_def_iop_base[id];
11986	struct Scsi_Host *shost;
11987	struct asc_board *board;
11988
11989	if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
11990		ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
11991		return -ENODEV;
11992	}
11993	ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
11994	if (!AscFindSignature(iop_base))
11995		goto release_region;
11996	/*
11997	 * I don't think this condition can actually happen, but the old
11998	 * driver did it, and the chances of finding a VLB setup in 2007
11999	 * to do testing with is slight to none.
12000	 */
12001	if (AscGetChipVersion(iop_base, ASC_IS_VL) > ASC_CHIP_MAX_VER_VL)
12002		goto release_region;
12003
12004	err = -ENOMEM;
12005	shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12006	if (!shost)
12007		goto release_region;
12008
12009	board = shost_priv(shost);
12010	board->irq = advansys_vlb_irq_no(iop_base);
12011	board->dev = dev;
12012
12013	err = advansys_board_found(shost, iop_base, ASC_IS_VL);
12014	if (err)
12015		goto free_host;
12016
12017	dev_set_drvdata(dev, shost);
12018	return 0;
12019
12020 free_host:
12021	scsi_host_put(shost);
12022 release_region:
12023	release_region(iop_base, ASC_IOADR_GAP);
12024	return -ENODEV;
12025}
12026
12027static struct isa_driver advansys_vlb_driver = {
12028	.probe		= advansys_vlb_probe,
12029	.remove		= advansys_isa_remove,
12030	.driver = {
12031		.owner	= THIS_MODULE,
12032		.name	= "advansys_vlb",
12033	},
12034};
12035
12036static struct eisa_device_id advansys_eisa_table[] = {
12037	{ "ABP7401" },
12038	{ "ABP7501" },
12039	{ "" }
12040};
12041
12042MODULE_DEVICE_TABLE(eisa, advansys_eisa_table);
12043
12044/*
12045 * EISA is a little more tricky than PCI; each EISA device may have two
12046 * channels, and this driver is written to make each channel its own Scsi_Host
12047 */
12048struct eisa_scsi_data {
12049	struct Scsi_Host *host[2];
12050};
12051
12052/*
12053 * The EISA IRQ number is found in bits 8 to 10 of the CfgLsw.  It decodes as:
12054 * 000: 10
12055 * 001: 11
12056 * 010: 12
12057 * 011: invalid
12058 * 100: 14
12059 * 101: 15
12060 * 110: invalid
12061 * 111: invalid
12062 */
12063static unsigned int advansys_eisa_irq_no(struct eisa_device *edev)
12064{
12065	unsigned short cfg_lsw = inw(edev->base_addr + 0xc86);
12066	unsigned int chip_irq = ((cfg_lsw >> 8) & 0x07) + 10;
12067	if ((chip_irq == 13) || (chip_irq > 15))
12068		return 0;
12069	return chip_irq;
12070}
12071
12072static int advansys_eisa_probe(struct device *dev)
12073{
12074	int i, ioport, irq = 0;
12075	int err;
12076	struct eisa_device *edev = to_eisa_device(dev);
12077	struct eisa_scsi_data *data;
12078
12079	err = -ENOMEM;
12080	data = kzalloc(sizeof(*data), GFP_KERNEL);
12081	if (!data)
12082		goto fail;
12083	ioport = edev->base_addr + 0xc30;
12084
12085	err = -ENODEV;
12086	for (i = 0; i < 2; i++, ioport += 0x20) {
12087		struct asc_board *board;
12088		struct Scsi_Host *shost;
12089		if (!request_region(ioport, ASC_IOADR_GAP, DRV_NAME)) {
12090			printk(KERN_WARNING "Region %x-%x busy\n", ioport,
12091			       ioport + ASC_IOADR_GAP - 1);
12092			continue;
12093		}
12094		if (!AscFindSignature(ioport)) {
12095			release_region(ioport, ASC_IOADR_GAP);
12096			continue;
12097		}
12098
12099		/*
12100		 * I don't know why we need to do this for EISA chips, but
12101		 * not for any others.  It looks to be equivalent to
12102		 * AscGetChipCfgMsw, but I may have overlooked something,
12103		 * so I'm not converting it until I get an EISA board to
12104		 * test with.
12105		 */
12106		inw(ioport + 4);
12107
12108		if (!irq)
12109			irq = advansys_eisa_irq_no(edev);
12110
12111		err = -ENOMEM;
12112		shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12113		if (!shost)
12114			goto release_region;
12115
12116		board = shost_priv(shost);
12117		board->irq = irq;
12118		board->dev = dev;
12119
12120		err = advansys_board_found(shost, ioport, ASC_IS_EISA);
12121		if (!err) {
12122			data->host[i] = shost;
12123			continue;
12124		}
12125
12126		scsi_host_put(shost);
12127 release_region:
12128		release_region(ioport, ASC_IOADR_GAP);
12129		break;
12130	}
12131
12132	if (err)
12133		goto free_data;
12134	dev_set_drvdata(dev, data);
12135	return 0;
12136
12137 free_data:
12138	kfree(data->host[0]);
12139	kfree(data->host[1]);
12140	kfree(data);
12141 fail:
12142	return err;
12143}
12144
12145static int advansys_eisa_remove(struct device *dev)
12146{
12147	int i;
12148	struct eisa_scsi_data *data = dev_get_drvdata(dev);
12149
12150	for (i = 0; i < 2; i++) {
12151		int ioport;
12152		struct Scsi_Host *shost = data->host[i];
12153		if (!shost)
12154			continue;
12155		ioport = shost->io_port;
12156		advansys_release(shost);
12157		release_region(ioport, ASC_IOADR_GAP);
12158	}
12159
12160	kfree(data);
12161	return 0;
12162}
12163
12164static struct eisa_driver advansys_eisa_driver = {
12165	.id_table =		advansys_eisa_table,
12166	.driver = {
12167		.name =		DRV_NAME,
12168		.probe =	advansys_eisa_probe,
12169		.remove =	advansys_eisa_remove,
12170	}
12171};
12172
12173/* PCI Devices supported by this driver */
12174static struct pci_device_id advansys_pci_tbl[] = {
12175	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_1200A,
12176	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12177	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940,
12178	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12179	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940U,
12180	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12181	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940UW,
12182	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12183	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C0800_REV1,
12184	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12185	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C1600_REV1,
12186	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12187	{}
12188};
12189
12190MODULE_DEVICE_TABLE(pci, advansys_pci_tbl);
12191
12192static void advansys_set_latency(struct pci_dev *pdev)
12193{
12194	if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
12195	    (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
12196		pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0);
12197	} else {
12198		u8 latency;
12199		pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &latency);
12200		if (latency < 0x20)
12201			pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x20);
12202	}
12203}
12204
12205static int advansys_pci_probe(struct pci_dev *pdev,
12206			      const struct pci_device_id *ent)
12207{
12208	int err, ioport;
12209	struct Scsi_Host *shost;
12210	struct asc_board *board;
12211
12212	err = pci_enable_device(pdev);
12213	if (err)
12214		goto fail;
12215	err = pci_request_regions(pdev, DRV_NAME);
12216	if (err)
12217		goto disable_device;
12218	pci_set_master(pdev);
12219	advansys_set_latency(pdev);
12220
12221	err = -ENODEV;
12222	if (pci_resource_len(pdev, 0) == 0)
12223		goto release_region;
12224
12225	ioport = pci_resource_start(pdev, 0);
12226
12227	err = -ENOMEM;
12228	shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12229	if (!shost)
12230		goto release_region;
12231
12232	board = shost_priv(shost);
12233	board->irq = pdev->irq;
12234	board->dev = &pdev->dev;
12235
12236	if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW ||
12237	    pdev->device == PCI_DEVICE_ID_38C0800_REV1 ||
12238	    pdev->device == PCI_DEVICE_ID_38C1600_REV1) {
12239		board->flags |= ASC_IS_WIDE_BOARD;
12240	}
12241
12242	err = advansys_board_found(shost, ioport, ASC_IS_PCI);
12243	if (err)
12244		goto free_host;
12245
12246	pci_set_drvdata(pdev, shost);
12247	return 0;
12248
12249 free_host:
12250	scsi_host_put(shost);
12251 release_region:
12252	pci_release_regions(pdev);
12253 disable_device:
12254	pci_disable_device(pdev);
12255 fail:
12256	return err;
12257}
12258
12259static void advansys_pci_remove(struct pci_dev *pdev)
12260{
12261	advansys_release(pci_get_drvdata(pdev));
12262	pci_release_regions(pdev);
12263	pci_disable_device(pdev);
12264}
12265
12266static struct pci_driver advansys_pci_driver = {
12267	.name =		DRV_NAME,
12268	.id_table =	advansys_pci_tbl,
12269	.probe =	advansys_pci_probe,
12270	.remove =	advansys_pci_remove,
12271};
12272
12273static int __init advansys_init(void)
12274{
12275	int error;
12276
12277	error = isa_register_driver(&advansys_isa_driver,
12278				    ASC_IOADR_TABLE_MAX_IX);
12279	if (error)
12280		goto fail;
12281
12282	error = isa_register_driver(&advansys_vlb_driver,
12283				    ASC_IOADR_TABLE_MAX_IX);
12284	if (error)
12285		goto unregister_isa;
12286
12287	error = eisa_driver_register(&advansys_eisa_driver);
12288	if (error)
12289		goto unregister_vlb;
12290
12291	error = pci_register_driver(&advansys_pci_driver);
12292	if (error)
12293		goto unregister_eisa;
12294
12295	return 0;
12296
12297 unregister_eisa:
12298	eisa_driver_unregister(&advansys_eisa_driver);
12299 unregister_vlb:
12300	isa_unregister_driver(&advansys_vlb_driver);
12301 unregister_isa:
12302	isa_unregister_driver(&advansys_isa_driver);
12303 fail:
12304	return error;
12305}
12306
12307static void __exit advansys_exit(void)
12308{
12309	pci_unregister_driver(&advansys_pci_driver);
12310	eisa_driver_unregister(&advansys_eisa_driver);
12311	isa_unregister_driver(&advansys_vlb_driver);
12312	isa_unregister_driver(&advansys_isa_driver);
12313}
12314
12315module_init(advansys_init);
12316module_exit(advansys_exit);
12317
12318MODULE_LICENSE("GPL");
12319MODULE_FIRMWARE("advansys/mcode.bin");
12320MODULE_FIRMWARE("advansys/3550.bin");
12321MODULE_FIRMWARE("advansys/38C0800.bin");
12322MODULE_FIRMWARE("advansys/38C1600.bin");
12323