1/*
2 *	Adaptec AAC series RAID controller driver
3 *	(c) Copyright 2001 Red Hat Inc.
4 *
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
7 *
8 * Copyright (c) 2000-2010 Adaptec, Inc.
9 *               2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; see the file COPYING.  If not, write to
23 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24 *
25 * Module Name:
26 *  dpcsup.c
27 *
28 * Abstract: All DPC processing routines for the cyclone board occur here.
29 *
30 *
31 */
32
33#include <linux/kernel.h>
34#include <linux/init.h>
35#include <linux/types.h>
36#include <linux/spinlock.h>
37#include <linux/slab.h>
38#include <linux/completion.h>
39#include <linux/blkdev.h>
40#include <linux/semaphore.h>
41
42#include "aacraid.h"
43
44/**
45 *	aac_response_normal	-	Handle command replies
46 *	@q: Queue to read from
47 *
48 *	This DPC routine will be run when the adapter interrupts us to let us
49 *	know there is a response on our normal priority queue. We will pull off
50 *	all QE there are and wake up all the waiters before exiting. We will
51 *	take a spinlock out on the queue before operating on it.
52 */
53
54unsigned int aac_response_normal(struct aac_queue * q)
55{
56	struct aac_dev * dev = q->dev;
57	struct aac_entry *entry;
58	struct hw_fib * hwfib;
59	struct fib * fib;
60	int consumed = 0;
61	unsigned long flags, mflags;
62
63	spin_lock_irqsave(q->lock, flags);
64	/*
65	 *	Keep pulling response QEs off the response queue and waking
66	 *	up the waiters until there are no more QEs. We then return
67	 *	back to the system. If no response was requesed we just
68	 *	deallocate the Fib here and continue.
69	 */
70	while(aac_consumer_get(dev, q, &entry))
71	{
72		int fast;
73		u32 index = le32_to_cpu(entry->addr);
74		fast = index & 0x01;
75		fib = &dev->fibs[index >> 2];
76		hwfib = fib->hw_fib_va;
77
78		aac_consumer_free(dev, q, HostNormRespQueue);
79		/*
80		 *	Remove this fib from the Outstanding I/O queue.
81		 *	But only if it has not already been timed out.
82		 *
83		 *	If the fib has been timed out already, then just
84		 *	continue. The caller has already been notified that
85		 *	the fib timed out.
86		 */
87		atomic_dec(&dev->queues->queue[AdapNormCmdQueue].numpending);
88
89		if (unlikely(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) {
90			spin_unlock_irqrestore(q->lock, flags);
91			aac_fib_complete(fib);
92			aac_fib_free(fib);
93			spin_lock_irqsave(q->lock, flags);
94			continue;
95		}
96		spin_unlock_irqrestore(q->lock, flags);
97
98		if (fast) {
99			/*
100			 *	Doctor the fib
101			 */
102			*(__le32 *)hwfib->data = cpu_to_le32(ST_OK);
103			hwfib->header.XferState |= cpu_to_le32(AdapterProcessed);
104			fib->flags |= FIB_CONTEXT_FLAG_FASTRESP;
105		}
106
107		FIB_COUNTER_INCREMENT(aac_config.FibRecved);
108
109		if (hwfib->header.Command == cpu_to_le16(NuFileSystem))
110		{
111			__le32 *pstatus = (__le32 *)hwfib->data;
112			if (*pstatus & cpu_to_le32(0xffff0000))
113				*pstatus = cpu_to_le32(ST_OK);
114		}
115		if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected | Async))
116		{
117	        	if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected))
118				FIB_COUNTER_INCREMENT(aac_config.NoResponseRecved);
119			else
120				FIB_COUNTER_INCREMENT(aac_config.AsyncRecved);
121			/*
122			 *	NOTE:  we cannot touch the fib after this
123			 *	    call, because it may have been deallocated.
124			 */
125			fib->flags &= FIB_CONTEXT_FLAG_FASTRESP;
126			fib->callback(fib->callback_data, fib);
127		} else {
128			unsigned long flagv;
129			spin_lock_irqsave(&fib->event_lock, flagv);
130			if (!fib->done) {
131				fib->done = 1;
132				up(&fib->event_wait);
133			}
134			spin_unlock_irqrestore(&fib->event_lock, flagv);
135
136			spin_lock_irqsave(&dev->manage_lock, mflags);
137			dev->management_fib_count--;
138			spin_unlock_irqrestore(&dev->manage_lock, mflags);
139
140			FIB_COUNTER_INCREMENT(aac_config.NormalRecved);
141			if (fib->done == 2) {
142				spin_lock_irqsave(&fib->event_lock, flagv);
143				fib->done = 0;
144				spin_unlock_irqrestore(&fib->event_lock, flagv);
145				aac_fib_complete(fib);
146				aac_fib_free(fib);
147			}
148		}
149		consumed++;
150		spin_lock_irqsave(q->lock, flags);
151	}
152
153	if (consumed > aac_config.peak_fibs)
154		aac_config.peak_fibs = consumed;
155	if (consumed == 0)
156		aac_config.zero_fibs++;
157
158	spin_unlock_irqrestore(q->lock, flags);
159	return 0;
160}
161
162
163/**
164 *	aac_command_normal	-	handle commands
165 *	@q: queue to process
166 *
167 *	This DPC routine will be queued when the adapter interrupts us to
168 *	let us know there is a command on our normal priority queue. We will
169 *	pull off all QE there are and wake up all the waiters before exiting.
170 *	We will take a spinlock out on the queue before operating on it.
171 */
172
173unsigned int aac_command_normal(struct aac_queue *q)
174{
175	struct aac_dev * dev = q->dev;
176	struct aac_entry *entry;
177	unsigned long flags;
178
179	spin_lock_irqsave(q->lock, flags);
180
181	/*
182	 *	Keep pulling response QEs off the response queue and waking
183	 *	up the waiters until there are no more QEs. We then return
184	 *	back to the system.
185	 */
186	while(aac_consumer_get(dev, q, &entry))
187	{
188		struct fib fibctx;
189		struct hw_fib * hw_fib;
190		u32 index;
191		struct fib *fib = &fibctx;
192
193		index = le32_to_cpu(entry->addr) / sizeof(struct hw_fib);
194		hw_fib = &dev->aif_base_va[index];
195
196		/*
197		 *	Allocate a FIB at all costs. For non queued stuff
198		 *	we can just use the stack so we are happy. We need
199		 *	a fib object in order to manage the linked lists
200		 */
201		if (dev->aif_thread)
202			if((fib = kmalloc(sizeof(struct fib), GFP_ATOMIC)) == NULL)
203				fib = &fibctx;
204
205		memset(fib, 0, sizeof(struct fib));
206		INIT_LIST_HEAD(&fib->fiblink);
207		fib->type = FSAFS_NTC_FIB_CONTEXT;
208		fib->size = sizeof(struct fib);
209		fib->hw_fib_va = hw_fib;
210		fib->data = hw_fib->data;
211		fib->dev = dev;
212
213
214		if (dev->aif_thread && fib != &fibctx) {
215		        list_add_tail(&fib->fiblink, &q->cmdq);
216	 	        aac_consumer_free(dev, q, HostNormCmdQueue);
217		        wake_up_interruptible(&q->cmdready);
218		} else {
219	 	        aac_consumer_free(dev, q, HostNormCmdQueue);
220			spin_unlock_irqrestore(q->lock, flags);
221			/*
222			 *	Set the status of this FIB
223			 */
224			*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
225			aac_fib_adapter_complete(fib, sizeof(u32));
226			spin_lock_irqsave(q->lock, flags);
227		}
228	}
229	spin_unlock_irqrestore(q->lock, flags);
230	return 0;
231}
232
233/*
234 *
235 * aac_aif_callback
236 * @context: the context set in the fib - here it is scsi cmd
237 * @fibptr: pointer to the fib
238 *
239 * Handles the AIFs - new method (SRC)
240 *
241 */
242
243static void aac_aif_callback(void *context, struct fib * fibptr)
244{
245	struct fib *fibctx;
246	struct aac_dev *dev;
247	struct aac_aifcmd *cmd;
248	int status;
249
250	fibctx = (struct fib *)context;
251	BUG_ON(fibptr == NULL);
252	dev = fibptr->dev;
253
254	if (fibptr->hw_fib_va->header.XferState &
255	    cpu_to_le32(NoMoreAifDataAvailable)) {
256		aac_fib_complete(fibptr);
257		aac_fib_free(fibptr);
258		return;
259	}
260
261	aac_intr_normal(dev, 0, 1, 0, fibptr->hw_fib_va);
262
263	aac_fib_init(fibctx);
264	cmd = (struct aac_aifcmd *) fib_data(fibctx);
265	cmd->command = cpu_to_le32(AifReqEvent);
266
267	status = aac_fib_send(AifRequest,
268		fibctx,
269		sizeof(struct hw_fib)-sizeof(struct aac_fibhdr),
270		FsaNormal,
271		0, 1,
272		(fib_callback)aac_aif_callback, fibctx);
273}
274
275
276/**
277 *	aac_intr_normal	-	Handle command replies
278 *	@dev: Device
279 *	@index: completion reference
280 *
281 *	This DPC routine will be run when the adapter interrupts us to let us
282 *	know there is a response on our normal priority queue. We will pull off
283 *	all QE there are and wake up all the waiters before exiting.
284 */
285unsigned int aac_intr_normal(struct aac_dev *dev, u32 index,
286			int isAif, int isFastResponse, struct hw_fib *aif_fib)
287{
288	unsigned long mflags;
289	dprintk((KERN_INFO "aac_intr_normal(%p,%x)\n", dev, index));
290	if (isAif == 1) {	/* AIF - common */
291		struct hw_fib * hw_fib;
292		struct fib * fib;
293		struct aac_queue *q = &dev->queues->queue[HostNormCmdQueue];
294		unsigned long flags;
295
296		/*
297		 *	Allocate a FIB. For non queued stuff we can just use
298		 * the stack so we are happy. We need a fib object in order to
299		 * manage the linked lists.
300		 */
301		if ((!dev->aif_thread)
302		 || (!(fib = kzalloc(sizeof(struct fib),GFP_ATOMIC))))
303			return 1;
304		if (!(hw_fib = kzalloc(sizeof(struct hw_fib),GFP_ATOMIC))) {
305			kfree (fib);
306			return 1;
307		}
308		if (aif_fib != NULL) {
309			memcpy(hw_fib, aif_fib, sizeof(struct hw_fib));
310		} else {
311			memcpy(hw_fib,
312				(struct hw_fib *)(((uintptr_t)(dev->regs.sa)) +
313				index), sizeof(struct hw_fib));
314		}
315		INIT_LIST_HEAD(&fib->fiblink);
316		fib->type = FSAFS_NTC_FIB_CONTEXT;
317		fib->size = sizeof(struct fib);
318		fib->hw_fib_va = hw_fib;
319		fib->data = hw_fib->data;
320		fib->dev = dev;
321
322		spin_lock_irqsave(q->lock, flags);
323		list_add_tail(&fib->fiblink, &q->cmdq);
324	        wake_up_interruptible(&q->cmdready);
325		spin_unlock_irqrestore(q->lock, flags);
326		return 1;
327	} else if (isAif == 2) {	/* AIF - new (SRC) */
328		struct fib *fibctx;
329		struct aac_aifcmd *cmd;
330
331		fibctx = aac_fib_alloc(dev);
332		if (!fibctx)
333			return 1;
334		aac_fib_init(fibctx);
335
336		cmd = (struct aac_aifcmd *) fib_data(fibctx);
337		cmd->command = cpu_to_le32(AifReqEvent);
338
339		return aac_fib_send(AifRequest,
340			fibctx,
341			sizeof(struct hw_fib)-sizeof(struct aac_fibhdr),
342			FsaNormal,
343			0, 1,
344			(fib_callback)aac_aif_callback, fibctx);
345	} else {
346		struct fib *fib = &dev->fibs[index];
347		struct hw_fib * hwfib = fib->hw_fib_va;
348
349		/*
350		 *	Remove this fib from the Outstanding I/O queue.
351		 *	But only if it has not already been timed out.
352		 *
353		 *	If the fib has been timed out already, then just
354		 *	continue. The caller has already been notified that
355		 *	the fib timed out.
356		 */
357		atomic_dec(&dev->queues->queue[AdapNormCmdQueue].numpending);
358
359		if (unlikely(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) {
360			aac_fib_complete(fib);
361			aac_fib_free(fib);
362			return 0;
363		}
364
365		if (isFastResponse) {
366			/*
367			 *	Doctor the fib
368			 */
369			*(__le32 *)hwfib->data = cpu_to_le32(ST_OK);
370			hwfib->header.XferState |= cpu_to_le32(AdapterProcessed);
371			fib->flags |= FIB_CONTEXT_FLAG_FASTRESP;
372		}
373
374		FIB_COUNTER_INCREMENT(aac_config.FibRecved);
375
376		if (hwfib->header.Command == cpu_to_le16(NuFileSystem))
377		{
378			__le32 *pstatus = (__le32 *)hwfib->data;
379			if (*pstatus & cpu_to_le32(0xffff0000))
380				*pstatus = cpu_to_le32(ST_OK);
381		}
382		if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected | Async))
383		{
384	        	if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected))
385				FIB_COUNTER_INCREMENT(aac_config.NoResponseRecved);
386			else
387				FIB_COUNTER_INCREMENT(aac_config.AsyncRecved);
388			/*
389			 *	NOTE:  we cannot touch the fib after this
390			 *	    call, because it may have been deallocated.
391			 */
392			if (likely(fib->callback && fib->callback_data)) {
393				fib->flags &= FIB_CONTEXT_FLAG_FASTRESP;
394				fib->callback(fib->callback_data, fib);
395			} else {
396				aac_fib_complete(fib);
397				aac_fib_free(fib);
398			}
399		} else {
400			unsigned long flagv;
401	  		dprintk((KERN_INFO "event_wait up\n"));
402			spin_lock_irqsave(&fib->event_lock, flagv);
403			if (!fib->done) {
404				fib->done = 1;
405				up(&fib->event_wait);
406			}
407			spin_unlock_irqrestore(&fib->event_lock, flagv);
408
409			spin_lock_irqsave(&dev->manage_lock, mflags);
410			dev->management_fib_count--;
411			spin_unlock_irqrestore(&dev->manage_lock, mflags);
412
413			FIB_COUNTER_INCREMENT(aac_config.NormalRecved);
414			if (fib->done == 2) {
415				spin_lock_irqsave(&fib->event_lock, flagv);
416				fib->done = 0;
417				spin_unlock_irqrestore(&fib->event_lock, flagv);
418				aac_fib_complete(fib);
419				aac_fib_free(fib);
420			}
421
422		}
423		return 0;
424	}
425}
426