1/*
2 * Freescale STMP37XX/STMP378X Real Time Clock driver
3 *
4 * Copyright (c) 2007 Sigmatel, Inc.
5 * Peter Hartley, <peter.hartley@sigmatel.com>
6 *
7 * Copyright 2008 Freescale Semiconductor, Inc. All Rights Reserved.
8 * Copyright 2008 Embedded Alley Solutions, Inc All Rights Reserved.
9 * Copyright 2011 Wolfram Sang, Pengutronix e.K.
10 */
11
12/*
13 * The code contained herein is licensed under the GNU General Public
14 * License. You may obtain a copy of the GNU General Public License
15 * Version 2 or later at the following locations:
16 *
17 * http://www.opensource.org/licenses/gpl-license.html
18 * http://www.gnu.org/copyleft/gpl.html
19 */
20#include <linux/kernel.h>
21#include <linux/module.h>
22#include <linux/io.h>
23#include <linux/init.h>
24#include <linux/platform_device.h>
25#include <linux/interrupt.h>
26#include <linux/delay.h>
27#include <linux/rtc.h>
28#include <linux/slab.h>
29#include <linux/of_device.h>
30#include <linux/of.h>
31#include <linux/stmp_device.h>
32#include <linux/stmp3xxx_rtc_wdt.h>
33
34#define STMP3XXX_RTC_CTRL			0x0
35#define STMP3XXX_RTC_CTRL_SET			0x4
36#define STMP3XXX_RTC_CTRL_CLR			0x8
37#define STMP3XXX_RTC_CTRL_ALARM_IRQ_EN		0x00000001
38#define STMP3XXX_RTC_CTRL_ONEMSEC_IRQ_EN	0x00000002
39#define STMP3XXX_RTC_CTRL_ALARM_IRQ		0x00000004
40#define STMP3XXX_RTC_CTRL_WATCHDOGEN		0x00000010
41
42#define STMP3XXX_RTC_STAT			0x10
43#define STMP3XXX_RTC_STAT_STALE_SHIFT		16
44#define STMP3XXX_RTC_STAT_RTC_PRESENT		0x80000000
45#define STMP3XXX_RTC_STAT_XTAL32000_PRESENT	0x10000000
46#define STMP3XXX_RTC_STAT_XTAL32768_PRESENT	0x08000000
47
48#define STMP3XXX_RTC_SECONDS			0x30
49
50#define STMP3XXX_RTC_ALARM			0x40
51
52#define STMP3XXX_RTC_WATCHDOG			0x50
53
54#define STMP3XXX_RTC_PERSISTENT0		0x60
55#define STMP3XXX_RTC_PERSISTENT0_SET		0x64
56#define STMP3XXX_RTC_PERSISTENT0_CLR		0x68
57#define STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE		(1 << 0)
58#define STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN		(1 << 1)
59#define STMP3XXX_RTC_PERSISTENT0_ALARM_EN		(1 << 2)
60#define STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP	(1 << 4)
61#define STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP	(1 << 5)
62#define STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ		(1 << 6)
63#define STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE		(1 << 7)
64
65#define STMP3XXX_RTC_PERSISTENT1		0x70
66/* missing bitmask in headers */
67#define STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER	0x80000000
68
69struct stmp3xxx_rtc_data {
70	struct rtc_device *rtc;
71	void __iomem *io;
72	int irq_alarm;
73};
74
75#if IS_ENABLED(CONFIG_STMP3XXX_RTC_WATCHDOG)
76/**
77 * stmp3xxx_wdt_set_timeout - configure the watchdog inside the STMP3xxx RTC
78 * @dev: the parent device of the watchdog (= the RTC)
79 * @timeout: the desired value for the timeout register of the watchdog.
80 *           0 disables the watchdog
81 *
82 * The watchdog needs one register and two bits which are in the RTC domain.
83 * To handle the resource conflict, the RTC driver will create another
84 * platform_device for the watchdog driver as a child of the RTC device.
85 * The watchdog driver is passed the below accessor function via platform_data
86 * to configure the watchdog. Locking is not needed because accessing SET/CLR
87 * registers is atomic.
88 */
89
90static void stmp3xxx_wdt_set_timeout(struct device *dev, u32 timeout)
91{
92	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
93
94	if (timeout) {
95		writel(timeout, rtc_data->io + STMP3XXX_RTC_WATCHDOG);
96		writel(STMP3XXX_RTC_CTRL_WATCHDOGEN,
97		       rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_SET);
98		writel(STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER,
99		       rtc_data->io + STMP3XXX_RTC_PERSISTENT1 + STMP_OFFSET_REG_SET);
100	} else {
101		writel(STMP3XXX_RTC_CTRL_WATCHDOGEN,
102		       rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
103		writel(STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER,
104		       rtc_data->io + STMP3XXX_RTC_PERSISTENT1 + STMP_OFFSET_REG_CLR);
105	}
106}
107
108static struct stmp3xxx_wdt_pdata wdt_pdata = {
109	.wdt_set_timeout = stmp3xxx_wdt_set_timeout,
110};
111
112static void stmp3xxx_wdt_register(struct platform_device *rtc_pdev)
113{
114	struct platform_device *wdt_pdev =
115		platform_device_alloc("stmp3xxx_rtc_wdt", rtc_pdev->id);
116
117	if (wdt_pdev) {
118		wdt_pdev->dev.parent = &rtc_pdev->dev;
119		wdt_pdev->dev.platform_data = &wdt_pdata;
120		platform_device_add(wdt_pdev);
121	}
122}
123#else
124static void stmp3xxx_wdt_register(struct platform_device *rtc_pdev)
125{
126}
127#endif /* CONFIG_STMP3XXX_RTC_WATCHDOG */
128
129static int stmp3xxx_wait_time(struct stmp3xxx_rtc_data *rtc_data)
130{
131	int timeout = 5000; /* 3ms according to i.MX28 Ref Manual */
132	/*
133	 * The i.MX28 Applications Processor Reference Manual, Rev. 1, 2010
134	 * states:
135	 * | The order in which registers are updated is
136	 * | Persistent 0, 1, 2, 3, 4, 5, Alarm, Seconds.
137	 * | (This list is in bitfield order, from LSB to MSB, as they would
138	 * | appear in the STALE_REGS and NEW_REGS bitfields of the HW_RTC_STAT
139	 * | register. For example, the Seconds register corresponds to
140	 * | STALE_REGS or NEW_REGS containing 0x80.)
141	 */
142	do {
143		if (!(readl(rtc_data->io + STMP3XXX_RTC_STAT) &
144				(0x80 << STMP3XXX_RTC_STAT_STALE_SHIFT)))
145			return 0;
146		udelay(1);
147	} while (--timeout > 0);
148	return (readl(rtc_data->io + STMP3XXX_RTC_STAT) &
149		(0x80 << STMP3XXX_RTC_STAT_STALE_SHIFT)) ? -ETIME : 0;
150}
151
152/* Time read/write */
153static int stmp3xxx_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm)
154{
155	int ret;
156	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
157
158	ret = stmp3xxx_wait_time(rtc_data);
159	if (ret)
160		return ret;
161
162	rtc_time_to_tm(readl(rtc_data->io + STMP3XXX_RTC_SECONDS), rtc_tm);
163	return 0;
164}
165
166static int stmp3xxx_rtc_set_mmss(struct device *dev, unsigned long t)
167{
168	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
169
170	writel(t, rtc_data->io + STMP3XXX_RTC_SECONDS);
171	return stmp3xxx_wait_time(rtc_data);
172}
173
174/* interrupt(s) handler */
175static irqreturn_t stmp3xxx_rtc_interrupt(int irq, void *dev_id)
176{
177	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev_id);
178	u32 status = readl(rtc_data->io + STMP3XXX_RTC_CTRL);
179
180	if (status & STMP3XXX_RTC_CTRL_ALARM_IRQ) {
181		writel(STMP3XXX_RTC_CTRL_ALARM_IRQ,
182				rtc_data->io + STMP3XXX_RTC_CTRL_CLR);
183		rtc_update_irq(rtc_data->rtc, 1, RTC_AF | RTC_IRQF);
184		return IRQ_HANDLED;
185	}
186
187	return IRQ_NONE;
188}
189
190static int stmp3xxx_alarm_irq_enable(struct device *dev, unsigned int enabled)
191{
192	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
193
194	if (enabled) {
195		writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
196				STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN,
197				rtc_data->io + STMP3XXX_RTC_PERSISTENT0_SET);
198		writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
199				rtc_data->io + STMP3XXX_RTC_CTRL_SET);
200	} else {
201		writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
202				STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN,
203				rtc_data->io + STMP3XXX_RTC_PERSISTENT0_CLR);
204		writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
205				rtc_data->io + STMP3XXX_RTC_CTRL_CLR);
206	}
207	return 0;
208}
209
210static int stmp3xxx_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
211{
212	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
213
214	rtc_time_to_tm(readl(rtc_data->io + STMP3XXX_RTC_ALARM), &alm->time);
215	return 0;
216}
217
218static int stmp3xxx_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
219{
220	unsigned long t;
221	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
222
223	rtc_tm_to_time(&alm->time, &t);
224	writel(t, rtc_data->io + STMP3XXX_RTC_ALARM);
225
226	stmp3xxx_alarm_irq_enable(dev, alm->enabled);
227
228	return 0;
229}
230
231static struct rtc_class_ops stmp3xxx_rtc_ops = {
232	.alarm_irq_enable =
233			  stmp3xxx_alarm_irq_enable,
234	.read_time	= stmp3xxx_rtc_gettime,
235	.set_mmss	= stmp3xxx_rtc_set_mmss,
236	.read_alarm	= stmp3xxx_rtc_read_alarm,
237	.set_alarm	= stmp3xxx_rtc_set_alarm,
238};
239
240static int stmp3xxx_rtc_remove(struct platform_device *pdev)
241{
242	struct stmp3xxx_rtc_data *rtc_data = platform_get_drvdata(pdev);
243
244	if (!rtc_data)
245		return 0;
246
247	writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
248			rtc_data->io + STMP3XXX_RTC_CTRL_CLR);
249
250	return 0;
251}
252
253static int stmp3xxx_rtc_probe(struct platform_device *pdev)
254{
255	struct stmp3xxx_rtc_data *rtc_data;
256	struct resource *r;
257	u32 rtc_stat;
258	u32 pers0_set, pers0_clr;
259	u32 crystalfreq = 0;
260	int err;
261
262	rtc_data = devm_kzalloc(&pdev->dev, sizeof(*rtc_data), GFP_KERNEL);
263	if (!rtc_data)
264		return -ENOMEM;
265
266	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
267	if (!r) {
268		dev_err(&pdev->dev, "failed to get resource\n");
269		return -ENXIO;
270	}
271
272	rtc_data->io = devm_ioremap(&pdev->dev, r->start, resource_size(r));
273	if (!rtc_data->io) {
274		dev_err(&pdev->dev, "ioremap failed\n");
275		return -EIO;
276	}
277
278	rtc_data->irq_alarm = platform_get_irq(pdev, 0);
279
280	rtc_stat = readl(rtc_data->io + STMP3XXX_RTC_STAT);
281	if (!(rtc_stat & STMP3XXX_RTC_STAT_RTC_PRESENT)) {
282		dev_err(&pdev->dev, "no device onboard\n");
283		return -ENODEV;
284	}
285
286	platform_set_drvdata(pdev, rtc_data);
287
288	err = stmp_reset_block(rtc_data->io);
289	if (err) {
290		dev_err(&pdev->dev, "stmp_reset_block failed: %d\n", err);
291		return err;
292	}
293
294	/*
295	 * Obviously the rtc needs a clock input to be able to run.
296	 * This clock can be provided by an external 32k crystal. If that one is
297	 * missing XTAL must not be disabled in suspend which consumes a
298	 * lot of power. Normally the presence and exact frequency (supported
299	 * are 32000 Hz and 32768 Hz) is detectable from fuses, but as reality
300	 * proves these fuses are not blown correctly on all machines, so the
301	 * frequency can be overridden in the device tree.
302	 */
303	if (rtc_stat & STMP3XXX_RTC_STAT_XTAL32000_PRESENT)
304		crystalfreq = 32000;
305	else if (rtc_stat & STMP3XXX_RTC_STAT_XTAL32768_PRESENT)
306		crystalfreq = 32768;
307
308	of_property_read_u32(pdev->dev.of_node, "stmp,crystal-freq",
309			     &crystalfreq);
310
311	switch (crystalfreq) {
312	case 32000:
313		/* keep 32kHz crystal running in low-power mode */
314		pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ |
315			STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP |
316			STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE;
317		pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP;
318		break;
319	case 32768:
320		/* keep 32.768kHz crystal running in low-power mode */
321		pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP |
322			STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE;
323		pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP |
324			STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ;
325		break;
326	default:
327		dev_warn(&pdev->dev,
328			 "invalid crystal-freq specified in device-tree. Assuming no crystal\n");
329		/* fall-through */
330	case 0:
331		/* keep XTAL on in low-power mode */
332		pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP;
333		pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP |
334			STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE;
335	}
336
337	writel(pers0_set, rtc_data->io + STMP3XXX_RTC_PERSISTENT0_SET);
338
339	writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
340			STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN |
341			STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE | pers0_clr,
342			rtc_data->io + STMP3XXX_RTC_PERSISTENT0_CLR);
343
344	writel(STMP3XXX_RTC_CTRL_ONEMSEC_IRQ_EN |
345			STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
346			rtc_data->io + STMP3XXX_RTC_CTRL_CLR);
347
348	rtc_data->rtc = devm_rtc_device_register(&pdev->dev, pdev->name,
349				&stmp3xxx_rtc_ops, THIS_MODULE);
350	if (IS_ERR(rtc_data->rtc))
351		return PTR_ERR(rtc_data->rtc);
352
353	err = devm_request_irq(&pdev->dev, rtc_data->irq_alarm,
354			stmp3xxx_rtc_interrupt, 0, "RTC alarm", &pdev->dev);
355	if (err) {
356		dev_err(&pdev->dev, "Cannot claim IRQ%d\n",
357			rtc_data->irq_alarm);
358		return err;
359	}
360
361	stmp3xxx_wdt_register(pdev);
362	return 0;
363}
364
365#ifdef CONFIG_PM_SLEEP
366static int stmp3xxx_rtc_suspend(struct device *dev)
367{
368	return 0;
369}
370
371static int stmp3xxx_rtc_resume(struct device *dev)
372{
373	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
374
375	stmp_reset_block(rtc_data->io);
376	writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
377			STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN |
378			STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE,
379			rtc_data->io + STMP3XXX_RTC_PERSISTENT0_CLR);
380	return 0;
381}
382#endif
383
384static SIMPLE_DEV_PM_OPS(stmp3xxx_rtc_pm_ops, stmp3xxx_rtc_suspend,
385			stmp3xxx_rtc_resume);
386
387static const struct of_device_id rtc_dt_ids[] = {
388	{ .compatible = "fsl,stmp3xxx-rtc", },
389	{ /* sentinel */ }
390};
391MODULE_DEVICE_TABLE(of, rtc_dt_ids);
392
393static struct platform_driver stmp3xxx_rtcdrv = {
394	.probe		= stmp3xxx_rtc_probe,
395	.remove		= stmp3xxx_rtc_remove,
396	.driver		= {
397		.name	= "stmp3xxx-rtc",
398		.pm	= &stmp3xxx_rtc_pm_ops,
399		.of_match_table = rtc_dt_ids,
400	},
401};
402
403module_platform_driver(stmp3xxx_rtcdrv);
404
405MODULE_DESCRIPTION("STMP3xxx RTC Driver");
406MODULE_AUTHOR("dmitry pervushin <dpervushin@embeddedalley.com> and "
407		"Wolfram Sang <w.sang@pengutronix.de>");
408MODULE_LICENSE("GPL");
409