1/* 2 * Copyright 2008-2009 Freescale Semiconductor, Inc. All Rights Reserved. 3 * Copyright 2010 Orex Computed Radiography 4 */ 5 6/* 7 * The code contained herein is licensed under the GNU General Public 8 * License. You may obtain a copy of the GNU General Public License 9 * Version 2 or later at the following locations: 10 * 11 * http://www.opensource.org/licenses/gpl-license.html 12 * http://www.gnu.org/copyleft/gpl.html 13 */ 14 15/* based on rtc-mc13892.c */ 16 17/* 18 * This driver uses the 47-bit 32 kHz counter in the Freescale DryIce block 19 * to implement a Linux RTC. Times and alarms are truncated to seconds. 20 * Since the RTC framework performs API locking via rtc->ops_lock the 21 * only simultaneous accesses we need to deal with is updating DryIce 22 * registers while servicing an alarm. 23 * 24 * Note that reading the DSR (DryIce Status Register) automatically clears 25 * the WCF (Write Complete Flag). All DryIce writes are synchronized to the 26 * LP (Low Power) domain and set the WCF upon completion. Writes to the 27 * DIER (DryIce Interrupt Enable Register) are the only exception. These 28 * occur at normal bus speeds and do not set WCF. Periodic interrupts are 29 * not supported by the hardware. 30 */ 31 32#include <linux/io.h> 33#include <linux/clk.h> 34#include <linux/delay.h> 35#include <linux/module.h> 36#include <linux/platform_device.h> 37#include <linux/rtc.h> 38#include <linux/sched.h> 39#include <linux/spinlock.h> 40#include <linux/workqueue.h> 41#include <linux/of.h> 42 43/* DryIce Register Definitions */ 44 45#define DTCMR 0x00 /* Time Counter MSB Reg */ 46#define DTCLR 0x04 /* Time Counter LSB Reg */ 47 48#define DCAMR 0x08 /* Clock Alarm MSB Reg */ 49#define DCALR 0x0c /* Clock Alarm LSB Reg */ 50#define DCAMR_UNSET 0xFFFFFFFF /* doomsday - 1 sec */ 51 52#define DCR 0x10 /* Control Reg */ 53#define DCR_TDCHL (1 << 30) /* Tamper-detect configuration hard lock */ 54#define DCR_TDCSL (1 << 29) /* Tamper-detect configuration soft lock */ 55#define DCR_KSSL (1 << 27) /* Key-select soft lock */ 56#define DCR_MCHL (1 << 20) /* Monotonic-counter hard lock */ 57#define DCR_MCSL (1 << 19) /* Monotonic-counter soft lock */ 58#define DCR_TCHL (1 << 18) /* Timer-counter hard lock */ 59#define DCR_TCSL (1 << 17) /* Timer-counter soft lock */ 60#define DCR_FSHL (1 << 16) /* Failure state hard lock */ 61#define DCR_TCE (1 << 3) /* Time Counter Enable */ 62#define DCR_MCE (1 << 2) /* Monotonic Counter Enable */ 63 64#define DSR 0x14 /* Status Reg */ 65#define DSR_WTD (1 << 23) /* Wire-mesh tamper detected */ 66#define DSR_ETBD (1 << 22) /* External tamper B detected */ 67#define DSR_ETAD (1 << 21) /* External tamper A detected */ 68#define DSR_EBD (1 << 20) /* External boot detected */ 69#define DSR_SAD (1 << 19) /* SCC alarm detected */ 70#define DSR_TTD (1 << 18) /* Temperatur tamper detected */ 71#define DSR_CTD (1 << 17) /* Clock tamper detected */ 72#define DSR_VTD (1 << 16) /* Voltage tamper detected */ 73#define DSR_WBF (1 << 10) /* Write Busy Flag (synchronous) */ 74#define DSR_WNF (1 << 9) /* Write Next Flag (synchronous) */ 75#define DSR_WCF (1 << 8) /* Write Complete Flag (synchronous)*/ 76#define DSR_WEF (1 << 7) /* Write Error Flag */ 77#define DSR_CAF (1 << 4) /* Clock Alarm Flag */ 78#define DSR_MCO (1 << 3) /* monotonic counter overflow */ 79#define DSR_TCO (1 << 2) /* time counter overflow */ 80#define DSR_NVF (1 << 1) /* Non-Valid Flag */ 81#define DSR_SVF (1 << 0) /* Security Violation Flag */ 82 83#define DIER 0x18 /* Interrupt Enable Reg (synchronous) */ 84#define DIER_WNIE (1 << 9) /* Write Next Interrupt Enable */ 85#define DIER_WCIE (1 << 8) /* Write Complete Interrupt Enable */ 86#define DIER_WEIE (1 << 7) /* Write Error Interrupt Enable */ 87#define DIER_CAIE (1 << 4) /* Clock Alarm Interrupt Enable */ 88#define DIER_SVIE (1 << 0) /* Security-violation Interrupt Enable */ 89 90#define DMCR 0x1c /* DryIce Monotonic Counter Reg */ 91 92#define DTCR 0x28 /* DryIce Tamper Configuration Reg */ 93#define DTCR_MOE (1 << 9) /* monotonic overflow enabled */ 94#define DTCR_TOE (1 << 8) /* time overflow enabled */ 95#define DTCR_WTE (1 << 7) /* wire-mesh tamper enabled */ 96#define DTCR_ETBE (1 << 6) /* external B tamper enabled */ 97#define DTCR_ETAE (1 << 5) /* external A tamper enabled */ 98#define DTCR_EBE (1 << 4) /* external boot tamper enabled */ 99#define DTCR_SAIE (1 << 3) /* SCC enabled */ 100#define DTCR_TTE (1 << 2) /* temperature tamper enabled */ 101#define DTCR_CTE (1 << 1) /* clock tamper enabled */ 102#define DTCR_VTE (1 << 0) /* voltage tamper enabled */ 103 104#define DGPR 0x3c /* DryIce General Purpose Reg */ 105 106/** 107 * struct imxdi_dev - private imxdi rtc data 108 * @pdev: pionter to platform dev 109 * @rtc: pointer to rtc struct 110 * @ioaddr: IO registers pointer 111 * @irq: dryice normal interrupt 112 * @clk: input reference clock 113 * @dsr: copy of the DSR register 114 * @irq_lock: interrupt enable register (DIER) lock 115 * @write_wait: registers write complete queue 116 * @write_mutex: serialize registers write 117 * @work: schedule alarm work 118 */ 119struct imxdi_dev { 120 struct platform_device *pdev; 121 struct rtc_device *rtc; 122 void __iomem *ioaddr; 123 int irq; 124 struct clk *clk; 125 u32 dsr; 126 spinlock_t irq_lock; 127 wait_queue_head_t write_wait; 128 struct mutex write_mutex; 129 struct work_struct work; 130}; 131 132/* 133 * enable a dryice interrupt 134 */ 135static void di_int_enable(struct imxdi_dev *imxdi, u32 intr) 136{ 137 unsigned long flags; 138 139 spin_lock_irqsave(&imxdi->irq_lock, flags); 140 __raw_writel(__raw_readl(imxdi->ioaddr + DIER) | intr, 141 imxdi->ioaddr + DIER); 142 spin_unlock_irqrestore(&imxdi->irq_lock, flags); 143} 144 145/* 146 * disable a dryice interrupt 147 */ 148static void di_int_disable(struct imxdi_dev *imxdi, u32 intr) 149{ 150 unsigned long flags; 151 152 spin_lock_irqsave(&imxdi->irq_lock, flags); 153 __raw_writel(__raw_readl(imxdi->ioaddr + DIER) & ~intr, 154 imxdi->ioaddr + DIER); 155 spin_unlock_irqrestore(&imxdi->irq_lock, flags); 156} 157 158/* 159 * This function attempts to clear the dryice write-error flag. 160 * 161 * A dryice write error is similar to a bus fault and should not occur in 162 * normal operation. Clearing the flag requires another write, so the root 163 * cause of the problem may need to be fixed before the flag can be cleared. 164 */ 165static void clear_write_error(struct imxdi_dev *imxdi) 166{ 167 int cnt; 168 169 dev_warn(&imxdi->pdev->dev, "WARNING: Register write error!\n"); 170 171 /* clear the write error flag */ 172 __raw_writel(DSR_WEF, imxdi->ioaddr + DSR); 173 174 /* wait for it to take effect */ 175 for (cnt = 0; cnt < 1000; cnt++) { 176 if ((__raw_readl(imxdi->ioaddr + DSR) & DSR_WEF) == 0) 177 return; 178 udelay(10); 179 } 180 dev_err(&imxdi->pdev->dev, 181 "ERROR: Cannot clear write-error flag!\n"); 182} 183 184/* 185 * Write a dryice register and wait until it completes. 186 * 187 * This function uses interrupts to determine when the 188 * write has completed. 189 */ 190static int di_write_wait(struct imxdi_dev *imxdi, u32 val, int reg) 191{ 192 int ret; 193 int rc = 0; 194 195 /* serialize register writes */ 196 mutex_lock(&imxdi->write_mutex); 197 198 /* enable the write-complete interrupt */ 199 di_int_enable(imxdi, DIER_WCIE); 200 201 imxdi->dsr = 0; 202 203 /* do the register write */ 204 __raw_writel(val, imxdi->ioaddr + reg); 205 206 /* wait for the write to finish */ 207 ret = wait_event_interruptible_timeout(imxdi->write_wait, 208 imxdi->dsr & (DSR_WCF | DSR_WEF), msecs_to_jiffies(1)); 209 if (ret < 0) { 210 rc = ret; 211 goto out; 212 } else if (ret == 0) { 213 dev_warn(&imxdi->pdev->dev, 214 "Write-wait timeout " 215 "val = 0x%08x reg = 0x%08x\n", val, reg); 216 } 217 218 /* check for write error */ 219 if (imxdi->dsr & DSR_WEF) { 220 clear_write_error(imxdi); 221 rc = -EIO; 222 } 223 224out: 225 mutex_unlock(&imxdi->write_mutex); 226 227 return rc; 228} 229 230/* 231 * read the seconds portion of the current time from the dryice time counter 232 */ 233static int dryice_rtc_read_time(struct device *dev, struct rtc_time *tm) 234{ 235 struct imxdi_dev *imxdi = dev_get_drvdata(dev); 236 unsigned long now; 237 238 now = __raw_readl(imxdi->ioaddr + DTCMR); 239 rtc_time_to_tm(now, tm); 240 241 return 0; 242} 243 244/* 245 * set the seconds portion of dryice time counter and clear the 246 * fractional part. 247 */ 248static int dryice_rtc_set_mmss(struct device *dev, unsigned long secs) 249{ 250 struct imxdi_dev *imxdi = dev_get_drvdata(dev); 251 int rc; 252 253 /* zero the fractional part first */ 254 rc = di_write_wait(imxdi, 0, DTCLR); 255 if (rc == 0) 256 rc = di_write_wait(imxdi, secs, DTCMR); 257 258 return rc; 259} 260 261static int dryice_rtc_alarm_irq_enable(struct device *dev, 262 unsigned int enabled) 263{ 264 struct imxdi_dev *imxdi = dev_get_drvdata(dev); 265 266 if (enabled) 267 di_int_enable(imxdi, DIER_CAIE); 268 else 269 di_int_disable(imxdi, DIER_CAIE); 270 271 return 0; 272} 273 274/* 275 * read the seconds portion of the alarm register. 276 * the fractional part of the alarm register is always zero. 277 */ 278static int dryice_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm) 279{ 280 struct imxdi_dev *imxdi = dev_get_drvdata(dev); 281 u32 dcamr; 282 283 dcamr = __raw_readl(imxdi->ioaddr + DCAMR); 284 rtc_time_to_tm(dcamr, &alarm->time); 285 286 /* alarm is enabled if the interrupt is enabled */ 287 alarm->enabled = (__raw_readl(imxdi->ioaddr + DIER) & DIER_CAIE) != 0; 288 289 /* don't allow the DSR read to mess up DSR_WCF */ 290 mutex_lock(&imxdi->write_mutex); 291 292 /* alarm is pending if the alarm flag is set */ 293 alarm->pending = (__raw_readl(imxdi->ioaddr + DSR) & DSR_CAF) != 0; 294 295 mutex_unlock(&imxdi->write_mutex); 296 297 return 0; 298} 299 300/* 301 * set the seconds portion of dryice alarm register 302 */ 303static int dryice_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm) 304{ 305 struct imxdi_dev *imxdi = dev_get_drvdata(dev); 306 unsigned long now; 307 unsigned long alarm_time; 308 int rc; 309 310 rc = rtc_tm_to_time(&alarm->time, &alarm_time); 311 if (rc) 312 return rc; 313 314 /* don't allow setting alarm in the past */ 315 now = __raw_readl(imxdi->ioaddr + DTCMR); 316 if (alarm_time < now) 317 return -EINVAL; 318 319 /* write the new alarm time */ 320 rc = di_write_wait(imxdi, (u32)alarm_time, DCAMR); 321 if (rc) 322 return rc; 323 324 if (alarm->enabled) 325 di_int_enable(imxdi, DIER_CAIE); /* enable alarm intr */ 326 else 327 di_int_disable(imxdi, DIER_CAIE); /* disable alarm intr */ 328 329 return 0; 330} 331 332static struct rtc_class_ops dryice_rtc_ops = { 333 .read_time = dryice_rtc_read_time, 334 .set_mmss = dryice_rtc_set_mmss, 335 .alarm_irq_enable = dryice_rtc_alarm_irq_enable, 336 .read_alarm = dryice_rtc_read_alarm, 337 .set_alarm = dryice_rtc_set_alarm, 338}; 339 340/* 341 * dryice "normal" interrupt handler 342 */ 343static irqreturn_t dryice_norm_irq(int irq, void *dev_id) 344{ 345 struct imxdi_dev *imxdi = dev_id; 346 u32 dsr, dier; 347 irqreturn_t rc = IRQ_NONE; 348 349 dier = __raw_readl(imxdi->ioaddr + DIER); 350 351 /* handle write complete and write error cases */ 352 if (dier & DIER_WCIE) { 353 /*If the write wait queue is empty then there is no pending 354 operations. It means the interrupt is for DryIce -Security. 355 IRQ must be returned as none.*/ 356 if (list_empty_careful(&imxdi->write_wait.task_list)) 357 return rc; 358 359 /* DSR_WCF clears itself on DSR read */ 360 dsr = __raw_readl(imxdi->ioaddr + DSR); 361 if (dsr & (DSR_WCF | DSR_WEF)) { 362 /* mask the interrupt */ 363 di_int_disable(imxdi, DIER_WCIE); 364 365 /* save the dsr value for the wait queue */ 366 imxdi->dsr |= dsr; 367 368 wake_up_interruptible(&imxdi->write_wait); 369 rc = IRQ_HANDLED; 370 } 371 } 372 373 /* handle the alarm case */ 374 if (dier & DIER_CAIE) { 375 /* DSR_WCF clears itself on DSR read */ 376 dsr = __raw_readl(imxdi->ioaddr + DSR); 377 if (dsr & DSR_CAF) { 378 /* mask the interrupt */ 379 di_int_disable(imxdi, DIER_CAIE); 380 381 /* finish alarm in user context */ 382 schedule_work(&imxdi->work); 383 rc = IRQ_HANDLED; 384 } 385 } 386 return rc; 387} 388 389/* 390 * post the alarm event from user context so it can sleep 391 * on the write completion. 392 */ 393static void dryice_work(struct work_struct *work) 394{ 395 struct imxdi_dev *imxdi = container_of(work, 396 struct imxdi_dev, work); 397 398 /* dismiss the interrupt (ignore error) */ 399 di_write_wait(imxdi, DSR_CAF, DSR); 400 401 /* pass the alarm event to the rtc framework. */ 402 rtc_update_irq(imxdi->rtc, 1, RTC_AF | RTC_IRQF); 403} 404 405/* 406 * probe for dryice rtc device 407 */ 408static int __init dryice_rtc_probe(struct platform_device *pdev) 409{ 410 struct resource *res; 411 struct imxdi_dev *imxdi; 412 int rc; 413 414 imxdi = devm_kzalloc(&pdev->dev, sizeof(*imxdi), GFP_KERNEL); 415 if (!imxdi) 416 return -ENOMEM; 417 418 imxdi->pdev = pdev; 419 420 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 421 imxdi->ioaddr = devm_ioremap_resource(&pdev->dev, res); 422 if (IS_ERR(imxdi->ioaddr)) 423 return PTR_ERR(imxdi->ioaddr); 424 425 spin_lock_init(&imxdi->irq_lock); 426 427 imxdi->irq = platform_get_irq(pdev, 0); 428 if (imxdi->irq < 0) 429 return imxdi->irq; 430 431 init_waitqueue_head(&imxdi->write_wait); 432 433 INIT_WORK(&imxdi->work, dryice_work); 434 435 mutex_init(&imxdi->write_mutex); 436 437 imxdi->clk = devm_clk_get(&pdev->dev, NULL); 438 if (IS_ERR(imxdi->clk)) 439 return PTR_ERR(imxdi->clk); 440 rc = clk_prepare_enable(imxdi->clk); 441 if (rc) 442 return rc; 443 444 /* 445 * Initialize dryice hardware 446 */ 447 448 /* mask all interrupts */ 449 __raw_writel(0, imxdi->ioaddr + DIER); 450 451 rc = devm_request_irq(&pdev->dev, imxdi->irq, dryice_norm_irq, 452 IRQF_SHARED, pdev->name, imxdi); 453 if (rc) { 454 dev_warn(&pdev->dev, "interrupt not available.\n"); 455 goto err; 456 } 457 458 /* put dryice into valid state */ 459 if (__raw_readl(imxdi->ioaddr + DSR) & DSR_NVF) { 460 rc = di_write_wait(imxdi, DSR_NVF | DSR_SVF, DSR); 461 if (rc) 462 goto err; 463 } 464 465 /* initialize alarm */ 466 rc = di_write_wait(imxdi, DCAMR_UNSET, DCAMR); 467 if (rc) 468 goto err; 469 rc = di_write_wait(imxdi, 0, DCALR); 470 if (rc) 471 goto err; 472 473 /* clear alarm flag */ 474 if (__raw_readl(imxdi->ioaddr + DSR) & DSR_CAF) { 475 rc = di_write_wait(imxdi, DSR_CAF, DSR); 476 if (rc) 477 goto err; 478 } 479 480 /* the timer won't count if it has never been written to */ 481 if (__raw_readl(imxdi->ioaddr + DTCMR) == 0) { 482 rc = di_write_wait(imxdi, 0, DTCMR); 483 if (rc) 484 goto err; 485 } 486 487 /* start keeping time */ 488 if (!(__raw_readl(imxdi->ioaddr + DCR) & DCR_TCE)) { 489 rc = di_write_wait(imxdi, 490 __raw_readl(imxdi->ioaddr + DCR) | DCR_TCE, 491 DCR); 492 if (rc) 493 goto err; 494 } 495 496 platform_set_drvdata(pdev, imxdi); 497 imxdi->rtc = devm_rtc_device_register(&pdev->dev, pdev->name, 498 &dryice_rtc_ops, THIS_MODULE); 499 if (IS_ERR(imxdi->rtc)) { 500 rc = PTR_ERR(imxdi->rtc); 501 goto err; 502 } 503 504 return 0; 505 506err: 507 clk_disable_unprepare(imxdi->clk); 508 509 return rc; 510} 511 512static int __exit dryice_rtc_remove(struct platform_device *pdev) 513{ 514 struct imxdi_dev *imxdi = platform_get_drvdata(pdev); 515 516 flush_work(&imxdi->work); 517 518 /* mask all interrupts */ 519 __raw_writel(0, imxdi->ioaddr + DIER); 520 521 clk_disable_unprepare(imxdi->clk); 522 523 return 0; 524} 525 526#ifdef CONFIG_OF 527static const struct of_device_id dryice_dt_ids[] = { 528 { .compatible = "fsl,imx25-rtc" }, 529 { /* sentinel */ } 530}; 531 532MODULE_DEVICE_TABLE(of, dryice_dt_ids); 533#endif 534 535static struct platform_driver dryice_rtc_driver = { 536 .driver = { 537 .name = "imxdi_rtc", 538 .of_match_table = of_match_ptr(dryice_dt_ids), 539 }, 540 .remove = __exit_p(dryice_rtc_remove), 541}; 542 543module_platform_driver_probe(dryice_rtc_driver, dryice_rtc_probe); 544 545MODULE_AUTHOR("Freescale Semiconductor, Inc."); 546MODULE_AUTHOR("Baruch Siach <baruch@tkos.co.il>"); 547MODULE_DESCRIPTION("IMX DryIce Realtime Clock Driver (RTC)"); 548MODULE_LICENSE("GPL"); 549