1/*
2 * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
3 *
4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5 * Copyright (C) 2006 David Brownell (convert to new framework)
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13/*
14 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15 * That defined the register interface now provided by all PCs, some
16 * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
17 * integrate an MC146818 clone in their southbridge, and boards use
18 * that instead of discrete clones like the DS12887 or M48T86.  There
19 * are also clones that connect using the LPC bus.
20 *
21 * That register API is also used directly by various other drivers
22 * (notably for integrated NVRAM), infrastructure (x86 has code to
23 * bypass the RTC framework, directly reading the RTC during boot
24 * and updating minutes/seconds for systems using NTP synch) and
25 * utilities (like userspace 'hwclock', if no /dev node exists).
26 *
27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28 * interrupts disabled, holding the global rtc_lock, to exclude those
29 * other drivers and utilities on correctly configured systems.
30 */
31
32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34#include <linux/kernel.h>
35#include <linux/module.h>
36#include <linux/init.h>
37#include <linux/interrupt.h>
38#include <linux/spinlock.h>
39#include <linux/platform_device.h>
40#include <linux/log2.h>
41#include <linux/pm.h>
42#include <linux/of.h>
43#include <linux/of_platform.h>
44#include <linux/dmi.h>
45
46/* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
47#include <asm-generic/rtc.h>
48
49struct cmos_rtc {
50	struct rtc_device	*rtc;
51	struct device		*dev;
52	int			irq;
53	struct resource		*iomem;
54
55	void			(*wake_on)(struct device *);
56	void			(*wake_off)(struct device *);
57
58	u8			enabled_wake;
59	u8			suspend_ctrl;
60
61	/* newer hardware extends the original register set */
62	u8			day_alrm;
63	u8			mon_alrm;
64	u8			century;
65};
66
67/* both platform and pnp busses use negative numbers for invalid irqs */
68#define is_valid_irq(n)		((n) > 0)
69
70static const char driver_name[] = "rtc_cmos";
71
72/* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
73 * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
74 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
75 */
76#define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF)
77
78static inline int is_intr(u8 rtc_intr)
79{
80	if (!(rtc_intr & RTC_IRQF))
81		return 0;
82	return rtc_intr & RTC_IRQMASK;
83}
84
85/*----------------------------------------------------------------*/
86
87/* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
88 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
89 * used in a broken "legacy replacement" mode.  The breakage includes
90 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
91 * other (better) use.
92 *
93 * When that broken mode is in use, platform glue provides a partial
94 * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
95 * want to use HPET for anything except those IRQs though...
96 */
97#ifdef CONFIG_HPET_EMULATE_RTC
98#include <asm/hpet.h>
99#else
100
101static inline int is_hpet_enabled(void)
102{
103	return 0;
104}
105
106static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
107{
108	return 0;
109}
110
111static inline int hpet_set_rtc_irq_bit(unsigned long mask)
112{
113	return 0;
114}
115
116static inline int
117hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
118{
119	return 0;
120}
121
122static inline int hpet_set_periodic_freq(unsigned long freq)
123{
124	return 0;
125}
126
127static inline int hpet_rtc_dropped_irq(void)
128{
129	return 0;
130}
131
132static inline int hpet_rtc_timer_init(void)
133{
134	return 0;
135}
136
137extern irq_handler_t hpet_rtc_interrupt;
138
139static inline int hpet_register_irq_handler(irq_handler_t handler)
140{
141	return 0;
142}
143
144static inline int hpet_unregister_irq_handler(irq_handler_t handler)
145{
146	return 0;
147}
148
149#endif
150
151/*----------------------------------------------------------------*/
152
153#ifdef RTC_PORT
154
155/* Most newer x86 systems have two register banks, the first used
156 * for RTC and NVRAM and the second only for NVRAM.  Caller must
157 * own rtc_lock ... and we won't worry about access during NMI.
158 */
159#define can_bank2	true
160
161static inline unsigned char cmos_read_bank2(unsigned char addr)
162{
163	outb(addr, RTC_PORT(2));
164	return inb(RTC_PORT(3));
165}
166
167static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
168{
169	outb(addr, RTC_PORT(2));
170	outb(val, RTC_PORT(3));
171}
172
173#else
174
175#define can_bank2	false
176
177static inline unsigned char cmos_read_bank2(unsigned char addr)
178{
179	return 0;
180}
181
182static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
183{
184}
185
186#endif
187
188/*----------------------------------------------------------------*/
189
190static int cmos_read_time(struct device *dev, struct rtc_time *t)
191{
192	/* REVISIT:  if the clock has a "century" register, use
193	 * that instead of the heuristic in get_rtc_time().
194	 * That'll make Y3K compatility (year > 2070) easy!
195	 */
196	get_rtc_time(t);
197	return 0;
198}
199
200static int cmos_set_time(struct device *dev, struct rtc_time *t)
201{
202	/* REVISIT:  set the "century" register if available
203	 *
204	 * NOTE: this ignores the issue whereby updating the seconds
205	 * takes effect exactly 500ms after we write the register.
206	 * (Also queueing and other delays before we get this far.)
207	 */
208	return set_rtc_time(t);
209}
210
211static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
212{
213	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
214	unsigned char	rtc_control;
215
216	if (!is_valid_irq(cmos->irq))
217		return -EIO;
218
219	/* Basic alarms only support hour, minute, and seconds fields.
220	 * Some also support day and month, for alarms up to a year in
221	 * the future.
222	 */
223	t->time.tm_mday = -1;
224	t->time.tm_mon = -1;
225
226	spin_lock_irq(&rtc_lock);
227	t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
228	t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
229	t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
230
231	if (cmos->day_alrm) {
232		/* ignore upper bits on readback per ACPI spec */
233		t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
234		if (!t->time.tm_mday)
235			t->time.tm_mday = -1;
236
237		if (cmos->mon_alrm) {
238			t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
239			if (!t->time.tm_mon)
240				t->time.tm_mon = -1;
241		}
242	}
243
244	rtc_control = CMOS_READ(RTC_CONTROL);
245	spin_unlock_irq(&rtc_lock);
246
247	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
248		if (((unsigned)t->time.tm_sec) < 0x60)
249			t->time.tm_sec = bcd2bin(t->time.tm_sec);
250		else
251			t->time.tm_sec = -1;
252		if (((unsigned)t->time.tm_min) < 0x60)
253			t->time.tm_min = bcd2bin(t->time.tm_min);
254		else
255			t->time.tm_min = -1;
256		if (((unsigned)t->time.tm_hour) < 0x24)
257			t->time.tm_hour = bcd2bin(t->time.tm_hour);
258		else
259			t->time.tm_hour = -1;
260
261		if (cmos->day_alrm) {
262			if (((unsigned)t->time.tm_mday) <= 0x31)
263				t->time.tm_mday = bcd2bin(t->time.tm_mday);
264			else
265				t->time.tm_mday = -1;
266
267			if (cmos->mon_alrm) {
268				if (((unsigned)t->time.tm_mon) <= 0x12)
269					t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
270				else
271					t->time.tm_mon = -1;
272			}
273		}
274	}
275	t->time.tm_year = -1;
276
277	t->enabled = !!(rtc_control & RTC_AIE);
278	t->pending = 0;
279
280	return 0;
281}
282
283static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
284{
285	unsigned char	rtc_intr;
286
287	/* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
288	 * allegedly some older rtcs need that to handle irqs properly
289	 */
290	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
291
292	if (is_hpet_enabled())
293		return;
294
295	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
296	if (is_intr(rtc_intr))
297		rtc_update_irq(cmos->rtc, 1, rtc_intr);
298}
299
300static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
301{
302	unsigned char	rtc_control;
303
304	/* flush any pending IRQ status, notably for update irqs,
305	 * before we enable new IRQs
306	 */
307	rtc_control = CMOS_READ(RTC_CONTROL);
308	cmos_checkintr(cmos, rtc_control);
309
310	rtc_control |= mask;
311	CMOS_WRITE(rtc_control, RTC_CONTROL);
312	hpet_set_rtc_irq_bit(mask);
313
314	cmos_checkintr(cmos, rtc_control);
315}
316
317static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
318{
319	unsigned char	rtc_control;
320
321	rtc_control = CMOS_READ(RTC_CONTROL);
322	rtc_control &= ~mask;
323	CMOS_WRITE(rtc_control, RTC_CONTROL);
324	hpet_mask_rtc_irq_bit(mask);
325
326	cmos_checkintr(cmos, rtc_control);
327}
328
329static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
330{
331	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
332	unsigned char mon, mday, hrs, min, sec, rtc_control;
333
334	if (!is_valid_irq(cmos->irq))
335		return -EIO;
336
337	mon = t->time.tm_mon + 1;
338	mday = t->time.tm_mday;
339	hrs = t->time.tm_hour;
340	min = t->time.tm_min;
341	sec = t->time.tm_sec;
342
343	rtc_control = CMOS_READ(RTC_CONTROL);
344	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
345		/* Writing 0xff means "don't care" or "match all".  */
346		mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
347		mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
348		hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
349		min = (min < 60) ? bin2bcd(min) : 0xff;
350		sec = (sec < 60) ? bin2bcd(sec) : 0xff;
351	}
352
353	spin_lock_irq(&rtc_lock);
354
355	/* next rtc irq must not be from previous alarm setting */
356	cmos_irq_disable(cmos, RTC_AIE);
357
358	/* update alarm */
359	CMOS_WRITE(hrs, RTC_HOURS_ALARM);
360	CMOS_WRITE(min, RTC_MINUTES_ALARM);
361	CMOS_WRITE(sec, RTC_SECONDS_ALARM);
362
363	/* the system may support an "enhanced" alarm */
364	if (cmos->day_alrm) {
365		CMOS_WRITE(mday, cmos->day_alrm);
366		if (cmos->mon_alrm)
367			CMOS_WRITE(mon, cmos->mon_alrm);
368	}
369
370	/* FIXME the HPET alarm glue currently ignores day_alrm
371	 * and mon_alrm ...
372	 */
373	hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
374
375	if (t->enabled)
376		cmos_irq_enable(cmos, RTC_AIE);
377
378	spin_unlock_irq(&rtc_lock);
379
380	return 0;
381}
382
383/*
384 * Do not disable RTC alarm on shutdown - workaround for b0rked BIOSes.
385 */
386static bool alarm_disable_quirk;
387
388static int __init set_alarm_disable_quirk(const struct dmi_system_id *id)
389{
390	alarm_disable_quirk = true;
391	pr_info("BIOS has alarm-disable quirk - RTC alarms disabled\n");
392	return 0;
393}
394
395static const struct dmi_system_id rtc_quirks[] __initconst = {
396	/* https://bugzilla.novell.com/show_bug.cgi?id=805740 */
397	{
398		.callback = set_alarm_disable_quirk,
399		.ident    = "IBM Truman",
400		.matches  = {
401			DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"),
402			DMI_MATCH(DMI_PRODUCT_NAME, "4852570"),
403		},
404	},
405	/* https://bugzilla.novell.com/show_bug.cgi?id=812592 */
406	{
407		.callback = set_alarm_disable_quirk,
408		.ident    = "Gigabyte GA-990XA-UD3",
409		.matches  = {
410			DMI_MATCH(DMI_SYS_VENDOR,
411					"Gigabyte Technology Co., Ltd."),
412			DMI_MATCH(DMI_PRODUCT_NAME, "GA-990XA-UD3"),
413		},
414	},
415	/* http://permalink.gmane.org/gmane.linux.kernel/1604474 */
416	{
417		.callback = set_alarm_disable_quirk,
418		.ident    = "Toshiba Satellite L300",
419		.matches  = {
420			DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"),
421			DMI_MATCH(DMI_PRODUCT_NAME, "Satellite L300"),
422		},
423	},
424	{}
425};
426
427static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
428{
429	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
430	unsigned long	flags;
431
432	if (!is_valid_irq(cmos->irq))
433		return -EINVAL;
434
435	if (alarm_disable_quirk)
436		return 0;
437
438	spin_lock_irqsave(&rtc_lock, flags);
439
440	if (enabled)
441		cmos_irq_enable(cmos, RTC_AIE);
442	else
443		cmos_irq_disable(cmos, RTC_AIE);
444
445	spin_unlock_irqrestore(&rtc_lock, flags);
446	return 0;
447}
448
449#if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
450
451static int cmos_procfs(struct device *dev, struct seq_file *seq)
452{
453	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
454	unsigned char	rtc_control, valid;
455
456	spin_lock_irq(&rtc_lock);
457	rtc_control = CMOS_READ(RTC_CONTROL);
458	valid = CMOS_READ(RTC_VALID);
459	spin_unlock_irq(&rtc_lock);
460
461	/* NOTE:  at least ICH6 reports battery status using a different
462	 * (non-RTC) bit; and SQWE is ignored on many current systems.
463	 */
464	seq_printf(seq,
465		   "periodic_IRQ\t: %s\n"
466		   "update_IRQ\t: %s\n"
467		   "HPET_emulated\t: %s\n"
468		   // "square_wave\t: %s\n"
469		   "BCD\t\t: %s\n"
470		   "DST_enable\t: %s\n"
471		   "periodic_freq\t: %d\n"
472		   "batt_status\t: %s\n",
473		   (rtc_control & RTC_PIE) ? "yes" : "no",
474		   (rtc_control & RTC_UIE) ? "yes" : "no",
475		   is_hpet_enabled() ? "yes" : "no",
476		   // (rtc_control & RTC_SQWE) ? "yes" : "no",
477		   (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
478		   (rtc_control & RTC_DST_EN) ? "yes" : "no",
479		   cmos->rtc->irq_freq,
480		   (valid & RTC_VRT) ? "okay" : "dead");
481
482	return 0;
483}
484
485#else
486#define	cmos_procfs	NULL
487#endif
488
489static const struct rtc_class_ops cmos_rtc_ops = {
490	.read_time		= cmos_read_time,
491	.set_time		= cmos_set_time,
492	.read_alarm		= cmos_read_alarm,
493	.set_alarm		= cmos_set_alarm,
494	.proc			= cmos_procfs,
495	.alarm_irq_enable	= cmos_alarm_irq_enable,
496};
497
498/*----------------------------------------------------------------*/
499
500/*
501 * All these chips have at least 64 bytes of address space, shared by
502 * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
503 * by boot firmware.  Modern chips have 128 or 256 bytes.
504 */
505
506#define NVRAM_OFFSET	(RTC_REG_D + 1)
507
508static ssize_t
509cmos_nvram_read(struct file *filp, struct kobject *kobj,
510		struct bin_attribute *attr,
511		char *buf, loff_t off, size_t count)
512{
513	int	retval;
514
515	if (unlikely(off >= attr->size))
516		return 0;
517	if (unlikely(off < 0))
518		return -EINVAL;
519	if ((off + count) > attr->size)
520		count = attr->size - off;
521
522	off += NVRAM_OFFSET;
523	spin_lock_irq(&rtc_lock);
524	for (retval = 0; count; count--, off++, retval++) {
525		if (off < 128)
526			*buf++ = CMOS_READ(off);
527		else if (can_bank2)
528			*buf++ = cmos_read_bank2(off);
529		else
530			break;
531	}
532	spin_unlock_irq(&rtc_lock);
533
534	return retval;
535}
536
537static ssize_t
538cmos_nvram_write(struct file *filp, struct kobject *kobj,
539		struct bin_attribute *attr,
540		char *buf, loff_t off, size_t count)
541{
542	struct cmos_rtc	*cmos;
543	int		retval;
544
545	cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
546	if (unlikely(off >= attr->size))
547		return -EFBIG;
548	if (unlikely(off < 0))
549		return -EINVAL;
550	if ((off + count) > attr->size)
551		count = attr->size - off;
552
553	/* NOTE:  on at least PCs and Ataris, the boot firmware uses a
554	 * checksum on part of the NVRAM data.  That's currently ignored
555	 * here.  If userspace is smart enough to know what fields of
556	 * NVRAM to update, updating checksums is also part of its job.
557	 */
558	off += NVRAM_OFFSET;
559	spin_lock_irq(&rtc_lock);
560	for (retval = 0; count; count--, off++, retval++) {
561		/* don't trash RTC registers */
562		if (off == cmos->day_alrm
563				|| off == cmos->mon_alrm
564				|| off == cmos->century)
565			buf++;
566		else if (off < 128)
567			CMOS_WRITE(*buf++, off);
568		else if (can_bank2)
569			cmos_write_bank2(*buf++, off);
570		else
571			break;
572	}
573	spin_unlock_irq(&rtc_lock);
574
575	return retval;
576}
577
578static struct bin_attribute nvram = {
579	.attr = {
580		.name	= "nvram",
581		.mode	= S_IRUGO | S_IWUSR,
582	},
583
584	.read	= cmos_nvram_read,
585	.write	= cmos_nvram_write,
586	/* size gets set up later */
587};
588
589/*----------------------------------------------------------------*/
590
591static struct cmos_rtc	cmos_rtc;
592
593static irqreturn_t cmos_interrupt(int irq, void *p)
594{
595	u8		irqstat;
596	u8		rtc_control;
597
598	spin_lock(&rtc_lock);
599
600	/* When the HPET interrupt handler calls us, the interrupt
601	 * status is passed as arg1 instead of the irq number.  But
602	 * always clear irq status, even when HPET is in the way.
603	 *
604	 * Note that HPET and RTC are almost certainly out of phase,
605	 * giving different IRQ status ...
606	 */
607	irqstat = CMOS_READ(RTC_INTR_FLAGS);
608	rtc_control = CMOS_READ(RTC_CONTROL);
609	if (is_hpet_enabled())
610		irqstat = (unsigned long)irq & 0xF0;
611
612	/* If we were suspended, RTC_CONTROL may not be accurate since the
613	 * bios may have cleared it.
614	 */
615	if (!cmos_rtc.suspend_ctrl)
616		irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
617	else
618		irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
619
620	/* All Linux RTC alarms should be treated as if they were oneshot.
621	 * Similar code may be needed in system wakeup paths, in case the
622	 * alarm woke the system.
623	 */
624	if (irqstat & RTC_AIE) {
625		cmos_rtc.suspend_ctrl &= ~RTC_AIE;
626		rtc_control &= ~RTC_AIE;
627		CMOS_WRITE(rtc_control, RTC_CONTROL);
628		hpet_mask_rtc_irq_bit(RTC_AIE);
629		CMOS_READ(RTC_INTR_FLAGS);
630	}
631	spin_unlock(&rtc_lock);
632
633	if (is_intr(irqstat)) {
634		rtc_update_irq(p, 1, irqstat);
635		return IRQ_HANDLED;
636	} else
637		return IRQ_NONE;
638}
639
640#ifdef	CONFIG_PNP
641#define	INITSECTION
642
643#else
644#define	INITSECTION	__init
645#endif
646
647static int INITSECTION
648cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
649{
650	struct cmos_rtc_board_info	*info = dev_get_platdata(dev);
651	int				retval = 0;
652	unsigned char			rtc_control;
653	unsigned			address_space;
654	u32				flags = 0;
655
656	/* there can be only one ... */
657	if (cmos_rtc.dev)
658		return -EBUSY;
659
660	if (!ports)
661		return -ENODEV;
662
663	/* Claim I/O ports ASAP, minimizing conflict with legacy driver.
664	 *
665	 * REVISIT non-x86 systems may instead use memory space resources
666	 * (needing ioremap etc), not i/o space resources like this ...
667	 */
668	if (RTC_IOMAPPED)
669		ports = request_region(ports->start, resource_size(ports),
670				       driver_name);
671	else
672		ports = request_mem_region(ports->start, resource_size(ports),
673					   driver_name);
674	if (!ports) {
675		dev_dbg(dev, "i/o registers already in use\n");
676		return -EBUSY;
677	}
678
679	cmos_rtc.irq = rtc_irq;
680	cmos_rtc.iomem = ports;
681
682	/* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
683	 * driver did, but don't reject unknown configs.   Old hardware
684	 * won't address 128 bytes.  Newer chips have multiple banks,
685	 * though they may not be listed in one I/O resource.
686	 */
687#if	defined(CONFIG_ATARI)
688	address_space = 64;
689#elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
690			|| defined(__sparc__) || defined(__mips__) \
691			|| defined(__powerpc__)
692	address_space = 128;
693#else
694#warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
695	address_space = 128;
696#endif
697	if (can_bank2 && ports->end > (ports->start + 1))
698		address_space = 256;
699
700	/* For ACPI systems extension info comes from the FADT.  On others,
701	 * board specific setup provides it as appropriate.  Systems where
702	 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
703	 * some almost-clones) can provide hooks to make that behave.
704	 *
705	 * Note that ACPI doesn't preclude putting these registers into
706	 * "extended" areas of the chip, including some that we won't yet
707	 * expect CMOS_READ and friends to handle.
708	 */
709	if (info) {
710		if (info->flags)
711			flags = info->flags;
712		if (info->address_space)
713			address_space = info->address_space;
714
715		if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
716			cmos_rtc.day_alrm = info->rtc_day_alarm;
717		if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
718			cmos_rtc.mon_alrm = info->rtc_mon_alarm;
719		if (info->rtc_century && info->rtc_century < 128)
720			cmos_rtc.century = info->rtc_century;
721
722		if (info->wake_on && info->wake_off) {
723			cmos_rtc.wake_on = info->wake_on;
724			cmos_rtc.wake_off = info->wake_off;
725		}
726	}
727
728	cmos_rtc.dev = dev;
729	dev_set_drvdata(dev, &cmos_rtc);
730
731	cmos_rtc.rtc = rtc_device_register(driver_name, dev,
732				&cmos_rtc_ops, THIS_MODULE);
733	if (IS_ERR(cmos_rtc.rtc)) {
734		retval = PTR_ERR(cmos_rtc.rtc);
735		goto cleanup0;
736	}
737
738	rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
739
740	spin_lock_irq(&rtc_lock);
741
742	if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
743		/* force periodic irq to CMOS reset default of 1024Hz;
744		 *
745		 * REVISIT it's been reported that at least one x86_64 ALI
746		 * mobo doesn't use 32KHz here ... for portability we might
747		 * need to do something about other clock frequencies.
748		 */
749		cmos_rtc.rtc->irq_freq = 1024;
750		hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
751		CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
752	}
753
754	/* disable irqs */
755	if (is_valid_irq(rtc_irq))
756		cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
757
758	rtc_control = CMOS_READ(RTC_CONTROL);
759
760	spin_unlock_irq(&rtc_lock);
761
762	/* FIXME:
763	 * <asm-generic/rtc.h> doesn't know 12-hour mode either.
764	 */
765	if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
766		dev_warn(dev, "only 24-hr supported\n");
767		retval = -ENXIO;
768		goto cleanup1;
769	}
770
771	if (is_valid_irq(rtc_irq)) {
772		irq_handler_t rtc_cmos_int_handler;
773
774		if (is_hpet_enabled()) {
775			rtc_cmos_int_handler = hpet_rtc_interrupt;
776			retval = hpet_register_irq_handler(cmos_interrupt);
777			if (retval) {
778				dev_warn(dev, "hpet_register_irq_handler "
779						" failed in rtc_init().");
780				goto cleanup1;
781			}
782		} else
783			rtc_cmos_int_handler = cmos_interrupt;
784
785		retval = request_irq(rtc_irq, rtc_cmos_int_handler,
786				0, dev_name(&cmos_rtc.rtc->dev),
787				cmos_rtc.rtc);
788		if (retval < 0) {
789			dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
790			goto cleanup1;
791		}
792	}
793	hpet_rtc_timer_init();
794
795	/* export at least the first block of NVRAM */
796	nvram.size = address_space - NVRAM_OFFSET;
797	retval = sysfs_create_bin_file(&dev->kobj, &nvram);
798	if (retval < 0) {
799		dev_dbg(dev, "can't create nvram file? %d\n", retval);
800		goto cleanup2;
801	}
802
803	dev_info(dev, "%s%s, %zd bytes nvram%s\n",
804		!is_valid_irq(rtc_irq) ? "no alarms" :
805			cmos_rtc.mon_alrm ? "alarms up to one year" :
806			cmos_rtc.day_alrm ? "alarms up to one month" :
807			"alarms up to one day",
808		cmos_rtc.century ? ", y3k" : "",
809		nvram.size,
810		is_hpet_enabled() ? ", hpet irqs" : "");
811
812	return 0;
813
814cleanup2:
815	if (is_valid_irq(rtc_irq))
816		free_irq(rtc_irq, cmos_rtc.rtc);
817cleanup1:
818	cmos_rtc.dev = NULL;
819	rtc_device_unregister(cmos_rtc.rtc);
820cleanup0:
821	if (RTC_IOMAPPED)
822		release_region(ports->start, resource_size(ports));
823	else
824		release_mem_region(ports->start, resource_size(ports));
825	return retval;
826}
827
828static void cmos_do_shutdown(int rtc_irq)
829{
830	spin_lock_irq(&rtc_lock);
831	if (is_valid_irq(rtc_irq))
832		cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
833	spin_unlock_irq(&rtc_lock);
834}
835
836static void __exit cmos_do_remove(struct device *dev)
837{
838	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
839	struct resource *ports;
840
841	cmos_do_shutdown(cmos->irq);
842
843	sysfs_remove_bin_file(&dev->kobj, &nvram);
844
845	if (is_valid_irq(cmos->irq)) {
846		free_irq(cmos->irq, cmos->rtc);
847		hpet_unregister_irq_handler(cmos_interrupt);
848	}
849
850	rtc_device_unregister(cmos->rtc);
851	cmos->rtc = NULL;
852
853	ports = cmos->iomem;
854	if (RTC_IOMAPPED)
855		release_region(ports->start, resource_size(ports));
856	else
857		release_mem_region(ports->start, resource_size(ports));
858	cmos->iomem = NULL;
859
860	cmos->dev = NULL;
861}
862
863#ifdef CONFIG_PM
864
865static int cmos_suspend(struct device *dev)
866{
867	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
868	unsigned char	tmp;
869
870	/* only the alarm might be a wakeup event source */
871	spin_lock_irq(&rtc_lock);
872	cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
873	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
874		unsigned char	mask;
875
876		if (device_may_wakeup(dev))
877			mask = RTC_IRQMASK & ~RTC_AIE;
878		else
879			mask = RTC_IRQMASK;
880		tmp &= ~mask;
881		CMOS_WRITE(tmp, RTC_CONTROL);
882		hpet_mask_rtc_irq_bit(mask);
883
884		cmos_checkintr(cmos, tmp);
885	}
886	spin_unlock_irq(&rtc_lock);
887
888	if (tmp & RTC_AIE) {
889		cmos->enabled_wake = 1;
890		if (cmos->wake_on)
891			cmos->wake_on(dev);
892		else
893			enable_irq_wake(cmos->irq);
894	}
895
896	dev_dbg(dev, "suspend%s, ctrl %02x\n",
897			(tmp & RTC_AIE) ? ", alarm may wake" : "",
898			tmp);
899
900	return 0;
901}
902
903/* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
904 * after a detour through G3 "mechanical off", although the ACPI spec
905 * says wakeup should only work from G1/S4 "hibernate".  To most users,
906 * distinctions between S4 and S5 are pointless.  So when the hardware
907 * allows, don't draw that distinction.
908 */
909static inline int cmos_poweroff(struct device *dev)
910{
911	return cmos_suspend(dev);
912}
913
914#ifdef	CONFIG_PM_SLEEP
915
916static int cmos_resume(struct device *dev)
917{
918	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
919	unsigned char tmp;
920
921	if (cmos->enabled_wake) {
922		if (cmos->wake_off)
923			cmos->wake_off(dev);
924		else
925			disable_irq_wake(cmos->irq);
926		cmos->enabled_wake = 0;
927	}
928
929	spin_lock_irq(&rtc_lock);
930	tmp = cmos->suspend_ctrl;
931	cmos->suspend_ctrl = 0;
932	/* re-enable any irqs previously active */
933	if (tmp & RTC_IRQMASK) {
934		unsigned char	mask;
935
936		if (device_may_wakeup(dev))
937			hpet_rtc_timer_init();
938
939		do {
940			CMOS_WRITE(tmp, RTC_CONTROL);
941			hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
942
943			mask = CMOS_READ(RTC_INTR_FLAGS);
944			mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
945			if (!is_hpet_enabled() || !is_intr(mask))
946				break;
947
948			/* force one-shot behavior if HPET blocked
949			 * the wake alarm's irq
950			 */
951			rtc_update_irq(cmos->rtc, 1, mask);
952			tmp &= ~RTC_AIE;
953			hpet_mask_rtc_irq_bit(RTC_AIE);
954		} while (mask & RTC_AIE);
955	}
956	spin_unlock_irq(&rtc_lock);
957
958	dev_dbg(dev, "resume, ctrl %02x\n", tmp);
959
960	return 0;
961}
962
963#endif
964#else
965
966static inline int cmos_poweroff(struct device *dev)
967{
968	return -ENOSYS;
969}
970
971#endif
972
973static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
974
975/*----------------------------------------------------------------*/
976
977/* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
978 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
979 * probably list them in similar PNPBIOS tables; so PNP is more common.
980 *
981 * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
982 * predate even PNPBIOS should set up platform_bus devices.
983 */
984
985#ifdef	CONFIG_ACPI
986
987#include <linux/acpi.h>
988
989static u32 rtc_handler(void *context)
990{
991	struct device *dev = context;
992
993	pm_wakeup_event(dev, 0);
994	acpi_clear_event(ACPI_EVENT_RTC);
995	acpi_disable_event(ACPI_EVENT_RTC, 0);
996	return ACPI_INTERRUPT_HANDLED;
997}
998
999static inline void rtc_wake_setup(struct device *dev)
1000{
1001	acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1002	/*
1003	 * After the RTC handler is installed, the Fixed_RTC event should
1004	 * be disabled. Only when the RTC alarm is set will it be enabled.
1005	 */
1006	acpi_clear_event(ACPI_EVENT_RTC);
1007	acpi_disable_event(ACPI_EVENT_RTC, 0);
1008}
1009
1010static void rtc_wake_on(struct device *dev)
1011{
1012	acpi_clear_event(ACPI_EVENT_RTC);
1013	acpi_enable_event(ACPI_EVENT_RTC, 0);
1014}
1015
1016static void rtc_wake_off(struct device *dev)
1017{
1018	acpi_disable_event(ACPI_EVENT_RTC, 0);
1019}
1020
1021/* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find
1022 * its device node and pass extra config data.  This helps its driver use
1023 * capabilities that the now-obsolete mc146818 didn't have, and informs it
1024 * that this board's RTC is wakeup-capable (per ACPI spec).
1025 */
1026static struct cmos_rtc_board_info acpi_rtc_info;
1027
1028static void cmos_wake_setup(struct device *dev)
1029{
1030	if (acpi_disabled)
1031		return;
1032
1033	rtc_wake_setup(dev);
1034	acpi_rtc_info.wake_on = rtc_wake_on;
1035	acpi_rtc_info.wake_off = rtc_wake_off;
1036
1037	/* workaround bug in some ACPI tables */
1038	if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1039		dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1040			acpi_gbl_FADT.month_alarm);
1041		acpi_gbl_FADT.month_alarm = 0;
1042	}
1043
1044	acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1045	acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1046	acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1047
1048	/* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */
1049	if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1050		dev_info(dev, "RTC can wake from S4\n");
1051
1052	dev->platform_data = &acpi_rtc_info;
1053
1054	/* RTC always wakes from S1/S2/S3, and often S4/STD */
1055	device_init_wakeup(dev, 1);
1056}
1057
1058#else
1059
1060static void cmos_wake_setup(struct device *dev)
1061{
1062}
1063
1064#endif
1065
1066#ifdef	CONFIG_PNP
1067
1068#include <linux/pnp.h>
1069
1070static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1071{
1072	cmos_wake_setup(&pnp->dev);
1073
1074	if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0))
1075		/* Some machines contain a PNP entry for the RTC, but
1076		 * don't define the IRQ. It should always be safe to
1077		 * hardcode it in these cases
1078		 */
1079		return cmos_do_probe(&pnp->dev,
1080				pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
1081	else
1082		return cmos_do_probe(&pnp->dev,
1083				pnp_get_resource(pnp, IORESOURCE_IO, 0),
1084				pnp_irq(pnp, 0));
1085}
1086
1087static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
1088{
1089	cmos_do_remove(&pnp->dev);
1090}
1091
1092static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1093{
1094	struct device *dev = &pnp->dev;
1095	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1096
1097	if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(dev))
1098		return;
1099
1100	cmos_do_shutdown(cmos->irq);
1101}
1102
1103static const struct pnp_device_id rtc_ids[] = {
1104	{ .id = "PNP0b00", },
1105	{ .id = "PNP0b01", },
1106	{ .id = "PNP0b02", },
1107	{ },
1108};
1109MODULE_DEVICE_TABLE(pnp, rtc_ids);
1110
1111static struct pnp_driver cmos_pnp_driver = {
1112	.name		= (char *) driver_name,
1113	.id_table	= rtc_ids,
1114	.probe		= cmos_pnp_probe,
1115	.remove		= __exit_p(cmos_pnp_remove),
1116	.shutdown	= cmos_pnp_shutdown,
1117
1118	/* flag ensures resume() gets called, and stops syslog spam */
1119	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1120	.driver		= {
1121			.pm = &cmos_pm_ops,
1122	},
1123};
1124
1125#endif	/* CONFIG_PNP */
1126
1127#ifdef CONFIG_OF
1128static const struct of_device_id of_cmos_match[] = {
1129	{
1130		.compatible = "motorola,mc146818",
1131	},
1132	{ },
1133};
1134MODULE_DEVICE_TABLE(of, of_cmos_match);
1135
1136static __init void cmos_of_init(struct platform_device *pdev)
1137{
1138	struct device_node *node = pdev->dev.of_node;
1139	struct rtc_time time;
1140	int ret;
1141	const __be32 *val;
1142
1143	if (!node)
1144		return;
1145
1146	val = of_get_property(node, "ctrl-reg", NULL);
1147	if (val)
1148		CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1149
1150	val = of_get_property(node, "freq-reg", NULL);
1151	if (val)
1152		CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1153
1154	get_rtc_time(&time);
1155	ret = rtc_valid_tm(&time);
1156	if (ret) {
1157		struct rtc_time def_time = {
1158			.tm_year = 1,
1159			.tm_mday = 1,
1160		};
1161		set_rtc_time(&def_time);
1162	}
1163}
1164#else
1165static inline void cmos_of_init(struct platform_device *pdev) {}
1166#endif
1167/*----------------------------------------------------------------*/
1168
1169/* Platform setup should have set up an RTC device, when PNP is
1170 * unavailable ... this could happen even on (older) PCs.
1171 */
1172
1173static int __init cmos_platform_probe(struct platform_device *pdev)
1174{
1175	struct resource *resource;
1176	int irq;
1177
1178	cmos_of_init(pdev);
1179	cmos_wake_setup(&pdev->dev);
1180
1181	if (RTC_IOMAPPED)
1182		resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1183	else
1184		resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1185	irq = platform_get_irq(pdev, 0);
1186	if (irq < 0)
1187		irq = -1;
1188
1189	return cmos_do_probe(&pdev->dev, resource, irq);
1190}
1191
1192static int __exit cmos_platform_remove(struct platform_device *pdev)
1193{
1194	cmos_do_remove(&pdev->dev);
1195	return 0;
1196}
1197
1198static void cmos_platform_shutdown(struct platform_device *pdev)
1199{
1200	struct device *dev = &pdev->dev;
1201	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1202
1203	if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(dev))
1204		return;
1205
1206	cmos_do_shutdown(cmos->irq);
1207}
1208
1209/* work with hotplug and coldplug */
1210MODULE_ALIAS("platform:rtc_cmos");
1211
1212static struct platform_driver cmos_platform_driver = {
1213	.remove		= __exit_p(cmos_platform_remove),
1214	.shutdown	= cmos_platform_shutdown,
1215	.driver = {
1216		.name		= driver_name,
1217#ifdef CONFIG_PM
1218		.pm		= &cmos_pm_ops,
1219#endif
1220		.of_match_table = of_match_ptr(of_cmos_match),
1221	}
1222};
1223
1224#ifdef CONFIG_PNP
1225static bool pnp_driver_registered;
1226#endif
1227static bool platform_driver_registered;
1228
1229static int __init cmos_init(void)
1230{
1231	int retval = 0;
1232
1233#ifdef	CONFIG_PNP
1234	retval = pnp_register_driver(&cmos_pnp_driver);
1235	if (retval == 0)
1236		pnp_driver_registered = true;
1237#endif
1238
1239	if (!cmos_rtc.dev) {
1240		retval = platform_driver_probe(&cmos_platform_driver,
1241					       cmos_platform_probe);
1242		if (retval == 0)
1243			platform_driver_registered = true;
1244	}
1245
1246	dmi_check_system(rtc_quirks);
1247
1248	if (retval == 0)
1249		return 0;
1250
1251#ifdef	CONFIG_PNP
1252	if (pnp_driver_registered)
1253		pnp_unregister_driver(&cmos_pnp_driver);
1254#endif
1255	return retval;
1256}
1257module_init(cmos_init);
1258
1259static void __exit cmos_exit(void)
1260{
1261#ifdef	CONFIG_PNP
1262	if (pnp_driver_registered)
1263		pnp_unregister_driver(&cmos_pnp_driver);
1264#endif
1265	if (platform_driver_registered)
1266		platform_driver_unregister(&cmos_platform_driver);
1267}
1268module_exit(cmos_exit);
1269
1270
1271MODULE_AUTHOR("David Brownell");
1272MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1273MODULE_LICENSE("GPL");
1274