1/*
2 * Virtio-based remote processor messaging bus
3 *
4 * Copyright (C) 2011 Texas Instruments, Inc.
5 * Copyright (C) 2011 Google, Inc.
6 *
7 * Ohad Ben-Cohen <ohad@wizery.com>
8 * Brian Swetland <swetland@google.com>
9 *
10 * This software is licensed under the terms of the GNU General Public
11 * License version 2, as published by the Free Software Foundation, and
12 * may be copied, distributed, and modified under those terms.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 * GNU General Public License for more details.
18 */
19
20#define pr_fmt(fmt) "%s: " fmt, __func__
21
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/virtio.h>
25#include <linux/virtio_ids.h>
26#include <linux/virtio_config.h>
27#include <linux/scatterlist.h>
28#include <linux/dma-mapping.h>
29#include <linux/slab.h>
30#include <linux/idr.h>
31#include <linux/jiffies.h>
32#include <linux/sched.h>
33#include <linux/wait.h>
34#include <linux/rpmsg.h>
35#include <linux/mutex.h>
36
37/**
38 * struct virtproc_info - virtual remote processor state
39 * @vdev:	the virtio device
40 * @rvq:	rx virtqueue
41 * @svq:	tx virtqueue
42 * @rbufs:	kernel address of rx buffers
43 * @sbufs:	kernel address of tx buffers
44 * @num_bufs:	total number of buffers for rx and tx
45 * @last_sbuf:	index of last tx buffer used
46 * @bufs_dma:	dma base addr of the buffers
47 * @tx_lock:	protects svq, sbufs and sleepers, to allow concurrent senders.
48 *		sending a message might require waking up a dozing remote
49 *		processor, which involves sleeping, hence the mutex.
50 * @endpoints:	idr of local endpoints, allows fast retrieval
51 * @endpoints_lock: lock of the endpoints set
52 * @sendq:	wait queue of sending contexts waiting for a tx buffers
53 * @sleepers:	number of senders that are waiting for a tx buffer
54 * @ns_ept:	the bus's name service endpoint
55 *
56 * This structure stores the rpmsg state of a given virtio remote processor
57 * device (there might be several virtio proc devices for each physical
58 * remote processor).
59 */
60struct virtproc_info {
61	struct virtio_device *vdev;
62	struct virtqueue *rvq, *svq;
63	void *rbufs, *sbufs;
64	unsigned int num_bufs;
65	int last_sbuf;
66	dma_addr_t bufs_dma;
67	struct mutex tx_lock;
68	struct idr endpoints;
69	struct mutex endpoints_lock;
70	wait_queue_head_t sendq;
71	atomic_t sleepers;
72	struct rpmsg_endpoint *ns_ept;
73};
74
75/**
76 * struct rpmsg_channel_info - internal channel info representation
77 * @name: name of service
78 * @src: local address
79 * @dst: destination address
80 */
81struct rpmsg_channel_info {
82	char name[RPMSG_NAME_SIZE];
83	u32 src;
84	u32 dst;
85};
86
87#define to_rpmsg_channel(d) container_of(d, struct rpmsg_channel, dev)
88#define to_rpmsg_driver(d) container_of(d, struct rpmsg_driver, drv)
89
90/*
91 * We're allocating buffers of 512 bytes each for communications. The
92 * number of buffers will be computed from the number of buffers supported
93 * by the vring, upto a maximum of 512 buffers (256 in each direction).
94 *
95 * Each buffer will have 16 bytes for the msg header and 496 bytes for
96 * the payload.
97 *
98 * This will utilize a maximum total space of 256KB for the buffers.
99 *
100 * We might also want to add support for user-provided buffers in time.
101 * This will allow bigger buffer size flexibility, and can also be used
102 * to achieve zero-copy messaging.
103 *
104 * Note that these numbers are purely a decision of this driver - we
105 * can change this without changing anything in the firmware of the remote
106 * processor.
107 */
108#define MAX_RPMSG_NUM_BUFS	(512)
109#define RPMSG_BUF_SIZE		(512)
110
111/*
112 * Local addresses are dynamically allocated on-demand.
113 * We do not dynamically assign addresses from the low 1024 range,
114 * in order to reserve that address range for predefined services.
115 */
116#define RPMSG_RESERVED_ADDRESSES	(1024)
117
118/* Address 53 is reserved for advertising remote services */
119#define RPMSG_NS_ADDR			(53)
120
121/* sysfs show configuration fields */
122#define rpmsg_show_attr(field, path, format_string)			\
123static ssize_t								\
124field##_show(struct device *dev,					\
125			struct device_attribute *attr, char *buf)	\
126{									\
127	struct rpmsg_channel *rpdev = to_rpmsg_channel(dev);		\
128									\
129	return sprintf(buf, format_string, rpdev->path);		\
130}
131
132/* for more info, see Documentation/ABI/testing/sysfs-bus-rpmsg */
133rpmsg_show_attr(name, id.name, "%s\n");
134rpmsg_show_attr(src, src, "0x%x\n");
135rpmsg_show_attr(dst, dst, "0x%x\n");
136rpmsg_show_attr(announce, announce ? "true" : "false", "%s\n");
137
138/*
139 * Unique (and free running) index for rpmsg devices.
140 *
141 * Yeah, we're not recycling those numbers (yet?). will be easy
142 * to change if/when we want to.
143 */
144static unsigned int rpmsg_dev_index;
145
146static ssize_t modalias_show(struct device *dev,
147			     struct device_attribute *attr, char *buf)
148{
149	struct rpmsg_channel *rpdev = to_rpmsg_channel(dev);
150
151	return sprintf(buf, RPMSG_DEVICE_MODALIAS_FMT "\n", rpdev->id.name);
152}
153
154static struct device_attribute rpmsg_dev_attrs[] = {
155	__ATTR_RO(name),
156	__ATTR_RO(modalias),
157	__ATTR_RO(dst),
158	__ATTR_RO(src),
159	__ATTR_RO(announce),
160	__ATTR_NULL
161};
162
163/* rpmsg devices and drivers are matched using the service name */
164static inline int rpmsg_id_match(const struct rpmsg_channel *rpdev,
165				  const struct rpmsg_device_id *id)
166{
167	return strncmp(id->name, rpdev->id.name, RPMSG_NAME_SIZE) == 0;
168}
169
170/* match rpmsg channel and rpmsg driver */
171static int rpmsg_dev_match(struct device *dev, struct device_driver *drv)
172{
173	struct rpmsg_channel *rpdev = to_rpmsg_channel(dev);
174	struct rpmsg_driver *rpdrv = to_rpmsg_driver(drv);
175	const struct rpmsg_device_id *ids = rpdrv->id_table;
176	unsigned int i;
177
178	for (i = 0; ids[i].name[0]; i++)
179		if (rpmsg_id_match(rpdev, &ids[i]))
180			return 1;
181
182	return 0;
183}
184
185static int rpmsg_uevent(struct device *dev, struct kobj_uevent_env *env)
186{
187	struct rpmsg_channel *rpdev = to_rpmsg_channel(dev);
188
189	return add_uevent_var(env, "MODALIAS=" RPMSG_DEVICE_MODALIAS_FMT,
190					rpdev->id.name);
191}
192
193/**
194 * __ept_release() - deallocate an rpmsg endpoint
195 * @kref: the ept's reference count
196 *
197 * This function deallocates an ept, and is invoked when its @kref refcount
198 * drops to zero.
199 *
200 * Never invoke this function directly!
201 */
202static void __ept_release(struct kref *kref)
203{
204	struct rpmsg_endpoint *ept = container_of(kref, struct rpmsg_endpoint,
205						  refcount);
206	/*
207	 * At this point no one holds a reference to ept anymore,
208	 * so we can directly free it
209	 */
210	kfree(ept);
211}
212
213/* for more info, see below documentation of rpmsg_create_ept() */
214static struct rpmsg_endpoint *__rpmsg_create_ept(struct virtproc_info *vrp,
215		struct rpmsg_channel *rpdev, rpmsg_rx_cb_t cb,
216		void *priv, u32 addr)
217{
218	int id_min, id_max, id;
219	struct rpmsg_endpoint *ept;
220	struct device *dev = rpdev ? &rpdev->dev : &vrp->vdev->dev;
221
222	ept = kzalloc(sizeof(*ept), GFP_KERNEL);
223	if (!ept) {
224		dev_err(dev, "failed to kzalloc a new ept\n");
225		return NULL;
226	}
227
228	kref_init(&ept->refcount);
229	mutex_init(&ept->cb_lock);
230
231	ept->rpdev = rpdev;
232	ept->cb = cb;
233	ept->priv = priv;
234
235	/* do we need to allocate a local address ? */
236	if (addr == RPMSG_ADDR_ANY) {
237		id_min = RPMSG_RESERVED_ADDRESSES;
238		id_max = 0;
239	} else {
240		id_min = addr;
241		id_max = addr + 1;
242	}
243
244	mutex_lock(&vrp->endpoints_lock);
245
246	/* bind the endpoint to an rpmsg address (and allocate one if needed) */
247	id = idr_alloc(&vrp->endpoints, ept, id_min, id_max, GFP_KERNEL);
248	if (id < 0) {
249		dev_err(dev, "idr_alloc failed: %d\n", id);
250		goto free_ept;
251	}
252	ept->addr = id;
253
254	mutex_unlock(&vrp->endpoints_lock);
255
256	return ept;
257
258free_ept:
259	mutex_unlock(&vrp->endpoints_lock);
260	kref_put(&ept->refcount, __ept_release);
261	return NULL;
262}
263
264/**
265 * rpmsg_create_ept() - create a new rpmsg_endpoint
266 * @rpdev: rpmsg channel device
267 * @cb: rx callback handler
268 * @priv: private data for the driver's use
269 * @addr: local rpmsg address to bind with @cb
270 *
271 * Every rpmsg address in the system is bound to an rx callback (so when
272 * inbound messages arrive, they are dispatched by the rpmsg bus using the
273 * appropriate callback handler) by means of an rpmsg_endpoint struct.
274 *
275 * This function allows drivers to create such an endpoint, and by that,
276 * bind a callback, and possibly some private data too, to an rpmsg address
277 * (either one that is known in advance, or one that will be dynamically
278 * assigned for them).
279 *
280 * Simple rpmsg drivers need not call rpmsg_create_ept, because an endpoint
281 * is already created for them when they are probed by the rpmsg bus
282 * (using the rx callback provided when they registered to the rpmsg bus).
283 *
284 * So things should just work for simple drivers: they already have an
285 * endpoint, their rx callback is bound to their rpmsg address, and when
286 * relevant inbound messages arrive (i.e. messages which their dst address
287 * equals to the src address of their rpmsg channel), the driver's handler
288 * is invoked to process it.
289 *
290 * That said, more complicated drivers might do need to allocate
291 * additional rpmsg addresses, and bind them to different rx callbacks.
292 * To accomplish that, those drivers need to call this function.
293 *
294 * Drivers should provide their @rpdev channel (so the new endpoint would belong
295 * to the same remote processor their channel belongs to), an rx callback
296 * function, an optional private data (which is provided back when the
297 * rx callback is invoked), and an address they want to bind with the
298 * callback. If @addr is RPMSG_ADDR_ANY, then rpmsg_create_ept will
299 * dynamically assign them an available rpmsg address (drivers should have
300 * a very good reason why not to always use RPMSG_ADDR_ANY here).
301 *
302 * Returns a pointer to the endpoint on success, or NULL on error.
303 */
304struct rpmsg_endpoint *rpmsg_create_ept(struct rpmsg_channel *rpdev,
305				rpmsg_rx_cb_t cb, void *priv, u32 addr)
306{
307	return __rpmsg_create_ept(rpdev->vrp, rpdev, cb, priv, addr);
308}
309EXPORT_SYMBOL(rpmsg_create_ept);
310
311/**
312 * __rpmsg_destroy_ept() - destroy an existing rpmsg endpoint
313 * @vrp: virtproc which owns this ept
314 * @ept: endpoing to destroy
315 *
316 * An internal function which destroy an ept without assuming it is
317 * bound to an rpmsg channel. This is needed for handling the internal
318 * name service endpoint, which isn't bound to an rpmsg channel.
319 * See also __rpmsg_create_ept().
320 */
321static void
322__rpmsg_destroy_ept(struct virtproc_info *vrp, struct rpmsg_endpoint *ept)
323{
324	/* make sure new inbound messages can't find this ept anymore */
325	mutex_lock(&vrp->endpoints_lock);
326	idr_remove(&vrp->endpoints, ept->addr);
327	mutex_unlock(&vrp->endpoints_lock);
328
329	/* make sure in-flight inbound messages won't invoke cb anymore */
330	mutex_lock(&ept->cb_lock);
331	ept->cb = NULL;
332	mutex_unlock(&ept->cb_lock);
333
334	kref_put(&ept->refcount, __ept_release);
335}
336
337/**
338 * rpmsg_destroy_ept() - destroy an existing rpmsg endpoint
339 * @ept: endpoing to destroy
340 *
341 * Should be used by drivers to destroy an rpmsg endpoint previously
342 * created with rpmsg_create_ept().
343 */
344void rpmsg_destroy_ept(struct rpmsg_endpoint *ept)
345{
346	__rpmsg_destroy_ept(ept->rpdev->vrp, ept);
347}
348EXPORT_SYMBOL(rpmsg_destroy_ept);
349
350/*
351 * when an rpmsg driver is probed with a channel, we seamlessly create
352 * it an endpoint, binding its rx callback to a unique local rpmsg
353 * address.
354 *
355 * if we need to, we also announce about this channel to the remote
356 * processor (needed in case the driver is exposing an rpmsg service).
357 */
358static int rpmsg_dev_probe(struct device *dev)
359{
360	struct rpmsg_channel *rpdev = to_rpmsg_channel(dev);
361	struct rpmsg_driver *rpdrv = to_rpmsg_driver(rpdev->dev.driver);
362	struct virtproc_info *vrp = rpdev->vrp;
363	struct rpmsg_endpoint *ept;
364	int err;
365
366	ept = rpmsg_create_ept(rpdev, rpdrv->callback, NULL, rpdev->src);
367	if (!ept) {
368		dev_err(dev, "failed to create endpoint\n");
369		err = -ENOMEM;
370		goto out;
371	}
372
373	rpdev->ept = ept;
374	rpdev->src = ept->addr;
375
376	err = rpdrv->probe(rpdev);
377	if (err) {
378		dev_err(dev, "%s: failed: %d\n", __func__, err);
379		rpmsg_destroy_ept(ept);
380		goto out;
381	}
382
383	/* need to tell remote processor's name service about this channel ? */
384	if (rpdev->announce &&
385			virtio_has_feature(vrp->vdev, VIRTIO_RPMSG_F_NS)) {
386		struct rpmsg_ns_msg nsm;
387
388		strncpy(nsm.name, rpdev->id.name, RPMSG_NAME_SIZE);
389		nsm.addr = rpdev->src;
390		nsm.flags = RPMSG_NS_CREATE;
391
392		err = rpmsg_sendto(rpdev, &nsm, sizeof(nsm), RPMSG_NS_ADDR);
393		if (err)
394			dev_err(dev, "failed to announce service %d\n", err);
395	}
396
397out:
398	return err;
399}
400
401static int rpmsg_dev_remove(struct device *dev)
402{
403	struct rpmsg_channel *rpdev = to_rpmsg_channel(dev);
404	struct rpmsg_driver *rpdrv = to_rpmsg_driver(rpdev->dev.driver);
405	struct virtproc_info *vrp = rpdev->vrp;
406	int err = 0;
407
408	/* tell remote processor's name service we're removing this channel */
409	if (rpdev->announce &&
410			virtio_has_feature(vrp->vdev, VIRTIO_RPMSG_F_NS)) {
411		struct rpmsg_ns_msg nsm;
412
413		strncpy(nsm.name, rpdev->id.name, RPMSG_NAME_SIZE);
414		nsm.addr = rpdev->src;
415		nsm.flags = RPMSG_NS_DESTROY;
416
417		err = rpmsg_sendto(rpdev, &nsm, sizeof(nsm), RPMSG_NS_ADDR);
418		if (err)
419			dev_err(dev, "failed to announce service %d\n", err);
420	}
421
422	rpdrv->remove(rpdev);
423
424	rpmsg_destroy_ept(rpdev->ept);
425
426	return err;
427}
428
429static struct bus_type rpmsg_bus = {
430	.name		= "rpmsg",
431	.match		= rpmsg_dev_match,
432	.dev_attrs	= rpmsg_dev_attrs,
433	.uevent		= rpmsg_uevent,
434	.probe		= rpmsg_dev_probe,
435	.remove		= rpmsg_dev_remove,
436};
437
438/**
439 * register_rpmsg_driver() - register an rpmsg driver with the rpmsg bus
440 * @rpdrv: pointer to a struct rpmsg_driver
441 *
442 * Returns 0 on success, and an appropriate error value on failure.
443 */
444int register_rpmsg_driver(struct rpmsg_driver *rpdrv)
445{
446	rpdrv->drv.bus = &rpmsg_bus;
447	return driver_register(&rpdrv->drv);
448}
449EXPORT_SYMBOL(register_rpmsg_driver);
450
451/**
452 * unregister_rpmsg_driver() - unregister an rpmsg driver from the rpmsg bus
453 * @rpdrv: pointer to a struct rpmsg_driver
454 *
455 * Returns 0 on success, and an appropriate error value on failure.
456 */
457void unregister_rpmsg_driver(struct rpmsg_driver *rpdrv)
458{
459	driver_unregister(&rpdrv->drv);
460}
461EXPORT_SYMBOL(unregister_rpmsg_driver);
462
463static void rpmsg_release_device(struct device *dev)
464{
465	struct rpmsg_channel *rpdev = to_rpmsg_channel(dev);
466
467	kfree(rpdev);
468}
469
470/*
471 * match an rpmsg channel with a channel info struct.
472 * this is used to make sure we're not creating rpmsg devices for channels
473 * that already exist.
474 */
475static int rpmsg_channel_match(struct device *dev, void *data)
476{
477	struct rpmsg_channel_info *chinfo = data;
478	struct rpmsg_channel *rpdev = to_rpmsg_channel(dev);
479
480	if (chinfo->src != RPMSG_ADDR_ANY && chinfo->src != rpdev->src)
481		return 0;
482
483	if (chinfo->dst != RPMSG_ADDR_ANY && chinfo->dst != rpdev->dst)
484		return 0;
485
486	if (strncmp(chinfo->name, rpdev->id.name, RPMSG_NAME_SIZE))
487		return 0;
488
489	/* found a match ! */
490	return 1;
491}
492
493/*
494 * create an rpmsg channel using its name and address info.
495 * this function will be used to create both static and dynamic
496 * channels.
497 */
498static struct rpmsg_channel *rpmsg_create_channel(struct virtproc_info *vrp,
499				struct rpmsg_channel_info *chinfo)
500{
501	struct rpmsg_channel *rpdev;
502	struct device *tmp, *dev = &vrp->vdev->dev;
503	int ret;
504
505	/* make sure a similar channel doesn't already exist */
506	tmp = device_find_child(dev, chinfo, rpmsg_channel_match);
507	if (tmp) {
508		/* decrement the matched device's refcount back */
509		put_device(tmp);
510		dev_err(dev, "channel %s:%x:%x already exist\n",
511				chinfo->name, chinfo->src, chinfo->dst);
512		return NULL;
513	}
514
515	rpdev = kzalloc(sizeof(struct rpmsg_channel), GFP_KERNEL);
516	if (!rpdev) {
517		pr_err("kzalloc failed\n");
518		return NULL;
519	}
520
521	rpdev->vrp = vrp;
522	rpdev->src = chinfo->src;
523	rpdev->dst = chinfo->dst;
524
525	/*
526	 * rpmsg server channels has predefined local address (for now),
527	 * and their existence needs to be announced remotely
528	 */
529	rpdev->announce = rpdev->src != RPMSG_ADDR_ANY ? true : false;
530
531	strncpy(rpdev->id.name, chinfo->name, RPMSG_NAME_SIZE);
532
533	/* very simple device indexing plumbing which is enough for now */
534	dev_set_name(&rpdev->dev, "rpmsg%d", rpmsg_dev_index++);
535
536	rpdev->dev.parent = &vrp->vdev->dev;
537	rpdev->dev.bus = &rpmsg_bus;
538	rpdev->dev.release = rpmsg_release_device;
539
540	ret = device_register(&rpdev->dev);
541	if (ret) {
542		dev_err(dev, "device_register failed: %d\n", ret);
543		put_device(&rpdev->dev);
544		return NULL;
545	}
546
547	return rpdev;
548}
549
550/*
551 * find an existing channel using its name + address properties,
552 * and destroy it
553 */
554static int rpmsg_destroy_channel(struct virtproc_info *vrp,
555					struct rpmsg_channel_info *chinfo)
556{
557	struct virtio_device *vdev = vrp->vdev;
558	struct device *dev;
559
560	dev = device_find_child(&vdev->dev, chinfo, rpmsg_channel_match);
561	if (!dev)
562		return -EINVAL;
563
564	device_unregister(dev);
565
566	put_device(dev);
567
568	return 0;
569}
570
571/* super simple buffer "allocator" that is just enough for now */
572static void *get_a_tx_buf(struct virtproc_info *vrp)
573{
574	unsigned int len;
575	void *ret;
576
577	/* support multiple concurrent senders */
578	mutex_lock(&vrp->tx_lock);
579
580	/*
581	 * either pick the next unused tx buffer
582	 * (half of our buffers are used for sending messages)
583	 */
584	if (vrp->last_sbuf < vrp->num_bufs / 2)
585		ret = vrp->sbufs + RPMSG_BUF_SIZE * vrp->last_sbuf++;
586	/* or recycle a used one */
587	else
588		ret = virtqueue_get_buf(vrp->svq, &len);
589
590	mutex_unlock(&vrp->tx_lock);
591
592	return ret;
593}
594
595/**
596 * rpmsg_upref_sleepers() - enable "tx-complete" interrupts, if needed
597 * @vrp: virtual remote processor state
598 *
599 * This function is called before a sender is blocked, waiting for
600 * a tx buffer to become available.
601 *
602 * If we already have blocking senders, this function merely increases
603 * the "sleepers" reference count, and exits.
604 *
605 * Otherwise, if this is the first sender to block, we also enable
606 * virtio's tx callbacks, so we'd be immediately notified when a tx
607 * buffer is consumed (we rely on virtio's tx callback in order
608 * to wake up sleeping senders as soon as a tx buffer is used by the
609 * remote processor).
610 */
611static void rpmsg_upref_sleepers(struct virtproc_info *vrp)
612{
613	/* support multiple concurrent senders */
614	mutex_lock(&vrp->tx_lock);
615
616	/* are we the first sleeping context waiting for tx buffers ? */
617	if (atomic_inc_return(&vrp->sleepers) == 1)
618		/* enable "tx-complete" interrupts before dozing off */
619		virtqueue_enable_cb(vrp->svq);
620
621	mutex_unlock(&vrp->tx_lock);
622}
623
624/**
625 * rpmsg_downref_sleepers() - disable "tx-complete" interrupts, if needed
626 * @vrp: virtual remote processor state
627 *
628 * This function is called after a sender, that waited for a tx buffer
629 * to become available, is unblocked.
630 *
631 * If we still have blocking senders, this function merely decreases
632 * the "sleepers" reference count, and exits.
633 *
634 * Otherwise, if there are no more blocking senders, we also disable
635 * virtio's tx callbacks, to avoid the overhead incurred with handling
636 * those (now redundant) interrupts.
637 */
638static void rpmsg_downref_sleepers(struct virtproc_info *vrp)
639{
640	/* support multiple concurrent senders */
641	mutex_lock(&vrp->tx_lock);
642
643	/* are we the last sleeping context waiting for tx buffers ? */
644	if (atomic_dec_and_test(&vrp->sleepers))
645		/* disable "tx-complete" interrupts */
646		virtqueue_disable_cb(vrp->svq);
647
648	mutex_unlock(&vrp->tx_lock);
649}
650
651/**
652 * rpmsg_send_offchannel_raw() - send a message across to the remote processor
653 * @rpdev: the rpmsg channel
654 * @src: source address
655 * @dst: destination address
656 * @data: payload of message
657 * @len: length of payload
658 * @wait: indicates whether caller should block in case no TX buffers available
659 *
660 * This function is the base implementation for all of the rpmsg sending API.
661 *
662 * It will send @data of length @len to @dst, and say it's from @src. The
663 * message will be sent to the remote processor which the @rpdev channel
664 * belongs to.
665 *
666 * The message is sent using one of the TX buffers that are available for
667 * communication with this remote processor.
668 *
669 * If @wait is true, the caller will be blocked until either a TX buffer is
670 * available, or 15 seconds elapses (we don't want callers to
671 * sleep indefinitely due to misbehaving remote processors), and in that
672 * case -ERESTARTSYS is returned. The number '15' itself was picked
673 * arbitrarily; there's little point in asking drivers to provide a timeout
674 * value themselves.
675 *
676 * Otherwise, if @wait is false, and there are no TX buffers available,
677 * the function will immediately fail, and -ENOMEM will be returned.
678 *
679 * Normally drivers shouldn't use this function directly; instead, drivers
680 * should use the appropriate rpmsg_{try}send{to, _offchannel} API
681 * (see include/linux/rpmsg.h).
682 *
683 * Returns 0 on success and an appropriate error value on failure.
684 */
685int rpmsg_send_offchannel_raw(struct rpmsg_channel *rpdev, u32 src, u32 dst,
686					void *data, int len, bool wait)
687{
688	struct virtproc_info *vrp = rpdev->vrp;
689	struct device *dev = &rpdev->dev;
690	struct scatterlist sg;
691	struct rpmsg_hdr *msg;
692	int err;
693
694	/* bcasting isn't allowed */
695	if (src == RPMSG_ADDR_ANY || dst == RPMSG_ADDR_ANY) {
696		dev_err(dev, "invalid addr (src 0x%x, dst 0x%x)\n", src, dst);
697		return -EINVAL;
698	}
699
700	/*
701	 * We currently use fixed-sized buffers, and therefore the payload
702	 * length is limited.
703	 *
704	 * One of the possible improvements here is either to support
705	 * user-provided buffers (and then we can also support zero-copy
706	 * messaging), or to improve the buffer allocator, to support
707	 * variable-length buffer sizes.
708	 */
709	if (len > RPMSG_BUF_SIZE - sizeof(struct rpmsg_hdr)) {
710		dev_err(dev, "message is too big (%d)\n", len);
711		return -EMSGSIZE;
712	}
713
714	/* grab a buffer */
715	msg = get_a_tx_buf(vrp);
716	if (!msg && !wait)
717		return -ENOMEM;
718
719	/* no free buffer ? wait for one (but bail after 15 seconds) */
720	while (!msg) {
721		/* enable "tx-complete" interrupts, if not already enabled */
722		rpmsg_upref_sleepers(vrp);
723
724		/*
725		 * sleep until a free buffer is available or 15 secs elapse.
726		 * the timeout period is not configurable because there's
727		 * little point in asking drivers to specify that.
728		 * if later this happens to be required, it'd be easy to add.
729		 */
730		err = wait_event_interruptible_timeout(vrp->sendq,
731					(msg = get_a_tx_buf(vrp)),
732					msecs_to_jiffies(15000));
733
734		/* disable "tx-complete" interrupts if we're the last sleeper */
735		rpmsg_downref_sleepers(vrp);
736
737		/* timeout ? */
738		if (!err) {
739			dev_err(dev, "timeout waiting for a tx buffer\n");
740			return -ERESTARTSYS;
741		}
742	}
743
744	msg->len = len;
745	msg->flags = 0;
746	msg->src = src;
747	msg->dst = dst;
748	msg->reserved = 0;
749	memcpy(msg->data, data, len);
750
751	dev_dbg(dev, "TX From 0x%x, To 0x%x, Len %d, Flags %d, Reserved %d\n",
752					msg->src, msg->dst, msg->len,
753					msg->flags, msg->reserved);
754	print_hex_dump(KERN_DEBUG, "rpmsg_virtio TX: ", DUMP_PREFIX_NONE, 16, 1,
755					msg, sizeof(*msg) + msg->len, true);
756
757	sg_init_one(&sg, msg, sizeof(*msg) + len);
758
759	mutex_lock(&vrp->tx_lock);
760
761	/* add message to the remote processor's virtqueue */
762	err = virtqueue_add_outbuf(vrp->svq, &sg, 1, msg, GFP_KERNEL);
763	if (err) {
764		/*
765		 * need to reclaim the buffer here, otherwise it's lost
766		 * (memory won't leak, but rpmsg won't use it again for TX).
767		 * this will wait for a buffer management overhaul.
768		 */
769		dev_err(dev, "virtqueue_add_outbuf failed: %d\n", err);
770		goto out;
771	}
772
773	/* tell the remote processor it has a pending message to read */
774	virtqueue_kick(vrp->svq);
775out:
776	mutex_unlock(&vrp->tx_lock);
777	return err;
778}
779EXPORT_SYMBOL(rpmsg_send_offchannel_raw);
780
781static int rpmsg_recv_single(struct virtproc_info *vrp, struct device *dev,
782			     struct rpmsg_hdr *msg, unsigned int len)
783{
784	struct rpmsg_endpoint *ept;
785	struct scatterlist sg;
786	int err;
787
788	dev_dbg(dev, "From: 0x%x, To: 0x%x, Len: %d, Flags: %d, Reserved: %d\n",
789					msg->src, msg->dst, msg->len,
790					msg->flags, msg->reserved);
791	print_hex_dump(KERN_DEBUG, "rpmsg_virtio RX: ", DUMP_PREFIX_NONE, 16, 1,
792					msg, sizeof(*msg) + msg->len, true);
793
794	/*
795	 * We currently use fixed-sized buffers, so trivially sanitize
796	 * the reported payload length.
797	 */
798	if (len > RPMSG_BUF_SIZE ||
799		msg->len > (len - sizeof(struct rpmsg_hdr))) {
800		dev_warn(dev, "inbound msg too big: (%d, %d)\n", len, msg->len);
801		return -EINVAL;
802	}
803
804	/* use the dst addr to fetch the callback of the appropriate user */
805	mutex_lock(&vrp->endpoints_lock);
806
807	ept = idr_find(&vrp->endpoints, msg->dst);
808
809	/* let's make sure no one deallocates ept while we use it */
810	if (ept)
811		kref_get(&ept->refcount);
812
813	mutex_unlock(&vrp->endpoints_lock);
814
815	if (ept) {
816		/* make sure ept->cb doesn't go away while we use it */
817		mutex_lock(&ept->cb_lock);
818
819		if (ept->cb)
820			ept->cb(ept->rpdev, msg->data, msg->len, ept->priv,
821				msg->src);
822
823		mutex_unlock(&ept->cb_lock);
824
825		/* farewell, ept, we don't need you anymore */
826		kref_put(&ept->refcount, __ept_release);
827	} else
828		dev_warn(dev, "msg received with no recipient\n");
829
830	/* publish the real size of the buffer */
831	sg_init_one(&sg, msg, RPMSG_BUF_SIZE);
832
833	/* add the buffer back to the remote processor's virtqueue */
834	err = virtqueue_add_inbuf(vrp->rvq, &sg, 1, msg, GFP_KERNEL);
835	if (err < 0) {
836		dev_err(dev, "failed to add a virtqueue buffer: %d\n", err);
837		return err;
838	}
839
840	return 0;
841}
842
843/* called when an rx buffer is used, and it's time to digest a message */
844static void rpmsg_recv_done(struct virtqueue *rvq)
845{
846	struct virtproc_info *vrp = rvq->vdev->priv;
847	struct device *dev = &rvq->vdev->dev;
848	struct rpmsg_hdr *msg;
849	unsigned int len, msgs_received = 0;
850	int err;
851
852	msg = virtqueue_get_buf(rvq, &len);
853	if (!msg) {
854		dev_err(dev, "uhm, incoming signal, but no used buffer ?\n");
855		return;
856	}
857
858	while (msg) {
859		err = rpmsg_recv_single(vrp, dev, msg, len);
860		if (err)
861			break;
862
863		msgs_received++;
864
865		msg = virtqueue_get_buf(rvq, &len);
866	};
867
868	dev_dbg(dev, "Received %u messages\n", msgs_received);
869
870	/* tell the remote processor we added another available rx buffer */
871	if (msgs_received)
872		virtqueue_kick(vrp->rvq);
873}
874
875/*
876 * This is invoked whenever the remote processor completed processing
877 * a TX msg we just sent it, and the buffer is put back to the used ring.
878 *
879 * Normally, though, we suppress this "tx complete" interrupt in order to
880 * avoid the incurred overhead.
881 */
882static void rpmsg_xmit_done(struct virtqueue *svq)
883{
884	struct virtproc_info *vrp = svq->vdev->priv;
885
886	dev_dbg(&svq->vdev->dev, "%s\n", __func__);
887
888	/* wake up potential senders that are waiting for a tx buffer */
889	wake_up_interruptible(&vrp->sendq);
890}
891
892/* invoked when a name service announcement arrives */
893static void rpmsg_ns_cb(struct rpmsg_channel *rpdev, void *data, int len,
894							void *priv, u32 src)
895{
896	struct rpmsg_ns_msg *msg = data;
897	struct rpmsg_channel *newch;
898	struct rpmsg_channel_info chinfo;
899	struct virtproc_info *vrp = priv;
900	struct device *dev = &vrp->vdev->dev;
901	int ret;
902
903	print_hex_dump(KERN_DEBUG, "NS announcement: ",
904			DUMP_PREFIX_NONE, 16, 1,
905			data, len, true);
906
907	if (len != sizeof(*msg)) {
908		dev_err(dev, "malformed ns msg (%d)\n", len);
909		return;
910	}
911
912	/*
913	 * the name service ept does _not_ belong to a real rpmsg channel,
914	 * and is handled by the rpmsg bus itself.
915	 * for sanity reasons, make sure a valid rpdev has _not_ sneaked
916	 * in somehow.
917	 */
918	if (rpdev) {
919		dev_err(dev, "anomaly: ns ept has an rpdev handle\n");
920		return;
921	}
922
923	/* don't trust the remote processor for null terminating the name */
924	msg->name[RPMSG_NAME_SIZE - 1] = '\0';
925
926	dev_info(dev, "%sing channel %s addr 0x%x\n",
927			msg->flags & RPMSG_NS_DESTROY ? "destroy" : "creat",
928			msg->name, msg->addr);
929
930	strncpy(chinfo.name, msg->name, sizeof(chinfo.name));
931	chinfo.src = RPMSG_ADDR_ANY;
932	chinfo.dst = msg->addr;
933
934	if (msg->flags & RPMSG_NS_DESTROY) {
935		ret = rpmsg_destroy_channel(vrp, &chinfo);
936		if (ret)
937			dev_err(dev, "rpmsg_destroy_channel failed: %d\n", ret);
938	} else {
939		newch = rpmsg_create_channel(vrp, &chinfo);
940		if (!newch)
941			dev_err(dev, "rpmsg_create_channel failed\n");
942	}
943}
944
945static int rpmsg_probe(struct virtio_device *vdev)
946{
947	vq_callback_t *vq_cbs[] = { rpmsg_recv_done, rpmsg_xmit_done };
948	const char *names[] = { "input", "output" };
949	struct virtqueue *vqs[2];
950	struct virtproc_info *vrp;
951	void *bufs_va;
952	int err = 0, i;
953	size_t total_buf_space;
954	bool notify;
955
956	vrp = kzalloc(sizeof(*vrp), GFP_KERNEL);
957	if (!vrp)
958		return -ENOMEM;
959
960	vrp->vdev = vdev;
961
962	idr_init(&vrp->endpoints);
963	mutex_init(&vrp->endpoints_lock);
964	mutex_init(&vrp->tx_lock);
965	init_waitqueue_head(&vrp->sendq);
966
967	/* We expect two virtqueues, rx and tx (and in this order) */
968	err = vdev->config->find_vqs(vdev, 2, vqs, vq_cbs, names);
969	if (err)
970		goto free_vrp;
971
972	vrp->rvq = vqs[0];
973	vrp->svq = vqs[1];
974
975	/* we expect symmetric tx/rx vrings */
976	WARN_ON(virtqueue_get_vring_size(vrp->rvq) !=
977		virtqueue_get_vring_size(vrp->svq));
978
979	/* we need less buffers if vrings are small */
980	if (virtqueue_get_vring_size(vrp->rvq) < MAX_RPMSG_NUM_BUFS / 2)
981		vrp->num_bufs = virtqueue_get_vring_size(vrp->rvq) * 2;
982	else
983		vrp->num_bufs = MAX_RPMSG_NUM_BUFS;
984
985	total_buf_space = vrp->num_bufs * RPMSG_BUF_SIZE;
986
987	/* allocate coherent memory for the buffers */
988	bufs_va = dma_alloc_coherent(vdev->dev.parent->parent,
989				     total_buf_space, &vrp->bufs_dma,
990				     GFP_KERNEL);
991	if (!bufs_va) {
992		err = -ENOMEM;
993		goto vqs_del;
994	}
995
996	dev_dbg(&vdev->dev, "buffers: va %p, dma 0x%llx\n", bufs_va,
997					(unsigned long long)vrp->bufs_dma);
998
999	/* half of the buffers is dedicated for RX */
1000	vrp->rbufs = bufs_va;
1001
1002	/* and half is dedicated for TX */
1003	vrp->sbufs = bufs_va + total_buf_space / 2;
1004
1005	/* set up the receive buffers */
1006	for (i = 0; i < vrp->num_bufs / 2; i++) {
1007		struct scatterlist sg;
1008		void *cpu_addr = vrp->rbufs + i * RPMSG_BUF_SIZE;
1009
1010		sg_init_one(&sg, cpu_addr, RPMSG_BUF_SIZE);
1011
1012		err = virtqueue_add_inbuf(vrp->rvq, &sg, 1, cpu_addr,
1013								GFP_KERNEL);
1014		WARN_ON(err); /* sanity check; this can't really happen */
1015	}
1016
1017	/* suppress "tx-complete" interrupts */
1018	virtqueue_disable_cb(vrp->svq);
1019
1020	vdev->priv = vrp;
1021
1022	/* if supported by the remote processor, enable the name service */
1023	if (virtio_has_feature(vdev, VIRTIO_RPMSG_F_NS)) {
1024		/* a dedicated endpoint handles the name service msgs */
1025		vrp->ns_ept = __rpmsg_create_ept(vrp, NULL, rpmsg_ns_cb,
1026						vrp, RPMSG_NS_ADDR);
1027		if (!vrp->ns_ept) {
1028			dev_err(&vdev->dev, "failed to create the ns ept\n");
1029			err = -ENOMEM;
1030			goto free_coherent;
1031		}
1032	}
1033
1034	/*
1035	 * Prepare to kick but don't notify yet - we can't do this before
1036	 * device is ready.
1037	 */
1038	notify = virtqueue_kick_prepare(vrp->rvq);
1039
1040	/* From this point on, we can notify and get callbacks. */
1041	virtio_device_ready(vdev);
1042
1043	/* tell the remote processor it can start sending messages */
1044	/*
1045	 * this might be concurrent with callbacks, but we are only
1046	 * doing notify, not a full kick here, so that's ok.
1047	 */
1048	if (notify)
1049		virtqueue_notify(vrp->rvq);
1050
1051	dev_info(&vdev->dev, "rpmsg host is online\n");
1052
1053	return 0;
1054
1055free_coherent:
1056	dma_free_coherent(vdev->dev.parent->parent, total_buf_space,
1057			  bufs_va, vrp->bufs_dma);
1058vqs_del:
1059	vdev->config->del_vqs(vrp->vdev);
1060free_vrp:
1061	kfree(vrp);
1062	return err;
1063}
1064
1065static int rpmsg_remove_device(struct device *dev, void *data)
1066{
1067	device_unregister(dev);
1068
1069	return 0;
1070}
1071
1072static void rpmsg_remove(struct virtio_device *vdev)
1073{
1074	struct virtproc_info *vrp = vdev->priv;
1075	size_t total_buf_space = vrp->num_bufs * RPMSG_BUF_SIZE;
1076	int ret;
1077
1078	vdev->config->reset(vdev);
1079
1080	ret = device_for_each_child(&vdev->dev, NULL, rpmsg_remove_device);
1081	if (ret)
1082		dev_warn(&vdev->dev, "can't remove rpmsg device: %d\n", ret);
1083
1084	if (vrp->ns_ept)
1085		__rpmsg_destroy_ept(vrp, vrp->ns_ept);
1086
1087	idr_destroy(&vrp->endpoints);
1088
1089	vdev->config->del_vqs(vrp->vdev);
1090
1091	dma_free_coherent(vdev->dev.parent->parent, total_buf_space,
1092			  vrp->rbufs, vrp->bufs_dma);
1093
1094	kfree(vrp);
1095}
1096
1097static struct virtio_device_id id_table[] = {
1098	{ VIRTIO_ID_RPMSG, VIRTIO_DEV_ANY_ID },
1099	{ 0 },
1100};
1101
1102static unsigned int features[] = {
1103	VIRTIO_RPMSG_F_NS,
1104};
1105
1106static struct virtio_driver virtio_ipc_driver = {
1107	.feature_table	= features,
1108	.feature_table_size = ARRAY_SIZE(features),
1109	.driver.name	= KBUILD_MODNAME,
1110	.driver.owner	= THIS_MODULE,
1111	.id_table	= id_table,
1112	.probe		= rpmsg_probe,
1113	.remove		= rpmsg_remove,
1114};
1115
1116static int __init rpmsg_init(void)
1117{
1118	int ret;
1119
1120	ret = bus_register(&rpmsg_bus);
1121	if (ret) {
1122		pr_err("failed to register rpmsg bus: %d\n", ret);
1123		return ret;
1124	}
1125
1126	ret = register_virtio_driver(&virtio_ipc_driver);
1127	if (ret) {
1128		pr_err("failed to register virtio driver: %d\n", ret);
1129		bus_unregister(&rpmsg_bus);
1130	}
1131
1132	return ret;
1133}
1134subsys_initcall(rpmsg_init);
1135
1136static void __exit rpmsg_fini(void)
1137{
1138	unregister_virtio_driver(&virtio_ipc_driver);
1139	bus_unregister(&rpmsg_bus);
1140}
1141module_exit(rpmsg_fini);
1142
1143MODULE_DEVICE_TABLE(virtio, id_table);
1144MODULE_DESCRIPTION("Virtio-based remote processor messaging bus");
1145MODULE_LICENSE("GPL v2");
1146