1/*
2 * Remote Processor Framework
3 *
4 * Copyright (C) 2011 Texas Instruments, Inc.
5 * Copyright (C) 2011 Google, Inc.
6 *
7 * Ohad Ben-Cohen <ohad@wizery.com>
8 * Brian Swetland <swetland@google.com>
9 * Mark Grosen <mgrosen@ti.com>
10 * Fernando Guzman Lugo <fernando.lugo@ti.com>
11 * Suman Anna <s-anna@ti.com>
12 * Robert Tivy <rtivy@ti.com>
13 * Armando Uribe De Leon <x0095078@ti.com>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * version 2 as published by the Free Software Foundation.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22 * GNU General Public License for more details.
23 */
24
25#define pr_fmt(fmt)    "%s: " fmt, __func__
26
27#include <linux/kernel.h>
28#include <linux/module.h>
29#include <linux/device.h>
30#include <linux/slab.h>
31#include <linux/mutex.h>
32#include <linux/dma-mapping.h>
33#include <linux/firmware.h>
34#include <linux/string.h>
35#include <linux/debugfs.h>
36#include <linux/remoteproc.h>
37#include <linux/iommu.h>
38#include <linux/idr.h>
39#include <linux/elf.h>
40#include <linux/crc32.h>
41#include <linux/virtio_ids.h>
42#include <linux/virtio_ring.h>
43#include <asm/byteorder.h>
44
45#include "remoteproc_internal.h"
46
47typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
48				struct resource_table *table, int len);
49typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
50				 void *, int offset, int avail);
51
52/* Unique indices for remoteproc devices */
53static DEFINE_IDA(rproc_dev_index);
54
55static const char * const rproc_crash_names[] = {
56	[RPROC_MMUFAULT]	= "mmufault",
57};
58
59/* translate rproc_crash_type to string */
60static const char *rproc_crash_to_string(enum rproc_crash_type type)
61{
62	if (type < ARRAY_SIZE(rproc_crash_names))
63		return rproc_crash_names[type];
64	return "unknown";
65}
66
67/*
68 * This is the IOMMU fault handler we register with the IOMMU API
69 * (when relevant; not all remote processors access memory through
70 * an IOMMU).
71 *
72 * IOMMU core will invoke this handler whenever the remote processor
73 * will try to access an unmapped device address.
74 */
75static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
76		unsigned long iova, int flags, void *token)
77{
78	struct rproc *rproc = token;
79
80	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
81
82	rproc_report_crash(rproc, RPROC_MMUFAULT);
83
84	/*
85	 * Let the iommu core know we're not really handling this fault;
86	 * we just used it as a recovery trigger.
87	 */
88	return -ENOSYS;
89}
90
91static int rproc_enable_iommu(struct rproc *rproc)
92{
93	struct iommu_domain *domain;
94	struct device *dev = rproc->dev.parent;
95	int ret;
96
97	if (!rproc->has_iommu) {
98		dev_dbg(dev, "iommu not present\n");
99		return 0;
100	}
101
102	domain = iommu_domain_alloc(dev->bus);
103	if (!domain) {
104		dev_err(dev, "can't alloc iommu domain\n");
105		return -ENOMEM;
106	}
107
108	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
109
110	ret = iommu_attach_device(domain, dev);
111	if (ret) {
112		dev_err(dev, "can't attach iommu device: %d\n", ret);
113		goto free_domain;
114	}
115
116	rproc->domain = domain;
117
118	return 0;
119
120free_domain:
121	iommu_domain_free(domain);
122	return ret;
123}
124
125static void rproc_disable_iommu(struct rproc *rproc)
126{
127	struct iommu_domain *domain = rproc->domain;
128	struct device *dev = rproc->dev.parent;
129
130	if (!domain)
131		return;
132
133	iommu_detach_device(domain, dev);
134	iommu_domain_free(domain);
135
136	return;
137}
138
139/*
140 * Some remote processors will ask us to allocate them physically contiguous
141 * memory regions (which we call "carveouts"), and map them to specific
142 * device addresses (which are hardcoded in the firmware).
143 *
144 * They may then ask us to copy objects into specific device addresses (e.g.
145 * code/data sections) or expose us certain symbols in other device address
146 * (e.g. their trace buffer).
147 *
148 * This function is an internal helper with which we can go over the allocated
149 * carveouts and translate specific device address to kernel virtual addresses
150 * so we can access the referenced memory.
151 *
152 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
153 * but only on kernel direct mapped RAM memory. Instead, we're just using
154 * here the output of the DMA API, which should be more correct.
155 */
156void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
157{
158	struct rproc_mem_entry *carveout;
159	void *ptr = NULL;
160
161	list_for_each_entry(carveout, &rproc->carveouts, node) {
162		int offset = da - carveout->da;
163
164		/* try next carveout if da is too small */
165		if (offset < 0)
166			continue;
167
168		/* try next carveout if da is too large */
169		if (offset + len > carveout->len)
170			continue;
171
172		ptr = carveout->va + offset;
173
174		break;
175	}
176
177	return ptr;
178}
179EXPORT_SYMBOL(rproc_da_to_va);
180
181int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
182{
183	struct rproc *rproc = rvdev->rproc;
184	struct device *dev = &rproc->dev;
185	struct rproc_vring *rvring = &rvdev->vring[i];
186	struct fw_rsc_vdev *rsc;
187	dma_addr_t dma;
188	void *va;
189	int ret, size, notifyid;
190
191	/* actual size of vring (in bytes) */
192	size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
193
194	/*
195	 * Allocate non-cacheable memory for the vring. In the future
196	 * this call will also configure the IOMMU for us
197	 */
198	va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL);
199	if (!va) {
200		dev_err(dev->parent, "dma_alloc_coherent failed\n");
201		return -EINVAL;
202	}
203
204	/*
205	 * Assign an rproc-wide unique index for this vring
206	 * TODO: assign a notifyid for rvdev updates as well
207	 * TODO: support predefined notifyids (via resource table)
208	 */
209	ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
210	if (ret < 0) {
211		dev_err(dev, "idr_alloc failed: %d\n", ret);
212		dma_free_coherent(dev->parent, size, va, dma);
213		return ret;
214	}
215	notifyid = ret;
216
217	dev_dbg(dev, "vring%d: va %p dma %llx size %x idr %d\n", i, va,
218				(unsigned long long)dma, size, notifyid);
219
220	rvring->va = va;
221	rvring->dma = dma;
222	rvring->notifyid = notifyid;
223
224	/*
225	 * Let the rproc know the notifyid and da of this vring.
226	 * Not all platforms use dma_alloc_coherent to automatically
227	 * set up the iommu. In this case the device address (da) will
228	 * hold the physical address and not the device address.
229	 */
230	rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
231	rsc->vring[i].da = dma;
232	rsc->vring[i].notifyid = notifyid;
233	return 0;
234}
235
236static int
237rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
238{
239	struct rproc *rproc = rvdev->rproc;
240	struct device *dev = &rproc->dev;
241	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
242	struct rproc_vring *rvring = &rvdev->vring[i];
243
244	dev_dbg(dev, "vdev rsc: vring%d: da %x, qsz %d, align %d\n",
245				i, vring->da, vring->num, vring->align);
246
247	/* make sure reserved bytes are zeroes */
248	if (vring->reserved) {
249		dev_err(dev, "vring rsc has non zero reserved bytes\n");
250		return -EINVAL;
251	}
252
253	/* verify queue size and vring alignment are sane */
254	if (!vring->num || !vring->align) {
255		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
256						vring->num, vring->align);
257		return -EINVAL;
258	}
259
260	rvring->len = vring->num;
261	rvring->align = vring->align;
262	rvring->rvdev = rvdev;
263
264	return 0;
265}
266
267void rproc_free_vring(struct rproc_vring *rvring)
268{
269	int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
270	struct rproc *rproc = rvring->rvdev->rproc;
271	int idx = rvring->rvdev->vring - rvring;
272	struct fw_rsc_vdev *rsc;
273
274	dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma);
275	idr_remove(&rproc->notifyids, rvring->notifyid);
276
277	/* reset resource entry info */
278	rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
279	rsc->vring[idx].da = 0;
280	rsc->vring[idx].notifyid = -1;
281}
282
283/**
284 * rproc_handle_vdev() - handle a vdev fw resource
285 * @rproc: the remote processor
286 * @rsc: the vring resource descriptor
287 * @avail: size of available data (for sanity checking the image)
288 *
289 * This resource entry requests the host to statically register a virtio
290 * device (vdev), and setup everything needed to support it. It contains
291 * everything needed to make it possible: the virtio device id, virtio
292 * device features, vrings information, virtio config space, etc...
293 *
294 * Before registering the vdev, the vrings are allocated from non-cacheable
295 * physically contiguous memory. Currently we only support two vrings per
296 * remote processor (temporary limitation). We might also want to consider
297 * doing the vring allocation only later when ->find_vqs() is invoked, and
298 * then release them upon ->del_vqs().
299 *
300 * Note: @da is currently not really handled correctly: we dynamically
301 * allocate it using the DMA API, ignoring requested hard coded addresses,
302 * and we don't take care of any required IOMMU programming. This is all
303 * going to be taken care of when the generic iommu-based DMA API will be
304 * merged. Meanwhile, statically-addressed iommu-based firmware images should
305 * use RSC_DEVMEM resource entries to map their required @da to the physical
306 * address of their base CMA region (ouch, hacky!).
307 *
308 * Returns 0 on success, or an appropriate error code otherwise
309 */
310static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
311							int offset, int avail)
312{
313	struct device *dev = &rproc->dev;
314	struct rproc_vdev *rvdev;
315	int i, ret;
316
317	/* make sure resource isn't truncated */
318	if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
319			+ rsc->config_len > avail) {
320		dev_err(dev, "vdev rsc is truncated\n");
321		return -EINVAL;
322	}
323
324	/* make sure reserved bytes are zeroes */
325	if (rsc->reserved[0] || rsc->reserved[1]) {
326		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
327		return -EINVAL;
328	}
329
330	dev_dbg(dev, "vdev rsc: id %d, dfeatures %x, cfg len %d, %d vrings\n",
331		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
332
333	/* we currently support only two vrings per rvdev */
334	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
335		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
336		return -EINVAL;
337	}
338
339	rvdev = kzalloc(sizeof(struct rproc_vdev), GFP_KERNEL);
340	if (!rvdev)
341		return -ENOMEM;
342
343	rvdev->rproc = rproc;
344
345	/* parse the vrings */
346	for (i = 0; i < rsc->num_of_vrings; i++) {
347		ret = rproc_parse_vring(rvdev, rsc, i);
348		if (ret)
349			goto free_rvdev;
350	}
351
352	/* remember the resource offset*/
353	rvdev->rsc_offset = offset;
354
355	list_add_tail(&rvdev->node, &rproc->rvdevs);
356
357	/* it is now safe to add the virtio device */
358	ret = rproc_add_virtio_dev(rvdev, rsc->id);
359	if (ret)
360		goto remove_rvdev;
361
362	return 0;
363
364remove_rvdev:
365	list_del(&rvdev->node);
366free_rvdev:
367	kfree(rvdev);
368	return ret;
369}
370
371/**
372 * rproc_handle_trace() - handle a shared trace buffer resource
373 * @rproc: the remote processor
374 * @rsc: the trace resource descriptor
375 * @avail: size of available data (for sanity checking the image)
376 *
377 * In case the remote processor dumps trace logs into memory,
378 * export it via debugfs.
379 *
380 * Currently, the 'da' member of @rsc should contain the device address
381 * where the remote processor is dumping the traces. Later we could also
382 * support dynamically allocating this address using the generic
383 * DMA API (but currently there isn't a use case for that).
384 *
385 * Returns 0 on success, or an appropriate error code otherwise
386 */
387static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
388							int offset, int avail)
389{
390	struct rproc_mem_entry *trace;
391	struct device *dev = &rproc->dev;
392	void *ptr;
393	char name[15];
394
395	if (sizeof(*rsc) > avail) {
396		dev_err(dev, "trace rsc is truncated\n");
397		return -EINVAL;
398	}
399
400	/* make sure reserved bytes are zeroes */
401	if (rsc->reserved) {
402		dev_err(dev, "trace rsc has non zero reserved bytes\n");
403		return -EINVAL;
404	}
405
406	/* what's the kernel address of this resource ? */
407	ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
408	if (!ptr) {
409		dev_err(dev, "erroneous trace resource entry\n");
410		return -EINVAL;
411	}
412
413	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
414	if (!trace) {
415		dev_err(dev, "kzalloc trace failed\n");
416		return -ENOMEM;
417	}
418
419	/* set the trace buffer dma properties */
420	trace->len = rsc->len;
421	trace->va = ptr;
422
423	/* make sure snprintf always null terminates, even if truncating */
424	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
425
426	/* create the debugfs entry */
427	trace->priv = rproc_create_trace_file(name, rproc, trace);
428	if (!trace->priv) {
429		trace->va = NULL;
430		kfree(trace);
431		return -EINVAL;
432	}
433
434	list_add_tail(&trace->node, &rproc->traces);
435
436	rproc->num_traces++;
437
438	dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n", name, ptr,
439						rsc->da, rsc->len);
440
441	return 0;
442}
443
444/**
445 * rproc_handle_devmem() - handle devmem resource entry
446 * @rproc: remote processor handle
447 * @rsc: the devmem resource entry
448 * @avail: size of available data (for sanity checking the image)
449 *
450 * Remote processors commonly need to access certain on-chip peripherals.
451 *
452 * Some of these remote processors access memory via an iommu device,
453 * and might require us to configure their iommu before they can access
454 * the on-chip peripherals they need.
455 *
456 * This resource entry is a request to map such a peripheral device.
457 *
458 * These devmem entries will contain the physical address of the device in
459 * the 'pa' member. If a specific device address is expected, then 'da' will
460 * contain it (currently this is the only use case supported). 'len' will
461 * contain the size of the physical region we need to map.
462 *
463 * Currently we just "trust" those devmem entries to contain valid physical
464 * addresses, but this is going to change: we want the implementations to
465 * tell us ranges of physical addresses the firmware is allowed to request,
466 * and not allow firmwares to request access to physical addresses that
467 * are outside those ranges.
468 */
469static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
470							int offset, int avail)
471{
472	struct rproc_mem_entry *mapping;
473	struct device *dev = &rproc->dev;
474	int ret;
475
476	/* no point in handling this resource without a valid iommu domain */
477	if (!rproc->domain)
478		return -EINVAL;
479
480	if (sizeof(*rsc) > avail) {
481		dev_err(dev, "devmem rsc is truncated\n");
482		return -EINVAL;
483	}
484
485	/* make sure reserved bytes are zeroes */
486	if (rsc->reserved) {
487		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
488		return -EINVAL;
489	}
490
491	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
492	if (!mapping) {
493		dev_err(dev, "kzalloc mapping failed\n");
494		return -ENOMEM;
495	}
496
497	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
498	if (ret) {
499		dev_err(dev, "failed to map devmem: %d\n", ret);
500		goto out;
501	}
502
503	/*
504	 * We'll need this info later when we'll want to unmap everything
505	 * (e.g. on shutdown).
506	 *
507	 * We can't trust the remote processor not to change the resource
508	 * table, so we must maintain this info independently.
509	 */
510	mapping->da = rsc->da;
511	mapping->len = rsc->len;
512	list_add_tail(&mapping->node, &rproc->mappings);
513
514	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
515					rsc->pa, rsc->da, rsc->len);
516
517	return 0;
518
519out:
520	kfree(mapping);
521	return ret;
522}
523
524/**
525 * rproc_handle_carveout() - handle phys contig memory allocation requests
526 * @rproc: rproc handle
527 * @rsc: the resource entry
528 * @avail: size of available data (for image validation)
529 *
530 * This function will handle firmware requests for allocation of physically
531 * contiguous memory regions.
532 *
533 * These request entries should come first in the firmware's resource table,
534 * as other firmware entries might request placing other data objects inside
535 * these memory regions (e.g. data/code segments, trace resource entries, ...).
536 *
537 * Allocating memory this way helps utilizing the reserved physical memory
538 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
539 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
540 * pressure is important; it may have a substantial impact on performance.
541 */
542static int rproc_handle_carveout(struct rproc *rproc,
543						struct fw_rsc_carveout *rsc,
544						int offset, int avail)
545
546{
547	struct rproc_mem_entry *carveout, *mapping;
548	struct device *dev = &rproc->dev;
549	dma_addr_t dma;
550	void *va;
551	int ret;
552
553	if (sizeof(*rsc) > avail) {
554		dev_err(dev, "carveout rsc is truncated\n");
555		return -EINVAL;
556	}
557
558	/* make sure reserved bytes are zeroes */
559	if (rsc->reserved) {
560		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
561		return -EINVAL;
562	}
563
564	dev_dbg(dev, "carveout rsc: da %x, pa %x, len %x, flags %x\n",
565			rsc->da, rsc->pa, rsc->len, rsc->flags);
566
567	carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
568	if (!carveout) {
569		dev_err(dev, "kzalloc carveout failed\n");
570		return -ENOMEM;
571	}
572
573	va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL);
574	if (!va) {
575		dev_err(dev->parent, "dma_alloc_coherent err: %d\n", rsc->len);
576		ret = -ENOMEM;
577		goto free_carv;
578	}
579
580	dev_dbg(dev, "carveout va %p, dma %llx, len 0x%x\n", va,
581					(unsigned long long)dma, rsc->len);
582
583	/*
584	 * Ok, this is non-standard.
585	 *
586	 * Sometimes we can't rely on the generic iommu-based DMA API
587	 * to dynamically allocate the device address and then set the IOMMU
588	 * tables accordingly, because some remote processors might
589	 * _require_ us to use hard coded device addresses that their
590	 * firmware was compiled with.
591	 *
592	 * In this case, we must use the IOMMU API directly and map
593	 * the memory to the device address as expected by the remote
594	 * processor.
595	 *
596	 * Obviously such remote processor devices should not be configured
597	 * to use the iommu-based DMA API: we expect 'dma' to contain the
598	 * physical address in this case.
599	 */
600	if (rproc->domain) {
601		mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
602		if (!mapping) {
603			dev_err(dev, "kzalloc mapping failed\n");
604			ret = -ENOMEM;
605			goto dma_free;
606		}
607
608		ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
609								rsc->flags);
610		if (ret) {
611			dev_err(dev, "iommu_map failed: %d\n", ret);
612			goto free_mapping;
613		}
614
615		/*
616		 * We'll need this info later when we'll want to unmap
617		 * everything (e.g. on shutdown).
618		 *
619		 * We can't trust the remote processor not to change the
620		 * resource table, so we must maintain this info independently.
621		 */
622		mapping->da = rsc->da;
623		mapping->len = rsc->len;
624		list_add_tail(&mapping->node, &rproc->mappings);
625
626		dev_dbg(dev, "carveout mapped 0x%x to 0x%llx\n",
627					rsc->da, (unsigned long long)dma);
628	}
629
630	/*
631	 * Some remote processors might need to know the pa
632	 * even though they are behind an IOMMU. E.g., OMAP4's
633	 * remote M3 processor needs this so it can control
634	 * on-chip hardware accelerators that are not behind
635	 * the IOMMU, and therefor must know the pa.
636	 *
637	 * Generally we don't want to expose physical addresses
638	 * if we don't have to (remote processors are generally
639	 * _not_ trusted), so we might want to do this only for
640	 * remote processor that _must_ have this (e.g. OMAP4's
641	 * dual M3 subsystem).
642	 *
643	 * Non-IOMMU processors might also want to have this info.
644	 * In this case, the device address and the physical address
645	 * are the same.
646	 */
647	rsc->pa = dma;
648
649	carveout->va = va;
650	carveout->len = rsc->len;
651	carveout->dma = dma;
652	carveout->da = rsc->da;
653
654	list_add_tail(&carveout->node, &rproc->carveouts);
655
656	return 0;
657
658free_mapping:
659	kfree(mapping);
660dma_free:
661	dma_free_coherent(dev->parent, rsc->len, va, dma);
662free_carv:
663	kfree(carveout);
664	return ret;
665}
666
667static int rproc_count_vrings(struct rproc *rproc, struct fw_rsc_vdev *rsc,
668			      int offset, int avail)
669{
670	/* Summarize the number of notification IDs */
671	rproc->max_notifyid += rsc->num_of_vrings;
672
673	return 0;
674}
675
676/*
677 * A lookup table for resource handlers. The indices are defined in
678 * enum fw_resource_type.
679 */
680static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
681	[RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
682	[RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
683	[RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
684	[RSC_VDEV] = NULL, /* VDEVs were handled upon registrarion */
685};
686
687static rproc_handle_resource_t rproc_vdev_handler[RSC_LAST] = {
688	[RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
689};
690
691static rproc_handle_resource_t rproc_count_vrings_handler[RSC_LAST] = {
692	[RSC_VDEV] = (rproc_handle_resource_t)rproc_count_vrings,
693};
694
695/* handle firmware resource entries before booting the remote processor */
696static int rproc_handle_resources(struct rproc *rproc, int len,
697				  rproc_handle_resource_t handlers[RSC_LAST])
698{
699	struct device *dev = &rproc->dev;
700	rproc_handle_resource_t handler;
701	int ret = 0, i;
702
703	for (i = 0; i < rproc->table_ptr->num; i++) {
704		int offset = rproc->table_ptr->offset[i];
705		struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
706		int avail = len - offset - sizeof(*hdr);
707		void *rsc = (void *)hdr + sizeof(*hdr);
708
709		/* make sure table isn't truncated */
710		if (avail < 0) {
711			dev_err(dev, "rsc table is truncated\n");
712			return -EINVAL;
713		}
714
715		dev_dbg(dev, "rsc: type %d\n", hdr->type);
716
717		if (hdr->type >= RSC_LAST) {
718			dev_warn(dev, "unsupported resource %d\n", hdr->type);
719			continue;
720		}
721
722		handler = handlers[hdr->type];
723		if (!handler)
724			continue;
725
726		ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
727		if (ret)
728			break;
729	}
730
731	return ret;
732}
733
734/**
735 * rproc_resource_cleanup() - clean up and free all acquired resources
736 * @rproc: rproc handle
737 *
738 * This function will free all resources acquired for @rproc, and it
739 * is called whenever @rproc either shuts down or fails to boot.
740 */
741static void rproc_resource_cleanup(struct rproc *rproc)
742{
743	struct rproc_mem_entry *entry, *tmp;
744	struct device *dev = &rproc->dev;
745
746	/* clean up debugfs trace entries */
747	list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
748		rproc_remove_trace_file(entry->priv);
749		rproc->num_traces--;
750		list_del(&entry->node);
751		kfree(entry);
752	}
753
754	/* clean up iommu mapping entries */
755	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
756		size_t unmapped;
757
758		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
759		if (unmapped != entry->len) {
760			/* nothing much to do besides complaining */
761			dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
762								unmapped);
763		}
764
765		list_del(&entry->node);
766		kfree(entry);
767	}
768
769	/* clean up carveout allocations */
770	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
771		dma_free_coherent(dev->parent, entry->len, entry->va, entry->dma);
772		list_del(&entry->node);
773		kfree(entry);
774	}
775}
776
777/*
778 * take a firmware and boot a remote processor with it.
779 */
780static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
781{
782	struct device *dev = &rproc->dev;
783	const char *name = rproc->firmware;
784	struct resource_table *table, *loaded_table;
785	int ret, tablesz;
786
787	if (!rproc->table_ptr)
788		return -ENOMEM;
789
790	ret = rproc_fw_sanity_check(rproc, fw);
791	if (ret)
792		return ret;
793
794	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
795
796	/*
797	 * if enabling an IOMMU isn't relevant for this rproc, this is
798	 * just a nop
799	 */
800	ret = rproc_enable_iommu(rproc);
801	if (ret) {
802		dev_err(dev, "can't enable iommu: %d\n", ret);
803		return ret;
804	}
805
806	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
807	ret = -EINVAL;
808
809	/* look for the resource table */
810	table = rproc_find_rsc_table(rproc, fw, &tablesz);
811	if (!table) {
812		goto clean_up;
813	}
814
815	/* Verify that resource table in loaded fw is unchanged */
816	if (rproc->table_csum != crc32(0, table, tablesz)) {
817		dev_err(dev, "resource checksum failed, fw changed?\n");
818		goto clean_up;
819	}
820
821	/* handle fw resources which are required to boot rproc */
822	ret = rproc_handle_resources(rproc, tablesz, rproc_loading_handlers);
823	if (ret) {
824		dev_err(dev, "Failed to process resources: %d\n", ret);
825		goto clean_up;
826	}
827
828	/* load the ELF segments to memory */
829	ret = rproc_load_segments(rproc, fw);
830	if (ret) {
831		dev_err(dev, "Failed to load program segments: %d\n", ret);
832		goto clean_up;
833	}
834
835	/*
836	 * The starting device has been given the rproc->cached_table as the
837	 * resource table. The address of the vring along with the other
838	 * allocated resources (carveouts etc) is stored in cached_table.
839	 * In order to pass this information to the remote device we must
840	 * copy this information to device memory.
841	 */
842	loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
843	if (!loaded_table) {
844		ret = -EINVAL;
845		goto clean_up;
846	}
847
848	memcpy(loaded_table, rproc->cached_table, tablesz);
849
850	/* power up the remote processor */
851	ret = rproc->ops->start(rproc);
852	if (ret) {
853		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
854		goto clean_up;
855	}
856
857	/*
858	 * Update table_ptr so that all subsequent vring allocations and
859	 * virtio fields manipulation update the actual loaded resource table
860	 * in device memory.
861	 */
862	rproc->table_ptr = loaded_table;
863
864	rproc->state = RPROC_RUNNING;
865
866	dev_info(dev, "remote processor %s is now up\n", rproc->name);
867
868	return 0;
869
870clean_up:
871	rproc_resource_cleanup(rproc);
872	rproc_disable_iommu(rproc);
873	return ret;
874}
875
876/*
877 * take a firmware and look for virtio devices to register.
878 *
879 * Note: this function is called asynchronously upon registration of the
880 * remote processor (so we must wait until it completes before we try
881 * to unregister the device. one other option is just to use kref here,
882 * that might be cleaner).
883 */
884static void rproc_fw_config_virtio(const struct firmware *fw, void *context)
885{
886	struct rproc *rproc = context;
887	struct resource_table *table;
888	int ret, tablesz;
889
890	if (rproc_fw_sanity_check(rproc, fw) < 0)
891		goto out;
892
893	/* look for the resource table */
894	table = rproc_find_rsc_table(rproc, fw,  &tablesz);
895	if (!table)
896		goto out;
897
898	rproc->table_csum = crc32(0, table, tablesz);
899
900	/*
901	 * Create a copy of the resource table. When a virtio device starts
902	 * and calls vring_new_virtqueue() the address of the allocated vring
903	 * will be stored in the cached_table. Before the device is started,
904	 * cached_table will be copied into devic memory.
905	 */
906	rproc->cached_table = kmemdup(table, tablesz, GFP_KERNEL);
907	if (!rproc->cached_table)
908		goto out;
909
910	rproc->table_ptr = rproc->cached_table;
911
912	/* count the number of notify-ids */
913	rproc->max_notifyid = -1;
914	ret = rproc_handle_resources(rproc, tablesz, rproc_count_vrings_handler);
915	if (ret)
916		goto out;
917
918	/* look for virtio devices and register them */
919	ret = rproc_handle_resources(rproc, tablesz, rproc_vdev_handler);
920
921out:
922	release_firmware(fw);
923	/* allow rproc_del() contexts, if any, to proceed */
924	complete_all(&rproc->firmware_loading_complete);
925}
926
927static int rproc_add_virtio_devices(struct rproc *rproc)
928{
929	int ret;
930
931	/* rproc_del() calls must wait until async loader completes */
932	init_completion(&rproc->firmware_loading_complete);
933
934	/*
935	 * We must retrieve early virtio configuration info from
936	 * the firmware (e.g. whether to register a virtio device,
937	 * what virtio features does it support, ...).
938	 *
939	 * We're initiating an asynchronous firmware loading, so we can
940	 * be built-in kernel code, without hanging the boot process.
941	 */
942	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
943				      rproc->firmware, &rproc->dev, GFP_KERNEL,
944				      rproc, rproc_fw_config_virtio);
945	if (ret < 0) {
946		dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
947		complete_all(&rproc->firmware_loading_complete);
948	}
949
950	return ret;
951}
952
953/**
954 * rproc_trigger_recovery() - recover a remoteproc
955 * @rproc: the remote processor
956 *
957 * The recovery is done by reseting all the virtio devices, that way all the
958 * rpmsg drivers will be reseted along with the remote processor making the
959 * remoteproc functional again.
960 *
961 * This function can sleep, so it cannot be called from atomic context.
962 */
963int rproc_trigger_recovery(struct rproc *rproc)
964{
965	struct rproc_vdev *rvdev, *rvtmp;
966
967	dev_err(&rproc->dev, "recovering %s\n", rproc->name);
968
969	init_completion(&rproc->crash_comp);
970
971	/* clean up remote vdev entries */
972	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
973		rproc_remove_virtio_dev(rvdev);
974
975	/* wait until there is no more rproc users */
976	wait_for_completion(&rproc->crash_comp);
977
978	/* Free the copy of the resource table */
979	kfree(rproc->cached_table);
980
981	return rproc_add_virtio_devices(rproc);
982}
983
984/**
985 * rproc_crash_handler_work() - handle a crash
986 *
987 * This function needs to handle everything related to a crash, like cpu
988 * registers and stack dump, information to help to debug the fatal error, etc.
989 */
990static void rproc_crash_handler_work(struct work_struct *work)
991{
992	struct rproc *rproc = container_of(work, struct rproc, crash_handler);
993	struct device *dev = &rproc->dev;
994
995	dev_dbg(dev, "enter %s\n", __func__);
996
997	mutex_lock(&rproc->lock);
998
999	if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1000		/* handle only the first crash detected */
1001		mutex_unlock(&rproc->lock);
1002		return;
1003	}
1004
1005	rproc->state = RPROC_CRASHED;
1006	dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1007		rproc->name);
1008
1009	mutex_unlock(&rproc->lock);
1010
1011	if (!rproc->recovery_disabled)
1012		rproc_trigger_recovery(rproc);
1013}
1014
1015/**
1016 * rproc_boot() - boot a remote processor
1017 * @rproc: handle of a remote processor
1018 *
1019 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1020 *
1021 * If the remote processor is already powered on, this function immediately
1022 * returns (successfully).
1023 *
1024 * Returns 0 on success, and an appropriate error value otherwise.
1025 */
1026int rproc_boot(struct rproc *rproc)
1027{
1028	const struct firmware *firmware_p;
1029	struct device *dev;
1030	int ret;
1031
1032	if (!rproc) {
1033		pr_err("invalid rproc handle\n");
1034		return -EINVAL;
1035	}
1036
1037	dev = &rproc->dev;
1038
1039	ret = mutex_lock_interruptible(&rproc->lock);
1040	if (ret) {
1041		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1042		return ret;
1043	}
1044
1045	/* loading a firmware is required */
1046	if (!rproc->firmware) {
1047		dev_err(dev, "%s: no firmware to load\n", __func__);
1048		ret = -EINVAL;
1049		goto unlock_mutex;
1050	}
1051
1052	/* prevent underlying implementation from being removed */
1053	if (!try_module_get(dev->parent->driver->owner)) {
1054		dev_err(dev, "%s: can't get owner\n", __func__);
1055		ret = -EINVAL;
1056		goto unlock_mutex;
1057	}
1058
1059	/* skip the boot process if rproc is already powered up */
1060	if (atomic_inc_return(&rproc->power) > 1) {
1061		ret = 0;
1062		goto unlock_mutex;
1063	}
1064
1065	dev_info(dev, "powering up %s\n", rproc->name);
1066
1067	/* load firmware */
1068	ret = request_firmware(&firmware_p, rproc->firmware, dev);
1069	if (ret < 0) {
1070		dev_err(dev, "request_firmware failed: %d\n", ret);
1071		goto downref_rproc;
1072	}
1073
1074	ret = rproc_fw_boot(rproc, firmware_p);
1075
1076	release_firmware(firmware_p);
1077
1078downref_rproc:
1079	if (ret) {
1080		module_put(dev->parent->driver->owner);
1081		atomic_dec(&rproc->power);
1082	}
1083unlock_mutex:
1084	mutex_unlock(&rproc->lock);
1085	return ret;
1086}
1087EXPORT_SYMBOL(rproc_boot);
1088
1089/**
1090 * rproc_shutdown() - power off the remote processor
1091 * @rproc: the remote processor
1092 *
1093 * Power off a remote processor (previously booted with rproc_boot()).
1094 *
1095 * In case @rproc is still being used by an additional user(s), then
1096 * this function will just decrement the power refcount and exit,
1097 * without really powering off the device.
1098 *
1099 * Every call to rproc_boot() must (eventually) be accompanied by a call
1100 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1101 *
1102 * Notes:
1103 * - we're not decrementing the rproc's refcount, only the power refcount.
1104 *   which means that the @rproc handle stays valid even after rproc_shutdown()
1105 *   returns, and users can still use it with a subsequent rproc_boot(), if
1106 *   needed.
1107 */
1108void rproc_shutdown(struct rproc *rproc)
1109{
1110	struct device *dev = &rproc->dev;
1111	int ret;
1112
1113	ret = mutex_lock_interruptible(&rproc->lock);
1114	if (ret) {
1115		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1116		return;
1117	}
1118
1119	/* if the remote proc is still needed, bail out */
1120	if (!atomic_dec_and_test(&rproc->power))
1121		goto out;
1122
1123	/* power off the remote processor */
1124	ret = rproc->ops->stop(rproc);
1125	if (ret) {
1126		atomic_inc(&rproc->power);
1127		dev_err(dev, "can't stop rproc: %d\n", ret);
1128		goto out;
1129	}
1130
1131	/* clean up all acquired resources */
1132	rproc_resource_cleanup(rproc);
1133
1134	rproc_disable_iommu(rproc);
1135
1136	/* Give the next start a clean resource table */
1137	rproc->table_ptr = rproc->cached_table;
1138
1139	/* if in crash state, unlock crash handler */
1140	if (rproc->state == RPROC_CRASHED)
1141		complete_all(&rproc->crash_comp);
1142
1143	rproc->state = RPROC_OFFLINE;
1144
1145	dev_info(dev, "stopped remote processor %s\n", rproc->name);
1146
1147out:
1148	mutex_unlock(&rproc->lock);
1149	if (!ret)
1150		module_put(dev->parent->driver->owner);
1151}
1152EXPORT_SYMBOL(rproc_shutdown);
1153
1154/**
1155 * rproc_add() - register a remote processor
1156 * @rproc: the remote processor handle to register
1157 *
1158 * Registers @rproc with the remoteproc framework, after it has been
1159 * allocated with rproc_alloc().
1160 *
1161 * This is called by the platform-specific rproc implementation, whenever
1162 * a new remote processor device is probed.
1163 *
1164 * Returns 0 on success and an appropriate error code otherwise.
1165 *
1166 * Note: this function initiates an asynchronous firmware loading
1167 * context, which will look for virtio devices supported by the rproc's
1168 * firmware.
1169 *
1170 * If found, those virtio devices will be created and added, so as a result
1171 * of registering this remote processor, additional virtio drivers might be
1172 * probed.
1173 */
1174int rproc_add(struct rproc *rproc)
1175{
1176	struct device *dev = &rproc->dev;
1177	int ret;
1178
1179	ret = device_add(dev);
1180	if (ret < 0)
1181		return ret;
1182
1183	dev_info(dev, "%s is available\n", rproc->name);
1184
1185	dev_info(dev, "Note: remoteproc is still under development and considered experimental.\n");
1186	dev_info(dev, "THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet guaranteed.\n");
1187
1188	/* create debugfs entries */
1189	rproc_create_debug_dir(rproc);
1190
1191	return rproc_add_virtio_devices(rproc);
1192}
1193EXPORT_SYMBOL(rproc_add);
1194
1195/**
1196 * rproc_type_release() - release a remote processor instance
1197 * @dev: the rproc's device
1198 *
1199 * This function should _never_ be called directly.
1200 *
1201 * It will be called by the driver core when no one holds a valid pointer
1202 * to @dev anymore.
1203 */
1204static void rproc_type_release(struct device *dev)
1205{
1206	struct rproc *rproc = container_of(dev, struct rproc, dev);
1207
1208	dev_info(&rproc->dev, "releasing %s\n", rproc->name);
1209
1210	rproc_delete_debug_dir(rproc);
1211
1212	idr_destroy(&rproc->notifyids);
1213
1214	if (rproc->index >= 0)
1215		ida_simple_remove(&rproc_dev_index, rproc->index);
1216
1217	kfree(rproc);
1218}
1219
1220static struct device_type rproc_type = {
1221	.name		= "remoteproc",
1222	.release	= rproc_type_release,
1223};
1224
1225/**
1226 * rproc_alloc() - allocate a remote processor handle
1227 * @dev: the underlying device
1228 * @name: name of this remote processor
1229 * @ops: platform-specific handlers (mainly start/stop)
1230 * @firmware: name of firmware file to load, can be NULL
1231 * @len: length of private data needed by the rproc driver (in bytes)
1232 *
1233 * Allocates a new remote processor handle, but does not register
1234 * it yet. if @firmware is NULL, a default name is used.
1235 *
1236 * This function should be used by rproc implementations during initialization
1237 * of the remote processor.
1238 *
1239 * After creating an rproc handle using this function, and when ready,
1240 * implementations should then call rproc_add() to complete
1241 * the registration of the remote processor.
1242 *
1243 * On success the new rproc is returned, and on failure, NULL.
1244 *
1245 * Note: _never_ directly deallocate @rproc, even if it was not registered
1246 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_put().
1247 */
1248struct rproc *rproc_alloc(struct device *dev, const char *name,
1249				const struct rproc_ops *ops,
1250				const char *firmware, int len)
1251{
1252	struct rproc *rproc;
1253	char *p, *template = "rproc-%s-fw";
1254	int name_len = 0;
1255
1256	if (!dev || !name || !ops)
1257		return NULL;
1258
1259	if (!firmware)
1260		/*
1261		 * Make room for default firmware name (minus %s plus '\0').
1262		 * If the caller didn't pass in a firmware name then
1263		 * construct a default name.  We're already glomming 'len'
1264		 * bytes onto the end of the struct rproc allocation, so do
1265		 * a few more for the default firmware name (but only if
1266		 * the caller doesn't pass one).
1267		 */
1268		name_len = strlen(name) + strlen(template) - 2 + 1;
1269
1270	rproc = kzalloc(sizeof(struct rproc) + len + name_len, GFP_KERNEL);
1271	if (!rproc) {
1272		dev_err(dev, "%s: kzalloc failed\n", __func__);
1273		return NULL;
1274	}
1275
1276	if (!firmware) {
1277		p = (char *)rproc + sizeof(struct rproc) + len;
1278		snprintf(p, name_len, template, name);
1279	} else {
1280		p = (char *)firmware;
1281	}
1282
1283	rproc->firmware = p;
1284	rproc->name = name;
1285	rproc->ops = ops;
1286	rproc->priv = &rproc[1];
1287
1288	device_initialize(&rproc->dev);
1289	rproc->dev.parent = dev;
1290	rproc->dev.type = &rproc_type;
1291
1292	/* Assign a unique device index and name */
1293	rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
1294	if (rproc->index < 0) {
1295		dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
1296		put_device(&rproc->dev);
1297		return NULL;
1298	}
1299
1300	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
1301
1302	atomic_set(&rproc->power, 0);
1303
1304	/* Set ELF as the default fw_ops handler */
1305	rproc->fw_ops = &rproc_elf_fw_ops;
1306
1307	mutex_init(&rproc->lock);
1308
1309	idr_init(&rproc->notifyids);
1310
1311	INIT_LIST_HEAD(&rproc->carveouts);
1312	INIT_LIST_HEAD(&rproc->mappings);
1313	INIT_LIST_HEAD(&rproc->traces);
1314	INIT_LIST_HEAD(&rproc->rvdevs);
1315
1316	INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
1317	init_completion(&rproc->crash_comp);
1318
1319	rproc->state = RPROC_OFFLINE;
1320
1321	return rproc;
1322}
1323EXPORT_SYMBOL(rproc_alloc);
1324
1325/**
1326 * rproc_put() - unroll rproc_alloc()
1327 * @rproc: the remote processor handle
1328 *
1329 * This function decrements the rproc dev refcount.
1330 *
1331 * If no one holds any reference to rproc anymore, then its refcount would
1332 * now drop to zero, and it would be freed.
1333 */
1334void rproc_put(struct rproc *rproc)
1335{
1336	put_device(&rproc->dev);
1337}
1338EXPORT_SYMBOL(rproc_put);
1339
1340/**
1341 * rproc_del() - unregister a remote processor
1342 * @rproc: rproc handle to unregister
1343 *
1344 * This function should be called when the platform specific rproc
1345 * implementation decides to remove the rproc device. it should
1346 * _only_ be called if a previous invocation of rproc_add()
1347 * has completed successfully.
1348 *
1349 * After rproc_del() returns, @rproc isn't freed yet, because
1350 * of the outstanding reference created by rproc_alloc. To decrement that
1351 * one last refcount, one still needs to call rproc_put().
1352 *
1353 * Returns 0 on success and -EINVAL if @rproc isn't valid.
1354 */
1355int rproc_del(struct rproc *rproc)
1356{
1357	struct rproc_vdev *rvdev, *tmp;
1358
1359	if (!rproc)
1360		return -EINVAL;
1361
1362	/* if rproc is just being registered, wait */
1363	wait_for_completion(&rproc->firmware_loading_complete);
1364
1365	/* clean up remote vdev entries */
1366	list_for_each_entry_safe(rvdev, tmp, &rproc->rvdevs, node)
1367		rproc_remove_virtio_dev(rvdev);
1368
1369	/* Free the copy of the resource table */
1370	kfree(rproc->cached_table);
1371
1372	device_del(&rproc->dev);
1373
1374	return 0;
1375}
1376EXPORT_SYMBOL(rproc_del);
1377
1378/**
1379 * rproc_report_crash() - rproc crash reporter function
1380 * @rproc: remote processor
1381 * @type: crash type
1382 *
1383 * This function must be called every time a crash is detected by the low-level
1384 * drivers implementing a specific remoteproc. This should not be called from a
1385 * non-remoteproc driver.
1386 *
1387 * This function can be called from atomic/interrupt context.
1388 */
1389void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
1390{
1391	if (!rproc) {
1392		pr_err("NULL rproc pointer\n");
1393		return;
1394	}
1395
1396	dev_err(&rproc->dev, "crash detected in %s: type %s\n",
1397		rproc->name, rproc_crash_to_string(type));
1398
1399	/* create a new task to handle the error */
1400	schedule_work(&rproc->crash_handler);
1401}
1402EXPORT_SYMBOL(rproc_report_crash);
1403
1404static int __init remoteproc_init(void)
1405{
1406	rproc_init_debugfs();
1407
1408	return 0;
1409}
1410module_init(remoteproc_init);
1411
1412static void __exit remoteproc_exit(void)
1413{
1414	rproc_exit_debugfs();
1415}
1416module_exit(remoteproc_exit);
1417
1418MODULE_LICENSE("GPL v2");
1419MODULE_DESCRIPTION("Generic Remote Processor Framework");
1420