1/*
2 * intel_scu_ipc.c: Driver for the Intel SCU IPC mechanism
3 *
4 * (C) Copyright 2008-2010,2015 Intel Corporation
5 * Author: Sreedhara DS (sreedhara.ds@intel.com)
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 *
12 * SCU running in ARC processor communicates with other entity running in IA
13 * core through IPC mechanism which in turn messaging between IA core ad SCU.
14 * SCU has two IPC mechanism IPC-1 and IPC-2. IPC-1 is used between IA32 and
15 * SCU where IPC-2 is used between P-Unit and SCU. This driver delas with
16 * IPC-1 Driver provides an API for power control unit registers (e.g. MSIC)
17 * along with other APIs.
18 */
19#include <linux/delay.h>
20#include <linux/errno.h>
21#include <linux/init.h>
22#include <linux/device.h>
23#include <linux/pm.h>
24#include <linux/pci.h>
25#include <linux/interrupt.h>
26#include <linux/sfi.h>
27#include <linux/module.h>
28#include <asm/intel-mid.h>
29#include <asm/intel_scu_ipc.h>
30
31/* IPC defines the following message types */
32#define IPCMSG_WATCHDOG_TIMER 0xF8 /* Set Kernel Watchdog Threshold */
33#define IPCMSG_BATTERY        0xEF /* Coulomb Counter Accumulator */
34#define IPCMSG_FW_UPDATE      0xFE /* Firmware update */
35#define IPCMSG_PCNTRL         0xFF /* Power controller unit read/write */
36#define IPCMSG_FW_REVISION    0xF4 /* Get firmware revision */
37
38/* Command id associated with message IPCMSG_PCNTRL */
39#define IPC_CMD_PCNTRL_W      0 /* Register write */
40#define IPC_CMD_PCNTRL_R      1 /* Register read */
41#define IPC_CMD_PCNTRL_M      2 /* Register read-modify-write */
42
43/*
44 * IPC register summary
45 *
46 * IPC register blocks are memory mapped at fixed address of PCI BAR 0.
47 * To read or write information to the SCU, driver writes to IPC-1 memory
48 * mapped registers. The following is the IPC mechanism
49 *
50 * 1. IA core cDMI interface claims this transaction and converts it to a
51 *    Transaction Layer Packet (TLP) message which is sent across the cDMI.
52 *
53 * 2. South Complex cDMI block receives this message and writes it to
54 *    the IPC-1 register block, causing an interrupt to the SCU
55 *
56 * 3. SCU firmware decodes this interrupt and IPC message and the appropriate
57 *    message handler is called within firmware.
58 */
59
60#define IPC_WWBUF_SIZE    20		/* IPC Write buffer Size */
61#define IPC_RWBUF_SIZE    20		/* IPC Read buffer Size */
62#define IPC_IOC	          0x100		/* IPC command register IOC bit */
63
64#define PCI_DEVICE_ID_LINCROFT		0x082a
65#define PCI_DEVICE_ID_PENWELL		0x080e
66#define PCI_DEVICE_ID_CLOVERVIEW	0x08ea
67#define PCI_DEVICE_ID_TANGIER		0x11a0
68
69/* intel scu ipc driver data */
70struct intel_scu_ipc_pdata_t {
71	u32 i2c_base;
72	u32 i2c_len;
73	u8 irq_mode;
74};
75
76static struct intel_scu_ipc_pdata_t intel_scu_ipc_lincroft_pdata = {
77	.i2c_base = 0xff12b000,
78	.i2c_len = 0x10,
79	.irq_mode = 0,
80};
81
82/* Penwell and Cloverview */
83static struct intel_scu_ipc_pdata_t intel_scu_ipc_penwell_pdata = {
84	.i2c_base = 0xff12b000,
85	.i2c_len = 0x10,
86	.irq_mode = 1,
87};
88
89static struct intel_scu_ipc_pdata_t intel_scu_ipc_tangier_pdata = {
90	.i2c_base  = 0xff00d000,
91	.i2c_len = 0x10,
92	.irq_mode = 0,
93};
94
95static int ipc_probe(struct pci_dev *dev, const struct pci_device_id *id);
96static void ipc_remove(struct pci_dev *pdev);
97
98struct intel_scu_ipc_dev {
99	struct pci_dev *pdev;
100	void __iomem *ipc_base;
101	void __iomem *i2c_base;
102	struct completion cmd_complete;
103	u8 irq_mode;
104};
105
106static struct intel_scu_ipc_dev  ipcdev; /* Only one for now */
107
108/*
109 * IPC Read Buffer (Read Only):
110 * 16 byte buffer for receiving data from SCU, if IPC command
111 * processing results in response data
112 */
113#define IPC_READ_BUFFER		0x90
114
115#define IPC_I2C_CNTRL_ADDR	0
116#define I2C_DATA_ADDR		0x04
117
118static DEFINE_MUTEX(ipclock); /* lock used to prevent multiple call to SCU */
119
120/*
121 * Command Register (Write Only):
122 * A write to this register results in an interrupt to the SCU core processor
123 * Format:
124 * |rfu2(8) | size(8) | command id(4) | rfu1(3) | ioc(1) | command(8)|
125 */
126static inline void ipc_command(u32 cmd) /* Send ipc command */
127{
128	if (ipcdev.irq_mode) {
129		reinit_completion(&ipcdev.cmd_complete);
130		writel(cmd | IPC_IOC, ipcdev.ipc_base);
131	}
132	writel(cmd, ipcdev.ipc_base);
133}
134
135/*
136 * IPC Write Buffer (Write Only):
137 * 16-byte buffer for sending data associated with IPC command to
138 * SCU. Size of the data is specified in the IPC_COMMAND_REG register
139 */
140static inline void ipc_data_writel(u32 data, u32 offset) /* Write ipc data */
141{
142	writel(data, ipcdev.ipc_base + 0x80 + offset);
143}
144
145/*
146 * Status Register (Read Only):
147 * Driver will read this register to get the ready/busy status of the IPC
148 * block and error status of the IPC command that was just processed by SCU
149 * Format:
150 * |rfu3(8)|error code(8)|initiator id(8)|cmd id(4)|rfu1(2)|error(1)|busy(1)|
151 */
152static inline u8 ipc_read_status(void)
153{
154	return __raw_readl(ipcdev.ipc_base + 0x04);
155}
156
157static inline u8 ipc_data_readb(u32 offset) /* Read ipc byte data */
158{
159	return readb(ipcdev.ipc_base + IPC_READ_BUFFER + offset);
160}
161
162static inline u32 ipc_data_readl(u32 offset) /* Read ipc u32 data */
163{
164	return readl(ipcdev.ipc_base + IPC_READ_BUFFER + offset);
165}
166
167/* Wait till scu status is busy */
168static inline int busy_loop(void)
169{
170	u32 status = ipc_read_status();
171	u32 loop_count = 100000;
172
173	/* break if scu doesn't reset busy bit after huge retry */
174	while ((status & BIT(0)) && --loop_count) {
175		udelay(1); /* scu processing time is in few u secods */
176		status = ipc_read_status();
177	}
178
179	if (status & BIT(0)) {
180		dev_err(&ipcdev.pdev->dev, "IPC timed out");
181		return -ETIMEDOUT;
182	}
183
184	if (status & BIT(1))
185		return -EIO;
186
187	return 0;
188}
189
190/* Wait till ipc ioc interrupt is received or timeout in 3 HZ */
191static inline int ipc_wait_for_interrupt(void)
192{
193	int status;
194
195	if (!wait_for_completion_timeout(&ipcdev.cmd_complete, 3 * HZ)) {
196		struct device *dev = &ipcdev.pdev->dev;
197		dev_err(dev, "IPC timed out\n");
198		return -ETIMEDOUT;
199	}
200
201	status = ipc_read_status();
202	if (status & BIT(1))
203		return -EIO;
204
205	return 0;
206}
207
208static int intel_scu_ipc_check_status(void)
209{
210	return ipcdev.irq_mode ? ipc_wait_for_interrupt() : busy_loop();
211}
212
213/* Read/Write power control(PMIC in Langwell, MSIC in PenWell) registers */
214static int pwr_reg_rdwr(u16 *addr, u8 *data, u32 count, u32 op, u32 id)
215{
216	int nc;
217	u32 offset = 0;
218	int err;
219	u8 cbuf[IPC_WWBUF_SIZE] = { };
220	u32 *wbuf = (u32 *)&cbuf;
221
222	mutex_lock(&ipclock);
223
224	memset(cbuf, 0, sizeof(cbuf));
225
226	if (ipcdev.pdev == NULL) {
227		mutex_unlock(&ipclock);
228		return -ENODEV;
229	}
230
231	for (nc = 0; nc < count; nc++, offset += 2) {
232		cbuf[offset] = addr[nc];
233		cbuf[offset + 1] = addr[nc] >> 8;
234	}
235
236	if (id == IPC_CMD_PCNTRL_R) {
237		for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
238			ipc_data_writel(wbuf[nc], offset);
239		ipc_command((count * 2) << 16 | id << 12 | 0 << 8 | op);
240	} else if (id == IPC_CMD_PCNTRL_W) {
241		for (nc = 0; nc < count; nc++, offset += 1)
242			cbuf[offset] = data[nc];
243		for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
244			ipc_data_writel(wbuf[nc], offset);
245		ipc_command((count * 3) << 16 | id << 12 | 0 << 8 | op);
246	} else if (id == IPC_CMD_PCNTRL_M) {
247		cbuf[offset] = data[0];
248		cbuf[offset + 1] = data[1];
249		ipc_data_writel(wbuf[0], 0); /* Write wbuff */
250		ipc_command(4 << 16 | id << 12 | 0 << 8 | op);
251	}
252
253	err = intel_scu_ipc_check_status();
254	if (!err && id == IPC_CMD_PCNTRL_R) { /* Read rbuf */
255		/* Workaround: values are read as 0 without memcpy_fromio */
256		memcpy_fromio(cbuf, ipcdev.ipc_base + 0x90, 16);
257		for (nc = 0; nc < count; nc++)
258			data[nc] = ipc_data_readb(nc);
259	}
260	mutex_unlock(&ipclock);
261	return err;
262}
263
264/**
265 *	intel_scu_ipc_ioread8		-	read a word via the SCU
266 *	@addr: register on SCU
267 *	@data: return pointer for read byte
268 *
269 *	Read a single register. Returns 0 on success or an error code. All
270 *	locking between SCU accesses is handled for the caller.
271 *
272 *	This function may sleep.
273 */
274int intel_scu_ipc_ioread8(u16 addr, u8 *data)
275{
276	return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
277}
278EXPORT_SYMBOL(intel_scu_ipc_ioread8);
279
280/**
281 *	intel_scu_ipc_ioread16		-	read a word via the SCU
282 *	@addr: register on SCU
283 *	@data: return pointer for read word
284 *
285 *	Read a register pair. Returns 0 on success or an error code. All
286 *	locking between SCU accesses is handled for the caller.
287 *
288 *	This function may sleep.
289 */
290int intel_scu_ipc_ioread16(u16 addr, u16 *data)
291{
292	u16 x[2] = {addr, addr + 1};
293	return pwr_reg_rdwr(x, (u8 *)data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
294}
295EXPORT_SYMBOL(intel_scu_ipc_ioread16);
296
297/**
298 *	intel_scu_ipc_ioread32		-	read a dword via the SCU
299 *	@addr: register on SCU
300 *	@data: return pointer for read dword
301 *
302 *	Read four registers. Returns 0 on success or an error code. All
303 *	locking between SCU accesses is handled for the caller.
304 *
305 *	This function may sleep.
306 */
307int intel_scu_ipc_ioread32(u16 addr, u32 *data)
308{
309	u16 x[4] = {addr, addr + 1, addr + 2, addr + 3};
310	return pwr_reg_rdwr(x, (u8 *)data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
311}
312EXPORT_SYMBOL(intel_scu_ipc_ioread32);
313
314/**
315 *	intel_scu_ipc_iowrite8		-	write a byte via the SCU
316 *	@addr: register on SCU
317 *	@data: byte to write
318 *
319 *	Write a single register. Returns 0 on success or an error code. All
320 *	locking between SCU accesses is handled for the caller.
321 *
322 *	This function may sleep.
323 */
324int intel_scu_ipc_iowrite8(u16 addr, u8 data)
325{
326	return pwr_reg_rdwr(&addr, &data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
327}
328EXPORT_SYMBOL(intel_scu_ipc_iowrite8);
329
330/**
331 *	intel_scu_ipc_iowrite16		-	write a word via the SCU
332 *	@addr: register on SCU
333 *	@data: word to write
334 *
335 *	Write two registers. Returns 0 on success or an error code. All
336 *	locking between SCU accesses is handled for the caller.
337 *
338 *	This function may sleep.
339 */
340int intel_scu_ipc_iowrite16(u16 addr, u16 data)
341{
342	u16 x[2] = {addr, addr + 1};
343	return pwr_reg_rdwr(x, (u8 *)&data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
344}
345EXPORT_SYMBOL(intel_scu_ipc_iowrite16);
346
347/**
348 *	intel_scu_ipc_iowrite32		-	write a dword via the SCU
349 *	@addr: register on SCU
350 *	@data: dword to write
351 *
352 *	Write four registers. Returns 0 on success or an error code. All
353 *	locking between SCU accesses is handled for the caller.
354 *
355 *	This function may sleep.
356 */
357int intel_scu_ipc_iowrite32(u16 addr, u32 data)
358{
359	u16 x[4] = {addr, addr + 1, addr + 2, addr + 3};
360	return pwr_reg_rdwr(x, (u8 *)&data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
361}
362EXPORT_SYMBOL(intel_scu_ipc_iowrite32);
363
364/**
365 *	intel_scu_ipc_readvv		-	read a set of registers
366 *	@addr: register list
367 *	@data: bytes to return
368 *	@len: length of array
369 *
370 *	Read registers. Returns 0 on success or an error code. All
371 *	locking between SCU accesses is handled for the caller.
372 *
373 *	The largest array length permitted by the hardware is 5 items.
374 *
375 *	This function may sleep.
376 */
377int intel_scu_ipc_readv(u16 *addr, u8 *data, int len)
378{
379	return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
380}
381EXPORT_SYMBOL(intel_scu_ipc_readv);
382
383/**
384 *	intel_scu_ipc_writev		-	write a set of registers
385 *	@addr: register list
386 *	@data: bytes to write
387 *	@len: length of array
388 *
389 *	Write registers. Returns 0 on success or an error code. All
390 *	locking between SCU accesses is handled for the caller.
391 *
392 *	The largest array length permitted by the hardware is 5 items.
393 *
394 *	This function may sleep.
395 *
396 */
397int intel_scu_ipc_writev(u16 *addr, u8 *data, int len)
398{
399	return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
400}
401EXPORT_SYMBOL(intel_scu_ipc_writev);
402
403/**
404 *	intel_scu_ipc_update_register	-	r/m/w a register
405 *	@addr: register address
406 *	@bits: bits to update
407 *	@mask: mask of bits to update
408 *
409 *	Read-modify-write power control unit register. The first data argument
410 *	must be register value and second is mask value
411 *	mask is a bitmap that indicates which bits to update.
412 *	0 = masked. Don't modify this bit, 1 = modify this bit.
413 *	returns 0 on success or an error code.
414 *
415 *	This function may sleep. Locking between SCU accesses is handled
416 *	for the caller.
417 */
418int intel_scu_ipc_update_register(u16 addr, u8 bits, u8 mask)
419{
420	u8 data[2] = { bits, mask };
421	return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_M);
422}
423EXPORT_SYMBOL(intel_scu_ipc_update_register);
424
425/**
426 *	intel_scu_ipc_simple_command	-	send a simple command
427 *	@cmd: command
428 *	@sub: sub type
429 *
430 *	Issue a simple command to the SCU. Do not use this interface if
431 *	you must then access data as any data values may be overwritten
432 *	by another SCU access by the time this function returns.
433 *
434 *	This function may sleep. Locking for SCU accesses is handled for
435 *	the caller.
436 */
437int intel_scu_ipc_simple_command(int cmd, int sub)
438{
439	int err;
440
441	mutex_lock(&ipclock);
442	if (ipcdev.pdev == NULL) {
443		mutex_unlock(&ipclock);
444		return -ENODEV;
445	}
446	ipc_command(sub << 12 | cmd);
447	err = intel_scu_ipc_check_status();
448	mutex_unlock(&ipclock);
449	return err;
450}
451EXPORT_SYMBOL(intel_scu_ipc_simple_command);
452
453/**
454 *	intel_scu_ipc_command	-	command with data
455 *	@cmd: command
456 *	@sub: sub type
457 *	@in: input data
458 *	@inlen: input length in dwords
459 *	@out: output data
460 *	@outlein: output length in dwords
461 *
462 *	Issue a command to the SCU which involves data transfers. Do the
463 *	data copies under the lock but leave it for the caller to interpret
464 */
465int intel_scu_ipc_command(int cmd, int sub, u32 *in, int inlen,
466			  u32 *out, int outlen)
467{
468	int i, err;
469
470	mutex_lock(&ipclock);
471	if (ipcdev.pdev == NULL) {
472		mutex_unlock(&ipclock);
473		return -ENODEV;
474	}
475
476	for (i = 0; i < inlen; i++)
477		ipc_data_writel(*in++, 4 * i);
478
479	ipc_command((inlen << 16) | (sub << 12) | cmd);
480	err = intel_scu_ipc_check_status();
481
482	if (!err) {
483		for (i = 0; i < outlen; i++)
484			*out++ = ipc_data_readl(4 * i);
485	}
486
487	mutex_unlock(&ipclock);
488	return err;
489}
490EXPORT_SYMBOL(intel_scu_ipc_command);
491
492/* I2C commands */
493#define IPC_I2C_WRITE 1 /* I2C Write command */
494#define IPC_I2C_READ  2 /* I2C Read command */
495
496/**
497 *	intel_scu_ipc_i2c_cntrl		-	I2C read/write operations
498 *	@addr: I2C address + command bits
499 *	@data: data to read/write
500 *
501 *	Perform an an I2C read/write operation via the SCU. All locking is
502 *	handled for the caller. This function may sleep.
503 *
504 *	Returns an error code or 0 on success.
505 *
506 *	This has to be in the IPC driver for the locking.
507 */
508int intel_scu_ipc_i2c_cntrl(u32 addr, u32 *data)
509{
510	u32 cmd = 0;
511
512	mutex_lock(&ipclock);
513	if (ipcdev.pdev == NULL) {
514		mutex_unlock(&ipclock);
515		return -ENODEV;
516	}
517	cmd = (addr >> 24) & 0xFF;
518	if (cmd == IPC_I2C_READ) {
519		writel(addr, ipcdev.i2c_base + IPC_I2C_CNTRL_ADDR);
520		/* Write not getting updated without delay */
521		mdelay(1);
522		*data = readl(ipcdev.i2c_base + I2C_DATA_ADDR);
523	} else if (cmd == IPC_I2C_WRITE) {
524		writel(*data, ipcdev.i2c_base + I2C_DATA_ADDR);
525		mdelay(1);
526		writel(addr, ipcdev.i2c_base + IPC_I2C_CNTRL_ADDR);
527	} else {
528		dev_err(&ipcdev.pdev->dev,
529			"intel_scu_ipc: I2C INVALID_CMD = 0x%x\n", cmd);
530
531		mutex_unlock(&ipclock);
532		return -EIO;
533	}
534	mutex_unlock(&ipclock);
535	return 0;
536}
537EXPORT_SYMBOL(intel_scu_ipc_i2c_cntrl);
538
539/*
540 * Interrupt handler gets called when ioc bit of IPC_COMMAND_REG set to 1
541 * When ioc bit is set to 1, caller api must wait for interrupt handler called
542 * which in turn unlocks the caller api. Currently this is not used
543 *
544 * This is edge triggered so we need take no action to clear anything
545 */
546static irqreturn_t ioc(int irq, void *dev_id)
547{
548	if (ipcdev.irq_mode)
549		complete(&ipcdev.cmd_complete);
550
551	return IRQ_HANDLED;
552}
553
554/**
555 *	ipc_probe	-	probe an Intel SCU IPC
556 *	@dev: the PCI device matching
557 *	@id: entry in the match table
558 *
559 *	Enable and install an intel SCU IPC. This appears in the PCI space
560 *	but uses some hard coded addresses as well.
561 */
562static int ipc_probe(struct pci_dev *dev, const struct pci_device_id *id)
563{
564	int err;
565	struct intel_scu_ipc_pdata_t *pdata;
566	resource_size_t base;
567
568	if (ipcdev.pdev)		/* We support only one SCU */
569		return -EBUSY;
570
571	pdata = (struct intel_scu_ipc_pdata_t *)id->driver_data;
572
573	ipcdev.pdev = pci_dev_get(dev);
574	ipcdev.irq_mode = pdata->irq_mode;
575
576	err = pci_enable_device(dev);
577	if (err)
578		return err;
579
580	err = pci_request_regions(dev, "intel_scu_ipc");
581	if (err)
582		return err;
583
584	base = pci_resource_start(dev, 0);
585	if (!base)
586		return -ENOMEM;
587
588	init_completion(&ipcdev.cmd_complete);
589
590	if (request_irq(dev->irq, ioc, 0, "intel_scu_ipc", &ipcdev))
591		return -EBUSY;
592
593	ipcdev.ipc_base = ioremap_nocache(base, pci_resource_len(dev, 0));
594	if (!ipcdev.ipc_base)
595		return -ENOMEM;
596
597	ipcdev.i2c_base = ioremap_nocache(pdata->i2c_base, pdata->i2c_len);
598	if (!ipcdev.i2c_base) {
599		iounmap(ipcdev.ipc_base);
600		return -ENOMEM;
601	}
602
603	intel_scu_devices_create();
604
605	return 0;
606}
607
608/**
609 *	ipc_remove	-	remove a bound IPC device
610 *	@pdev: PCI device
611 *
612 *	In practice the SCU is not removable but this function is also
613 *	called for each device on a module unload or cleanup which is the
614 *	path that will get used.
615 *
616 *	Free up the mappings and release the PCI resources
617 */
618static void ipc_remove(struct pci_dev *pdev)
619{
620	free_irq(pdev->irq, &ipcdev);
621	pci_release_regions(pdev);
622	pci_dev_put(ipcdev.pdev);
623	iounmap(ipcdev.ipc_base);
624	iounmap(ipcdev.i2c_base);
625	ipcdev.pdev = NULL;
626	intel_scu_devices_destroy();
627}
628
629static const struct pci_device_id pci_ids[] = {
630	{
631		PCI_VDEVICE(INTEL, PCI_DEVICE_ID_LINCROFT),
632		(kernel_ulong_t)&intel_scu_ipc_lincroft_pdata,
633	}, {
634		PCI_VDEVICE(INTEL, PCI_DEVICE_ID_PENWELL),
635		(kernel_ulong_t)&intel_scu_ipc_penwell_pdata,
636	}, {
637		PCI_VDEVICE(INTEL, PCI_DEVICE_ID_CLOVERVIEW),
638		(kernel_ulong_t)&intel_scu_ipc_penwell_pdata,
639	}, {
640		PCI_VDEVICE(INTEL, PCI_DEVICE_ID_TANGIER),
641		(kernel_ulong_t)&intel_scu_ipc_tangier_pdata,
642	}, {
643		0,
644	}
645};
646MODULE_DEVICE_TABLE(pci, pci_ids);
647
648static struct pci_driver ipc_driver = {
649	.name = "intel_scu_ipc",
650	.id_table = pci_ids,
651	.probe = ipc_probe,
652	.remove = ipc_remove,
653};
654
655static int __init intel_scu_ipc_init(void)
656{
657	int platform;		/* Platform type */
658
659	platform = intel_mid_identify_cpu();
660	if (platform == 0)
661		return -ENODEV;
662	return  pci_register_driver(&ipc_driver);
663}
664
665static void __exit intel_scu_ipc_exit(void)
666{
667	pci_unregister_driver(&ipc_driver);
668}
669
670MODULE_AUTHOR("Sreedhara DS <sreedhara.ds@intel.com>");
671MODULE_DESCRIPTION("Intel SCU IPC driver");
672MODULE_LICENSE("GPL");
673
674module_init(intel_scu_ipc_init);
675module_exit(intel_scu_ipc_exit);
676