1/*
2 * AppliedMicro X-Gene Multi-purpose PHY driver
3 *
4 * Copyright (c) 2014, Applied Micro Circuits Corporation
5 * Author: Loc Ho <lho@apm.com>
6 *         Tuan Phan <tphan@apm.com>
7 *         Suman Tripathi <stripathi@apm.com>
8 *
9 * This program is free software; you can redistribute  it and/or modify it
10 * under  the terms of  the GNU General  Public License as published by the
11 * Free Software Foundation;  either version 2 of the  License, or (at your
12 * option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21 *
22 * The APM X-Gene PHY consists of two PLL clock macro's (CMU) and lanes.
23 * The first PLL clock macro is used for internal reference clock. The second
24 * PLL clock macro is used to generate the clock for the PHY. This driver
25 * configures the first PLL CMU, the second PLL CMU, and programs the PHY to
26 * operate according to the mode of operation. The first PLL CMU is only
27 * required if internal clock is enabled.
28 *
29 * Logical Layer Out Of HW module units:
30 *
31 * -----------------
32 * | Internal      |    |------|
33 * | Ref PLL CMU   |----|      |     -------------    ---------
34 * ------------ ----    | MUX  |-----|PHY PLL CMU|----| Serdes|
35 *                      |      |     |           |    ---------
36 * External Clock ------|      |     -------------
37 *                      |------|
38 *
39 * The Ref PLL CMU CSR (Configuration System Registers) is accessed
40 * indirectly from the SDS offset at 0x2000. It is only required for
41 * internal reference clock.
42 * The PHY PLL CMU CSR is accessed indirectly from the SDS offset at 0x0000.
43 * The Serdes CSR is accessed indirectly from the SDS offset at 0x0400.
44 *
45 * The Ref PLL CMU can be located within the same PHY IP or outside the PHY IP
46 * due to shared Ref PLL CMU. For PHY with Ref PLL CMU shared with another IP,
47 * it is located outside the PHY IP. This is the case for the PHY located
48 * at 0x1f23a000 (SATA Port 4/5). For such PHY, another resource is required
49 * to located the SDS/Ref PLL CMU module and its clock for that IP enabled.
50 *
51 * Currently, this driver only supports Gen3 SATA mode with external clock.
52 */
53#include <linux/module.h>
54#include <linux/platform_device.h>
55#include <linux/io.h>
56#include <linux/delay.h>
57#include <linux/phy/phy.h>
58#include <linux/clk.h>
59
60/* Max 2 lanes per a PHY unit */
61#define MAX_LANE			2
62
63/* Register offset inside the PHY */
64#define SERDES_PLL_INDIRECT_OFFSET	0x0000
65#define SERDES_PLL_REF_INDIRECT_OFFSET	0x2000
66#define SERDES_INDIRECT_OFFSET		0x0400
67#define SERDES_LANE_STRIDE		0x0200
68
69/* Some default Serdes parameters */
70#define DEFAULT_SATA_TXBOOST_GAIN	{ 0x1e, 0x1e, 0x1e }
71#define DEFAULT_SATA_TXEYEDIRECTION	{ 0x0, 0x0, 0x0 }
72#define DEFAULT_SATA_TXEYETUNING	{ 0xa, 0xa, 0xa }
73#define DEFAULT_SATA_SPD_SEL		{ 0x1, 0x3, 0x7 }
74#define DEFAULT_SATA_TXAMP		{ 0x8, 0x8, 0x8 }
75#define DEFAULT_SATA_TXCN1		{ 0x2, 0x2, 0x2 }
76#define DEFAULT_SATA_TXCN2		{ 0x0, 0x0, 0x0 }
77#define DEFAULT_SATA_TXCP1		{ 0xa, 0xa, 0xa }
78
79#define SATA_SPD_SEL_GEN3		0x7
80#define SATA_SPD_SEL_GEN2		0x3
81#define SATA_SPD_SEL_GEN1		0x1
82
83#define SSC_DISABLE			0
84#define SSC_ENABLE			1
85
86#define FBDIV_VAL_50M			0x77
87#define REFDIV_VAL_50M			0x1
88#define FBDIV_VAL_100M			0x3B
89#define REFDIV_VAL_100M			0x0
90
91/* SATA Clock/Reset CSR */
92#define SATACLKENREG			0x00000000
93#define  SATA0_CORE_CLKEN		0x00000002
94#define  SATA1_CORE_CLKEN		0x00000004
95#define SATASRESETREG			0x00000004
96#define  SATA_MEM_RESET_MASK		0x00000020
97#define  SATA_MEM_RESET_RD(src)		(((src) & 0x00000020) >> 5)
98#define  SATA_SDS_RESET_MASK		0x00000004
99#define  SATA_CSR_RESET_MASK		0x00000001
100#define  SATA_CORE_RESET_MASK		0x00000002
101#define  SATA_PMCLK_RESET_MASK		0x00000010
102#define  SATA_PCLK_RESET_MASK		0x00000008
103
104/* SDS CSR used for PHY Indirect access */
105#define SATA_ENET_SDS_PCS_CTL0		0x00000000
106#define  REGSPEC_CFG_I_TX_WORDMODE0_SET(dst, src) \
107		(((dst) & ~0x00070000) | (((u32) (src) << 16) & 0x00070000))
108#define  REGSPEC_CFG_I_RX_WORDMODE0_SET(dst, src) \
109		(((dst) & ~0x00e00000) | (((u32) (src) << 21) & 0x00e00000))
110#define SATA_ENET_SDS_CTL0		0x0000000c
111#define  REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(dst, src) \
112		(((dst) & ~0x00007fff) | (((u32) (src)) & 0x00007fff))
113#define SATA_ENET_SDS_CTL1		0x00000010
114#define  CFG_I_SPD_SEL_CDR_OVR1_SET(dst, src) \
115		(((dst) & ~0x0000000f) | (((u32) (src)) & 0x0000000f))
116#define SATA_ENET_SDS_RST_CTL		0x00000024
117#define SATA_ENET_SDS_IND_CMD_REG	0x0000003c
118#define  CFG_IND_WR_CMD_MASK		0x00000001
119#define  CFG_IND_RD_CMD_MASK		0x00000002
120#define  CFG_IND_CMD_DONE_MASK		0x00000004
121#define  CFG_IND_ADDR_SET(dst, src) \
122		(((dst) & ~0x003ffff0) | (((u32) (src) << 4) & 0x003ffff0))
123#define SATA_ENET_SDS_IND_RDATA_REG	0x00000040
124#define SATA_ENET_SDS_IND_WDATA_REG	0x00000044
125#define SATA_ENET_CLK_MACRO_REG		0x0000004c
126#define  I_RESET_B_SET(dst, src) \
127		(((dst) & ~0x00000001) | (((u32) (src)) & 0x00000001))
128#define  I_PLL_FBDIV_SET(dst, src) \
129		(((dst) & ~0x001ff000) | (((u32) (src) << 12) & 0x001ff000))
130#define  I_CUSTOMEROV_SET(dst, src) \
131		(((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80))
132#define  O_PLL_LOCK_RD(src)		(((src) & 0x40000000) >> 30)
133#define  O_PLL_READY_RD(src)		(((src) & 0x80000000) >> 31)
134
135/* PLL Clock Macro Unit (CMU) CSR accessing from SDS indirectly */
136#define CMU_REG0			0x00000
137#define  CMU_REG0_PLL_REF_SEL_MASK	0x00002000
138#define  CMU_REG0_PLL_REF_SEL_SET(dst, src)	\
139		(((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000))
140#define  CMU_REG0_PDOWN_MASK		0x00004000
141#define  CMU_REG0_CAL_COUNT_RESOL_SET(dst, src) \
142		(((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0))
143#define CMU_REG1			0x00002
144#define  CMU_REG1_PLL_CP_SET(dst, src) \
145		(((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00))
146#define  CMU_REG1_PLL_MANUALCAL_SET(dst, src) \
147		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
148#define  CMU_REG1_PLL_CP_SEL_SET(dst, src) \
149		(((dst) & ~0x000003e0) | (((u32) (src) << 5) & 0x000003e0))
150#define  CMU_REG1_REFCLK_CMOS_SEL_MASK	0x00000001
151#define  CMU_REG1_REFCLK_CMOS_SEL_SET(dst, src)	\
152		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
153#define CMU_REG2			0x00004
154#define  CMU_REG2_PLL_REFDIV_SET(dst, src) \
155		(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
156#define  CMU_REG2_PLL_LFRES_SET(dst, src) \
157		(((dst) & ~0x0000001e) | (((u32) (src) << 1) & 0x0000001e))
158#define  CMU_REG2_PLL_FBDIV_SET(dst, src) \
159		(((dst) & ~0x00003fe0) | (((u32) (src) << 5) & 0x00003fe0))
160#define CMU_REG3			0x00006
161#define  CMU_REG3_VCOVARSEL_SET(dst, src) \
162		(((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f))
163#define  CMU_REG3_VCO_MOMSEL_INIT_SET(dst, src) \
164		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
165#define  CMU_REG3_VCO_MANMOMSEL_SET(dst, src) \
166		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
167#define CMU_REG4			0x00008
168#define CMU_REG5			0x0000a
169#define  CMU_REG5_PLL_LFSMCAP_SET(dst, src) \
170		(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
171#define  CMU_REG5_PLL_LOCK_RESOLUTION_SET(dst, src) \
172		(((dst) & ~0x0000000e) | (((u32) (src) << 1) & 0x0000000e))
173#define  CMU_REG5_PLL_LFCAP_SET(dst, src) \
174		(((dst) & ~0x00003000) | (((u32) (src) << 12) & 0x00003000))
175#define  CMU_REG5_PLL_RESETB_MASK	0x00000001
176#define CMU_REG6			0x0000c
177#define  CMU_REG6_PLL_VREGTRIM_SET(dst, src) \
178		(((dst) & ~0x00000600) | (((u32) (src) << 9) & 0x00000600))
179#define  CMU_REG6_MAN_PVT_CAL_SET(dst, src) \
180		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
181#define CMU_REG7			0x0000e
182#define  CMU_REG7_PLL_CALIB_DONE_RD(src) ((0x00004000 & (u32) (src)) >> 14)
183#define  CMU_REG7_VCO_CAL_FAIL_RD(src)	((0x00000c00 & (u32) (src)) >> 10)
184#define CMU_REG8			0x00010
185#define CMU_REG9			0x00012
186#define  CMU_REG9_WORD_LEN_8BIT		0x000
187#define  CMU_REG9_WORD_LEN_10BIT	0x001
188#define  CMU_REG9_WORD_LEN_16BIT	0x002
189#define  CMU_REG9_WORD_LEN_20BIT	0x003
190#define  CMU_REG9_WORD_LEN_32BIT	0x004
191#define  CMU_REG9_WORD_LEN_40BIT	0x005
192#define  CMU_REG9_WORD_LEN_64BIT	0x006
193#define  CMU_REG9_WORD_LEN_66BIT	0x007
194#define  CMU_REG9_TX_WORD_MODE_CH1_SET(dst, src) \
195		(((dst) & ~0x00000380) | (((u32) (src) << 7) & 0x00000380))
196#define  CMU_REG9_TX_WORD_MODE_CH0_SET(dst, src) \
197		(((dst) & ~0x00000070) | (((u32) (src) << 4) & 0x00000070))
198#define  CMU_REG9_PLL_POST_DIVBY2_SET(dst, src) \
199		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
200#define  CMU_REG9_VBG_BYPASSB_SET(dst, src) \
201		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
202#define  CMU_REG9_IGEN_BYPASS_SET(dst, src) \
203		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
204#define CMU_REG10			0x00014
205#define  CMU_REG10_VREG_REFSEL_SET(dst, src) \
206		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
207#define CMU_REG11			0x00016
208#define CMU_REG12			0x00018
209#define  CMU_REG12_STATE_DELAY9_SET(dst, src) \
210		(((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
211#define CMU_REG13			0x0001a
212#define CMU_REG14			0x0001c
213#define CMU_REG15			0x0001e
214#define CMU_REG16			0x00020
215#define  CMU_REG16_PVT_DN_MAN_ENA_MASK	0x00000001
216#define  CMU_REG16_PVT_UP_MAN_ENA_MASK	0x00000002
217#define  CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(dst, src) \
218		(((dst) & ~0x0000001c) | (((u32) (src) << 2) & 0x0000001c))
219#define  CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(dst, src) \
220		(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
221#define  CMU_REG16_BYPASS_PLL_LOCK_SET(dst, src) \
222		(((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
223#define CMU_REG17			0x00022
224#define  CMU_REG17_PVT_CODE_R2A_SET(dst, src) \
225		(((dst) & ~0x00007f00) | (((u32) (src) << 8) & 0x00007f00))
226#define  CMU_REG17_RESERVED_7_SET(dst, src) \
227		(((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0))
228#define  CMU_REG17_PVT_TERM_MAN_ENA_MASK	0x00008000
229#define CMU_REG18			0x00024
230#define CMU_REG19			0x00026
231#define CMU_REG20			0x00028
232#define CMU_REG21			0x0002a
233#define CMU_REG22			0x0002c
234#define CMU_REG23			0x0002e
235#define CMU_REG24			0x00030
236#define CMU_REG25			0x00032
237#define CMU_REG26			0x00034
238#define  CMU_REG26_FORCE_PLL_LOCK_SET(dst, src) \
239		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
240#define CMU_REG27			0x00036
241#define CMU_REG28			0x00038
242#define CMU_REG29			0x0003a
243#define CMU_REG30			0x0003c
244#define  CMU_REG30_LOCK_COUNT_SET(dst, src) \
245		(((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006))
246#define  CMU_REG30_PCIE_MODE_SET(dst, src) \
247		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
248#define CMU_REG31			0x0003e
249#define CMU_REG32			0x00040
250#define  CMU_REG32_FORCE_VCOCAL_START_MASK	0x00004000
251#define  CMU_REG32_PVT_CAL_WAIT_SEL_SET(dst, src) \
252		(((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006))
253#define  CMU_REG32_IREF_ADJ_SET(dst, src) \
254		(((dst) & ~0x00000180) | (((u32) (src) << 7) & 0x00000180))
255#define CMU_REG33			0x00042
256#define CMU_REG34			0x00044
257#define  CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(dst, src) \
258		(((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f))
259#define  CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(dst, src) \
260		(((dst) & ~0x00000f00) | (((u32) (src) << 8) & 0x00000f00))
261#define  CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(dst, src) \
262		(((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
263#define  CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(dst, src) \
264		(((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000))
265#define CMU_REG35			0x00046
266#define  CMU_REG35_PLL_SSC_MOD_SET(dst, src) \
267		(((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00))
268#define CMU_REG36				0x00048
269#define  CMU_REG36_PLL_SSC_EN_SET(dst, src) \
270		(((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010))
271#define  CMU_REG36_PLL_SSC_VSTEP_SET(dst, src) \
272		(((dst) & ~0x0000ffc0) | (((u32) (src) << 6) & 0x0000ffc0))
273#define  CMU_REG36_PLL_SSC_DSMSEL_SET(dst, src) \
274		(((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
275#define CMU_REG37			0x0004a
276#define CMU_REG38			0x0004c
277#define CMU_REG39			0x0004e
278
279/* PHY lane CSR accessing from SDS indirectly */
280#define RXTX_REG0			0x000
281#define  RXTX_REG0_CTLE_EQ_HR_SET(dst, src) \
282		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
283#define  RXTX_REG0_CTLE_EQ_QR_SET(dst, src) \
284		(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
285#define  RXTX_REG0_CTLE_EQ_FR_SET(dst, src) \
286		(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
287#define RXTX_REG1			0x002
288#define  RXTX_REG1_RXACVCM_SET(dst, src) \
289		(((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000))
290#define  RXTX_REG1_CTLE_EQ_SET(dst, src) \
291		(((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80))
292#define  RXTX_REG1_RXVREG1_SET(dst, src) \
293		(((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060))
294#define  RXTX_REG1_RXIREF_ADJ_SET(dst, src) \
295		(((dst) & ~0x00000006) | (((u32) (src) << 1) &  0x00000006))
296#define RXTX_REG2			0x004
297#define  RXTX_REG2_VTT_ENA_SET(dst, src) \
298		(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
299#define  RXTX_REG2_TX_FIFO_ENA_SET(dst, src) \
300		(((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
301#define  RXTX_REG2_VTT_SEL_SET(dst, src) \
302		(((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0))
303#define RXTX_REG4			0x008
304#define  RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK	0x00000040
305#define  RXTX_REG4_TX_DATA_RATE_SET(dst, src) \
306		(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
307#define  RXTX_REG4_TX_WORD_MODE_SET(dst, src) \
308		(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
309#define RXTX_REG5			0x00a
310#define  RXTX_REG5_TX_CN1_SET(dst, src) \
311		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
312#define  RXTX_REG5_TX_CP1_SET(dst, src) \
313		(((dst) & ~0x000007e0) | (((u32) (src) << 5) & 0x000007e0))
314#define  RXTX_REG5_TX_CN2_SET(dst, src) \
315		(((dst) & ~0x0000001f) | (((u32) (src) << 0) & 0x0000001f))
316#define RXTX_REG6			0x00c
317#define  RXTX_REG6_TXAMP_CNTL_SET(dst, src) \
318		(((dst) & ~0x00000780) | (((u32) (src) << 7) & 0x00000780))
319#define  RXTX_REG6_TXAMP_ENA_SET(dst, src) \
320		(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
321#define  RXTX_REG6_RX_BIST_ERRCNT_RD_SET(dst, src) \
322		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
323#define  RXTX_REG6_TX_IDLE_SET(dst, src) \
324		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
325#define  RXTX_REG6_RX_BIST_RESYNC_SET(dst, src) \
326		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
327#define RXTX_REG7			0x00e
328#define  RXTX_REG7_RESETB_RXD_MASK	0x00000100
329#define  RXTX_REG7_RESETB_RXA_MASK	0x00000080
330#define  RXTX_REG7_BIST_ENA_RX_SET(dst, src) \
331		(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
332#define  RXTX_REG7_RX_WORD_MODE_SET(dst, src) \
333		(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
334#define RXTX_REG8			0x010
335#define  RXTX_REG8_CDR_LOOP_ENA_SET(dst, src) \
336		(((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000))
337#define  RXTX_REG8_CDR_BYPASS_RXLOS_SET(dst, src) \
338		(((dst) & ~0x00000800) | (((u32) (src) << 11) & 0x00000800))
339#define  RXTX_REG8_SSC_ENABLE_SET(dst, src) \
340		(((dst) & ~0x00000200) | (((u32) (src) << 9) & 0x00000200))
341#define  RXTX_REG8_SD_VREF_SET(dst, src) \
342		(((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
343#define  RXTX_REG8_SD_DISABLE_SET(dst, src) \
344		(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
345#define RXTX_REG7			0x00e
346#define  RXTX_REG7_RESETB_RXD_SET(dst, src) \
347		(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
348#define  RXTX_REG7_RESETB_RXA_SET(dst, src) \
349		(((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080))
350#define  RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK	0x00004000
351#define  RXTX_REG7_LOOP_BACK_ENA_CTLE_SET(dst, src) \
352		(((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000))
353#define RXTX_REG11			0x016
354#define  RXTX_REG11_PHASE_ADJUST_LIMIT_SET(dst, src) \
355		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
356#define RXTX_REG12			0x018
357#define  RXTX_REG12_LATCH_OFF_ENA_SET(dst, src) \
358		(((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000))
359#define  RXTX_REG12_SUMOS_ENABLE_SET(dst, src) \
360		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
361#define  RXTX_REG12_RX_DET_TERM_ENABLE_MASK	0x00000002
362#define  RXTX_REG12_RX_DET_TERM_ENABLE_SET(dst, src) \
363		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
364#define RXTX_REG13			0x01a
365#define RXTX_REG14			0x01c
366#define  RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(dst, src) \
367		(((dst) & ~0x0000003f) | (((u32) (src) << 0) & 0x0000003f))
368#define  RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(dst, src) \
369		(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
370#define RXTX_REG26			0x034
371#define  RXTX_REG26_PERIOD_ERROR_LATCH_SET(dst, src) \
372		(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
373#define  RXTX_REG26_BLWC_ENA_SET(dst, src) \
374		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
375#define RXTX_REG21			0x02a
376#define  RXTX_REG21_DO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
377#define  RXTX_REG21_XO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
378#define  RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(src)	((0x0000000f & (u32)(src)))
379#define RXTX_REG22			0x02c
380#define  RXTX_REG22_SO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
381#define  RXTX_REG22_EO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
382#define  RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(src)	((0x0000000f & (u32)(src)))
383#define RXTX_REG23			0x02e
384#define  RXTX_REG23_DE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
385#define  RXTX_REG23_XE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
386#define RXTX_REG24			0x030
387#define  RXTX_REG24_EE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
388#define  RXTX_REG24_SE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
389#define RXTX_REG27			0x036
390#define RXTX_REG28			0x038
391#define RXTX_REG31			0x03e
392#define RXTX_REG38			0x04c
393#define  RXTX_REG38_CUSTOMER_PINMODE_INV_SET(dst, src) \
394		(((dst) & 0x0000fffe) | (((u32) (src) << 1) & 0x0000fffe))
395#define RXTX_REG39			0x04e
396#define RXTX_REG40			0x050
397#define RXTX_REG41			0x052
398#define RXTX_REG42			0x054
399#define RXTX_REG43			0x056
400#define RXTX_REG44			0x058
401#define RXTX_REG45			0x05a
402#define RXTX_REG46			0x05c
403#define RXTX_REG47			0x05e
404#define RXTX_REG48			0x060
405#define RXTX_REG49			0x062
406#define RXTX_REG50			0x064
407#define RXTX_REG51			0x066
408#define RXTX_REG52			0x068
409#define RXTX_REG53			0x06a
410#define RXTX_REG54			0x06c
411#define RXTX_REG55			0x06e
412#define RXTX_REG61			0x07a
413#define  RXTX_REG61_ISCAN_INBERT_SET(dst, src) \
414		(((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010))
415#define  RXTX_REG61_LOADFREQ_SHIFT_SET(dst, src) \
416		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
417#define  RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(dst, src) \
418		(((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0))
419#define  RXTX_REG61_SPD_SEL_CDR_SET(dst, src) \
420		(((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00))
421#define RXTX_REG62			0x07c
422#define  RXTX_REG62_PERIOD_H1_QLATCH_SET(dst, src) \
423		(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
424#define RXTX_REG81			0x0a2
425#define  RXTX_REG89_MU_TH7_SET(dst, src) \
426		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
427#define  RXTX_REG89_MU_TH8_SET(dst, src) \
428		(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
429#define  RXTX_REG89_MU_TH9_SET(dst, src) \
430		(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
431#define RXTX_REG96			0x0c0
432#define  RXTX_REG96_MU_FREQ1_SET(dst, src) \
433		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
434#define  RXTX_REG96_MU_FREQ2_SET(dst, src) \
435		(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
436#define  RXTX_REG96_MU_FREQ3_SET(dst, src) \
437		(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
438#define RXTX_REG99			0x0c6
439#define  RXTX_REG99_MU_PHASE1_SET(dst, src) \
440		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
441#define  RXTX_REG99_MU_PHASE2_SET(dst, src) \
442		(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
443#define  RXTX_REG99_MU_PHASE3_SET(dst, src) \
444		(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
445#define RXTX_REG102			0x0cc
446#define  RXTX_REG102_FREQLOOP_LIMIT_SET(dst, src) \
447		(((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060))
448#define RXTX_REG114			0x0e4
449#define RXTX_REG121			0x0f2
450#define  RXTX_REG121_SUMOS_CAL_CODE_RD(src) ((0x0000003e & (u32)(src)) >> 0x1)
451#define RXTX_REG125			0x0fa
452#define  RXTX_REG125_PQ_REG_SET(dst, src) \
453		(((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00))
454#define  RXTX_REG125_SIGN_PQ_SET(dst, src) \
455		(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
456#define  RXTX_REG125_SIGN_PQ_2C_SET(dst, src) \
457		(((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080))
458#define  RXTX_REG125_PHZ_MANUALCODE_SET(dst, src) \
459		(((dst) & ~0x0000007c) | (((u32) (src) << 2) & 0x0000007c))
460#define  RXTX_REG125_PHZ_MANUAL_SET(dst, src) \
461		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
462#define RXTX_REG127			0x0fe
463#define  RXTX_REG127_FORCE_SUM_CAL_START_MASK	0x00000002
464#define  RXTX_REG127_FORCE_LAT_CAL_START_MASK	0x00000004
465#define  RXTX_REG127_FORCE_SUM_CAL_START_SET(dst, src) \
466		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
467#define  RXTX_REG127_FORCE_LAT_CAL_START_SET(dst, src) \
468		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
469#define  RXTX_REG127_LATCH_MAN_CAL_ENA_SET(dst, src) \
470		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
471#define  RXTX_REG127_DO_LATCH_MANCAL_SET(dst, src) \
472		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
473#define  RXTX_REG127_XO_LATCH_MANCAL_SET(dst, src) \
474		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
475#define RXTX_REG128			0x100
476#define  RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(dst, src) \
477		(((dst) & ~0x0000000c) | (((u32) (src) << 2) & 0x0000000c))
478#define  RXTX_REG128_EO_LATCH_MANCAL_SET(dst, src) \
479		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
480#define  RXTX_REG128_SO_LATCH_MANCAL_SET(dst, src) \
481		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
482#define RXTX_REG129			0x102
483#define  RXTX_REG129_DE_LATCH_MANCAL_SET(dst, src) \
484		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
485#define  RXTX_REG129_XE_LATCH_MANCAL_SET(dst, src) \
486		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
487#define RXTX_REG130			0x104
488#define  RXTX_REG130_EE_LATCH_MANCAL_SET(dst, src) \
489		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
490#define  RXTX_REG130_SE_LATCH_MANCAL_SET(dst, src) \
491		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
492#define RXTX_REG145			0x122
493#define  RXTX_REG145_TX_IDLE_SATA_SET(dst, src) \
494		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
495#define  RXTX_REG145_RXES_ENA_SET(dst, src) \
496		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
497#define  RXTX_REG145_RXDFE_CONFIG_SET(dst, src) \
498		(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
499#define  RXTX_REG145_RXVWES_LATENA_SET(dst, src) \
500		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
501#define RXTX_REG147			0x126
502#define RXTX_REG148			0x128
503
504/* Clock macro type */
505enum cmu_type_t {
506	REF_CMU = 0,	/* Clock macro is the internal reference clock */
507	PHY_CMU = 1,	/* Clock macro is the PLL for the Serdes */
508};
509
510enum mux_type_t {
511	MUX_SELECT_ATA = 0,	/* Switch the MUX to ATA */
512	MUX_SELECT_SGMMII = 0,	/* Switch the MUX to SGMII */
513};
514
515enum clk_type_t {
516	CLK_EXT_DIFF = 0,	/* External differential */
517	CLK_INT_DIFF = 1,	/* Internal differential */
518	CLK_INT_SING = 2,	/* Internal single ended */
519};
520
521enum phy_mode {
522	MODE_SATA	= 0,	/* List them for simple reference */
523	MODE_SGMII	= 1,
524	MODE_PCIE	= 2,
525	MODE_USB	= 3,
526	MODE_XFI	= 4,
527	MODE_MAX
528};
529
530struct xgene_sata_override_param {
531	u32 speed[MAX_LANE]; /* Index for override parameter per lane */
532	u32 txspeed[3];			/* Tx speed */
533	u32 txboostgain[MAX_LANE*3];	/* Tx freq boost and gain control */
534	u32 txeyetuning[MAX_LANE*3];	/* Tx eye tuning */
535	u32 txeyedirection[MAX_LANE*3]; /* Tx eye tuning direction */
536	u32 txamplitude[MAX_LANE*3];	/* Tx amplitude control */
537	u32 txprecursor_cn1[MAX_LANE*3]; /* Tx emphasis taps 1st pre-cursor */
538	u32 txprecursor_cn2[MAX_LANE*3]; /* Tx emphasis taps 2nd pre-cursor */
539	u32 txpostcursor_cp1[MAX_LANE*3]; /* Tx emphasis taps post-cursor */
540};
541
542struct xgene_phy_ctx {
543	struct device *dev;
544	struct phy *phy;
545	enum phy_mode mode;		/* Mode of operation */
546	enum clk_type_t clk_type;	/* Input clock selection */
547	void __iomem *sds_base;		/* PHY CSR base addr */
548	struct clk *clk;		/* Optional clock */
549
550	/* Override Serdes parameters */
551	struct xgene_sata_override_param sata_param;
552};
553
554/*
555 * For chip earlier than A3 version, enable this flag.
556 * To enable, pass boot argument phy_xgene.preA3Chip=1
557 */
558static int preA3Chip;
559MODULE_PARM_DESC(preA3Chip, "Enable pre-A3 chip support (1=enable 0=disable)");
560module_param_named(preA3Chip, preA3Chip, int, 0444);
561
562static void sds_wr(void __iomem *csr_base, u32 indirect_cmd_reg,
563		   u32 indirect_data_reg, u32 addr, u32 data)
564{
565	unsigned long deadline = jiffies + HZ;
566	u32 val;
567	u32 cmd;
568
569	cmd = CFG_IND_WR_CMD_MASK | CFG_IND_CMD_DONE_MASK;
570	cmd = CFG_IND_ADDR_SET(cmd, addr);
571	writel(data, csr_base + indirect_data_reg);
572	readl(csr_base + indirect_data_reg); /* Force a barrier */
573	writel(cmd, csr_base + indirect_cmd_reg);
574	readl(csr_base + indirect_cmd_reg); /* Force a barrier */
575	do {
576		val = readl(csr_base + indirect_cmd_reg);
577	} while (!(val & CFG_IND_CMD_DONE_MASK) &&
578		 time_before(jiffies, deadline));
579	if (!(val & CFG_IND_CMD_DONE_MASK))
580		pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n",
581		       csr_base + indirect_cmd_reg, addr, data);
582}
583
584static void sds_rd(void __iomem *csr_base, u32 indirect_cmd_reg,
585		   u32 indirect_data_reg, u32 addr, u32 *data)
586{
587	unsigned long deadline = jiffies + HZ;
588	u32 val;
589	u32 cmd;
590
591	cmd = CFG_IND_RD_CMD_MASK | CFG_IND_CMD_DONE_MASK;
592	cmd = CFG_IND_ADDR_SET(cmd, addr);
593	writel(cmd, csr_base + indirect_cmd_reg);
594	readl(csr_base + indirect_cmd_reg); /* Force a barrier */
595	do {
596		val = readl(csr_base + indirect_cmd_reg);
597	} while (!(val & CFG_IND_CMD_DONE_MASK) &&
598		 time_before(jiffies, deadline));
599	*data = readl(csr_base + indirect_data_reg);
600	if (!(val & CFG_IND_CMD_DONE_MASK))
601		pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n",
602		       csr_base + indirect_cmd_reg, addr, *data);
603}
604
605static void cmu_wr(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
606		   u32 reg, u32 data)
607{
608	void __iomem *sds_base = ctx->sds_base;
609	u32 val;
610
611	if (cmu_type == REF_CMU)
612		reg += SERDES_PLL_REF_INDIRECT_OFFSET;
613	else
614		reg += SERDES_PLL_INDIRECT_OFFSET;
615	sds_wr(sds_base, SATA_ENET_SDS_IND_CMD_REG,
616		SATA_ENET_SDS_IND_WDATA_REG, reg, data);
617	sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
618		SATA_ENET_SDS_IND_RDATA_REG, reg, &val);
619	pr_debug("CMU WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg, data, val);
620}
621
622static void cmu_rd(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
623		   u32 reg, u32 *data)
624{
625	void __iomem *sds_base = ctx->sds_base;
626
627	if (cmu_type == REF_CMU)
628		reg += SERDES_PLL_REF_INDIRECT_OFFSET;
629	else
630		reg += SERDES_PLL_INDIRECT_OFFSET;
631	sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
632		SATA_ENET_SDS_IND_RDATA_REG, reg, data);
633	pr_debug("CMU RD addr 0x%X value 0x%08X\n", reg, *data);
634}
635
636static void cmu_toggle1to0(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
637			   u32 reg, u32 bits)
638{
639	u32 val;
640
641	cmu_rd(ctx, cmu_type, reg, &val);
642	val |= bits;
643	cmu_wr(ctx, cmu_type, reg, val);
644	cmu_rd(ctx, cmu_type, reg, &val);
645	val &= ~bits;
646	cmu_wr(ctx, cmu_type, reg, val);
647}
648
649static void cmu_clrbits(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
650			u32 reg, u32 bits)
651{
652	u32 val;
653
654	cmu_rd(ctx, cmu_type, reg, &val);
655	val &= ~bits;
656	cmu_wr(ctx, cmu_type, reg, val);
657}
658
659static void cmu_setbits(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
660			u32 reg, u32 bits)
661{
662	u32 val;
663
664	cmu_rd(ctx, cmu_type, reg, &val);
665	val |= bits;
666	cmu_wr(ctx, cmu_type, reg, val);
667}
668
669static void serdes_wr(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 data)
670{
671	void __iomem *sds_base = ctx->sds_base;
672	u32 val;
673
674	reg += SERDES_INDIRECT_OFFSET;
675	reg += lane * SERDES_LANE_STRIDE;
676	sds_wr(sds_base, SATA_ENET_SDS_IND_CMD_REG,
677	       SATA_ENET_SDS_IND_WDATA_REG, reg, data);
678	sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
679	       SATA_ENET_SDS_IND_RDATA_REG, reg, &val);
680	pr_debug("SERDES WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg, data,
681		 val);
682}
683
684static void serdes_rd(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 *data)
685{
686	void __iomem *sds_base = ctx->sds_base;
687
688	reg += SERDES_INDIRECT_OFFSET;
689	reg += lane * SERDES_LANE_STRIDE;
690	sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
691	       SATA_ENET_SDS_IND_RDATA_REG, reg, data);
692	pr_debug("SERDES RD addr 0x%X value 0x%08X\n", reg, *data);
693}
694
695static void serdes_clrbits(struct xgene_phy_ctx *ctx, int lane, u32 reg,
696			   u32 bits)
697{
698	u32 val;
699
700	serdes_rd(ctx, lane, reg, &val);
701	val &= ~bits;
702	serdes_wr(ctx, lane, reg, val);
703}
704
705static void serdes_setbits(struct xgene_phy_ctx *ctx, int lane, u32 reg,
706			   u32 bits)
707{
708	u32 val;
709
710	serdes_rd(ctx, lane, reg, &val);
711	val |= bits;
712	serdes_wr(ctx, lane, reg, val);
713}
714
715static void xgene_phy_cfg_cmu_clk_type(struct xgene_phy_ctx *ctx,
716				       enum cmu_type_t cmu_type,
717				       enum clk_type_t clk_type)
718{
719	u32 val;
720
721	/* Set the reset sequence delay for TX ready assertion */
722	cmu_rd(ctx, cmu_type, CMU_REG12, &val);
723	val = CMU_REG12_STATE_DELAY9_SET(val, 0x1);
724	cmu_wr(ctx, cmu_type, CMU_REG12, val);
725	/* Set the programmable stage delays between various enable stages */
726	cmu_wr(ctx, cmu_type, CMU_REG13, 0x0222);
727	cmu_wr(ctx, cmu_type, CMU_REG14, 0x2225);
728
729	/* Configure clock type */
730	if (clk_type == CLK_EXT_DIFF) {
731		/* Select external clock mux */
732		cmu_rd(ctx, cmu_type, CMU_REG0, &val);
733		val = CMU_REG0_PLL_REF_SEL_SET(val, 0x0);
734		cmu_wr(ctx, cmu_type, CMU_REG0, val);
735		/* Select CMOS as reference clock  */
736		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
737		val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0);
738		cmu_wr(ctx, cmu_type, CMU_REG1, val);
739		dev_dbg(ctx->dev, "Set external reference clock\n");
740	} else if (clk_type == CLK_INT_DIFF) {
741		/* Select internal clock mux */
742		cmu_rd(ctx, cmu_type, CMU_REG0, &val);
743		val = CMU_REG0_PLL_REF_SEL_SET(val, 0x1);
744		cmu_wr(ctx, cmu_type, CMU_REG0, val);
745		/* Select CMOS as reference clock  */
746		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
747		val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1);
748		cmu_wr(ctx, cmu_type, CMU_REG1, val);
749		dev_dbg(ctx->dev, "Set internal reference clock\n");
750	} else if (clk_type == CLK_INT_SING) {
751		/*
752		 * NOTE: This clock type is NOT support for controller
753		 *	 whose internal clock shared in the PCIe controller
754		 *
755		 * Select internal clock mux
756		 */
757		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
758		val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1);
759		cmu_wr(ctx, cmu_type, CMU_REG1, val);
760		/* Select CML as reference clock */
761		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
762		val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0);
763		cmu_wr(ctx, cmu_type, CMU_REG1, val);
764		dev_dbg(ctx->dev,
765			"Set internal single ended reference clock\n");
766	}
767}
768
769static void xgene_phy_sata_cfg_cmu_core(struct xgene_phy_ctx *ctx,
770					enum cmu_type_t cmu_type,
771					enum clk_type_t clk_type)
772{
773	u32 val;
774	int ref_100MHz;
775
776	if (cmu_type == REF_CMU) {
777		/* Set VCO calibration voltage threshold */
778		cmu_rd(ctx, cmu_type, CMU_REG34, &val);
779		val = CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(val, 0x7);
780		val = CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(val, 0xc);
781		val = CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(val, 0x3);
782		val = CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(val, 0x8);
783		cmu_wr(ctx, cmu_type, CMU_REG34, val);
784	}
785
786	/* Set the VCO calibration counter */
787	cmu_rd(ctx, cmu_type, CMU_REG0, &val);
788	if (cmu_type == REF_CMU || preA3Chip)
789		val = CMU_REG0_CAL_COUNT_RESOL_SET(val, 0x4);
790	else
791		val = CMU_REG0_CAL_COUNT_RESOL_SET(val, 0x7);
792	cmu_wr(ctx, cmu_type, CMU_REG0, val);
793
794	/* Configure PLL for calibration */
795	cmu_rd(ctx, cmu_type, CMU_REG1, &val);
796	val = CMU_REG1_PLL_CP_SET(val, 0x1);
797	if (cmu_type == REF_CMU || preA3Chip)
798		val = CMU_REG1_PLL_CP_SEL_SET(val, 0x5);
799	else
800		val = CMU_REG1_PLL_CP_SEL_SET(val, 0x3);
801	if (cmu_type == REF_CMU)
802		val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x0);
803	else
804		val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x1);
805	cmu_wr(ctx, cmu_type, CMU_REG1, val);
806
807	if (cmu_type != REF_CMU)
808		cmu_clrbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
809
810	/* Configure the PLL for either 100MHz or 50MHz */
811	cmu_rd(ctx, cmu_type, CMU_REG2, &val);
812	if (cmu_type == REF_CMU) {
813		val = CMU_REG2_PLL_LFRES_SET(val, 0xa);
814		ref_100MHz = 1;
815	} else {
816		val = CMU_REG2_PLL_LFRES_SET(val, 0x3);
817		if (clk_type == CLK_EXT_DIFF)
818			ref_100MHz = 0;
819		else
820			ref_100MHz = 1;
821	}
822	if (ref_100MHz) {
823		val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_100M);
824		val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_100M);
825	} else {
826		val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_50M);
827		val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_50M);
828	}
829	cmu_wr(ctx, cmu_type, CMU_REG2, val);
830
831	/* Configure the VCO */
832	cmu_rd(ctx, cmu_type, CMU_REG3, &val);
833	if (cmu_type == REF_CMU) {
834		val = CMU_REG3_VCOVARSEL_SET(val, 0x3);
835		val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x10);
836	} else {
837		val = CMU_REG3_VCOVARSEL_SET(val, 0xF);
838		if (preA3Chip)
839			val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x15);
840		else
841			val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x1a);
842		val = CMU_REG3_VCO_MANMOMSEL_SET(val, 0x15);
843	}
844	cmu_wr(ctx, cmu_type, CMU_REG3, val);
845
846	/* Disable force PLL lock */
847	cmu_rd(ctx, cmu_type, CMU_REG26, &val);
848	val = CMU_REG26_FORCE_PLL_LOCK_SET(val, 0x0);
849	cmu_wr(ctx, cmu_type, CMU_REG26, val);
850
851	/* Setup PLL loop filter */
852	cmu_rd(ctx, cmu_type, CMU_REG5, &val);
853	val = CMU_REG5_PLL_LFSMCAP_SET(val, 0x3);
854	val = CMU_REG5_PLL_LFCAP_SET(val, 0x3);
855	if (cmu_type == REF_CMU || !preA3Chip)
856		val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x7);
857	else
858		val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x4);
859	cmu_wr(ctx, cmu_type, CMU_REG5, val);
860
861	/* Enable or disable manual calibration */
862	cmu_rd(ctx, cmu_type, CMU_REG6, &val);
863	val = CMU_REG6_PLL_VREGTRIM_SET(val, preA3Chip ? 0x0 : 0x2);
864	val = CMU_REG6_MAN_PVT_CAL_SET(val, preA3Chip ? 0x1 : 0x0);
865	cmu_wr(ctx, cmu_type, CMU_REG6, val);
866
867	/* Configure lane for 20-bits */
868	if (cmu_type == PHY_CMU) {
869		cmu_rd(ctx, cmu_type, CMU_REG9, &val);
870		val = CMU_REG9_TX_WORD_MODE_CH1_SET(val,
871						    CMU_REG9_WORD_LEN_20BIT);
872		val = CMU_REG9_TX_WORD_MODE_CH0_SET(val,
873						    CMU_REG9_WORD_LEN_20BIT);
874		val = CMU_REG9_PLL_POST_DIVBY2_SET(val, 0x1);
875		if (!preA3Chip) {
876			val = CMU_REG9_VBG_BYPASSB_SET(val, 0x0);
877			val = CMU_REG9_IGEN_BYPASS_SET(val , 0x0);
878		}
879		cmu_wr(ctx, cmu_type, CMU_REG9, val);
880
881		if (!preA3Chip) {
882			cmu_rd(ctx, cmu_type, CMU_REG10, &val);
883			val = CMU_REG10_VREG_REFSEL_SET(val, 0x1);
884			cmu_wr(ctx, cmu_type, CMU_REG10, val);
885		}
886	}
887
888	cmu_rd(ctx, cmu_type, CMU_REG16, &val);
889	val = CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(val, 0x1);
890	val = CMU_REG16_BYPASS_PLL_LOCK_SET(val, 0x1);
891	if (cmu_type == REF_CMU || preA3Chip)
892		val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x4);
893	else
894		val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x7);
895	cmu_wr(ctx, cmu_type, CMU_REG16, val);
896
897	/* Configure for SATA */
898	cmu_rd(ctx, cmu_type, CMU_REG30, &val);
899	val = CMU_REG30_PCIE_MODE_SET(val, 0x0);
900	val = CMU_REG30_LOCK_COUNT_SET(val, 0x3);
901	cmu_wr(ctx, cmu_type, CMU_REG30, val);
902
903	/* Disable state machine bypass */
904	cmu_wr(ctx, cmu_type, CMU_REG31, 0xF);
905
906	cmu_rd(ctx, cmu_type, CMU_REG32, &val);
907	val = CMU_REG32_PVT_CAL_WAIT_SEL_SET(val, 0x3);
908	if (cmu_type == REF_CMU || preA3Chip)
909		val = CMU_REG32_IREF_ADJ_SET(val, 0x3);
910	else
911		val = CMU_REG32_IREF_ADJ_SET(val, 0x1);
912	cmu_wr(ctx, cmu_type, CMU_REG32, val);
913
914	/* Set VCO calibration threshold */
915	if (cmu_type != REF_CMU && preA3Chip)
916		cmu_wr(ctx, cmu_type, CMU_REG34, 0x8d27);
917	else
918		cmu_wr(ctx, cmu_type, CMU_REG34, 0x873c);
919
920	/* Set CTLE Override and override waiting from state machine */
921	cmu_wr(ctx, cmu_type, CMU_REG37, 0xF00F);
922}
923
924static void xgene_phy_ssc_enable(struct xgene_phy_ctx *ctx,
925				 enum cmu_type_t cmu_type)
926{
927	u32 val;
928
929	/* Set SSC modulation value */
930	cmu_rd(ctx, cmu_type, CMU_REG35, &val);
931	val = CMU_REG35_PLL_SSC_MOD_SET(val, 98);
932	cmu_wr(ctx, cmu_type, CMU_REG35, val);
933
934	/* Enable SSC, set vertical step and DSM value */
935	cmu_rd(ctx, cmu_type, CMU_REG36, &val);
936	val = CMU_REG36_PLL_SSC_VSTEP_SET(val, 30);
937	val = CMU_REG36_PLL_SSC_EN_SET(val, 1);
938	val = CMU_REG36_PLL_SSC_DSMSEL_SET(val, 1);
939	cmu_wr(ctx, cmu_type, CMU_REG36, val);
940
941	/* Reset the PLL */
942	cmu_clrbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
943	cmu_setbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
944
945	/* Force VCO calibration to restart */
946	cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
947		       CMU_REG32_FORCE_VCOCAL_START_MASK);
948}
949
950static void xgene_phy_sata_cfg_lanes(struct xgene_phy_ctx *ctx)
951{
952	u32 val;
953	u32 reg;
954	int i;
955	int lane;
956
957	for (lane = 0; lane < MAX_LANE; lane++) {
958		serdes_wr(ctx, lane, RXTX_REG147, 0x6);
959
960		/* Set boost control for quarter, half, and full rate */
961		serdes_rd(ctx, lane, RXTX_REG0, &val);
962		val = RXTX_REG0_CTLE_EQ_HR_SET(val, 0x10);
963		val = RXTX_REG0_CTLE_EQ_QR_SET(val, 0x10);
964		val = RXTX_REG0_CTLE_EQ_FR_SET(val, 0x10);
965		serdes_wr(ctx, lane, RXTX_REG0, val);
966
967		/* Set boost control value */
968		serdes_rd(ctx, lane, RXTX_REG1, &val);
969		val = RXTX_REG1_RXACVCM_SET(val, 0x7);
970		val = RXTX_REG1_CTLE_EQ_SET(val,
971			ctx->sata_param.txboostgain[lane * 3 +
972			ctx->sata_param.speed[lane]]);
973		serdes_wr(ctx, lane, RXTX_REG1, val);
974
975		/* Latch VTT value based on the termination to ground and
976		   enable TX FIFO */
977		serdes_rd(ctx, lane, RXTX_REG2, &val);
978		val = RXTX_REG2_VTT_ENA_SET(val, 0x1);
979		val = RXTX_REG2_VTT_SEL_SET(val, 0x1);
980		val = RXTX_REG2_TX_FIFO_ENA_SET(val, 0x1);
981		serdes_wr(ctx, lane, RXTX_REG2, val);
982
983		/* Configure Tx for 20-bits */
984		serdes_rd(ctx, lane, RXTX_REG4, &val);
985		val = RXTX_REG4_TX_WORD_MODE_SET(val, CMU_REG9_WORD_LEN_20BIT);
986		serdes_wr(ctx, lane, RXTX_REG4, val);
987
988		if (!preA3Chip) {
989			serdes_rd(ctx, lane, RXTX_REG1, &val);
990			val = RXTX_REG1_RXVREG1_SET(val, 0x2);
991			val = RXTX_REG1_RXIREF_ADJ_SET(val, 0x2);
992			serdes_wr(ctx, lane, RXTX_REG1, val);
993		}
994
995		/* Set pre-emphasis first 1 and 2, and post-emphasis values */
996		serdes_rd(ctx, lane, RXTX_REG5, &val);
997		val = RXTX_REG5_TX_CN1_SET(val,
998			ctx->sata_param.txprecursor_cn1[lane * 3 +
999			ctx->sata_param.speed[lane]]);
1000		val = RXTX_REG5_TX_CP1_SET(val,
1001			ctx->sata_param.txpostcursor_cp1[lane * 3 +
1002			ctx->sata_param.speed[lane]]);
1003		val = RXTX_REG5_TX_CN2_SET(val,
1004			ctx->sata_param.txprecursor_cn2[lane * 3 +
1005			ctx->sata_param.speed[lane]]);
1006		serdes_wr(ctx, lane, RXTX_REG5, val);
1007
1008		/* Set TX amplitude value */
1009		serdes_rd(ctx, lane, RXTX_REG6, &val);
1010		val = RXTX_REG6_TXAMP_CNTL_SET(val,
1011			ctx->sata_param.txamplitude[lane * 3 +
1012			ctx->sata_param.speed[lane]]);
1013		val = RXTX_REG6_TXAMP_ENA_SET(val, 0x1);
1014		val = RXTX_REG6_TX_IDLE_SET(val, 0x0);
1015		val = RXTX_REG6_RX_BIST_RESYNC_SET(val, 0x0);
1016		val = RXTX_REG6_RX_BIST_ERRCNT_RD_SET(val, 0x0);
1017		serdes_wr(ctx, lane, RXTX_REG6, val);
1018
1019		/* Configure Rx for 20-bits */
1020		serdes_rd(ctx, lane, RXTX_REG7, &val);
1021		val = RXTX_REG7_BIST_ENA_RX_SET(val, 0x0);
1022		val = RXTX_REG7_RX_WORD_MODE_SET(val, CMU_REG9_WORD_LEN_20BIT);
1023		serdes_wr(ctx, lane, RXTX_REG7, val);
1024
1025		/* Set CDR and LOS values and enable Rx SSC */
1026		serdes_rd(ctx, lane, RXTX_REG8, &val);
1027		val = RXTX_REG8_CDR_LOOP_ENA_SET(val, 0x1);
1028		val = RXTX_REG8_CDR_BYPASS_RXLOS_SET(val, 0x0);
1029		val = RXTX_REG8_SSC_ENABLE_SET(val, 0x1);
1030		val = RXTX_REG8_SD_DISABLE_SET(val, 0x0);
1031		val = RXTX_REG8_SD_VREF_SET(val, 0x4);
1032		serdes_wr(ctx, lane, RXTX_REG8, val);
1033
1034		/* Set phase adjust upper/lower limits */
1035		serdes_rd(ctx, lane, RXTX_REG11, &val);
1036		val = RXTX_REG11_PHASE_ADJUST_LIMIT_SET(val, 0x0);
1037		serdes_wr(ctx, lane, RXTX_REG11, val);
1038
1039		/* Enable Latch Off; disable SUMOS and Tx termination */
1040		serdes_rd(ctx, lane, RXTX_REG12, &val);
1041		val = RXTX_REG12_LATCH_OFF_ENA_SET(val, 0x1);
1042		val = RXTX_REG12_SUMOS_ENABLE_SET(val, 0x0);
1043		val = RXTX_REG12_RX_DET_TERM_ENABLE_SET(val, 0x0);
1044		serdes_wr(ctx, lane, RXTX_REG12, val);
1045
1046		/* Set period error latch to 512T and enable BWL */
1047		serdes_rd(ctx, lane, RXTX_REG26, &val);
1048		val = RXTX_REG26_PERIOD_ERROR_LATCH_SET(val, 0x0);
1049		val = RXTX_REG26_BLWC_ENA_SET(val, 0x1);
1050		serdes_wr(ctx, lane, RXTX_REG26, val);
1051
1052		serdes_wr(ctx, lane, RXTX_REG28, 0x0);
1053
1054		/* Set DFE loop preset value */
1055		serdes_wr(ctx, lane, RXTX_REG31, 0x0);
1056
1057		/* Set Eye Monitor counter width to 12-bit */
1058		serdes_rd(ctx, lane, RXTX_REG61, &val);
1059		val = RXTX_REG61_ISCAN_INBERT_SET(val, 0x1);
1060		val = RXTX_REG61_LOADFREQ_SHIFT_SET(val, 0x0);
1061		val = RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(val, 0x0);
1062		serdes_wr(ctx, lane, RXTX_REG61, val);
1063
1064		serdes_rd(ctx, lane, RXTX_REG62, &val);
1065		val = RXTX_REG62_PERIOD_H1_QLATCH_SET(val, 0x0);
1066		serdes_wr(ctx, lane, RXTX_REG62, val);
1067
1068		/* Set BW select tap X for DFE loop */
1069		for (i = 0; i < 9; i++) {
1070			reg = RXTX_REG81 + i * 2;
1071			serdes_rd(ctx, lane, reg, &val);
1072			val = RXTX_REG89_MU_TH7_SET(val, 0xe);
1073			val = RXTX_REG89_MU_TH8_SET(val, 0xe);
1074			val = RXTX_REG89_MU_TH9_SET(val, 0xe);
1075			serdes_wr(ctx, lane, reg, val);
1076		}
1077
1078		/* Set BW select tap X for frequency adjust loop */
1079		for (i = 0; i < 3; i++) {
1080			reg = RXTX_REG96 + i * 2;
1081			serdes_rd(ctx, lane, reg, &val);
1082			val = RXTX_REG96_MU_FREQ1_SET(val, 0x10);
1083			val = RXTX_REG96_MU_FREQ2_SET(val, 0x10);
1084			val = RXTX_REG96_MU_FREQ3_SET(val, 0x10);
1085			serdes_wr(ctx, lane, reg, val);
1086		}
1087
1088		/* Set BW select tap X for phase adjust loop */
1089		for (i = 0; i < 3; i++) {
1090			reg = RXTX_REG99 + i * 2;
1091			serdes_rd(ctx, lane, reg, &val);
1092			val = RXTX_REG99_MU_PHASE1_SET(val, 0x7);
1093			val = RXTX_REG99_MU_PHASE2_SET(val, 0x7);
1094			val = RXTX_REG99_MU_PHASE3_SET(val, 0x7);
1095			serdes_wr(ctx, lane, reg, val);
1096		}
1097
1098		serdes_rd(ctx, lane, RXTX_REG102, &val);
1099		val = RXTX_REG102_FREQLOOP_LIMIT_SET(val, 0x0);
1100		serdes_wr(ctx, lane, RXTX_REG102, val);
1101
1102		serdes_wr(ctx, lane, RXTX_REG114, 0xffe0);
1103
1104		serdes_rd(ctx, lane, RXTX_REG125, &val);
1105		val = RXTX_REG125_SIGN_PQ_SET(val,
1106			ctx->sata_param.txeyedirection[lane * 3 +
1107			ctx->sata_param.speed[lane]]);
1108		val = RXTX_REG125_PQ_REG_SET(val,
1109			ctx->sata_param.txeyetuning[lane * 3 +
1110			ctx->sata_param.speed[lane]]);
1111		val = RXTX_REG125_PHZ_MANUAL_SET(val, 0x1);
1112		serdes_wr(ctx, lane, RXTX_REG125, val);
1113
1114		serdes_rd(ctx, lane, RXTX_REG127, &val);
1115		val = RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val, 0x0);
1116		serdes_wr(ctx, lane, RXTX_REG127, val);
1117
1118		serdes_rd(ctx, lane, RXTX_REG128, &val);
1119		val = RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(val, 0x3);
1120		serdes_wr(ctx, lane, RXTX_REG128, val);
1121
1122		serdes_rd(ctx, lane, RXTX_REG145, &val);
1123		val = RXTX_REG145_RXDFE_CONFIG_SET(val, 0x3);
1124		val = RXTX_REG145_TX_IDLE_SATA_SET(val, 0x0);
1125		if (preA3Chip) {
1126			val = RXTX_REG145_RXES_ENA_SET(val, 0x1);
1127			val = RXTX_REG145_RXVWES_LATENA_SET(val, 0x1);
1128		} else {
1129			val = RXTX_REG145_RXES_ENA_SET(val, 0x0);
1130			val = RXTX_REG145_RXVWES_LATENA_SET(val, 0x0);
1131		}
1132		serdes_wr(ctx, lane, RXTX_REG145, val);
1133
1134		/*
1135		 * Set Rx LOS filter clock rate, sample rate, and threshold
1136		 * windows
1137		 */
1138		for (i = 0; i < 4; i++) {
1139			reg = RXTX_REG148 + i * 2;
1140			serdes_wr(ctx, lane, reg, 0xFFFF);
1141		}
1142	}
1143}
1144
1145static int xgene_phy_cal_rdy_chk(struct xgene_phy_ctx *ctx,
1146				 enum cmu_type_t cmu_type,
1147				 enum clk_type_t clk_type)
1148{
1149	void __iomem *csr_serdes = ctx->sds_base;
1150	int loop;
1151	u32 val;
1152
1153	/* Release PHY main reset */
1154	writel(0xdf, csr_serdes + SATA_ENET_SDS_RST_CTL);
1155	readl(csr_serdes + SATA_ENET_SDS_RST_CTL); /* Force a barrier */
1156
1157	if (cmu_type != REF_CMU) {
1158		cmu_setbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
1159		/*
1160		 * As per PHY design spec, the PLL reset requires a minimum
1161		 * of 800us.
1162		 */
1163		usleep_range(800, 1000);
1164
1165		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
1166		val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x0);
1167		cmu_wr(ctx, cmu_type, CMU_REG1, val);
1168		/*
1169		 * As per PHY design spec, the PLL auto calibration requires
1170		 * a minimum of 800us.
1171		 */
1172		usleep_range(800, 1000);
1173
1174		cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
1175			       CMU_REG32_FORCE_VCOCAL_START_MASK);
1176		/*
1177		 * As per PHY design spec, the PLL requires a minimum of
1178		 * 800us to settle.
1179		 */
1180		usleep_range(800, 1000);
1181	}
1182
1183	if (!preA3Chip)
1184		goto skip_manual_cal;
1185
1186	/*
1187	 * Configure the termination resister calibration
1188	 * The serial receive pins, RXP/RXN, have TERMination resistor
1189	 * that is required to be calibrated.
1190	 */
1191	cmu_rd(ctx, cmu_type, CMU_REG17, &val);
1192	val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x12);
1193	val = CMU_REG17_RESERVED_7_SET(val, 0x0);
1194	cmu_wr(ctx, cmu_type, CMU_REG17, val);
1195	cmu_toggle1to0(ctx, cmu_type, CMU_REG17,
1196		       CMU_REG17_PVT_TERM_MAN_ENA_MASK);
1197	/*
1198	 * The serial transmit pins, TXP/TXN, have Pull-UP and Pull-DOWN
1199	 * resistors that are required to the calibrated.
1200	 * Configure the pull DOWN calibration
1201	 */
1202	cmu_rd(ctx, cmu_type, CMU_REG17, &val);
1203	val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x29);
1204	val = CMU_REG17_RESERVED_7_SET(val, 0x0);
1205	cmu_wr(ctx, cmu_type, CMU_REG17, val);
1206	cmu_toggle1to0(ctx, cmu_type, CMU_REG16,
1207		       CMU_REG16_PVT_DN_MAN_ENA_MASK);
1208	/* Configure the pull UP calibration */
1209	cmu_rd(ctx, cmu_type, CMU_REG17, &val);
1210	val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x28);
1211	val = CMU_REG17_RESERVED_7_SET(val, 0x0);
1212	cmu_wr(ctx, cmu_type, CMU_REG17, val);
1213	cmu_toggle1to0(ctx, cmu_type, CMU_REG16,
1214		       CMU_REG16_PVT_UP_MAN_ENA_MASK);
1215
1216skip_manual_cal:
1217	/* Poll the PLL calibration completion status for at least 1 ms */
1218	loop = 100;
1219	do {
1220		cmu_rd(ctx, cmu_type, CMU_REG7, &val);
1221		if (CMU_REG7_PLL_CALIB_DONE_RD(val))
1222			break;
1223		/*
1224		 * As per PHY design spec, PLL calibration status requires
1225		 * a minimum of 10us to be updated.
1226		 */
1227		usleep_range(10, 100);
1228	} while (--loop > 0);
1229
1230	cmu_rd(ctx, cmu_type, CMU_REG7, &val);
1231	dev_dbg(ctx->dev, "PLL calibration %s\n",
1232		CMU_REG7_PLL_CALIB_DONE_RD(val) ? "done" : "failed");
1233	if (CMU_REG7_VCO_CAL_FAIL_RD(val)) {
1234		dev_err(ctx->dev,
1235			"PLL calibration failed due to VCO failure\n");
1236		return -1;
1237	}
1238	dev_dbg(ctx->dev, "PLL calibration successful\n");
1239
1240	cmu_rd(ctx, cmu_type, CMU_REG15, &val);
1241	dev_dbg(ctx->dev, "PHY Tx is %sready\n", val & 0x300 ? "" : "not ");
1242	return 0;
1243}
1244
1245static void xgene_phy_pdwn_force_vco(struct xgene_phy_ctx *ctx,
1246				     enum cmu_type_t cmu_type,
1247				     enum clk_type_t clk_type)
1248{
1249	u32 val;
1250
1251	dev_dbg(ctx->dev, "Reset VCO and re-start again\n");
1252	if (cmu_type == PHY_CMU) {
1253		cmu_rd(ctx, cmu_type, CMU_REG16, &val);
1254		val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x7);
1255		cmu_wr(ctx, cmu_type, CMU_REG16, val);
1256	}
1257
1258	cmu_toggle1to0(ctx, cmu_type, CMU_REG0, CMU_REG0_PDOWN_MASK);
1259	cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
1260		       CMU_REG32_FORCE_VCOCAL_START_MASK);
1261}
1262
1263static int xgene_phy_hw_init_sata(struct xgene_phy_ctx *ctx,
1264				  enum clk_type_t clk_type, int ssc_enable)
1265{
1266	void __iomem *sds_base = ctx->sds_base;
1267	u32 val;
1268	int i;
1269
1270	/* Configure the PHY for operation */
1271	dev_dbg(ctx->dev, "Reset PHY\n");
1272	/* Place PHY into reset */
1273	writel(0x0, sds_base + SATA_ENET_SDS_RST_CTL);
1274	val = readl(sds_base + SATA_ENET_SDS_RST_CTL);	/* Force a barrier */
1275	/* Release PHY lane from reset (active high) */
1276	writel(0x20, sds_base + SATA_ENET_SDS_RST_CTL);
1277	readl(sds_base + SATA_ENET_SDS_RST_CTL);	/* Force a barrier */
1278	/* Release all PHY module out of reset except PHY main reset */
1279	writel(0xde, sds_base + SATA_ENET_SDS_RST_CTL);
1280	readl(sds_base + SATA_ENET_SDS_RST_CTL);	/* Force a barrier */
1281
1282	/* Set the operation speed */
1283	val = readl(sds_base + SATA_ENET_SDS_CTL1);
1284	val = CFG_I_SPD_SEL_CDR_OVR1_SET(val,
1285		ctx->sata_param.txspeed[ctx->sata_param.speed[0]]);
1286	writel(val, sds_base + SATA_ENET_SDS_CTL1);
1287
1288	dev_dbg(ctx->dev, "Set the customer pin mode to SATA\n");
1289	val = readl(sds_base + SATA_ENET_SDS_CTL0);
1290	val = REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(val, 0x4421);
1291	writel(val, sds_base + SATA_ENET_SDS_CTL0);
1292
1293	/* Configure the clock macro unit (CMU) clock type */
1294	xgene_phy_cfg_cmu_clk_type(ctx, PHY_CMU, clk_type);
1295
1296	/* Configure the clock macro */
1297	xgene_phy_sata_cfg_cmu_core(ctx, PHY_CMU, clk_type);
1298
1299	/* Enable SSC if enabled */
1300	if (ssc_enable)
1301		xgene_phy_ssc_enable(ctx, PHY_CMU);
1302
1303	/* Configure PHY lanes */
1304	xgene_phy_sata_cfg_lanes(ctx);
1305
1306	/* Set Rx/Tx 20-bit */
1307	val = readl(sds_base + SATA_ENET_SDS_PCS_CTL0);
1308	val = REGSPEC_CFG_I_RX_WORDMODE0_SET(val, 0x3);
1309	val = REGSPEC_CFG_I_TX_WORDMODE0_SET(val, 0x3);
1310	writel(val, sds_base + SATA_ENET_SDS_PCS_CTL0);
1311
1312	/* Start PLL calibration and try for three times */
1313	i = 10;
1314	do {
1315		if (!xgene_phy_cal_rdy_chk(ctx, PHY_CMU, clk_type))
1316			break;
1317		/* If failed, toggle the VCO power signal and start again */
1318		xgene_phy_pdwn_force_vco(ctx, PHY_CMU, clk_type);
1319	} while (--i > 0);
1320	/* Even on failure, allow to continue any way */
1321	if (i <= 0)
1322		dev_err(ctx->dev, "PLL calibration failed\n");
1323
1324	return 0;
1325}
1326
1327static int xgene_phy_hw_initialize(struct xgene_phy_ctx *ctx,
1328				   enum clk_type_t clk_type,
1329				   int ssc_enable)
1330{
1331	int rc;
1332
1333	dev_dbg(ctx->dev, "PHY init clk type %d\n", clk_type);
1334
1335	if (ctx->mode == MODE_SATA) {
1336		rc = xgene_phy_hw_init_sata(ctx, clk_type, ssc_enable);
1337		if (rc)
1338			return rc;
1339	} else {
1340		dev_err(ctx->dev, "Un-supported customer pin mode %d\n",
1341			ctx->mode);
1342		return -ENODEV;
1343	}
1344
1345	return 0;
1346}
1347
1348/*
1349 * Receiver Offset Calibration:
1350 *
1351 * Calibrate the receiver signal path offset in two steps - summar and
1352 * latch calibrations
1353 */
1354static void xgene_phy_force_lat_summer_cal(struct xgene_phy_ctx *ctx, int lane)
1355{
1356	int i;
1357	struct {
1358		u32 reg;
1359		u32 val;
1360	} serdes_reg[] = {
1361		{RXTX_REG38, 0x0},
1362		{RXTX_REG39, 0xff00},
1363		{RXTX_REG40, 0xffff},
1364		{RXTX_REG41, 0xffff},
1365		{RXTX_REG42, 0xffff},
1366		{RXTX_REG43, 0xffff},
1367		{RXTX_REG44, 0xffff},
1368		{RXTX_REG45, 0xffff},
1369		{RXTX_REG46, 0xffff},
1370		{RXTX_REG47, 0xfffc},
1371		{RXTX_REG48, 0x0},
1372		{RXTX_REG49, 0x0},
1373		{RXTX_REG50, 0x0},
1374		{RXTX_REG51, 0x0},
1375		{RXTX_REG52, 0x0},
1376		{RXTX_REG53, 0x0},
1377		{RXTX_REG54, 0x0},
1378		{RXTX_REG55, 0x0},
1379	};
1380
1381	/* Start SUMMER calibration */
1382	serdes_setbits(ctx, lane, RXTX_REG127,
1383		       RXTX_REG127_FORCE_SUM_CAL_START_MASK);
1384	/*
1385	 * As per PHY design spec, the Summer calibration requires a minimum
1386	 * of 100us to complete.
1387	 */
1388	usleep_range(100, 500);
1389	serdes_clrbits(ctx, lane, RXTX_REG127,
1390			RXTX_REG127_FORCE_SUM_CAL_START_MASK);
1391	/*
1392	 * As per PHY design spec, the auto calibration requires a minimum
1393	 * of 100us to complete.
1394	 */
1395	usleep_range(100, 500);
1396
1397	/* Start latch calibration */
1398	serdes_setbits(ctx, lane, RXTX_REG127,
1399		       RXTX_REG127_FORCE_LAT_CAL_START_MASK);
1400	/*
1401	 * As per PHY design spec, the latch calibration requires a minimum
1402	 * of 100us to complete.
1403	 */
1404	usleep_range(100, 500);
1405	serdes_clrbits(ctx, lane, RXTX_REG127,
1406		       RXTX_REG127_FORCE_LAT_CAL_START_MASK);
1407
1408	/* Configure the PHY lane for calibration */
1409	serdes_wr(ctx, lane, RXTX_REG28, 0x7);
1410	serdes_wr(ctx, lane, RXTX_REG31, 0x7e00);
1411	serdes_clrbits(ctx, lane, RXTX_REG4,
1412		       RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK);
1413	serdes_clrbits(ctx, lane, RXTX_REG7,
1414		       RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK);
1415	for (i = 0; i < ARRAY_SIZE(serdes_reg); i++)
1416		serdes_wr(ctx, lane, serdes_reg[i].reg,
1417			  serdes_reg[i].val);
1418}
1419
1420static void xgene_phy_reset_rxd(struct xgene_phy_ctx *ctx, int lane)
1421{
1422	/* Reset digital Rx */
1423	serdes_clrbits(ctx, lane, RXTX_REG7, RXTX_REG7_RESETB_RXD_MASK);
1424	/* As per PHY design spec, the reset requires a minimum of 100us. */
1425	usleep_range(100, 150);
1426	serdes_setbits(ctx, lane, RXTX_REG7, RXTX_REG7_RESETB_RXD_MASK);
1427}
1428
1429static int xgene_phy_get_avg(int accum, int samples)
1430{
1431	return (accum + (samples / 2)) / samples;
1432}
1433
1434static void xgene_phy_gen_avg_val(struct xgene_phy_ctx *ctx, int lane)
1435{
1436	int max_loop = 10;
1437	int avg_loop = 0;
1438	int lat_do = 0, lat_xo = 0, lat_eo = 0, lat_so = 0;
1439	int lat_de = 0, lat_xe = 0, lat_ee = 0, lat_se = 0;
1440	int sum_cal = 0;
1441	int lat_do_itr, lat_xo_itr, lat_eo_itr, lat_so_itr;
1442	int lat_de_itr, lat_xe_itr, lat_ee_itr, lat_se_itr;
1443	int sum_cal_itr;
1444	int fail_even;
1445	int fail_odd;
1446	u32 val;
1447
1448	dev_dbg(ctx->dev, "Generating avg calibration value for lane %d\n",
1449		lane);
1450
1451	/* Enable RX Hi-Z termination */
1452	serdes_setbits(ctx, lane, RXTX_REG12,
1453			RXTX_REG12_RX_DET_TERM_ENABLE_MASK);
1454	/* Turn off DFE */
1455	serdes_wr(ctx, lane, RXTX_REG28, 0x0000);
1456	/* DFE Presets to zero */
1457	serdes_wr(ctx, lane, RXTX_REG31, 0x0000);
1458
1459	/*
1460	 * Receiver Offset Calibration:
1461	 * Calibrate the receiver signal path offset in two steps - summar
1462	 * and latch calibration.
1463	 * Runs the "Receiver Offset Calibration multiple times to determine
1464	 * the average value to use.
1465	 */
1466	while (avg_loop < max_loop) {
1467		/* Start the calibration */
1468		xgene_phy_force_lat_summer_cal(ctx, lane);
1469
1470		serdes_rd(ctx, lane, RXTX_REG21, &val);
1471		lat_do_itr = RXTX_REG21_DO_LATCH_CALOUT_RD(val);
1472		lat_xo_itr = RXTX_REG21_XO_LATCH_CALOUT_RD(val);
1473		fail_odd = RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(val);
1474
1475		serdes_rd(ctx, lane, RXTX_REG22, &val);
1476		lat_eo_itr = RXTX_REG22_EO_LATCH_CALOUT_RD(val);
1477		lat_so_itr = RXTX_REG22_SO_LATCH_CALOUT_RD(val);
1478		fail_even = RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(val);
1479
1480		serdes_rd(ctx, lane, RXTX_REG23, &val);
1481		lat_de_itr = RXTX_REG23_DE_LATCH_CALOUT_RD(val);
1482		lat_xe_itr = RXTX_REG23_XE_LATCH_CALOUT_RD(val);
1483
1484		serdes_rd(ctx, lane, RXTX_REG24, &val);
1485		lat_ee_itr = RXTX_REG24_EE_LATCH_CALOUT_RD(val);
1486		lat_se_itr = RXTX_REG24_SE_LATCH_CALOUT_RD(val);
1487
1488		serdes_rd(ctx, lane, RXTX_REG121, &val);
1489		sum_cal_itr = RXTX_REG121_SUMOS_CAL_CODE_RD(val);
1490
1491		/* Check for failure. If passed, sum them for averaging */
1492		if ((fail_even == 0 || fail_even == 1) &&
1493		    (fail_odd == 0 || fail_odd == 1)) {
1494			lat_do += lat_do_itr;
1495			lat_xo += lat_xo_itr;
1496			lat_eo += lat_eo_itr;
1497			lat_so += lat_so_itr;
1498			lat_de += lat_de_itr;
1499			lat_xe += lat_xe_itr;
1500			lat_ee += lat_ee_itr;
1501			lat_se += lat_se_itr;
1502			sum_cal += sum_cal_itr;
1503
1504			dev_dbg(ctx->dev, "Iteration %d:\n", avg_loop);
1505			dev_dbg(ctx->dev, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n",
1506				lat_do_itr, lat_xo_itr, lat_eo_itr,
1507				lat_so_itr);
1508			dev_dbg(ctx->dev, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n",
1509				lat_de_itr, lat_xe_itr, lat_ee_itr,
1510				lat_se_itr);
1511			dev_dbg(ctx->dev, "SUM 0x%x\n", sum_cal_itr);
1512			++avg_loop;
1513		} else {
1514			dev_err(ctx->dev,
1515				"Receiver calibration failed at %d loop\n",
1516				avg_loop);
1517		}
1518		xgene_phy_reset_rxd(ctx, lane);
1519	}
1520
1521	/* Update latch manual calibration with average value */
1522	serdes_rd(ctx, lane, RXTX_REG127, &val);
1523	val = RXTX_REG127_DO_LATCH_MANCAL_SET(val,
1524		xgene_phy_get_avg(lat_do, max_loop));
1525	val = RXTX_REG127_XO_LATCH_MANCAL_SET(val,
1526		xgene_phy_get_avg(lat_xo, max_loop));
1527	serdes_wr(ctx, lane, RXTX_REG127, val);
1528
1529	serdes_rd(ctx, lane, RXTX_REG128, &val);
1530	val = RXTX_REG128_EO_LATCH_MANCAL_SET(val,
1531		xgene_phy_get_avg(lat_eo, max_loop));
1532	val = RXTX_REG128_SO_LATCH_MANCAL_SET(val,
1533		xgene_phy_get_avg(lat_so, max_loop));
1534	serdes_wr(ctx, lane, RXTX_REG128, val);
1535
1536	serdes_rd(ctx, lane, RXTX_REG129, &val);
1537	val = RXTX_REG129_DE_LATCH_MANCAL_SET(val,
1538		xgene_phy_get_avg(lat_de, max_loop));
1539	val = RXTX_REG129_XE_LATCH_MANCAL_SET(val,
1540		xgene_phy_get_avg(lat_xe, max_loop));
1541	serdes_wr(ctx, lane, RXTX_REG129, val);
1542
1543	serdes_rd(ctx, lane, RXTX_REG130, &val);
1544	val = RXTX_REG130_EE_LATCH_MANCAL_SET(val,
1545		xgene_phy_get_avg(lat_ee, max_loop));
1546	val = RXTX_REG130_SE_LATCH_MANCAL_SET(val,
1547		xgene_phy_get_avg(lat_se, max_loop));
1548	serdes_wr(ctx, lane, RXTX_REG130, val);
1549
1550	/* Update SUMMER calibration with average value */
1551	serdes_rd(ctx, lane, RXTX_REG14, &val);
1552	val = RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(val,
1553		xgene_phy_get_avg(sum_cal, max_loop));
1554	serdes_wr(ctx, lane, RXTX_REG14, val);
1555
1556	dev_dbg(ctx->dev, "Average Value:\n");
1557	dev_dbg(ctx->dev, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n",
1558		 xgene_phy_get_avg(lat_do, max_loop),
1559		 xgene_phy_get_avg(lat_xo, max_loop),
1560		 xgene_phy_get_avg(lat_eo, max_loop),
1561		 xgene_phy_get_avg(lat_so, max_loop));
1562	dev_dbg(ctx->dev, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n",
1563		 xgene_phy_get_avg(lat_de, max_loop),
1564		 xgene_phy_get_avg(lat_xe, max_loop),
1565		 xgene_phy_get_avg(lat_ee, max_loop),
1566		 xgene_phy_get_avg(lat_se, max_loop));
1567	dev_dbg(ctx->dev, "SUM 0x%x\n",
1568		xgene_phy_get_avg(sum_cal, max_loop));
1569
1570	serdes_rd(ctx, lane, RXTX_REG14, &val);
1571	val = RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(val, 0x1);
1572	serdes_wr(ctx, lane, RXTX_REG14, val);
1573	dev_dbg(ctx->dev, "Enable Manual Summer calibration\n");
1574
1575	serdes_rd(ctx, lane, RXTX_REG127, &val);
1576	val = RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val, 0x1);
1577	dev_dbg(ctx->dev, "Enable Manual Latch calibration\n");
1578	serdes_wr(ctx, lane, RXTX_REG127, val);
1579
1580	/* Disable RX Hi-Z termination */
1581	serdes_rd(ctx, lane, RXTX_REG12, &val);
1582	val = RXTX_REG12_RX_DET_TERM_ENABLE_SET(val, 0);
1583	serdes_wr(ctx, lane, RXTX_REG12, val);
1584	/* Turn on DFE */
1585	serdes_wr(ctx, lane, RXTX_REG28, 0x0007);
1586	/* Set DFE preset */
1587	serdes_wr(ctx, lane, RXTX_REG31, 0x7e00);
1588}
1589
1590static int xgene_phy_hw_init(struct phy *phy)
1591{
1592	struct xgene_phy_ctx *ctx = phy_get_drvdata(phy);
1593	int rc;
1594	int i;
1595
1596	rc = xgene_phy_hw_initialize(ctx, CLK_EXT_DIFF, SSC_DISABLE);
1597	if (rc) {
1598		dev_err(ctx->dev, "PHY initialize failed %d\n", rc);
1599		return rc;
1600	}
1601
1602	/* Setup clock properly after PHY configuration */
1603	if (!IS_ERR(ctx->clk)) {
1604		/* HW requires an toggle of the clock */
1605		clk_prepare_enable(ctx->clk);
1606		clk_disable_unprepare(ctx->clk);
1607		clk_prepare_enable(ctx->clk);
1608	}
1609
1610	/* Compute average value */
1611	for (i = 0; i < MAX_LANE; i++)
1612		xgene_phy_gen_avg_val(ctx, i);
1613
1614	dev_dbg(ctx->dev, "PHY initialized\n");
1615	return 0;
1616}
1617
1618static const struct phy_ops xgene_phy_ops = {
1619	.init		= xgene_phy_hw_init,
1620	.owner		= THIS_MODULE,
1621};
1622
1623static struct phy *xgene_phy_xlate(struct device *dev,
1624				   struct of_phandle_args *args)
1625{
1626	struct xgene_phy_ctx *ctx = dev_get_drvdata(dev);
1627
1628	if (args->args_count <= 0)
1629		return ERR_PTR(-EINVAL);
1630	if (args->args[0] < MODE_SATA || args->args[0] >= MODE_MAX)
1631		return ERR_PTR(-EINVAL);
1632
1633	ctx->mode = args->args[0];
1634	return ctx->phy;
1635}
1636
1637static void xgene_phy_get_param(struct platform_device *pdev,
1638				const char *name, u32 *buffer,
1639				int count, u32 *default_val,
1640				u32 conv_factor)
1641{
1642	int i;
1643
1644	if (!of_property_read_u32_array(pdev->dev.of_node, name, buffer,
1645					count)) {
1646		for (i = 0; i < count; i++)
1647			buffer[i] /= conv_factor;
1648		return;
1649	}
1650	/* Does not exist, load default */
1651	for (i = 0; i < count; i++)
1652		buffer[i] = default_val[i % 3];
1653}
1654
1655static int xgene_phy_probe(struct platform_device *pdev)
1656{
1657	struct phy_provider *phy_provider;
1658	struct xgene_phy_ctx *ctx;
1659	struct resource *res;
1660	u32 default_spd[] = DEFAULT_SATA_SPD_SEL;
1661	u32 default_txboost_gain[] = DEFAULT_SATA_TXBOOST_GAIN;
1662	u32 default_txeye_direction[] = DEFAULT_SATA_TXEYEDIRECTION;
1663	u32 default_txeye_tuning[] = DEFAULT_SATA_TXEYETUNING;
1664	u32 default_txamp[] = DEFAULT_SATA_TXAMP;
1665	u32 default_txcn1[] = DEFAULT_SATA_TXCN1;
1666	u32 default_txcn2[] = DEFAULT_SATA_TXCN2;
1667	u32 default_txcp1[] = DEFAULT_SATA_TXCP1;
1668	int i;
1669
1670	ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL);
1671	if (!ctx)
1672		return -ENOMEM;
1673
1674	ctx->dev = &pdev->dev;
1675
1676	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1677	ctx->sds_base = devm_ioremap_resource(&pdev->dev, res);
1678	if (IS_ERR(ctx->sds_base))
1679		return PTR_ERR(ctx->sds_base);
1680
1681	/* Retrieve optional clock */
1682	ctx->clk = clk_get(&pdev->dev, NULL);
1683
1684	/* Load override paramaters */
1685	xgene_phy_get_param(pdev, "apm,tx-eye-tuning",
1686		ctx->sata_param.txeyetuning, 6, default_txeye_tuning, 1);
1687	xgene_phy_get_param(pdev, "apm,tx-eye-direction",
1688		ctx->sata_param.txeyedirection, 6, default_txeye_direction, 1);
1689	xgene_phy_get_param(pdev, "apm,tx-boost-gain",
1690		ctx->sata_param.txboostgain, 6, default_txboost_gain, 1);
1691	xgene_phy_get_param(pdev, "apm,tx-amplitude",
1692		ctx->sata_param.txamplitude, 6, default_txamp, 13300);
1693	xgene_phy_get_param(pdev, "apm,tx-pre-cursor1",
1694		ctx->sata_param.txprecursor_cn1, 6, default_txcn1, 18200);
1695	xgene_phy_get_param(pdev, "apm,tx-pre-cursor2",
1696		ctx->sata_param.txprecursor_cn2, 6, default_txcn2, 18200);
1697	xgene_phy_get_param(pdev, "apm,tx-post-cursor",
1698		ctx->sata_param.txpostcursor_cp1, 6, default_txcp1, 18200);
1699	xgene_phy_get_param(pdev, "apm,tx-speed",
1700		ctx->sata_param.txspeed, 3, default_spd, 1);
1701	for (i = 0; i < MAX_LANE; i++)
1702		ctx->sata_param.speed[i] = 2; /* Default to Gen3 */
1703
1704	platform_set_drvdata(pdev, ctx);
1705
1706	ctx->phy = devm_phy_create(ctx->dev, NULL, &xgene_phy_ops);
1707	if (IS_ERR(ctx->phy)) {
1708		dev_dbg(&pdev->dev, "Failed to create PHY\n");
1709		return PTR_ERR(ctx->phy);
1710	}
1711	phy_set_drvdata(ctx->phy, ctx);
1712
1713	phy_provider = devm_of_phy_provider_register(ctx->dev, xgene_phy_xlate);
1714	return PTR_ERR_OR_ZERO(phy_provider);
1715}
1716
1717static const struct of_device_id xgene_phy_of_match[] = {
1718	{.compatible = "apm,xgene-phy",},
1719	{},
1720};
1721MODULE_DEVICE_TABLE(of, xgene_phy_of_match);
1722
1723static struct platform_driver xgene_phy_driver = {
1724	.probe = xgene_phy_probe,
1725	.driver = {
1726		   .name = "xgene-phy",
1727		   .of_match_table = xgene_phy_of_match,
1728	},
1729};
1730module_platform_driver(xgene_phy_driver);
1731
1732MODULE_DESCRIPTION("APM X-Gene Multi-Purpose PHY driver");
1733MODULE_AUTHOR("Loc Ho <lho@apm.com>");
1734MODULE_LICENSE("GPL v2");
1735MODULE_VERSION("0.1");
1736