1/*
2 * PCMCIA high-level CIS access functions
3 *
4 * The initial developer of the original code is David A. Hinds
5 * <dahinds@users.sourceforge.net>.  Portions created by David A. Hinds
6 * are Copyright (C) 1999 David A. Hinds.  All Rights Reserved.
7 *
8 * Copyright (C) 1999	     David A. Hinds
9 * Copyright (C) 2004-2010   Dominik Brodowski
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License version 2 as
13 * published by the Free Software Foundation.
14 *
15 */
16
17#include <linux/slab.h>
18#include <linux/module.h>
19#include <linux/kernel.h>
20#include <linux/netdevice.h>
21
22#include <pcmcia/cisreg.h>
23#include <pcmcia/cistpl.h>
24#include <pcmcia/ss.h>
25#include <pcmcia/ds.h>
26#include "cs_internal.h"
27
28
29/**
30 * pccard_read_tuple() - internal CIS tuple access
31 * @s:		the struct pcmcia_socket where the card is inserted
32 * @function:	the device function we loop for
33 * @code:	which CIS code shall we look for?
34 * @parse:	buffer where the tuple shall be parsed (or NULL, if no parse)
35 *
36 * pccard_read_tuple() reads out one tuple and attempts to parse it
37 */
38int pccard_read_tuple(struct pcmcia_socket *s, unsigned int function,
39		cisdata_t code, void *parse)
40{
41	tuple_t tuple;
42	cisdata_t *buf;
43	int ret;
44
45	buf = kmalloc(256, GFP_KERNEL);
46	if (buf == NULL) {
47		dev_printk(KERN_WARNING, &s->dev, "no memory to read tuple\n");
48		return -ENOMEM;
49	}
50	tuple.DesiredTuple = code;
51	tuple.Attributes = 0;
52	if (function == BIND_FN_ALL)
53		tuple.Attributes = TUPLE_RETURN_COMMON;
54	ret = pccard_get_first_tuple(s, function, &tuple);
55	if (ret != 0)
56		goto done;
57	tuple.TupleData = buf;
58	tuple.TupleOffset = 0;
59	tuple.TupleDataMax = 255;
60	ret = pccard_get_tuple_data(s, &tuple);
61	if (ret != 0)
62		goto done;
63	ret = pcmcia_parse_tuple(&tuple, parse);
64done:
65	kfree(buf);
66	return ret;
67}
68
69
70/**
71 * pccard_loop_tuple() - loop over tuples in the CIS
72 * @s:		the struct pcmcia_socket where the card is inserted
73 * @function:	the device function we loop for
74 * @code:	which CIS code shall we look for?
75 * @parse:	buffer where the tuple shall be parsed (or NULL, if no parse)
76 * @priv_data:	private data to be passed to the loop_tuple function.
77 * @loop_tuple:	function to call for each CIS entry of type @function. IT
78 *		gets passed the raw tuple, the paresed tuple (if @parse is
79 *		set) and @priv_data.
80 *
81 * pccard_loop_tuple() loops over all CIS entries of type @function, and
82 * calls the @loop_tuple function for each entry. If the call to @loop_tuple
83 * returns 0, the loop exits. Returns 0 on success or errorcode otherwise.
84 */
85int pccard_loop_tuple(struct pcmcia_socket *s, unsigned int function,
86		      cisdata_t code, cisparse_t *parse, void *priv_data,
87		      int (*loop_tuple) (tuple_t *tuple,
88					 cisparse_t *parse,
89					 void *priv_data))
90{
91	tuple_t tuple;
92	cisdata_t *buf;
93	int ret;
94
95	buf = kzalloc(256, GFP_KERNEL);
96	if (buf == NULL) {
97		dev_printk(KERN_WARNING, &s->dev, "no memory to read tuple\n");
98		return -ENOMEM;
99	}
100
101	tuple.TupleData = buf;
102	tuple.TupleDataMax = 255;
103	tuple.TupleOffset = 0;
104	tuple.DesiredTuple = code;
105	tuple.Attributes = 0;
106
107	ret = pccard_get_first_tuple(s, function, &tuple);
108	while (!ret) {
109		if (pccard_get_tuple_data(s, &tuple))
110			goto next_entry;
111
112		if (parse)
113			if (pcmcia_parse_tuple(&tuple, parse))
114				goto next_entry;
115
116		ret = loop_tuple(&tuple, parse, priv_data);
117		if (!ret)
118			break;
119
120next_entry:
121		ret = pccard_get_next_tuple(s, function, &tuple);
122	}
123
124	kfree(buf);
125	return ret;
126}
127
128
129/**
130 * pcmcia_io_cfg_data_width() - convert cfgtable to data path width parameter
131 */
132static int pcmcia_io_cfg_data_width(unsigned int flags)
133{
134	if (!(flags & CISTPL_IO_8BIT))
135		return IO_DATA_PATH_WIDTH_16;
136	if (!(flags & CISTPL_IO_16BIT))
137		return IO_DATA_PATH_WIDTH_8;
138	return IO_DATA_PATH_WIDTH_AUTO;
139}
140
141
142struct pcmcia_cfg_mem {
143	struct pcmcia_device *p_dev;
144	int (*conf_check) (struct pcmcia_device *p_dev, void *priv_data);
145	void *priv_data;
146	cisparse_t parse;
147	cistpl_cftable_entry_t dflt;
148};
149
150/**
151 * pcmcia_do_loop_config() - internal helper for pcmcia_loop_config()
152 *
153 * pcmcia_do_loop_config() is the internal callback for the call from
154 * pcmcia_loop_config() to pccard_loop_tuple(). Data is transferred
155 * by a struct pcmcia_cfg_mem.
156 */
157static int pcmcia_do_loop_config(tuple_t *tuple, cisparse_t *parse, void *priv)
158{
159	struct pcmcia_cfg_mem *cfg_mem = priv;
160	struct pcmcia_device *p_dev = cfg_mem->p_dev;
161	cistpl_cftable_entry_t *cfg = &parse->cftable_entry;
162	cistpl_cftable_entry_t *dflt = &cfg_mem->dflt;
163	unsigned int flags = p_dev->config_flags;
164	unsigned int vcc = p_dev->socket->socket.Vcc;
165
166	dev_dbg(&p_dev->dev, "testing configuration %x, autoconf %x\n",
167		cfg->index, flags);
168
169	/* default values */
170	cfg_mem->p_dev->config_index = cfg->index;
171	if (cfg->flags & CISTPL_CFTABLE_DEFAULT)
172		cfg_mem->dflt = *cfg;
173
174	/* check for matching Vcc? */
175	if (flags & CONF_AUTO_CHECK_VCC) {
176		if (cfg->vcc.present & (1 << CISTPL_POWER_VNOM)) {
177			if (vcc != cfg->vcc.param[CISTPL_POWER_VNOM] / 10000)
178				return -ENODEV;
179		} else if (dflt->vcc.present & (1 << CISTPL_POWER_VNOM)) {
180			if (vcc != dflt->vcc.param[CISTPL_POWER_VNOM] / 10000)
181				return -ENODEV;
182		}
183	}
184
185	/* set Vpp? */
186	if (flags & CONF_AUTO_SET_VPP) {
187		if (cfg->vpp1.present & (1 << CISTPL_POWER_VNOM))
188			p_dev->vpp = cfg->vpp1.param[CISTPL_POWER_VNOM] / 10000;
189		else if (dflt->vpp1.present & (1 << CISTPL_POWER_VNOM))
190			p_dev->vpp =
191				dflt->vpp1.param[CISTPL_POWER_VNOM] / 10000;
192	}
193
194	/* enable audio? */
195	if ((flags & CONF_AUTO_AUDIO) && (cfg->flags & CISTPL_CFTABLE_AUDIO))
196		p_dev->config_flags |= CONF_ENABLE_SPKR;
197
198
199	/* IO window settings? */
200	if (flags & CONF_AUTO_SET_IO) {
201		cistpl_io_t *io = (cfg->io.nwin) ? &cfg->io : &dflt->io;
202		int i = 0;
203
204		p_dev->resource[0]->start = p_dev->resource[0]->end = 0;
205		p_dev->resource[1]->start = p_dev->resource[1]->end = 0;
206		if (io->nwin == 0)
207			return -ENODEV;
208
209		p_dev->resource[0]->flags &= ~IO_DATA_PATH_WIDTH;
210		p_dev->resource[0]->flags |=
211					pcmcia_io_cfg_data_width(io->flags);
212		if (io->nwin > 1) {
213			/* For multifunction cards, by convention, we
214			 * configure the network function with window 0,
215			 * and serial with window 1 */
216			i = (io->win[1].len > io->win[0].len);
217			p_dev->resource[1]->flags = p_dev->resource[0]->flags;
218			p_dev->resource[1]->start = io->win[1-i].base;
219			p_dev->resource[1]->end = io->win[1-i].len;
220		}
221		p_dev->resource[0]->start = io->win[i].base;
222		p_dev->resource[0]->end = io->win[i].len;
223		p_dev->io_lines = io->flags & CISTPL_IO_LINES_MASK;
224	}
225
226	/* MEM window settings? */
227	if (flags & CONF_AUTO_SET_IOMEM) {
228		/* so far, we only set one memory window */
229		cistpl_mem_t *mem = (cfg->mem.nwin) ? &cfg->mem : &dflt->mem;
230
231		p_dev->resource[2]->start = p_dev->resource[2]->end = 0;
232		if (mem->nwin == 0)
233			return -ENODEV;
234
235		p_dev->resource[2]->start = mem->win[0].host_addr;
236		p_dev->resource[2]->end = mem->win[0].len;
237		if (p_dev->resource[2]->end < 0x1000)
238			p_dev->resource[2]->end = 0x1000;
239		p_dev->card_addr = mem->win[0].card_addr;
240	}
241
242	dev_dbg(&p_dev->dev,
243		"checking configuration %x: %pr %pr %pr (%d lines)\n",
244		p_dev->config_index, p_dev->resource[0], p_dev->resource[1],
245		p_dev->resource[2], p_dev->io_lines);
246
247	return cfg_mem->conf_check(p_dev, cfg_mem->priv_data);
248}
249
250/**
251 * pcmcia_loop_config() - loop over configuration options
252 * @p_dev:	the struct pcmcia_device which we need to loop for.
253 * @conf_check:	function to call for each configuration option.
254 *		It gets passed the struct pcmcia_device and private data
255 *		being passed to pcmcia_loop_config()
256 * @priv_data:	private data to be passed to the conf_check function.
257 *
258 * pcmcia_loop_config() loops over all configuration options, and calls
259 * the driver-specific conf_check() for each one, checking whether
260 * it is a valid one. Returns 0 on success or errorcode otherwise.
261 */
262int pcmcia_loop_config(struct pcmcia_device *p_dev,
263		       int	(*conf_check)	(struct pcmcia_device *p_dev,
264						 void *priv_data),
265		       void *priv_data)
266{
267	struct pcmcia_cfg_mem *cfg_mem;
268	int ret;
269
270	cfg_mem = kzalloc(sizeof(struct pcmcia_cfg_mem), GFP_KERNEL);
271	if (cfg_mem == NULL)
272		return -ENOMEM;
273
274	cfg_mem->p_dev = p_dev;
275	cfg_mem->conf_check = conf_check;
276	cfg_mem->priv_data = priv_data;
277
278	ret = pccard_loop_tuple(p_dev->socket, p_dev->func,
279				CISTPL_CFTABLE_ENTRY, &cfg_mem->parse,
280				cfg_mem, pcmcia_do_loop_config);
281
282	kfree(cfg_mem);
283	return ret;
284}
285EXPORT_SYMBOL(pcmcia_loop_config);
286
287
288struct pcmcia_loop_mem {
289	struct pcmcia_device *p_dev;
290	void *priv_data;
291	int (*loop_tuple) (struct pcmcia_device *p_dev,
292			   tuple_t *tuple,
293			   void *priv_data);
294};
295
296/**
297 * pcmcia_do_loop_tuple() - internal helper for pcmcia_loop_config()
298 *
299 * pcmcia_do_loop_tuple() is the internal callback for the call from
300 * pcmcia_loop_tuple() to pccard_loop_tuple(). Data is transferred
301 * by a struct pcmcia_cfg_mem.
302 */
303static int pcmcia_do_loop_tuple(tuple_t *tuple, cisparse_t *parse, void *priv)
304{
305	struct pcmcia_loop_mem *loop = priv;
306
307	return loop->loop_tuple(loop->p_dev, tuple, loop->priv_data);
308};
309
310/**
311 * pcmcia_loop_tuple() - loop over tuples in the CIS
312 * @p_dev:	the struct pcmcia_device which we need to loop for.
313 * @code:	which CIS code shall we look for?
314 * @priv_data:	private data to be passed to the loop_tuple function.
315 * @loop_tuple:	function to call for each CIS entry of type @function. IT
316 *		gets passed the raw tuple and @priv_data.
317 *
318 * pcmcia_loop_tuple() loops over all CIS entries of type @function, and
319 * calls the @loop_tuple function for each entry. If the call to @loop_tuple
320 * returns 0, the loop exits. Returns 0 on success or errorcode otherwise.
321 */
322int pcmcia_loop_tuple(struct pcmcia_device *p_dev, cisdata_t code,
323		      int (*loop_tuple) (struct pcmcia_device *p_dev,
324					 tuple_t *tuple,
325					 void *priv_data),
326		      void *priv_data)
327{
328	struct pcmcia_loop_mem loop = {
329		.p_dev = p_dev,
330		.loop_tuple = loop_tuple,
331		.priv_data = priv_data};
332
333	return pccard_loop_tuple(p_dev->socket, p_dev->func, code, NULL,
334				 &loop, pcmcia_do_loop_tuple);
335}
336EXPORT_SYMBOL(pcmcia_loop_tuple);
337
338
339struct pcmcia_loop_get {
340	size_t len;
341	cisdata_t **buf;
342};
343
344/**
345 * pcmcia_do_get_tuple() - internal helper for pcmcia_get_tuple()
346 *
347 * pcmcia_do_get_tuple() is the internal callback for the call from
348 * pcmcia_get_tuple() to pcmcia_loop_tuple(). As we're only interested in
349 * the first tuple, return 0 unconditionally. Create a memory buffer large
350 * enough to hold the content of the tuple, and fill it with the tuple data.
351 * The caller is responsible to free the buffer.
352 */
353static int pcmcia_do_get_tuple(struct pcmcia_device *p_dev, tuple_t *tuple,
354			       void *priv)
355{
356	struct pcmcia_loop_get *get = priv;
357
358	*get->buf = kzalloc(tuple->TupleDataLen, GFP_KERNEL);
359	if (*get->buf) {
360		get->len = tuple->TupleDataLen;
361		memcpy(*get->buf, tuple->TupleData, tuple->TupleDataLen);
362	} else
363		dev_dbg(&p_dev->dev, "do_get_tuple: out of memory\n");
364	return 0;
365}
366
367/**
368 * pcmcia_get_tuple() - get first tuple from CIS
369 * @p_dev:	the struct pcmcia_device which we need to loop for.
370 * @code:	which CIS code shall we look for?
371 * @buf:        pointer to store the buffer to.
372 *
373 * pcmcia_get_tuple() gets the content of the first CIS entry of type @code.
374 * It returns the buffer length (or zero). The caller is responsible to free
375 * the buffer passed in @buf.
376 */
377size_t pcmcia_get_tuple(struct pcmcia_device *p_dev, cisdata_t code,
378			unsigned char **buf)
379{
380	struct pcmcia_loop_get get = {
381		.len = 0,
382		.buf = buf,
383	};
384
385	*get.buf = NULL;
386	pcmcia_loop_tuple(p_dev, code, pcmcia_do_get_tuple, &get);
387
388	return get.len;
389}
390EXPORT_SYMBOL(pcmcia_get_tuple);
391
392
393/**
394 * pcmcia_do_get_mac() - internal helper for pcmcia_get_mac_from_cis()
395 *
396 * pcmcia_do_get_mac() is the internal callback for the call from
397 * pcmcia_get_mac_from_cis() to pcmcia_loop_tuple(). We check whether the
398 * tuple contains a proper LAN_NODE_ID of length 6, and copy the data
399 * to struct net_device->dev_addr[i].
400 */
401static int pcmcia_do_get_mac(struct pcmcia_device *p_dev, tuple_t *tuple,
402			     void *priv)
403{
404	struct net_device *dev = priv;
405	int i;
406
407	if (tuple->TupleData[0] != CISTPL_FUNCE_LAN_NODE_ID)
408		return -EINVAL;
409	if (tuple->TupleDataLen < ETH_ALEN + 2) {
410		dev_warn(&p_dev->dev, "Invalid CIS tuple length for "
411			"LAN_NODE_ID\n");
412		return -EINVAL;
413	}
414
415	if (tuple->TupleData[1] != ETH_ALEN) {
416		dev_warn(&p_dev->dev, "Invalid header for LAN_NODE_ID\n");
417		return -EINVAL;
418	}
419	for (i = 0; i < 6; i++)
420		dev->dev_addr[i] = tuple->TupleData[i+2];
421	return 0;
422}
423
424/**
425 * pcmcia_get_mac_from_cis() - read out MAC address from CISTPL_FUNCE
426 * @p_dev:	the struct pcmcia_device for which we want the address.
427 * @dev:	a properly prepared struct net_device to store the info to.
428 *
429 * pcmcia_get_mac_from_cis() reads out the hardware MAC address from
430 * CISTPL_FUNCE and stores it into struct net_device *dev->dev_addr which
431 * must be set up properly by the driver (see examples!).
432 */
433int pcmcia_get_mac_from_cis(struct pcmcia_device *p_dev, struct net_device *dev)
434{
435	return pcmcia_loop_tuple(p_dev, CISTPL_FUNCE, pcmcia_do_get_mac, dev);
436}
437EXPORT_SYMBOL(pcmcia_get_mac_from_cis);
438
439