1/*
2 *	PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 *	Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 *	David Mosberger-Tang
6 *
7 *	Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10#include <linux/kernel.h>
11#include <linux/delay.h>
12#include <linux/init.h>
13#include <linux/of.h>
14#include <linux/of_pci.h>
15#include <linux/pci.h>
16#include <linux/pm.h>
17#include <linux/slab.h>
18#include <linux/module.h>
19#include <linux/spinlock.h>
20#include <linux/string.h>
21#include <linux/log2.h>
22#include <linux/pci-aspm.h>
23#include <linux/pm_wakeup.h>
24#include <linux/interrupt.h>
25#include <linux/device.h>
26#include <linux/pm_runtime.h>
27#include <linux/pci_hotplug.h>
28#include <asm-generic/pci-bridge.h>
29#include <asm/setup.h>
30#include "pci.h"
31
32const char *pci_power_names[] = {
33	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
34};
35EXPORT_SYMBOL_GPL(pci_power_names);
36
37int isa_dma_bridge_buggy;
38EXPORT_SYMBOL(isa_dma_bridge_buggy);
39
40int pci_pci_problems;
41EXPORT_SYMBOL(pci_pci_problems);
42
43unsigned int pci_pm_d3_delay;
44
45static void pci_pme_list_scan(struct work_struct *work);
46
47static LIST_HEAD(pci_pme_list);
48static DEFINE_MUTEX(pci_pme_list_mutex);
49static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
50
51struct pci_pme_device {
52	struct list_head list;
53	struct pci_dev *dev;
54};
55
56#define PME_TIMEOUT 1000 /* How long between PME checks */
57
58static void pci_dev_d3_sleep(struct pci_dev *dev)
59{
60	unsigned int delay = dev->d3_delay;
61
62	if (delay < pci_pm_d3_delay)
63		delay = pci_pm_d3_delay;
64
65	msleep(delay);
66}
67
68#ifdef CONFIG_PCI_DOMAINS
69int pci_domains_supported = 1;
70#endif
71
72#define DEFAULT_CARDBUS_IO_SIZE		(256)
73#define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
74/* pci=cbmemsize=nnM,cbiosize=nn can override this */
75unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
76unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
77
78#define DEFAULT_HOTPLUG_IO_SIZE		(256)
79#define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
80/* pci=hpmemsize=nnM,hpiosize=nn can override this */
81unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
82unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
83
84enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
85
86/*
87 * The default CLS is used if arch didn't set CLS explicitly and not
88 * all pci devices agree on the same value.  Arch can override either
89 * the dfl or actual value as it sees fit.  Don't forget this is
90 * measured in 32-bit words, not bytes.
91 */
92u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
93u8 pci_cache_line_size;
94
95/*
96 * If we set up a device for bus mastering, we need to check the latency
97 * timer as certain BIOSes forget to set it properly.
98 */
99unsigned int pcibios_max_latency = 255;
100
101/* If set, the PCIe ARI capability will not be used. */
102static bool pcie_ari_disabled;
103
104/**
105 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
106 * @bus: pointer to PCI bus structure to search
107 *
108 * Given a PCI bus, returns the highest PCI bus number present in the set
109 * including the given PCI bus and its list of child PCI buses.
110 */
111unsigned char pci_bus_max_busnr(struct pci_bus *bus)
112{
113	struct pci_bus *tmp;
114	unsigned char max, n;
115
116	max = bus->busn_res.end;
117	list_for_each_entry(tmp, &bus->children, node) {
118		n = pci_bus_max_busnr(tmp);
119		if (n > max)
120			max = n;
121	}
122	return max;
123}
124EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
125
126#ifdef CONFIG_HAS_IOMEM
127void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
128{
129	struct resource *res = &pdev->resource[bar];
130
131	/*
132	 * Make sure the BAR is actually a memory resource, not an IO resource
133	 */
134	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
135		dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res);
136		return NULL;
137	}
138	return ioremap_nocache(res->start, resource_size(res));
139}
140EXPORT_SYMBOL_GPL(pci_ioremap_bar);
141#endif
142
143#define PCI_FIND_CAP_TTL	48
144
145static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
146				   u8 pos, int cap, int *ttl)
147{
148	u8 id;
149	u16 ent;
150
151	pci_bus_read_config_byte(bus, devfn, pos, &pos);
152
153	while ((*ttl)--) {
154		if (pos < 0x40)
155			break;
156		pos &= ~3;
157		pci_bus_read_config_word(bus, devfn, pos, &ent);
158
159		id = ent & 0xff;
160		if (id == 0xff)
161			break;
162		if (id == cap)
163			return pos;
164		pos = (ent >> 8);
165	}
166	return 0;
167}
168
169static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
170			       u8 pos, int cap)
171{
172	int ttl = PCI_FIND_CAP_TTL;
173
174	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
175}
176
177int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
178{
179	return __pci_find_next_cap(dev->bus, dev->devfn,
180				   pos + PCI_CAP_LIST_NEXT, cap);
181}
182EXPORT_SYMBOL_GPL(pci_find_next_capability);
183
184static int __pci_bus_find_cap_start(struct pci_bus *bus,
185				    unsigned int devfn, u8 hdr_type)
186{
187	u16 status;
188
189	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
190	if (!(status & PCI_STATUS_CAP_LIST))
191		return 0;
192
193	switch (hdr_type) {
194	case PCI_HEADER_TYPE_NORMAL:
195	case PCI_HEADER_TYPE_BRIDGE:
196		return PCI_CAPABILITY_LIST;
197	case PCI_HEADER_TYPE_CARDBUS:
198		return PCI_CB_CAPABILITY_LIST;
199	default:
200		return 0;
201	}
202
203	return 0;
204}
205
206/**
207 * pci_find_capability - query for devices' capabilities
208 * @dev: PCI device to query
209 * @cap: capability code
210 *
211 * Tell if a device supports a given PCI capability.
212 * Returns the address of the requested capability structure within the
213 * device's PCI configuration space or 0 in case the device does not
214 * support it.  Possible values for @cap:
215 *
216 *  %PCI_CAP_ID_PM           Power Management
217 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
218 *  %PCI_CAP_ID_VPD          Vital Product Data
219 *  %PCI_CAP_ID_SLOTID       Slot Identification
220 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
221 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
222 *  %PCI_CAP_ID_PCIX         PCI-X
223 *  %PCI_CAP_ID_EXP          PCI Express
224 */
225int pci_find_capability(struct pci_dev *dev, int cap)
226{
227	int pos;
228
229	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
230	if (pos)
231		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
232
233	return pos;
234}
235EXPORT_SYMBOL(pci_find_capability);
236
237/**
238 * pci_bus_find_capability - query for devices' capabilities
239 * @bus:   the PCI bus to query
240 * @devfn: PCI device to query
241 * @cap:   capability code
242 *
243 * Like pci_find_capability() but works for pci devices that do not have a
244 * pci_dev structure set up yet.
245 *
246 * Returns the address of the requested capability structure within the
247 * device's PCI configuration space or 0 in case the device does not
248 * support it.
249 */
250int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
251{
252	int pos;
253	u8 hdr_type;
254
255	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
256
257	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
258	if (pos)
259		pos = __pci_find_next_cap(bus, devfn, pos, cap);
260
261	return pos;
262}
263EXPORT_SYMBOL(pci_bus_find_capability);
264
265/**
266 * pci_find_next_ext_capability - Find an extended capability
267 * @dev: PCI device to query
268 * @start: address at which to start looking (0 to start at beginning of list)
269 * @cap: capability code
270 *
271 * Returns the address of the next matching extended capability structure
272 * within the device's PCI configuration space or 0 if the device does
273 * not support it.  Some capabilities can occur several times, e.g., the
274 * vendor-specific capability, and this provides a way to find them all.
275 */
276int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
277{
278	u32 header;
279	int ttl;
280	int pos = PCI_CFG_SPACE_SIZE;
281
282	/* minimum 8 bytes per capability */
283	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
284
285	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
286		return 0;
287
288	if (start)
289		pos = start;
290
291	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
292		return 0;
293
294	/*
295	 * If we have no capabilities, this is indicated by cap ID,
296	 * cap version and next pointer all being 0.
297	 */
298	if (header == 0)
299		return 0;
300
301	while (ttl-- > 0) {
302		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
303			return pos;
304
305		pos = PCI_EXT_CAP_NEXT(header);
306		if (pos < PCI_CFG_SPACE_SIZE)
307			break;
308
309		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
310			break;
311	}
312
313	return 0;
314}
315EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
316
317/**
318 * pci_find_ext_capability - Find an extended capability
319 * @dev: PCI device to query
320 * @cap: capability code
321 *
322 * Returns the address of the requested extended capability structure
323 * within the device's PCI configuration space or 0 if the device does
324 * not support it.  Possible values for @cap:
325 *
326 *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
327 *  %PCI_EXT_CAP_ID_VC		Virtual Channel
328 *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
329 *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
330 */
331int pci_find_ext_capability(struct pci_dev *dev, int cap)
332{
333	return pci_find_next_ext_capability(dev, 0, cap);
334}
335EXPORT_SYMBOL_GPL(pci_find_ext_capability);
336
337static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
338{
339	int rc, ttl = PCI_FIND_CAP_TTL;
340	u8 cap, mask;
341
342	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
343		mask = HT_3BIT_CAP_MASK;
344	else
345		mask = HT_5BIT_CAP_MASK;
346
347	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
348				      PCI_CAP_ID_HT, &ttl);
349	while (pos) {
350		rc = pci_read_config_byte(dev, pos + 3, &cap);
351		if (rc != PCIBIOS_SUCCESSFUL)
352			return 0;
353
354		if ((cap & mask) == ht_cap)
355			return pos;
356
357		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
358					      pos + PCI_CAP_LIST_NEXT,
359					      PCI_CAP_ID_HT, &ttl);
360	}
361
362	return 0;
363}
364/**
365 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
366 * @dev: PCI device to query
367 * @pos: Position from which to continue searching
368 * @ht_cap: Hypertransport capability code
369 *
370 * To be used in conjunction with pci_find_ht_capability() to search for
371 * all capabilities matching @ht_cap. @pos should always be a value returned
372 * from pci_find_ht_capability().
373 *
374 * NB. To be 100% safe against broken PCI devices, the caller should take
375 * steps to avoid an infinite loop.
376 */
377int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
378{
379	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
380}
381EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
382
383/**
384 * pci_find_ht_capability - query a device's Hypertransport capabilities
385 * @dev: PCI device to query
386 * @ht_cap: Hypertransport capability code
387 *
388 * Tell if a device supports a given Hypertransport capability.
389 * Returns an address within the device's PCI configuration space
390 * or 0 in case the device does not support the request capability.
391 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
392 * which has a Hypertransport capability matching @ht_cap.
393 */
394int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
395{
396	int pos;
397
398	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
399	if (pos)
400		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
401
402	return pos;
403}
404EXPORT_SYMBOL_GPL(pci_find_ht_capability);
405
406/**
407 * pci_find_parent_resource - return resource region of parent bus of given region
408 * @dev: PCI device structure contains resources to be searched
409 * @res: child resource record for which parent is sought
410 *
411 *  For given resource region of given device, return the resource
412 *  region of parent bus the given region is contained in.
413 */
414struct resource *pci_find_parent_resource(const struct pci_dev *dev,
415					  struct resource *res)
416{
417	const struct pci_bus *bus = dev->bus;
418	struct resource *r;
419	int i;
420
421	pci_bus_for_each_resource(bus, r, i) {
422		if (!r)
423			continue;
424		if (res->start && resource_contains(r, res)) {
425
426			/*
427			 * If the window is prefetchable but the BAR is
428			 * not, the allocator made a mistake.
429			 */
430			if (r->flags & IORESOURCE_PREFETCH &&
431			    !(res->flags & IORESOURCE_PREFETCH))
432				return NULL;
433
434			/*
435			 * If we're below a transparent bridge, there may
436			 * be both a positively-decoded aperture and a
437			 * subtractively-decoded region that contain the BAR.
438			 * We want the positively-decoded one, so this depends
439			 * on pci_bus_for_each_resource() giving us those
440			 * first.
441			 */
442			return r;
443		}
444	}
445	return NULL;
446}
447EXPORT_SYMBOL(pci_find_parent_resource);
448
449/**
450 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
451 * @dev: the PCI device to operate on
452 * @pos: config space offset of status word
453 * @mask: mask of bit(s) to care about in status word
454 *
455 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
456 */
457int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
458{
459	int i;
460
461	/* Wait for Transaction Pending bit clean */
462	for (i = 0; i < 4; i++) {
463		u16 status;
464		if (i)
465			msleep((1 << (i - 1)) * 100);
466
467		pci_read_config_word(dev, pos, &status);
468		if (!(status & mask))
469			return 1;
470	}
471
472	return 0;
473}
474
475/**
476 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
477 * @dev: PCI device to have its BARs restored
478 *
479 * Restore the BAR values for a given device, so as to make it
480 * accessible by its driver.
481 */
482static void pci_restore_bars(struct pci_dev *dev)
483{
484	int i;
485
486	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
487		pci_update_resource(dev, i);
488}
489
490static struct pci_platform_pm_ops *pci_platform_pm;
491
492int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
493{
494	if (!ops->is_manageable || !ops->set_state || !ops->choose_state
495	    || !ops->sleep_wake)
496		return -EINVAL;
497	pci_platform_pm = ops;
498	return 0;
499}
500
501static inline bool platform_pci_power_manageable(struct pci_dev *dev)
502{
503	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
504}
505
506static inline int platform_pci_set_power_state(struct pci_dev *dev,
507					       pci_power_t t)
508{
509	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
510}
511
512static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
513{
514	return pci_platform_pm ?
515			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
516}
517
518static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
519{
520	return pci_platform_pm ?
521			pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
522}
523
524static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
525{
526	return pci_platform_pm ?
527			pci_platform_pm->run_wake(dev, enable) : -ENODEV;
528}
529
530static inline bool platform_pci_need_resume(struct pci_dev *dev)
531{
532	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
533}
534
535/**
536 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
537 *                           given PCI device
538 * @dev: PCI device to handle.
539 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
540 *
541 * RETURN VALUE:
542 * -EINVAL if the requested state is invalid.
543 * -EIO if device does not support PCI PM or its PM capabilities register has a
544 * wrong version, or device doesn't support the requested state.
545 * 0 if device already is in the requested state.
546 * 0 if device's power state has been successfully changed.
547 */
548static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
549{
550	u16 pmcsr;
551	bool need_restore = false;
552
553	/* Check if we're already there */
554	if (dev->current_state == state)
555		return 0;
556
557	if (!dev->pm_cap)
558		return -EIO;
559
560	if (state < PCI_D0 || state > PCI_D3hot)
561		return -EINVAL;
562
563	/* Validate current state:
564	 * Can enter D0 from any state, but if we can only go deeper
565	 * to sleep if we're already in a low power state
566	 */
567	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
568	    && dev->current_state > state) {
569		dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
570			dev->current_state, state);
571		return -EINVAL;
572	}
573
574	/* check if this device supports the desired state */
575	if ((state == PCI_D1 && !dev->d1_support)
576	   || (state == PCI_D2 && !dev->d2_support))
577		return -EIO;
578
579	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
580
581	/* If we're (effectively) in D3, force entire word to 0.
582	 * This doesn't affect PME_Status, disables PME_En, and
583	 * sets PowerState to 0.
584	 */
585	switch (dev->current_state) {
586	case PCI_D0:
587	case PCI_D1:
588	case PCI_D2:
589		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
590		pmcsr |= state;
591		break;
592	case PCI_D3hot:
593	case PCI_D3cold:
594	case PCI_UNKNOWN: /* Boot-up */
595		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
596		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
597			need_restore = true;
598		/* Fall-through: force to D0 */
599	default:
600		pmcsr = 0;
601		break;
602	}
603
604	/* enter specified state */
605	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
606
607	/* Mandatory power management transition delays */
608	/* see PCI PM 1.1 5.6.1 table 18 */
609	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
610		pci_dev_d3_sleep(dev);
611	else if (state == PCI_D2 || dev->current_state == PCI_D2)
612		udelay(PCI_PM_D2_DELAY);
613
614	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
615	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
616	if (dev->current_state != state && printk_ratelimit())
617		dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
618			 dev->current_state);
619
620	/*
621	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
622	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
623	 * from D3hot to D0 _may_ perform an internal reset, thereby
624	 * going to "D0 Uninitialized" rather than "D0 Initialized".
625	 * For example, at least some versions of the 3c905B and the
626	 * 3c556B exhibit this behaviour.
627	 *
628	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
629	 * devices in a D3hot state at boot.  Consequently, we need to
630	 * restore at least the BARs so that the device will be
631	 * accessible to its driver.
632	 */
633	if (need_restore)
634		pci_restore_bars(dev);
635
636	if (dev->bus->self)
637		pcie_aspm_pm_state_change(dev->bus->self);
638
639	return 0;
640}
641
642/**
643 * pci_update_current_state - Read PCI power state of given device from its
644 *                            PCI PM registers and cache it
645 * @dev: PCI device to handle.
646 * @state: State to cache in case the device doesn't have the PM capability
647 */
648void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
649{
650	if (dev->pm_cap) {
651		u16 pmcsr;
652
653		/*
654		 * Configuration space is not accessible for device in
655		 * D3cold, so just keep or set D3cold for safety
656		 */
657		if (dev->current_state == PCI_D3cold)
658			return;
659		if (state == PCI_D3cold) {
660			dev->current_state = PCI_D3cold;
661			return;
662		}
663		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
664		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
665	} else {
666		dev->current_state = state;
667	}
668}
669
670/**
671 * pci_power_up - Put the given device into D0 forcibly
672 * @dev: PCI device to power up
673 */
674void pci_power_up(struct pci_dev *dev)
675{
676	if (platform_pci_power_manageable(dev))
677		platform_pci_set_power_state(dev, PCI_D0);
678
679	pci_raw_set_power_state(dev, PCI_D0);
680	pci_update_current_state(dev, PCI_D0);
681}
682
683/**
684 * pci_platform_power_transition - Use platform to change device power state
685 * @dev: PCI device to handle.
686 * @state: State to put the device into.
687 */
688static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
689{
690	int error;
691
692	if (platform_pci_power_manageable(dev)) {
693		error = platform_pci_set_power_state(dev, state);
694		if (!error)
695			pci_update_current_state(dev, state);
696	} else
697		error = -ENODEV;
698
699	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
700		dev->current_state = PCI_D0;
701
702	return error;
703}
704
705/**
706 * pci_wakeup - Wake up a PCI device
707 * @pci_dev: Device to handle.
708 * @ign: ignored parameter
709 */
710static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
711{
712	pci_wakeup_event(pci_dev);
713	pm_request_resume(&pci_dev->dev);
714	return 0;
715}
716
717/**
718 * pci_wakeup_bus - Walk given bus and wake up devices on it
719 * @bus: Top bus of the subtree to walk.
720 */
721static void pci_wakeup_bus(struct pci_bus *bus)
722{
723	if (bus)
724		pci_walk_bus(bus, pci_wakeup, NULL);
725}
726
727/**
728 * __pci_start_power_transition - Start power transition of a PCI device
729 * @dev: PCI device to handle.
730 * @state: State to put the device into.
731 */
732static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
733{
734	if (state == PCI_D0) {
735		pci_platform_power_transition(dev, PCI_D0);
736		/*
737		 * Mandatory power management transition delays, see
738		 * PCI Express Base Specification Revision 2.0 Section
739		 * 6.6.1: Conventional Reset.  Do not delay for
740		 * devices powered on/off by corresponding bridge,
741		 * because have already delayed for the bridge.
742		 */
743		if (dev->runtime_d3cold) {
744			msleep(dev->d3cold_delay);
745			/*
746			 * When powering on a bridge from D3cold, the
747			 * whole hierarchy may be powered on into
748			 * D0uninitialized state, resume them to give
749			 * them a chance to suspend again
750			 */
751			pci_wakeup_bus(dev->subordinate);
752		}
753	}
754}
755
756/**
757 * __pci_dev_set_current_state - Set current state of a PCI device
758 * @dev: Device to handle
759 * @data: pointer to state to be set
760 */
761static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
762{
763	pci_power_t state = *(pci_power_t *)data;
764
765	dev->current_state = state;
766	return 0;
767}
768
769/**
770 * __pci_bus_set_current_state - Walk given bus and set current state of devices
771 * @bus: Top bus of the subtree to walk.
772 * @state: state to be set
773 */
774static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
775{
776	if (bus)
777		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
778}
779
780/**
781 * __pci_complete_power_transition - Complete power transition of a PCI device
782 * @dev: PCI device to handle.
783 * @state: State to put the device into.
784 *
785 * This function should not be called directly by device drivers.
786 */
787int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
788{
789	int ret;
790
791	if (state <= PCI_D0)
792		return -EINVAL;
793	ret = pci_platform_power_transition(dev, state);
794	/* Power off the bridge may power off the whole hierarchy */
795	if (!ret && state == PCI_D3cold)
796		__pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
797	return ret;
798}
799EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
800
801/**
802 * pci_set_power_state - Set the power state of a PCI device
803 * @dev: PCI device to handle.
804 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
805 *
806 * Transition a device to a new power state, using the platform firmware and/or
807 * the device's PCI PM registers.
808 *
809 * RETURN VALUE:
810 * -EINVAL if the requested state is invalid.
811 * -EIO if device does not support PCI PM or its PM capabilities register has a
812 * wrong version, or device doesn't support the requested state.
813 * 0 if device already is in the requested state.
814 * 0 if device's power state has been successfully changed.
815 */
816int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
817{
818	int error;
819
820	/* bound the state we're entering */
821	if (state > PCI_D3cold)
822		state = PCI_D3cold;
823	else if (state < PCI_D0)
824		state = PCI_D0;
825	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
826		/*
827		 * If the device or the parent bridge do not support PCI PM,
828		 * ignore the request if we're doing anything other than putting
829		 * it into D0 (which would only happen on boot).
830		 */
831		return 0;
832
833	/* Check if we're already there */
834	if (dev->current_state == state)
835		return 0;
836
837	__pci_start_power_transition(dev, state);
838
839	/* This device is quirked not to be put into D3, so
840	   don't put it in D3 */
841	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
842		return 0;
843
844	/*
845	 * To put device in D3cold, we put device into D3hot in native
846	 * way, then put device into D3cold with platform ops
847	 */
848	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
849					PCI_D3hot : state);
850
851	if (!__pci_complete_power_transition(dev, state))
852		error = 0;
853
854	return error;
855}
856EXPORT_SYMBOL(pci_set_power_state);
857
858/**
859 * pci_choose_state - Choose the power state of a PCI device
860 * @dev: PCI device to be suspended
861 * @state: target sleep state for the whole system. This is the value
862 *	that is passed to suspend() function.
863 *
864 * Returns PCI power state suitable for given device and given system
865 * message.
866 */
867
868pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
869{
870	pci_power_t ret;
871
872	if (!dev->pm_cap)
873		return PCI_D0;
874
875	ret = platform_pci_choose_state(dev);
876	if (ret != PCI_POWER_ERROR)
877		return ret;
878
879	switch (state.event) {
880	case PM_EVENT_ON:
881		return PCI_D0;
882	case PM_EVENT_FREEZE:
883	case PM_EVENT_PRETHAW:
884		/* REVISIT both freeze and pre-thaw "should" use D0 */
885	case PM_EVENT_SUSPEND:
886	case PM_EVENT_HIBERNATE:
887		return PCI_D3hot;
888	default:
889		dev_info(&dev->dev, "unrecognized suspend event %d\n",
890			 state.event);
891		BUG();
892	}
893	return PCI_D0;
894}
895EXPORT_SYMBOL(pci_choose_state);
896
897#define PCI_EXP_SAVE_REGS	7
898
899static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
900						       u16 cap, bool extended)
901{
902	struct pci_cap_saved_state *tmp;
903
904	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
905		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
906			return tmp;
907	}
908	return NULL;
909}
910
911struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
912{
913	return _pci_find_saved_cap(dev, cap, false);
914}
915
916struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
917{
918	return _pci_find_saved_cap(dev, cap, true);
919}
920
921static int pci_save_pcie_state(struct pci_dev *dev)
922{
923	int i = 0;
924	struct pci_cap_saved_state *save_state;
925	u16 *cap;
926
927	if (!pci_is_pcie(dev))
928		return 0;
929
930	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
931	if (!save_state) {
932		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
933		return -ENOMEM;
934	}
935
936	cap = (u16 *)&save_state->cap.data[0];
937	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
938	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
939	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
940	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
941	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
942	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
943	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
944
945	return 0;
946}
947
948static void pci_restore_pcie_state(struct pci_dev *dev)
949{
950	int i = 0;
951	struct pci_cap_saved_state *save_state;
952	u16 *cap;
953
954	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
955	if (!save_state)
956		return;
957
958	cap = (u16 *)&save_state->cap.data[0];
959	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
960	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
961	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
962	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
963	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
964	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
965	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
966}
967
968
969static int pci_save_pcix_state(struct pci_dev *dev)
970{
971	int pos;
972	struct pci_cap_saved_state *save_state;
973
974	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
975	if (pos <= 0)
976		return 0;
977
978	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
979	if (!save_state) {
980		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
981		return -ENOMEM;
982	}
983
984	pci_read_config_word(dev, pos + PCI_X_CMD,
985			     (u16 *)save_state->cap.data);
986
987	return 0;
988}
989
990static void pci_restore_pcix_state(struct pci_dev *dev)
991{
992	int i = 0, pos;
993	struct pci_cap_saved_state *save_state;
994	u16 *cap;
995
996	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
997	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
998	if (!save_state || pos <= 0)
999		return;
1000	cap = (u16 *)&save_state->cap.data[0];
1001
1002	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1003}
1004
1005
1006/**
1007 * pci_save_state - save the PCI configuration space of a device before suspending
1008 * @dev: - PCI device that we're dealing with
1009 */
1010int pci_save_state(struct pci_dev *dev)
1011{
1012	int i;
1013	/* XXX: 100% dword access ok here? */
1014	for (i = 0; i < 16; i++)
1015		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1016	dev->state_saved = true;
1017
1018	i = pci_save_pcie_state(dev);
1019	if (i != 0)
1020		return i;
1021
1022	i = pci_save_pcix_state(dev);
1023	if (i != 0)
1024		return i;
1025
1026	return pci_save_vc_state(dev);
1027}
1028EXPORT_SYMBOL(pci_save_state);
1029
1030static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1031				     u32 saved_val, int retry)
1032{
1033	u32 val;
1034
1035	pci_read_config_dword(pdev, offset, &val);
1036	if (val == saved_val)
1037		return;
1038
1039	for (;;) {
1040		dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1041			offset, val, saved_val);
1042		pci_write_config_dword(pdev, offset, saved_val);
1043		if (retry-- <= 0)
1044			return;
1045
1046		pci_read_config_dword(pdev, offset, &val);
1047		if (val == saved_val)
1048			return;
1049
1050		mdelay(1);
1051	}
1052}
1053
1054static void pci_restore_config_space_range(struct pci_dev *pdev,
1055					   int start, int end, int retry)
1056{
1057	int index;
1058
1059	for (index = end; index >= start; index--)
1060		pci_restore_config_dword(pdev, 4 * index,
1061					 pdev->saved_config_space[index],
1062					 retry);
1063}
1064
1065static void pci_restore_config_space(struct pci_dev *pdev)
1066{
1067	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1068		pci_restore_config_space_range(pdev, 10, 15, 0);
1069		/* Restore BARs before the command register. */
1070		pci_restore_config_space_range(pdev, 4, 9, 10);
1071		pci_restore_config_space_range(pdev, 0, 3, 0);
1072	} else {
1073		pci_restore_config_space_range(pdev, 0, 15, 0);
1074	}
1075}
1076
1077/**
1078 * pci_restore_state - Restore the saved state of a PCI device
1079 * @dev: - PCI device that we're dealing with
1080 */
1081void pci_restore_state(struct pci_dev *dev)
1082{
1083	if (!dev->state_saved)
1084		return;
1085
1086	/* PCI Express register must be restored first */
1087	pci_restore_pcie_state(dev);
1088	pci_restore_ats_state(dev);
1089	pci_restore_vc_state(dev);
1090
1091	pci_restore_config_space(dev);
1092
1093	pci_restore_pcix_state(dev);
1094	pci_restore_msi_state(dev);
1095	pci_restore_iov_state(dev);
1096
1097	dev->state_saved = false;
1098}
1099EXPORT_SYMBOL(pci_restore_state);
1100
1101struct pci_saved_state {
1102	u32 config_space[16];
1103	struct pci_cap_saved_data cap[0];
1104};
1105
1106/**
1107 * pci_store_saved_state - Allocate and return an opaque struct containing
1108 *			   the device saved state.
1109 * @dev: PCI device that we're dealing with
1110 *
1111 * Return NULL if no state or error.
1112 */
1113struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1114{
1115	struct pci_saved_state *state;
1116	struct pci_cap_saved_state *tmp;
1117	struct pci_cap_saved_data *cap;
1118	size_t size;
1119
1120	if (!dev->state_saved)
1121		return NULL;
1122
1123	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1124
1125	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1126		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1127
1128	state = kzalloc(size, GFP_KERNEL);
1129	if (!state)
1130		return NULL;
1131
1132	memcpy(state->config_space, dev->saved_config_space,
1133	       sizeof(state->config_space));
1134
1135	cap = state->cap;
1136	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1137		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1138		memcpy(cap, &tmp->cap, len);
1139		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1140	}
1141	/* Empty cap_save terminates list */
1142
1143	return state;
1144}
1145EXPORT_SYMBOL_GPL(pci_store_saved_state);
1146
1147/**
1148 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1149 * @dev: PCI device that we're dealing with
1150 * @state: Saved state returned from pci_store_saved_state()
1151 */
1152int pci_load_saved_state(struct pci_dev *dev,
1153			 struct pci_saved_state *state)
1154{
1155	struct pci_cap_saved_data *cap;
1156
1157	dev->state_saved = false;
1158
1159	if (!state)
1160		return 0;
1161
1162	memcpy(dev->saved_config_space, state->config_space,
1163	       sizeof(state->config_space));
1164
1165	cap = state->cap;
1166	while (cap->size) {
1167		struct pci_cap_saved_state *tmp;
1168
1169		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1170		if (!tmp || tmp->cap.size != cap->size)
1171			return -EINVAL;
1172
1173		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1174		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1175		       sizeof(struct pci_cap_saved_data) + cap->size);
1176	}
1177
1178	dev->state_saved = true;
1179	return 0;
1180}
1181EXPORT_SYMBOL_GPL(pci_load_saved_state);
1182
1183/**
1184 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1185 *				   and free the memory allocated for it.
1186 * @dev: PCI device that we're dealing with
1187 * @state: Pointer to saved state returned from pci_store_saved_state()
1188 */
1189int pci_load_and_free_saved_state(struct pci_dev *dev,
1190				  struct pci_saved_state **state)
1191{
1192	int ret = pci_load_saved_state(dev, *state);
1193	kfree(*state);
1194	*state = NULL;
1195	return ret;
1196}
1197EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1198
1199int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1200{
1201	return pci_enable_resources(dev, bars);
1202}
1203
1204static int do_pci_enable_device(struct pci_dev *dev, int bars)
1205{
1206	int err;
1207	struct pci_dev *bridge;
1208	u16 cmd;
1209	u8 pin;
1210
1211	err = pci_set_power_state(dev, PCI_D0);
1212	if (err < 0 && err != -EIO)
1213		return err;
1214
1215	bridge = pci_upstream_bridge(dev);
1216	if (bridge)
1217		pcie_aspm_powersave_config_link(bridge);
1218
1219	err = pcibios_enable_device(dev, bars);
1220	if (err < 0)
1221		return err;
1222	pci_fixup_device(pci_fixup_enable, dev);
1223
1224	if (dev->msi_enabled || dev->msix_enabled)
1225		return 0;
1226
1227	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1228	if (pin) {
1229		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1230		if (cmd & PCI_COMMAND_INTX_DISABLE)
1231			pci_write_config_word(dev, PCI_COMMAND,
1232					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1233	}
1234
1235	return 0;
1236}
1237
1238/**
1239 * pci_reenable_device - Resume abandoned device
1240 * @dev: PCI device to be resumed
1241 *
1242 *  Note this function is a backend of pci_default_resume and is not supposed
1243 *  to be called by normal code, write proper resume handler and use it instead.
1244 */
1245int pci_reenable_device(struct pci_dev *dev)
1246{
1247	if (pci_is_enabled(dev))
1248		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1249	return 0;
1250}
1251EXPORT_SYMBOL(pci_reenable_device);
1252
1253static void pci_enable_bridge(struct pci_dev *dev)
1254{
1255	struct pci_dev *bridge;
1256	int retval;
1257
1258	bridge = pci_upstream_bridge(dev);
1259	if (bridge)
1260		pci_enable_bridge(bridge);
1261
1262	if (pci_is_enabled(dev)) {
1263		if (!dev->is_busmaster)
1264			pci_set_master(dev);
1265		return;
1266	}
1267
1268	retval = pci_enable_device(dev);
1269	if (retval)
1270		dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1271			retval);
1272	pci_set_master(dev);
1273}
1274
1275static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1276{
1277	struct pci_dev *bridge;
1278	int err;
1279	int i, bars = 0;
1280
1281	/*
1282	 * Power state could be unknown at this point, either due to a fresh
1283	 * boot or a device removal call.  So get the current power state
1284	 * so that things like MSI message writing will behave as expected
1285	 * (e.g. if the device really is in D0 at enable time).
1286	 */
1287	if (dev->pm_cap) {
1288		u16 pmcsr;
1289		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1290		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1291	}
1292
1293	if (atomic_inc_return(&dev->enable_cnt) > 1)
1294		return 0;		/* already enabled */
1295
1296	bridge = pci_upstream_bridge(dev);
1297	if (bridge)
1298		pci_enable_bridge(bridge);
1299
1300	/* only skip sriov related */
1301	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1302		if (dev->resource[i].flags & flags)
1303			bars |= (1 << i);
1304	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1305		if (dev->resource[i].flags & flags)
1306			bars |= (1 << i);
1307
1308	err = do_pci_enable_device(dev, bars);
1309	if (err < 0)
1310		atomic_dec(&dev->enable_cnt);
1311	return err;
1312}
1313
1314/**
1315 * pci_enable_device_io - Initialize a device for use with IO space
1316 * @dev: PCI device to be initialized
1317 *
1318 *  Initialize device before it's used by a driver. Ask low-level code
1319 *  to enable I/O resources. Wake up the device if it was suspended.
1320 *  Beware, this function can fail.
1321 */
1322int pci_enable_device_io(struct pci_dev *dev)
1323{
1324	return pci_enable_device_flags(dev, IORESOURCE_IO);
1325}
1326EXPORT_SYMBOL(pci_enable_device_io);
1327
1328/**
1329 * pci_enable_device_mem - Initialize a device for use with Memory space
1330 * @dev: PCI device to be initialized
1331 *
1332 *  Initialize device before it's used by a driver. Ask low-level code
1333 *  to enable Memory resources. Wake up the device if it was suspended.
1334 *  Beware, this function can fail.
1335 */
1336int pci_enable_device_mem(struct pci_dev *dev)
1337{
1338	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1339}
1340EXPORT_SYMBOL(pci_enable_device_mem);
1341
1342/**
1343 * pci_enable_device - Initialize device before it's used by a driver.
1344 * @dev: PCI device to be initialized
1345 *
1346 *  Initialize device before it's used by a driver. Ask low-level code
1347 *  to enable I/O and memory. Wake up the device if it was suspended.
1348 *  Beware, this function can fail.
1349 *
1350 *  Note we don't actually enable the device many times if we call
1351 *  this function repeatedly (we just increment the count).
1352 */
1353int pci_enable_device(struct pci_dev *dev)
1354{
1355	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1356}
1357EXPORT_SYMBOL(pci_enable_device);
1358
1359/*
1360 * Managed PCI resources.  This manages device on/off, intx/msi/msix
1361 * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1362 * there's no need to track it separately.  pci_devres is initialized
1363 * when a device is enabled using managed PCI device enable interface.
1364 */
1365struct pci_devres {
1366	unsigned int enabled:1;
1367	unsigned int pinned:1;
1368	unsigned int orig_intx:1;
1369	unsigned int restore_intx:1;
1370	u32 region_mask;
1371};
1372
1373static void pcim_release(struct device *gendev, void *res)
1374{
1375	struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1376	struct pci_devres *this = res;
1377	int i;
1378
1379	if (dev->msi_enabled)
1380		pci_disable_msi(dev);
1381	if (dev->msix_enabled)
1382		pci_disable_msix(dev);
1383
1384	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1385		if (this->region_mask & (1 << i))
1386			pci_release_region(dev, i);
1387
1388	if (this->restore_intx)
1389		pci_intx(dev, this->orig_intx);
1390
1391	if (this->enabled && !this->pinned)
1392		pci_disable_device(dev);
1393}
1394
1395static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1396{
1397	struct pci_devres *dr, *new_dr;
1398
1399	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1400	if (dr)
1401		return dr;
1402
1403	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1404	if (!new_dr)
1405		return NULL;
1406	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1407}
1408
1409static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1410{
1411	if (pci_is_managed(pdev))
1412		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1413	return NULL;
1414}
1415
1416/**
1417 * pcim_enable_device - Managed pci_enable_device()
1418 * @pdev: PCI device to be initialized
1419 *
1420 * Managed pci_enable_device().
1421 */
1422int pcim_enable_device(struct pci_dev *pdev)
1423{
1424	struct pci_devres *dr;
1425	int rc;
1426
1427	dr = get_pci_dr(pdev);
1428	if (unlikely(!dr))
1429		return -ENOMEM;
1430	if (dr->enabled)
1431		return 0;
1432
1433	rc = pci_enable_device(pdev);
1434	if (!rc) {
1435		pdev->is_managed = 1;
1436		dr->enabled = 1;
1437	}
1438	return rc;
1439}
1440EXPORT_SYMBOL(pcim_enable_device);
1441
1442/**
1443 * pcim_pin_device - Pin managed PCI device
1444 * @pdev: PCI device to pin
1445 *
1446 * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1447 * driver detach.  @pdev must have been enabled with
1448 * pcim_enable_device().
1449 */
1450void pcim_pin_device(struct pci_dev *pdev)
1451{
1452	struct pci_devres *dr;
1453
1454	dr = find_pci_dr(pdev);
1455	WARN_ON(!dr || !dr->enabled);
1456	if (dr)
1457		dr->pinned = 1;
1458}
1459EXPORT_SYMBOL(pcim_pin_device);
1460
1461/*
1462 * pcibios_add_device - provide arch specific hooks when adding device dev
1463 * @dev: the PCI device being added
1464 *
1465 * Permits the platform to provide architecture specific functionality when
1466 * devices are added. This is the default implementation. Architecture
1467 * implementations can override this.
1468 */
1469int __weak pcibios_add_device(struct pci_dev *dev)
1470{
1471	return 0;
1472}
1473
1474/**
1475 * pcibios_release_device - provide arch specific hooks when releasing device dev
1476 * @dev: the PCI device being released
1477 *
1478 * Permits the platform to provide architecture specific functionality when
1479 * devices are released. This is the default implementation. Architecture
1480 * implementations can override this.
1481 */
1482void __weak pcibios_release_device(struct pci_dev *dev) {}
1483
1484/**
1485 * pcibios_disable_device - disable arch specific PCI resources for device dev
1486 * @dev: the PCI device to disable
1487 *
1488 * Disables architecture specific PCI resources for the device. This
1489 * is the default implementation. Architecture implementations can
1490 * override this.
1491 */
1492void __weak pcibios_disable_device (struct pci_dev *dev) {}
1493
1494/**
1495 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1496 * @irq: ISA IRQ to penalize
1497 * @active: IRQ active or not
1498 *
1499 * Permits the platform to provide architecture-specific functionality when
1500 * penalizing ISA IRQs. This is the default implementation. Architecture
1501 * implementations can override this.
1502 */
1503void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1504
1505static void do_pci_disable_device(struct pci_dev *dev)
1506{
1507	u16 pci_command;
1508
1509	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1510	if (pci_command & PCI_COMMAND_MASTER) {
1511		pci_command &= ~PCI_COMMAND_MASTER;
1512		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1513	}
1514
1515	pcibios_disable_device(dev);
1516}
1517
1518/**
1519 * pci_disable_enabled_device - Disable device without updating enable_cnt
1520 * @dev: PCI device to disable
1521 *
1522 * NOTE: This function is a backend of PCI power management routines and is
1523 * not supposed to be called drivers.
1524 */
1525void pci_disable_enabled_device(struct pci_dev *dev)
1526{
1527	if (pci_is_enabled(dev))
1528		do_pci_disable_device(dev);
1529}
1530
1531/**
1532 * pci_disable_device - Disable PCI device after use
1533 * @dev: PCI device to be disabled
1534 *
1535 * Signal to the system that the PCI device is not in use by the system
1536 * anymore.  This only involves disabling PCI bus-mastering, if active.
1537 *
1538 * Note we don't actually disable the device until all callers of
1539 * pci_enable_device() have called pci_disable_device().
1540 */
1541void pci_disable_device(struct pci_dev *dev)
1542{
1543	struct pci_devres *dr;
1544
1545	dr = find_pci_dr(dev);
1546	if (dr)
1547		dr->enabled = 0;
1548
1549	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1550		      "disabling already-disabled device");
1551
1552	if (atomic_dec_return(&dev->enable_cnt) != 0)
1553		return;
1554
1555	do_pci_disable_device(dev);
1556
1557	dev->is_busmaster = 0;
1558}
1559EXPORT_SYMBOL(pci_disable_device);
1560
1561/**
1562 * pcibios_set_pcie_reset_state - set reset state for device dev
1563 * @dev: the PCIe device reset
1564 * @state: Reset state to enter into
1565 *
1566 *
1567 * Sets the PCIe reset state for the device. This is the default
1568 * implementation. Architecture implementations can override this.
1569 */
1570int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1571					enum pcie_reset_state state)
1572{
1573	return -EINVAL;
1574}
1575
1576/**
1577 * pci_set_pcie_reset_state - set reset state for device dev
1578 * @dev: the PCIe device reset
1579 * @state: Reset state to enter into
1580 *
1581 *
1582 * Sets the PCI reset state for the device.
1583 */
1584int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1585{
1586	return pcibios_set_pcie_reset_state(dev, state);
1587}
1588EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1589
1590/**
1591 * pci_check_pme_status - Check if given device has generated PME.
1592 * @dev: Device to check.
1593 *
1594 * Check the PME status of the device and if set, clear it and clear PME enable
1595 * (if set).  Return 'true' if PME status and PME enable were both set or
1596 * 'false' otherwise.
1597 */
1598bool pci_check_pme_status(struct pci_dev *dev)
1599{
1600	int pmcsr_pos;
1601	u16 pmcsr;
1602	bool ret = false;
1603
1604	if (!dev->pm_cap)
1605		return false;
1606
1607	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1608	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1609	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1610		return false;
1611
1612	/* Clear PME status. */
1613	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1614	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1615		/* Disable PME to avoid interrupt flood. */
1616		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1617		ret = true;
1618	}
1619
1620	pci_write_config_word(dev, pmcsr_pos, pmcsr);
1621
1622	return ret;
1623}
1624
1625/**
1626 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1627 * @dev: Device to handle.
1628 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1629 *
1630 * Check if @dev has generated PME and queue a resume request for it in that
1631 * case.
1632 */
1633static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1634{
1635	if (pme_poll_reset && dev->pme_poll)
1636		dev->pme_poll = false;
1637
1638	if (pci_check_pme_status(dev)) {
1639		pci_wakeup_event(dev);
1640		pm_request_resume(&dev->dev);
1641	}
1642	return 0;
1643}
1644
1645/**
1646 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1647 * @bus: Top bus of the subtree to walk.
1648 */
1649void pci_pme_wakeup_bus(struct pci_bus *bus)
1650{
1651	if (bus)
1652		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1653}
1654
1655
1656/**
1657 * pci_pme_capable - check the capability of PCI device to generate PME#
1658 * @dev: PCI device to handle.
1659 * @state: PCI state from which device will issue PME#.
1660 */
1661bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1662{
1663	if (!dev->pm_cap)
1664		return false;
1665
1666	return !!(dev->pme_support & (1 << state));
1667}
1668EXPORT_SYMBOL(pci_pme_capable);
1669
1670static void pci_pme_list_scan(struct work_struct *work)
1671{
1672	struct pci_pme_device *pme_dev, *n;
1673
1674	mutex_lock(&pci_pme_list_mutex);
1675	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1676		if (pme_dev->dev->pme_poll) {
1677			struct pci_dev *bridge;
1678
1679			bridge = pme_dev->dev->bus->self;
1680			/*
1681			 * If bridge is in low power state, the
1682			 * configuration space of subordinate devices
1683			 * may be not accessible
1684			 */
1685			if (bridge && bridge->current_state != PCI_D0)
1686				continue;
1687			pci_pme_wakeup(pme_dev->dev, NULL);
1688		} else {
1689			list_del(&pme_dev->list);
1690			kfree(pme_dev);
1691		}
1692	}
1693	if (!list_empty(&pci_pme_list))
1694		schedule_delayed_work(&pci_pme_work,
1695				      msecs_to_jiffies(PME_TIMEOUT));
1696	mutex_unlock(&pci_pme_list_mutex);
1697}
1698
1699/**
1700 * pci_pme_active - enable or disable PCI device's PME# function
1701 * @dev: PCI device to handle.
1702 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1703 *
1704 * The caller must verify that the device is capable of generating PME# before
1705 * calling this function with @enable equal to 'true'.
1706 */
1707void pci_pme_active(struct pci_dev *dev, bool enable)
1708{
1709	u16 pmcsr;
1710
1711	if (!dev->pme_support)
1712		return;
1713
1714	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1715	/* Clear PME_Status by writing 1 to it and enable PME# */
1716	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1717	if (!enable)
1718		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1719
1720	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1721
1722	/*
1723	 * PCI (as opposed to PCIe) PME requires that the device have
1724	 * its PME# line hooked up correctly. Not all hardware vendors
1725	 * do this, so the PME never gets delivered and the device
1726	 * remains asleep. The easiest way around this is to
1727	 * periodically walk the list of suspended devices and check
1728	 * whether any have their PME flag set. The assumption is that
1729	 * we'll wake up often enough anyway that this won't be a huge
1730	 * hit, and the power savings from the devices will still be a
1731	 * win.
1732	 *
1733	 * Although PCIe uses in-band PME message instead of PME# line
1734	 * to report PME, PME does not work for some PCIe devices in
1735	 * reality.  For example, there are devices that set their PME
1736	 * status bits, but don't really bother to send a PME message;
1737	 * there are PCI Express Root Ports that don't bother to
1738	 * trigger interrupts when they receive PME messages from the
1739	 * devices below.  So PME poll is used for PCIe devices too.
1740	 */
1741
1742	if (dev->pme_poll) {
1743		struct pci_pme_device *pme_dev;
1744		if (enable) {
1745			pme_dev = kmalloc(sizeof(struct pci_pme_device),
1746					  GFP_KERNEL);
1747			if (!pme_dev) {
1748				dev_warn(&dev->dev, "can't enable PME#\n");
1749				return;
1750			}
1751			pme_dev->dev = dev;
1752			mutex_lock(&pci_pme_list_mutex);
1753			list_add(&pme_dev->list, &pci_pme_list);
1754			if (list_is_singular(&pci_pme_list))
1755				schedule_delayed_work(&pci_pme_work,
1756						      msecs_to_jiffies(PME_TIMEOUT));
1757			mutex_unlock(&pci_pme_list_mutex);
1758		} else {
1759			mutex_lock(&pci_pme_list_mutex);
1760			list_for_each_entry(pme_dev, &pci_pme_list, list) {
1761				if (pme_dev->dev == dev) {
1762					list_del(&pme_dev->list);
1763					kfree(pme_dev);
1764					break;
1765				}
1766			}
1767			mutex_unlock(&pci_pme_list_mutex);
1768		}
1769	}
1770
1771	dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1772}
1773EXPORT_SYMBOL(pci_pme_active);
1774
1775/**
1776 * __pci_enable_wake - enable PCI device as wakeup event source
1777 * @dev: PCI device affected
1778 * @state: PCI state from which device will issue wakeup events
1779 * @runtime: True if the events are to be generated at run time
1780 * @enable: True to enable event generation; false to disable
1781 *
1782 * This enables the device as a wakeup event source, or disables it.
1783 * When such events involves platform-specific hooks, those hooks are
1784 * called automatically by this routine.
1785 *
1786 * Devices with legacy power management (no standard PCI PM capabilities)
1787 * always require such platform hooks.
1788 *
1789 * RETURN VALUE:
1790 * 0 is returned on success
1791 * -EINVAL is returned if device is not supposed to wake up the system
1792 * Error code depending on the platform is returned if both the platform and
1793 * the native mechanism fail to enable the generation of wake-up events
1794 */
1795int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1796		      bool runtime, bool enable)
1797{
1798	int ret = 0;
1799
1800	if (enable && !runtime && !device_may_wakeup(&dev->dev))
1801		return -EINVAL;
1802
1803	/* Don't do the same thing twice in a row for one device. */
1804	if (!!enable == !!dev->wakeup_prepared)
1805		return 0;
1806
1807	/*
1808	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1809	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1810	 * enable.  To disable wake-up we call the platform first, for symmetry.
1811	 */
1812
1813	if (enable) {
1814		int error;
1815
1816		if (pci_pme_capable(dev, state))
1817			pci_pme_active(dev, true);
1818		else
1819			ret = 1;
1820		error = runtime ? platform_pci_run_wake(dev, true) :
1821					platform_pci_sleep_wake(dev, true);
1822		if (ret)
1823			ret = error;
1824		if (!ret)
1825			dev->wakeup_prepared = true;
1826	} else {
1827		if (runtime)
1828			platform_pci_run_wake(dev, false);
1829		else
1830			platform_pci_sleep_wake(dev, false);
1831		pci_pme_active(dev, false);
1832		dev->wakeup_prepared = false;
1833	}
1834
1835	return ret;
1836}
1837EXPORT_SYMBOL(__pci_enable_wake);
1838
1839/**
1840 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1841 * @dev: PCI device to prepare
1842 * @enable: True to enable wake-up event generation; false to disable
1843 *
1844 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1845 * and this function allows them to set that up cleanly - pci_enable_wake()
1846 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1847 * ordering constraints.
1848 *
1849 * This function only returns error code if the device is not capable of
1850 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1851 * enable wake-up power for it.
1852 */
1853int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1854{
1855	return pci_pme_capable(dev, PCI_D3cold) ?
1856			pci_enable_wake(dev, PCI_D3cold, enable) :
1857			pci_enable_wake(dev, PCI_D3hot, enable);
1858}
1859EXPORT_SYMBOL(pci_wake_from_d3);
1860
1861/**
1862 * pci_target_state - find an appropriate low power state for a given PCI dev
1863 * @dev: PCI device
1864 *
1865 * Use underlying platform code to find a supported low power state for @dev.
1866 * If the platform can't manage @dev, return the deepest state from which it
1867 * can generate wake events, based on any available PME info.
1868 */
1869static pci_power_t pci_target_state(struct pci_dev *dev)
1870{
1871	pci_power_t target_state = PCI_D3hot;
1872
1873	if (platform_pci_power_manageable(dev)) {
1874		/*
1875		 * Call the platform to choose the target state of the device
1876		 * and enable wake-up from this state if supported.
1877		 */
1878		pci_power_t state = platform_pci_choose_state(dev);
1879
1880		switch (state) {
1881		case PCI_POWER_ERROR:
1882		case PCI_UNKNOWN:
1883			break;
1884		case PCI_D1:
1885		case PCI_D2:
1886			if (pci_no_d1d2(dev))
1887				break;
1888		default:
1889			target_state = state;
1890		}
1891	} else if (!dev->pm_cap) {
1892		target_state = PCI_D0;
1893	} else if (device_may_wakeup(&dev->dev)) {
1894		/*
1895		 * Find the deepest state from which the device can generate
1896		 * wake-up events, make it the target state and enable device
1897		 * to generate PME#.
1898		 */
1899		if (dev->pme_support) {
1900			while (target_state
1901			      && !(dev->pme_support & (1 << target_state)))
1902				target_state--;
1903		}
1904	}
1905
1906	return target_state;
1907}
1908
1909/**
1910 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1911 * @dev: Device to handle.
1912 *
1913 * Choose the power state appropriate for the device depending on whether
1914 * it can wake up the system and/or is power manageable by the platform
1915 * (PCI_D3hot is the default) and put the device into that state.
1916 */
1917int pci_prepare_to_sleep(struct pci_dev *dev)
1918{
1919	pci_power_t target_state = pci_target_state(dev);
1920	int error;
1921
1922	if (target_state == PCI_POWER_ERROR)
1923		return -EIO;
1924
1925	pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1926
1927	error = pci_set_power_state(dev, target_state);
1928
1929	if (error)
1930		pci_enable_wake(dev, target_state, false);
1931
1932	return error;
1933}
1934EXPORT_SYMBOL(pci_prepare_to_sleep);
1935
1936/**
1937 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1938 * @dev: Device to handle.
1939 *
1940 * Disable device's system wake-up capability and put it into D0.
1941 */
1942int pci_back_from_sleep(struct pci_dev *dev)
1943{
1944	pci_enable_wake(dev, PCI_D0, false);
1945	return pci_set_power_state(dev, PCI_D0);
1946}
1947EXPORT_SYMBOL(pci_back_from_sleep);
1948
1949/**
1950 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1951 * @dev: PCI device being suspended.
1952 *
1953 * Prepare @dev to generate wake-up events at run time and put it into a low
1954 * power state.
1955 */
1956int pci_finish_runtime_suspend(struct pci_dev *dev)
1957{
1958	pci_power_t target_state = pci_target_state(dev);
1959	int error;
1960
1961	if (target_state == PCI_POWER_ERROR)
1962		return -EIO;
1963
1964	dev->runtime_d3cold = target_state == PCI_D3cold;
1965
1966	__pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1967
1968	error = pci_set_power_state(dev, target_state);
1969
1970	if (error) {
1971		__pci_enable_wake(dev, target_state, true, false);
1972		dev->runtime_d3cold = false;
1973	}
1974
1975	return error;
1976}
1977
1978/**
1979 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1980 * @dev: Device to check.
1981 *
1982 * Return true if the device itself is capable of generating wake-up events
1983 * (through the platform or using the native PCIe PME) or if the device supports
1984 * PME and one of its upstream bridges can generate wake-up events.
1985 */
1986bool pci_dev_run_wake(struct pci_dev *dev)
1987{
1988	struct pci_bus *bus = dev->bus;
1989
1990	if (device_run_wake(&dev->dev))
1991		return true;
1992
1993	if (!dev->pme_support)
1994		return false;
1995
1996	while (bus->parent) {
1997		struct pci_dev *bridge = bus->self;
1998
1999		if (device_run_wake(&bridge->dev))
2000			return true;
2001
2002		bus = bus->parent;
2003	}
2004
2005	/* We have reached the root bus. */
2006	if (bus->bridge)
2007		return device_run_wake(bus->bridge);
2008
2009	return false;
2010}
2011EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2012
2013/**
2014 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2015 * @pci_dev: Device to check.
2016 *
2017 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2018 * reconfigured due to wakeup settings difference between system and runtime
2019 * suspend and the current power state of it is suitable for the upcoming
2020 * (system) transition.
2021 */
2022bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2023{
2024	struct device *dev = &pci_dev->dev;
2025
2026	if (!pm_runtime_suspended(dev)
2027	    || (device_can_wakeup(dev) && !device_may_wakeup(dev))
2028	    || platform_pci_need_resume(pci_dev))
2029		return false;
2030
2031	return pci_target_state(pci_dev) == pci_dev->current_state;
2032}
2033
2034void pci_config_pm_runtime_get(struct pci_dev *pdev)
2035{
2036	struct device *dev = &pdev->dev;
2037	struct device *parent = dev->parent;
2038
2039	if (parent)
2040		pm_runtime_get_sync(parent);
2041	pm_runtime_get_noresume(dev);
2042	/*
2043	 * pdev->current_state is set to PCI_D3cold during suspending,
2044	 * so wait until suspending completes
2045	 */
2046	pm_runtime_barrier(dev);
2047	/*
2048	 * Only need to resume devices in D3cold, because config
2049	 * registers are still accessible for devices suspended but
2050	 * not in D3cold.
2051	 */
2052	if (pdev->current_state == PCI_D3cold)
2053		pm_runtime_resume(dev);
2054}
2055
2056void pci_config_pm_runtime_put(struct pci_dev *pdev)
2057{
2058	struct device *dev = &pdev->dev;
2059	struct device *parent = dev->parent;
2060
2061	pm_runtime_put(dev);
2062	if (parent)
2063		pm_runtime_put_sync(parent);
2064}
2065
2066/**
2067 * pci_pm_init - Initialize PM functions of given PCI device
2068 * @dev: PCI device to handle.
2069 */
2070void pci_pm_init(struct pci_dev *dev)
2071{
2072	int pm;
2073	u16 pmc;
2074
2075	pm_runtime_forbid(&dev->dev);
2076	pm_runtime_set_active(&dev->dev);
2077	pm_runtime_enable(&dev->dev);
2078	device_enable_async_suspend(&dev->dev);
2079	dev->wakeup_prepared = false;
2080
2081	dev->pm_cap = 0;
2082	dev->pme_support = 0;
2083
2084	/* find PCI PM capability in list */
2085	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2086	if (!pm)
2087		return;
2088	/* Check device's ability to generate PME# */
2089	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2090
2091	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2092		dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2093			pmc & PCI_PM_CAP_VER_MASK);
2094		return;
2095	}
2096
2097	dev->pm_cap = pm;
2098	dev->d3_delay = PCI_PM_D3_WAIT;
2099	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2100	dev->d3cold_allowed = true;
2101
2102	dev->d1_support = false;
2103	dev->d2_support = false;
2104	if (!pci_no_d1d2(dev)) {
2105		if (pmc & PCI_PM_CAP_D1)
2106			dev->d1_support = true;
2107		if (pmc & PCI_PM_CAP_D2)
2108			dev->d2_support = true;
2109
2110		if (dev->d1_support || dev->d2_support)
2111			dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2112				   dev->d1_support ? " D1" : "",
2113				   dev->d2_support ? " D2" : "");
2114	}
2115
2116	pmc &= PCI_PM_CAP_PME_MASK;
2117	if (pmc) {
2118		dev_printk(KERN_DEBUG, &dev->dev,
2119			 "PME# supported from%s%s%s%s%s\n",
2120			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2121			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2122			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2123			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2124			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2125		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2126		dev->pme_poll = true;
2127		/*
2128		 * Make device's PM flags reflect the wake-up capability, but
2129		 * let the user space enable it to wake up the system as needed.
2130		 */
2131		device_set_wakeup_capable(&dev->dev, true);
2132		/* Disable the PME# generation functionality */
2133		pci_pme_active(dev, false);
2134	}
2135}
2136
2137static void pci_add_saved_cap(struct pci_dev *pci_dev,
2138	struct pci_cap_saved_state *new_cap)
2139{
2140	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2141}
2142
2143/**
2144 * _pci_add_cap_save_buffer - allocate buffer for saving given
2145 *                            capability registers
2146 * @dev: the PCI device
2147 * @cap: the capability to allocate the buffer for
2148 * @extended: Standard or Extended capability ID
2149 * @size: requested size of the buffer
2150 */
2151static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2152				    bool extended, unsigned int size)
2153{
2154	int pos;
2155	struct pci_cap_saved_state *save_state;
2156
2157	if (extended)
2158		pos = pci_find_ext_capability(dev, cap);
2159	else
2160		pos = pci_find_capability(dev, cap);
2161
2162	if (pos <= 0)
2163		return 0;
2164
2165	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2166	if (!save_state)
2167		return -ENOMEM;
2168
2169	save_state->cap.cap_nr = cap;
2170	save_state->cap.cap_extended = extended;
2171	save_state->cap.size = size;
2172	pci_add_saved_cap(dev, save_state);
2173
2174	return 0;
2175}
2176
2177int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2178{
2179	return _pci_add_cap_save_buffer(dev, cap, false, size);
2180}
2181
2182int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2183{
2184	return _pci_add_cap_save_buffer(dev, cap, true, size);
2185}
2186
2187/**
2188 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2189 * @dev: the PCI device
2190 */
2191void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2192{
2193	int error;
2194
2195	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2196					PCI_EXP_SAVE_REGS * sizeof(u16));
2197	if (error)
2198		dev_err(&dev->dev,
2199			"unable to preallocate PCI Express save buffer\n");
2200
2201	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2202	if (error)
2203		dev_err(&dev->dev,
2204			"unable to preallocate PCI-X save buffer\n");
2205
2206	pci_allocate_vc_save_buffers(dev);
2207}
2208
2209void pci_free_cap_save_buffers(struct pci_dev *dev)
2210{
2211	struct pci_cap_saved_state *tmp;
2212	struct hlist_node *n;
2213
2214	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2215		kfree(tmp);
2216}
2217
2218/**
2219 * pci_configure_ari - enable or disable ARI forwarding
2220 * @dev: the PCI device
2221 *
2222 * If @dev and its upstream bridge both support ARI, enable ARI in the
2223 * bridge.  Otherwise, disable ARI in the bridge.
2224 */
2225void pci_configure_ari(struct pci_dev *dev)
2226{
2227	u32 cap;
2228	struct pci_dev *bridge;
2229
2230	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2231		return;
2232
2233	bridge = dev->bus->self;
2234	if (!bridge)
2235		return;
2236
2237	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2238	if (!(cap & PCI_EXP_DEVCAP2_ARI))
2239		return;
2240
2241	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2242		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2243					 PCI_EXP_DEVCTL2_ARI);
2244		bridge->ari_enabled = 1;
2245	} else {
2246		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2247					   PCI_EXP_DEVCTL2_ARI);
2248		bridge->ari_enabled = 0;
2249	}
2250}
2251
2252static int pci_acs_enable;
2253
2254/**
2255 * pci_request_acs - ask for ACS to be enabled if supported
2256 */
2257void pci_request_acs(void)
2258{
2259	pci_acs_enable = 1;
2260}
2261
2262/**
2263 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2264 * @dev: the PCI device
2265 */
2266static int pci_std_enable_acs(struct pci_dev *dev)
2267{
2268	int pos;
2269	u16 cap;
2270	u16 ctrl;
2271
2272	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2273	if (!pos)
2274		return -ENODEV;
2275
2276	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2277	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2278
2279	/* Source Validation */
2280	ctrl |= (cap & PCI_ACS_SV);
2281
2282	/* P2P Request Redirect */
2283	ctrl |= (cap & PCI_ACS_RR);
2284
2285	/* P2P Completion Redirect */
2286	ctrl |= (cap & PCI_ACS_CR);
2287
2288	/* Upstream Forwarding */
2289	ctrl |= (cap & PCI_ACS_UF);
2290
2291	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2292
2293	return 0;
2294}
2295
2296/**
2297 * pci_enable_acs - enable ACS if hardware support it
2298 * @dev: the PCI device
2299 */
2300void pci_enable_acs(struct pci_dev *dev)
2301{
2302	if (!pci_acs_enable)
2303		return;
2304
2305	if (!pci_std_enable_acs(dev))
2306		return;
2307
2308	pci_dev_specific_enable_acs(dev);
2309}
2310
2311static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2312{
2313	int pos;
2314	u16 cap, ctrl;
2315
2316	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2317	if (!pos)
2318		return false;
2319
2320	/*
2321	 * Except for egress control, capabilities are either required
2322	 * or only required if controllable.  Features missing from the
2323	 * capability field can therefore be assumed as hard-wired enabled.
2324	 */
2325	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2326	acs_flags &= (cap | PCI_ACS_EC);
2327
2328	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2329	return (ctrl & acs_flags) == acs_flags;
2330}
2331
2332/**
2333 * pci_acs_enabled - test ACS against required flags for a given device
2334 * @pdev: device to test
2335 * @acs_flags: required PCI ACS flags
2336 *
2337 * Return true if the device supports the provided flags.  Automatically
2338 * filters out flags that are not implemented on multifunction devices.
2339 *
2340 * Note that this interface checks the effective ACS capabilities of the
2341 * device rather than the actual capabilities.  For instance, most single
2342 * function endpoints are not required to support ACS because they have no
2343 * opportunity for peer-to-peer access.  We therefore return 'true'
2344 * regardless of whether the device exposes an ACS capability.  This makes
2345 * it much easier for callers of this function to ignore the actual type
2346 * or topology of the device when testing ACS support.
2347 */
2348bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2349{
2350	int ret;
2351
2352	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2353	if (ret >= 0)
2354		return ret > 0;
2355
2356	/*
2357	 * Conventional PCI and PCI-X devices never support ACS, either
2358	 * effectively or actually.  The shared bus topology implies that
2359	 * any device on the bus can receive or snoop DMA.
2360	 */
2361	if (!pci_is_pcie(pdev))
2362		return false;
2363
2364	switch (pci_pcie_type(pdev)) {
2365	/*
2366	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2367	 * but since their primary interface is PCI/X, we conservatively
2368	 * handle them as we would a non-PCIe device.
2369	 */
2370	case PCI_EXP_TYPE_PCIE_BRIDGE:
2371	/*
2372	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
2373	 * applicable... must never implement an ACS Extended Capability...".
2374	 * This seems arbitrary, but we take a conservative interpretation
2375	 * of this statement.
2376	 */
2377	case PCI_EXP_TYPE_PCI_BRIDGE:
2378	case PCI_EXP_TYPE_RC_EC:
2379		return false;
2380	/*
2381	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2382	 * implement ACS in order to indicate their peer-to-peer capabilities,
2383	 * regardless of whether they are single- or multi-function devices.
2384	 */
2385	case PCI_EXP_TYPE_DOWNSTREAM:
2386	case PCI_EXP_TYPE_ROOT_PORT:
2387		return pci_acs_flags_enabled(pdev, acs_flags);
2388	/*
2389	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2390	 * implemented by the remaining PCIe types to indicate peer-to-peer
2391	 * capabilities, but only when they are part of a multifunction
2392	 * device.  The footnote for section 6.12 indicates the specific
2393	 * PCIe types included here.
2394	 */
2395	case PCI_EXP_TYPE_ENDPOINT:
2396	case PCI_EXP_TYPE_UPSTREAM:
2397	case PCI_EXP_TYPE_LEG_END:
2398	case PCI_EXP_TYPE_RC_END:
2399		if (!pdev->multifunction)
2400			break;
2401
2402		return pci_acs_flags_enabled(pdev, acs_flags);
2403	}
2404
2405	/*
2406	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2407	 * to single function devices with the exception of downstream ports.
2408	 */
2409	return true;
2410}
2411
2412/**
2413 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2414 * @start: starting downstream device
2415 * @end: ending upstream device or NULL to search to the root bus
2416 * @acs_flags: required flags
2417 *
2418 * Walk up a device tree from start to end testing PCI ACS support.  If
2419 * any step along the way does not support the required flags, return false.
2420 */
2421bool pci_acs_path_enabled(struct pci_dev *start,
2422			  struct pci_dev *end, u16 acs_flags)
2423{
2424	struct pci_dev *pdev, *parent = start;
2425
2426	do {
2427		pdev = parent;
2428
2429		if (!pci_acs_enabled(pdev, acs_flags))
2430			return false;
2431
2432		if (pci_is_root_bus(pdev->bus))
2433			return (end == NULL);
2434
2435		parent = pdev->bus->self;
2436	} while (pdev != end);
2437
2438	return true;
2439}
2440
2441/**
2442 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2443 * @dev: the PCI device
2444 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2445 *
2446 * Perform INTx swizzling for a device behind one level of bridge.  This is
2447 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2448 * behind bridges on add-in cards.  For devices with ARI enabled, the slot
2449 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2450 * the PCI Express Base Specification, Revision 2.1)
2451 */
2452u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2453{
2454	int slot;
2455
2456	if (pci_ari_enabled(dev->bus))
2457		slot = 0;
2458	else
2459		slot = PCI_SLOT(dev->devfn);
2460
2461	return (((pin - 1) + slot) % 4) + 1;
2462}
2463
2464int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2465{
2466	u8 pin;
2467
2468	pin = dev->pin;
2469	if (!pin)
2470		return -1;
2471
2472	while (!pci_is_root_bus(dev->bus)) {
2473		pin = pci_swizzle_interrupt_pin(dev, pin);
2474		dev = dev->bus->self;
2475	}
2476	*bridge = dev;
2477	return pin;
2478}
2479
2480/**
2481 * pci_common_swizzle - swizzle INTx all the way to root bridge
2482 * @dev: the PCI device
2483 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2484 *
2485 * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
2486 * bridges all the way up to a PCI root bus.
2487 */
2488u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2489{
2490	u8 pin = *pinp;
2491
2492	while (!pci_is_root_bus(dev->bus)) {
2493		pin = pci_swizzle_interrupt_pin(dev, pin);
2494		dev = dev->bus->self;
2495	}
2496	*pinp = pin;
2497	return PCI_SLOT(dev->devfn);
2498}
2499EXPORT_SYMBOL_GPL(pci_common_swizzle);
2500
2501/**
2502 *	pci_release_region - Release a PCI bar
2503 *	@pdev: PCI device whose resources were previously reserved by pci_request_region
2504 *	@bar: BAR to release
2505 *
2506 *	Releases the PCI I/O and memory resources previously reserved by a
2507 *	successful call to pci_request_region.  Call this function only
2508 *	after all use of the PCI regions has ceased.
2509 */
2510void pci_release_region(struct pci_dev *pdev, int bar)
2511{
2512	struct pci_devres *dr;
2513
2514	if (pci_resource_len(pdev, bar) == 0)
2515		return;
2516	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2517		release_region(pci_resource_start(pdev, bar),
2518				pci_resource_len(pdev, bar));
2519	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2520		release_mem_region(pci_resource_start(pdev, bar),
2521				pci_resource_len(pdev, bar));
2522
2523	dr = find_pci_dr(pdev);
2524	if (dr)
2525		dr->region_mask &= ~(1 << bar);
2526}
2527EXPORT_SYMBOL(pci_release_region);
2528
2529/**
2530 *	__pci_request_region - Reserved PCI I/O and memory resource
2531 *	@pdev: PCI device whose resources are to be reserved
2532 *	@bar: BAR to be reserved
2533 *	@res_name: Name to be associated with resource.
2534 *	@exclusive: whether the region access is exclusive or not
2535 *
2536 *	Mark the PCI region associated with PCI device @pdev BR @bar as
2537 *	being reserved by owner @res_name.  Do not access any
2538 *	address inside the PCI regions unless this call returns
2539 *	successfully.
2540 *
2541 *	If @exclusive is set, then the region is marked so that userspace
2542 *	is explicitly not allowed to map the resource via /dev/mem or
2543 *	sysfs MMIO access.
2544 *
2545 *	Returns 0 on success, or %EBUSY on error.  A warning
2546 *	message is also printed on failure.
2547 */
2548static int __pci_request_region(struct pci_dev *pdev, int bar,
2549				const char *res_name, int exclusive)
2550{
2551	struct pci_devres *dr;
2552
2553	if (pci_resource_len(pdev, bar) == 0)
2554		return 0;
2555
2556	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2557		if (!request_region(pci_resource_start(pdev, bar),
2558			    pci_resource_len(pdev, bar), res_name))
2559			goto err_out;
2560	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2561		if (!__request_mem_region(pci_resource_start(pdev, bar),
2562					pci_resource_len(pdev, bar), res_name,
2563					exclusive))
2564			goto err_out;
2565	}
2566
2567	dr = find_pci_dr(pdev);
2568	if (dr)
2569		dr->region_mask |= 1 << bar;
2570
2571	return 0;
2572
2573err_out:
2574	dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2575		 &pdev->resource[bar]);
2576	return -EBUSY;
2577}
2578
2579/**
2580 *	pci_request_region - Reserve PCI I/O and memory resource
2581 *	@pdev: PCI device whose resources are to be reserved
2582 *	@bar: BAR to be reserved
2583 *	@res_name: Name to be associated with resource
2584 *
2585 *	Mark the PCI region associated with PCI device @pdev BAR @bar as
2586 *	being reserved by owner @res_name.  Do not access any
2587 *	address inside the PCI regions unless this call returns
2588 *	successfully.
2589 *
2590 *	Returns 0 on success, or %EBUSY on error.  A warning
2591 *	message is also printed on failure.
2592 */
2593int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2594{
2595	return __pci_request_region(pdev, bar, res_name, 0);
2596}
2597EXPORT_SYMBOL(pci_request_region);
2598
2599/**
2600 *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
2601 *	@pdev: PCI device whose resources are to be reserved
2602 *	@bar: BAR to be reserved
2603 *	@res_name: Name to be associated with resource.
2604 *
2605 *	Mark the PCI region associated with PCI device @pdev BR @bar as
2606 *	being reserved by owner @res_name.  Do not access any
2607 *	address inside the PCI regions unless this call returns
2608 *	successfully.
2609 *
2610 *	Returns 0 on success, or %EBUSY on error.  A warning
2611 *	message is also printed on failure.
2612 *
2613 *	The key difference that _exclusive makes it that userspace is
2614 *	explicitly not allowed to map the resource via /dev/mem or
2615 *	sysfs.
2616 */
2617int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
2618				 const char *res_name)
2619{
2620	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2621}
2622EXPORT_SYMBOL(pci_request_region_exclusive);
2623
2624/**
2625 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2626 * @pdev: PCI device whose resources were previously reserved
2627 * @bars: Bitmask of BARs to be released
2628 *
2629 * Release selected PCI I/O and memory resources previously reserved.
2630 * Call this function only after all use of the PCI regions has ceased.
2631 */
2632void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2633{
2634	int i;
2635
2636	for (i = 0; i < 6; i++)
2637		if (bars & (1 << i))
2638			pci_release_region(pdev, i);
2639}
2640EXPORT_SYMBOL(pci_release_selected_regions);
2641
2642static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2643					  const char *res_name, int excl)
2644{
2645	int i;
2646
2647	for (i = 0; i < 6; i++)
2648		if (bars & (1 << i))
2649			if (__pci_request_region(pdev, i, res_name, excl))
2650				goto err_out;
2651	return 0;
2652
2653err_out:
2654	while (--i >= 0)
2655		if (bars & (1 << i))
2656			pci_release_region(pdev, i);
2657
2658	return -EBUSY;
2659}
2660
2661
2662/**
2663 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2664 * @pdev: PCI device whose resources are to be reserved
2665 * @bars: Bitmask of BARs to be requested
2666 * @res_name: Name to be associated with resource
2667 */
2668int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2669				 const char *res_name)
2670{
2671	return __pci_request_selected_regions(pdev, bars, res_name, 0);
2672}
2673EXPORT_SYMBOL(pci_request_selected_regions);
2674
2675int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
2676					   const char *res_name)
2677{
2678	return __pci_request_selected_regions(pdev, bars, res_name,
2679			IORESOURCE_EXCLUSIVE);
2680}
2681EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2682
2683/**
2684 *	pci_release_regions - Release reserved PCI I/O and memory resources
2685 *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
2686 *
2687 *	Releases all PCI I/O and memory resources previously reserved by a
2688 *	successful call to pci_request_regions.  Call this function only
2689 *	after all use of the PCI regions has ceased.
2690 */
2691
2692void pci_release_regions(struct pci_dev *pdev)
2693{
2694	pci_release_selected_regions(pdev, (1 << 6) - 1);
2695}
2696EXPORT_SYMBOL(pci_release_regions);
2697
2698/**
2699 *	pci_request_regions - Reserved PCI I/O and memory resources
2700 *	@pdev: PCI device whose resources are to be reserved
2701 *	@res_name: Name to be associated with resource.
2702 *
2703 *	Mark all PCI regions associated with PCI device @pdev as
2704 *	being reserved by owner @res_name.  Do not access any
2705 *	address inside the PCI regions unless this call returns
2706 *	successfully.
2707 *
2708 *	Returns 0 on success, or %EBUSY on error.  A warning
2709 *	message is also printed on failure.
2710 */
2711int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2712{
2713	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2714}
2715EXPORT_SYMBOL(pci_request_regions);
2716
2717/**
2718 *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2719 *	@pdev: PCI device whose resources are to be reserved
2720 *	@res_name: Name to be associated with resource.
2721 *
2722 *	Mark all PCI regions associated with PCI device @pdev as
2723 *	being reserved by owner @res_name.  Do not access any
2724 *	address inside the PCI regions unless this call returns
2725 *	successfully.
2726 *
2727 *	pci_request_regions_exclusive() will mark the region so that
2728 *	/dev/mem and the sysfs MMIO access will not be allowed.
2729 *
2730 *	Returns 0 on success, or %EBUSY on error.  A warning
2731 *	message is also printed on failure.
2732 */
2733int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2734{
2735	return pci_request_selected_regions_exclusive(pdev,
2736					((1 << 6) - 1), res_name);
2737}
2738EXPORT_SYMBOL(pci_request_regions_exclusive);
2739
2740/**
2741 *	pci_remap_iospace - Remap the memory mapped I/O space
2742 *	@res: Resource describing the I/O space
2743 *	@phys_addr: physical address of range to be mapped
2744 *
2745 *	Remap the memory mapped I/O space described by the @res
2746 *	and the CPU physical address @phys_addr into virtual address space.
2747 *	Only architectures that have memory mapped IO functions defined
2748 *	(and the PCI_IOBASE value defined) should call this function.
2749 */
2750int __weak pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
2751{
2752#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
2753	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
2754
2755	if (!(res->flags & IORESOURCE_IO))
2756		return -EINVAL;
2757
2758	if (res->end > IO_SPACE_LIMIT)
2759		return -EINVAL;
2760
2761	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
2762				  pgprot_device(PAGE_KERNEL));
2763#else
2764	/* this architecture does not have memory mapped I/O space,
2765	   so this function should never be called */
2766	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
2767	return -ENODEV;
2768#endif
2769}
2770
2771static void __pci_set_master(struct pci_dev *dev, bool enable)
2772{
2773	u16 old_cmd, cmd;
2774
2775	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2776	if (enable)
2777		cmd = old_cmd | PCI_COMMAND_MASTER;
2778	else
2779		cmd = old_cmd & ~PCI_COMMAND_MASTER;
2780	if (cmd != old_cmd) {
2781		dev_dbg(&dev->dev, "%s bus mastering\n",
2782			enable ? "enabling" : "disabling");
2783		pci_write_config_word(dev, PCI_COMMAND, cmd);
2784	}
2785	dev->is_busmaster = enable;
2786}
2787
2788/**
2789 * pcibios_setup - process "pci=" kernel boot arguments
2790 * @str: string used to pass in "pci=" kernel boot arguments
2791 *
2792 * Process kernel boot arguments.  This is the default implementation.
2793 * Architecture specific implementations can override this as necessary.
2794 */
2795char * __weak __init pcibios_setup(char *str)
2796{
2797	return str;
2798}
2799
2800/**
2801 * pcibios_set_master - enable PCI bus-mastering for device dev
2802 * @dev: the PCI device to enable
2803 *
2804 * Enables PCI bus-mastering for the device.  This is the default
2805 * implementation.  Architecture specific implementations can override
2806 * this if necessary.
2807 */
2808void __weak pcibios_set_master(struct pci_dev *dev)
2809{
2810	u8 lat;
2811
2812	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2813	if (pci_is_pcie(dev))
2814		return;
2815
2816	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2817	if (lat < 16)
2818		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2819	else if (lat > pcibios_max_latency)
2820		lat = pcibios_max_latency;
2821	else
2822		return;
2823
2824	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2825}
2826
2827/**
2828 * pci_set_master - enables bus-mastering for device dev
2829 * @dev: the PCI device to enable
2830 *
2831 * Enables bus-mastering on the device and calls pcibios_set_master()
2832 * to do the needed arch specific settings.
2833 */
2834void pci_set_master(struct pci_dev *dev)
2835{
2836	__pci_set_master(dev, true);
2837	pcibios_set_master(dev);
2838}
2839EXPORT_SYMBOL(pci_set_master);
2840
2841/**
2842 * pci_clear_master - disables bus-mastering for device dev
2843 * @dev: the PCI device to disable
2844 */
2845void pci_clear_master(struct pci_dev *dev)
2846{
2847	__pci_set_master(dev, false);
2848}
2849EXPORT_SYMBOL(pci_clear_master);
2850
2851/**
2852 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2853 * @dev: the PCI device for which MWI is to be enabled
2854 *
2855 * Helper function for pci_set_mwi.
2856 * Originally copied from drivers/net/acenic.c.
2857 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2858 *
2859 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2860 */
2861int pci_set_cacheline_size(struct pci_dev *dev)
2862{
2863	u8 cacheline_size;
2864
2865	if (!pci_cache_line_size)
2866		return -EINVAL;
2867
2868	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2869	   equal to or multiple of the right value. */
2870	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2871	if (cacheline_size >= pci_cache_line_size &&
2872	    (cacheline_size % pci_cache_line_size) == 0)
2873		return 0;
2874
2875	/* Write the correct value. */
2876	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2877	/* Read it back. */
2878	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2879	if (cacheline_size == pci_cache_line_size)
2880		return 0;
2881
2882	dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
2883		   pci_cache_line_size << 2);
2884
2885	return -EINVAL;
2886}
2887EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2888
2889/**
2890 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2891 * @dev: the PCI device for which MWI is enabled
2892 *
2893 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2894 *
2895 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2896 */
2897int pci_set_mwi(struct pci_dev *dev)
2898{
2899#ifdef PCI_DISABLE_MWI
2900	return 0;
2901#else
2902	int rc;
2903	u16 cmd;
2904
2905	rc = pci_set_cacheline_size(dev);
2906	if (rc)
2907		return rc;
2908
2909	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2910	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
2911		dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2912		cmd |= PCI_COMMAND_INVALIDATE;
2913		pci_write_config_word(dev, PCI_COMMAND, cmd);
2914	}
2915	return 0;
2916#endif
2917}
2918EXPORT_SYMBOL(pci_set_mwi);
2919
2920/**
2921 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2922 * @dev: the PCI device for which MWI is enabled
2923 *
2924 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2925 * Callers are not required to check the return value.
2926 *
2927 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2928 */
2929int pci_try_set_mwi(struct pci_dev *dev)
2930{
2931#ifdef PCI_DISABLE_MWI
2932	return 0;
2933#else
2934	return pci_set_mwi(dev);
2935#endif
2936}
2937EXPORT_SYMBOL(pci_try_set_mwi);
2938
2939/**
2940 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2941 * @dev: the PCI device to disable
2942 *
2943 * Disables PCI Memory-Write-Invalidate transaction on the device
2944 */
2945void pci_clear_mwi(struct pci_dev *dev)
2946{
2947#ifndef PCI_DISABLE_MWI
2948	u16 cmd;
2949
2950	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2951	if (cmd & PCI_COMMAND_INVALIDATE) {
2952		cmd &= ~PCI_COMMAND_INVALIDATE;
2953		pci_write_config_word(dev, PCI_COMMAND, cmd);
2954	}
2955#endif
2956}
2957EXPORT_SYMBOL(pci_clear_mwi);
2958
2959/**
2960 * pci_intx - enables/disables PCI INTx for device dev
2961 * @pdev: the PCI device to operate on
2962 * @enable: boolean: whether to enable or disable PCI INTx
2963 *
2964 * Enables/disables PCI INTx for device dev
2965 */
2966void pci_intx(struct pci_dev *pdev, int enable)
2967{
2968	u16 pci_command, new;
2969
2970	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2971
2972	if (enable)
2973		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2974	else
2975		new = pci_command | PCI_COMMAND_INTX_DISABLE;
2976
2977	if (new != pci_command) {
2978		struct pci_devres *dr;
2979
2980		pci_write_config_word(pdev, PCI_COMMAND, new);
2981
2982		dr = find_pci_dr(pdev);
2983		if (dr && !dr->restore_intx) {
2984			dr->restore_intx = 1;
2985			dr->orig_intx = !enable;
2986		}
2987	}
2988}
2989EXPORT_SYMBOL_GPL(pci_intx);
2990
2991/**
2992 * pci_intx_mask_supported - probe for INTx masking support
2993 * @dev: the PCI device to operate on
2994 *
2995 * Check if the device dev support INTx masking via the config space
2996 * command word.
2997 */
2998bool pci_intx_mask_supported(struct pci_dev *dev)
2999{
3000	bool mask_supported = false;
3001	u16 orig, new;
3002
3003	if (dev->broken_intx_masking)
3004		return false;
3005
3006	pci_cfg_access_lock(dev);
3007
3008	pci_read_config_word(dev, PCI_COMMAND, &orig);
3009	pci_write_config_word(dev, PCI_COMMAND,
3010			      orig ^ PCI_COMMAND_INTX_DISABLE);
3011	pci_read_config_word(dev, PCI_COMMAND, &new);
3012
3013	/*
3014	 * There's no way to protect against hardware bugs or detect them
3015	 * reliably, but as long as we know what the value should be, let's
3016	 * go ahead and check it.
3017	 */
3018	if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
3019		dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n",
3020			orig, new);
3021	} else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
3022		mask_supported = true;
3023		pci_write_config_word(dev, PCI_COMMAND, orig);
3024	}
3025
3026	pci_cfg_access_unlock(dev);
3027	return mask_supported;
3028}
3029EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
3030
3031static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3032{
3033	struct pci_bus *bus = dev->bus;
3034	bool mask_updated = true;
3035	u32 cmd_status_dword;
3036	u16 origcmd, newcmd;
3037	unsigned long flags;
3038	bool irq_pending;
3039
3040	/*
3041	 * We do a single dword read to retrieve both command and status.
3042	 * Document assumptions that make this possible.
3043	 */
3044	BUILD_BUG_ON(PCI_COMMAND % 4);
3045	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3046
3047	raw_spin_lock_irqsave(&pci_lock, flags);
3048
3049	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3050
3051	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3052
3053	/*
3054	 * Check interrupt status register to see whether our device
3055	 * triggered the interrupt (when masking) or the next IRQ is
3056	 * already pending (when unmasking).
3057	 */
3058	if (mask != irq_pending) {
3059		mask_updated = false;
3060		goto done;
3061	}
3062
3063	origcmd = cmd_status_dword;
3064	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3065	if (mask)
3066		newcmd |= PCI_COMMAND_INTX_DISABLE;
3067	if (newcmd != origcmd)
3068		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3069
3070done:
3071	raw_spin_unlock_irqrestore(&pci_lock, flags);
3072
3073	return mask_updated;
3074}
3075
3076/**
3077 * pci_check_and_mask_intx - mask INTx on pending interrupt
3078 * @dev: the PCI device to operate on
3079 *
3080 * Check if the device dev has its INTx line asserted, mask it and
3081 * return true in that case. False is returned if not interrupt was
3082 * pending.
3083 */
3084bool pci_check_and_mask_intx(struct pci_dev *dev)
3085{
3086	return pci_check_and_set_intx_mask(dev, true);
3087}
3088EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3089
3090/**
3091 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3092 * @dev: the PCI device to operate on
3093 *
3094 * Check if the device dev has its INTx line asserted, unmask it if not
3095 * and return true. False is returned and the mask remains active if
3096 * there was still an interrupt pending.
3097 */
3098bool pci_check_and_unmask_intx(struct pci_dev *dev)
3099{
3100	return pci_check_and_set_intx_mask(dev, false);
3101}
3102EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3103
3104/**
3105 * pci_msi_off - disables any MSI or MSI-X capabilities
3106 * @dev: the PCI device to operate on
3107 *
3108 * If you want to use MSI, see pci_enable_msi() and friends.
3109 * This is a lower-level primitive that allows us to disable
3110 * MSI operation at the device level.
3111 */
3112void pci_msi_off(struct pci_dev *dev)
3113{
3114	int pos;
3115	u16 control;
3116
3117	/*
3118	 * This looks like it could go in msi.c, but we need it even when
3119	 * CONFIG_PCI_MSI=n.  For the same reason, we can't use
3120	 * dev->msi_cap or dev->msix_cap here.
3121	 */
3122	pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
3123	if (pos) {
3124		pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
3125		control &= ~PCI_MSI_FLAGS_ENABLE;
3126		pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
3127	}
3128	pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
3129	if (pos) {
3130		pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
3131		control &= ~PCI_MSIX_FLAGS_ENABLE;
3132		pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
3133	}
3134}
3135EXPORT_SYMBOL_GPL(pci_msi_off);
3136
3137int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3138{
3139	return dma_set_max_seg_size(&dev->dev, size);
3140}
3141EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3142
3143int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3144{
3145	return dma_set_seg_boundary(&dev->dev, mask);
3146}
3147EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3148
3149/**
3150 * pci_wait_for_pending_transaction - waits for pending transaction
3151 * @dev: the PCI device to operate on
3152 *
3153 * Return 0 if transaction is pending 1 otherwise.
3154 */
3155int pci_wait_for_pending_transaction(struct pci_dev *dev)
3156{
3157	if (!pci_is_pcie(dev))
3158		return 1;
3159
3160	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3161				    PCI_EXP_DEVSTA_TRPND);
3162}
3163EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3164
3165static int pcie_flr(struct pci_dev *dev, int probe)
3166{
3167	u32 cap;
3168
3169	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3170	if (!(cap & PCI_EXP_DEVCAP_FLR))
3171		return -ENOTTY;
3172
3173	if (probe)
3174		return 0;
3175
3176	if (!pci_wait_for_pending_transaction(dev))
3177		dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
3178
3179	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3180	msleep(100);
3181	return 0;
3182}
3183
3184static int pci_af_flr(struct pci_dev *dev, int probe)
3185{
3186	int pos;
3187	u8 cap;
3188
3189	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3190	if (!pos)
3191		return -ENOTTY;
3192
3193	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3194	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3195		return -ENOTTY;
3196
3197	if (probe)
3198		return 0;
3199
3200	/*
3201	 * Wait for Transaction Pending bit to clear.  A word-aligned test
3202	 * is used, so we use the conrol offset rather than status and shift
3203	 * the test bit to match.
3204	 */
3205	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
3206				 PCI_AF_STATUS_TP << 8))
3207		dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
3208
3209	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3210	msleep(100);
3211	return 0;
3212}
3213
3214/**
3215 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3216 * @dev: Device to reset.
3217 * @probe: If set, only check if the device can be reset this way.
3218 *
3219 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3220 * unset, it will be reinitialized internally when going from PCI_D3hot to
3221 * PCI_D0.  If that's the case and the device is not in a low-power state
3222 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3223 *
3224 * NOTE: This causes the caller to sleep for twice the device power transition
3225 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3226 * by default (i.e. unless the @dev's d3_delay field has a different value).
3227 * Moreover, only devices in D0 can be reset by this function.
3228 */
3229static int pci_pm_reset(struct pci_dev *dev, int probe)
3230{
3231	u16 csr;
3232
3233	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
3234		return -ENOTTY;
3235
3236	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3237	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3238		return -ENOTTY;
3239
3240	if (probe)
3241		return 0;
3242
3243	if (dev->current_state != PCI_D0)
3244		return -EINVAL;
3245
3246	csr &= ~PCI_PM_CTRL_STATE_MASK;
3247	csr |= PCI_D3hot;
3248	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3249	pci_dev_d3_sleep(dev);
3250
3251	csr &= ~PCI_PM_CTRL_STATE_MASK;
3252	csr |= PCI_D0;
3253	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3254	pci_dev_d3_sleep(dev);
3255
3256	return 0;
3257}
3258
3259void pci_reset_secondary_bus(struct pci_dev *dev)
3260{
3261	u16 ctrl;
3262
3263	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3264	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3265	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3266	/*
3267	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
3268	 * this to 2ms to ensure that we meet the minimum requirement.
3269	 */
3270	msleep(2);
3271
3272	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3273	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3274
3275	/*
3276	 * Trhfa for conventional PCI is 2^25 clock cycles.
3277	 * Assuming a minimum 33MHz clock this results in a 1s
3278	 * delay before we can consider subordinate devices to
3279	 * be re-initialized.  PCIe has some ways to shorten this,
3280	 * but we don't make use of them yet.
3281	 */
3282	ssleep(1);
3283}
3284
3285void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
3286{
3287	pci_reset_secondary_bus(dev);
3288}
3289
3290/**
3291 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3292 * @dev: Bridge device
3293 *
3294 * Use the bridge control register to assert reset on the secondary bus.
3295 * Devices on the secondary bus are left in power-on state.
3296 */
3297void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3298{
3299	pcibios_reset_secondary_bus(dev);
3300}
3301EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3302
3303static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3304{
3305	struct pci_dev *pdev;
3306
3307	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
3308	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3309		return -ENOTTY;
3310
3311	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3312		if (pdev != dev)
3313			return -ENOTTY;
3314
3315	if (probe)
3316		return 0;
3317
3318	pci_reset_bridge_secondary_bus(dev->bus->self);
3319
3320	return 0;
3321}
3322
3323static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3324{
3325	int rc = -ENOTTY;
3326
3327	if (!hotplug || !try_module_get(hotplug->ops->owner))
3328		return rc;
3329
3330	if (hotplug->ops->reset_slot)
3331		rc = hotplug->ops->reset_slot(hotplug, probe);
3332
3333	module_put(hotplug->ops->owner);
3334
3335	return rc;
3336}
3337
3338static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3339{
3340	struct pci_dev *pdev;
3341
3342	if (dev->subordinate || !dev->slot ||
3343	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3344		return -ENOTTY;
3345
3346	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3347		if (pdev != dev && pdev->slot == dev->slot)
3348			return -ENOTTY;
3349
3350	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3351}
3352
3353static int __pci_dev_reset(struct pci_dev *dev, int probe)
3354{
3355	int rc;
3356
3357	might_sleep();
3358
3359	rc = pci_dev_specific_reset(dev, probe);
3360	if (rc != -ENOTTY)
3361		goto done;
3362
3363	rc = pcie_flr(dev, probe);
3364	if (rc != -ENOTTY)
3365		goto done;
3366
3367	rc = pci_af_flr(dev, probe);
3368	if (rc != -ENOTTY)
3369		goto done;
3370
3371	rc = pci_pm_reset(dev, probe);
3372	if (rc != -ENOTTY)
3373		goto done;
3374
3375	rc = pci_dev_reset_slot_function(dev, probe);
3376	if (rc != -ENOTTY)
3377		goto done;
3378
3379	rc = pci_parent_bus_reset(dev, probe);
3380done:
3381	return rc;
3382}
3383
3384static void pci_dev_lock(struct pci_dev *dev)
3385{
3386	pci_cfg_access_lock(dev);
3387	/* block PM suspend, driver probe, etc. */
3388	device_lock(&dev->dev);
3389}
3390
3391/* Return 1 on successful lock, 0 on contention */
3392static int pci_dev_trylock(struct pci_dev *dev)
3393{
3394	if (pci_cfg_access_trylock(dev)) {
3395		if (device_trylock(&dev->dev))
3396			return 1;
3397		pci_cfg_access_unlock(dev);
3398	}
3399
3400	return 0;
3401}
3402
3403static void pci_dev_unlock(struct pci_dev *dev)
3404{
3405	device_unlock(&dev->dev);
3406	pci_cfg_access_unlock(dev);
3407}
3408
3409/**
3410 * pci_reset_notify - notify device driver of reset
3411 * @dev: device to be notified of reset
3412 * @prepare: 'true' if device is about to be reset; 'false' if reset attempt
3413 *           completed
3414 *
3415 * Must be called prior to device access being disabled and after device
3416 * access is restored.
3417 */
3418static void pci_reset_notify(struct pci_dev *dev, bool prepare)
3419{
3420	const struct pci_error_handlers *err_handler =
3421			dev->driver ? dev->driver->err_handler : NULL;
3422	if (err_handler && err_handler->reset_notify)
3423		err_handler->reset_notify(dev, prepare);
3424}
3425
3426static void pci_dev_save_and_disable(struct pci_dev *dev)
3427{
3428	pci_reset_notify(dev, true);
3429
3430	/*
3431	 * Wake-up device prior to save.  PM registers default to D0 after
3432	 * reset and a simple register restore doesn't reliably return
3433	 * to a non-D0 state anyway.
3434	 */
3435	pci_set_power_state(dev, PCI_D0);
3436
3437	pci_save_state(dev);
3438	/*
3439	 * Disable the device by clearing the Command register, except for
3440	 * INTx-disable which is set.  This not only disables MMIO and I/O port
3441	 * BARs, but also prevents the device from being Bus Master, preventing
3442	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
3443	 * compliant devices, INTx-disable prevents legacy interrupts.
3444	 */
3445	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3446}
3447
3448static void pci_dev_restore(struct pci_dev *dev)
3449{
3450	pci_restore_state(dev);
3451	pci_reset_notify(dev, false);
3452}
3453
3454static int pci_dev_reset(struct pci_dev *dev, int probe)
3455{
3456	int rc;
3457
3458	if (!probe)
3459		pci_dev_lock(dev);
3460
3461	rc = __pci_dev_reset(dev, probe);
3462
3463	if (!probe)
3464		pci_dev_unlock(dev);
3465
3466	return rc;
3467}
3468
3469/**
3470 * __pci_reset_function - reset a PCI device function
3471 * @dev: PCI device to reset
3472 *
3473 * Some devices allow an individual function to be reset without affecting
3474 * other functions in the same device.  The PCI device must be responsive
3475 * to PCI config space in order to use this function.
3476 *
3477 * The device function is presumed to be unused when this function is called.
3478 * Resetting the device will make the contents of PCI configuration space
3479 * random, so any caller of this must be prepared to reinitialise the
3480 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3481 * etc.
3482 *
3483 * Returns 0 if the device function was successfully reset or negative if the
3484 * device doesn't support resetting a single function.
3485 */
3486int __pci_reset_function(struct pci_dev *dev)
3487{
3488	return pci_dev_reset(dev, 0);
3489}
3490EXPORT_SYMBOL_GPL(__pci_reset_function);
3491
3492/**
3493 * __pci_reset_function_locked - reset a PCI device function while holding
3494 * the @dev mutex lock.
3495 * @dev: PCI device to reset
3496 *
3497 * Some devices allow an individual function to be reset without affecting
3498 * other functions in the same device.  The PCI device must be responsive
3499 * to PCI config space in order to use this function.
3500 *
3501 * The device function is presumed to be unused and the caller is holding
3502 * the device mutex lock when this function is called.
3503 * Resetting the device will make the contents of PCI configuration space
3504 * random, so any caller of this must be prepared to reinitialise the
3505 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3506 * etc.
3507 *
3508 * Returns 0 if the device function was successfully reset or negative if the
3509 * device doesn't support resetting a single function.
3510 */
3511int __pci_reset_function_locked(struct pci_dev *dev)
3512{
3513	return __pci_dev_reset(dev, 0);
3514}
3515EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3516
3517/**
3518 * pci_probe_reset_function - check whether the device can be safely reset
3519 * @dev: PCI device to reset
3520 *
3521 * Some devices allow an individual function to be reset without affecting
3522 * other functions in the same device.  The PCI device must be responsive
3523 * to PCI config space in order to use this function.
3524 *
3525 * Returns 0 if the device function can be reset or negative if the
3526 * device doesn't support resetting a single function.
3527 */
3528int pci_probe_reset_function(struct pci_dev *dev)
3529{
3530	return pci_dev_reset(dev, 1);
3531}
3532
3533/**
3534 * pci_reset_function - quiesce and reset a PCI device function
3535 * @dev: PCI device to reset
3536 *
3537 * Some devices allow an individual function to be reset without affecting
3538 * other functions in the same device.  The PCI device must be responsive
3539 * to PCI config space in order to use this function.
3540 *
3541 * This function does not just reset the PCI portion of a device, but
3542 * clears all the state associated with the device.  This function differs
3543 * from __pci_reset_function in that it saves and restores device state
3544 * over the reset.
3545 *
3546 * Returns 0 if the device function was successfully reset or negative if the
3547 * device doesn't support resetting a single function.
3548 */
3549int pci_reset_function(struct pci_dev *dev)
3550{
3551	int rc;
3552
3553	rc = pci_dev_reset(dev, 1);
3554	if (rc)
3555		return rc;
3556
3557	pci_dev_save_and_disable(dev);
3558
3559	rc = pci_dev_reset(dev, 0);
3560
3561	pci_dev_restore(dev);
3562
3563	return rc;
3564}
3565EXPORT_SYMBOL_GPL(pci_reset_function);
3566
3567/**
3568 * pci_try_reset_function - quiesce and reset a PCI device function
3569 * @dev: PCI device to reset
3570 *
3571 * Same as above, except return -EAGAIN if unable to lock device.
3572 */
3573int pci_try_reset_function(struct pci_dev *dev)
3574{
3575	int rc;
3576
3577	rc = pci_dev_reset(dev, 1);
3578	if (rc)
3579		return rc;
3580
3581	pci_dev_save_and_disable(dev);
3582
3583	if (pci_dev_trylock(dev)) {
3584		rc = __pci_dev_reset(dev, 0);
3585		pci_dev_unlock(dev);
3586	} else
3587		rc = -EAGAIN;
3588
3589	pci_dev_restore(dev);
3590
3591	return rc;
3592}
3593EXPORT_SYMBOL_GPL(pci_try_reset_function);
3594
3595/* Do any devices on or below this bus prevent a bus reset? */
3596static bool pci_bus_resetable(struct pci_bus *bus)
3597{
3598	struct pci_dev *dev;
3599
3600	list_for_each_entry(dev, &bus->devices, bus_list) {
3601		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
3602		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
3603			return false;
3604	}
3605
3606	return true;
3607}
3608
3609/* Lock devices from the top of the tree down */
3610static void pci_bus_lock(struct pci_bus *bus)
3611{
3612	struct pci_dev *dev;
3613
3614	list_for_each_entry(dev, &bus->devices, bus_list) {
3615		pci_dev_lock(dev);
3616		if (dev->subordinate)
3617			pci_bus_lock(dev->subordinate);
3618	}
3619}
3620
3621/* Unlock devices from the bottom of the tree up */
3622static void pci_bus_unlock(struct pci_bus *bus)
3623{
3624	struct pci_dev *dev;
3625
3626	list_for_each_entry(dev, &bus->devices, bus_list) {
3627		if (dev->subordinate)
3628			pci_bus_unlock(dev->subordinate);
3629		pci_dev_unlock(dev);
3630	}
3631}
3632
3633/* Return 1 on successful lock, 0 on contention */
3634static int pci_bus_trylock(struct pci_bus *bus)
3635{
3636	struct pci_dev *dev;
3637
3638	list_for_each_entry(dev, &bus->devices, bus_list) {
3639		if (!pci_dev_trylock(dev))
3640			goto unlock;
3641		if (dev->subordinate) {
3642			if (!pci_bus_trylock(dev->subordinate)) {
3643				pci_dev_unlock(dev);
3644				goto unlock;
3645			}
3646		}
3647	}
3648	return 1;
3649
3650unlock:
3651	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
3652		if (dev->subordinate)
3653			pci_bus_unlock(dev->subordinate);
3654		pci_dev_unlock(dev);
3655	}
3656	return 0;
3657}
3658
3659/* Do any devices on or below this slot prevent a bus reset? */
3660static bool pci_slot_resetable(struct pci_slot *slot)
3661{
3662	struct pci_dev *dev;
3663
3664	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3665		if (!dev->slot || dev->slot != slot)
3666			continue;
3667		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
3668		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
3669			return false;
3670	}
3671
3672	return true;
3673}
3674
3675/* Lock devices from the top of the tree down */
3676static void pci_slot_lock(struct pci_slot *slot)
3677{
3678	struct pci_dev *dev;
3679
3680	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3681		if (!dev->slot || dev->slot != slot)
3682			continue;
3683		pci_dev_lock(dev);
3684		if (dev->subordinate)
3685			pci_bus_lock(dev->subordinate);
3686	}
3687}
3688
3689/* Unlock devices from the bottom of the tree up */
3690static void pci_slot_unlock(struct pci_slot *slot)
3691{
3692	struct pci_dev *dev;
3693
3694	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3695		if (!dev->slot || dev->slot != slot)
3696			continue;
3697		if (dev->subordinate)
3698			pci_bus_unlock(dev->subordinate);
3699		pci_dev_unlock(dev);
3700	}
3701}
3702
3703/* Return 1 on successful lock, 0 on contention */
3704static int pci_slot_trylock(struct pci_slot *slot)
3705{
3706	struct pci_dev *dev;
3707
3708	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3709		if (!dev->slot || dev->slot != slot)
3710			continue;
3711		if (!pci_dev_trylock(dev))
3712			goto unlock;
3713		if (dev->subordinate) {
3714			if (!pci_bus_trylock(dev->subordinate)) {
3715				pci_dev_unlock(dev);
3716				goto unlock;
3717			}
3718		}
3719	}
3720	return 1;
3721
3722unlock:
3723	list_for_each_entry_continue_reverse(dev,
3724					     &slot->bus->devices, bus_list) {
3725		if (!dev->slot || dev->slot != slot)
3726			continue;
3727		if (dev->subordinate)
3728			pci_bus_unlock(dev->subordinate);
3729		pci_dev_unlock(dev);
3730	}
3731	return 0;
3732}
3733
3734/* Save and disable devices from the top of the tree down */
3735static void pci_bus_save_and_disable(struct pci_bus *bus)
3736{
3737	struct pci_dev *dev;
3738
3739	list_for_each_entry(dev, &bus->devices, bus_list) {
3740		pci_dev_save_and_disable(dev);
3741		if (dev->subordinate)
3742			pci_bus_save_and_disable(dev->subordinate);
3743	}
3744}
3745
3746/*
3747 * Restore devices from top of the tree down - parent bridges need to be
3748 * restored before we can get to subordinate devices.
3749 */
3750static void pci_bus_restore(struct pci_bus *bus)
3751{
3752	struct pci_dev *dev;
3753
3754	list_for_each_entry(dev, &bus->devices, bus_list) {
3755		pci_dev_restore(dev);
3756		if (dev->subordinate)
3757			pci_bus_restore(dev->subordinate);
3758	}
3759}
3760
3761/* Save and disable devices from the top of the tree down */
3762static void pci_slot_save_and_disable(struct pci_slot *slot)
3763{
3764	struct pci_dev *dev;
3765
3766	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3767		if (!dev->slot || dev->slot != slot)
3768			continue;
3769		pci_dev_save_and_disable(dev);
3770		if (dev->subordinate)
3771			pci_bus_save_and_disable(dev->subordinate);
3772	}
3773}
3774
3775/*
3776 * Restore devices from top of the tree down - parent bridges need to be
3777 * restored before we can get to subordinate devices.
3778 */
3779static void pci_slot_restore(struct pci_slot *slot)
3780{
3781	struct pci_dev *dev;
3782
3783	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3784		if (!dev->slot || dev->slot != slot)
3785			continue;
3786		pci_dev_restore(dev);
3787		if (dev->subordinate)
3788			pci_bus_restore(dev->subordinate);
3789	}
3790}
3791
3792static int pci_slot_reset(struct pci_slot *slot, int probe)
3793{
3794	int rc;
3795
3796	if (!slot || !pci_slot_resetable(slot))
3797		return -ENOTTY;
3798
3799	if (!probe)
3800		pci_slot_lock(slot);
3801
3802	might_sleep();
3803
3804	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
3805
3806	if (!probe)
3807		pci_slot_unlock(slot);
3808
3809	return rc;
3810}
3811
3812/**
3813 * pci_probe_reset_slot - probe whether a PCI slot can be reset
3814 * @slot: PCI slot to probe
3815 *
3816 * Return 0 if slot can be reset, negative if a slot reset is not supported.
3817 */
3818int pci_probe_reset_slot(struct pci_slot *slot)
3819{
3820	return pci_slot_reset(slot, 1);
3821}
3822EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
3823
3824/**
3825 * pci_reset_slot - reset a PCI slot
3826 * @slot: PCI slot to reset
3827 *
3828 * A PCI bus may host multiple slots, each slot may support a reset mechanism
3829 * independent of other slots.  For instance, some slots may support slot power
3830 * control.  In the case of a 1:1 bus to slot architecture, this function may
3831 * wrap the bus reset to avoid spurious slot related events such as hotplug.
3832 * Generally a slot reset should be attempted before a bus reset.  All of the
3833 * function of the slot and any subordinate buses behind the slot are reset
3834 * through this function.  PCI config space of all devices in the slot and
3835 * behind the slot is saved before and restored after reset.
3836 *
3837 * Return 0 on success, non-zero on error.
3838 */
3839int pci_reset_slot(struct pci_slot *slot)
3840{
3841	int rc;
3842
3843	rc = pci_slot_reset(slot, 1);
3844	if (rc)
3845		return rc;
3846
3847	pci_slot_save_and_disable(slot);
3848
3849	rc = pci_slot_reset(slot, 0);
3850
3851	pci_slot_restore(slot);
3852
3853	return rc;
3854}
3855EXPORT_SYMBOL_GPL(pci_reset_slot);
3856
3857/**
3858 * pci_try_reset_slot - Try to reset a PCI slot
3859 * @slot: PCI slot to reset
3860 *
3861 * Same as above except return -EAGAIN if the slot cannot be locked
3862 */
3863int pci_try_reset_slot(struct pci_slot *slot)
3864{
3865	int rc;
3866
3867	rc = pci_slot_reset(slot, 1);
3868	if (rc)
3869		return rc;
3870
3871	pci_slot_save_and_disable(slot);
3872
3873	if (pci_slot_trylock(slot)) {
3874		might_sleep();
3875		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
3876		pci_slot_unlock(slot);
3877	} else
3878		rc = -EAGAIN;
3879
3880	pci_slot_restore(slot);
3881
3882	return rc;
3883}
3884EXPORT_SYMBOL_GPL(pci_try_reset_slot);
3885
3886static int pci_bus_reset(struct pci_bus *bus, int probe)
3887{
3888	if (!bus->self || !pci_bus_resetable(bus))
3889		return -ENOTTY;
3890
3891	if (probe)
3892		return 0;
3893
3894	pci_bus_lock(bus);
3895
3896	might_sleep();
3897
3898	pci_reset_bridge_secondary_bus(bus->self);
3899
3900	pci_bus_unlock(bus);
3901
3902	return 0;
3903}
3904
3905/**
3906 * pci_probe_reset_bus - probe whether a PCI bus can be reset
3907 * @bus: PCI bus to probe
3908 *
3909 * Return 0 if bus can be reset, negative if a bus reset is not supported.
3910 */
3911int pci_probe_reset_bus(struct pci_bus *bus)
3912{
3913	return pci_bus_reset(bus, 1);
3914}
3915EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
3916
3917/**
3918 * pci_reset_bus - reset a PCI bus
3919 * @bus: top level PCI bus to reset
3920 *
3921 * Do a bus reset on the given bus and any subordinate buses, saving
3922 * and restoring state of all devices.
3923 *
3924 * Return 0 on success, non-zero on error.
3925 */
3926int pci_reset_bus(struct pci_bus *bus)
3927{
3928	int rc;
3929
3930	rc = pci_bus_reset(bus, 1);
3931	if (rc)
3932		return rc;
3933
3934	pci_bus_save_and_disable(bus);
3935
3936	rc = pci_bus_reset(bus, 0);
3937
3938	pci_bus_restore(bus);
3939
3940	return rc;
3941}
3942EXPORT_SYMBOL_GPL(pci_reset_bus);
3943
3944/**
3945 * pci_try_reset_bus - Try to reset a PCI bus
3946 * @bus: top level PCI bus to reset
3947 *
3948 * Same as above except return -EAGAIN if the bus cannot be locked
3949 */
3950int pci_try_reset_bus(struct pci_bus *bus)
3951{
3952	int rc;
3953
3954	rc = pci_bus_reset(bus, 1);
3955	if (rc)
3956		return rc;
3957
3958	pci_bus_save_and_disable(bus);
3959
3960	if (pci_bus_trylock(bus)) {
3961		might_sleep();
3962		pci_reset_bridge_secondary_bus(bus->self);
3963		pci_bus_unlock(bus);
3964	} else
3965		rc = -EAGAIN;
3966
3967	pci_bus_restore(bus);
3968
3969	return rc;
3970}
3971EXPORT_SYMBOL_GPL(pci_try_reset_bus);
3972
3973/**
3974 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3975 * @dev: PCI device to query
3976 *
3977 * Returns mmrbc: maximum designed memory read count in bytes
3978 *    or appropriate error value.
3979 */
3980int pcix_get_max_mmrbc(struct pci_dev *dev)
3981{
3982	int cap;
3983	u32 stat;
3984
3985	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3986	if (!cap)
3987		return -EINVAL;
3988
3989	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3990		return -EINVAL;
3991
3992	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3993}
3994EXPORT_SYMBOL(pcix_get_max_mmrbc);
3995
3996/**
3997 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3998 * @dev: PCI device to query
3999 *
4000 * Returns mmrbc: maximum memory read count in bytes
4001 *    or appropriate error value.
4002 */
4003int pcix_get_mmrbc(struct pci_dev *dev)
4004{
4005	int cap;
4006	u16 cmd;
4007
4008	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4009	if (!cap)
4010		return -EINVAL;
4011
4012	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4013		return -EINVAL;
4014
4015	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4016}
4017EXPORT_SYMBOL(pcix_get_mmrbc);
4018
4019/**
4020 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4021 * @dev: PCI device to query
4022 * @mmrbc: maximum memory read count in bytes
4023 *    valid values are 512, 1024, 2048, 4096
4024 *
4025 * If possible sets maximum memory read byte count, some bridges have erratas
4026 * that prevent this.
4027 */
4028int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4029{
4030	int cap;
4031	u32 stat, v, o;
4032	u16 cmd;
4033
4034	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4035		return -EINVAL;
4036
4037	v = ffs(mmrbc) - 10;
4038
4039	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4040	if (!cap)
4041		return -EINVAL;
4042
4043	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4044		return -EINVAL;
4045
4046	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4047		return -E2BIG;
4048
4049	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4050		return -EINVAL;
4051
4052	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4053	if (o != v) {
4054		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4055			return -EIO;
4056
4057		cmd &= ~PCI_X_CMD_MAX_READ;
4058		cmd |= v << 2;
4059		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4060			return -EIO;
4061	}
4062	return 0;
4063}
4064EXPORT_SYMBOL(pcix_set_mmrbc);
4065
4066/**
4067 * pcie_get_readrq - get PCI Express read request size
4068 * @dev: PCI device to query
4069 *
4070 * Returns maximum memory read request in bytes
4071 *    or appropriate error value.
4072 */
4073int pcie_get_readrq(struct pci_dev *dev)
4074{
4075	u16 ctl;
4076
4077	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4078
4079	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4080}
4081EXPORT_SYMBOL(pcie_get_readrq);
4082
4083/**
4084 * pcie_set_readrq - set PCI Express maximum memory read request
4085 * @dev: PCI device to query
4086 * @rq: maximum memory read count in bytes
4087 *    valid values are 128, 256, 512, 1024, 2048, 4096
4088 *
4089 * If possible sets maximum memory read request in bytes
4090 */
4091int pcie_set_readrq(struct pci_dev *dev, int rq)
4092{
4093	u16 v;
4094
4095	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
4096		return -EINVAL;
4097
4098	/*
4099	 * If using the "performance" PCIe config, we clamp the
4100	 * read rq size to the max packet size to prevent the
4101	 * host bridge generating requests larger than we can
4102	 * cope with
4103	 */
4104	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4105		int mps = pcie_get_mps(dev);
4106
4107		if (mps < rq)
4108			rq = mps;
4109	}
4110
4111	v = (ffs(rq) - 8) << 12;
4112
4113	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4114						  PCI_EXP_DEVCTL_READRQ, v);
4115}
4116EXPORT_SYMBOL(pcie_set_readrq);
4117
4118/**
4119 * pcie_get_mps - get PCI Express maximum payload size
4120 * @dev: PCI device to query
4121 *
4122 * Returns maximum payload size in bytes
4123 */
4124int pcie_get_mps(struct pci_dev *dev)
4125{
4126	u16 ctl;
4127
4128	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4129
4130	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4131}
4132EXPORT_SYMBOL(pcie_get_mps);
4133
4134/**
4135 * pcie_set_mps - set PCI Express maximum payload size
4136 * @dev: PCI device to query
4137 * @mps: maximum payload size in bytes
4138 *    valid values are 128, 256, 512, 1024, 2048, 4096
4139 *
4140 * If possible sets maximum payload size
4141 */
4142int pcie_set_mps(struct pci_dev *dev, int mps)
4143{
4144	u16 v;
4145
4146	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4147		return -EINVAL;
4148
4149	v = ffs(mps) - 8;
4150	if (v > dev->pcie_mpss)
4151		return -EINVAL;
4152	v <<= 5;
4153
4154	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4155						  PCI_EXP_DEVCTL_PAYLOAD, v);
4156}
4157EXPORT_SYMBOL(pcie_set_mps);
4158
4159/**
4160 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4161 * @dev: PCI device to query
4162 * @speed: storage for minimum speed
4163 * @width: storage for minimum width
4164 *
4165 * This function will walk up the PCI device chain and determine the minimum
4166 * link width and speed of the device.
4167 */
4168int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4169			  enum pcie_link_width *width)
4170{
4171	int ret;
4172
4173	*speed = PCI_SPEED_UNKNOWN;
4174	*width = PCIE_LNK_WIDTH_UNKNOWN;
4175
4176	while (dev) {
4177		u16 lnksta;
4178		enum pci_bus_speed next_speed;
4179		enum pcie_link_width next_width;
4180
4181		ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4182		if (ret)
4183			return ret;
4184
4185		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4186		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4187			PCI_EXP_LNKSTA_NLW_SHIFT;
4188
4189		if (next_speed < *speed)
4190			*speed = next_speed;
4191
4192		if (next_width < *width)
4193			*width = next_width;
4194
4195		dev = dev->bus->self;
4196	}
4197
4198	return 0;
4199}
4200EXPORT_SYMBOL(pcie_get_minimum_link);
4201
4202/**
4203 * pci_select_bars - Make BAR mask from the type of resource
4204 * @dev: the PCI device for which BAR mask is made
4205 * @flags: resource type mask to be selected
4206 *
4207 * This helper routine makes bar mask from the type of resource.
4208 */
4209int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4210{
4211	int i, bars = 0;
4212	for (i = 0; i < PCI_NUM_RESOURCES; i++)
4213		if (pci_resource_flags(dev, i) & flags)
4214			bars |= (1 << i);
4215	return bars;
4216}
4217EXPORT_SYMBOL(pci_select_bars);
4218
4219/**
4220 * pci_resource_bar - get position of the BAR associated with a resource
4221 * @dev: the PCI device
4222 * @resno: the resource number
4223 * @type: the BAR type to be filled in
4224 *
4225 * Returns BAR position in config space, or 0 if the BAR is invalid.
4226 */
4227int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
4228{
4229	int reg;
4230
4231	if (resno < PCI_ROM_RESOURCE) {
4232		*type = pci_bar_unknown;
4233		return PCI_BASE_ADDRESS_0 + 4 * resno;
4234	} else if (resno == PCI_ROM_RESOURCE) {
4235		*type = pci_bar_mem32;
4236		return dev->rom_base_reg;
4237	} else if (resno < PCI_BRIDGE_RESOURCES) {
4238		/* device specific resource */
4239		*type = pci_bar_unknown;
4240		reg = pci_iov_resource_bar(dev, resno);
4241		if (reg)
4242			return reg;
4243	}
4244
4245	dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
4246	return 0;
4247}
4248
4249/* Some architectures require additional programming to enable VGA */
4250static arch_set_vga_state_t arch_set_vga_state;
4251
4252void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4253{
4254	arch_set_vga_state = func;	/* NULL disables */
4255}
4256
4257static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4258				  unsigned int command_bits, u32 flags)
4259{
4260	if (arch_set_vga_state)
4261		return arch_set_vga_state(dev, decode, command_bits,
4262						flags);
4263	return 0;
4264}
4265
4266/**
4267 * pci_set_vga_state - set VGA decode state on device and parents if requested
4268 * @dev: the PCI device
4269 * @decode: true = enable decoding, false = disable decoding
4270 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4271 * @flags: traverse ancestors and change bridges
4272 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4273 */
4274int pci_set_vga_state(struct pci_dev *dev, bool decode,
4275		      unsigned int command_bits, u32 flags)
4276{
4277	struct pci_bus *bus;
4278	struct pci_dev *bridge;
4279	u16 cmd;
4280	int rc;
4281
4282	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4283
4284	/* ARCH specific VGA enables */
4285	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4286	if (rc)
4287		return rc;
4288
4289	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4290		pci_read_config_word(dev, PCI_COMMAND, &cmd);
4291		if (decode == true)
4292			cmd |= command_bits;
4293		else
4294			cmd &= ~command_bits;
4295		pci_write_config_word(dev, PCI_COMMAND, cmd);
4296	}
4297
4298	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4299		return 0;
4300
4301	bus = dev->bus;
4302	while (bus) {
4303		bridge = bus->self;
4304		if (bridge) {
4305			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4306					     &cmd);
4307			if (decode == true)
4308				cmd |= PCI_BRIDGE_CTL_VGA;
4309			else
4310				cmd &= ~PCI_BRIDGE_CTL_VGA;
4311			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4312					      cmd);
4313		}
4314		bus = bus->parent;
4315	}
4316	return 0;
4317}
4318
4319bool pci_device_is_present(struct pci_dev *pdev)
4320{
4321	u32 v;
4322
4323	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
4324}
4325EXPORT_SYMBOL_GPL(pci_device_is_present);
4326
4327void pci_ignore_hotplug(struct pci_dev *dev)
4328{
4329	struct pci_dev *bridge = dev->bus->self;
4330
4331	dev->ignore_hotplug = 1;
4332	/* Propagate the "ignore hotplug" setting to the parent bridge. */
4333	if (bridge)
4334		bridge->ignore_hotplug = 1;
4335}
4336EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
4337
4338#define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4339static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4340static DEFINE_SPINLOCK(resource_alignment_lock);
4341
4342/**
4343 * pci_specified_resource_alignment - get resource alignment specified by user.
4344 * @dev: the PCI device to get
4345 *
4346 * RETURNS: Resource alignment if it is specified.
4347 *          Zero if it is not specified.
4348 */
4349static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
4350{
4351	int seg, bus, slot, func, align_order, count;
4352	resource_size_t align = 0;
4353	char *p;
4354
4355	spin_lock(&resource_alignment_lock);
4356	p = resource_alignment_param;
4357	while (*p) {
4358		count = 0;
4359		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
4360							p[count] == '@') {
4361			p += count + 1;
4362		} else {
4363			align_order = -1;
4364		}
4365		if (sscanf(p, "%x:%x:%x.%x%n",
4366			&seg, &bus, &slot, &func, &count) != 4) {
4367			seg = 0;
4368			if (sscanf(p, "%x:%x.%x%n",
4369					&bus, &slot, &func, &count) != 3) {
4370				/* Invalid format */
4371				printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
4372					p);
4373				break;
4374			}
4375		}
4376		p += count;
4377		if (seg == pci_domain_nr(dev->bus) &&
4378			bus == dev->bus->number &&
4379			slot == PCI_SLOT(dev->devfn) &&
4380			func == PCI_FUNC(dev->devfn)) {
4381			if (align_order == -1)
4382				align = PAGE_SIZE;
4383			else
4384				align = 1 << align_order;
4385			/* Found */
4386			break;
4387		}
4388		if (*p != ';' && *p != ',') {
4389			/* End of param or invalid format */
4390			break;
4391		}
4392		p++;
4393	}
4394	spin_unlock(&resource_alignment_lock);
4395	return align;
4396}
4397
4398/*
4399 * This function disables memory decoding and releases memory resources
4400 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
4401 * It also rounds up size to specified alignment.
4402 * Later on, the kernel will assign page-aligned memory resource back
4403 * to the device.
4404 */
4405void pci_reassigndev_resource_alignment(struct pci_dev *dev)
4406{
4407	int i;
4408	struct resource *r;
4409	resource_size_t align, size;
4410	u16 command;
4411
4412	/* check if specified PCI is target device to reassign */
4413	align = pci_specified_resource_alignment(dev);
4414	if (!align)
4415		return;
4416
4417	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
4418	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
4419		dev_warn(&dev->dev,
4420			"Can't reassign resources to host bridge.\n");
4421		return;
4422	}
4423
4424	dev_info(&dev->dev,
4425		"Disabling memory decoding and releasing memory resources.\n");
4426	pci_read_config_word(dev, PCI_COMMAND, &command);
4427	command &= ~PCI_COMMAND_MEMORY;
4428	pci_write_config_word(dev, PCI_COMMAND, command);
4429
4430	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
4431		r = &dev->resource[i];
4432		if (!(r->flags & IORESOURCE_MEM))
4433			continue;
4434		size = resource_size(r);
4435		if (size < align) {
4436			size = align;
4437			dev_info(&dev->dev,
4438				"Rounding up size of resource #%d to %#llx.\n",
4439				i, (unsigned long long)size);
4440		}
4441		r->flags |= IORESOURCE_UNSET;
4442		r->end = size - 1;
4443		r->start = 0;
4444	}
4445	/* Need to disable bridge's resource window,
4446	 * to enable the kernel to reassign new resource
4447	 * window later on.
4448	 */
4449	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
4450	    (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
4451		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
4452			r = &dev->resource[i];
4453			if (!(r->flags & IORESOURCE_MEM))
4454				continue;
4455			r->flags |= IORESOURCE_UNSET;
4456			r->end = resource_size(r) - 1;
4457			r->start = 0;
4458		}
4459		pci_disable_bridge_window(dev);
4460	}
4461}
4462
4463static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
4464{
4465	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
4466		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
4467	spin_lock(&resource_alignment_lock);
4468	strncpy(resource_alignment_param, buf, count);
4469	resource_alignment_param[count] = '\0';
4470	spin_unlock(&resource_alignment_lock);
4471	return count;
4472}
4473
4474static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
4475{
4476	size_t count;
4477	spin_lock(&resource_alignment_lock);
4478	count = snprintf(buf, size, "%s", resource_alignment_param);
4479	spin_unlock(&resource_alignment_lock);
4480	return count;
4481}
4482
4483static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
4484{
4485	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
4486}
4487
4488static ssize_t pci_resource_alignment_store(struct bus_type *bus,
4489					const char *buf, size_t count)
4490{
4491	return pci_set_resource_alignment_param(buf, count);
4492}
4493
4494BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
4495					pci_resource_alignment_store);
4496
4497static int __init pci_resource_alignment_sysfs_init(void)
4498{
4499	return bus_create_file(&pci_bus_type,
4500					&bus_attr_resource_alignment);
4501}
4502late_initcall(pci_resource_alignment_sysfs_init);
4503
4504static void pci_no_domains(void)
4505{
4506#ifdef CONFIG_PCI_DOMAINS
4507	pci_domains_supported = 0;
4508#endif
4509}
4510
4511#ifdef CONFIG_PCI_DOMAINS
4512static atomic_t __domain_nr = ATOMIC_INIT(-1);
4513
4514int pci_get_new_domain_nr(void)
4515{
4516	return atomic_inc_return(&__domain_nr);
4517}
4518
4519#ifdef CONFIG_PCI_DOMAINS_GENERIC
4520void pci_bus_assign_domain_nr(struct pci_bus *bus, struct device *parent)
4521{
4522	static int use_dt_domains = -1;
4523	int domain = of_get_pci_domain_nr(parent->of_node);
4524
4525	/*
4526	 * Check DT domain and use_dt_domains values.
4527	 *
4528	 * If DT domain property is valid (domain >= 0) and
4529	 * use_dt_domains != 0, the DT assignment is valid since this means
4530	 * we have not previously allocated a domain number by using
4531	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
4532	 * 1, to indicate that we have just assigned a domain number from
4533	 * DT.
4534	 *
4535	 * If DT domain property value is not valid (ie domain < 0), and we
4536	 * have not previously assigned a domain number from DT
4537	 * (use_dt_domains != 1) we should assign a domain number by
4538	 * using the:
4539	 *
4540	 * pci_get_new_domain_nr()
4541	 *
4542	 * API and update the use_dt_domains value to keep track of method we
4543	 * are using to assign domain numbers (use_dt_domains = 0).
4544	 *
4545	 * All other combinations imply we have a platform that is trying
4546	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
4547	 * which is a recipe for domain mishandling and it is prevented by
4548	 * invalidating the domain value (domain = -1) and printing a
4549	 * corresponding error.
4550	 */
4551	if (domain >= 0 && use_dt_domains) {
4552		use_dt_domains = 1;
4553	} else if (domain < 0 && use_dt_domains != 1) {
4554		use_dt_domains = 0;
4555		domain = pci_get_new_domain_nr();
4556	} else {
4557		dev_err(parent, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n",
4558			parent->of_node->full_name);
4559		domain = -1;
4560	}
4561
4562	bus->domain_nr = domain;
4563}
4564#endif
4565#endif
4566
4567/**
4568 * pci_ext_cfg_avail - can we access extended PCI config space?
4569 *
4570 * Returns 1 if we can access PCI extended config space (offsets
4571 * greater than 0xff). This is the default implementation. Architecture
4572 * implementations can override this.
4573 */
4574int __weak pci_ext_cfg_avail(void)
4575{
4576	return 1;
4577}
4578
4579void __weak pci_fixup_cardbus(struct pci_bus *bus)
4580{
4581}
4582EXPORT_SYMBOL(pci_fixup_cardbus);
4583
4584static int __init pci_setup(char *str)
4585{
4586	while (str) {
4587		char *k = strchr(str, ',');
4588		if (k)
4589			*k++ = 0;
4590		if (*str && (str = pcibios_setup(str)) && *str) {
4591			if (!strcmp(str, "nomsi")) {
4592				pci_no_msi();
4593			} else if (!strcmp(str, "noaer")) {
4594				pci_no_aer();
4595			} else if (!strncmp(str, "realloc=", 8)) {
4596				pci_realloc_get_opt(str + 8);
4597			} else if (!strncmp(str, "realloc", 7)) {
4598				pci_realloc_get_opt("on");
4599			} else if (!strcmp(str, "nodomains")) {
4600				pci_no_domains();
4601			} else if (!strncmp(str, "noari", 5)) {
4602				pcie_ari_disabled = true;
4603			} else if (!strncmp(str, "cbiosize=", 9)) {
4604				pci_cardbus_io_size = memparse(str + 9, &str);
4605			} else if (!strncmp(str, "cbmemsize=", 10)) {
4606				pci_cardbus_mem_size = memparse(str + 10, &str);
4607			} else if (!strncmp(str, "resource_alignment=", 19)) {
4608				pci_set_resource_alignment_param(str + 19,
4609							strlen(str + 19));
4610			} else if (!strncmp(str, "ecrc=", 5)) {
4611				pcie_ecrc_get_policy(str + 5);
4612			} else if (!strncmp(str, "hpiosize=", 9)) {
4613				pci_hotplug_io_size = memparse(str + 9, &str);
4614			} else if (!strncmp(str, "hpmemsize=", 10)) {
4615				pci_hotplug_mem_size = memparse(str + 10, &str);
4616			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
4617				pcie_bus_config = PCIE_BUS_TUNE_OFF;
4618			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
4619				pcie_bus_config = PCIE_BUS_SAFE;
4620			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
4621				pcie_bus_config = PCIE_BUS_PERFORMANCE;
4622			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
4623				pcie_bus_config = PCIE_BUS_PEER2PEER;
4624			} else if (!strncmp(str, "pcie_scan_all", 13)) {
4625				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
4626			} else {
4627				printk(KERN_ERR "PCI: Unknown option `%s'\n",
4628						str);
4629			}
4630		}
4631		str = k;
4632	}
4633	return 0;
4634}
4635early_param("pci", pci_setup);
4636