1/* 2** ccio-dma.c: 3** DMA management routines for first generation cache-coherent machines. 4** Program U2/Uturn in "Virtual Mode" and use the I/O MMU. 5** 6** (c) Copyright 2000 Grant Grundler 7** (c) Copyright 2000 Ryan Bradetich 8** (c) Copyright 2000 Hewlett-Packard Company 9** 10** This program is free software; you can redistribute it and/or modify 11** it under the terms of the GNU General Public License as published by 12** the Free Software Foundation; either version 2 of the License, or 13** (at your option) any later version. 14** 15** 16** "Real Mode" operation refers to U2/Uturn chip operation. 17** U2/Uturn were designed to perform coherency checks w/o using 18** the I/O MMU - basically what x86 does. 19** 20** Philipp Rumpf has a "Real Mode" driver for PCX-W machines at: 21** CVSROOT=:pserver:anonymous@198.186.203.37:/cvsroot/linux-parisc 22** cvs -z3 co linux/arch/parisc/kernel/dma-rm.c 23** 24** I've rewritten his code to work under TPG's tree. See ccio-rm-dma.c. 25** 26** Drawbacks of using Real Mode are: 27** o outbound DMA is slower - U2 won't prefetch data (GSC+ XQL signal). 28** o Inbound DMA less efficient - U2 can't use DMA_FAST attribute. 29** o Ability to do scatter/gather in HW is lost. 30** o Doesn't work under PCX-U/U+ machines since they didn't follow 31** the coherency design originally worked out. Only PCX-W does. 32*/ 33 34#include <linux/types.h> 35#include <linux/kernel.h> 36#include <linux/init.h> 37#include <linux/mm.h> 38#include <linux/spinlock.h> 39#include <linux/slab.h> 40#include <linux/string.h> 41#include <linux/pci.h> 42#include <linux/reboot.h> 43#include <linux/proc_fs.h> 44#include <linux/seq_file.h> 45#include <linux/scatterlist.h> 46#include <linux/iommu-helper.h> 47#include <linux/export.h> 48 49#include <asm/byteorder.h> 50#include <asm/cache.h> /* for L1_CACHE_BYTES */ 51#include <asm/uaccess.h> 52#include <asm/page.h> 53#include <asm/dma.h> 54#include <asm/io.h> 55#include <asm/hardware.h> /* for register_module() */ 56#include <asm/parisc-device.h> 57 58/* 59** Choose "ccio" since that's what HP-UX calls it. 60** Make it easier for folks to migrate from one to the other :^) 61*/ 62#define MODULE_NAME "ccio" 63 64#undef DEBUG_CCIO_RES 65#undef DEBUG_CCIO_RUN 66#undef DEBUG_CCIO_INIT 67#undef DEBUG_CCIO_RUN_SG 68 69#ifdef CONFIG_PROC_FS 70/* depends on proc fs support. But costs CPU performance. */ 71#undef CCIO_COLLECT_STATS 72#endif 73 74#include <asm/runway.h> /* for proc_runway_root */ 75 76#ifdef DEBUG_CCIO_INIT 77#define DBG_INIT(x...) printk(x) 78#else 79#define DBG_INIT(x...) 80#endif 81 82#ifdef DEBUG_CCIO_RUN 83#define DBG_RUN(x...) printk(x) 84#else 85#define DBG_RUN(x...) 86#endif 87 88#ifdef DEBUG_CCIO_RES 89#define DBG_RES(x...) printk(x) 90#else 91#define DBG_RES(x...) 92#endif 93 94#ifdef DEBUG_CCIO_RUN_SG 95#define DBG_RUN_SG(x...) printk(x) 96#else 97#define DBG_RUN_SG(x...) 98#endif 99 100#define CCIO_INLINE inline 101#define WRITE_U32(value, addr) __raw_writel(value, addr) 102#define READ_U32(addr) __raw_readl(addr) 103 104#define U2_IOA_RUNWAY 0x580 105#define U2_BC_GSC 0x501 106#define UTURN_IOA_RUNWAY 0x581 107#define UTURN_BC_GSC 0x502 108 109#define IOA_NORMAL_MODE 0x00020080 /* IO_CONTROL to turn on CCIO */ 110#define CMD_TLB_DIRECT_WRITE 35 /* IO_COMMAND for I/O TLB Writes */ 111#define CMD_TLB_PURGE 33 /* IO_COMMAND to Purge I/O TLB entry */ 112 113struct ioa_registers { 114 /* Runway Supervisory Set */ 115 int32_t unused1[12]; 116 uint32_t io_command; /* Offset 12 */ 117 uint32_t io_status; /* Offset 13 */ 118 uint32_t io_control; /* Offset 14 */ 119 int32_t unused2[1]; 120 121 /* Runway Auxiliary Register Set */ 122 uint32_t io_err_resp; /* Offset 0 */ 123 uint32_t io_err_info; /* Offset 1 */ 124 uint32_t io_err_req; /* Offset 2 */ 125 uint32_t io_err_resp_hi; /* Offset 3 */ 126 uint32_t io_tlb_entry_m; /* Offset 4 */ 127 uint32_t io_tlb_entry_l; /* Offset 5 */ 128 uint32_t unused3[1]; 129 uint32_t io_pdir_base; /* Offset 7 */ 130 uint32_t io_io_low_hv; /* Offset 8 */ 131 uint32_t io_io_high_hv; /* Offset 9 */ 132 uint32_t unused4[1]; 133 uint32_t io_chain_id_mask; /* Offset 11 */ 134 uint32_t unused5[2]; 135 uint32_t io_io_low; /* Offset 14 */ 136 uint32_t io_io_high; /* Offset 15 */ 137}; 138 139/* 140** IOA Registers 141** ------------- 142** 143** Runway IO_CONTROL Register (+0x38) 144** 145** The Runway IO_CONTROL register controls the forwarding of transactions. 146** 147** | 0 ... 13 | 14 15 | 16 ... 21 | 22 | 23 24 | 25 ... 31 | 148** | HV | TLB | reserved | HV | mode | reserved | 149** 150** o mode field indicates the address translation of transactions 151** forwarded from Runway to GSC+: 152** Mode Name Value Definition 153** Off (default) 0 Opaque to matching addresses. 154** Include 1 Transparent for matching addresses. 155** Peek 3 Map matching addresses. 156** 157** + "Off" mode: Runway transactions which match the I/O range 158** specified by the IO_IO_LOW/IO_IO_HIGH registers will be ignored. 159** + "Include" mode: all addresses within the I/O range specified 160** by the IO_IO_LOW and IO_IO_HIGH registers are transparently 161** forwarded. This is the I/O Adapter's normal operating mode. 162** + "Peek" mode: used during system configuration to initialize the 163** GSC+ bus. Runway Write_Shorts in the address range specified by 164** IO_IO_LOW and IO_IO_HIGH are forwarded through the I/O Adapter 165** *AND* the GSC+ address is remapped to the Broadcast Physical 166** Address space by setting the 14 high order address bits of the 167** 32 bit GSC+ address to ones. 168** 169** o TLB field affects transactions which are forwarded from GSC+ to Runway. 170** "Real" mode is the poweron default. 171** 172** TLB Mode Value Description 173** Real 0 No TLB translation. Address is directly mapped and the 174** virtual address is composed of selected physical bits. 175** Error 1 Software fills the TLB manually. 176** Normal 2 IOA fetches IO TLB misses from IO PDIR (in host memory). 177** 178** 179** IO_IO_LOW_HV +0x60 (HV dependent) 180** IO_IO_HIGH_HV +0x64 (HV dependent) 181** IO_IO_LOW +0x78 (Architected register) 182** IO_IO_HIGH +0x7c (Architected register) 183** 184** IO_IO_LOW and IO_IO_HIGH set the lower and upper bounds of the 185** I/O Adapter address space, respectively. 186** 187** 0 ... 7 | 8 ... 15 | 16 ... 31 | 188** 11111111 | 11111111 | address | 189** 190** Each LOW/HIGH pair describes a disjoint address space region. 191** (2 per GSC+ port). Each incoming Runway transaction address is compared 192** with both sets of LOW/HIGH registers. If the address is in the range 193** greater than or equal to IO_IO_LOW and less than IO_IO_HIGH the transaction 194** for forwarded to the respective GSC+ bus. 195** Specify IO_IO_LOW equal to or greater than IO_IO_HIGH to avoid specifying 196** an address space region. 197** 198** In order for a Runway address to reside within GSC+ extended address space: 199** Runway Address [0:7] must identically compare to 8'b11111111 200** Runway Address [8:11] must be equal to IO_IO_LOW(_HV)[16:19] 201** Runway Address [12:23] must be greater than or equal to 202** IO_IO_LOW(_HV)[20:31] and less than IO_IO_HIGH(_HV)[20:31]. 203** Runway Address [24:39] is not used in the comparison. 204** 205** When the Runway transaction is forwarded to GSC+, the GSC+ address is 206** as follows: 207** GSC+ Address[0:3] 4'b1111 208** GSC+ Address[4:29] Runway Address[12:37] 209** GSC+ Address[30:31] 2'b00 210** 211** All 4 Low/High registers must be initialized (by PDC) once the lower bus 212** is interrogated and address space is defined. The operating system will 213** modify the architectural IO_IO_LOW and IO_IO_HIGH registers following 214** the PDC initialization. However, the hardware version dependent IO_IO_LOW 215** and IO_IO_HIGH registers should not be subsequently altered by the OS. 216** 217** Writes to both sets of registers will take effect immediately, bypassing 218** the queues, which ensures that subsequent Runway transactions are checked 219** against the updated bounds values. However reads are queued, introducing 220** the possibility of a read being bypassed by a subsequent write to the same 221** register. This sequence can be avoided by having software wait for read 222** returns before issuing subsequent writes. 223*/ 224 225struct ioc { 226 struct ioa_registers __iomem *ioc_regs; /* I/O MMU base address */ 227 u8 *res_map; /* resource map, bit == pdir entry */ 228 u64 *pdir_base; /* physical base address */ 229 u32 pdir_size; /* bytes, function of IOV Space size */ 230 u32 res_hint; /* next available IOVP - 231 circular search */ 232 u32 res_size; /* size of resource map in bytes */ 233 spinlock_t res_lock; 234 235#ifdef CCIO_COLLECT_STATS 236#define CCIO_SEARCH_SAMPLE 0x100 237 unsigned long avg_search[CCIO_SEARCH_SAMPLE]; 238 unsigned long avg_idx; /* current index into avg_search */ 239 unsigned long used_pages; 240 unsigned long msingle_calls; 241 unsigned long msingle_pages; 242 unsigned long msg_calls; 243 unsigned long msg_pages; 244 unsigned long usingle_calls; 245 unsigned long usingle_pages; 246 unsigned long usg_calls; 247 unsigned long usg_pages; 248#endif 249 unsigned short cujo20_bug; 250 251 /* STUFF We don't need in performance path */ 252 u32 chainid_shift; /* specify bit location of chain_id */ 253 struct ioc *next; /* Linked list of discovered iocs */ 254 const char *name; /* device name from firmware */ 255 unsigned int hw_path; /* the hardware path this ioc is associatd with */ 256 struct pci_dev *fake_pci_dev; /* the fake pci_dev for non-pci devs */ 257 struct resource mmio_region[2]; /* The "routed" MMIO regions */ 258}; 259 260static struct ioc *ioc_list; 261static int ioc_count; 262 263/************************************************************** 264* 265* I/O Pdir Resource Management 266* 267* Bits set in the resource map are in use. 268* Each bit can represent a number of pages. 269* LSbs represent lower addresses (IOVA's). 270* 271* This was was copied from sba_iommu.c. Don't try to unify 272* the two resource managers unless a way to have different 273* allocation policies is also adjusted. We'd like to avoid 274* I/O TLB thrashing by having resource allocation policy 275* match the I/O TLB replacement policy. 276* 277***************************************************************/ 278#define IOVP_SIZE PAGE_SIZE 279#define IOVP_SHIFT PAGE_SHIFT 280#define IOVP_MASK PAGE_MASK 281 282/* Convert from IOVP to IOVA and vice versa. */ 283#define CCIO_IOVA(iovp,offset) ((iovp) | (offset)) 284#define CCIO_IOVP(iova) ((iova) & IOVP_MASK) 285 286#define PDIR_INDEX(iovp) ((iovp)>>IOVP_SHIFT) 287#define MKIOVP(pdir_idx) ((long)(pdir_idx) << IOVP_SHIFT) 288#define MKIOVA(iovp,offset) (dma_addr_t)((long)iovp | (long)offset) 289 290/* 291** Don't worry about the 150% average search length on a miss. 292** If the search wraps around, and passes the res_hint, it will 293** cause the kernel to panic anyhow. 294*/ 295#define CCIO_SEARCH_LOOP(ioc, res_idx, mask, size) \ 296 for(; res_ptr < res_end; ++res_ptr) { \ 297 int ret;\ 298 unsigned int idx;\ 299 idx = (unsigned int)((unsigned long)res_ptr - (unsigned long)ioc->res_map); \ 300 ret = iommu_is_span_boundary(idx << 3, pages_needed, 0, boundary_size);\ 301 if ((0 == (*res_ptr & mask)) && !ret) { \ 302 *res_ptr |= mask; \ 303 res_idx = idx;\ 304 ioc->res_hint = res_idx + (size >> 3); \ 305 goto resource_found; \ 306 } \ 307 } 308 309#define CCIO_FIND_FREE_MAPPING(ioa, res_idx, mask, size) \ 310 u##size *res_ptr = (u##size *)&((ioc)->res_map[ioa->res_hint & ~((size >> 3) - 1)]); \ 311 u##size *res_end = (u##size *)&(ioc)->res_map[ioa->res_size]; \ 312 CCIO_SEARCH_LOOP(ioc, res_idx, mask, size); \ 313 res_ptr = (u##size *)&(ioc)->res_map[0]; \ 314 CCIO_SEARCH_LOOP(ioa, res_idx, mask, size); 315 316/* 317** Find available bit in this ioa's resource map. 318** Use a "circular" search: 319** o Most IOVA's are "temporary" - avg search time should be small. 320** o keep a history of what happened for debugging 321** o KISS. 322** 323** Perf optimizations: 324** o search for log2(size) bits at a time. 325** o search for available resource bits using byte/word/whatever. 326** o use different search for "large" (eg > 4 pages) or "very large" 327** (eg > 16 pages) mappings. 328*/ 329 330/** 331 * ccio_alloc_range - Allocate pages in the ioc's resource map. 332 * @ioc: The I/O Controller. 333 * @pages_needed: The requested number of pages to be mapped into the 334 * I/O Pdir... 335 * 336 * This function searches the resource map of the ioc to locate a range 337 * of available pages for the requested size. 338 */ 339static int 340ccio_alloc_range(struct ioc *ioc, struct device *dev, size_t size) 341{ 342 unsigned int pages_needed = size >> IOVP_SHIFT; 343 unsigned int res_idx; 344 unsigned long boundary_size; 345#ifdef CCIO_COLLECT_STATS 346 unsigned long cr_start = mfctl(16); 347#endif 348 349 BUG_ON(pages_needed == 0); 350 BUG_ON((pages_needed * IOVP_SIZE) > DMA_CHUNK_SIZE); 351 352 DBG_RES("%s() size: %d pages_needed %d\n", 353 __func__, size, pages_needed); 354 355 /* 356 ** "seek and ye shall find"...praying never hurts either... 357 ** ggg sacrifices another 710 to the computer gods. 358 */ 359 360 boundary_size = ALIGN((unsigned long long)dma_get_seg_boundary(dev) + 1, 361 1ULL << IOVP_SHIFT) >> IOVP_SHIFT; 362 363 if (pages_needed <= 8) { 364 /* 365 * LAN traffic will not thrash the TLB IFF the same NIC 366 * uses 8 adjacent pages to map separate payload data. 367 * ie the same byte in the resource bit map. 368 */ 369#if 0 370 /* FIXME: bit search should shift it's way through 371 * an unsigned long - not byte at a time. As it is now, 372 * we effectively allocate this byte to this mapping. 373 */ 374 unsigned long mask = ~(~0UL >> pages_needed); 375 CCIO_FIND_FREE_MAPPING(ioc, res_idx, mask, 8); 376#else 377 CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xff, 8); 378#endif 379 } else if (pages_needed <= 16) { 380 CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xffff, 16); 381 } else if (pages_needed <= 32) { 382 CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~(unsigned int)0, 32); 383#ifdef __LP64__ 384 } else if (pages_needed <= 64) { 385 CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~0UL, 64); 386#endif 387 } else { 388 panic("%s: %s() Too many pages to map. pages_needed: %u\n", 389 __FILE__, __func__, pages_needed); 390 } 391 392 panic("%s: %s() I/O MMU is out of mapping resources.\n", __FILE__, 393 __func__); 394 395resource_found: 396 397 DBG_RES("%s() res_idx %d res_hint: %d\n", 398 __func__, res_idx, ioc->res_hint); 399 400#ifdef CCIO_COLLECT_STATS 401 { 402 unsigned long cr_end = mfctl(16); 403 unsigned long tmp = cr_end - cr_start; 404 /* check for roll over */ 405 cr_start = (cr_end < cr_start) ? -(tmp) : (tmp); 406 } 407 ioc->avg_search[ioc->avg_idx++] = cr_start; 408 ioc->avg_idx &= CCIO_SEARCH_SAMPLE - 1; 409 ioc->used_pages += pages_needed; 410#endif 411 /* 412 ** return the bit address. 413 */ 414 return res_idx << 3; 415} 416 417#define CCIO_FREE_MAPPINGS(ioc, res_idx, mask, size) \ 418 u##size *res_ptr = (u##size *)&((ioc)->res_map[res_idx]); \ 419 BUG_ON((*res_ptr & mask) != mask); \ 420 *res_ptr &= ~(mask); 421 422/** 423 * ccio_free_range - Free pages from the ioc's resource map. 424 * @ioc: The I/O Controller. 425 * @iova: The I/O Virtual Address. 426 * @pages_mapped: The requested number of pages to be freed from the 427 * I/O Pdir. 428 * 429 * This function frees the resouces allocated for the iova. 430 */ 431static void 432ccio_free_range(struct ioc *ioc, dma_addr_t iova, unsigned long pages_mapped) 433{ 434 unsigned long iovp = CCIO_IOVP(iova); 435 unsigned int res_idx = PDIR_INDEX(iovp) >> 3; 436 437 BUG_ON(pages_mapped == 0); 438 BUG_ON((pages_mapped * IOVP_SIZE) > DMA_CHUNK_SIZE); 439 BUG_ON(pages_mapped > BITS_PER_LONG); 440 441 DBG_RES("%s(): res_idx: %d pages_mapped %d\n", 442 __func__, res_idx, pages_mapped); 443 444#ifdef CCIO_COLLECT_STATS 445 ioc->used_pages -= pages_mapped; 446#endif 447 448 if(pages_mapped <= 8) { 449#if 0 450 /* see matching comments in alloc_range */ 451 unsigned long mask = ~(~0UL >> pages_mapped); 452 CCIO_FREE_MAPPINGS(ioc, res_idx, mask, 8); 453#else 454 CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffUL, 8); 455#endif 456 } else if(pages_mapped <= 16) { 457 CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffffUL, 16); 458 } else if(pages_mapped <= 32) { 459 CCIO_FREE_MAPPINGS(ioc, res_idx, ~(unsigned int)0, 32); 460#ifdef __LP64__ 461 } else if(pages_mapped <= 64) { 462 CCIO_FREE_MAPPINGS(ioc, res_idx, ~0UL, 64); 463#endif 464 } else { 465 panic("%s:%s() Too many pages to unmap.\n", __FILE__, 466 __func__); 467 } 468} 469 470/**************************************************************** 471** 472** CCIO dma_ops support routines 473** 474*****************************************************************/ 475 476typedef unsigned long space_t; 477#define KERNEL_SPACE 0 478 479/* 480** DMA "Page Type" and Hints 481** o if SAFE_DMA isn't set, mapping is for FAST_DMA. SAFE_DMA should be 482** set for subcacheline DMA transfers since we don't want to damage the 483** other part of a cacheline. 484** o SAFE_DMA must be set for "memory" allocated via pci_alloc_consistent(). 485** This bit tells U2 to do R/M/W for partial cachelines. "Streaming" 486** data can avoid this if the mapping covers full cache lines. 487** o STOP_MOST is needed for atomicity across cachelines. 488** Apparently only "some EISA devices" need this. 489** Using CONFIG_ISA is hack. Only the IOA with EISA under it needs 490** to use this hint iff the EISA devices needs this feature. 491** According to the U2 ERS, STOP_MOST enabled pages hurt performance. 492** o PREFETCH should *not* be set for cases like Multiple PCI devices 493** behind GSCtoPCI (dino) bus converter. Only one cacheline per GSC 494** device can be fetched and multiply DMA streams will thrash the 495** prefetch buffer and burn memory bandwidth. See 6.7.3 "Prefetch Rules 496** and Invalidation of Prefetch Entries". 497** 498** FIXME: the default hints need to be per GSC device - not global. 499** 500** HP-UX dorks: linux device driver programming model is totally different 501** than HP-UX's. HP-UX always sets HINT_PREFETCH since it's drivers 502** do special things to work on non-coherent platforms...linux has to 503** be much more careful with this. 504*/ 505#define IOPDIR_VALID 0x01UL 506#define HINT_SAFE_DMA 0x02UL /* used for pci_alloc_consistent() pages */ 507#ifdef CONFIG_EISA 508#define HINT_STOP_MOST 0x04UL /* LSL support */ 509#else 510#define HINT_STOP_MOST 0x00UL /* only needed for "some EISA devices" */ 511#endif 512#define HINT_UDPATE_ENB 0x08UL /* not used/supported by U2 */ 513#define HINT_PREFETCH 0x10UL /* for outbound pages which are not SAFE */ 514 515 516/* 517** Use direction (ie PCI_DMA_TODEVICE) to pick hint. 518** ccio_alloc_consistent() depends on this to get SAFE_DMA 519** when it passes in BIDIRECTIONAL flag. 520*/ 521static u32 hint_lookup[] = { 522 [PCI_DMA_BIDIRECTIONAL] = HINT_STOP_MOST | HINT_SAFE_DMA | IOPDIR_VALID, 523 [PCI_DMA_TODEVICE] = HINT_STOP_MOST | HINT_PREFETCH | IOPDIR_VALID, 524 [PCI_DMA_FROMDEVICE] = HINT_STOP_MOST | IOPDIR_VALID, 525}; 526 527/** 528 * ccio_io_pdir_entry - Initialize an I/O Pdir. 529 * @pdir_ptr: A pointer into I/O Pdir. 530 * @sid: The Space Identifier. 531 * @vba: The virtual address. 532 * @hints: The DMA Hint. 533 * 534 * Given a virtual address (vba, arg2) and space id, (sid, arg1), 535 * load the I/O PDIR entry pointed to by pdir_ptr (arg0). Each IO Pdir 536 * entry consists of 8 bytes as shown below (MSB == bit 0): 537 * 538 * 539 * WORD 0: 540 * +------+----------------+-----------------------------------------------+ 541 * | Phys | Virtual Index | Phys | 542 * | 0:3 | 0:11 | 4:19 | 543 * |4 bits| 12 bits | 16 bits | 544 * +------+----------------+-----------------------------------------------+ 545 * WORD 1: 546 * +-----------------------+-----------------------------------------------+ 547 * | Phys | Rsvd | Prefetch |Update |Rsvd |Lock |Safe |Valid | 548 * | 20:39 | | Enable |Enable | |Enable|DMA | | 549 * | 20 bits | 5 bits | 1 bit |1 bit |2 bits|1 bit |1 bit |1 bit | 550 * +-----------------------+-----------------------------------------------+ 551 * 552 * The virtual index field is filled with the results of the LCI 553 * (Load Coherence Index) instruction. The 8 bits used for the virtual 554 * index are bits 12:19 of the value returned by LCI. 555 */ 556static void CCIO_INLINE 557ccio_io_pdir_entry(u64 *pdir_ptr, space_t sid, unsigned long vba, 558 unsigned long hints) 559{ 560 register unsigned long pa; 561 register unsigned long ci; /* coherent index */ 562 563 /* We currently only support kernel addresses */ 564 BUG_ON(sid != KERNEL_SPACE); 565 566 mtsp(sid,1); 567 568 /* 569 ** WORD 1 - low order word 570 ** "hints" parm includes the VALID bit! 571 ** "dep" clobbers the physical address offset bits as well. 572 */ 573 pa = virt_to_phys(vba); 574 asm volatile("depw %1,31,12,%0" : "+r" (pa) : "r" (hints)); 575 ((u32 *)pdir_ptr)[1] = (u32) pa; 576 577 /* 578 ** WORD 0 - high order word 579 */ 580 581#ifdef __LP64__ 582 /* 583 ** get bits 12:15 of physical address 584 ** shift bits 16:31 of physical address 585 ** and deposit them 586 */ 587 asm volatile ("extrd,u %1,15,4,%0" : "=r" (ci) : "r" (pa)); 588 asm volatile ("extrd,u %1,31,16,%0" : "+r" (pa) : "r" (pa)); 589 asm volatile ("depd %1,35,4,%0" : "+r" (pa) : "r" (ci)); 590#else 591 pa = 0; 592#endif 593 /* 594 ** get CPU coherency index bits 595 ** Grab virtual index [0:11] 596 ** Deposit virt_idx bits into I/O PDIR word 597 */ 598 asm volatile ("lci %%r0(%%sr1, %1), %0" : "=r" (ci) : "r" (vba)); 599 asm volatile ("extru %1,19,12,%0" : "+r" (ci) : "r" (ci)); 600 asm volatile ("depw %1,15,12,%0" : "+r" (pa) : "r" (ci)); 601 602 ((u32 *)pdir_ptr)[0] = (u32) pa; 603 604 605 /* FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360) 606 ** PCX-U/U+ do. (eg C200/C240) 607 ** PCX-T'? Don't know. (eg C110 or similar K-class) 608 ** 609 ** See PDC_MODEL/option 0/SW_CAP word for "Non-coherent IO-PDIR bit". 610 ** Hopefully we can patch (NOP) these out at boot time somehow. 611 ** 612 ** "Since PCX-U employs an offset hash that is incompatible with 613 ** the real mode coherence index generation of U2, the PDIR entry 614 ** must be flushed to memory to retain coherence." 615 */ 616 asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr)); 617 asm volatile("sync"); 618} 619 620/** 621 * ccio_clear_io_tlb - Remove stale entries from the I/O TLB. 622 * @ioc: The I/O Controller. 623 * @iovp: The I/O Virtual Page. 624 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir. 625 * 626 * Purge invalid I/O PDIR entries from the I/O TLB. 627 * 628 * FIXME: Can we change the byte_cnt to pages_mapped? 629 */ 630static CCIO_INLINE void 631ccio_clear_io_tlb(struct ioc *ioc, dma_addr_t iovp, size_t byte_cnt) 632{ 633 u32 chain_size = 1 << ioc->chainid_shift; 634 635 iovp &= IOVP_MASK; /* clear offset bits, just want pagenum */ 636 byte_cnt += chain_size; 637 638 while(byte_cnt > chain_size) { 639 WRITE_U32(CMD_TLB_PURGE | iovp, &ioc->ioc_regs->io_command); 640 iovp += chain_size; 641 byte_cnt -= chain_size; 642 } 643} 644 645/** 646 * ccio_mark_invalid - Mark the I/O Pdir entries invalid. 647 * @ioc: The I/O Controller. 648 * @iova: The I/O Virtual Address. 649 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir. 650 * 651 * Mark the I/O Pdir entries invalid and blow away the corresponding I/O 652 * TLB entries. 653 * 654 * FIXME: at some threshold it might be "cheaper" to just blow 655 * away the entire I/O TLB instead of individual entries. 656 * 657 * FIXME: Uturn has 256 TLB entries. We don't need to purge every 658 * PDIR entry - just once for each possible TLB entry. 659 * (We do need to maker I/O PDIR entries invalid regardless). 660 * 661 * FIXME: Can we change byte_cnt to pages_mapped? 662 */ 663static CCIO_INLINE void 664ccio_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt) 665{ 666 u32 iovp = (u32)CCIO_IOVP(iova); 667 size_t saved_byte_cnt; 668 669 /* round up to nearest page size */ 670 saved_byte_cnt = byte_cnt = ALIGN(byte_cnt, IOVP_SIZE); 671 672 while(byte_cnt > 0) { 673 /* invalidate one page at a time */ 674 unsigned int idx = PDIR_INDEX(iovp); 675 char *pdir_ptr = (char *) &(ioc->pdir_base[idx]); 676 677 BUG_ON(idx >= (ioc->pdir_size / sizeof(u64))); 678 pdir_ptr[7] = 0; /* clear only VALID bit */ 679 /* 680 ** FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360) 681 ** PCX-U/U+ do. (eg C200/C240) 682 ** See PDC_MODEL/option 0/SW_CAP for "Non-coherent IO-PDIR bit". 683 ** 684 ** Hopefully someone figures out how to patch (NOP) the 685 ** FDC/SYNC out at boot time. 686 */ 687 asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr[7])); 688 689 iovp += IOVP_SIZE; 690 byte_cnt -= IOVP_SIZE; 691 } 692 693 asm volatile("sync"); 694 ccio_clear_io_tlb(ioc, CCIO_IOVP(iova), saved_byte_cnt); 695} 696 697/**************************************************************** 698** 699** CCIO dma_ops 700** 701*****************************************************************/ 702 703/** 704 * ccio_dma_supported - Verify the IOMMU supports the DMA address range. 705 * @dev: The PCI device. 706 * @mask: A bit mask describing the DMA address range of the device. 707 * 708 * This function implements the pci_dma_supported function. 709 */ 710static int 711ccio_dma_supported(struct device *dev, u64 mask) 712{ 713 if(dev == NULL) { 714 printk(KERN_ERR MODULE_NAME ": EISA/ISA/et al not supported\n"); 715 BUG(); 716 return 0; 717 } 718 719 /* only support 32-bit devices (ie PCI/GSC) */ 720 return (int)(mask == 0xffffffffUL); 721} 722 723/** 724 * ccio_map_single - Map an address range into the IOMMU. 725 * @dev: The PCI device. 726 * @addr: The start address of the DMA region. 727 * @size: The length of the DMA region. 728 * @direction: The direction of the DMA transaction (to/from device). 729 * 730 * This function implements the pci_map_single function. 731 */ 732static dma_addr_t 733ccio_map_single(struct device *dev, void *addr, size_t size, 734 enum dma_data_direction direction) 735{ 736 int idx; 737 struct ioc *ioc; 738 unsigned long flags; 739 dma_addr_t iovp; 740 dma_addr_t offset; 741 u64 *pdir_start; 742 unsigned long hint = hint_lookup[(int)direction]; 743 744 BUG_ON(!dev); 745 ioc = GET_IOC(dev); 746 747 BUG_ON(size <= 0); 748 749 /* save offset bits */ 750 offset = ((unsigned long) addr) & ~IOVP_MASK; 751 752 /* round up to nearest IOVP_SIZE */ 753 size = ALIGN(size + offset, IOVP_SIZE); 754 spin_lock_irqsave(&ioc->res_lock, flags); 755 756#ifdef CCIO_COLLECT_STATS 757 ioc->msingle_calls++; 758 ioc->msingle_pages += size >> IOVP_SHIFT; 759#endif 760 761 idx = ccio_alloc_range(ioc, dev, size); 762 iovp = (dma_addr_t)MKIOVP(idx); 763 764 pdir_start = &(ioc->pdir_base[idx]); 765 766 DBG_RUN("%s() 0x%p -> 0x%lx size: %0x%x\n", 767 __func__, addr, (long)iovp | offset, size); 768 769 /* If not cacheline aligned, force SAFE_DMA on the whole mess */ 770 if((size % L1_CACHE_BYTES) || ((unsigned long)addr % L1_CACHE_BYTES)) 771 hint |= HINT_SAFE_DMA; 772 773 while(size > 0) { 774 ccio_io_pdir_entry(pdir_start, KERNEL_SPACE, (unsigned long)addr, hint); 775 776 DBG_RUN(" pdir %p %08x%08x\n", 777 pdir_start, 778 (u32) (((u32 *) pdir_start)[0]), 779 (u32) (((u32 *) pdir_start)[1])); 780 ++pdir_start; 781 addr += IOVP_SIZE; 782 size -= IOVP_SIZE; 783 } 784 785 spin_unlock_irqrestore(&ioc->res_lock, flags); 786 787 /* form complete address */ 788 return CCIO_IOVA(iovp, offset); 789} 790 791/** 792 * ccio_unmap_single - Unmap an address range from the IOMMU. 793 * @dev: The PCI device. 794 * @addr: The start address of the DMA region. 795 * @size: The length of the DMA region. 796 * @direction: The direction of the DMA transaction (to/from device). 797 * 798 * This function implements the pci_unmap_single function. 799 */ 800static void 801ccio_unmap_single(struct device *dev, dma_addr_t iova, size_t size, 802 enum dma_data_direction direction) 803{ 804 struct ioc *ioc; 805 unsigned long flags; 806 dma_addr_t offset = iova & ~IOVP_MASK; 807 808 BUG_ON(!dev); 809 ioc = GET_IOC(dev); 810 811 DBG_RUN("%s() iovp 0x%lx/%x\n", 812 __func__, (long)iova, size); 813 814 iova ^= offset; /* clear offset bits */ 815 size += offset; 816 size = ALIGN(size, IOVP_SIZE); 817 818 spin_lock_irqsave(&ioc->res_lock, flags); 819 820#ifdef CCIO_COLLECT_STATS 821 ioc->usingle_calls++; 822 ioc->usingle_pages += size >> IOVP_SHIFT; 823#endif 824 825 ccio_mark_invalid(ioc, iova, size); 826 ccio_free_range(ioc, iova, (size >> IOVP_SHIFT)); 827 spin_unlock_irqrestore(&ioc->res_lock, flags); 828} 829 830/** 831 * ccio_alloc_consistent - Allocate a consistent DMA mapping. 832 * @dev: The PCI device. 833 * @size: The length of the DMA region. 834 * @dma_handle: The DMA address handed back to the device (not the cpu). 835 * 836 * This function implements the pci_alloc_consistent function. 837 */ 838static void * 839ccio_alloc_consistent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag) 840{ 841 void *ret; 842#if 0 843/* GRANT Need to establish hierarchy for non-PCI devs as well 844** and then provide matching gsc_map_xxx() functions for them as well. 845*/ 846 if(!hwdev) { 847 /* only support PCI */ 848 *dma_handle = 0; 849 return 0; 850 } 851#endif 852 ret = (void *) __get_free_pages(flag, get_order(size)); 853 854 if (ret) { 855 memset(ret, 0, size); 856 *dma_handle = ccio_map_single(dev, ret, size, PCI_DMA_BIDIRECTIONAL); 857 } 858 859 return ret; 860} 861 862/** 863 * ccio_free_consistent - Free a consistent DMA mapping. 864 * @dev: The PCI device. 865 * @size: The length of the DMA region. 866 * @cpu_addr: The cpu address returned from the ccio_alloc_consistent. 867 * @dma_handle: The device address returned from the ccio_alloc_consistent. 868 * 869 * This function implements the pci_free_consistent function. 870 */ 871static void 872ccio_free_consistent(struct device *dev, size_t size, void *cpu_addr, 873 dma_addr_t dma_handle) 874{ 875 ccio_unmap_single(dev, dma_handle, size, 0); 876 free_pages((unsigned long)cpu_addr, get_order(size)); 877} 878 879/* 880** Since 0 is a valid pdir_base index value, can't use that 881** to determine if a value is valid or not. Use a flag to indicate 882** the SG list entry contains a valid pdir index. 883*/ 884#define PIDE_FLAG 0x80000000UL 885 886#ifdef CCIO_COLLECT_STATS 887#define IOMMU_MAP_STATS 888#endif 889#include "iommu-helpers.h" 890 891/** 892 * ccio_map_sg - Map the scatter/gather list into the IOMMU. 893 * @dev: The PCI device. 894 * @sglist: The scatter/gather list to be mapped in the IOMMU. 895 * @nents: The number of entries in the scatter/gather list. 896 * @direction: The direction of the DMA transaction (to/from device). 897 * 898 * This function implements the pci_map_sg function. 899 */ 900static int 901ccio_map_sg(struct device *dev, struct scatterlist *sglist, int nents, 902 enum dma_data_direction direction) 903{ 904 struct ioc *ioc; 905 int coalesced, filled = 0; 906 unsigned long flags; 907 unsigned long hint = hint_lookup[(int)direction]; 908 unsigned long prev_len = 0, current_len = 0; 909 int i; 910 911 BUG_ON(!dev); 912 ioc = GET_IOC(dev); 913 914 DBG_RUN_SG("%s() START %d entries\n", __func__, nents); 915 916 /* Fast path single entry scatterlists. */ 917 if (nents == 1) { 918 sg_dma_address(sglist) = ccio_map_single(dev, 919 sg_virt(sglist), sglist->length, 920 direction); 921 sg_dma_len(sglist) = sglist->length; 922 return 1; 923 } 924 925 for(i = 0; i < nents; i++) 926 prev_len += sglist[i].length; 927 928 spin_lock_irqsave(&ioc->res_lock, flags); 929 930#ifdef CCIO_COLLECT_STATS 931 ioc->msg_calls++; 932#endif 933 934 /* 935 ** First coalesce the chunks and allocate I/O pdir space 936 ** 937 ** If this is one DMA stream, we can properly map using the 938 ** correct virtual address associated with each DMA page. 939 ** w/o this association, we wouldn't have coherent DMA! 940 ** Access to the virtual address is what forces a two pass algorithm. 941 */ 942 coalesced = iommu_coalesce_chunks(ioc, dev, sglist, nents, ccio_alloc_range); 943 944 /* 945 ** Program the I/O Pdir 946 ** 947 ** map the virtual addresses to the I/O Pdir 948 ** o dma_address will contain the pdir index 949 ** o dma_len will contain the number of bytes to map 950 ** o page/offset contain the virtual address. 951 */ 952 filled = iommu_fill_pdir(ioc, sglist, nents, hint, ccio_io_pdir_entry); 953 954 spin_unlock_irqrestore(&ioc->res_lock, flags); 955 956 BUG_ON(coalesced != filled); 957 958 DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled); 959 960 for (i = 0; i < filled; i++) 961 current_len += sg_dma_len(sglist + i); 962 963 BUG_ON(current_len != prev_len); 964 965 return filled; 966} 967 968/** 969 * ccio_unmap_sg - Unmap the scatter/gather list from the IOMMU. 970 * @dev: The PCI device. 971 * @sglist: The scatter/gather list to be unmapped from the IOMMU. 972 * @nents: The number of entries in the scatter/gather list. 973 * @direction: The direction of the DMA transaction (to/from device). 974 * 975 * This function implements the pci_unmap_sg function. 976 */ 977static void 978ccio_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents, 979 enum dma_data_direction direction) 980{ 981 struct ioc *ioc; 982 983 BUG_ON(!dev); 984 ioc = GET_IOC(dev); 985 986 DBG_RUN_SG("%s() START %d entries, %p,%x\n", 987 __func__, nents, sg_virt(sglist), sglist->length); 988 989#ifdef CCIO_COLLECT_STATS 990 ioc->usg_calls++; 991#endif 992 993 while(sg_dma_len(sglist) && nents--) { 994 995#ifdef CCIO_COLLECT_STATS 996 ioc->usg_pages += sg_dma_len(sglist) >> PAGE_SHIFT; 997#endif 998 ccio_unmap_single(dev, sg_dma_address(sglist), 999 sg_dma_len(sglist), direction); 1000 ++sglist; 1001 } 1002 1003 DBG_RUN_SG("%s() DONE (nents %d)\n", __func__, nents); 1004} 1005 1006static struct hppa_dma_ops ccio_ops = { 1007 .dma_supported = ccio_dma_supported, 1008 .alloc_consistent = ccio_alloc_consistent, 1009 .alloc_noncoherent = ccio_alloc_consistent, 1010 .free_consistent = ccio_free_consistent, 1011 .map_single = ccio_map_single, 1012 .unmap_single = ccio_unmap_single, 1013 .map_sg = ccio_map_sg, 1014 .unmap_sg = ccio_unmap_sg, 1015 .dma_sync_single_for_cpu = NULL, /* NOP for U2/Uturn */ 1016 .dma_sync_single_for_device = NULL, /* NOP for U2/Uturn */ 1017 .dma_sync_sg_for_cpu = NULL, /* ditto */ 1018 .dma_sync_sg_for_device = NULL, /* ditto */ 1019}; 1020 1021#ifdef CONFIG_PROC_FS 1022static int ccio_proc_info(struct seq_file *m, void *p) 1023{ 1024 struct ioc *ioc = ioc_list; 1025 1026 while (ioc != NULL) { 1027 unsigned int total_pages = ioc->res_size << 3; 1028#ifdef CCIO_COLLECT_STATS 1029 unsigned long avg = 0, min, max; 1030 int j; 1031#endif 1032 1033 seq_printf(m, "%s\n", ioc->name); 1034 1035 seq_printf(m, "Cujo 2.0 bug : %s\n", 1036 (ioc->cujo20_bug ? "yes" : "no")); 1037 1038 seq_printf(m, "IO PDIR size : %d bytes (%d entries)\n", 1039 total_pages * 8, total_pages); 1040 1041#ifdef CCIO_COLLECT_STATS 1042 seq_printf(m, "IO PDIR entries : %ld free %ld used (%d%%)\n", 1043 total_pages - ioc->used_pages, ioc->used_pages, 1044 (int)(ioc->used_pages * 100 / total_pages)); 1045#endif 1046 1047 seq_printf(m, "Resource bitmap : %d bytes (%d pages)\n", 1048 ioc->res_size, total_pages); 1049 1050#ifdef CCIO_COLLECT_STATS 1051 min = max = ioc->avg_search[0]; 1052 for(j = 0; j < CCIO_SEARCH_SAMPLE; ++j) { 1053 avg += ioc->avg_search[j]; 1054 if(ioc->avg_search[j] > max) 1055 max = ioc->avg_search[j]; 1056 if(ioc->avg_search[j] < min) 1057 min = ioc->avg_search[j]; 1058 } 1059 avg /= CCIO_SEARCH_SAMPLE; 1060 seq_printf(m, " Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles)\n", 1061 min, avg, max); 1062 1063 seq_printf(m, "pci_map_single(): %8ld calls %8ld pages (avg %d/1000)\n", 1064 ioc->msingle_calls, ioc->msingle_pages, 1065 (int)((ioc->msingle_pages * 1000)/ioc->msingle_calls)); 1066 1067 /* KLUGE - unmap_sg calls unmap_single for each mapped page */ 1068 min = ioc->usingle_calls - ioc->usg_calls; 1069 max = ioc->usingle_pages - ioc->usg_pages; 1070 seq_printf(m, "pci_unmap_single: %8ld calls %8ld pages (avg %d/1000)\n", 1071 min, max, (int)((max * 1000)/min)); 1072 1073 seq_printf(m, "pci_map_sg() : %8ld calls %8ld pages (avg %d/1000)\n", 1074 ioc->msg_calls, ioc->msg_pages, 1075 (int)((ioc->msg_pages * 1000)/ioc->msg_calls)); 1076 1077 seq_printf(m, "pci_unmap_sg() : %8ld calls %8ld pages (avg %d/1000)\n\n\n", 1078 ioc->usg_calls, ioc->usg_pages, 1079 (int)((ioc->usg_pages * 1000)/ioc->usg_calls)); 1080#endif /* CCIO_COLLECT_STATS */ 1081 1082 ioc = ioc->next; 1083 } 1084 1085 return 0; 1086} 1087 1088static int ccio_proc_info_open(struct inode *inode, struct file *file) 1089{ 1090 return single_open(file, &ccio_proc_info, NULL); 1091} 1092 1093static const struct file_operations ccio_proc_info_fops = { 1094 .owner = THIS_MODULE, 1095 .open = ccio_proc_info_open, 1096 .read = seq_read, 1097 .llseek = seq_lseek, 1098 .release = single_release, 1099}; 1100 1101static int ccio_proc_bitmap_info(struct seq_file *m, void *p) 1102{ 1103 struct ioc *ioc = ioc_list; 1104 1105 while (ioc != NULL) { 1106 u32 *res_ptr = (u32 *)ioc->res_map; 1107 int j; 1108 1109 for (j = 0; j < (ioc->res_size / sizeof(u32)); j++) { 1110 if ((j & 7) == 0) 1111 seq_puts(m, "\n "); 1112 seq_printf(m, "%08x", *res_ptr); 1113 res_ptr++; 1114 } 1115 seq_puts(m, "\n\n"); 1116 ioc = ioc->next; 1117 break; /* XXX - remove me */ 1118 } 1119 1120 return 0; 1121} 1122 1123static int ccio_proc_bitmap_open(struct inode *inode, struct file *file) 1124{ 1125 return single_open(file, &ccio_proc_bitmap_info, NULL); 1126} 1127 1128static const struct file_operations ccio_proc_bitmap_fops = { 1129 .owner = THIS_MODULE, 1130 .open = ccio_proc_bitmap_open, 1131 .read = seq_read, 1132 .llseek = seq_lseek, 1133 .release = single_release, 1134}; 1135#endif /* CONFIG_PROC_FS */ 1136 1137/** 1138 * ccio_find_ioc - Find the ioc in the ioc_list 1139 * @hw_path: The hardware path of the ioc. 1140 * 1141 * This function searches the ioc_list for an ioc that matches 1142 * the provide hardware path. 1143 */ 1144static struct ioc * ccio_find_ioc(int hw_path) 1145{ 1146 int i; 1147 struct ioc *ioc; 1148 1149 ioc = ioc_list; 1150 for (i = 0; i < ioc_count; i++) { 1151 if (ioc->hw_path == hw_path) 1152 return ioc; 1153 1154 ioc = ioc->next; 1155 } 1156 1157 return NULL; 1158} 1159 1160/** 1161 * ccio_get_iommu - Find the iommu which controls this device 1162 * @dev: The parisc device. 1163 * 1164 * This function searches through the registered IOMMU's and returns 1165 * the appropriate IOMMU for the device based on its hardware path. 1166 */ 1167void * ccio_get_iommu(const struct parisc_device *dev) 1168{ 1169 dev = find_pa_parent_type(dev, HPHW_IOA); 1170 if (!dev) 1171 return NULL; 1172 1173 return ccio_find_ioc(dev->hw_path); 1174} 1175 1176#define CUJO_20_STEP 0x10000000 /* inc upper nibble */ 1177 1178/* Cujo 2.0 has a bug which will silently corrupt data being transferred 1179 * to/from certain pages. To avoid this happening, we mark these pages 1180 * as `used', and ensure that nothing will try to allocate from them. 1181 */ 1182void ccio_cujo20_fixup(struct parisc_device *cujo, u32 iovp) 1183{ 1184 unsigned int idx; 1185 struct parisc_device *dev = parisc_parent(cujo); 1186 struct ioc *ioc = ccio_get_iommu(dev); 1187 u8 *res_ptr; 1188 1189 ioc->cujo20_bug = 1; 1190 res_ptr = ioc->res_map; 1191 idx = PDIR_INDEX(iovp) >> 3; 1192 1193 while (idx < ioc->res_size) { 1194 res_ptr[idx] |= 0xff; 1195 idx += PDIR_INDEX(CUJO_20_STEP) >> 3; 1196 } 1197} 1198 1199#if 0 1200/* GRANT - is this needed for U2 or not? */ 1201 1202/* 1203** Get the size of the I/O TLB for this I/O MMU. 1204** 1205** If spa_shift is non-zero (ie probably U2), 1206** then calculate the I/O TLB size using spa_shift. 1207** 1208** Otherwise we are supposed to get the IODC entry point ENTRY TLB 1209** and execute it. However, both U2 and Uturn firmware supplies spa_shift. 1210** I think only Java (K/D/R-class too?) systems don't do this. 1211*/ 1212static int 1213ccio_get_iotlb_size(struct parisc_device *dev) 1214{ 1215 if (dev->spa_shift == 0) { 1216 panic("%s() : Can't determine I/O TLB size.\n", __func__); 1217 } 1218 return (1 << dev->spa_shift); 1219} 1220#else 1221 1222/* Uturn supports 256 TLB entries */ 1223#define CCIO_CHAINID_SHIFT 8 1224#define CCIO_CHAINID_MASK 0xff 1225#endif /* 0 */ 1226 1227/* We *can't* support JAVA (T600). Venture there at your own risk. */ 1228static const struct parisc_device_id ccio_tbl[] = { 1229 { HPHW_IOA, HVERSION_REV_ANY_ID, U2_IOA_RUNWAY, 0xb }, /* U2 */ 1230 { HPHW_IOA, HVERSION_REV_ANY_ID, UTURN_IOA_RUNWAY, 0xb }, /* UTurn */ 1231 { 0, } 1232}; 1233 1234static int ccio_probe(struct parisc_device *dev); 1235 1236static struct parisc_driver ccio_driver = { 1237 .name = "ccio", 1238 .id_table = ccio_tbl, 1239 .probe = ccio_probe, 1240}; 1241 1242/** 1243 * ccio_ioc_init - Initialize the I/O Controller 1244 * @ioc: The I/O Controller. 1245 * 1246 * Initialize the I/O Controller which includes setting up the 1247 * I/O Page Directory, the resource map, and initalizing the 1248 * U2/Uturn chip into virtual mode. 1249 */ 1250static void 1251ccio_ioc_init(struct ioc *ioc) 1252{ 1253 int i; 1254 unsigned int iov_order; 1255 u32 iova_space_size; 1256 1257 /* 1258 ** Determine IOVA Space size from memory size. 1259 ** 1260 ** Ideally, PCI drivers would register the maximum number 1261 ** of DMA they can have outstanding for each device they 1262 ** own. Next best thing would be to guess how much DMA 1263 ** can be outstanding based on PCI Class/sub-class. Both 1264 ** methods still require some "extra" to support PCI 1265 ** Hot-Plug/Removal of PCI cards. (aka PCI OLARD). 1266 */ 1267 1268 iova_space_size = (u32) (totalram_pages / count_parisc_driver(&ccio_driver)); 1269 1270 /* limit IOVA space size to 1MB-1GB */ 1271 1272 if (iova_space_size < (1 << (20 - PAGE_SHIFT))) { 1273 iova_space_size = 1 << (20 - PAGE_SHIFT); 1274#ifdef __LP64__ 1275 } else if (iova_space_size > (1 << (30 - PAGE_SHIFT))) { 1276 iova_space_size = 1 << (30 - PAGE_SHIFT); 1277#endif 1278 } 1279 1280 /* 1281 ** iova space must be log2() in size. 1282 ** thus, pdir/res_map will also be log2(). 1283 */ 1284 1285 /* We could use larger page sizes in order to *decrease* the number 1286 ** of mappings needed. (ie 8k pages means 1/2 the mappings). 1287 ** 1288 ** Note: Grant Grunder says "Using 8k I/O pages isn't trivial either 1289 ** since the pages must also be physically contiguous - typically 1290 ** this is the case under linux." 1291 */ 1292 1293 iov_order = get_order(iova_space_size << PAGE_SHIFT); 1294 1295 /* iova_space_size is now bytes, not pages */ 1296 iova_space_size = 1 << (iov_order + PAGE_SHIFT); 1297 1298 ioc->pdir_size = (iova_space_size / IOVP_SIZE) * sizeof(u64); 1299 1300 BUG_ON(ioc->pdir_size > 8 * 1024 * 1024); /* max pdir size <= 8MB */ 1301 1302 /* Verify it's a power of two */ 1303 BUG_ON((1 << get_order(ioc->pdir_size)) != (ioc->pdir_size >> PAGE_SHIFT)); 1304 1305 DBG_INIT("%s() hpa 0x%p mem %luMB IOV %dMB (%d bits)\n", 1306 __func__, ioc->ioc_regs, 1307 (unsigned long) totalram_pages >> (20 - PAGE_SHIFT), 1308 iova_space_size>>20, 1309 iov_order + PAGE_SHIFT); 1310 1311 ioc->pdir_base = (u64 *)__get_free_pages(GFP_KERNEL, 1312 get_order(ioc->pdir_size)); 1313 if(NULL == ioc->pdir_base) { 1314 panic("%s() could not allocate I/O Page Table\n", __func__); 1315 } 1316 memset(ioc->pdir_base, 0, ioc->pdir_size); 1317 1318 BUG_ON((((unsigned long)ioc->pdir_base) & PAGE_MASK) != (unsigned long)ioc->pdir_base); 1319 DBG_INIT(" base %p\n", ioc->pdir_base); 1320 1321 /* resource map size dictated by pdir_size */ 1322 ioc->res_size = (ioc->pdir_size / sizeof(u64)) >> 3; 1323 DBG_INIT("%s() res_size 0x%x\n", __func__, ioc->res_size); 1324 1325 ioc->res_map = (u8 *)__get_free_pages(GFP_KERNEL, 1326 get_order(ioc->res_size)); 1327 if(NULL == ioc->res_map) { 1328 panic("%s() could not allocate resource map\n", __func__); 1329 } 1330 memset(ioc->res_map, 0, ioc->res_size); 1331 1332 /* Initialize the res_hint to 16 */ 1333 ioc->res_hint = 16; 1334 1335 /* Initialize the spinlock */ 1336 spin_lock_init(&ioc->res_lock); 1337 1338 /* 1339 ** Chainid is the upper most bits of an IOVP used to determine 1340 ** which TLB entry an IOVP will use. 1341 */ 1342 ioc->chainid_shift = get_order(iova_space_size) + PAGE_SHIFT - CCIO_CHAINID_SHIFT; 1343 DBG_INIT(" chainid_shift 0x%x\n", ioc->chainid_shift); 1344 1345 /* 1346 ** Initialize IOA hardware 1347 */ 1348 WRITE_U32(CCIO_CHAINID_MASK << ioc->chainid_shift, 1349 &ioc->ioc_regs->io_chain_id_mask); 1350 1351 WRITE_U32(virt_to_phys(ioc->pdir_base), 1352 &ioc->ioc_regs->io_pdir_base); 1353 1354 /* 1355 ** Go to "Virtual Mode" 1356 */ 1357 WRITE_U32(IOA_NORMAL_MODE, &ioc->ioc_regs->io_control); 1358 1359 /* 1360 ** Initialize all I/O TLB entries to 0 (Valid bit off). 1361 */ 1362 WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_m); 1363 WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_l); 1364 1365 for(i = 1 << CCIO_CHAINID_SHIFT; i ; i--) { 1366 WRITE_U32((CMD_TLB_DIRECT_WRITE | (i << ioc->chainid_shift)), 1367 &ioc->ioc_regs->io_command); 1368 } 1369} 1370 1371static void __init 1372ccio_init_resource(struct resource *res, char *name, void __iomem *ioaddr) 1373{ 1374 int result; 1375 1376 res->parent = NULL; 1377 res->flags = IORESOURCE_MEM; 1378 /* 1379 * bracing ((signed) ...) are required for 64bit kernel because 1380 * we only want to sign extend the lower 16 bits of the register. 1381 * The upper 16-bits of range registers are hardcoded to 0xffff. 1382 */ 1383 res->start = (unsigned long)((signed) READ_U32(ioaddr) << 16); 1384 res->end = (unsigned long)((signed) (READ_U32(ioaddr + 4) << 16) - 1); 1385 res->name = name; 1386 /* 1387 * Check if this MMIO range is disable 1388 */ 1389 if (res->end + 1 == res->start) 1390 return; 1391 1392 /* On some platforms (e.g. K-Class), we have already registered 1393 * resources for devices reported by firmware. Some are children 1394 * of ccio. 1395 * "insert" ccio ranges in the mmio hierarchy (/proc/iomem). 1396 */ 1397 result = insert_resource(&iomem_resource, res); 1398 if (result < 0) { 1399 printk(KERN_ERR "%s() failed to claim CCIO bus address space (%08lx,%08lx)\n", 1400 __func__, (unsigned long)res->start, (unsigned long)res->end); 1401 } 1402} 1403 1404static void __init ccio_init_resources(struct ioc *ioc) 1405{ 1406 struct resource *res = ioc->mmio_region; 1407 char *name = kmalloc(14, GFP_KERNEL); 1408 1409 snprintf(name, 14, "GSC Bus [%d/]", ioc->hw_path); 1410 1411 ccio_init_resource(res, name, &ioc->ioc_regs->io_io_low); 1412 ccio_init_resource(res + 1, name, &ioc->ioc_regs->io_io_low_hv); 1413} 1414 1415static int new_ioc_area(struct resource *res, unsigned long size, 1416 unsigned long min, unsigned long max, unsigned long align) 1417{ 1418 if (max <= min) 1419 return -EBUSY; 1420 1421 res->start = (max - size + 1) &~ (align - 1); 1422 res->end = res->start + size; 1423 1424 /* We might be trying to expand the MMIO range to include 1425 * a child device that has already registered it's MMIO space. 1426 * Use "insert" instead of request_resource(). 1427 */ 1428 if (!insert_resource(&iomem_resource, res)) 1429 return 0; 1430 1431 return new_ioc_area(res, size, min, max - size, align); 1432} 1433 1434static int expand_ioc_area(struct resource *res, unsigned long size, 1435 unsigned long min, unsigned long max, unsigned long align) 1436{ 1437 unsigned long start, len; 1438 1439 if (!res->parent) 1440 return new_ioc_area(res, size, min, max, align); 1441 1442 start = (res->start - size) &~ (align - 1); 1443 len = res->end - start + 1; 1444 if (start >= min) { 1445 if (!adjust_resource(res, start, len)) 1446 return 0; 1447 } 1448 1449 start = res->start; 1450 len = ((size + res->end + align) &~ (align - 1)) - start; 1451 if (start + len <= max) { 1452 if (!adjust_resource(res, start, len)) 1453 return 0; 1454 } 1455 1456 return -EBUSY; 1457} 1458 1459/* 1460 * Dino calls this function. Beware that we may get called on systems 1461 * which have no IOC (725, B180, C160L, etc) but do have a Dino. 1462 * So it's legal to find no parent IOC. 1463 * 1464 * Some other issues: one of the resources in the ioc may be unassigned. 1465 */ 1466int ccio_allocate_resource(const struct parisc_device *dev, 1467 struct resource *res, unsigned long size, 1468 unsigned long min, unsigned long max, unsigned long align) 1469{ 1470 struct resource *parent = &iomem_resource; 1471 struct ioc *ioc = ccio_get_iommu(dev); 1472 if (!ioc) 1473 goto out; 1474 1475 parent = ioc->mmio_region; 1476 if (parent->parent && 1477 !allocate_resource(parent, res, size, min, max, align, NULL, NULL)) 1478 return 0; 1479 1480 if ((parent + 1)->parent && 1481 !allocate_resource(parent + 1, res, size, min, max, align, 1482 NULL, NULL)) 1483 return 0; 1484 1485 if (!expand_ioc_area(parent, size, min, max, align)) { 1486 __raw_writel(((parent->start)>>16) | 0xffff0000, 1487 &ioc->ioc_regs->io_io_low); 1488 __raw_writel(((parent->end)>>16) | 0xffff0000, 1489 &ioc->ioc_regs->io_io_high); 1490 } else if (!expand_ioc_area(parent + 1, size, min, max, align)) { 1491 parent++; 1492 __raw_writel(((parent->start)>>16) | 0xffff0000, 1493 &ioc->ioc_regs->io_io_low_hv); 1494 __raw_writel(((parent->end)>>16) | 0xffff0000, 1495 &ioc->ioc_regs->io_io_high_hv); 1496 } else { 1497 return -EBUSY; 1498 } 1499 1500 out: 1501 return allocate_resource(parent, res, size, min, max, align, NULL,NULL); 1502} 1503 1504int ccio_request_resource(const struct parisc_device *dev, 1505 struct resource *res) 1506{ 1507 struct resource *parent; 1508 struct ioc *ioc = ccio_get_iommu(dev); 1509 1510 if (!ioc) { 1511 parent = &iomem_resource; 1512 } else if ((ioc->mmio_region->start <= res->start) && 1513 (res->end <= ioc->mmio_region->end)) { 1514 parent = ioc->mmio_region; 1515 } else if (((ioc->mmio_region + 1)->start <= res->start) && 1516 (res->end <= (ioc->mmio_region + 1)->end)) { 1517 parent = ioc->mmio_region + 1; 1518 } else { 1519 return -EBUSY; 1520 } 1521 1522 /* "transparent" bus bridges need to register MMIO resources 1523 * firmware assigned them. e.g. children of hppb.c (e.g. K-class) 1524 * registered their resources in the PDC "bus walk" (See 1525 * arch/parisc/kernel/inventory.c). 1526 */ 1527 return insert_resource(parent, res); 1528} 1529 1530/** 1531 * ccio_probe - Determine if ccio should claim this device. 1532 * @dev: The device which has been found 1533 * 1534 * Determine if ccio should claim this chip (return 0) or not (return 1). 1535 * If so, initialize the chip and tell other partners in crime they 1536 * have work to do. 1537 */ 1538static int __init ccio_probe(struct parisc_device *dev) 1539{ 1540 int i; 1541 struct ioc *ioc, **ioc_p = &ioc_list; 1542 1543 ioc = kzalloc(sizeof(struct ioc), GFP_KERNEL); 1544 if (ioc == NULL) { 1545 printk(KERN_ERR MODULE_NAME ": memory allocation failure\n"); 1546 return 1; 1547 } 1548 1549 ioc->name = dev->id.hversion == U2_IOA_RUNWAY ? "U2" : "UTurn"; 1550 1551 printk(KERN_INFO "Found %s at 0x%lx\n", ioc->name, 1552 (unsigned long)dev->hpa.start); 1553 1554 for (i = 0; i < ioc_count; i++) { 1555 ioc_p = &(*ioc_p)->next; 1556 } 1557 *ioc_p = ioc; 1558 1559 ioc->hw_path = dev->hw_path; 1560 ioc->ioc_regs = ioremap_nocache(dev->hpa.start, 4096); 1561 ccio_ioc_init(ioc); 1562 ccio_init_resources(ioc); 1563 hppa_dma_ops = &ccio_ops; 1564 dev->dev.platform_data = kzalloc(sizeof(struct pci_hba_data), GFP_KERNEL); 1565 1566 /* if this fails, no I/O cards will work, so may as well bug */ 1567 BUG_ON(dev->dev.platform_data == NULL); 1568 HBA_DATA(dev->dev.platform_data)->iommu = ioc; 1569 1570#ifdef CONFIG_PROC_FS 1571 if (ioc_count == 0) { 1572 proc_create(MODULE_NAME, 0, proc_runway_root, 1573 &ccio_proc_info_fops); 1574 proc_create(MODULE_NAME"-bitmap", 0, proc_runway_root, 1575 &ccio_proc_bitmap_fops); 1576 } 1577#endif 1578 ioc_count++; 1579 1580 parisc_has_iommu(); 1581 return 0; 1582} 1583 1584/** 1585 * ccio_init - ccio initialization procedure. 1586 * 1587 * Register this driver. 1588 */ 1589void __init ccio_init(void) 1590{ 1591 register_parisc_driver(&ccio_driver); 1592} 1593 1594