1/*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras	August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 *    {engebret|bergner}@us.ibm.com
9 *
10 *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11 *
12 *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13 *  Grant Likely.
14 *
15 *      This program is free software; you can redistribute it and/or
16 *      modify it under the terms of the GNU General Public License
17 *      as published by the Free Software Foundation; either version
18 *      2 of the License, or (at your option) any later version.
19 */
20#include <linux/console.h>
21#include <linux/ctype.h>
22#include <linux/cpu.h>
23#include <linux/module.h>
24#include <linux/of.h>
25#include <linux/of_graph.h>
26#include <linux/spinlock.h>
27#include <linux/slab.h>
28#include <linux/string.h>
29#include <linux/proc_fs.h>
30
31#include "of_private.h"
32
33LIST_HEAD(aliases_lookup);
34
35struct device_node *of_root;
36EXPORT_SYMBOL(of_root);
37struct device_node *of_chosen;
38struct device_node *of_aliases;
39struct device_node *of_stdout;
40static const char *of_stdout_options;
41
42struct kset *of_kset;
43
44/*
45 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
46 * This mutex must be held whenever modifications are being made to the
47 * device tree. The of_{attach,detach}_node() and
48 * of_{add,remove,update}_property() helpers make sure this happens.
49 */
50DEFINE_MUTEX(of_mutex);
51
52/* use when traversing tree through the child, sibling,
53 * or parent members of struct device_node.
54 */
55DEFINE_RAW_SPINLOCK(devtree_lock);
56
57int of_n_addr_cells(struct device_node *np)
58{
59	const __be32 *ip;
60
61	do {
62		if (np->parent)
63			np = np->parent;
64		ip = of_get_property(np, "#address-cells", NULL);
65		if (ip)
66			return be32_to_cpup(ip);
67	} while (np->parent);
68	/* No #address-cells property for the root node */
69	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
70}
71EXPORT_SYMBOL(of_n_addr_cells);
72
73int of_n_size_cells(struct device_node *np)
74{
75	const __be32 *ip;
76
77	do {
78		if (np->parent)
79			np = np->parent;
80		ip = of_get_property(np, "#size-cells", NULL);
81		if (ip)
82			return be32_to_cpup(ip);
83	} while (np->parent);
84	/* No #size-cells property for the root node */
85	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
86}
87EXPORT_SYMBOL(of_n_size_cells);
88
89#ifdef CONFIG_NUMA
90int __weak of_node_to_nid(struct device_node *np)
91{
92	return NUMA_NO_NODE;
93}
94#endif
95
96#ifndef CONFIG_OF_DYNAMIC
97static void of_node_release(struct kobject *kobj)
98{
99	/* Without CONFIG_OF_DYNAMIC, no nodes gets freed */
100}
101#endif /* CONFIG_OF_DYNAMIC */
102
103struct kobj_type of_node_ktype = {
104	.release = of_node_release,
105};
106
107static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj,
108				struct bin_attribute *bin_attr, char *buf,
109				loff_t offset, size_t count)
110{
111	struct property *pp = container_of(bin_attr, struct property, attr);
112	return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length);
113}
114
115static const char *safe_name(struct kobject *kobj, const char *orig_name)
116{
117	const char *name = orig_name;
118	struct kernfs_node *kn;
119	int i = 0;
120
121	/* don't be a hero. After 16 tries give up */
122	while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) {
123		sysfs_put(kn);
124		if (name != orig_name)
125			kfree(name);
126		name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i);
127	}
128
129	if (name != orig_name)
130		pr_warn("device-tree: Duplicate name in %s, renamed to \"%s\"\n",
131			kobject_name(kobj), name);
132	return name;
133}
134
135int __of_add_property_sysfs(struct device_node *np, struct property *pp)
136{
137	int rc;
138
139	/* Important: Don't leak passwords */
140	bool secure = strncmp(pp->name, "security-", 9) == 0;
141
142	if (!IS_ENABLED(CONFIG_SYSFS))
143		return 0;
144
145	if (!of_kset || !of_node_is_attached(np))
146		return 0;
147
148	sysfs_bin_attr_init(&pp->attr);
149	pp->attr.attr.name = safe_name(&np->kobj, pp->name);
150	pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO;
151	pp->attr.size = secure ? 0 : pp->length;
152	pp->attr.read = of_node_property_read;
153
154	rc = sysfs_create_bin_file(&np->kobj, &pp->attr);
155	WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name);
156	return rc;
157}
158
159int __of_attach_node_sysfs(struct device_node *np)
160{
161	const char *name;
162	struct property *pp;
163	int rc;
164
165	if (!IS_ENABLED(CONFIG_SYSFS))
166		return 0;
167
168	if (!of_kset)
169		return 0;
170
171	np->kobj.kset = of_kset;
172	if (!np->parent) {
173		/* Nodes without parents are new top level trees */
174		rc = kobject_add(&np->kobj, NULL, "%s",
175				 safe_name(&of_kset->kobj, "base"));
176	} else {
177		name = safe_name(&np->parent->kobj, kbasename(np->full_name));
178		if (!name || !name[0])
179			return -EINVAL;
180
181		rc = kobject_add(&np->kobj, &np->parent->kobj, "%s", name);
182	}
183	if (rc)
184		return rc;
185
186	for_each_property_of_node(np, pp)
187		__of_add_property_sysfs(np, pp);
188
189	return 0;
190}
191
192void __init of_core_init(void)
193{
194	struct device_node *np;
195
196	/* Create the kset, and register existing nodes */
197	mutex_lock(&of_mutex);
198	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
199	if (!of_kset) {
200		mutex_unlock(&of_mutex);
201		pr_err("devicetree: failed to register existing nodes\n");
202		return;
203	}
204	for_each_of_allnodes(np)
205		__of_attach_node_sysfs(np);
206	mutex_unlock(&of_mutex);
207
208	/* Symlink in /proc as required by userspace ABI */
209	if (of_root)
210		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
211}
212
213static struct property *__of_find_property(const struct device_node *np,
214					   const char *name, int *lenp)
215{
216	struct property *pp;
217
218	if (!np)
219		return NULL;
220
221	for (pp = np->properties; pp; pp = pp->next) {
222		if (of_prop_cmp(pp->name, name) == 0) {
223			if (lenp)
224				*lenp = pp->length;
225			break;
226		}
227	}
228
229	return pp;
230}
231
232struct property *of_find_property(const struct device_node *np,
233				  const char *name,
234				  int *lenp)
235{
236	struct property *pp;
237	unsigned long flags;
238
239	raw_spin_lock_irqsave(&devtree_lock, flags);
240	pp = __of_find_property(np, name, lenp);
241	raw_spin_unlock_irqrestore(&devtree_lock, flags);
242
243	return pp;
244}
245EXPORT_SYMBOL(of_find_property);
246
247struct device_node *__of_find_all_nodes(struct device_node *prev)
248{
249	struct device_node *np;
250	if (!prev) {
251		np = of_root;
252	} else if (prev->child) {
253		np = prev->child;
254	} else {
255		/* Walk back up looking for a sibling, or the end of the structure */
256		np = prev;
257		while (np->parent && !np->sibling)
258			np = np->parent;
259		np = np->sibling; /* Might be null at the end of the tree */
260	}
261	return np;
262}
263
264/**
265 * of_find_all_nodes - Get next node in global list
266 * @prev:	Previous node or NULL to start iteration
267 *		of_node_put() will be called on it
268 *
269 * Returns a node pointer with refcount incremented, use
270 * of_node_put() on it when done.
271 */
272struct device_node *of_find_all_nodes(struct device_node *prev)
273{
274	struct device_node *np;
275	unsigned long flags;
276
277	raw_spin_lock_irqsave(&devtree_lock, flags);
278	np = __of_find_all_nodes(prev);
279	of_node_get(np);
280	of_node_put(prev);
281	raw_spin_unlock_irqrestore(&devtree_lock, flags);
282	return np;
283}
284EXPORT_SYMBOL(of_find_all_nodes);
285
286/*
287 * Find a property with a given name for a given node
288 * and return the value.
289 */
290const void *__of_get_property(const struct device_node *np,
291			      const char *name, int *lenp)
292{
293	struct property *pp = __of_find_property(np, name, lenp);
294
295	return pp ? pp->value : NULL;
296}
297
298/*
299 * Find a property with a given name for a given node
300 * and return the value.
301 */
302const void *of_get_property(const struct device_node *np, const char *name,
303			    int *lenp)
304{
305	struct property *pp = of_find_property(np, name, lenp);
306
307	return pp ? pp->value : NULL;
308}
309EXPORT_SYMBOL(of_get_property);
310
311/*
312 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
313 *
314 * @cpu: logical cpu index of a core/thread
315 * @phys_id: physical identifier of a core/thread
316 *
317 * CPU logical to physical index mapping is architecture specific.
318 * However this __weak function provides a default match of physical
319 * id to logical cpu index. phys_id provided here is usually values read
320 * from the device tree which must match the hardware internal registers.
321 *
322 * Returns true if the physical identifier and the logical cpu index
323 * correspond to the same core/thread, false otherwise.
324 */
325bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
326{
327	return (u32)phys_id == cpu;
328}
329
330/**
331 * Checks if the given "prop_name" property holds the physical id of the
332 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
333 * NULL, local thread number within the core is returned in it.
334 */
335static bool __of_find_n_match_cpu_property(struct device_node *cpun,
336			const char *prop_name, int cpu, unsigned int *thread)
337{
338	const __be32 *cell;
339	int ac, prop_len, tid;
340	u64 hwid;
341
342	ac = of_n_addr_cells(cpun);
343	cell = of_get_property(cpun, prop_name, &prop_len);
344	if (!cell || !ac)
345		return false;
346	prop_len /= sizeof(*cell) * ac;
347	for (tid = 0; tid < prop_len; tid++) {
348		hwid = of_read_number(cell, ac);
349		if (arch_match_cpu_phys_id(cpu, hwid)) {
350			if (thread)
351				*thread = tid;
352			return true;
353		}
354		cell += ac;
355	}
356	return false;
357}
358
359/*
360 * arch_find_n_match_cpu_physical_id - See if the given device node is
361 * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
362 * else false.  If 'thread' is non-NULL, the local thread number within the
363 * core is returned in it.
364 */
365bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
366					      int cpu, unsigned int *thread)
367{
368	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
369	 * for thread ids on PowerPC. If it doesn't exist fallback to
370	 * standard "reg" property.
371	 */
372	if (IS_ENABLED(CONFIG_PPC) &&
373	    __of_find_n_match_cpu_property(cpun,
374					   "ibm,ppc-interrupt-server#s",
375					   cpu, thread))
376		return true;
377
378	if (__of_find_n_match_cpu_property(cpun, "reg", cpu, thread))
379		return true;
380
381	return false;
382}
383
384/**
385 * of_get_cpu_node - Get device node associated with the given logical CPU
386 *
387 * @cpu: CPU number(logical index) for which device node is required
388 * @thread: if not NULL, local thread number within the physical core is
389 *          returned
390 *
391 * The main purpose of this function is to retrieve the device node for the
392 * given logical CPU index. It should be used to initialize the of_node in
393 * cpu device. Once of_node in cpu device is populated, all the further
394 * references can use that instead.
395 *
396 * CPU logical to physical index mapping is architecture specific and is built
397 * before booting secondary cores. This function uses arch_match_cpu_phys_id
398 * which can be overridden by architecture specific implementation.
399 *
400 * Returns a node pointer for the logical cpu if found, else NULL.
401 */
402struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
403{
404	struct device_node *cpun;
405
406	for_each_node_by_type(cpun, "cpu") {
407		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
408			return cpun;
409	}
410	return NULL;
411}
412EXPORT_SYMBOL(of_get_cpu_node);
413
414/**
415 * __of_device_is_compatible() - Check if the node matches given constraints
416 * @device: pointer to node
417 * @compat: required compatible string, NULL or "" for any match
418 * @type: required device_type value, NULL or "" for any match
419 * @name: required node name, NULL or "" for any match
420 *
421 * Checks if the given @compat, @type and @name strings match the
422 * properties of the given @device. A constraints can be skipped by
423 * passing NULL or an empty string as the constraint.
424 *
425 * Returns 0 for no match, and a positive integer on match. The return
426 * value is a relative score with larger values indicating better
427 * matches. The score is weighted for the most specific compatible value
428 * to get the highest score. Matching type is next, followed by matching
429 * name. Practically speaking, this results in the following priority
430 * order for matches:
431 *
432 * 1. specific compatible && type && name
433 * 2. specific compatible && type
434 * 3. specific compatible && name
435 * 4. specific compatible
436 * 5. general compatible && type && name
437 * 6. general compatible && type
438 * 7. general compatible && name
439 * 8. general compatible
440 * 9. type && name
441 * 10. type
442 * 11. name
443 */
444static int __of_device_is_compatible(const struct device_node *device,
445				     const char *compat, const char *type, const char *name)
446{
447	struct property *prop;
448	const char *cp;
449	int index = 0, score = 0;
450
451	/* Compatible match has highest priority */
452	if (compat && compat[0]) {
453		prop = __of_find_property(device, "compatible", NULL);
454		for (cp = of_prop_next_string(prop, NULL); cp;
455		     cp = of_prop_next_string(prop, cp), index++) {
456			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
457				score = INT_MAX/2 - (index << 2);
458				break;
459			}
460		}
461		if (!score)
462			return 0;
463	}
464
465	/* Matching type is better than matching name */
466	if (type && type[0]) {
467		if (!device->type || of_node_cmp(type, device->type))
468			return 0;
469		score += 2;
470	}
471
472	/* Matching name is a bit better than not */
473	if (name && name[0]) {
474		if (!device->name || of_node_cmp(name, device->name))
475			return 0;
476		score++;
477	}
478
479	return score;
480}
481
482/** Checks if the given "compat" string matches one of the strings in
483 * the device's "compatible" property
484 */
485int of_device_is_compatible(const struct device_node *device,
486		const char *compat)
487{
488	unsigned long flags;
489	int res;
490
491	raw_spin_lock_irqsave(&devtree_lock, flags);
492	res = __of_device_is_compatible(device, compat, NULL, NULL);
493	raw_spin_unlock_irqrestore(&devtree_lock, flags);
494	return res;
495}
496EXPORT_SYMBOL(of_device_is_compatible);
497
498/**
499 * of_machine_is_compatible - Test root of device tree for a given compatible value
500 * @compat: compatible string to look for in root node's compatible property.
501 *
502 * Returns a positive integer if the root node has the given value in its
503 * compatible property.
504 */
505int of_machine_is_compatible(const char *compat)
506{
507	struct device_node *root;
508	int rc = 0;
509
510	root = of_find_node_by_path("/");
511	if (root) {
512		rc = of_device_is_compatible(root, compat);
513		of_node_put(root);
514	}
515	return rc;
516}
517EXPORT_SYMBOL(of_machine_is_compatible);
518
519/**
520 *  __of_device_is_available - check if a device is available for use
521 *
522 *  @device: Node to check for availability, with locks already held
523 *
524 *  Returns true if the status property is absent or set to "okay" or "ok",
525 *  false otherwise
526 */
527static bool __of_device_is_available(const struct device_node *device)
528{
529	const char *status;
530	int statlen;
531
532	if (!device)
533		return false;
534
535	status = __of_get_property(device, "status", &statlen);
536	if (status == NULL)
537		return true;
538
539	if (statlen > 0) {
540		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
541			return true;
542	}
543
544	return false;
545}
546
547/**
548 *  of_device_is_available - check if a device is available for use
549 *
550 *  @device: Node to check for availability
551 *
552 *  Returns true if the status property is absent or set to "okay" or "ok",
553 *  false otherwise
554 */
555bool of_device_is_available(const struct device_node *device)
556{
557	unsigned long flags;
558	bool res;
559
560	raw_spin_lock_irqsave(&devtree_lock, flags);
561	res = __of_device_is_available(device);
562	raw_spin_unlock_irqrestore(&devtree_lock, flags);
563	return res;
564
565}
566EXPORT_SYMBOL(of_device_is_available);
567
568/**
569 *  of_device_is_big_endian - check if a device has BE registers
570 *
571 *  @device: Node to check for endianness
572 *
573 *  Returns true if the device has a "big-endian" property, or if the kernel
574 *  was compiled for BE *and* the device has a "native-endian" property.
575 *  Returns false otherwise.
576 *
577 *  Callers would nominally use ioread32be/iowrite32be if
578 *  of_device_is_big_endian() == true, or readl/writel otherwise.
579 */
580bool of_device_is_big_endian(const struct device_node *device)
581{
582	if (of_property_read_bool(device, "big-endian"))
583		return true;
584	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
585	    of_property_read_bool(device, "native-endian"))
586		return true;
587	return false;
588}
589EXPORT_SYMBOL(of_device_is_big_endian);
590
591/**
592 *	of_get_parent - Get a node's parent if any
593 *	@node:	Node to get parent
594 *
595 *	Returns a node pointer with refcount incremented, use
596 *	of_node_put() on it when done.
597 */
598struct device_node *of_get_parent(const struct device_node *node)
599{
600	struct device_node *np;
601	unsigned long flags;
602
603	if (!node)
604		return NULL;
605
606	raw_spin_lock_irqsave(&devtree_lock, flags);
607	np = of_node_get(node->parent);
608	raw_spin_unlock_irqrestore(&devtree_lock, flags);
609	return np;
610}
611EXPORT_SYMBOL(of_get_parent);
612
613/**
614 *	of_get_next_parent - Iterate to a node's parent
615 *	@node:	Node to get parent of
616 *
617 *	This is like of_get_parent() except that it drops the
618 *	refcount on the passed node, making it suitable for iterating
619 *	through a node's parents.
620 *
621 *	Returns a node pointer with refcount incremented, use
622 *	of_node_put() on it when done.
623 */
624struct device_node *of_get_next_parent(struct device_node *node)
625{
626	struct device_node *parent;
627	unsigned long flags;
628
629	if (!node)
630		return NULL;
631
632	raw_spin_lock_irqsave(&devtree_lock, flags);
633	parent = of_node_get(node->parent);
634	of_node_put(node);
635	raw_spin_unlock_irqrestore(&devtree_lock, flags);
636	return parent;
637}
638EXPORT_SYMBOL(of_get_next_parent);
639
640static struct device_node *__of_get_next_child(const struct device_node *node,
641						struct device_node *prev)
642{
643	struct device_node *next;
644
645	if (!node)
646		return NULL;
647
648	next = prev ? prev->sibling : node->child;
649	for (; next; next = next->sibling)
650		if (of_node_get(next))
651			break;
652	of_node_put(prev);
653	return next;
654}
655#define __for_each_child_of_node(parent, child) \
656	for (child = __of_get_next_child(parent, NULL); child != NULL; \
657	     child = __of_get_next_child(parent, child))
658
659/**
660 *	of_get_next_child - Iterate a node childs
661 *	@node:	parent node
662 *	@prev:	previous child of the parent node, or NULL to get first
663 *
664 *	Returns a node pointer with refcount incremented, use of_node_put() on
665 *	it when done. Returns NULL when prev is the last child. Decrements the
666 *	refcount of prev.
667 */
668struct device_node *of_get_next_child(const struct device_node *node,
669	struct device_node *prev)
670{
671	struct device_node *next;
672	unsigned long flags;
673
674	raw_spin_lock_irqsave(&devtree_lock, flags);
675	next = __of_get_next_child(node, prev);
676	raw_spin_unlock_irqrestore(&devtree_lock, flags);
677	return next;
678}
679EXPORT_SYMBOL(of_get_next_child);
680
681/**
682 *	of_get_next_available_child - Find the next available child node
683 *	@node:	parent node
684 *	@prev:	previous child of the parent node, or NULL to get first
685 *
686 *      This function is like of_get_next_child(), except that it
687 *      automatically skips any disabled nodes (i.e. status = "disabled").
688 */
689struct device_node *of_get_next_available_child(const struct device_node *node,
690	struct device_node *prev)
691{
692	struct device_node *next;
693	unsigned long flags;
694
695	if (!node)
696		return NULL;
697
698	raw_spin_lock_irqsave(&devtree_lock, flags);
699	next = prev ? prev->sibling : node->child;
700	for (; next; next = next->sibling) {
701		if (!__of_device_is_available(next))
702			continue;
703		if (of_node_get(next))
704			break;
705	}
706	of_node_put(prev);
707	raw_spin_unlock_irqrestore(&devtree_lock, flags);
708	return next;
709}
710EXPORT_SYMBOL(of_get_next_available_child);
711
712/**
713 *	of_get_child_by_name - Find the child node by name for a given parent
714 *	@node:	parent node
715 *	@name:	child name to look for.
716 *
717 *      This function looks for child node for given matching name
718 *
719 *	Returns a node pointer if found, with refcount incremented, use
720 *	of_node_put() on it when done.
721 *	Returns NULL if node is not found.
722 */
723struct device_node *of_get_child_by_name(const struct device_node *node,
724				const char *name)
725{
726	struct device_node *child;
727
728	for_each_child_of_node(node, child)
729		if (child->name && (of_node_cmp(child->name, name) == 0))
730			break;
731	return child;
732}
733EXPORT_SYMBOL(of_get_child_by_name);
734
735static struct device_node *__of_find_node_by_path(struct device_node *parent,
736						const char *path)
737{
738	struct device_node *child;
739	int len;
740
741	len = strcspn(path, "/:");
742	if (!len)
743		return NULL;
744
745	__for_each_child_of_node(parent, child) {
746		const char *name = strrchr(child->full_name, '/');
747		if (WARN(!name, "malformed device_node %s\n", child->full_name))
748			continue;
749		name++;
750		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
751			return child;
752	}
753	return NULL;
754}
755
756/**
757 *	of_find_node_opts_by_path - Find a node matching a full OF path
758 *	@path: Either the full path to match, or if the path does not
759 *	       start with '/', the name of a property of the /aliases
760 *	       node (an alias).  In the case of an alias, the node
761 *	       matching the alias' value will be returned.
762 *	@opts: Address of a pointer into which to store the start of
763 *	       an options string appended to the end of the path with
764 *	       a ':' separator.
765 *
766 *	Valid paths:
767 *		/foo/bar	Full path
768 *		foo		Valid alias
769 *		foo/bar		Valid alias + relative path
770 *
771 *	Returns a node pointer with refcount incremented, use
772 *	of_node_put() on it when done.
773 */
774struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
775{
776	struct device_node *np = NULL;
777	struct property *pp;
778	unsigned long flags;
779	const char *separator = strchr(path, ':');
780
781	if (opts)
782		*opts = separator ? separator + 1 : NULL;
783
784	if (strcmp(path, "/") == 0)
785		return of_node_get(of_root);
786
787	/* The path could begin with an alias */
788	if (*path != '/') {
789		int len;
790		const char *p = separator;
791
792		if (!p)
793			p = strchrnul(path, '/');
794		len = p - path;
795
796		/* of_aliases must not be NULL */
797		if (!of_aliases)
798			return NULL;
799
800		for_each_property_of_node(of_aliases, pp) {
801			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
802				np = of_find_node_by_path(pp->value);
803				break;
804			}
805		}
806		if (!np)
807			return NULL;
808		path = p;
809	}
810
811	/* Step down the tree matching path components */
812	raw_spin_lock_irqsave(&devtree_lock, flags);
813	if (!np)
814		np = of_node_get(of_root);
815	while (np && *path == '/') {
816		path++; /* Increment past '/' delimiter */
817		np = __of_find_node_by_path(np, path);
818		path = strchrnul(path, '/');
819		if (separator && separator < path)
820			break;
821	}
822	raw_spin_unlock_irqrestore(&devtree_lock, flags);
823	return np;
824}
825EXPORT_SYMBOL(of_find_node_opts_by_path);
826
827/**
828 *	of_find_node_by_name - Find a node by its "name" property
829 *	@from:	The node to start searching from or NULL, the node
830 *		you pass will not be searched, only the next one
831 *		will; typically, you pass what the previous call
832 *		returned. of_node_put() will be called on it
833 *	@name:	The name string to match against
834 *
835 *	Returns a node pointer with refcount incremented, use
836 *	of_node_put() on it when done.
837 */
838struct device_node *of_find_node_by_name(struct device_node *from,
839	const char *name)
840{
841	struct device_node *np;
842	unsigned long flags;
843
844	raw_spin_lock_irqsave(&devtree_lock, flags);
845	for_each_of_allnodes_from(from, np)
846		if (np->name && (of_node_cmp(np->name, name) == 0)
847		    && of_node_get(np))
848			break;
849	of_node_put(from);
850	raw_spin_unlock_irqrestore(&devtree_lock, flags);
851	return np;
852}
853EXPORT_SYMBOL(of_find_node_by_name);
854
855/**
856 *	of_find_node_by_type - Find a node by its "device_type" property
857 *	@from:	The node to start searching from, or NULL to start searching
858 *		the entire device tree. The node you pass will not be
859 *		searched, only the next one will; typically, you pass
860 *		what the previous call returned. of_node_put() will be
861 *		called on from for you.
862 *	@type:	The type string to match against
863 *
864 *	Returns a node pointer with refcount incremented, use
865 *	of_node_put() on it when done.
866 */
867struct device_node *of_find_node_by_type(struct device_node *from,
868	const char *type)
869{
870	struct device_node *np;
871	unsigned long flags;
872
873	raw_spin_lock_irqsave(&devtree_lock, flags);
874	for_each_of_allnodes_from(from, np)
875		if (np->type && (of_node_cmp(np->type, type) == 0)
876		    && of_node_get(np))
877			break;
878	of_node_put(from);
879	raw_spin_unlock_irqrestore(&devtree_lock, flags);
880	return np;
881}
882EXPORT_SYMBOL(of_find_node_by_type);
883
884/**
885 *	of_find_compatible_node - Find a node based on type and one of the
886 *                                tokens in its "compatible" property
887 *	@from:		The node to start searching from or NULL, the node
888 *			you pass will not be searched, only the next one
889 *			will; typically, you pass what the previous call
890 *			returned. of_node_put() will be called on it
891 *	@type:		The type string to match "device_type" or NULL to ignore
892 *	@compatible:	The string to match to one of the tokens in the device
893 *			"compatible" list.
894 *
895 *	Returns a node pointer with refcount incremented, use
896 *	of_node_put() on it when done.
897 */
898struct device_node *of_find_compatible_node(struct device_node *from,
899	const char *type, const char *compatible)
900{
901	struct device_node *np;
902	unsigned long flags;
903
904	raw_spin_lock_irqsave(&devtree_lock, flags);
905	for_each_of_allnodes_from(from, np)
906		if (__of_device_is_compatible(np, compatible, type, NULL) &&
907		    of_node_get(np))
908			break;
909	of_node_put(from);
910	raw_spin_unlock_irqrestore(&devtree_lock, flags);
911	return np;
912}
913EXPORT_SYMBOL(of_find_compatible_node);
914
915/**
916 *	of_find_node_with_property - Find a node which has a property with
917 *                                   the given name.
918 *	@from:		The node to start searching from or NULL, the node
919 *			you pass will not be searched, only the next one
920 *			will; typically, you pass what the previous call
921 *			returned. of_node_put() will be called on it
922 *	@prop_name:	The name of the property to look for.
923 *
924 *	Returns a node pointer with refcount incremented, use
925 *	of_node_put() on it when done.
926 */
927struct device_node *of_find_node_with_property(struct device_node *from,
928	const char *prop_name)
929{
930	struct device_node *np;
931	struct property *pp;
932	unsigned long flags;
933
934	raw_spin_lock_irqsave(&devtree_lock, flags);
935	for_each_of_allnodes_from(from, np) {
936		for (pp = np->properties; pp; pp = pp->next) {
937			if (of_prop_cmp(pp->name, prop_name) == 0) {
938				of_node_get(np);
939				goto out;
940			}
941		}
942	}
943out:
944	of_node_put(from);
945	raw_spin_unlock_irqrestore(&devtree_lock, flags);
946	return np;
947}
948EXPORT_SYMBOL(of_find_node_with_property);
949
950static
951const struct of_device_id *__of_match_node(const struct of_device_id *matches,
952					   const struct device_node *node)
953{
954	const struct of_device_id *best_match = NULL;
955	int score, best_score = 0;
956
957	if (!matches)
958		return NULL;
959
960	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
961		score = __of_device_is_compatible(node, matches->compatible,
962						  matches->type, matches->name);
963		if (score > best_score) {
964			best_match = matches;
965			best_score = score;
966		}
967	}
968
969	return best_match;
970}
971
972/**
973 * of_match_node - Tell if a device_node has a matching of_match structure
974 *	@matches:	array of of device match structures to search in
975 *	@node:		the of device structure to match against
976 *
977 *	Low level utility function used by device matching.
978 */
979const struct of_device_id *of_match_node(const struct of_device_id *matches,
980					 const struct device_node *node)
981{
982	const struct of_device_id *match;
983	unsigned long flags;
984
985	raw_spin_lock_irqsave(&devtree_lock, flags);
986	match = __of_match_node(matches, node);
987	raw_spin_unlock_irqrestore(&devtree_lock, flags);
988	return match;
989}
990EXPORT_SYMBOL(of_match_node);
991
992/**
993 *	of_find_matching_node_and_match - Find a node based on an of_device_id
994 *					  match table.
995 *	@from:		The node to start searching from or NULL, the node
996 *			you pass will not be searched, only the next one
997 *			will; typically, you pass what the previous call
998 *			returned. of_node_put() will be called on it
999 *	@matches:	array of of device match structures to search in
1000 *	@match		Updated to point at the matches entry which matched
1001 *
1002 *	Returns a node pointer with refcount incremented, use
1003 *	of_node_put() on it when done.
1004 */
1005struct device_node *of_find_matching_node_and_match(struct device_node *from,
1006					const struct of_device_id *matches,
1007					const struct of_device_id **match)
1008{
1009	struct device_node *np;
1010	const struct of_device_id *m;
1011	unsigned long flags;
1012
1013	if (match)
1014		*match = NULL;
1015
1016	raw_spin_lock_irqsave(&devtree_lock, flags);
1017	for_each_of_allnodes_from(from, np) {
1018		m = __of_match_node(matches, np);
1019		if (m && of_node_get(np)) {
1020			if (match)
1021				*match = m;
1022			break;
1023		}
1024	}
1025	of_node_put(from);
1026	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1027	return np;
1028}
1029EXPORT_SYMBOL(of_find_matching_node_and_match);
1030
1031/**
1032 * of_modalias_node - Lookup appropriate modalias for a device node
1033 * @node:	pointer to a device tree node
1034 * @modalias:	Pointer to buffer that modalias value will be copied into
1035 * @len:	Length of modalias value
1036 *
1037 * Based on the value of the compatible property, this routine will attempt
1038 * to choose an appropriate modalias value for a particular device tree node.
1039 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1040 * from the first entry in the compatible list property.
1041 *
1042 * This routine returns 0 on success, <0 on failure.
1043 */
1044int of_modalias_node(struct device_node *node, char *modalias, int len)
1045{
1046	const char *compatible, *p;
1047	int cplen;
1048
1049	compatible = of_get_property(node, "compatible", &cplen);
1050	if (!compatible || strlen(compatible) > cplen)
1051		return -ENODEV;
1052	p = strchr(compatible, ',');
1053	strlcpy(modalias, p ? p + 1 : compatible, len);
1054	return 0;
1055}
1056EXPORT_SYMBOL_GPL(of_modalias_node);
1057
1058/**
1059 * of_find_node_by_phandle - Find a node given a phandle
1060 * @handle:	phandle of the node to find
1061 *
1062 * Returns a node pointer with refcount incremented, use
1063 * of_node_put() on it when done.
1064 */
1065struct device_node *of_find_node_by_phandle(phandle handle)
1066{
1067	struct device_node *np;
1068	unsigned long flags;
1069
1070	if (!handle)
1071		return NULL;
1072
1073	raw_spin_lock_irqsave(&devtree_lock, flags);
1074	for_each_of_allnodes(np)
1075		if (np->phandle == handle)
1076			break;
1077	of_node_get(np);
1078	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1079	return np;
1080}
1081EXPORT_SYMBOL(of_find_node_by_phandle);
1082
1083/**
1084 * of_property_count_elems_of_size - Count the number of elements in a property
1085 *
1086 * @np:		device node from which the property value is to be read.
1087 * @propname:	name of the property to be searched.
1088 * @elem_size:	size of the individual element
1089 *
1090 * Search for a property in a device node and count the number of elements of
1091 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
1092 * property does not exist or its length does not match a multiple of elem_size
1093 * and -ENODATA if the property does not have a value.
1094 */
1095int of_property_count_elems_of_size(const struct device_node *np,
1096				const char *propname, int elem_size)
1097{
1098	struct property *prop = of_find_property(np, propname, NULL);
1099
1100	if (!prop)
1101		return -EINVAL;
1102	if (!prop->value)
1103		return -ENODATA;
1104
1105	if (prop->length % elem_size != 0) {
1106		pr_err("size of %s in node %s is not a multiple of %d\n",
1107		       propname, np->full_name, elem_size);
1108		return -EINVAL;
1109	}
1110
1111	return prop->length / elem_size;
1112}
1113EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
1114
1115/**
1116 * of_find_property_value_of_size
1117 *
1118 * @np:		device node from which the property value is to be read.
1119 * @propname:	name of the property to be searched.
1120 * @len:	requested length of property value
1121 *
1122 * Search for a property in a device node and valid the requested size.
1123 * Returns the property value on success, -EINVAL if the property does not
1124 *  exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
1125 * property data isn't large enough.
1126 *
1127 */
1128static void *of_find_property_value_of_size(const struct device_node *np,
1129			const char *propname, u32 len)
1130{
1131	struct property *prop = of_find_property(np, propname, NULL);
1132
1133	if (!prop)
1134		return ERR_PTR(-EINVAL);
1135	if (!prop->value)
1136		return ERR_PTR(-ENODATA);
1137	if (len > prop->length)
1138		return ERR_PTR(-EOVERFLOW);
1139
1140	return prop->value;
1141}
1142
1143/**
1144 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
1145 *
1146 * @np:		device node from which the property value is to be read.
1147 * @propname:	name of the property to be searched.
1148 * @index:	index of the u32 in the list of values
1149 * @out_value:	pointer to return value, modified only if no error.
1150 *
1151 * Search for a property in a device node and read nth 32-bit value from
1152 * it. Returns 0 on success, -EINVAL if the property does not exist,
1153 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1154 * property data isn't large enough.
1155 *
1156 * The out_value is modified only if a valid u32 value can be decoded.
1157 */
1158int of_property_read_u32_index(const struct device_node *np,
1159				       const char *propname,
1160				       u32 index, u32 *out_value)
1161{
1162	const u32 *val = of_find_property_value_of_size(np, propname,
1163					((index + 1) * sizeof(*out_value)));
1164
1165	if (IS_ERR(val))
1166		return PTR_ERR(val);
1167
1168	*out_value = be32_to_cpup(((__be32 *)val) + index);
1169	return 0;
1170}
1171EXPORT_SYMBOL_GPL(of_property_read_u32_index);
1172
1173/**
1174 * of_property_read_u8_array - Find and read an array of u8 from a property.
1175 *
1176 * @np:		device node from which the property value is to be read.
1177 * @propname:	name of the property to be searched.
1178 * @out_values:	pointer to return value, modified only if return value is 0.
1179 * @sz:		number of array elements to read
1180 *
1181 * Search for a property in a device node and read 8-bit value(s) from
1182 * it. Returns 0 on success, -EINVAL if the property does not exist,
1183 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1184 * property data isn't large enough.
1185 *
1186 * dts entry of array should be like:
1187 *	property = /bits/ 8 <0x50 0x60 0x70>;
1188 *
1189 * The out_values is modified only if a valid u8 value can be decoded.
1190 */
1191int of_property_read_u8_array(const struct device_node *np,
1192			const char *propname, u8 *out_values, size_t sz)
1193{
1194	const u8 *val = of_find_property_value_of_size(np, propname,
1195						(sz * sizeof(*out_values)));
1196
1197	if (IS_ERR(val))
1198		return PTR_ERR(val);
1199
1200	while (sz--)
1201		*out_values++ = *val++;
1202	return 0;
1203}
1204EXPORT_SYMBOL_GPL(of_property_read_u8_array);
1205
1206/**
1207 * of_property_read_u16_array - Find and read an array of u16 from a property.
1208 *
1209 * @np:		device node from which the property value is to be read.
1210 * @propname:	name of the property to be searched.
1211 * @out_values:	pointer to return value, modified only if return value is 0.
1212 * @sz:		number of array elements to read
1213 *
1214 * Search for a property in a device node and read 16-bit value(s) from
1215 * it. Returns 0 on success, -EINVAL if the property does not exist,
1216 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1217 * property data isn't large enough.
1218 *
1219 * dts entry of array should be like:
1220 *	property = /bits/ 16 <0x5000 0x6000 0x7000>;
1221 *
1222 * The out_values is modified only if a valid u16 value can be decoded.
1223 */
1224int of_property_read_u16_array(const struct device_node *np,
1225			const char *propname, u16 *out_values, size_t sz)
1226{
1227	const __be16 *val = of_find_property_value_of_size(np, propname,
1228						(sz * sizeof(*out_values)));
1229
1230	if (IS_ERR(val))
1231		return PTR_ERR(val);
1232
1233	while (sz--)
1234		*out_values++ = be16_to_cpup(val++);
1235	return 0;
1236}
1237EXPORT_SYMBOL_GPL(of_property_read_u16_array);
1238
1239/**
1240 * of_property_read_u32_array - Find and read an array of 32 bit integers
1241 * from a property.
1242 *
1243 * @np:		device node from which the property value is to be read.
1244 * @propname:	name of the property to be searched.
1245 * @out_values:	pointer to return value, modified only if return value is 0.
1246 * @sz:		number of array elements to read
1247 *
1248 * Search for a property in a device node and read 32-bit value(s) from
1249 * it. Returns 0 on success, -EINVAL if the property does not exist,
1250 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1251 * property data isn't large enough.
1252 *
1253 * The out_values is modified only if a valid u32 value can be decoded.
1254 */
1255int of_property_read_u32_array(const struct device_node *np,
1256			       const char *propname, u32 *out_values,
1257			       size_t sz)
1258{
1259	const __be32 *val = of_find_property_value_of_size(np, propname,
1260						(sz * sizeof(*out_values)));
1261
1262	if (IS_ERR(val))
1263		return PTR_ERR(val);
1264
1265	while (sz--)
1266		*out_values++ = be32_to_cpup(val++);
1267	return 0;
1268}
1269EXPORT_SYMBOL_GPL(of_property_read_u32_array);
1270
1271/**
1272 * of_property_read_u64 - Find and read a 64 bit integer from a property
1273 * @np:		device node from which the property value is to be read.
1274 * @propname:	name of the property to be searched.
1275 * @out_value:	pointer to return value, modified only if return value is 0.
1276 *
1277 * Search for a property in a device node and read a 64-bit value from
1278 * it. Returns 0 on success, -EINVAL if the property does not exist,
1279 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1280 * property data isn't large enough.
1281 *
1282 * The out_value is modified only if a valid u64 value can be decoded.
1283 */
1284int of_property_read_u64(const struct device_node *np, const char *propname,
1285			 u64 *out_value)
1286{
1287	const __be32 *val = of_find_property_value_of_size(np, propname,
1288						sizeof(*out_value));
1289
1290	if (IS_ERR(val))
1291		return PTR_ERR(val);
1292
1293	*out_value = of_read_number(val, 2);
1294	return 0;
1295}
1296EXPORT_SYMBOL_GPL(of_property_read_u64);
1297
1298/**
1299 * of_property_read_u64_array - Find and read an array of 64 bit integers
1300 * from a property.
1301 *
1302 * @np:		device node from which the property value is to be read.
1303 * @propname:	name of the property to be searched.
1304 * @out_values:	pointer to return value, modified only if return value is 0.
1305 * @sz:		number of array elements to read
1306 *
1307 * Search for a property in a device node and read 64-bit value(s) from
1308 * it. Returns 0 on success, -EINVAL if the property does not exist,
1309 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1310 * property data isn't large enough.
1311 *
1312 * The out_values is modified only if a valid u64 value can be decoded.
1313 */
1314int of_property_read_u64_array(const struct device_node *np,
1315			       const char *propname, u64 *out_values,
1316			       size_t sz)
1317{
1318	const __be32 *val = of_find_property_value_of_size(np, propname,
1319						(sz * sizeof(*out_values)));
1320
1321	if (IS_ERR(val))
1322		return PTR_ERR(val);
1323
1324	while (sz--) {
1325		*out_values++ = of_read_number(val, 2);
1326		val += 2;
1327	}
1328	return 0;
1329}
1330EXPORT_SYMBOL_GPL(of_property_read_u64_array);
1331
1332/**
1333 * of_property_read_string - Find and read a string from a property
1334 * @np:		device node from which the property value is to be read.
1335 * @propname:	name of the property to be searched.
1336 * @out_string:	pointer to null terminated return string, modified only if
1337 *		return value is 0.
1338 *
1339 * Search for a property in a device tree node and retrieve a null
1340 * terminated string value (pointer to data, not a copy). Returns 0 on
1341 * success, -EINVAL if the property does not exist, -ENODATA if property
1342 * does not have a value, and -EILSEQ if the string is not null-terminated
1343 * within the length of the property data.
1344 *
1345 * The out_string pointer is modified only if a valid string can be decoded.
1346 */
1347int of_property_read_string(struct device_node *np, const char *propname,
1348				const char **out_string)
1349{
1350	struct property *prop = of_find_property(np, propname, NULL);
1351	if (!prop)
1352		return -EINVAL;
1353	if (!prop->value)
1354		return -ENODATA;
1355	if (strnlen(prop->value, prop->length) >= prop->length)
1356		return -EILSEQ;
1357	*out_string = prop->value;
1358	return 0;
1359}
1360EXPORT_SYMBOL_GPL(of_property_read_string);
1361
1362/**
1363 * of_property_match_string() - Find string in a list and return index
1364 * @np: pointer to node containing string list property
1365 * @propname: string list property name
1366 * @string: pointer to string to search for in string list
1367 *
1368 * This function searches a string list property and returns the index
1369 * of a specific string value.
1370 */
1371int of_property_match_string(struct device_node *np, const char *propname,
1372			     const char *string)
1373{
1374	struct property *prop = of_find_property(np, propname, NULL);
1375	size_t l;
1376	int i;
1377	const char *p, *end;
1378
1379	if (!prop)
1380		return -EINVAL;
1381	if (!prop->value)
1382		return -ENODATA;
1383
1384	p = prop->value;
1385	end = p + prop->length;
1386
1387	for (i = 0; p < end; i++, p += l) {
1388		l = strnlen(p, end - p) + 1;
1389		if (p + l > end)
1390			return -EILSEQ;
1391		pr_debug("comparing %s with %s\n", string, p);
1392		if (strcmp(string, p) == 0)
1393			return i; /* Found it; return index */
1394	}
1395	return -ENODATA;
1396}
1397EXPORT_SYMBOL_GPL(of_property_match_string);
1398
1399/**
1400 * of_property_read_string_helper() - Utility helper for parsing string properties
1401 * @np:		device node from which the property value is to be read.
1402 * @propname:	name of the property to be searched.
1403 * @out_strs:	output array of string pointers.
1404 * @sz:		number of array elements to read.
1405 * @skip:	Number of strings to skip over at beginning of list.
1406 *
1407 * Don't call this function directly. It is a utility helper for the
1408 * of_property_read_string*() family of functions.
1409 */
1410int of_property_read_string_helper(struct device_node *np, const char *propname,
1411				   const char **out_strs, size_t sz, int skip)
1412{
1413	struct property *prop = of_find_property(np, propname, NULL);
1414	int l = 0, i = 0;
1415	const char *p, *end;
1416
1417	if (!prop)
1418		return -EINVAL;
1419	if (!prop->value)
1420		return -ENODATA;
1421	p = prop->value;
1422	end = p + prop->length;
1423
1424	for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
1425		l = strnlen(p, end - p) + 1;
1426		if (p + l > end)
1427			return -EILSEQ;
1428		if (out_strs && i >= skip)
1429			*out_strs++ = p;
1430	}
1431	i -= skip;
1432	return i <= 0 ? -ENODATA : i;
1433}
1434EXPORT_SYMBOL_GPL(of_property_read_string_helper);
1435
1436void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1437{
1438	int i;
1439	printk("%s %s", msg, of_node_full_name(args->np));
1440	for (i = 0; i < args->args_count; i++)
1441		printk(i ? ",%08x" : ":%08x", args->args[i]);
1442	printk("\n");
1443}
1444
1445static int __of_parse_phandle_with_args(const struct device_node *np,
1446					const char *list_name,
1447					const char *cells_name,
1448					int cell_count, int index,
1449					struct of_phandle_args *out_args)
1450{
1451	const __be32 *list, *list_end;
1452	int rc = 0, size, cur_index = 0;
1453	uint32_t count = 0;
1454	struct device_node *node = NULL;
1455	phandle phandle;
1456
1457	/* Retrieve the phandle list property */
1458	list = of_get_property(np, list_name, &size);
1459	if (!list)
1460		return -ENOENT;
1461	list_end = list + size / sizeof(*list);
1462
1463	/* Loop over the phandles until all the requested entry is found */
1464	while (list < list_end) {
1465		rc = -EINVAL;
1466		count = 0;
1467
1468		/*
1469		 * If phandle is 0, then it is an empty entry with no
1470		 * arguments.  Skip forward to the next entry.
1471		 */
1472		phandle = be32_to_cpup(list++);
1473		if (phandle) {
1474			/*
1475			 * Find the provider node and parse the #*-cells
1476			 * property to determine the argument length.
1477			 *
1478			 * This is not needed if the cell count is hard-coded
1479			 * (i.e. cells_name not set, but cell_count is set),
1480			 * except when we're going to return the found node
1481			 * below.
1482			 */
1483			if (cells_name || cur_index == index) {
1484				node = of_find_node_by_phandle(phandle);
1485				if (!node) {
1486					pr_err("%s: could not find phandle\n",
1487						np->full_name);
1488					goto err;
1489				}
1490			}
1491
1492			if (cells_name) {
1493				if (of_property_read_u32(node, cells_name,
1494							 &count)) {
1495					pr_err("%s: could not get %s for %s\n",
1496						np->full_name, cells_name,
1497						node->full_name);
1498					goto err;
1499				}
1500			} else {
1501				count = cell_count;
1502			}
1503
1504			/*
1505			 * Make sure that the arguments actually fit in the
1506			 * remaining property data length
1507			 */
1508			if (list + count > list_end) {
1509				pr_err("%s: arguments longer than property\n",
1510					 np->full_name);
1511				goto err;
1512			}
1513		}
1514
1515		/*
1516		 * All of the error cases above bail out of the loop, so at
1517		 * this point, the parsing is successful. If the requested
1518		 * index matches, then fill the out_args structure and return,
1519		 * or return -ENOENT for an empty entry.
1520		 */
1521		rc = -ENOENT;
1522		if (cur_index == index) {
1523			if (!phandle)
1524				goto err;
1525
1526			if (out_args) {
1527				int i;
1528				if (WARN_ON(count > MAX_PHANDLE_ARGS))
1529					count = MAX_PHANDLE_ARGS;
1530				out_args->np = node;
1531				out_args->args_count = count;
1532				for (i = 0; i < count; i++)
1533					out_args->args[i] = be32_to_cpup(list++);
1534			} else {
1535				of_node_put(node);
1536			}
1537
1538			/* Found it! return success */
1539			return 0;
1540		}
1541
1542		of_node_put(node);
1543		node = NULL;
1544		list += count;
1545		cur_index++;
1546	}
1547
1548	/*
1549	 * Unlock node before returning result; will be one of:
1550	 * -ENOENT : index is for empty phandle
1551	 * -EINVAL : parsing error on data
1552	 * [1..n]  : Number of phandle (count mode; when index = -1)
1553	 */
1554	rc = index < 0 ? cur_index : -ENOENT;
1555 err:
1556	if (node)
1557		of_node_put(node);
1558	return rc;
1559}
1560
1561/**
1562 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1563 * @np: Pointer to device node holding phandle property
1564 * @phandle_name: Name of property holding a phandle value
1565 * @index: For properties holding a table of phandles, this is the index into
1566 *         the table
1567 *
1568 * Returns the device_node pointer with refcount incremented.  Use
1569 * of_node_put() on it when done.
1570 */
1571struct device_node *of_parse_phandle(const struct device_node *np,
1572				     const char *phandle_name, int index)
1573{
1574	struct of_phandle_args args;
1575
1576	if (index < 0)
1577		return NULL;
1578
1579	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1580					 index, &args))
1581		return NULL;
1582
1583	return args.np;
1584}
1585EXPORT_SYMBOL(of_parse_phandle);
1586
1587/**
1588 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1589 * @np:		pointer to a device tree node containing a list
1590 * @list_name:	property name that contains a list
1591 * @cells_name:	property name that specifies phandles' arguments count
1592 * @index:	index of a phandle to parse out
1593 * @out_args:	optional pointer to output arguments structure (will be filled)
1594 *
1595 * This function is useful to parse lists of phandles and their arguments.
1596 * Returns 0 on success and fills out_args, on error returns appropriate
1597 * errno value.
1598 *
1599 * Caller is responsible to call of_node_put() on the returned out_args->np
1600 * pointer.
1601 *
1602 * Example:
1603 *
1604 * phandle1: node1 {
1605 *	#list-cells = <2>;
1606 * }
1607 *
1608 * phandle2: node2 {
1609 *	#list-cells = <1>;
1610 * }
1611 *
1612 * node3 {
1613 *	list = <&phandle1 1 2 &phandle2 3>;
1614 * }
1615 *
1616 * To get a device_node of the `node2' node you may call this:
1617 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1618 */
1619int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1620				const char *cells_name, int index,
1621				struct of_phandle_args *out_args)
1622{
1623	if (index < 0)
1624		return -EINVAL;
1625	return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1626					    index, out_args);
1627}
1628EXPORT_SYMBOL(of_parse_phandle_with_args);
1629
1630/**
1631 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1632 * @np:		pointer to a device tree node containing a list
1633 * @list_name:	property name that contains a list
1634 * @cell_count: number of argument cells following the phandle
1635 * @index:	index of a phandle to parse out
1636 * @out_args:	optional pointer to output arguments structure (will be filled)
1637 *
1638 * This function is useful to parse lists of phandles and their arguments.
1639 * Returns 0 on success and fills out_args, on error returns appropriate
1640 * errno value.
1641 *
1642 * Caller is responsible to call of_node_put() on the returned out_args->np
1643 * pointer.
1644 *
1645 * Example:
1646 *
1647 * phandle1: node1 {
1648 * }
1649 *
1650 * phandle2: node2 {
1651 * }
1652 *
1653 * node3 {
1654 *	list = <&phandle1 0 2 &phandle2 2 3>;
1655 * }
1656 *
1657 * To get a device_node of the `node2' node you may call this:
1658 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1659 */
1660int of_parse_phandle_with_fixed_args(const struct device_node *np,
1661				const char *list_name, int cell_count,
1662				int index, struct of_phandle_args *out_args)
1663{
1664	if (index < 0)
1665		return -EINVAL;
1666	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1667					   index, out_args);
1668}
1669EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1670
1671/**
1672 * of_count_phandle_with_args() - Find the number of phandles references in a property
1673 * @np:		pointer to a device tree node containing a list
1674 * @list_name:	property name that contains a list
1675 * @cells_name:	property name that specifies phandles' arguments count
1676 *
1677 * Returns the number of phandle + argument tuples within a property. It
1678 * is a typical pattern to encode a list of phandle and variable
1679 * arguments into a single property. The number of arguments is encoded
1680 * by a property in the phandle-target node. For example, a gpios
1681 * property would contain a list of GPIO specifies consisting of a
1682 * phandle and 1 or more arguments. The number of arguments are
1683 * determined by the #gpio-cells property in the node pointed to by the
1684 * phandle.
1685 */
1686int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1687				const char *cells_name)
1688{
1689	return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1,
1690					    NULL);
1691}
1692EXPORT_SYMBOL(of_count_phandle_with_args);
1693
1694/**
1695 * __of_add_property - Add a property to a node without lock operations
1696 */
1697int __of_add_property(struct device_node *np, struct property *prop)
1698{
1699	struct property **next;
1700
1701	prop->next = NULL;
1702	next = &np->properties;
1703	while (*next) {
1704		if (strcmp(prop->name, (*next)->name) == 0)
1705			/* duplicate ! don't insert it */
1706			return -EEXIST;
1707
1708		next = &(*next)->next;
1709	}
1710	*next = prop;
1711
1712	return 0;
1713}
1714
1715/**
1716 * of_add_property - Add a property to a node
1717 */
1718int of_add_property(struct device_node *np, struct property *prop)
1719{
1720	unsigned long flags;
1721	int rc;
1722
1723	mutex_lock(&of_mutex);
1724
1725	raw_spin_lock_irqsave(&devtree_lock, flags);
1726	rc = __of_add_property(np, prop);
1727	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1728
1729	if (!rc)
1730		__of_add_property_sysfs(np, prop);
1731
1732	mutex_unlock(&of_mutex);
1733
1734	if (!rc)
1735		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1736
1737	return rc;
1738}
1739
1740int __of_remove_property(struct device_node *np, struct property *prop)
1741{
1742	struct property **next;
1743
1744	for (next = &np->properties; *next; next = &(*next)->next) {
1745		if (*next == prop)
1746			break;
1747	}
1748	if (*next == NULL)
1749		return -ENODEV;
1750
1751	/* found the node */
1752	*next = prop->next;
1753	prop->next = np->deadprops;
1754	np->deadprops = prop;
1755
1756	return 0;
1757}
1758
1759void __of_remove_property_sysfs(struct device_node *np, struct property *prop)
1760{
1761	if (!IS_ENABLED(CONFIG_SYSFS))
1762		return;
1763
1764	/* at early boot, bail here and defer setup to of_init() */
1765	if (of_kset && of_node_is_attached(np))
1766		sysfs_remove_bin_file(&np->kobj, &prop->attr);
1767}
1768
1769/**
1770 * of_remove_property - Remove a property from a node.
1771 *
1772 * Note that we don't actually remove it, since we have given out
1773 * who-knows-how-many pointers to the data using get-property.
1774 * Instead we just move the property to the "dead properties"
1775 * list, so it won't be found any more.
1776 */
1777int of_remove_property(struct device_node *np, struct property *prop)
1778{
1779	unsigned long flags;
1780	int rc;
1781
1782	mutex_lock(&of_mutex);
1783
1784	raw_spin_lock_irqsave(&devtree_lock, flags);
1785	rc = __of_remove_property(np, prop);
1786	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1787
1788	if (!rc)
1789		__of_remove_property_sysfs(np, prop);
1790
1791	mutex_unlock(&of_mutex);
1792
1793	if (!rc)
1794		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1795
1796	return rc;
1797}
1798
1799int __of_update_property(struct device_node *np, struct property *newprop,
1800		struct property **oldpropp)
1801{
1802	struct property **next, *oldprop;
1803
1804	for (next = &np->properties; *next; next = &(*next)->next) {
1805		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1806			break;
1807	}
1808	*oldpropp = oldprop = *next;
1809
1810	if (oldprop) {
1811		/* replace the node */
1812		newprop->next = oldprop->next;
1813		*next = newprop;
1814		oldprop->next = np->deadprops;
1815		np->deadprops = oldprop;
1816	} else {
1817		/* new node */
1818		newprop->next = NULL;
1819		*next = newprop;
1820	}
1821
1822	return 0;
1823}
1824
1825void __of_update_property_sysfs(struct device_node *np, struct property *newprop,
1826		struct property *oldprop)
1827{
1828	if (!IS_ENABLED(CONFIG_SYSFS))
1829		return;
1830
1831	/* At early boot, bail out and defer setup to of_init() */
1832	if (!of_kset)
1833		return;
1834
1835	if (oldprop)
1836		sysfs_remove_bin_file(&np->kobj, &oldprop->attr);
1837	__of_add_property_sysfs(np, newprop);
1838}
1839
1840/*
1841 * of_update_property - Update a property in a node, if the property does
1842 * not exist, add it.
1843 *
1844 * Note that we don't actually remove it, since we have given out
1845 * who-knows-how-many pointers to the data using get-property.
1846 * Instead we just move the property to the "dead properties" list,
1847 * and add the new property to the property list
1848 */
1849int of_update_property(struct device_node *np, struct property *newprop)
1850{
1851	struct property *oldprop;
1852	unsigned long flags;
1853	int rc;
1854
1855	if (!newprop->name)
1856		return -EINVAL;
1857
1858	mutex_lock(&of_mutex);
1859
1860	raw_spin_lock_irqsave(&devtree_lock, flags);
1861	rc = __of_update_property(np, newprop, &oldprop);
1862	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1863
1864	if (!rc)
1865		__of_update_property_sysfs(np, newprop, oldprop);
1866
1867	mutex_unlock(&of_mutex);
1868
1869	if (!rc)
1870		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1871
1872	return rc;
1873}
1874
1875static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1876			 int id, const char *stem, int stem_len)
1877{
1878	ap->np = np;
1879	ap->id = id;
1880	strncpy(ap->stem, stem, stem_len);
1881	ap->stem[stem_len] = 0;
1882	list_add_tail(&ap->link, &aliases_lookup);
1883	pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1884		 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1885}
1886
1887/**
1888 * of_alias_scan - Scan all properties of the 'aliases' node
1889 *
1890 * The function scans all the properties of the 'aliases' node and populates
1891 * the global lookup table with the properties.  It returns the
1892 * number of alias properties found, or an error code in case of failure.
1893 *
1894 * @dt_alloc:	An allocator that provides a virtual address to memory
1895 *		for storing the resulting tree
1896 */
1897void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1898{
1899	struct property *pp;
1900
1901	of_aliases = of_find_node_by_path("/aliases");
1902	of_chosen = of_find_node_by_path("/chosen");
1903	if (of_chosen == NULL)
1904		of_chosen = of_find_node_by_path("/chosen@0");
1905
1906	if (of_chosen) {
1907		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1908		const char *name = of_get_property(of_chosen, "stdout-path", NULL);
1909		if (!name)
1910			name = of_get_property(of_chosen, "linux,stdout-path", NULL);
1911		if (IS_ENABLED(CONFIG_PPC) && !name)
1912			name = of_get_property(of_aliases, "stdout", NULL);
1913		if (name)
1914			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1915	}
1916
1917	if (!of_aliases)
1918		return;
1919
1920	for_each_property_of_node(of_aliases, pp) {
1921		const char *start = pp->name;
1922		const char *end = start + strlen(start);
1923		struct device_node *np;
1924		struct alias_prop *ap;
1925		int id, len;
1926
1927		/* Skip those we do not want to proceed */
1928		if (!strcmp(pp->name, "name") ||
1929		    !strcmp(pp->name, "phandle") ||
1930		    !strcmp(pp->name, "linux,phandle"))
1931			continue;
1932
1933		np = of_find_node_by_path(pp->value);
1934		if (!np)
1935			continue;
1936
1937		/* walk the alias backwards to extract the id and work out
1938		 * the 'stem' string */
1939		while (isdigit(*(end-1)) && end > start)
1940			end--;
1941		len = end - start;
1942
1943		if (kstrtoint(end, 10, &id) < 0)
1944			continue;
1945
1946		/* Allocate an alias_prop with enough space for the stem */
1947		ap = dt_alloc(sizeof(*ap) + len + 1, 4);
1948		if (!ap)
1949			continue;
1950		memset(ap, 0, sizeof(*ap) + len + 1);
1951		ap->alias = start;
1952		of_alias_add(ap, np, id, start, len);
1953	}
1954}
1955
1956/**
1957 * of_alias_get_id - Get alias id for the given device_node
1958 * @np:		Pointer to the given device_node
1959 * @stem:	Alias stem of the given device_node
1960 *
1961 * The function travels the lookup table to get the alias id for the given
1962 * device_node and alias stem.  It returns the alias id if found.
1963 */
1964int of_alias_get_id(struct device_node *np, const char *stem)
1965{
1966	struct alias_prop *app;
1967	int id = -ENODEV;
1968
1969	mutex_lock(&of_mutex);
1970	list_for_each_entry(app, &aliases_lookup, link) {
1971		if (strcmp(app->stem, stem) != 0)
1972			continue;
1973
1974		if (np == app->np) {
1975			id = app->id;
1976			break;
1977		}
1978	}
1979	mutex_unlock(&of_mutex);
1980
1981	return id;
1982}
1983EXPORT_SYMBOL_GPL(of_alias_get_id);
1984
1985/**
1986 * of_alias_get_highest_id - Get highest alias id for the given stem
1987 * @stem:	Alias stem to be examined
1988 *
1989 * The function travels the lookup table to get the highest alias id for the
1990 * given alias stem.  It returns the alias id if found.
1991 */
1992int of_alias_get_highest_id(const char *stem)
1993{
1994	struct alias_prop *app;
1995	int id = -ENODEV;
1996
1997	mutex_lock(&of_mutex);
1998	list_for_each_entry(app, &aliases_lookup, link) {
1999		if (strcmp(app->stem, stem) != 0)
2000			continue;
2001
2002		if (app->id > id)
2003			id = app->id;
2004	}
2005	mutex_unlock(&of_mutex);
2006
2007	return id;
2008}
2009EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2010
2011const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
2012			       u32 *pu)
2013{
2014	const void *curv = cur;
2015
2016	if (!prop)
2017		return NULL;
2018
2019	if (!cur) {
2020		curv = prop->value;
2021		goto out_val;
2022	}
2023
2024	curv += sizeof(*cur);
2025	if (curv >= prop->value + prop->length)
2026		return NULL;
2027
2028out_val:
2029	*pu = be32_to_cpup(curv);
2030	return curv;
2031}
2032EXPORT_SYMBOL_GPL(of_prop_next_u32);
2033
2034const char *of_prop_next_string(struct property *prop, const char *cur)
2035{
2036	const void *curv = cur;
2037
2038	if (!prop)
2039		return NULL;
2040
2041	if (!cur)
2042		return prop->value;
2043
2044	curv += strlen(cur) + 1;
2045	if (curv >= prop->value + prop->length)
2046		return NULL;
2047
2048	return curv;
2049}
2050EXPORT_SYMBOL_GPL(of_prop_next_string);
2051
2052/**
2053 * of_console_check() - Test and setup console for DT setup
2054 * @dn - Pointer to device node
2055 * @name - Name to use for preferred console without index. ex. "ttyS"
2056 * @index - Index to use for preferred console.
2057 *
2058 * Check if the given device node matches the stdout-path property in the
2059 * /chosen node. If it does then register it as the preferred console and return
2060 * TRUE. Otherwise return FALSE.
2061 */
2062bool of_console_check(struct device_node *dn, char *name, int index)
2063{
2064	if (!dn || dn != of_stdout || console_set_on_cmdline)
2065		return false;
2066	return !add_preferred_console(name, index,
2067				      kstrdup(of_stdout_options, GFP_KERNEL));
2068}
2069EXPORT_SYMBOL_GPL(of_console_check);
2070
2071/**
2072 *	of_find_next_cache_node - Find a node's subsidiary cache
2073 *	@np:	node of type "cpu" or "cache"
2074 *
2075 *	Returns a node pointer with refcount incremented, use
2076 *	of_node_put() on it when done.  Caller should hold a reference
2077 *	to np.
2078 */
2079struct device_node *of_find_next_cache_node(const struct device_node *np)
2080{
2081	struct device_node *child;
2082	const phandle *handle;
2083
2084	handle = of_get_property(np, "l2-cache", NULL);
2085	if (!handle)
2086		handle = of_get_property(np, "next-level-cache", NULL);
2087
2088	if (handle)
2089		return of_find_node_by_phandle(be32_to_cpup(handle));
2090
2091	/* OF on pmac has nodes instead of properties named "l2-cache"
2092	 * beneath CPU nodes.
2093	 */
2094	if (!strcmp(np->type, "cpu"))
2095		for_each_child_of_node(np, child)
2096			if (!strcmp(child->type, "cache"))
2097				return child;
2098
2099	return NULL;
2100}
2101
2102/**
2103 * of_graph_parse_endpoint() - parse common endpoint node properties
2104 * @node: pointer to endpoint device_node
2105 * @endpoint: pointer to the OF endpoint data structure
2106 *
2107 * The caller should hold a reference to @node.
2108 */
2109int of_graph_parse_endpoint(const struct device_node *node,
2110			    struct of_endpoint *endpoint)
2111{
2112	struct device_node *port_node = of_get_parent(node);
2113
2114	WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n",
2115		  __func__, node->full_name);
2116
2117	memset(endpoint, 0, sizeof(*endpoint));
2118
2119	endpoint->local_node = node;
2120	/*
2121	 * It doesn't matter whether the two calls below succeed.
2122	 * If they don't then the default value 0 is used.
2123	 */
2124	of_property_read_u32(port_node, "reg", &endpoint->port);
2125	of_property_read_u32(node, "reg", &endpoint->id);
2126
2127	of_node_put(port_node);
2128
2129	return 0;
2130}
2131EXPORT_SYMBOL(of_graph_parse_endpoint);
2132
2133/**
2134 * of_graph_get_port_by_id() - get the port matching a given id
2135 * @parent: pointer to the parent device node
2136 * @id: id of the port
2137 *
2138 * Return: A 'port' node pointer with refcount incremented. The caller
2139 * has to use of_node_put() on it when done.
2140 */
2141struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
2142{
2143	struct device_node *node, *port;
2144
2145	node = of_get_child_by_name(parent, "ports");
2146	if (node)
2147		parent = node;
2148
2149	for_each_child_of_node(parent, port) {
2150		u32 port_id = 0;
2151
2152		if (of_node_cmp(port->name, "port") != 0)
2153			continue;
2154		of_property_read_u32(port, "reg", &port_id);
2155		if (id == port_id)
2156			break;
2157	}
2158
2159	of_node_put(node);
2160
2161	return port;
2162}
2163EXPORT_SYMBOL(of_graph_get_port_by_id);
2164
2165/**
2166 * of_graph_get_next_endpoint() - get next endpoint node
2167 * @parent: pointer to the parent device node
2168 * @prev: previous endpoint node, or NULL to get first
2169 *
2170 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
2171 * of the passed @prev node is decremented.
2172 */
2173struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
2174					struct device_node *prev)
2175{
2176	struct device_node *endpoint;
2177	struct device_node *port;
2178
2179	if (!parent)
2180		return NULL;
2181
2182	/*
2183	 * Start by locating the port node. If no previous endpoint is specified
2184	 * search for the first port node, otherwise get the previous endpoint
2185	 * parent port node.
2186	 */
2187	if (!prev) {
2188		struct device_node *node;
2189
2190		node = of_get_child_by_name(parent, "ports");
2191		if (node)
2192			parent = node;
2193
2194		port = of_get_child_by_name(parent, "port");
2195		of_node_put(node);
2196
2197		if (!port) {
2198			pr_err("%s(): no port node found in %s\n",
2199			       __func__, parent->full_name);
2200			return NULL;
2201		}
2202	} else {
2203		port = of_get_parent(prev);
2204		if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n",
2205			      __func__, prev->full_name))
2206			return NULL;
2207	}
2208
2209	while (1) {
2210		/*
2211		 * Now that we have a port node, get the next endpoint by
2212		 * getting the next child. If the previous endpoint is NULL this
2213		 * will return the first child.
2214		 */
2215		endpoint = of_get_next_child(port, prev);
2216		if (endpoint) {
2217			of_node_put(port);
2218			return endpoint;
2219		}
2220
2221		/* No more endpoints under this port, try the next one. */
2222		prev = NULL;
2223
2224		do {
2225			port = of_get_next_child(parent, port);
2226			if (!port)
2227				return NULL;
2228		} while (of_node_cmp(port->name, "port"));
2229	}
2230}
2231EXPORT_SYMBOL(of_graph_get_next_endpoint);
2232
2233/**
2234 * of_graph_get_remote_port_parent() - get remote port's parent node
2235 * @node: pointer to a local endpoint device_node
2236 *
2237 * Return: Remote device node associated with remote endpoint node linked
2238 *	   to @node. Use of_node_put() on it when done.
2239 */
2240struct device_node *of_graph_get_remote_port_parent(
2241			       const struct device_node *node)
2242{
2243	struct device_node *np;
2244	unsigned int depth;
2245
2246	/* Get remote endpoint node. */
2247	np = of_parse_phandle(node, "remote-endpoint", 0);
2248
2249	/* Walk 3 levels up only if there is 'ports' node. */
2250	for (depth = 3; depth && np; depth--) {
2251		np = of_get_next_parent(np);
2252		if (depth == 2 && of_node_cmp(np->name, "ports"))
2253			break;
2254	}
2255	return np;
2256}
2257EXPORT_SYMBOL(of_graph_get_remote_port_parent);
2258
2259/**
2260 * of_graph_get_remote_port() - get remote port node
2261 * @node: pointer to a local endpoint device_node
2262 *
2263 * Return: Remote port node associated with remote endpoint node linked
2264 *	   to @node. Use of_node_put() on it when done.
2265 */
2266struct device_node *of_graph_get_remote_port(const struct device_node *node)
2267{
2268	struct device_node *np;
2269
2270	/* Get remote endpoint node. */
2271	np = of_parse_phandle(node, "remote-endpoint", 0);
2272	if (!np)
2273		return NULL;
2274	return of_get_next_parent(np);
2275}
2276EXPORT_SYMBOL(of_graph_get_remote_port);
2277