1/* 2 * Procedures for creating, accessing and interpreting the device tree. 3 * 4 * Paul Mackerras August 1996. 5 * Copyright (C) 1996-2005 Paul Mackerras. 6 * 7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 8 * {engebret|bergner}@us.ibm.com 9 * 10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net 11 * 12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and 13 * Grant Likely. 14 * 15 * This program is free software; you can redistribute it and/or 16 * modify it under the terms of the GNU General Public License 17 * as published by the Free Software Foundation; either version 18 * 2 of the License, or (at your option) any later version. 19 */ 20#include <linux/console.h> 21#include <linux/ctype.h> 22#include <linux/cpu.h> 23#include <linux/module.h> 24#include <linux/of.h> 25#include <linux/of_graph.h> 26#include <linux/spinlock.h> 27#include <linux/slab.h> 28#include <linux/string.h> 29#include <linux/proc_fs.h> 30 31#include "of_private.h" 32 33LIST_HEAD(aliases_lookup); 34 35struct device_node *of_root; 36EXPORT_SYMBOL(of_root); 37struct device_node *of_chosen; 38struct device_node *of_aliases; 39struct device_node *of_stdout; 40static const char *of_stdout_options; 41 42struct kset *of_kset; 43 44/* 45 * Used to protect the of_aliases, to hold off addition of nodes to sysfs. 46 * This mutex must be held whenever modifications are being made to the 47 * device tree. The of_{attach,detach}_node() and 48 * of_{add,remove,update}_property() helpers make sure this happens. 49 */ 50DEFINE_MUTEX(of_mutex); 51 52/* use when traversing tree through the child, sibling, 53 * or parent members of struct device_node. 54 */ 55DEFINE_RAW_SPINLOCK(devtree_lock); 56 57int of_n_addr_cells(struct device_node *np) 58{ 59 const __be32 *ip; 60 61 do { 62 if (np->parent) 63 np = np->parent; 64 ip = of_get_property(np, "#address-cells", NULL); 65 if (ip) 66 return be32_to_cpup(ip); 67 } while (np->parent); 68 /* No #address-cells property for the root node */ 69 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; 70} 71EXPORT_SYMBOL(of_n_addr_cells); 72 73int of_n_size_cells(struct device_node *np) 74{ 75 const __be32 *ip; 76 77 do { 78 if (np->parent) 79 np = np->parent; 80 ip = of_get_property(np, "#size-cells", NULL); 81 if (ip) 82 return be32_to_cpup(ip); 83 } while (np->parent); 84 /* No #size-cells property for the root node */ 85 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; 86} 87EXPORT_SYMBOL(of_n_size_cells); 88 89#ifdef CONFIG_NUMA 90int __weak of_node_to_nid(struct device_node *np) 91{ 92 return NUMA_NO_NODE; 93} 94#endif 95 96#ifndef CONFIG_OF_DYNAMIC 97static void of_node_release(struct kobject *kobj) 98{ 99 /* Without CONFIG_OF_DYNAMIC, no nodes gets freed */ 100} 101#endif /* CONFIG_OF_DYNAMIC */ 102 103struct kobj_type of_node_ktype = { 104 .release = of_node_release, 105}; 106 107static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj, 108 struct bin_attribute *bin_attr, char *buf, 109 loff_t offset, size_t count) 110{ 111 struct property *pp = container_of(bin_attr, struct property, attr); 112 return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length); 113} 114 115static const char *safe_name(struct kobject *kobj, const char *orig_name) 116{ 117 const char *name = orig_name; 118 struct kernfs_node *kn; 119 int i = 0; 120 121 /* don't be a hero. After 16 tries give up */ 122 while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) { 123 sysfs_put(kn); 124 if (name != orig_name) 125 kfree(name); 126 name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i); 127 } 128 129 if (name != orig_name) 130 pr_warn("device-tree: Duplicate name in %s, renamed to \"%s\"\n", 131 kobject_name(kobj), name); 132 return name; 133} 134 135int __of_add_property_sysfs(struct device_node *np, struct property *pp) 136{ 137 int rc; 138 139 /* Important: Don't leak passwords */ 140 bool secure = strncmp(pp->name, "security-", 9) == 0; 141 142 if (!IS_ENABLED(CONFIG_SYSFS)) 143 return 0; 144 145 if (!of_kset || !of_node_is_attached(np)) 146 return 0; 147 148 sysfs_bin_attr_init(&pp->attr); 149 pp->attr.attr.name = safe_name(&np->kobj, pp->name); 150 pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO; 151 pp->attr.size = secure ? 0 : pp->length; 152 pp->attr.read = of_node_property_read; 153 154 rc = sysfs_create_bin_file(&np->kobj, &pp->attr); 155 WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name); 156 return rc; 157} 158 159int __of_attach_node_sysfs(struct device_node *np) 160{ 161 const char *name; 162 struct property *pp; 163 int rc; 164 165 if (!IS_ENABLED(CONFIG_SYSFS)) 166 return 0; 167 168 if (!of_kset) 169 return 0; 170 171 np->kobj.kset = of_kset; 172 if (!np->parent) { 173 /* Nodes without parents are new top level trees */ 174 rc = kobject_add(&np->kobj, NULL, "%s", 175 safe_name(&of_kset->kobj, "base")); 176 } else { 177 name = safe_name(&np->parent->kobj, kbasename(np->full_name)); 178 if (!name || !name[0]) 179 return -EINVAL; 180 181 rc = kobject_add(&np->kobj, &np->parent->kobj, "%s", name); 182 } 183 if (rc) 184 return rc; 185 186 for_each_property_of_node(np, pp) 187 __of_add_property_sysfs(np, pp); 188 189 return 0; 190} 191 192void __init of_core_init(void) 193{ 194 struct device_node *np; 195 196 /* Create the kset, and register existing nodes */ 197 mutex_lock(&of_mutex); 198 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj); 199 if (!of_kset) { 200 mutex_unlock(&of_mutex); 201 pr_err("devicetree: failed to register existing nodes\n"); 202 return; 203 } 204 for_each_of_allnodes(np) 205 __of_attach_node_sysfs(np); 206 mutex_unlock(&of_mutex); 207 208 /* Symlink in /proc as required by userspace ABI */ 209 if (of_root) 210 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base"); 211} 212 213static struct property *__of_find_property(const struct device_node *np, 214 const char *name, int *lenp) 215{ 216 struct property *pp; 217 218 if (!np) 219 return NULL; 220 221 for (pp = np->properties; pp; pp = pp->next) { 222 if (of_prop_cmp(pp->name, name) == 0) { 223 if (lenp) 224 *lenp = pp->length; 225 break; 226 } 227 } 228 229 return pp; 230} 231 232struct property *of_find_property(const struct device_node *np, 233 const char *name, 234 int *lenp) 235{ 236 struct property *pp; 237 unsigned long flags; 238 239 raw_spin_lock_irqsave(&devtree_lock, flags); 240 pp = __of_find_property(np, name, lenp); 241 raw_spin_unlock_irqrestore(&devtree_lock, flags); 242 243 return pp; 244} 245EXPORT_SYMBOL(of_find_property); 246 247struct device_node *__of_find_all_nodes(struct device_node *prev) 248{ 249 struct device_node *np; 250 if (!prev) { 251 np = of_root; 252 } else if (prev->child) { 253 np = prev->child; 254 } else { 255 /* Walk back up looking for a sibling, or the end of the structure */ 256 np = prev; 257 while (np->parent && !np->sibling) 258 np = np->parent; 259 np = np->sibling; /* Might be null at the end of the tree */ 260 } 261 return np; 262} 263 264/** 265 * of_find_all_nodes - Get next node in global list 266 * @prev: Previous node or NULL to start iteration 267 * of_node_put() will be called on it 268 * 269 * Returns a node pointer with refcount incremented, use 270 * of_node_put() on it when done. 271 */ 272struct device_node *of_find_all_nodes(struct device_node *prev) 273{ 274 struct device_node *np; 275 unsigned long flags; 276 277 raw_spin_lock_irqsave(&devtree_lock, flags); 278 np = __of_find_all_nodes(prev); 279 of_node_get(np); 280 of_node_put(prev); 281 raw_spin_unlock_irqrestore(&devtree_lock, flags); 282 return np; 283} 284EXPORT_SYMBOL(of_find_all_nodes); 285 286/* 287 * Find a property with a given name for a given node 288 * and return the value. 289 */ 290const void *__of_get_property(const struct device_node *np, 291 const char *name, int *lenp) 292{ 293 struct property *pp = __of_find_property(np, name, lenp); 294 295 return pp ? pp->value : NULL; 296} 297 298/* 299 * Find a property with a given name for a given node 300 * and return the value. 301 */ 302const void *of_get_property(const struct device_node *np, const char *name, 303 int *lenp) 304{ 305 struct property *pp = of_find_property(np, name, lenp); 306 307 return pp ? pp->value : NULL; 308} 309EXPORT_SYMBOL(of_get_property); 310 311/* 312 * arch_match_cpu_phys_id - Match the given logical CPU and physical id 313 * 314 * @cpu: logical cpu index of a core/thread 315 * @phys_id: physical identifier of a core/thread 316 * 317 * CPU logical to physical index mapping is architecture specific. 318 * However this __weak function provides a default match of physical 319 * id to logical cpu index. phys_id provided here is usually values read 320 * from the device tree which must match the hardware internal registers. 321 * 322 * Returns true if the physical identifier and the logical cpu index 323 * correspond to the same core/thread, false otherwise. 324 */ 325bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id) 326{ 327 return (u32)phys_id == cpu; 328} 329 330/** 331 * Checks if the given "prop_name" property holds the physical id of the 332 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not 333 * NULL, local thread number within the core is returned in it. 334 */ 335static bool __of_find_n_match_cpu_property(struct device_node *cpun, 336 const char *prop_name, int cpu, unsigned int *thread) 337{ 338 const __be32 *cell; 339 int ac, prop_len, tid; 340 u64 hwid; 341 342 ac = of_n_addr_cells(cpun); 343 cell = of_get_property(cpun, prop_name, &prop_len); 344 if (!cell || !ac) 345 return false; 346 prop_len /= sizeof(*cell) * ac; 347 for (tid = 0; tid < prop_len; tid++) { 348 hwid = of_read_number(cell, ac); 349 if (arch_match_cpu_phys_id(cpu, hwid)) { 350 if (thread) 351 *thread = tid; 352 return true; 353 } 354 cell += ac; 355 } 356 return false; 357} 358 359/* 360 * arch_find_n_match_cpu_physical_id - See if the given device node is 361 * for the cpu corresponding to logical cpu 'cpu'. Return true if so, 362 * else false. If 'thread' is non-NULL, the local thread number within the 363 * core is returned in it. 364 */ 365bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun, 366 int cpu, unsigned int *thread) 367{ 368 /* Check for non-standard "ibm,ppc-interrupt-server#s" property 369 * for thread ids on PowerPC. If it doesn't exist fallback to 370 * standard "reg" property. 371 */ 372 if (IS_ENABLED(CONFIG_PPC) && 373 __of_find_n_match_cpu_property(cpun, 374 "ibm,ppc-interrupt-server#s", 375 cpu, thread)) 376 return true; 377 378 if (__of_find_n_match_cpu_property(cpun, "reg", cpu, thread)) 379 return true; 380 381 return false; 382} 383 384/** 385 * of_get_cpu_node - Get device node associated with the given logical CPU 386 * 387 * @cpu: CPU number(logical index) for which device node is required 388 * @thread: if not NULL, local thread number within the physical core is 389 * returned 390 * 391 * The main purpose of this function is to retrieve the device node for the 392 * given logical CPU index. It should be used to initialize the of_node in 393 * cpu device. Once of_node in cpu device is populated, all the further 394 * references can use that instead. 395 * 396 * CPU logical to physical index mapping is architecture specific and is built 397 * before booting secondary cores. This function uses arch_match_cpu_phys_id 398 * which can be overridden by architecture specific implementation. 399 * 400 * Returns a node pointer for the logical cpu if found, else NULL. 401 */ 402struct device_node *of_get_cpu_node(int cpu, unsigned int *thread) 403{ 404 struct device_node *cpun; 405 406 for_each_node_by_type(cpun, "cpu") { 407 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread)) 408 return cpun; 409 } 410 return NULL; 411} 412EXPORT_SYMBOL(of_get_cpu_node); 413 414/** 415 * __of_device_is_compatible() - Check if the node matches given constraints 416 * @device: pointer to node 417 * @compat: required compatible string, NULL or "" for any match 418 * @type: required device_type value, NULL or "" for any match 419 * @name: required node name, NULL or "" for any match 420 * 421 * Checks if the given @compat, @type and @name strings match the 422 * properties of the given @device. A constraints can be skipped by 423 * passing NULL or an empty string as the constraint. 424 * 425 * Returns 0 for no match, and a positive integer on match. The return 426 * value is a relative score with larger values indicating better 427 * matches. The score is weighted for the most specific compatible value 428 * to get the highest score. Matching type is next, followed by matching 429 * name. Practically speaking, this results in the following priority 430 * order for matches: 431 * 432 * 1. specific compatible && type && name 433 * 2. specific compatible && type 434 * 3. specific compatible && name 435 * 4. specific compatible 436 * 5. general compatible && type && name 437 * 6. general compatible && type 438 * 7. general compatible && name 439 * 8. general compatible 440 * 9. type && name 441 * 10. type 442 * 11. name 443 */ 444static int __of_device_is_compatible(const struct device_node *device, 445 const char *compat, const char *type, const char *name) 446{ 447 struct property *prop; 448 const char *cp; 449 int index = 0, score = 0; 450 451 /* Compatible match has highest priority */ 452 if (compat && compat[0]) { 453 prop = __of_find_property(device, "compatible", NULL); 454 for (cp = of_prop_next_string(prop, NULL); cp; 455 cp = of_prop_next_string(prop, cp), index++) { 456 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) { 457 score = INT_MAX/2 - (index << 2); 458 break; 459 } 460 } 461 if (!score) 462 return 0; 463 } 464 465 /* Matching type is better than matching name */ 466 if (type && type[0]) { 467 if (!device->type || of_node_cmp(type, device->type)) 468 return 0; 469 score += 2; 470 } 471 472 /* Matching name is a bit better than not */ 473 if (name && name[0]) { 474 if (!device->name || of_node_cmp(name, device->name)) 475 return 0; 476 score++; 477 } 478 479 return score; 480} 481 482/** Checks if the given "compat" string matches one of the strings in 483 * the device's "compatible" property 484 */ 485int of_device_is_compatible(const struct device_node *device, 486 const char *compat) 487{ 488 unsigned long flags; 489 int res; 490 491 raw_spin_lock_irqsave(&devtree_lock, flags); 492 res = __of_device_is_compatible(device, compat, NULL, NULL); 493 raw_spin_unlock_irqrestore(&devtree_lock, flags); 494 return res; 495} 496EXPORT_SYMBOL(of_device_is_compatible); 497 498/** 499 * of_machine_is_compatible - Test root of device tree for a given compatible value 500 * @compat: compatible string to look for in root node's compatible property. 501 * 502 * Returns a positive integer if the root node has the given value in its 503 * compatible property. 504 */ 505int of_machine_is_compatible(const char *compat) 506{ 507 struct device_node *root; 508 int rc = 0; 509 510 root = of_find_node_by_path("/"); 511 if (root) { 512 rc = of_device_is_compatible(root, compat); 513 of_node_put(root); 514 } 515 return rc; 516} 517EXPORT_SYMBOL(of_machine_is_compatible); 518 519/** 520 * __of_device_is_available - check if a device is available for use 521 * 522 * @device: Node to check for availability, with locks already held 523 * 524 * Returns true if the status property is absent or set to "okay" or "ok", 525 * false otherwise 526 */ 527static bool __of_device_is_available(const struct device_node *device) 528{ 529 const char *status; 530 int statlen; 531 532 if (!device) 533 return false; 534 535 status = __of_get_property(device, "status", &statlen); 536 if (status == NULL) 537 return true; 538 539 if (statlen > 0) { 540 if (!strcmp(status, "okay") || !strcmp(status, "ok")) 541 return true; 542 } 543 544 return false; 545} 546 547/** 548 * of_device_is_available - check if a device is available for use 549 * 550 * @device: Node to check for availability 551 * 552 * Returns true if the status property is absent or set to "okay" or "ok", 553 * false otherwise 554 */ 555bool of_device_is_available(const struct device_node *device) 556{ 557 unsigned long flags; 558 bool res; 559 560 raw_spin_lock_irqsave(&devtree_lock, flags); 561 res = __of_device_is_available(device); 562 raw_spin_unlock_irqrestore(&devtree_lock, flags); 563 return res; 564 565} 566EXPORT_SYMBOL(of_device_is_available); 567 568/** 569 * of_device_is_big_endian - check if a device has BE registers 570 * 571 * @device: Node to check for endianness 572 * 573 * Returns true if the device has a "big-endian" property, or if the kernel 574 * was compiled for BE *and* the device has a "native-endian" property. 575 * Returns false otherwise. 576 * 577 * Callers would nominally use ioread32be/iowrite32be if 578 * of_device_is_big_endian() == true, or readl/writel otherwise. 579 */ 580bool of_device_is_big_endian(const struct device_node *device) 581{ 582 if (of_property_read_bool(device, "big-endian")) 583 return true; 584 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) && 585 of_property_read_bool(device, "native-endian")) 586 return true; 587 return false; 588} 589EXPORT_SYMBOL(of_device_is_big_endian); 590 591/** 592 * of_get_parent - Get a node's parent if any 593 * @node: Node to get parent 594 * 595 * Returns a node pointer with refcount incremented, use 596 * of_node_put() on it when done. 597 */ 598struct device_node *of_get_parent(const struct device_node *node) 599{ 600 struct device_node *np; 601 unsigned long flags; 602 603 if (!node) 604 return NULL; 605 606 raw_spin_lock_irqsave(&devtree_lock, flags); 607 np = of_node_get(node->parent); 608 raw_spin_unlock_irqrestore(&devtree_lock, flags); 609 return np; 610} 611EXPORT_SYMBOL(of_get_parent); 612 613/** 614 * of_get_next_parent - Iterate to a node's parent 615 * @node: Node to get parent of 616 * 617 * This is like of_get_parent() except that it drops the 618 * refcount on the passed node, making it suitable for iterating 619 * through a node's parents. 620 * 621 * Returns a node pointer with refcount incremented, use 622 * of_node_put() on it when done. 623 */ 624struct device_node *of_get_next_parent(struct device_node *node) 625{ 626 struct device_node *parent; 627 unsigned long flags; 628 629 if (!node) 630 return NULL; 631 632 raw_spin_lock_irqsave(&devtree_lock, flags); 633 parent = of_node_get(node->parent); 634 of_node_put(node); 635 raw_spin_unlock_irqrestore(&devtree_lock, flags); 636 return parent; 637} 638EXPORT_SYMBOL(of_get_next_parent); 639 640static struct device_node *__of_get_next_child(const struct device_node *node, 641 struct device_node *prev) 642{ 643 struct device_node *next; 644 645 if (!node) 646 return NULL; 647 648 next = prev ? prev->sibling : node->child; 649 for (; next; next = next->sibling) 650 if (of_node_get(next)) 651 break; 652 of_node_put(prev); 653 return next; 654} 655#define __for_each_child_of_node(parent, child) \ 656 for (child = __of_get_next_child(parent, NULL); child != NULL; \ 657 child = __of_get_next_child(parent, child)) 658 659/** 660 * of_get_next_child - Iterate a node childs 661 * @node: parent node 662 * @prev: previous child of the parent node, or NULL to get first 663 * 664 * Returns a node pointer with refcount incremented, use of_node_put() on 665 * it when done. Returns NULL when prev is the last child. Decrements the 666 * refcount of prev. 667 */ 668struct device_node *of_get_next_child(const struct device_node *node, 669 struct device_node *prev) 670{ 671 struct device_node *next; 672 unsigned long flags; 673 674 raw_spin_lock_irqsave(&devtree_lock, flags); 675 next = __of_get_next_child(node, prev); 676 raw_spin_unlock_irqrestore(&devtree_lock, flags); 677 return next; 678} 679EXPORT_SYMBOL(of_get_next_child); 680 681/** 682 * of_get_next_available_child - Find the next available child node 683 * @node: parent node 684 * @prev: previous child of the parent node, or NULL to get first 685 * 686 * This function is like of_get_next_child(), except that it 687 * automatically skips any disabled nodes (i.e. status = "disabled"). 688 */ 689struct device_node *of_get_next_available_child(const struct device_node *node, 690 struct device_node *prev) 691{ 692 struct device_node *next; 693 unsigned long flags; 694 695 if (!node) 696 return NULL; 697 698 raw_spin_lock_irqsave(&devtree_lock, flags); 699 next = prev ? prev->sibling : node->child; 700 for (; next; next = next->sibling) { 701 if (!__of_device_is_available(next)) 702 continue; 703 if (of_node_get(next)) 704 break; 705 } 706 of_node_put(prev); 707 raw_spin_unlock_irqrestore(&devtree_lock, flags); 708 return next; 709} 710EXPORT_SYMBOL(of_get_next_available_child); 711 712/** 713 * of_get_child_by_name - Find the child node by name for a given parent 714 * @node: parent node 715 * @name: child name to look for. 716 * 717 * This function looks for child node for given matching name 718 * 719 * Returns a node pointer if found, with refcount incremented, use 720 * of_node_put() on it when done. 721 * Returns NULL if node is not found. 722 */ 723struct device_node *of_get_child_by_name(const struct device_node *node, 724 const char *name) 725{ 726 struct device_node *child; 727 728 for_each_child_of_node(node, child) 729 if (child->name && (of_node_cmp(child->name, name) == 0)) 730 break; 731 return child; 732} 733EXPORT_SYMBOL(of_get_child_by_name); 734 735static struct device_node *__of_find_node_by_path(struct device_node *parent, 736 const char *path) 737{ 738 struct device_node *child; 739 int len; 740 741 len = strcspn(path, "/:"); 742 if (!len) 743 return NULL; 744 745 __for_each_child_of_node(parent, child) { 746 const char *name = strrchr(child->full_name, '/'); 747 if (WARN(!name, "malformed device_node %s\n", child->full_name)) 748 continue; 749 name++; 750 if (strncmp(path, name, len) == 0 && (strlen(name) == len)) 751 return child; 752 } 753 return NULL; 754} 755 756/** 757 * of_find_node_opts_by_path - Find a node matching a full OF path 758 * @path: Either the full path to match, or if the path does not 759 * start with '/', the name of a property of the /aliases 760 * node (an alias). In the case of an alias, the node 761 * matching the alias' value will be returned. 762 * @opts: Address of a pointer into which to store the start of 763 * an options string appended to the end of the path with 764 * a ':' separator. 765 * 766 * Valid paths: 767 * /foo/bar Full path 768 * foo Valid alias 769 * foo/bar Valid alias + relative path 770 * 771 * Returns a node pointer with refcount incremented, use 772 * of_node_put() on it when done. 773 */ 774struct device_node *of_find_node_opts_by_path(const char *path, const char **opts) 775{ 776 struct device_node *np = NULL; 777 struct property *pp; 778 unsigned long flags; 779 const char *separator = strchr(path, ':'); 780 781 if (opts) 782 *opts = separator ? separator + 1 : NULL; 783 784 if (strcmp(path, "/") == 0) 785 return of_node_get(of_root); 786 787 /* The path could begin with an alias */ 788 if (*path != '/') { 789 int len; 790 const char *p = separator; 791 792 if (!p) 793 p = strchrnul(path, '/'); 794 len = p - path; 795 796 /* of_aliases must not be NULL */ 797 if (!of_aliases) 798 return NULL; 799 800 for_each_property_of_node(of_aliases, pp) { 801 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) { 802 np = of_find_node_by_path(pp->value); 803 break; 804 } 805 } 806 if (!np) 807 return NULL; 808 path = p; 809 } 810 811 /* Step down the tree matching path components */ 812 raw_spin_lock_irqsave(&devtree_lock, flags); 813 if (!np) 814 np = of_node_get(of_root); 815 while (np && *path == '/') { 816 path++; /* Increment past '/' delimiter */ 817 np = __of_find_node_by_path(np, path); 818 path = strchrnul(path, '/'); 819 if (separator && separator < path) 820 break; 821 } 822 raw_spin_unlock_irqrestore(&devtree_lock, flags); 823 return np; 824} 825EXPORT_SYMBOL(of_find_node_opts_by_path); 826 827/** 828 * of_find_node_by_name - Find a node by its "name" property 829 * @from: The node to start searching from or NULL, the node 830 * you pass will not be searched, only the next one 831 * will; typically, you pass what the previous call 832 * returned. of_node_put() will be called on it 833 * @name: The name string to match against 834 * 835 * Returns a node pointer with refcount incremented, use 836 * of_node_put() on it when done. 837 */ 838struct device_node *of_find_node_by_name(struct device_node *from, 839 const char *name) 840{ 841 struct device_node *np; 842 unsigned long flags; 843 844 raw_spin_lock_irqsave(&devtree_lock, flags); 845 for_each_of_allnodes_from(from, np) 846 if (np->name && (of_node_cmp(np->name, name) == 0) 847 && of_node_get(np)) 848 break; 849 of_node_put(from); 850 raw_spin_unlock_irqrestore(&devtree_lock, flags); 851 return np; 852} 853EXPORT_SYMBOL(of_find_node_by_name); 854 855/** 856 * of_find_node_by_type - Find a node by its "device_type" property 857 * @from: The node to start searching from, or NULL to start searching 858 * the entire device tree. The node you pass will not be 859 * searched, only the next one will; typically, you pass 860 * what the previous call returned. of_node_put() will be 861 * called on from for you. 862 * @type: The type string to match against 863 * 864 * Returns a node pointer with refcount incremented, use 865 * of_node_put() on it when done. 866 */ 867struct device_node *of_find_node_by_type(struct device_node *from, 868 const char *type) 869{ 870 struct device_node *np; 871 unsigned long flags; 872 873 raw_spin_lock_irqsave(&devtree_lock, flags); 874 for_each_of_allnodes_from(from, np) 875 if (np->type && (of_node_cmp(np->type, type) == 0) 876 && of_node_get(np)) 877 break; 878 of_node_put(from); 879 raw_spin_unlock_irqrestore(&devtree_lock, flags); 880 return np; 881} 882EXPORT_SYMBOL(of_find_node_by_type); 883 884/** 885 * of_find_compatible_node - Find a node based on type and one of the 886 * tokens in its "compatible" property 887 * @from: The node to start searching from or NULL, the node 888 * you pass will not be searched, only the next one 889 * will; typically, you pass what the previous call 890 * returned. of_node_put() will be called on it 891 * @type: The type string to match "device_type" or NULL to ignore 892 * @compatible: The string to match to one of the tokens in the device 893 * "compatible" list. 894 * 895 * Returns a node pointer with refcount incremented, use 896 * of_node_put() on it when done. 897 */ 898struct device_node *of_find_compatible_node(struct device_node *from, 899 const char *type, const char *compatible) 900{ 901 struct device_node *np; 902 unsigned long flags; 903 904 raw_spin_lock_irqsave(&devtree_lock, flags); 905 for_each_of_allnodes_from(from, np) 906 if (__of_device_is_compatible(np, compatible, type, NULL) && 907 of_node_get(np)) 908 break; 909 of_node_put(from); 910 raw_spin_unlock_irqrestore(&devtree_lock, flags); 911 return np; 912} 913EXPORT_SYMBOL(of_find_compatible_node); 914 915/** 916 * of_find_node_with_property - Find a node which has a property with 917 * the given name. 918 * @from: The node to start searching from or NULL, the node 919 * you pass will not be searched, only the next one 920 * will; typically, you pass what the previous call 921 * returned. of_node_put() will be called on it 922 * @prop_name: The name of the property to look for. 923 * 924 * Returns a node pointer with refcount incremented, use 925 * of_node_put() on it when done. 926 */ 927struct device_node *of_find_node_with_property(struct device_node *from, 928 const char *prop_name) 929{ 930 struct device_node *np; 931 struct property *pp; 932 unsigned long flags; 933 934 raw_spin_lock_irqsave(&devtree_lock, flags); 935 for_each_of_allnodes_from(from, np) { 936 for (pp = np->properties; pp; pp = pp->next) { 937 if (of_prop_cmp(pp->name, prop_name) == 0) { 938 of_node_get(np); 939 goto out; 940 } 941 } 942 } 943out: 944 of_node_put(from); 945 raw_spin_unlock_irqrestore(&devtree_lock, flags); 946 return np; 947} 948EXPORT_SYMBOL(of_find_node_with_property); 949 950static 951const struct of_device_id *__of_match_node(const struct of_device_id *matches, 952 const struct device_node *node) 953{ 954 const struct of_device_id *best_match = NULL; 955 int score, best_score = 0; 956 957 if (!matches) 958 return NULL; 959 960 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) { 961 score = __of_device_is_compatible(node, matches->compatible, 962 matches->type, matches->name); 963 if (score > best_score) { 964 best_match = matches; 965 best_score = score; 966 } 967 } 968 969 return best_match; 970} 971 972/** 973 * of_match_node - Tell if a device_node has a matching of_match structure 974 * @matches: array of of device match structures to search in 975 * @node: the of device structure to match against 976 * 977 * Low level utility function used by device matching. 978 */ 979const struct of_device_id *of_match_node(const struct of_device_id *matches, 980 const struct device_node *node) 981{ 982 const struct of_device_id *match; 983 unsigned long flags; 984 985 raw_spin_lock_irqsave(&devtree_lock, flags); 986 match = __of_match_node(matches, node); 987 raw_spin_unlock_irqrestore(&devtree_lock, flags); 988 return match; 989} 990EXPORT_SYMBOL(of_match_node); 991 992/** 993 * of_find_matching_node_and_match - Find a node based on an of_device_id 994 * match table. 995 * @from: The node to start searching from or NULL, the node 996 * you pass will not be searched, only the next one 997 * will; typically, you pass what the previous call 998 * returned. of_node_put() will be called on it 999 * @matches: array of of device match structures to search in 1000 * @match Updated to point at the matches entry which matched 1001 * 1002 * Returns a node pointer with refcount incremented, use 1003 * of_node_put() on it when done. 1004 */ 1005struct device_node *of_find_matching_node_and_match(struct device_node *from, 1006 const struct of_device_id *matches, 1007 const struct of_device_id **match) 1008{ 1009 struct device_node *np; 1010 const struct of_device_id *m; 1011 unsigned long flags; 1012 1013 if (match) 1014 *match = NULL; 1015 1016 raw_spin_lock_irqsave(&devtree_lock, flags); 1017 for_each_of_allnodes_from(from, np) { 1018 m = __of_match_node(matches, np); 1019 if (m && of_node_get(np)) { 1020 if (match) 1021 *match = m; 1022 break; 1023 } 1024 } 1025 of_node_put(from); 1026 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1027 return np; 1028} 1029EXPORT_SYMBOL(of_find_matching_node_and_match); 1030 1031/** 1032 * of_modalias_node - Lookup appropriate modalias for a device node 1033 * @node: pointer to a device tree node 1034 * @modalias: Pointer to buffer that modalias value will be copied into 1035 * @len: Length of modalias value 1036 * 1037 * Based on the value of the compatible property, this routine will attempt 1038 * to choose an appropriate modalias value for a particular device tree node. 1039 * It does this by stripping the manufacturer prefix (as delimited by a ',') 1040 * from the first entry in the compatible list property. 1041 * 1042 * This routine returns 0 on success, <0 on failure. 1043 */ 1044int of_modalias_node(struct device_node *node, char *modalias, int len) 1045{ 1046 const char *compatible, *p; 1047 int cplen; 1048 1049 compatible = of_get_property(node, "compatible", &cplen); 1050 if (!compatible || strlen(compatible) > cplen) 1051 return -ENODEV; 1052 p = strchr(compatible, ','); 1053 strlcpy(modalias, p ? p + 1 : compatible, len); 1054 return 0; 1055} 1056EXPORT_SYMBOL_GPL(of_modalias_node); 1057 1058/** 1059 * of_find_node_by_phandle - Find a node given a phandle 1060 * @handle: phandle of the node to find 1061 * 1062 * Returns a node pointer with refcount incremented, use 1063 * of_node_put() on it when done. 1064 */ 1065struct device_node *of_find_node_by_phandle(phandle handle) 1066{ 1067 struct device_node *np; 1068 unsigned long flags; 1069 1070 if (!handle) 1071 return NULL; 1072 1073 raw_spin_lock_irqsave(&devtree_lock, flags); 1074 for_each_of_allnodes(np) 1075 if (np->phandle == handle) 1076 break; 1077 of_node_get(np); 1078 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1079 return np; 1080} 1081EXPORT_SYMBOL(of_find_node_by_phandle); 1082 1083/** 1084 * of_property_count_elems_of_size - Count the number of elements in a property 1085 * 1086 * @np: device node from which the property value is to be read. 1087 * @propname: name of the property to be searched. 1088 * @elem_size: size of the individual element 1089 * 1090 * Search for a property in a device node and count the number of elements of 1091 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the 1092 * property does not exist or its length does not match a multiple of elem_size 1093 * and -ENODATA if the property does not have a value. 1094 */ 1095int of_property_count_elems_of_size(const struct device_node *np, 1096 const char *propname, int elem_size) 1097{ 1098 struct property *prop = of_find_property(np, propname, NULL); 1099 1100 if (!prop) 1101 return -EINVAL; 1102 if (!prop->value) 1103 return -ENODATA; 1104 1105 if (prop->length % elem_size != 0) { 1106 pr_err("size of %s in node %s is not a multiple of %d\n", 1107 propname, np->full_name, elem_size); 1108 return -EINVAL; 1109 } 1110 1111 return prop->length / elem_size; 1112} 1113EXPORT_SYMBOL_GPL(of_property_count_elems_of_size); 1114 1115/** 1116 * of_find_property_value_of_size 1117 * 1118 * @np: device node from which the property value is to be read. 1119 * @propname: name of the property to be searched. 1120 * @len: requested length of property value 1121 * 1122 * Search for a property in a device node and valid the requested size. 1123 * Returns the property value on success, -EINVAL if the property does not 1124 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the 1125 * property data isn't large enough. 1126 * 1127 */ 1128static void *of_find_property_value_of_size(const struct device_node *np, 1129 const char *propname, u32 len) 1130{ 1131 struct property *prop = of_find_property(np, propname, NULL); 1132 1133 if (!prop) 1134 return ERR_PTR(-EINVAL); 1135 if (!prop->value) 1136 return ERR_PTR(-ENODATA); 1137 if (len > prop->length) 1138 return ERR_PTR(-EOVERFLOW); 1139 1140 return prop->value; 1141} 1142 1143/** 1144 * of_property_read_u32_index - Find and read a u32 from a multi-value property. 1145 * 1146 * @np: device node from which the property value is to be read. 1147 * @propname: name of the property to be searched. 1148 * @index: index of the u32 in the list of values 1149 * @out_value: pointer to return value, modified only if no error. 1150 * 1151 * Search for a property in a device node and read nth 32-bit value from 1152 * it. Returns 0 on success, -EINVAL if the property does not exist, 1153 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1154 * property data isn't large enough. 1155 * 1156 * The out_value is modified only if a valid u32 value can be decoded. 1157 */ 1158int of_property_read_u32_index(const struct device_node *np, 1159 const char *propname, 1160 u32 index, u32 *out_value) 1161{ 1162 const u32 *val = of_find_property_value_of_size(np, propname, 1163 ((index + 1) * sizeof(*out_value))); 1164 1165 if (IS_ERR(val)) 1166 return PTR_ERR(val); 1167 1168 *out_value = be32_to_cpup(((__be32 *)val) + index); 1169 return 0; 1170} 1171EXPORT_SYMBOL_GPL(of_property_read_u32_index); 1172 1173/** 1174 * of_property_read_u8_array - Find and read an array of u8 from a property. 1175 * 1176 * @np: device node from which the property value is to be read. 1177 * @propname: name of the property to be searched. 1178 * @out_values: pointer to return value, modified only if return value is 0. 1179 * @sz: number of array elements to read 1180 * 1181 * Search for a property in a device node and read 8-bit value(s) from 1182 * it. Returns 0 on success, -EINVAL if the property does not exist, 1183 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1184 * property data isn't large enough. 1185 * 1186 * dts entry of array should be like: 1187 * property = /bits/ 8 <0x50 0x60 0x70>; 1188 * 1189 * The out_values is modified only if a valid u8 value can be decoded. 1190 */ 1191int of_property_read_u8_array(const struct device_node *np, 1192 const char *propname, u8 *out_values, size_t sz) 1193{ 1194 const u8 *val = of_find_property_value_of_size(np, propname, 1195 (sz * sizeof(*out_values))); 1196 1197 if (IS_ERR(val)) 1198 return PTR_ERR(val); 1199 1200 while (sz--) 1201 *out_values++ = *val++; 1202 return 0; 1203} 1204EXPORT_SYMBOL_GPL(of_property_read_u8_array); 1205 1206/** 1207 * of_property_read_u16_array - Find and read an array of u16 from a property. 1208 * 1209 * @np: device node from which the property value is to be read. 1210 * @propname: name of the property to be searched. 1211 * @out_values: pointer to return value, modified only if return value is 0. 1212 * @sz: number of array elements to read 1213 * 1214 * Search for a property in a device node and read 16-bit value(s) from 1215 * it. Returns 0 on success, -EINVAL if the property does not exist, 1216 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1217 * property data isn't large enough. 1218 * 1219 * dts entry of array should be like: 1220 * property = /bits/ 16 <0x5000 0x6000 0x7000>; 1221 * 1222 * The out_values is modified only if a valid u16 value can be decoded. 1223 */ 1224int of_property_read_u16_array(const struct device_node *np, 1225 const char *propname, u16 *out_values, size_t sz) 1226{ 1227 const __be16 *val = of_find_property_value_of_size(np, propname, 1228 (sz * sizeof(*out_values))); 1229 1230 if (IS_ERR(val)) 1231 return PTR_ERR(val); 1232 1233 while (sz--) 1234 *out_values++ = be16_to_cpup(val++); 1235 return 0; 1236} 1237EXPORT_SYMBOL_GPL(of_property_read_u16_array); 1238 1239/** 1240 * of_property_read_u32_array - Find and read an array of 32 bit integers 1241 * from a property. 1242 * 1243 * @np: device node from which the property value is to be read. 1244 * @propname: name of the property to be searched. 1245 * @out_values: pointer to return value, modified only if return value is 0. 1246 * @sz: number of array elements to read 1247 * 1248 * Search for a property in a device node and read 32-bit value(s) from 1249 * it. Returns 0 on success, -EINVAL if the property does not exist, 1250 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1251 * property data isn't large enough. 1252 * 1253 * The out_values is modified only if a valid u32 value can be decoded. 1254 */ 1255int of_property_read_u32_array(const struct device_node *np, 1256 const char *propname, u32 *out_values, 1257 size_t sz) 1258{ 1259 const __be32 *val = of_find_property_value_of_size(np, propname, 1260 (sz * sizeof(*out_values))); 1261 1262 if (IS_ERR(val)) 1263 return PTR_ERR(val); 1264 1265 while (sz--) 1266 *out_values++ = be32_to_cpup(val++); 1267 return 0; 1268} 1269EXPORT_SYMBOL_GPL(of_property_read_u32_array); 1270 1271/** 1272 * of_property_read_u64 - Find and read a 64 bit integer from a property 1273 * @np: device node from which the property value is to be read. 1274 * @propname: name of the property to be searched. 1275 * @out_value: pointer to return value, modified only if return value is 0. 1276 * 1277 * Search for a property in a device node and read a 64-bit value from 1278 * it. Returns 0 on success, -EINVAL if the property does not exist, 1279 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1280 * property data isn't large enough. 1281 * 1282 * The out_value is modified only if a valid u64 value can be decoded. 1283 */ 1284int of_property_read_u64(const struct device_node *np, const char *propname, 1285 u64 *out_value) 1286{ 1287 const __be32 *val = of_find_property_value_of_size(np, propname, 1288 sizeof(*out_value)); 1289 1290 if (IS_ERR(val)) 1291 return PTR_ERR(val); 1292 1293 *out_value = of_read_number(val, 2); 1294 return 0; 1295} 1296EXPORT_SYMBOL_GPL(of_property_read_u64); 1297 1298/** 1299 * of_property_read_u64_array - Find and read an array of 64 bit integers 1300 * from a property. 1301 * 1302 * @np: device node from which the property value is to be read. 1303 * @propname: name of the property to be searched. 1304 * @out_values: pointer to return value, modified only if return value is 0. 1305 * @sz: number of array elements to read 1306 * 1307 * Search for a property in a device node and read 64-bit value(s) from 1308 * it. Returns 0 on success, -EINVAL if the property does not exist, 1309 * -ENODATA if property does not have a value, and -EOVERFLOW if the 1310 * property data isn't large enough. 1311 * 1312 * The out_values is modified only if a valid u64 value can be decoded. 1313 */ 1314int of_property_read_u64_array(const struct device_node *np, 1315 const char *propname, u64 *out_values, 1316 size_t sz) 1317{ 1318 const __be32 *val = of_find_property_value_of_size(np, propname, 1319 (sz * sizeof(*out_values))); 1320 1321 if (IS_ERR(val)) 1322 return PTR_ERR(val); 1323 1324 while (sz--) { 1325 *out_values++ = of_read_number(val, 2); 1326 val += 2; 1327 } 1328 return 0; 1329} 1330EXPORT_SYMBOL_GPL(of_property_read_u64_array); 1331 1332/** 1333 * of_property_read_string - Find and read a string from a property 1334 * @np: device node from which the property value is to be read. 1335 * @propname: name of the property to be searched. 1336 * @out_string: pointer to null terminated return string, modified only if 1337 * return value is 0. 1338 * 1339 * Search for a property in a device tree node and retrieve a null 1340 * terminated string value (pointer to data, not a copy). Returns 0 on 1341 * success, -EINVAL if the property does not exist, -ENODATA if property 1342 * does not have a value, and -EILSEQ if the string is not null-terminated 1343 * within the length of the property data. 1344 * 1345 * The out_string pointer is modified only if a valid string can be decoded. 1346 */ 1347int of_property_read_string(struct device_node *np, const char *propname, 1348 const char **out_string) 1349{ 1350 struct property *prop = of_find_property(np, propname, NULL); 1351 if (!prop) 1352 return -EINVAL; 1353 if (!prop->value) 1354 return -ENODATA; 1355 if (strnlen(prop->value, prop->length) >= prop->length) 1356 return -EILSEQ; 1357 *out_string = prop->value; 1358 return 0; 1359} 1360EXPORT_SYMBOL_GPL(of_property_read_string); 1361 1362/** 1363 * of_property_match_string() - Find string in a list and return index 1364 * @np: pointer to node containing string list property 1365 * @propname: string list property name 1366 * @string: pointer to string to search for in string list 1367 * 1368 * This function searches a string list property and returns the index 1369 * of a specific string value. 1370 */ 1371int of_property_match_string(struct device_node *np, const char *propname, 1372 const char *string) 1373{ 1374 struct property *prop = of_find_property(np, propname, NULL); 1375 size_t l; 1376 int i; 1377 const char *p, *end; 1378 1379 if (!prop) 1380 return -EINVAL; 1381 if (!prop->value) 1382 return -ENODATA; 1383 1384 p = prop->value; 1385 end = p + prop->length; 1386 1387 for (i = 0; p < end; i++, p += l) { 1388 l = strnlen(p, end - p) + 1; 1389 if (p + l > end) 1390 return -EILSEQ; 1391 pr_debug("comparing %s with %s\n", string, p); 1392 if (strcmp(string, p) == 0) 1393 return i; /* Found it; return index */ 1394 } 1395 return -ENODATA; 1396} 1397EXPORT_SYMBOL_GPL(of_property_match_string); 1398 1399/** 1400 * of_property_read_string_helper() - Utility helper for parsing string properties 1401 * @np: device node from which the property value is to be read. 1402 * @propname: name of the property to be searched. 1403 * @out_strs: output array of string pointers. 1404 * @sz: number of array elements to read. 1405 * @skip: Number of strings to skip over at beginning of list. 1406 * 1407 * Don't call this function directly. It is a utility helper for the 1408 * of_property_read_string*() family of functions. 1409 */ 1410int of_property_read_string_helper(struct device_node *np, const char *propname, 1411 const char **out_strs, size_t sz, int skip) 1412{ 1413 struct property *prop = of_find_property(np, propname, NULL); 1414 int l = 0, i = 0; 1415 const char *p, *end; 1416 1417 if (!prop) 1418 return -EINVAL; 1419 if (!prop->value) 1420 return -ENODATA; 1421 p = prop->value; 1422 end = p + prop->length; 1423 1424 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) { 1425 l = strnlen(p, end - p) + 1; 1426 if (p + l > end) 1427 return -EILSEQ; 1428 if (out_strs && i >= skip) 1429 *out_strs++ = p; 1430 } 1431 i -= skip; 1432 return i <= 0 ? -ENODATA : i; 1433} 1434EXPORT_SYMBOL_GPL(of_property_read_string_helper); 1435 1436void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) 1437{ 1438 int i; 1439 printk("%s %s", msg, of_node_full_name(args->np)); 1440 for (i = 0; i < args->args_count; i++) 1441 printk(i ? ",%08x" : ":%08x", args->args[i]); 1442 printk("\n"); 1443} 1444 1445static int __of_parse_phandle_with_args(const struct device_node *np, 1446 const char *list_name, 1447 const char *cells_name, 1448 int cell_count, int index, 1449 struct of_phandle_args *out_args) 1450{ 1451 const __be32 *list, *list_end; 1452 int rc = 0, size, cur_index = 0; 1453 uint32_t count = 0; 1454 struct device_node *node = NULL; 1455 phandle phandle; 1456 1457 /* Retrieve the phandle list property */ 1458 list = of_get_property(np, list_name, &size); 1459 if (!list) 1460 return -ENOENT; 1461 list_end = list + size / sizeof(*list); 1462 1463 /* Loop over the phandles until all the requested entry is found */ 1464 while (list < list_end) { 1465 rc = -EINVAL; 1466 count = 0; 1467 1468 /* 1469 * If phandle is 0, then it is an empty entry with no 1470 * arguments. Skip forward to the next entry. 1471 */ 1472 phandle = be32_to_cpup(list++); 1473 if (phandle) { 1474 /* 1475 * Find the provider node and parse the #*-cells 1476 * property to determine the argument length. 1477 * 1478 * This is not needed if the cell count is hard-coded 1479 * (i.e. cells_name not set, but cell_count is set), 1480 * except when we're going to return the found node 1481 * below. 1482 */ 1483 if (cells_name || cur_index == index) { 1484 node = of_find_node_by_phandle(phandle); 1485 if (!node) { 1486 pr_err("%s: could not find phandle\n", 1487 np->full_name); 1488 goto err; 1489 } 1490 } 1491 1492 if (cells_name) { 1493 if (of_property_read_u32(node, cells_name, 1494 &count)) { 1495 pr_err("%s: could not get %s for %s\n", 1496 np->full_name, cells_name, 1497 node->full_name); 1498 goto err; 1499 } 1500 } else { 1501 count = cell_count; 1502 } 1503 1504 /* 1505 * Make sure that the arguments actually fit in the 1506 * remaining property data length 1507 */ 1508 if (list + count > list_end) { 1509 pr_err("%s: arguments longer than property\n", 1510 np->full_name); 1511 goto err; 1512 } 1513 } 1514 1515 /* 1516 * All of the error cases above bail out of the loop, so at 1517 * this point, the parsing is successful. If the requested 1518 * index matches, then fill the out_args structure and return, 1519 * or return -ENOENT for an empty entry. 1520 */ 1521 rc = -ENOENT; 1522 if (cur_index == index) { 1523 if (!phandle) 1524 goto err; 1525 1526 if (out_args) { 1527 int i; 1528 if (WARN_ON(count > MAX_PHANDLE_ARGS)) 1529 count = MAX_PHANDLE_ARGS; 1530 out_args->np = node; 1531 out_args->args_count = count; 1532 for (i = 0; i < count; i++) 1533 out_args->args[i] = be32_to_cpup(list++); 1534 } else { 1535 of_node_put(node); 1536 } 1537 1538 /* Found it! return success */ 1539 return 0; 1540 } 1541 1542 of_node_put(node); 1543 node = NULL; 1544 list += count; 1545 cur_index++; 1546 } 1547 1548 /* 1549 * Unlock node before returning result; will be one of: 1550 * -ENOENT : index is for empty phandle 1551 * -EINVAL : parsing error on data 1552 * [1..n] : Number of phandle (count mode; when index = -1) 1553 */ 1554 rc = index < 0 ? cur_index : -ENOENT; 1555 err: 1556 if (node) 1557 of_node_put(node); 1558 return rc; 1559} 1560 1561/** 1562 * of_parse_phandle - Resolve a phandle property to a device_node pointer 1563 * @np: Pointer to device node holding phandle property 1564 * @phandle_name: Name of property holding a phandle value 1565 * @index: For properties holding a table of phandles, this is the index into 1566 * the table 1567 * 1568 * Returns the device_node pointer with refcount incremented. Use 1569 * of_node_put() on it when done. 1570 */ 1571struct device_node *of_parse_phandle(const struct device_node *np, 1572 const char *phandle_name, int index) 1573{ 1574 struct of_phandle_args args; 1575 1576 if (index < 0) 1577 return NULL; 1578 1579 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0, 1580 index, &args)) 1581 return NULL; 1582 1583 return args.np; 1584} 1585EXPORT_SYMBOL(of_parse_phandle); 1586 1587/** 1588 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list 1589 * @np: pointer to a device tree node containing a list 1590 * @list_name: property name that contains a list 1591 * @cells_name: property name that specifies phandles' arguments count 1592 * @index: index of a phandle to parse out 1593 * @out_args: optional pointer to output arguments structure (will be filled) 1594 * 1595 * This function is useful to parse lists of phandles and their arguments. 1596 * Returns 0 on success and fills out_args, on error returns appropriate 1597 * errno value. 1598 * 1599 * Caller is responsible to call of_node_put() on the returned out_args->np 1600 * pointer. 1601 * 1602 * Example: 1603 * 1604 * phandle1: node1 { 1605 * #list-cells = <2>; 1606 * } 1607 * 1608 * phandle2: node2 { 1609 * #list-cells = <1>; 1610 * } 1611 * 1612 * node3 { 1613 * list = <&phandle1 1 2 &phandle2 3>; 1614 * } 1615 * 1616 * To get a device_node of the `node2' node you may call this: 1617 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args); 1618 */ 1619int of_parse_phandle_with_args(const struct device_node *np, const char *list_name, 1620 const char *cells_name, int index, 1621 struct of_phandle_args *out_args) 1622{ 1623 if (index < 0) 1624 return -EINVAL; 1625 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, 1626 index, out_args); 1627} 1628EXPORT_SYMBOL(of_parse_phandle_with_args); 1629 1630/** 1631 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list 1632 * @np: pointer to a device tree node containing a list 1633 * @list_name: property name that contains a list 1634 * @cell_count: number of argument cells following the phandle 1635 * @index: index of a phandle to parse out 1636 * @out_args: optional pointer to output arguments structure (will be filled) 1637 * 1638 * This function is useful to parse lists of phandles and their arguments. 1639 * Returns 0 on success and fills out_args, on error returns appropriate 1640 * errno value. 1641 * 1642 * Caller is responsible to call of_node_put() on the returned out_args->np 1643 * pointer. 1644 * 1645 * Example: 1646 * 1647 * phandle1: node1 { 1648 * } 1649 * 1650 * phandle2: node2 { 1651 * } 1652 * 1653 * node3 { 1654 * list = <&phandle1 0 2 &phandle2 2 3>; 1655 * } 1656 * 1657 * To get a device_node of the `node2' node you may call this: 1658 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args); 1659 */ 1660int of_parse_phandle_with_fixed_args(const struct device_node *np, 1661 const char *list_name, int cell_count, 1662 int index, struct of_phandle_args *out_args) 1663{ 1664 if (index < 0) 1665 return -EINVAL; 1666 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count, 1667 index, out_args); 1668} 1669EXPORT_SYMBOL(of_parse_phandle_with_fixed_args); 1670 1671/** 1672 * of_count_phandle_with_args() - Find the number of phandles references in a property 1673 * @np: pointer to a device tree node containing a list 1674 * @list_name: property name that contains a list 1675 * @cells_name: property name that specifies phandles' arguments count 1676 * 1677 * Returns the number of phandle + argument tuples within a property. It 1678 * is a typical pattern to encode a list of phandle and variable 1679 * arguments into a single property. The number of arguments is encoded 1680 * by a property in the phandle-target node. For example, a gpios 1681 * property would contain a list of GPIO specifies consisting of a 1682 * phandle and 1 or more arguments. The number of arguments are 1683 * determined by the #gpio-cells property in the node pointed to by the 1684 * phandle. 1685 */ 1686int of_count_phandle_with_args(const struct device_node *np, const char *list_name, 1687 const char *cells_name) 1688{ 1689 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1, 1690 NULL); 1691} 1692EXPORT_SYMBOL(of_count_phandle_with_args); 1693 1694/** 1695 * __of_add_property - Add a property to a node without lock operations 1696 */ 1697int __of_add_property(struct device_node *np, struct property *prop) 1698{ 1699 struct property **next; 1700 1701 prop->next = NULL; 1702 next = &np->properties; 1703 while (*next) { 1704 if (strcmp(prop->name, (*next)->name) == 0) 1705 /* duplicate ! don't insert it */ 1706 return -EEXIST; 1707 1708 next = &(*next)->next; 1709 } 1710 *next = prop; 1711 1712 return 0; 1713} 1714 1715/** 1716 * of_add_property - Add a property to a node 1717 */ 1718int of_add_property(struct device_node *np, struct property *prop) 1719{ 1720 unsigned long flags; 1721 int rc; 1722 1723 mutex_lock(&of_mutex); 1724 1725 raw_spin_lock_irqsave(&devtree_lock, flags); 1726 rc = __of_add_property(np, prop); 1727 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1728 1729 if (!rc) 1730 __of_add_property_sysfs(np, prop); 1731 1732 mutex_unlock(&of_mutex); 1733 1734 if (!rc) 1735 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL); 1736 1737 return rc; 1738} 1739 1740int __of_remove_property(struct device_node *np, struct property *prop) 1741{ 1742 struct property **next; 1743 1744 for (next = &np->properties; *next; next = &(*next)->next) { 1745 if (*next == prop) 1746 break; 1747 } 1748 if (*next == NULL) 1749 return -ENODEV; 1750 1751 /* found the node */ 1752 *next = prop->next; 1753 prop->next = np->deadprops; 1754 np->deadprops = prop; 1755 1756 return 0; 1757} 1758 1759void __of_remove_property_sysfs(struct device_node *np, struct property *prop) 1760{ 1761 if (!IS_ENABLED(CONFIG_SYSFS)) 1762 return; 1763 1764 /* at early boot, bail here and defer setup to of_init() */ 1765 if (of_kset && of_node_is_attached(np)) 1766 sysfs_remove_bin_file(&np->kobj, &prop->attr); 1767} 1768 1769/** 1770 * of_remove_property - Remove a property from a node. 1771 * 1772 * Note that we don't actually remove it, since we have given out 1773 * who-knows-how-many pointers to the data using get-property. 1774 * Instead we just move the property to the "dead properties" 1775 * list, so it won't be found any more. 1776 */ 1777int of_remove_property(struct device_node *np, struct property *prop) 1778{ 1779 unsigned long flags; 1780 int rc; 1781 1782 mutex_lock(&of_mutex); 1783 1784 raw_spin_lock_irqsave(&devtree_lock, flags); 1785 rc = __of_remove_property(np, prop); 1786 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1787 1788 if (!rc) 1789 __of_remove_property_sysfs(np, prop); 1790 1791 mutex_unlock(&of_mutex); 1792 1793 if (!rc) 1794 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL); 1795 1796 return rc; 1797} 1798 1799int __of_update_property(struct device_node *np, struct property *newprop, 1800 struct property **oldpropp) 1801{ 1802 struct property **next, *oldprop; 1803 1804 for (next = &np->properties; *next; next = &(*next)->next) { 1805 if (of_prop_cmp((*next)->name, newprop->name) == 0) 1806 break; 1807 } 1808 *oldpropp = oldprop = *next; 1809 1810 if (oldprop) { 1811 /* replace the node */ 1812 newprop->next = oldprop->next; 1813 *next = newprop; 1814 oldprop->next = np->deadprops; 1815 np->deadprops = oldprop; 1816 } else { 1817 /* new node */ 1818 newprop->next = NULL; 1819 *next = newprop; 1820 } 1821 1822 return 0; 1823} 1824 1825void __of_update_property_sysfs(struct device_node *np, struct property *newprop, 1826 struct property *oldprop) 1827{ 1828 if (!IS_ENABLED(CONFIG_SYSFS)) 1829 return; 1830 1831 /* At early boot, bail out and defer setup to of_init() */ 1832 if (!of_kset) 1833 return; 1834 1835 if (oldprop) 1836 sysfs_remove_bin_file(&np->kobj, &oldprop->attr); 1837 __of_add_property_sysfs(np, newprop); 1838} 1839 1840/* 1841 * of_update_property - Update a property in a node, if the property does 1842 * not exist, add it. 1843 * 1844 * Note that we don't actually remove it, since we have given out 1845 * who-knows-how-many pointers to the data using get-property. 1846 * Instead we just move the property to the "dead properties" list, 1847 * and add the new property to the property list 1848 */ 1849int of_update_property(struct device_node *np, struct property *newprop) 1850{ 1851 struct property *oldprop; 1852 unsigned long flags; 1853 int rc; 1854 1855 if (!newprop->name) 1856 return -EINVAL; 1857 1858 mutex_lock(&of_mutex); 1859 1860 raw_spin_lock_irqsave(&devtree_lock, flags); 1861 rc = __of_update_property(np, newprop, &oldprop); 1862 raw_spin_unlock_irqrestore(&devtree_lock, flags); 1863 1864 if (!rc) 1865 __of_update_property_sysfs(np, newprop, oldprop); 1866 1867 mutex_unlock(&of_mutex); 1868 1869 if (!rc) 1870 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop); 1871 1872 return rc; 1873} 1874 1875static void of_alias_add(struct alias_prop *ap, struct device_node *np, 1876 int id, const char *stem, int stem_len) 1877{ 1878 ap->np = np; 1879 ap->id = id; 1880 strncpy(ap->stem, stem, stem_len); 1881 ap->stem[stem_len] = 0; 1882 list_add_tail(&ap->link, &aliases_lookup); 1883 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n", 1884 ap->alias, ap->stem, ap->id, of_node_full_name(np)); 1885} 1886 1887/** 1888 * of_alias_scan - Scan all properties of the 'aliases' node 1889 * 1890 * The function scans all the properties of the 'aliases' node and populates 1891 * the global lookup table with the properties. It returns the 1892 * number of alias properties found, or an error code in case of failure. 1893 * 1894 * @dt_alloc: An allocator that provides a virtual address to memory 1895 * for storing the resulting tree 1896 */ 1897void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) 1898{ 1899 struct property *pp; 1900 1901 of_aliases = of_find_node_by_path("/aliases"); 1902 of_chosen = of_find_node_by_path("/chosen"); 1903 if (of_chosen == NULL) 1904 of_chosen = of_find_node_by_path("/chosen@0"); 1905 1906 if (of_chosen) { 1907 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */ 1908 const char *name = of_get_property(of_chosen, "stdout-path", NULL); 1909 if (!name) 1910 name = of_get_property(of_chosen, "linux,stdout-path", NULL); 1911 if (IS_ENABLED(CONFIG_PPC) && !name) 1912 name = of_get_property(of_aliases, "stdout", NULL); 1913 if (name) 1914 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options); 1915 } 1916 1917 if (!of_aliases) 1918 return; 1919 1920 for_each_property_of_node(of_aliases, pp) { 1921 const char *start = pp->name; 1922 const char *end = start + strlen(start); 1923 struct device_node *np; 1924 struct alias_prop *ap; 1925 int id, len; 1926 1927 /* Skip those we do not want to proceed */ 1928 if (!strcmp(pp->name, "name") || 1929 !strcmp(pp->name, "phandle") || 1930 !strcmp(pp->name, "linux,phandle")) 1931 continue; 1932 1933 np = of_find_node_by_path(pp->value); 1934 if (!np) 1935 continue; 1936 1937 /* walk the alias backwards to extract the id and work out 1938 * the 'stem' string */ 1939 while (isdigit(*(end-1)) && end > start) 1940 end--; 1941 len = end - start; 1942 1943 if (kstrtoint(end, 10, &id) < 0) 1944 continue; 1945 1946 /* Allocate an alias_prop with enough space for the stem */ 1947 ap = dt_alloc(sizeof(*ap) + len + 1, 4); 1948 if (!ap) 1949 continue; 1950 memset(ap, 0, sizeof(*ap) + len + 1); 1951 ap->alias = start; 1952 of_alias_add(ap, np, id, start, len); 1953 } 1954} 1955 1956/** 1957 * of_alias_get_id - Get alias id for the given device_node 1958 * @np: Pointer to the given device_node 1959 * @stem: Alias stem of the given device_node 1960 * 1961 * The function travels the lookup table to get the alias id for the given 1962 * device_node and alias stem. It returns the alias id if found. 1963 */ 1964int of_alias_get_id(struct device_node *np, const char *stem) 1965{ 1966 struct alias_prop *app; 1967 int id = -ENODEV; 1968 1969 mutex_lock(&of_mutex); 1970 list_for_each_entry(app, &aliases_lookup, link) { 1971 if (strcmp(app->stem, stem) != 0) 1972 continue; 1973 1974 if (np == app->np) { 1975 id = app->id; 1976 break; 1977 } 1978 } 1979 mutex_unlock(&of_mutex); 1980 1981 return id; 1982} 1983EXPORT_SYMBOL_GPL(of_alias_get_id); 1984 1985/** 1986 * of_alias_get_highest_id - Get highest alias id for the given stem 1987 * @stem: Alias stem to be examined 1988 * 1989 * The function travels the lookup table to get the highest alias id for the 1990 * given alias stem. It returns the alias id if found. 1991 */ 1992int of_alias_get_highest_id(const char *stem) 1993{ 1994 struct alias_prop *app; 1995 int id = -ENODEV; 1996 1997 mutex_lock(&of_mutex); 1998 list_for_each_entry(app, &aliases_lookup, link) { 1999 if (strcmp(app->stem, stem) != 0) 2000 continue; 2001 2002 if (app->id > id) 2003 id = app->id; 2004 } 2005 mutex_unlock(&of_mutex); 2006 2007 return id; 2008} 2009EXPORT_SYMBOL_GPL(of_alias_get_highest_id); 2010 2011const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur, 2012 u32 *pu) 2013{ 2014 const void *curv = cur; 2015 2016 if (!prop) 2017 return NULL; 2018 2019 if (!cur) { 2020 curv = prop->value; 2021 goto out_val; 2022 } 2023 2024 curv += sizeof(*cur); 2025 if (curv >= prop->value + prop->length) 2026 return NULL; 2027 2028out_val: 2029 *pu = be32_to_cpup(curv); 2030 return curv; 2031} 2032EXPORT_SYMBOL_GPL(of_prop_next_u32); 2033 2034const char *of_prop_next_string(struct property *prop, const char *cur) 2035{ 2036 const void *curv = cur; 2037 2038 if (!prop) 2039 return NULL; 2040 2041 if (!cur) 2042 return prop->value; 2043 2044 curv += strlen(cur) + 1; 2045 if (curv >= prop->value + prop->length) 2046 return NULL; 2047 2048 return curv; 2049} 2050EXPORT_SYMBOL_GPL(of_prop_next_string); 2051 2052/** 2053 * of_console_check() - Test and setup console for DT setup 2054 * @dn - Pointer to device node 2055 * @name - Name to use for preferred console without index. ex. "ttyS" 2056 * @index - Index to use for preferred console. 2057 * 2058 * Check if the given device node matches the stdout-path property in the 2059 * /chosen node. If it does then register it as the preferred console and return 2060 * TRUE. Otherwise return FALSE. 2061 */ 2062bool of_console_check(struct device_node *dn, char *name, int index) 2063{ 2064 if (!dn || dn != of_stdout || console_set_on_cmdline) 2065 return false; 2066 return !add_preferred_console(name, index, 2067 kstrdup(of_stdout_options, GFP_KERNEL)); 2068} 2069EXPORT_SYMBOL_GPL(of_console_check); 2070 2071/** 2072 * of_find_next_cache_node - Find a node's subsidiary cache 2073 * @np: node of type "cpu" or "cache" 2074 * 2075 * Returns a node pointer with refcount incremented, use 2076 * of_node_put() on it when done. Caller should hold a reference 2077 * to np. 2078 */ 2079struct device_node *of_find_next_cache_node(const struct device_node *np) 2080{ 2081 struct device_node *child; 2082 const phandle *handle; 2083 2084 handle = of_get_property(np, "l2-cache", NULL); 2085 if (!handle) 2086 handle = of_get_property(np, "next-level-cache", NULL); 2087 2088 if (handle) 2089 return of_find_node_by_phandle(be32_to_cpup(handle)); 2090 2091 /* OF on pmac has nodes instead of properties named "l2-cache" 2092 * beneath CPU nodes. 2093 */ 2094 if (!strcmp(np->type, "cpu")) 2095 for_each_child_of_node(np, child) 2096 if (!strcmp(child->type, "cache")) 2097 return child; 2098 2099 return NULL; 2100} 2101 2102/** 2103 * of_graph_parse_endpoint() - parse common endpoint node properties 2104 * @node: pointer to endpoint device_node 2105 * @endpoint: pointer to the OF endpoint data structure 2106 * 2107 * The caller should hold a reference to @node. 2108 */ 2109int of_graph_parse_endpoint(const struct device_node *node, 2110 struct of_endpoint *endpoint) 2111{ 2112 struct device_node *port_node = of_get_parent(node); 2113 2114 WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n", 2115 __func__, node->full_name); 2116 2117 memset(endpoint, 0, sizeof(*endpoint)); 2118 2119 endpoint->local_node = node; 2120 /* 2121 * It doesn't matter whether the two calls below succeed. 2122 * If they don't then the default value 0 is used. 2123 */ 2124 of_property_read_u32(port_node, "reg", &endpoint->port); 2125 of_property_read_u32(node, "reg", &endpoint->id); 2126 2127 of_node_put(port_node); 2128 2129 return 0; 2130} 2131EXPORT_SYMBOL(of_graph_parse_endpoint); 2132 2133/** 2134 * of_graph_get_port_by_id() - get the port matching a given id 2135 * @parent: pointer to the parent device node 2136 * @id: id of the port 2137 * 2138 * Return: A 'port' node pointer with refcount incremented. The caller 2139 * has to use of_node_put() on it when done. 2140 */ 2141struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id) 2142{ 2143 struct device_node *node, *port; 2144 2145 node = of_get_child_by_name(parent, "ports"); 2146 if (node) 2147 parent = node; 2148 2149 for_each_child_of_node(parent, port) { 2150 u32 port_id = 0; 2151 2152 if (of_node_cmp(port->name, "port") != 0) 2153 continue; 2154 of_property_read_u32(port, "reg", &port_id); 2155 if (id == port_id) 2156 break; 2157 } 2158 2159 of_node_put(node); 2160 2161 return port; 2162} 2163EXPORT_SYMBOL(of_graph_get_port_by_id); 2164 2165/** 2166 * of_graph_get_next_endpoint() - get next endpoint node 2167 * @parent: pointer to the parent device node 2168 * @prev: previous endpoint node, or NULL to get first 2169 * 2170 * Return: An 'endpoint' node pointer with refcount incremented. Refcount 2171 * of the passed @prev node is decremented. 2172 */ 2173struct device_node *of_graph_get_next_endpoint(const struct device_node *parent, 2174 struct device_node *prev) 2175{ 2176 struct device_node *endpoint; 2177 struct device_node *port; 2178 2179 if (!parent) 2180 return NULL; 2181 2182 /* 2183 * Start by locating the port node. If no previous endpoint is specified 2184 * search for the first port node, otherwise get the previous endpoint 2185 * parent port node. 2186 */ 2187 if (!prev) { 2188 struct device_node *node; 2189 2190 node = of_get_child_by_name(parent, "ports"); 2191 if (node) 2192 parent = node; 2193 2194 port = of_get_child_by_name(parent, "port"); 2195 of_node_put(node); 2196 2197 if (!port) { 2198 pr_err("%s(): no port node found in %s\n", 2199 __func__, parent->full_name); 2200 return NULL; 2201 } 2202 } else { 2203 port = of_get_parent(prev); 2204 if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n", 2205 __func__, prev->full_name)) 2206 return NULL; 2207 } 2208 2209 while (1) { 2210 /* 2211 * Now that we have a port node, get the next endpoint by 2212 * getting the next child. If the previous endpoint is NULL this 2213 * will return the first child. 2214 */ 2215 endpoint = of_get_next_child(port, prev); 2216 if (endpoint) { 2217 of_node_put(port); 2218 return endpoint; 2219 } 2220 2221 /* No more endpoints under this port, try the next one. */ 2222 prev = NULL; 2223 2224 do { 2225 port = of_get_next_child(parent, port); 2226 if (!port) 2227 return NULL; 2228 } while (of_node_cmp(port->name, "port")); 2229 } 2230} 2231EXPORT_SYMBOL(of_graph_get_next_endpoint); 2232 2233/** 2234 * of_graph_get_remote_port_parent() - get remote port's parent node 2235 * @node: pointer to a local endpoint device_node 2236 * 2237 * Return: Remote device node associated with remote endpoint node linked 2238 * to @node. Use of_node_put() on it when done. 2239 */ 2240struct device_node *of_graph_get_remote_port_parent( 2241 const struct device_node *node) 2242{ 2243 struct device_node *np; 2244 unsigned int depth; 2245 2246 /* Get remote endpoint node. */ 2247 np = of_parse_phandle(node, "remote-endpoint", 0); 2248 2249 /* Walk 3 levels up only if there is 'ports' node. */ 2250 for (depth = 3; depth && np; depth--) { 2251 np = of_get_next_parent(np); 2252 if (depth == 2 && of_node_cmp(np->name, "ports")) 2253 break; 2254 } 2255 return np; 2256} 2257EXPORT_SYMBOL(of_graph_get_remote_port_parent); 2258 2259/** 2260 * of_graph_get_remote_port() - get remote port node 2261 * @node: pointer to a local endpoint device_node 2262 * 2263 * Return: Remote port node associated with remote endpoint node linked 2264 * to @node. Use of_node_put() on it when done. 2265 */ 2266struct device_node *of_graph_get_remote_port(const struct device_node *node) 2267{ 2268 struct device_node *np; 2269 2270 /* Get remote endpoint node. */ 2271 np = of_parse_phandle(node, "remote-endpoint", 0); 2272 if (!np) 2273 return NULL; 2274 return of_get_next_parent(np); 2275} 2276EXPORT_SYMBOL(of_graph_get_remote_port); 2277