1/******************************************************************************
2 *
3 * GPL LICENSE SUMMARY
4 *
5 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of version 2 of the GNU General Public License as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
19 * USA
20 *
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
23 *
24 * Contact Information:
25 *  Intel Linux Wireless <ilw@linux.intel.com>
26 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *
28 *****************************************************************************/
29
30#ifndef __il_4965_h__
31#define __il_4965_h__
32
33struct il_rx_queue;
34struct il_rx_buf;
35struct il_rx_pkt;
36struct il_tx_queue;
37struct il_rxon_context;
38
39/* configuration for the _4965 devices */
40extern struct il_cfg il4965_cfg;
41extern const struct il_ops il4965_ops;
42
43extern struct il_mod_params il4965_mod_params;
44
45/* tx queue */
46void il4965_free_tfds_in_queue(struct il_priv *il, int sta_id, int tid,
47			       int freed);
48
49/* RXON */
50void il4965_set_rxon_chain(struct il_priv *il);
51
52/* uCode */
53int il4965_verify_ucode(struct il_priv *il);
54
55/* lib */
56void il4965_check_abort_status(struct il_priv *il, u8 frame_count, u32 status);
57
58void il4965_rx_queue_reset(struct il_priv *il, struct il_rx_queue *rxq);
59int il4965_rx_init(struct il_priv *il, struct il_rx_queue *rxq);
60int il4965_hw_nic_init(struct il_priv *il);
61int il4965_dump_fh(struct il_priv *il, char **buf, bool display);
62
63void il4965_nic_config(struct il_priv *il);
64
65/* rx */
66void il4965_rx_queue_restock(struct il_priv *il);
67void il4965_rx_replenish(struct il_priv *il);
68void il4965_rx_replenish_now(struct il_priv *il);
69void il4965_rx_queue_free(struct il_priv *il, struct il_rx_queue *rxq);
70int il4965_rxq_stop(struct il_priv *il);
71int il4965_hwrate_to_mac80211_idx(u32 rate_n_flags, enum ieee80211_band band);
72void il4965_rx_handle(struct il_priv *il);
73
74/* tx */
75void il4965_hw_txq_free_tfd(struct il_priv *il, struct il_tx_queue *txq);
76int il4965_hw_txq_attach_buf_to_tfd(struct il_priv *il, struct il_tx_queue *txq,
77				    dma_addr_t addr, u16 len, u8 reset, u8 pad);
78int il4965_hw_tx_queue_init(struct il_priv *il, struct il_tx_queue *txq);
79void il4965_hwrate_to_tx_control(struct il_priv *il, u32 rate_n_flags,
80				 struct ieee80211_tx_info *info);
81int il4965_tx_skb(struct il_priv *il,
82		  struct ieee80211_sta *sta,
83		  struct sk_buff *skb);
84int il4965_tx_agg_start(struct il_priv *il, struct ieee80211_vif *vif,
85			struct ieee80211_sta *sta, u16 tid, u16 * ssn);
86int il4965_tx_agg_stop(struct il_priv *il, struct ieee80211_vif *vif,
87		       struct ieee80211_sta *sta, u16 tid);
88int il4965_txq_check_empty(struct il_priv *il, int sta_id, u8 tid, int txq_id);
89int il4965_tx_queue_reclaim(struct il_priv *il, int txq_id, int idx);
90void il4965_hw_txq_ctx_free(struct il_priv *il);
91int il4965_txq_ctx_alloc(struct il_priv *il);
92void il4965_txq_ctx_reset(struct il_priv *il);
93void il4965_txq_ctx_stop(struct il_priv *il);
94void il4965_txq_set_sched(struct il_priv *il, u32 mask);
95
96/*
97 * Acquire il->lock before calling this function !
98 */
99void il4965_set_wr_ptrs(struct il_priv *il, int txq_id, u32 idx);
100/**
101 * il4965_tx_queue_set_status - (optionally) start Tx/Cmd queue
102 * @tx_fifo_id: Tx DMA/FIFO channel (range 0-7) that the queue will feed
103 * @scd_retry: (1) Indicates queue will be used in aggregation mode
104 *
105 * NOTE:  Acquire il->lock before calling this function !
106 */
107void il4965_tx_queue_set_status(struct il_priv *il, struct il_tx_queue *txq,
108				int tx_fifo_id, int scd_retry);
109
110/* scan */
111int il4965_request_scan(struct il_priv *il, struct ieee80211_vif *vif);
112
113/* station mgmt */
114int il4965_manage_ibss_station(struct il_priv *il, struct ieee80211_vif *vif,
115			       bool add);
116
117/* hcmd */
118int il4965_send_beacon_cmd(struct il_priv *il);
119
120#ifdef CONFIG_IWLEGACY_DEBUG
121const char *il4965_get_tx_fail_reason(u32 status);
122#else
123static inline const char *
124il4965_get_tx_fail_reason(u32 status)
125{
126	return "";
127}
128#endif
129
130/* station management */
131int il4965_alloc_bcast_station(struct il_priv *il);
132int il4965_add_bssid_station(struct il_priv *il, const u8 *addr, u8 *sta_id_r);
133int il4965_remove_default_wep_key(struct il_priv *il,
134				  struct ieee80211_key_conf *key);
135int il4965_set_default_wep_key(struct il_priv *il,
136			       struct ieee80211_key_conf *key);
137int il4965_restore_default_wep_keys(struct il_priv *il);
138int il4965_set_dynamic_key(struct il_priv *il,
139			   struct ieee80211_key_conf *key, u8 sta_id);
140int il4965_remove_dynamic_key(struct il_priv *il,
141			      struct ieee80211_key_conf *key, u8 sta_id);
142void il4965_update_tkip_key(struct il_priv *il,
143			    struct ieee80211_key_conf *keyconf,
144			    struct ieee80211_sta *sta, u32 iv32,
145			    u16 *phase1key);
146int il4965_sta_tx_modify_enable_tid(struct il_priv *il, int sta_id, int tid);
147int il4965_sta_rx_agg_start(struct il_priv *il, struct ieee80211_sta *sta,
148			    int tid, u16 ssn);
149int il4965_sta_rx_agg_stop(struct il_priv *il, struct ieee80211_sta *sta,
150			   int tid);
151void il4965_sta_modify_sleep_tx_count(struct il_priv *il, int sta_id, int cnt);
152int il4965_update_bcast_stations(struct il_priv *il);
153
154/* rate */
155static inline u8
156il4965_hw_get_rate(__le32 rate_n_flags)
157{
158	return le32_to_cpu(rate_n_flags) & 0xFF;
159}
160
161/* eeprom */
162void il4965_eeprom_get_mac(const struct il_priv *il, u8 * mac);
163int il4965_eeprom_acquire_semaphore(struct il_priv *il);
164void il4965_eeprom_release_semaphore(struct il_priv *il);
165int il4965_eeprom_check_version(struct il_priv *il);
166
167/* mac80211 handlers (for 4965) */
168void il4965_mac_tx(struct ieee80211_hw *hw,
169		   struct ieee80211_tx_control *control,
170		   struct sk_buff *skb);
171int il4965_mac_start(struct ieee80211_hw *hw);
172void il4965_mac_stop(struct ieee80211_hw *hw);
173void il4965_configure_filter(struct ieee80211_hw *hw,
174			     unsigned int changed_flags,
175			     unsigned int *total_flags, u64 multicast);
176int il4965_mac_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
177		       struct ieee80211_vif *vif, struct ieee80211_sta *sta,
178		       struct ieee80211_key_conf *key);
179void il4965_mac_update_tkip_key(struct ieee80211_hw *hw,
180				struct ieee80211_vif *vif,
181				struct ieee80211_key_conf *keyconf,
182				struct ieee80211_sta *sta, u32 iv32,
183				u16 *phase1key);
184int il4965_mac_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
185			    enum ieee80211_ampdu_mlme_action action,
186			    struct ieee80211_sta *sta, u16 tid, u16 * ssn,
187			    u8 buf_size);
188int il4965_mac_sta_add(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
189		       struct ieee80211_sta *sta);
190void
191il4965_mac_channel_switch(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
192			  struct ieee80211_channel_switch *ch_switch);
193
194void il4965_led_enable(struct il_priv *il);
195
196/* EEPROM */
197#define IL4965_EEPROM_IMG_SIZE			1024
198
199/*
200 * uCode queue management definitions ...
201 * The first queue used for block-ack aggregation is #7 (4965 only).
202 * All block-ack aggregation queues should map to Tx DMA/FIFO channel 7.
203 */
204#define IL49_FIRST_AMPDU_QUEUE	7
205
206/* Sizes and addresses for instruction and data memory (SRAM) in
207 * 4965's embedded processor.  Driver access is via HBUS_TARG_MEM_* regs. */
208#define IL49_RTC_INST_LOWER_BOUND		(0x000000)
209#define IL49_RTC_INST_UPPER_BOUND		(0x018000)
210
211#define IL49_RTC_DATA_LOWER_BOUND		(0x800000)
212#define IL49_RTC_DATA_UPPER_BOUND		(0x80A000)
213
214#define IL49_RTC_INST_SIZE  (IL49_RTC_INST_UPPER_BOUND - \
215				IL49_RTC_INST_LOWER_BOUND)
216#define IL49_RTC_DATA_SIZE  (IL49_RTC_DATA_UPPER_BOUND - \
217				IL49_RTC_DATA_LOWER_BOUND)
218
219#define IL49_MAX_INST_SIZE IL49_RTC_INST_SIZE
220#define IL49_MAX_DATA_SIZE IL49_RTC_DATA_SIZE
221
222/* Size of uCode instruction memory in bootstrap state machine */
223#define IL49_MAX_BSM_SIZE BSM_SRAM_SIZE
224
225static inline int
226il4965_hw_valid_rtc_data_addr(u32 addr)
227{
228	return (addr >= IL49_RTC_DATA_LOWER_BOUND &&
229		addr < IL49_RTC_DATA_UPPER_BOUND);
230}
231
232/********************* START TEMPERATURE *************************************/
233
234/**
235 * 4965 temperature calculation.
236 *
237 * The driver must calculate the device temperature before calculating
238 * a txpower setting (amplifier gain is temperature dependent).  The
239 * calculation uses 4 measurements, 3 of which (R1, R2, R3) are calibration
240 * values used for the life of the driver, and one of which (R4) is the
241 * real-time temperature indicator.
242 *
243 * uCode provides all 4 values to the driver via the "initialize alive"
244 * notification (see struct il4965_init_alive_resp).  After the runtime uCode
245 * image loads, uCode updates the R4 value via stats notifications
246 * (see N_STATS), which occur after each received beacon
247 * when associated, or can be requested via C_STATS.
248 *
249 * NOTE:  uCode provides the R4 value as a 23-bit signed value.  Driver
250 *        must sign-extend to 32 bits before applying formula below.
251 *
252 * Formula:
253 *
254 * degrees Kelvin = ((97 * 259 * (R4 - R2) / (R3 - R1)) / 100) + 8
255 *
256 * NOTE:  The basic formula is 259 * (R4-R2) / (R3-R1).  The 97/100 is
257 * an additional correction, which should be centered around 0 degrees
258 * Celsius (273 degrees Kelvin).  The 8 (3 percent of 273) compensates for
259 * centering the 97/100 correction around 0 degrees K.
260 *
261 * Add 273 to Kelvin value to find degrees Celsius, for comparing current
262 * temperature with factory-measured temperatures when calculating txpower
263 * settings.
264 */
265#define TEMPERATURE_CALIB_KELVIN_OFFSET 8
266#define TEMPERATURE_CALIB_A_VAL 259
267
268/* Limit range of calculated temperature to be between these Kelvin values */
269#define IL_TX_POWER_TEMPERATURE_MIN  (263)
270#define IL_TX_POWER_TEMPERATURE_MAX  (410)
271
272#define IL_TX_POWER_TEMPERATURE_OUT_OF_RANGE(t) \
273	((t) < IL_TX_POWER_TEMPERATURE_MIN || \
274	 (t) > IL_TX_POWER_TEMPERATURE_MAX)
275
276void il4965_temperature_calib(struct il_priv *il);
277/********************* END TEMPERATURE ***************************************/
278
279/********************* START TXPOWER *****************************************/
280
281/**
282 * 4965 txpower calculations rely on information from three sources:
283 *
284 *     1) EEPROM
285 *     2) "initialize" alive notification
286 *     3) stats notifications
287 *
288 * EEPROM data consists of:
289 *
290 * 1)  Regulatory information (max txpower and channel usage flags) is provided
291 *     separately for each channel that can possibly supported by 4965.
292 *     40 MHz wide (.11n HT40) channels are listed separately from 20 MHz
293 *     (legacy) channels.
294 *
295 *     See struct il4965_eeprom_channel for format, and struct il4965_eeprom
296 *     for locations in EEPROM.
297 *
298 * 2)  Factory txpower calibration information is provided separately for
299 *     sub-bands of contiguous channels.  2.4GHz has just one sub-band,
300 *     but 5 GHz has several sub-bands.
301 *
302 *     In addition, per-band (2.4 and 5 Ghz) saturation txpowers are provided.
303 *
304 *     See struct il4965_eeprom_calib_info (and the tree of structures
305 *     contained within it) for format, and struct il4965_eeprom for
306 *     locations in EEPROM.
307 *
308 * "Initialization alive" notification (see struct il4965_init_alive_resp)
309 * consists of:
310 *
311 * 1)  Temperature calculation parameters.
312 *
313 * 2)  Power supply voltage measurement.
314 *
315 * 3)  Tx gain compensation to balance 2 transmitters for MIMO use.
316 *
317 * Statistics notifications deliver:
318 *
319 * 1)  Current values for temperature param R4.
320 */
321
322/**
323 * To calculate a txpower setting for a given desired target txpower, channel,
324 * modulation bit rate, and transmitter chain (4965 has 2 transmitters to
325 * support MIMO and transmit diversity), driver must do the following:
326 *
327 * 1)  Compare desired txpower vs. (EEPROM) regulatory limit for this channel.
328 *     Do not exceed regulatory limit; reduce target txpower if necessary.
329 *
330 *     If setting up txpowers for MIMO rates (rate idxes 8-15, 24-31),
331 *     2 transmitters will be used simultaneously; driver must reduce the
332 *     regulatory limit by 3 dB (half-power) for each transmitter, so the
333 *     combined total output of the 2 transmitters is within regulatory limits.
334 *
335 *
336 * 2)  Compare target txpower vs. (EEPROM) saturation txpower *reduced by
337 *     backoff for this bit rate*.  Do not exceed (saturation - backoff[rate]);
338 *     reduce target txpower if necessary.
339 *
340 *     Backoff values below are in 1/2 dB units (equivalent to steps in
341 *     txpower gain tables):
342 *
343 *     OFDM 6 - 36 MBit:  10 steps (5 dB)
344 *     OFDM 48 MBit:      15 steps (7.5 dB)
345 *     OFDM 54 MBit:      17 steps (8.5 dB)
346 *     OFDM 60 MBit:      20 steps (10 dB)
347 *     CCK all rates:     10 steps (5 dB)
348 *
349 *     Backoff values apply to saturation txpower on a per-transmitter basis;
350 *     when using MIMO (2 transmitters), each transmitter uses the same
351 *     saturation level provided in EEPROM, and the same backoff values;
352 *     no reduction (such as with regulatory txpower limits) is required.
353 *
354 *     Saturation and Backoff values apply equally to 20 Mhz (legacy) channel
355 *     widths and 40 Mhz (.11n HT40) channel widths; there is no separate
356 *     factory measurement for ht40 channels.
357 *
358 *     The result of this step is the final target txpower.  The rest of
359 *     the steps figure out the proper settings for the device to achieve
360 *     that target txpower.
361 *
362 *
363 * 3)  Determine (EEPROM) calibration sub band for the target channel, by
364 *     comparing against first and last channels in each sub band
365 *     (see struct il4965_eeprom_calib_subband_info).
366 *
367 *
368 * 4)  Linearly interpolate (EEPROM) factory calibration measurement sets,
369 *     referencing the 2 factory-measured (sample) channels within the sub band.
370 *
371 *     Interpolation is based on difference between target channel's frequency
372 *     and the sample channels' frequencies.  Since channel numbers are based
373 *     on frequency (5 MHz between each channel number), this is equivalent
374 *     to interpolating based on channel number differences.
375 *
376 *     Note that the sample channels may or may not be the channels at the
377 *     edges of the sub band.  The target channel may be "outside" of the
378 *     span of the sampled channels.
379 *
380 *     Driver may choose the pair (for 2 Tx chains) of measurements (see
381 *     struct il4965_eeprom_calib_ch_info) for which the actual measured
382 *     txpower comes closest to the desired txpower.  Usually, though,
383 *     the middle set of measurements is closest to the regulatory limits,
384 *     and is therefore a good choice for all txpower calculations (this
385 *     assumes that high accuracy is needed for maximizing legal txpower,
386 *     while lower txpower configurations do not need as much accuracy).
387 *
388 *     Driver should interpolate both members of the chosen measurement pair,
389 *     i.e. for both Tx chains (radio transmitters), unless the driver knows
390 *     that only one of the chains will be used (e.g. only one tx antenna
391 *     connected, but this should be unusual).  The rate scaling algorithm
392 *     switches antennas to find best performance, so both Tx chains will
393 *     be used (although only one at a time) even for non-MIMO transmissions.
394 *
395 *     Driver should interpolate factory values for temperature, gain table
396 *     idx, and actual power.  The power amplifier detector values are
397 *     not used by the driver.
398 *
399 *     Sanity check:  If the target channel happens to be one of the sample
400 *     channels, the results should agree with the sample channel's
401 *     measurements!
402 *
403 *
404 * 5)  Find difference between desired txpower and (interpolated)
405 *     factory-measured txpower.  Using (interpolated) factory gain table idx
406 *     (shown elsewhere) as a starting point, adjust this idx lower to
407 *     increase txpower, or higher to decrease txpower, until the target
408 *     txpower is reached.  Each step in the gain table is 1/2 dB.
409 *
410 *     For example, if factory measured txpower is 16 dBm, and target txpower
411 *     is 13 dBm, add 6 steps to the factory gain idx to reduce txpower
412 *     by 3 dB.
413 *
414 *
415 * 6)  Find difference between current device temperature and (interpolated)
416 *     factory-measured temperature for sub-band.  Factory values are in
417 *     degrees Celsius.  To calculate current temperature, see comments for
418 *     "4965 temperature calculation".
419 *
420 *     If current temperature is higher than factory temperature, driver must
421 *     increase gain (lower gain table idx), and vice verse.
422 *
423 *     Temperature affects gain differently for different channels:
424 *
425 *     2.4 GHz all channels:  3.5 degrees per half-dB step
426 *     5 GHz channels 34-43:  4.5 degrees per half-dB step
427 *     5 GHz channels >= 44:  4.0 degrees per half-dB step
428 *
429 *     NOTE:  Temperature can increase rapidly when transmitting, especially
430 *            with heavy traffic at high txpowers.  Driver should update
431 *            temperature calculations often under these conditions to
432 *            maintain strong txpower in the face of rising temperature.
433 *
434 *
435 * 7)  Find difference between current power supply voltage indicator
436 *     (from "initialize alive") and factory-measured power supply voltage
437 *     indicator (EEPROM).
438 *
439 *     If the current voltage is higher (indicator is lower) than factory
440 *     voltage, gain should be reduced (gain table idx increased) by:
441 *
442 *     (eeprom - current) / 7
443 *
444 *     If the current voltage is lower (indicator is higher) than factory
445 *     voltage, gain should be increased (gain table idx decreased) by:
446 *
447 *     2 * (current - eeprom) / 7
448 *
449 *     If number of idx steps in either direction turns out to be > 2,
450 *     something is wrong ... just use 0.
451 *
452 *     NOTE:  Voltage compensation is independent of band/channel.
453 *
454 *     NOTE:  "Initialize" uCode measures current voltage, which is assumed
455 *            to be constant after this initial measurement.  Voltage
456 *            compensation for txpower (number of steps in gain table)
457 *            may be calculated once and used until the next uCode bootload.
458 *
459 *
460 * 8)  If setting up txpowers for MIMO rates (rate idxes 8-15, 24-31),
461 *     adjust txpower for each transmitter chain, so txpower is balanced
462 *     between the two chains.  There are 5 pairs of tx_atten[group][chain]
463 *     values in "initialize alive", one pair for each of 5 channel ranges:
464 *
465 *     Group 0:  5 GHz channel 34-43
466 *     Group 1:  5 GHz channel 44-70
467 *     Group 2:  5 GHz channel 71-124
468 *     Group 3:  5 GHz channel 125-200
469 *     Group 4:  2.4 GHz all channels
470 *
471 *     Add the tx_atten[group][chain] value to the idx for the target chain.
472 *     The values are signed, but are in pairs of 0 and a non-negative number,
473 *     so as to reduce gain (if necessary) of the "hotter" channel.  This
474 *     avoids any need to double-check for regulatory compliance after
475 *     this step.
476 *
477 *
478 * 9)  If setting up for a CCK rate, lower the gain by adding a CCK compensation
479 *     value to the idx:
480 *
481 *     Hardware rev B:  9 steps (4.5 dB)
482 *     Hardware rev C:  5 steps (2.5 dB)
483 *
484 *     Hardware rev for 4965 can be determined by reading CSR_HW_REV_WA_REG,
485 *     bits [3:2], 1 = B, 2 = C.
486 *
487 *     NOTE:  This compensation is in addition to any saturation backoff that
488 *            might have been applied in an earlier step.
489 *
490 *
491 * 10) Select the gain table, based on band (2.4 vs 5 GHz).
492 *
493 *     Limit the adjusted idx to stay within the table!
494 *
495 *
496 * 11) Read gain table entries for DSP and radio gain, place into appropriate
497 *     location(s) in command (struct il4965_txpowertable_cmd).
498 */
499
500/**
501 * When MIMO is used (2 transmitters operating simultaneously), driver should
502 * limit each transmitter to deliver a max of 3 dB below the regulatory limit
503 * for the device.  That is, use half power for each transmitter, so total
504 * txpower is within regulatory limits.
505 *
506 * The value "6" represents number of steps in gain table to reduce power 3 dB.
507 * Each step is 1/2 dB.
508 */
509#define IL_TX_POWER_MIMO_REGULATORY_COMPENSATION (6)
510
511/**
512 * CCK gain compensation.
513 *
514 * When calculating txpowers for CCK, after making sure that the target power
515 * is within regulatory and saturation limits, driver must additionally
516 * back off gain by adding these values to the gain table idx.
517 *
518 * Hardware rev for 4965 can be determined by reading CSR_HW_REV_WA_REG,
519 * bits [3:2], 1 = B, 2 = C.
520 */
521#define IL_TX_POWER_CCK_COMPENSATION_B_STEP (9)
522#define IL_TX_POWER_CCK_COMPENSATION_C_STEP (5)
523
524/*
525 * 4965 power supply voltage compensation for txpower
526 */
527#define TX_POWER_IL_VOLTAGE_CODES_PER_03V   (7)
528
529/**
530 * Gain tables.
531 *
532 * The following tables contain pair of values for setting txpower, i.e.
533 * gain settings for the output of the device's digital signal processor (DSP),
534 * and for the analog gain structure of the transmitter.
535 *
536 * Each entry in the gain tables represents a step of 1/2 dB.  Note that these
537 * are *relative* steps, not indications of absolute output power.  Output
538 * power varies with temperature, voltage, and channel frequency, and also
539 * requires consideration of average power (to satisfy regulatory constraints),
540 * and peak power (to avoid distortion of the output signal).
541 *
542 * Each entry contains two values:
543 * 1)  DSP gain (or sometimes called DSP attenuation).  This is a fine-grained
544 *     linear value that multiplies the output of the digital signal processor,
545 *     before being sent to the analog radio.
546 * 2)  Radio gain.  This sets the analog gain of the radio Tx path.
547 *     It is a coarser setting, and behaves in a logarithmic (dB) fashion.
548 *
549 * EEPROM contains factory calibration data for txpower.  This maps actual
550 * measured txpower levels to gain settings in the "well known" tables
551 * below ("well-known" means here that both factory calibration *and* the
552 * driver work with the same table).
553 *
554 * There are separate tables for 2.4 GHz and 5 GHz bands.  The 5 GHz table
555 * has an extension (into negative idxes), in case the driver needs to
556 * boost power setting for high device temperatures (higher than would be
557 * present during factory calibration).  A 5 Ghz EEPROM idx of "40"
558 * corresponds to the 49th entry in the table used by the driver.
559 */
560#define MIN_TX_GAIN_IDX		(0)	/* highest gain, lowest idx, 2.4 */
561#define MIN_TX_GAIN_IDX_52GHZ_EXT	(-9)	/* highest gain, lowest idx, 5 */
562
563/**
564 * 2.4 GHz gain table
565 *
566 * Index    Dsp gain   Radio gain
567 *   0        110         0x3f      (highest gain)
568 *   1        104         0x3f
569 *   2         98         0x3f
570 *   3        110         0x3e
571 *   4        104         0x3e
572 *   5         98         0x3e
573 *   6        110         0x3d
574 *   7        104         0x3d
575 *   8         98         0x3d
576 *   9        110         0x3c
577 *  10        104         0x3c
578 *  11         98         0x3c
579 *  12        110         0x3b
580 *  13        104         0x3b
581 *  14         98         0x3b
582 *  15        110         0x3a
583 *  16        104         0x3a
584 *  17         98         0x3a
585 *  18        110         0x39
586 *  19        104         0x39
587 *  20         98         0x39
588 *  21        110         0x38
589 *  22        104         0x38
590 *  23         98         0x38
591 *  24        110         0x37
592 *  25        104         0x37
593 *  26         98         0x37
594 *  27        110         0x36
595 *  28        104         0x36
596 *  29         98         0x36
597 *  30        110         0x35
598 *  31        104         0x35
599 *  32         98         0x35
600 *  33        110         0x34
601 *  34        104         0x34
602 *  35         98         0x34
603 *  36        110         0x33
604 *  37        104         0x33
605 *  38         98         0x33
606 *  39        110         0x32
607 *  40        104         0x32
608 *  41         98         0x32
609 *  42        110         0x31
610 *  43        104         0x31
611 *  44         98         0x31
612 *  45        110         0x30
613 *  46        104         0x30
614 *  47         98         0x30
615 *  48        110          0x6
616 *  49        104          0x6
617 *  50         98          0x6
618 *  51        110          0x5
619 *  52        104          0x5
620 *  53         98          0x5
621 *  54        110          0x4
622 *  55        104          0x4
623 *  56         98          0x4
624 *  57        110          0x3
625 *  58        104          0x3
626 *  59         98          0x3
627 *  60        110          0x2
628 *  61        104          0x2
629 *  62         98          0x2
630 *  63        110          0x1
631 *  64        104          0x1
632 *  65         98          0x1
633 *  66        110          0x0
634 *  67        104          0x0
635 *  68         98          0x0
636 *  69         97            0
637 *  70         96            0
638 *  71         95            0
639 *  72         94            0
640 *  73         93            0
641 *  74         92            0
642 *  75         91            0
643 *  76         90            0
644 *  77         89            0
645 *  78         88            0
646 *  79         87            0
647 *  80         86            0
648 *  81         85            0
649 *  82         84            0
650 *  83         83            0
651 *  84         82            0
652 *  85         81            0
653 *  86         80            0
654 *  87         79            0
655 *  88         78            0
656 *  89         77            0
657 *  90         76            0
658 *  91         75            0
659 *  92         74            0
660 *  93         73            0
661 *  94         72            0
662 *  95         71            0
663 *  96         70            0
664 *  97         69            0
665 *  98         68            0
666 */
667
668/**
669 * 5 GHz gain table
670 *
671 * Index    Dsp gain   Radio gain
672 *  -9 	      123         0x3F      (highest gain)
673 *  -8 	      117         0x3F
674 *  -7        110         0x3F
675 *  -6        104         0x3F
676 *  -5         98         0x3F
677 *  -4        110         0x3E
678 *  -3        104         0x3E
679 *  -2         98         0x3E
680 *  -1        110         0x3D
681 *   0        104         0x3D
682 *   1         98         0x3D
683 *   2        110         0x3C
684 *   3        104         0x3C
685 *   4         98         0x3C
686 *   5        110         0x3B
687 *   6        104         0x3B
688 *   7         98         0x3B
689 *   8        110         0x3A
690 *   9        104         0x3A
691 *  10         98         0x3A
692 *  11        110         0x39
693 *  12        104         0x39
694 *  13         98         0x39
695 *  14        110         0x38
696 *  15        104         0x38
697 *  16         98         0x38
698 *  17        110         0x37
699 *  18        104         0x37
700 *  19         98         0x37
701 *  20        110         0x36
702 *  21        104         0x36
703 *  22         98         0x36
704 *  23        110         0x35
705 *  24        104         0x35
706 *  25         98         0x35
707 *  26        110         0x34
708 *  27        104         0x34
709 *  28         98         0x34
710 *  29        110         0x33
711 *  30        104         0x33
712 *  31         98         0x33
713 *  32        110         0x32
714 *  33        104         0x32
715 *  34         98         0x32
716 *  35        110         0x31
717 *  36        104         0x31
718 *  37         98         0x31
719 *  38        110         0x30
720 *  39        104         0x30
721 *  40         98         0x30
722 *  41        110         0x25
723 *  42        104         0x25
724 *  43         98         0x25
725 *  44        110         0x24
726 *  45        104         0x24
727 *  46         98         0x24
728 *  47        110         0x23
729 *  48        104         0x23
730 *  49         98         0x23
731 *  50        110         0x22
732 *  51        104         0x18
733 *  52         98         0x18
734 *  53        110         0x17
735 *  54        104         0x17
736 *  55         98         0x17
737 *  56        110         0x16
738 *  57        104         0x16
739 *  58         98         0x16
740 *  59        110         0x15
741 *  60        104         0x15
742 *  61         98         0x15
743 *  62        110         0x14
744 *  63        104         0x14
745 *  64         98         0x14
746 *  65        110         0x13
747 *  66        104         0x13
748 *  67         98         0x13
749 *  68        110         0x12
750 *  69        104         0x08
751 *  70         98         0x08
752 *  71        110         0x07
753 *  72        104         0x07
754 *  73         98         0x07
755 *  74        110         0x06
756 *  75        104         0x06
757 *  76         98         0x06
758 *  77        110         0x05
759 *  78        104         0x05
760 *  79         98         0x05
761 *  80        110         0x04
762 *  81        104         0x04
763 *  82         98         0x04
764 *  83        110         0x03
765 *  84        104         0x03
766 *  85         98         0x03
767 *  86        110         0x02
768 *  87        104         0x02
769 *  88         98         0x02
770 *  89        110         0x01
771 *  90        104         0x01
772 *  91         98         0x01
773 *  92        110         0x00
774 *  93        104         0x00
775 *  94         98         0x00
776 *  95         93         0x00
777 *  96         88         0x00
778 *  97         83         0x00
779 *  98         78         0x00
780 */
781
782/**
783 * Sanity checks and default values for EEPROM regulatory levels.
784 * If EEPROM values fall outside MIN/MAX range, use default values.
785 *
786 * Regulatory limits refer to the maximum average txpower allowed by
787 * regulatory agencies in the geographies in which the device is meant
788 * to be operated.  These limits are SKU-specific (i.e. geography-specific),
789 * and channel-specific; each channel has an individual regulatory limit
790 * listed in the EEPROM.
791 *
792 * Units are in half-dBm (i.e. "34" means 17 dBm).
793 */
794#define IL_TX_POWER_DEFAULT_REGULATORY_24   (34)
795#define IL_TX_POWER_DEFAULT_REGULATORY_52   (34)
796#define IL_TX_POWER_REGULATORY_MIN          (0)
797#define IL_TX_POWER_REGULATORY_MAX          (34)
798
799/**
800 * Sanity checks and default values for EEPROM saturation levels.
801 * If EEPROM values fall outside MIN/MAX range, use default values.
802 *
803 * Saturation is the highest level that the output power amplifier can produce
804 * without significant clipping distortion.  This is a "peak" power level.
805 * Different types of modulation (i.e. various "rates", and OFDM vs. CCK)
806 * require differing amounts of backoff, relative to their average power output,
807 * in order to avoid clipping distortion.
808 *
809 * Driver must make sure that it is violating neither the saturation limit,
810 * nor the regulatory limit, when calculating Tx power settings for various
811 * rates.
812 *
813 * Units are in half-dBm (i.e. "38" means 19 dBm).
814 */
815#define IL_TX_POWER_DEFAULT_SATURATION_24   (38)
816#define IL_TX_POWER_DEFAULT_SATURATION_52   (38)
817#define IL_TX_POWER_SATURATION_MIN          (20)
818#define IL_TX_POWER_SATURATION_MAX          (50)
819
820/**
821 * Channel groups used for Tx Attenuation calibration (MIMO tx channel balance)
822 * and thermal Txpower calibration.
823 *
824 * When calculating txpower, driver must compensate for current device
825 * temperature; higher temperature requires higher gain.  Driver must calculate
826 * current temperature (see "4965 temperature calculation"), then compare vs.
827 * factory calibration temperature in EEPROM; if current temperature is higher
828 * than factory temperature, driver must *increase* gain by proportions shown
829 * in table below.  If current temperature is lower than factory, driver must
830 * *decrease* gain.
831 *
832 * Different frequency ranges require different compensation, as shown below.
833 */
834/* Group 0, 5.2 GHz ch 34-43:  4.5 degrees per 1/2 dB. */
835#define CALIB_IL_TX_ATTEN_GR1_FCH 34
836#define CALIB_IL_TX_ATTEN_GR1_LCH 43
837
838/* Group 1, 5.3 GHz ch 44-70:  4.0 degrees per 1/2 dB. */
839#define CALIB_IL_TX_ATTEN_GR2_FCH 44
840#define CALIB_IL_TX_ATTEN_GR2_LCH 70
841
842/* Group 2, 5.5 GHz ch 71-124:  4.0 degrees per 1/2 dB. */
843#define CALIB_IL_TX_ATTEN_GR3_FCH 71
844#define CALIB_IL_TX_ATTEN_GR3_LCH 124
845
846/* Group 3, 5.7 GHz ch 125-200:  4.0 degrees per 1/2 dB. */
847#define CALIB_IL_TX_ATTEN_GR4_FCH 125
848#define CALIB_IL_TX_ATTEN_GR4_LCH 200
849
850/* Group 4, 2.4 GHz all channels:  3.5 degrees per 1/2 dB. */
851#define CALIB_IL_TX_ATTEN_GR5_FCH 1
852#define CALIB_IL_TX_ATTEN_GR5_LCH 20
853
854enum {
855	CALIB_CH_GROUP_1 = 0,
856	CALIB_CH_GROUP_2 = 1,
857	CALIB_CH_GROUP_3 = 2,
858	CALIB_CH_GROUP_4 = 3,
859	CALIB_CH_GROUP_5 = 4,
860	CALIB_CH_GROUP_MAX
861};
862
863/********************* END TXPOWER *****************************************/
864
865/**
866 * Tx/Rx Queues
867 *
868 * Most communication between driver and 4965 is via queues of data buffers.
869 * For example, all commands that the driver issues to device's embedded
870 * controller (uCode) are via the command queue (one of the Tx queues).  All
871 * uCode command responses/replies/notifications, including Rx frames, are
872 * conveyed from uCode to driver via the Rx queue.
873 *
874 * Most support for these queues, including handshake support, resides in
875 * structures in host DRAM, shared between the driver and the device.  When
876 * allocating this memory, the driver must make sure that data written by
877 * the host CPU updates DRAM immediately (and does not get "stuck" in CPU's
878 * cache memory), so DRAM and cache are consistent, and the device can
879 * immediately see changes made by the driver.
880 *
881 * 4965 supports up to 16 DRAM-based Tx queues, and services these queues via
882 * up to 7 DMA channels (FIFOs).  Each Tx queue is supported by a circular array
883 * in DRAM containing 256 Transmit Frame Descriptors (TFDs).
884 */
885#define IL49_NUM_FIFOS	7
886#define IL49_CMD_FIFO_NUM	4
887#define IL49_NUM_QUEUES	16
888#define IL49_NUM_AMPDU_QUEUES	8
889
890/**
891 * struct il4965_schedq_bc_tbl
892 *
893 * Byte Count table
894 *
895 * Each Tx queue uses a byte-count table containing 320 entries:
896 * one 16-bit entry for each of 256 TFDs, plus an additional 64 entries that
897 * duplicate the first 64 entries (to avoid wrap-around within a Tx win;
898 * max Tx win is 64 TFDs).
899 *
900 * When driver sets up a new TFD, it must also enter the total byte count
901 * of the frame to be transmitted into the corresponding entry in the byte
902 * count table for the chosen Tx queue.  If the TFD idx is 0-63, the driver
903 * must duplicate the byte count entry in corresponding idx 256-319.
904 *
905 * padding puts each byte count table on a 1024-byte boundary;
906 * 4965 assumes tables are separated by 1024 bytes.
907 */
908struct il4965_scd_bc_tbl {
909	__le16 tfd_offset[TFD_QUEUE_BC_SIZE];
910	u8 pad[1024 - (TFD_QUEUE_BC_SIZE) * sizeof(__le16)];
911} __packed;
912
913#define IL4965_RTC_INST_LOWER_BOUND		(0x000000)
914
915/* RSSI to dBm */
916#define IL4965_RSSI_OFFSET	44
917
918/* PCI registers */
919#define PCI_CFG_RETRY_TIMEOUT	0x041
920
921#define IL4965_DEFAULT_TX_RETRY  15
922
923/* EEPROM */
924#define IL4965_FIRST_AMPDU_QUEUE	10
925
926/* Calibration */
927void il4965_chain_noise_calibration(struct il_priv *il, void *stat_resp);
928void il4965_sensitivity_calibration(struct il_priv *il, void *resp);
929void il4965_init_sensitivity(struct il_priv *il);
930void il4965_reset_run_time_calib(struct il_priv *il);
931
932/* Debug */
933#ifdef CONFIG_IWLEGACY_DEBUGFS
934extern const struct il_debugfs_ops il4965_debugfs_ops;
935#endif
936
937/****************************/
938/* Flow Handler Definitions */
939/****************************/
940
941/**
942 * This I/O area is directly read/writable by driver (e.g. Linux uses writel())
943 * Addresses are offsets from device's PCI hardware base address.
944 */
945#define FH49_MEM_LOWER_BOUND                   (0x1000)
946#define FH49_MEM_UPPER_BOUND                   (0x2000)
947
948/**
949 * Keep-Warm (KW) buffer base address.
950 *
951 * Driver must allocate a 4KByte buffer that is used by 4965 for keeping the
952 * host DRAM powered on (via dummy accesses to DRAM) to maintain low-latency
953 * DRAM access when 4965 is Txing or Rxing.  The dummy accesses prevent host
954 * from going into a power-savings mode that would cause higher DRAM latency,
955 * and possible data over/under-runs, before all Tx/Rx is complete.
956 *
957 * Driver loads FH49_KW_MEM_ADDR_REG with the physical address (bits 35:4)
958 * of the buffer, which must be 4K aligned.  Once this is set up, the 4965
959 * automatically invokes keep-warm accesses when normal accesses might not
960 * be sufficient to maintain fast DRAM response.
961 *
962 * Bit fields:
963 *  31-0:  Keep-warm buffer physical base address [35:4], must be 4K aligned
964 */
965#define FH49_KW_MEM_ADDR_REG		     (FH49_MEM_LOWER_BOUND + 0x97C)
966
967/**
968 * TFD Circular Buffers Base (CBBC) addresses
969 *
970 * 4965 has 16 base pointer registers, one for each of 16 host-DRAM-resident
971 * circular buffers (CBs/queues) containing Transmit Frame Descriptors (TFDs)
972 * (see struct il_tfd_frame).  These 16 pointer registers are offset by 0x04
973 * bytes from one another.  Each TFD circular buffer in DRAM must be 256-byte
974 * aligned (address bits 0-7 must be 0).
975 *
976 * Bit fields in each pointer register:
977 *  27-0: TFD CB physical base address [35:8], must be 256-byte aligned
978 */
979#define FH49_MEM_CBBC_LOWER_BOUND          (FH49_MEM_LOWER_BOUND + 0x9D0)
980#define FH49_MEM_CBBC_UPPER_BOUND          (FH49_MEM_LOWER_BOUND + 0xA10)
981
982/* Find TFD CB base pointer for given queue (range 0-15). */
983#define FH49_MEM_CBBC_QUEUE(x)  (FH49_MEM_CBBC_LOWER_BOUND + (x) * 0x4)
984
985/**
986 * Rx SRAM Control and Status Registers (RSCSR)
987 *
988 * These registers provide handshake between driver and 4965 for the Rx queue
989 * (this queue handles *all* command responses, notifications, Rx data, etc.
990 * sent from 4965 uCode to host driver).  Unlike Tx, there is only one Rx
991 * queue, and only one Rx DMA/FIFO channel.  Also unlike Tx, which can
992 * concatenate up to 20 DRAM buffers to form a Tx frame, each Receive Buffer
993 * Descriptor (RBD) points to only one Rx Buffer (RB); there is a 1:1
994 * mapping between RBDs and RBs.
995 *
996 * Driver must allocate host DRAM memory for the following, and set the
997 * physical address of each into 4965 registers:
998 *
999 * 1)  Receive Buffer Descriptor (RBD) circular buffer (CB), typically with 256
1000 *     entries (although any power of 2, up to 4096, is selectable by driver).
1001 *     Each entry (1 dword) points to a receive buffer (RB) of consistent size
1002 *     (typically 4K, although 8K or 16K are also selectable by driver).
1003 *     Driver sets up RB size and number of RBDs in the CB via Rx config
1004 *     register FH49_MEM_RCSR_CHNL0_CONFIG_REG.
1005 *
1006 *     Bit fields within one RBD:
1007 *     27-0:  Receive Buffer physical address bits [35:8], 256-byte aligned
1008 *
1009 *     Driver sets physical address [35:8] of base of RBD circular buffer
1010 *     into FH49_RSCSR_CHNL0_RBDCB_BASE_REG [27:0].
1011 *
1012 * 2)  Rx status buffer, 8 bytes, in which 4965 indicates which Rx Buffers
1013 *     (RBs) have been filled, via a "write pointer", actually the idx of
1014 *     the RB's corresponding RBD within the circular buffer.  Driver sets
1015 *     physical address [35:4] into FH49_RSCSR_CHNL0_STTS_WPTR_REG [31:0].
1016 *
1017 *     Bit fields in lower dword of Rx status buffer (upper dword not used
1018 *     by driver; see struct il4965_shared, val0):
1019 *     31-12:  Not used by driver
1020 *     11- 0:  Index of last filled Rx buffer descriptor
1021 *             (4965 writes, driver reads this value)
1022 *
1023 * As the driver prepares Receive Buffers (RBs) for 4965 to fill, driver must
1024 * enter pointers to these RBs into contiguous RBD circular buffer entries,
1025 * and update the 4965's "write" idx register,
1026 * FH49_RSCSR_CHNL0_RBDCB_WPTR_REG.
1027 *
1028 * This "write" idx corresponds to the *next* RBD that the driver will make
1029 * available, i.e. one RBD past the tail of the ready-to-fill RBDs within
1030 * the circular buffer.  This value should initially be 0 (before preparing any
1031 * RBs), should be 8 after preparing the first 8 RBs (for example), and must
1032 * wrap back to 0 at the end of the circular buffer (but don't wrap before
1033 * "read" idx has advanced past 1!  See below).
1034 * NOTE:  4965 EXPECTS THE WRITE IDX TO BE INCREMENTED IN MULTIPLES OF 8.
1035 *
1036 * As the 4965 fills RBs (referenced from contiguous RBDs within the circular
1037 * buffer), it updates the Rx status buffer in host DRAM, 2) described above,
1038 * to tell the driver the idx of the latest filled RBD.  The driver must
1039 * read this "read" idx from DRAM after receiving an Rx interrupt from 4965.
1040 *
1041 * The driver must also internally keep track of a third idx, which is the
1042 * next RBD to process.  When receiving an Rx interrupt, driver should process
1043 * all filled but unprocessed RBs up to, but not including, the RB
1044 * corresponding to the "read" idx.  For example, if "read" idx becomes "1",
1045 * driver may process the RB pointed to by RBD 0.  Depending on volume of
1046 * traffic, there may be many RBs to process.
1047 *
1048 * If read idx == write idx, 4965 thinks there is no room to put new data.
1049 * Due to this, the maximum number of filled RBs is 255, instead of 256.  To
1050 * be safe, make sure that there is a gap of at least 2 RBDs between "write"
1051 * and "read" idxes; that is, make sure that there are no more than 254
1052 * buffers waiting to be filled.
1053 */
1054#define FH49_MEM_RSCSR_LOWER_BOUND	(FH49_MEM_LOWER_BOUND + 0xBC0)
1055#define FH49_MEM_RSCSR_UPPER_BOUND	(FH49_MEM_LOWER_BOUND + 0xC00)
1056#define FH49_MEM_RSCSR_CHNL0		(FH49_MEM_RSCSR_LOWER_BOUND)
1057
1058/**
1059 * Physical base address of 8-byte Rx Status buffer.
1060 * Bit fields:
1061 *  31-0: Rx status buffer physical base address [35:4], must 16-byte aligned.
1062 */
1063#define FH49_RSCSR_CHNL0_STTS_WPTR_REG	(FH49_MEM_RSCSR_CHNL0)
1064
1065/**
1066 * Physical base address of Rx Buffer Descriptor Circular Buffer.
1067 * Bit fields:
1068 *  27-0:  RBD CD physical base address [35:8], must be 256-byte aligned.
1069 */
1070#define FH49_RSCSR_CHNL0_RBDCB_BASE_REG	(FH49_MEM_RSCSR_CHNL0 + 0x004)
1071
1072/**
1073 * Rx write pointer (idx, really!).
1074 * Bit fields:
1075 *  11-0:  Index of driver's most recent prepared-to-be-filled RBD, + 1.
1076 *         NOTE:  For 256-entry circular buffer, use only bits [7:0].
1077 */
1078#define FH49_RSCSR_CHNL0_RBDCB_WPTR_REG	(FH49_MEM_RSCSR_CHNL0 + 0x008)
1079#define FH49_RSCSR_CHNL0_WPTR        (FH49_RSCSR_CHNL0_RBDCB_WPTR_REG)
1080
1081/**
1082 * Rx Config/Status Registers (RCSR)
1083 * Rx Config Reg for channel 0 (only channel used)
1084 *
1085 * Driver must initialize FH49_MEM_RCSR_CHNL0_CONFIG_REG as follows for
1086 * normal operation (see bit fields).
1087 *
1088 * Clearing FH49_MEM_RCSR_CHNL0_CONFIG_REG to 0 turns off Rx DMA.
1089 * Driver should poll FH49_MEM_RSSR_RX_STATUS_REG	for
1090 * FH49_RSSR_CHNL0_RX_STATUS_CHNL_IDLE (bit 24) before continuing.
1091 *
1092 * Bit fields:
1093 * 31-30: Rx DMA channel enable: '00' off/pause, '01' pause at end of frame,
1094 *        '10' operate normally
1095 * 29-24: reserved
1096 * 23-20: # RBDs in circular buffer = 2^value; use "8" for 256 RBDs (normal),
1097 *        min "5" for 32 RBDs, max "12" for 4096 RBDs.
1098 * 19-18: reserved
1099 * 17-16: size of each receive buffer; '00' 4K (normal), '01' 8K,
1100 *        '10' 12K, '11' 16K.
1101 * 15-14: reserved
1102 * 13-12: IRQ destination; '00' none, '01' host driver (normal operation)
1103 * 11- 4: timeout for closing Rx buffer and interrupting host (units 32 usec)
1104 *        typical value 0x10 (about 1/2 msec)
1105 *  3- 0: reserved
1106 */
1107#define FH49_MEM_RCSR_LOWER_BOUND      (FH49_MEM_LOWER_BOUND + 0xC00)
1108#define FH49_MEM_RCSR_UPPER_BOUND      (FH49_MEM_LOWER_BOUND + 0xCC0)
1109#define FH49_MEM_RCSR_CHNL0            (FH49_MEM_RCSR_LOWER_BOUND)
1110
1111#define FH49_MEM_RCSR_CHNL0_CONFIG_REG	(FH49_MEM_RCSR_CHNL0)
1112
1113#define FH49_RCSR_CHNL0_RX_CONFIG_RB_TIMEOUT_MSK (0x00000FF0)	/* bits 4-11 */
1114#define FH49_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_MSK   (0x00001000)	/* bits 12 */
1115#define FH49_RCSR_CHNL0_RX_CONFIG_SINGLE_FRAME_MSK (0x00008000)	/* bit 15 */
1116#define FH49_RCSR_CHNL0_RX_CONFIG_RB_SIZE_MSK   (0x00030000)	/* bits 16-17 */
1117#define FH49_RCSR_CHNL0_RX_CONFIG_RBDBC_SIZE_MSK (0x00F00000)	/* bits 20-23 */
1118#define FH49_RCSR_CHNL0_RX_CONFIG_DMA_CHNL_EN_MSK (0xC0000000)	/* bits 30-31 */
1119
1120#define FH49_RCSR_RX_CONFIG_RBDCB_SIZE_POS	(20)
1121#define FH49_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS	(4)
1122#define RX_RB_TIMEOUT	(0x10)
1123
1124#define FH49_RCSR_RX_CONFIG_CHNL_EN_PAUSE_VAL         (0x00000000)
1125#define FH49_RCSR_RX_CONFIG_CHNL_EN_PAUSE_EOF_VAL     (0x40000000)
1126#define FH49_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL        (0x80000000)
1127
1128#define FH49_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K    (0x00000000)
1129#define FH49_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K    (0x00010000)
1130#define FH49_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K   (0x00020000)
1131#define FH49_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_16K   (0x00030000)
1132
1133#define FH49_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY              (0x00000004)
1134#define FH49_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_NO_INT_VAL    (0x00000000)
1135#define FH49_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL  (0x00001000)
1136
1137/**
1138 * Rx Shared Status Registers (RSSR)
1139 *
1140 * After stopping Rx DMA channel (writing 0 to
1141 * FH49_MEM_RCSR_CHNL0_CONFIG_REG), driver must poll
1142 * FH49_MEM_RSSR_RX_STATUS_REG until Rx channel is idle.
1143 *
1144 * Bit fields:
1145 *  24:  1 = Channel 0 is idle
1146 *
1147 * FH49_MEM_RSSR_SHARED_CTRL_REG and FH49_MEM_RSSR_RX_ENABLE_ERR_IRQ2DRV
1148 * contain default values that should not be altered by the driver.
1149 */
1150#define FH49_MEM_RSSR_LOWER_BOUND           (FH49_MEM_LOWER_BOUND + 0xC40)
1151#define FH49_MEM_RSSR_UPPER_BOUND           (FH49_MEM_LOWER_BOUND + 0xD00)
1152
1153#define FH49_MEM_RSSR_SHARED_CTRL_REG       (FH49_MEM_RSSR_LOWER_BOUND)
1154#define FH49_MEM_RSSR_RX_STATUS_REG	(FH49_MEM_RSSR_LOWER_BOUND + 0x004)
1155#define FH49_MEM_RSSR_RX_ENABLE_ERR_IRQ2DRV\
1156					(FH49_MEM_RSSR_LOWER_BOUND + 0x008)
1157
1158#define FH49_RSSR_CHNL0_RX_STATUS_CHNL_IDLE	(0x01000000)
1159
1160#define FH49_MEM_TFDIB_REG1_ADDR_BITSHIFT	28
1161
1162/* TFDB  Area - TFDs buffer table */
1163#define FH49_MEM_TFDIB_DRAM_ADDR_LSB_MSK      (0xFFFFFFFF)
1164#define FH49_TFDIB_LOWER_BOUND       (FH49_MEM_LOWER_BOUND + 0x900)
1165#define FH49_TFDIB_UPPER_BOUND       (FH49_MEM_LOWER_BOUND + 0x958)
1166#define FH49_TFDIB_CTRL0_REG(_chnl)  (FH49_TFDIB_LOWER_BOUND + 0x8 * (_chnl))
1167#define FH49_TFDIB_CTRL1_REG(_chnl)  (FH49_TFDIB_LOWER_BOUND + 0x8 * (_chnl) + 0x4)
1168
1169/**
1170 * Transmit DMA Channel Control/Status Registers (TCSR)
1171 *
1172 * 4965 has one configuration register for each of 8 Tx DMA/FIFO channels
1173 * supported in hardware (don't confuse these with the 16 Tx queues in DRAM,
1174 * which feed the DMA/FIFO channels); config regs are separated by 0x20 bytes.
1175 *
1176 * To use a Tx DMA channel, driver must initialize its
1177 * FH49_TCSR_CHNL_TX_CONFIG_REG(chnl) with:
1178 *
1179 * FH49_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
1180 * FH49_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE_VAL
1181 *
1182 * All other bits should be 0.
1183 *
1184 * Bit fields:
1185 * 31-30: Tx DMA channel enable: '00' off/pause, '01' pause at end of frame,
1186 *        '10' operate normally
1187 * 29- 4: Reserved, set to "0"
1188 *     3: Enable internal DMA requests (1, normal operation), disable (0)
1189 *  2- 0: Reserved, set to "0"
1190 */
1191#define FH49_TCSR_LOWER_BOUND  (FH49_MEM_LOWER_BOUND + 0xD00)
1192#define FH49_TCSR_UPPER_BOUND  (FH49_MEM_LOWER_BOUND + 0xE60)
1193
1194/* Find Control/Status reg for given Tx DMA/FIFO channel */
1195#define FH49_TCSR_CHNL_NUM                            (7)
1196#define FH50_TCSR_CHNL_NUM                            (8)
1197
1198/* TCSR: tx_config register values */
1199#define FH49_TCSR_CHNL_TX_CONFIG_REG(_chnl)	\
1200		(FH49_TCSR_LOWER_BOUND + 0x20 * (_chnl))
1201#define FH49_TCSR_CHNL_TX_CREDIT_REG(_chnl)	\
1202		(FH49_TCSR_LOWER_BOUND + 0x20 * (_chnl) + 0x4)
1203#define FH49_TCSR_CHNL_TX_BUF_STS_REG(_chnl)	\
1204		(FH49_TCSR_LOWER_BOUND + 0x20 * (_chnl) + 0x8)
1205
1206#define FH49_TCSR_TX_CONFIG_REG_VAL_MSG_MODE_TXF		(0x00000000)
1207#define FH49_TCSR_TX_CONFIG_REG_VAL_MSG_MODE_DRV		(0x00000001)
1208
1209#define FH49_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE	(0x00000000)
1210#define FH49_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE	(0x00000008)
1211
1212#define FH49_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_NOINT	(0x00000000)
1213#define FH49_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD	(0x00100000)
1214#define FH49_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_IFTFD	(0x00200000)
1215
1216#define FH49_TCSR_TX_CONFIG_REG_VAL_CIRQ_RTC_NOINT	(0x00000000)
1217#define FH49_TCSR_TX_CONFIG_REG_VAL_CIRQ_RTC_ENDTFD	(0x00400000)
1218#define FH49_TCSR_TX_CONFIG_REG_VAL_CIRQ_RTC_IFTFD	(0x00800000)
1219
1220#define FH49_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE	(0x00000000)
1221#define FH49_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE_EOF	(0x40000000)
1222#define FH49_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE	(0x80000000)
1223
1224#define FH49_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_EMPTY	(0x00000000)
1225#define FH49_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_WAIT	(0x00002000)
1226#define FH49_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID	(0x00000003)
1227
1228#define FH49_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM		(20)
1229#define FH49_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX		(12)
1230
1231/**
1232 * Tx Shared Status Registers (TSSR)
1233 *
1234 * After stopping Tx DMA channel (writing 0 to
1235 * FH49_TCSR_CHNL_TX_CONFIG_REG(chnl)), driver must poll
1236 * FH49_TSSR_TX_STATUS_REG until selected Tx channel is idle
1237 * (channel's buffers empty | no pending requests).
1238 *
1239 * Bit fields:
1240 * 31-24:  1 = Channel buffers empty (channel 7:0)
1241 * 23-16:  1 = No pending requests (channel 7:0)
1242 */
1243#define FH49_TSSR_LOWER_BOUND		(FH49_MEM_LOWER_BOUND + 0xEA0)
1244#define FH49_TSSR_UPPER_BOUND		(FH49_MEM_LOWER_BOUND + 0xEC0)
1245
1246#define FH49_TSSR_TX_STATUS_REG		(FH49_TSSR_LOWER_BOUND + 0x010)
1247
1248/**
1249 * Bit fields for TSSR(Tx Shared Status & Control) error status register:
1250 * 31:  Indicates an address error when accessed to internal memory
1251 *	uCode/driver must write "1" in order to clear this flag
1252 * 30:  Indicates that Host did not send the expected number of dwords to FH
1253 *	uCode/driver must write "1" in order to clear this flag
1254 * 16-9:Each status bit is for one channel. Indicates that an (Error) ActDMA
1255 *	command was received from the scheduler while the TRB was already full
1256 *	with previous command
1257 *	uCode/driver must write "1" in order to clear this flag
1258 * 7-0: Each status bit indicates a channel's TxCredit error. When an error
1259 *	bit is set, it indicates that the FH has received a full indication
1260 *	from the RTC TxFIFO and the current value of the TxCredit counter was
1261 *	not equal to zero. This mean that the credit mechanism was not
1262 *	synchronized to the TxFIFO status
1263 *	uCode/driver must write "1" in order to clear this flag
1264 */
1265#define FH49_TSSR_TX_ERROR_REG		(FH49_TSSR_LOWER_BOUND + 0x018)
1266
1267#define FH49_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(_chnl) ((1 << (_chnl)) << 16)
1268
1269/* Tx service channels */
1270#define FH49_SRVC_CHNL		(9)
1271#define FH49_SRVC_LOWER_BOUND	(FH49_MEM_LOWER_BOUND + 0x9C8)
1272#define FH49_SRVC_UPPER_BOUND	(FH49_MEM_LOWER_BOUND + 0x9D0)
1273#define FH49_SRVC_CHNL_SRAM_ADDR_REG(_chnl) \
1274		(FH49_SRVC_LOWER_BOUND + ((_chnl) - 9) * 0x4)
1275
1276#define FH49_TX_CHICKEN_BITS_REG	(FH49_MEM_LOWER_BOUND + 0xE98)
1277/* Instruct FH to increment the retry count of a packet when
1278 * it is brought from the memory to TX-FIFO
1279 */
1280#define FH49_TX_CHICKEN_BITS_SCD_AUTO_RETRY_EN	(0x00000002)
1281
1282/* Keep Warm Size */
1283#define IL_KW_SIZE 0x1000	/* 4k */
1284
1285#endif /* __il_4965_h__ */
1286