1/******************************************************************************
2 *
3 * Copyright(c) 2003 - 2011 Intel Corporation. All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of version 2 of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
17 *
18 * The full GNU General Public License is included in this distribution in the
19 * file called LICENSE.
20 *
21 * Contact Information:
22 *  Intel Linux Wireless <ilw@linux.intel.com>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 *****************************************************************************/
26
27#include <linux/kernel.h>
28#include <linux/module.h>
29#include <linux/pci.h>
30#include <linux/dma-mapping.h>
31#include <linux/delay.h>
32#include <linux/sched.h>
33#include <linux/skbuff.h>
34#include <linux/netdevice.h>
35#include <net/mac80211.h>
36#include <linux/etherdevice.h>
37#include <asm/unaligned.h>
38
39#include "common.h"
40#include "4965.h"
41
42/**
43 * il_verify_inst_sparse - verify runtime uCode image in card vs. host,
44 *   using sample data 100 bytes apart.  If these sample points are good,
45 *   it's a pretty good bet that everything between them is good, too.
46 */
47static int
48il4965_verify_inst_sparse(struct il_priv *il, __le32 * image, u32 len)
49{
50	u32 val;
51	int ret = 0;
52	u32 errcnt = 0;
53	u32 i;
54
55	D_INFO("ucode inst image size is %u\n", len);
56
57	for (i = 0; i < len; i += 100, image += 100 / sizeof(u32)) {
58		/* read data comes through single port, auto-incr addr */
59		/* NOTE: Use the debugless read so we don't flood kernel log
60		 * if IL_DL_IO is set */
61		il_wr(il, HBUS_TARG_MEM_RADDR, i + IL4965_RTC_INST_LOWER_BOUND);
62		val = _il_rd(il, HBUS_TARG_MEM_RDAT);
63		if (val != le32_to_cpu(*image)) {
64			ret = -EIO;
65			errcnt++;
66			if (errcnt >= 3)
67				break;
68		}
69	}
70
71	return ret;
72}
73
74/**
75 * il4965_verify_inst_full - verify runtime uCode image in card vs. host,
76 *     looking at all data.
77 */
78static int
79il4965_verify_inst_full(struct il_priv *il, __le32 * image, u32 len)
80{
81	u32 val;
82	u32 save_len = len;
83	int ret = 0;
84	u32 errcnt;
85
86	D_INFO("ucode inst image size is %u\n", len);
87
88	il_wr(il, HBUS_TARG_MEM_RADDR, IL4965_RTC_INST_LOWER_BOUND);
89
90	errcnt = 0;
91	for (; len > 0; len -= sizeof(u32), image++) {
92		/* read data comes through single port, auto-incr addr */
93		/* NOTE: Use the debugless read so we don't flood kernel log
94		 * if IL_DL_IO is set */
95		val = _il_rd(il, HBUS_TARG_MEM_RDAT);
96		if (val != le32_to_cpu(*image)) {
97			IL_ERR("uCode INST section is invalid at "
98			       "offset 0x%x, is 0x%x, s/b 0x%x\n",
99			       save_len - len, val, le32_to_cpu(*image));
100			ret = -EIO;
101			errcnt++;
102			if (errcnt >= 20)
103				break;
104		}
105	}
106
107	if (!errcnt)
108		D_INFO("ucode image in INSTRUCTION memory is good\n");
109
110	return ret;
111}
112
113/**
114 * il4965_verify_ucode - determine which instruction image is in SRAM,
115 *    and verify its contents
116 */
117int
118il4965_verify_ucode(struct il_priv *il)
119{
120	__le32 *image;
121	u32 len;
122	int ret;
123
124	/* Try bootstrap */
125	image = (__le32 *) il->ucode_boot.v_addr;
126	len = il->ucode_boot.len;
127	ret = il4965_verify_inst_sparse(il, image, len);
128	if (!ret) {
129		D_INFO("Bootstrap uCode is good in inst SRAM\n");
130		return 0;
131	}
132
133	/* Try initialize */
134	image = (__le32 *) il->ucode_init.v_addr;
135	len = il->ucode_init.len;
136	ret = il4965_verify_inst_sparse(il, image, len);
137	if (!ret) {
138		D_INFO("Initialize uCode is good in inst SRAM\n");
139		return 0;
140	}
141
142	/* Try runtime/protocol */
143	image = (__le32 *) il->ucode_code.v_addr;
144	len = il->ucode_code.len;
145	ret = il4965_verify_inst_sparse(il, image, len);
146	if (!ret) {
147		D_INFO("Runtime uCode is good in inst SRAM\n");
148		return 0;
149	}
150
151	IL_ERR("NO VALID UCODE IMAGE IN INSTRUCTION SRAM!!\n");
152
153	/* Since nothing seems to match, show first several data entries in
154	 * instruction SRAM, so maybe visual inspection will give a clue.
155	 * Selection of bootstrap image (vs. other images) is arbitrary. */
156	image = (__le32 *) il->ucode_boot.v_addr;
157	len = il->ucode_boot.len;
158	ret = il4965_verify_inst_full(il, image, len);
159
160	return ret;
161}
162
163/******************************************************************************
164 *
165 * EEPROM related functions
166 *
167******************************************************************************/
168
169/*
170 * The device's EEPROM semaphore prevents conflicts between driver and uCode
171 * when accessing the EEPROM; each access is a series of pulses to/from the
172 * EEPROM chip, not a single event, so even reads could conflict if they
173 * weren't arbitrated by the semaphore.
174 */
175int
176il4965_eeprom_acquire_semaphore(struct il_priv *il)
177{
178	u16 count;
179	int ret;
180
181	for (count = 0; count < EEPROM_SEM_RETRY_LIMIT; count++) {
182		/* Request semaphore */
183		il_set_bit(il, CSR_HW_IF_CONFIG_REG,
184			   CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
185
186		/* See if we got it */
187		ret =
188		    _il_poll_bit(il, CSR_HW_IF_CONFIG_REG,
189				 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
190				 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
191				 EEPROM_SEM_TIMEOUT);
192		if (ret >= 0)
193			return ret;
194	}
195
196	return ret;
197}
198
199void
200il4965_eeprom_release_semaphore(struct il_priv *il)
201{
202	il_clear_bit(il, CSR_HW_IF_CONFIG_REG,
203		     CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
204
205}
206
207int
208il4965_eeprom_check_version(struct il_priv *il)
209{
210	u16 eeprom_ver;
211	u16 calib_ver;
212
213	eeprom_ver = il_eeprom_query16(il, EEPROM_VERSION);
214	calib_ver = il_eeprom_query16(il, EEPROM_4965_CALIB_VERSION_OFFSET);
215
216	if (eeprom_ver < il->cfg->eeprom_ver ||
217	    calib_ver < il->cfg->eeprom_calib_ver)
218		goto err;
219
220	IL_INFO("device EEPROM VER=0x%x, CALIB=0x%x\n", eeprom_ver, calib_ver);
221
222	return 0;
223err:
224	IL_ERR("Unsupported (too old) EEPROM VER=0x%x < 0x%x "
225	       "CALIB=0x%x < 0x%x\n", eeprom_ver, il->cfg->eeprom_ver,
226	       calib_ver, il->cfg->eeprom_calib_ver);
227	return -EINVAL;
228
229}
230
231void
232il4965_eeprom_get_mac(const struct il_priv *il, u8 * mac)
233{
234	const u8 *addr = il_eeprom_query_addr(il,
235					      EEPROM_MAC_ADDRESS);
236	memcpy(mac, addr, ETH_ALEN);
237}
238
239/* Send led command */
240static int
241il4965_send_led_cmd(struct il_priv *il, struct il_led_cmd *led_cmd)
242{
243	struct il_host_cmd cmd = {
244		.id = C_LEDS,
245		.len = sizeof(struct il_led_cmd),
246		.data = led_cmd,
247		.flags = CMD_ASYNC,
248		.callback = NULL,
249	};
250	u32 reg;
251
252	reg = _il_rd(il, CSR_LED_REG);
253	if (reg != (reg & CSR_LED_BSM_CTRL_MSK))
254		_il_wr(il, CSR_LED_REG, reg & CSR_LED_BSM_CTRL_MSK);
255
256	return il_send_cmd(il, &cmd);
257}
258
259/* Set led register off */
260void
261il4965_led_enable(struct il_priv *il)
262{
263	_il_wr(il, CSR_LED_REG, CSR_LED_REG_TRUN_ON);
264}
265
266static int il4965_send_tx_power(struct il_priv *il);
267static int il4965_hw_get_temperature(struct il_priv *il);
268
269/* Highest firmware API version supported */
270#define IL4965_UCODE_API_MAX 2
271
272/* Lowest firmware API version supported */
273#define IL4965_UCODE_API_MIN 2
274
275#define IL4965_FW_PRE "iwlwifi-4965-"
276#define _IL4965_MODULE_FIRMWARE(api) IL4965_FW_PRE #api ".ucode"
277#define IL4965_MODULE_FIRMWARE(api) _IL4965_MODULE_FIRMWARE(api)
278
279/* check contents of special bootstrap uCode SRAM */
280static int
281il4965_verify_bsm(struct il_priv *il)
282{
283	__le32 *image = il->ucode_boot.v_addr;
284	u32 len = il->ucode_boot.len;
285	u32 reg;
286	u32 val;
287
288	D_INFO("Begin verify bsm\n");
289
290	/* verify BSM SRAM contents */
291	val = il_rd_prph(il, BSM_WR_DWCOUNT_REG);
292	for (reg = BSM_SRAM_LOWER_BOUND; reg < BSM_SRAM_LOWER_BOUND + len;
293	     reg += sizeof(u32), image++) {
294		val = il_rd_prph(il, reg);
295		if (val != le32_to_cpu(*image)) {
296			IL_ERR("BSM uCode verification failed at "
297			       "addr 0x%08X+%u (of %u), is 0x%x, s/b 0x%x\n",
298			       BSM_SRAM_LOWER_BOUND, reg - BSM_SRAM_LOWER_BOUND,
299			       len, val, le32_to_cpu(*image));
300			return -EIO;
301		}
302	}
303
304	D_INFO("BSM bootstrap uCode image OK\n");
305
306	return 0;
307}
308
309/**
310 * il4965_load_bsm - Load bootstrap instructions
311 *
312 * BSM operation:
313 *
314 * The Bootstrap State Machine (BSM) stores a short bootstrap uCode program
315 * in special SRAM that does not power down during RFKILL.  When powering back
316 * up after power-saving sleeps (or during initial uCode load), the BSM loads
317 * the bootstrap program into the on-board processor, and starts it.
318 *
319 * The bootstrap program loads (via DMA) instructions and data for a new
320 * program from host DRAM locations indicated by the host driver in the
321 * BSM_DRAM_* registers.  Once the new program is loaded, it starts
322 * automatically.
323 *
324 * When initializing the NIC, the host driver points the BSM to the
325 * "initialize" uCode image.  This uCode sets up some internal data, then
326 * notifies host via "initialize alive" that it is complete.
327 *
328 * The host then replaces the BSM_DRAM_* pointer values to point to the
329 * normal runtime uCode instructions and a backup uCode data cache buffer
330 * (filled initially with starting data values for the on-board processor),
331 * then triggers the "initialize" uCode to load and launch the runtime uCode,
332 * which begins normal operation.
333 *
334 * When doing a power-save shutdown, runtime uCode saves data SRAM into
335 * the backup data cache in DRAM before SRAM is powered down.
336 *
337 * When powering back up, the BSM loads the bootstrap program.  This reloads
338 * the runtime uCode instructions and the backup data cache into SRAM,
339 * and re-launches the runtime uCode from where it left off.
340 */
341static int
342il4965_load_bsm(struct il_priv *il)
343{
344	__le32 *image = il->ucode_boot.v_addr;
345	u32 len = il->ucode_boot.len;
346	dma_addr_t pinst;
347	dma_addr_t pdata;
348	u32 inst_len;
349	u32 data_len;
350	int i;
351	u32 done;
352	u32 reg_offset;
353	int ret;
354
355	D_INFO("Begin load bsm\n");
356
357	il->ucode_type = UCODE_RT;
358
359	/* make sure bootstrap program is no larger than BSM's SRAM size */
360	if (len > IL49_MAX_BSM_SIZE)
361		return -EINVAL;
362
363	/* Tell bootstrap uCode where to find the "Initialize" uCode
364	 *   in host DRAM ... host DRAM physical address bits 35:4 for 4965.
365	 * NOTE:  il_init_alive_start() will replace these values,
366	 *        after the "initialize" uCode has run, to point to
367	 *        runtime/protocol instructions and backup data cache.
368	 */
369	pinst = il->ucode_init.p_addr >> 4;
370	pdata = il->ucode_init_data.p_addr >> 4;
371	inst_len = il->ucode_init.len;
372	data_len = il->ucode_init_data.len;
373
374	il_wr_prph(il, BSM_DRAM_INST_PTR_REG, pinst);
375	il_wr_prph(il, BSM_DRAM_DATA_PTR_REG, pdata);
376	il_wr_prph(il, BSM_DRAM_INST_BYTECOUNT_REG, inst_len);
377	il_wr_prph(il, BSM_DRAM_DATA_BYTECOUNT_REG, data_len);
378
379	/* Fill BSM memory with bootstrap instructions */
380	for (reg_offset = BSM_SRAM_LOWER_BOUND;
381	     reg_offset < BSM_SRAM_LOWER_BOUND + len;
382	     reg_offset += sizeof(u32), image++)
383		_il_wr_prph(il, reg_offset, le32_to_cpu(*image));
384
385	ret = il4965_verify_bsm(il);
386	if (ret)
387		return ret;
388
389	/* Tell BSM to copy from BSM SRAM into instruction SRAM, when asked */
390	il_wr_prph(il, BSM_WR_MEM_SRC_REG, 0x0);
391	il_wr_prph(il, BSM_WR_MEM_DST_REG, IL49_RTC_INST_LOWER_BOUND);
392	il_wr_prph(il, BSM_WR_DWCOUNT_REG, len / sizeof(u32));
393
394	/* Load bootstrap code into instruction SRAM now,
395	 *   to prepare to load "initialize" uCode */
396	il_wr_prph(il, BSM_WR_CTRL_REG, BSM_WR_CTRL_REG_BIT_START);
397
398	/* Wait for load of bootstrap uCode to finish */
399	for (i = 0; i < 100; i++) {
400		done = il_rd_prph(il, BSM_WR_CTRL_REG);
401		if (!(done & BSM_WR_CTRL_REG_BIT_START))
402			break;
403		udelay(10);
404	}
405	if (i < 100)
406		D_INFO("BSM write complete, poll %d iterations\n", i);
407	else {
408		IL_ERR("BSM write did not complete!\n");
409		return -EIO;
410	}
411
412	/* Enable future boot loads whenever power management unit triggers it
413	 *   (e.g. when powering back up after power-save shutdown) */
414	il_wr_prph(il, BSM_WR_CTRL_REG, BSM_WR_CTRL_REG_BIT_START_EN);
415
416	return 0;
417}
418
419/**
420 * il4965_set_ucode_ptrs - Set uCode address location
421 *
422 * Tell initialization uCode where to find runtime uCode.
423 *
424 * BSM registers initially contain pointers to initialization uCode.
425 * We need to replace them to load runtime uCode inst and data,
426 * and to save runtime data when powering down.
427 */
428static int
429il4965_set_ucode_ptrs(struct il_priv *il)
430{
431	dma_addr_t pinst;
432	dma_addr_t pdata;
433	int ret = 0;
434
435	/* bits 35:4 for 4965 */
436	pinst = il->ucode_code.p_addr >> 4;
437	pdata = il->ucode_data_backup.p_addr >> 4;
438
439	/* Tell bootstrap uCode where to find image to load */
440	il_wr_prph(il, BSM_DRAM_INST_PTR_REG, pinst);
441	il_wr_prph(il, BSM_DRAM_DATA_PTR_REG, pdata);
442	il_wr_prph(il, BSM_DRAM_DATA_BYTECOUNT_REG, il->ucode_data.len);
443
444	/* Inst byte count must be last to set up, bit 31 signals uCode
445	 *   that all new ptr/size info is in place */
446	il_wr_prph(il, BSM_DRAM_INST_BYTECOUNT_REG,
447		   il->ucode_code.len | BSM_DRAM_INST_LOAD);
448	D_INFO("Runtime uCode pointers are set.\n");
449
450	return ret;
451}
452
453/**
454 * il4965_init_alive_start - Called after N_ALIVE notification received
455 *
456 * Called after N_ALIVE notification received from "initialize" uCode.
457 *
458 * The 4965 "initialize" ALIVE reply contains calibration data for:
459 *   Voltage, temperature, and MIMO tx gain correction, now stored in il
460 *   (3945 does not contain this data).
461 *
462 * Tell "initialize" uCode to go ahead and load the runtime uCode.
463*/
464static void
465il4965_init_alive_start(struct il_priv *il)
466{
467	/* Bootstrap uCode has loaded initialize uCode ... verify inst image.
468	 * This is a paranoid check, because we would not have gotten the
469	 * "initialize" alive if code weren't properly loaded.  */
470	if (il4965_verify_ucode(il)) {
471		/* Runtime instruction load was bad;
472		 * take it all the way back down so we can try again */
473		D_INFO("Bad \"initialize\" uCode load.\n");
474		goto restart;
475	}
476
477	/* Calculate temperature */
478	il->temperature = il4965_hw_get_temperature(il);
479
480	/* Send pointers to protocol/runtime uCode image ... init code will
481	 * load and launch runtime uCode, which will send us another "Alive"
482	 * notification. */
483	D_INFO("Initialization Alive received.\n");
484	if (il4965_set_ucode_ptrs(il)) {
485		/* Runtime instruction load won't happen;
486		 * take it all the way back down so we can try again */
487		D_INFO("Couldn't set up uCode pointers.\n");
488		goto restart;
489	}
490	return;
491
492restart:
493	queue_work(il->workqueue, &il->restart);
494}
495
496static bool
497iw4965_is_ht40_channel(__le32 rxon_flags)
498{
499	int chan_mod =
500	    le32_to_cpu(rxon_flags & RXON_FLG_CHANNEL_MODE_MSK) >>
501	    RXON_FLG_CHANNEL_MODE_POS;
502	return (chan_mod == CHANNEL_MODE_PURE_40 ||
503		chan_mod == CHANNEL_MODE_MIXED);
504}
505
506void
507il4965_nic_config(struct il_priv *il)
508{
509	unsigned long flags;
510	u16 radio_cfg;
511
512	spin_lock_irqsave(&il->lock, flags);
513
514	radio_cfg = il_eeprom_query16(il, EEPROM_RADIO_CONFIG);
515
516	/* write radio config values to register */
517	if (EEPROM_RF_CFG_TYPE_MSK(radio_cfg) == EEPROM_4965_RF_CFG_TYPE_MAX)
518		il_set_bit(il, CSR_HW_IF_CONFIG_REG,
519			   EEPROM_RF_CFG_TYPE_MSK(radio_cfg) |
520			   EEPROM_RF_CFG_STEP_MSK(radio_cfg) |
521			   EEPROM_RF_CFG_DASH_MSK(radio_cfg));
522
523	/* set CSR_HW_CONFIG_REG for uCode use */
524	il_set_bit(il, CSR_HW_IF_CONFIG_REG,
525		   CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI |
526		   CSR_HW_IF_CONFIG_REG_BIT_MAC_SI);
527
528	il->calib_info =
529	    (struct il_eeprom_calib_info *)
530	    il_eeprom_query_addr(il, EEPROM_4965_CALIB_TXPOWER_OFFSET);
531
532	spin_unlock_irqrestore(&il->lock, flags);
533}
534
535/* Reset differential Rx gains in NIC to prepare for chain noise calibration.
536 * Called after every association, but this runs only once!
537 *  ... once chain noise is calibrated the first time, it's good forever.  */
538static void
539il4965_chain_noise_reset(struct il_priv *il)
540{
541	struct il_chain_noise_data *data = &(il->chain_noise_data);
542
543	if (data->state == IL_CHAIN_NOISE_ALIVE && il_is_any_associated(il)) {
544		struct il_calib_diff_gain_cmd cmd;
545
546		/* clear data for chain noise calibration algorithm */
547		data->chain_noise_a = 0;
548		data->chain_noise_b = 0;
549		data->chain_noise_c = 0;
550		data->chain_signal_a = 0;
551		data->chain_signal_b = 0;
552		data->chain_signal_c = 0;
553		data->beacon_count = 0;
554
555		memset(&cmd, 0, sizeof(cmd));
556		cmd.hdr.op_code = IL_PHY_CALIBRATE_DIFF_GAIN_CMD;
557		cmd.diff_gain_a = 0;
558		cmd.diff_gain_b = 0;
559		cmd.diff_gain_c = 0;
560		if (il_send_cmd_pdu(il, C_PHY_CALIBRATION, sizeof(cmd), &cmd))
561			IL_ERR("Could not send C_PHY_CALIBRATION\n");
562		data->state = IL_CHAIN_NOISE_ACCUMULATE;
563		D_CALIB("Run chain_noise_calibrate\n");
564	}
565}
566
567static s32
568il4965_math_div_round(s32 num, s32 denom, s32 * res)
569{
570	s32 sign = 1;
571
572	if (num < 0) {
573		sign = -sign;
574		num = -num;
575	}
576	if (denom < 0) {
577		sign = -sign;
578		denom = -denom;
579	}
580	*res = 1;
581	*res = ((num * 2 + denom) / (denom * 2)) * sign;
582
583	return 1;
584}
585
586/**
587 * il4965_get_voltage_compensation - Power supply voltage comp for txpower
588 *
589 * Determines power supply voltage compensation for txpower calculations.
590 * Returns number of 1/2-dB steps to subtract from gain table idx,
591 * to compensate for difference between power supply voltage during
592 * factory measurements, vs. current power supply voltage.
593 *
594 * Voltage indication is higher for lower voltage.
595 * Lower voltage requires more gain (lower gain table idx).
596 */
597static s32
598il4965_get_voltage_compensation(s32 eeprom_voltage, s32 current_voltage)
599{
600	s32 comp = 0;
601
602	if (TX_POWER_IL_ILLEGAL_VOLTAGE == eeprom_voltage ||
603	    TX_POWER_IL_ILLEGAL_VOLTAGE == current_voltage)
604		return 0;
605
606	il4965_math_div_round(current_voltage - eeprom_voltage,
607			      TX_POWER_IL_VOLTAGE_CODES_PER_03V, &comp);
608
609	if (current_voltage > eeprom_voltage)
610		comp *= 2;
611	if ((comp < -2) || (comp > 2))
612		comp = 0;
613
614	return comp;
615}
616
617static s32
618il4965_get_tx_atten_grp(u16 channel)
619{
620	if (channel >= CALIB_IL_TX_ATTEN_GR5_FCH &&
621	    channel <= CALIB_IL_TX_ATTEN_GR5_LCH)
622		return CALIB_CH_GROUP_5;
623
624	if (channel >= CALIB_IL_TX_ATTEN_GR1_FCH &&
625	    channel <= CALIB_IL_TX_ATTEN_GR1_LCH)
626		return CALIB_CH_GROUP_1;
627
628	if (channel >= CALIB_IL_TX_ATTEN_GR2_FCH &&
629	    channel <= CALIB_IL_TX_ATTEN_GR2_LCH)
630		return CALIB_CH_GROUP_2;
631
632	if (channel >= CALIB_IL_TX_ATTEN_GR3_FCH &&
633	    channel <= CALIB_IL_TX_ATTEN_GR3_LCH)
634		return CALIB_CH_GROUP_3;
635
636	if (channel >= CALIB_IL_TX_ATTEN_GR4_FCH &&
637	    channel <= CALIB_IL_TX_ATTEN_GR4_LCH)
638		return CALIB_CH_GROUP_4;
639
640	return -EINVAL;
641}
642
643static u32
644il4965_get_sub_band(const struct il_priv *il, u32 channel)
645{
646	s32 b = -1;
647
648	for (b = 0; b < EEPROM_TX_POWER_BANDS; b++) {
649		if (il->calib_info->band_info[b].ch_from == 0)
650			continue;
651
652		if (channel >= il->calib_info->band_info[b].ch_from &&
653		    channel <= il->calib_info->band_info[b].ch_to)
654			break;
655	}
656
657	return b;
658}
659
660static s32
661il4965_interpolate_value(s32 x, s32 x1, s32 y1, s32 x2, s32 y2)
662{
663	s32 val;
664
665	if (x2 == x1)
666		return y1;
667	else {
668		il4965_math_div_round((x2 - x) * (y1 - y2), (x2 - x1), &val);
669		return val + y2;
670	}
671}
672
673/**
674 * il4965_interpolate_chan - Interpolate factory measurements for one channel
675 *
676 * Interpolates factory measurements from the two sample channels within a
677 * sub-band, to apply to channel of interest.  Interpolation is proportional to
678 * differences in channel frequencies, which is proportional to differences
679 * in channel number.
680 */
681static int
682il4965_interpolate_chan(struct il_priv *il, u32 channel,
683			struct il_eeprom_calib_ch_info *chan_info)
684{
685	s32 s = -1;
686	u32 c;
687	u32 m;
688	const struct il_eeprom_calib_measure *m1;
689	const struct il_eeprom_calib_measure *m2;
690	struct il_eeprom_calib_measure *omeas;
691	u32 ch_i1;
692	u32 ch_i2;
693
694	s = il4965_get_sub_band(il, channel);
695	if (s >= EEPROM_TX_POWER_BANDS) {
696		IL_ERR("Tx Power can not find channel %d\n", channel);
697		return -1;
698	}
699
700	ch_i1 = il->calib_info->band_info[s].ch1.ch_num;
701	ch_i2 = il->calib_info->band_info[s].ch2.ch_num;
702	chan_info->ch_num = (u8) channel;
703
704	D_TXPOWER("channel %d subband %d factory cal ch %d & %d\n", channel, s,
705		  ch_i1, ch_i2);
706
707	for (c = 0; c < EEPROM_TX_POWER_TX_CHAINS; c++) {
708		for (m = 0; m < EEPROM_TX_POWER_MEASUREMENTS; m++) {
709			m1 = &(il->calib_info->band_info[s].ch1.
710			       measurements[c][m]);
711			m2 = &(il->calib_info->band_info[s].ch2.
712			       measurements[c][m]);
713			omeas = &(chan_info->measurements[c][m]);
714
715			omeas->actual_pow =
716			    (u8) il4965_interpolate_value(channel, ch_i1,
717							  m1->actual_pow, ch_i2,
718							  m2->actual_pow);
719			omeas->gain_idx =
720			    (u8) il4965_interpolate_value(channel, ch_i1,
721							  m1->gain_idx, ch_i2,
722							  m2->gain_idx);
723			omeas->temperature =
724			    (u8) il4965_interpolate_value(channel, ch_i1,
725							  m1->temperature,
726							  ch_i2,
727							  m2->temperature);
728			omeas->pa_det =
729			    (s8) il4965_interpolate_value(channel, ch_i1,
730							  m1->pa_det, ch_i2,
731							  m2->pa_det);
732
733			D_TXPOWER("chain %d meas %d AP1=%d AP2=%d AP=%d\n", c,
734				  m, m1->actual_pow, m2->actual_pow,
735				  omeas->actual_pow);
736			D_TXPOWER("chain %d meas %d NI1=%d NI2=%d NI=%d\n", c,
737				  m, m1->gain_idx, m2->gain_idx,
738				  omeas->gain_idx);
739			D_TXPOWER("chain %d meas %d PA1=%d PA2=%d PA=%d\n", c,
740				  m, m1->pa_det, m2->pa_det, omeas->pa_det);
741			D_TXPOWER("chain %d meas %d  T1=%d  T2=%d  T=%d\n", c,
742				  m, m1->temperature, m2->temperature,
743				  omeas->temperature);
744		}
745	}
746
747	return 0;
748}
749
750/* bit-rate-dependent table to prevent Tx distortion, in half-dB units,
751 * for OFDM 6, 12, 18, 24, 36, 48, 54, 60 MBit, and CCK all rates. */
752static s32 back_off_table[] = {
753	10, 10, 10, 10, 10, 15, 17, 20,	/* OFDM SISO 20 MHz */
754	10, 10, 10, 10, 10, 15, 17, 20,	/* OFDM MIMO 20 MHz */
755	10, 10, 10, 10, 10, 15, 17, 20,	/* OFDM SISO 40 MHz */
756	10, 10, 10, 10, 10, 15, 17, 20,	/* OFDM MIMO 40 MHz */
757	10			/* CCK */
758};
759
760/* Thermal compensation values for txpower for various frequency ranges ...
761 *   ratios from 3:1 to 4.5:1 of degrees (Celsius) per half-dB gain adjust */
762static struct il4965_txpower_comp_entry {
763	s32 degrees_per_05db_a;
764	s32 degrees_per_05db_a_denom;
765} tx_power_cmp_tble[CALIB_CH_GROUP_MAX] = {
766	{
767	9, 2},			/* group 0 5.2, ch  34-43 */
768	{
769	4, 1},			/* group 1 5.2, ch  44-70 */
770	{
771	4, 1},			/* group 2 5.2, ch  71-124 */
772	{
773	4, 1},			/* group 3 5.2, ch 125-200 */
774	{
775	3, 1}			/* group 4 2.4, ch   all */
776};
777
778static s32
779get_min_power_idx(s32 rate_power_idx, u32 band)
780{
781	if (!band) {
782		if ((rate_power_idx & 7) <= 4)
783			return MIN_TX_GAIN_IDX_52GHZ_EXT;
784	}
785	return MIN_TX_GAIN_IDX;
786}
787
788struct gain_entry {
789	u8 dsp;
790	u8 radio;
791};
792
793static const struct gain_entry gain_table[2][108] = {
794	/* 5.2GHz power gain idx table */
795	{
796	 {123, 0x3F},		/* highest txpower */
797	 {117, 0x3F},
798	 {110, 0x3F},
799	 {104, 0x3F},
800	 {98, 0x3F},
801	 {110, 0x3E},
802	 {104, 0x3E},
803	 {98, 0x3E},
804	 {110, 0x3D},
805	 {104, 0x3D},
806	 {98, 0x3D},
807	 {110, 0x3C},
808	 {104, 0x3C},
809	 {98, 0x3C},
810	 {110, 0x3B},
811	 {104, 0x3B},
812	 {98, 0x3B},
813	 {110, 0x3A},
814	 {104, 0x3A},
815	 {98, 0x3A},
816	 {110, 0x39},
817	 {104, 0x39},
818	 {98, 0x39},
819	 {110, 0x38},
820	 {104, 0x38},
821	 {98, 0x38},
822	 {110, 0x37},
823	 {104, 0x37},
824	 {98, 0x37},
825	 {110, 0x36},
826	 {104, 0x36},
827	 {98, 0x36},
828	 {110, 0x35},
829	 {104, 0x35},
830	 {98, 0x35},
831	 {110, 0x34},
832	 {104, 0x34},
833	 {98, 0x34},
834	 {110, 0x33},
835	 {104, 0x33},
836	 {98, 0x33},
837	 {110, 0x32},
838	 {104, 0x32},
839	 {98, 0x32},
840	 {110, 0x31},
841	 {104, 0x31},
842	 {98, 0x31},
843	 {110, 0x30},
844	 {104, 0x30},
845	 {98, 0x30},
846	 {110, 0x25},
847	 {104, 0x25},
848	 {98, 0x25},
849	 {110, 0x24},
850	 {104, 0x24},
851	 {98, 0x24},
852	 {110, 0x23},
853	 {104, 0x23},
854	 {98, 0x23},
855	 {110, 0x22},
856	 {104, 0x18},
857	 {98, 0x18},
858	 {110, 0x17},
859	 {104, 0x17},
860	 {98, 0x17},
861	 {110, 0x16},
862	 {104, 0x16},
863	 {98, 0x16},
864	 {110, 0x15},
865	 {104, 0x15},
866	 {98, 0x15},
867	 {110, 0x14},
868	 {104, 0x14},
869	 {98, 0x14},
870	 {110, 0x13},
871	 {104, 0x13},
872	 {98, 0x13},
873	 {110, 0x12},
874	 {104, 0x08},
875	 {98, 0x08},
876	 {110, 0x07},
877	 {104, 0x07},
878	 {98, 0x07},
879	 {110, 0x06},
880	 {104, 0x06},
881	 {98, 0x06},
882	 {110, 0x05},
883	 {104, 0x05},
884	 {98, 0x05},
885	 {110, 0x04},
886	 {104, 0x04},
887	 {98, 0x04},
888	 {110, 0x03},
889	 {104, 0x03},
890	 {98, 0x03},
891	 {110, 0x02},
892	 {104, 0x02},
893	 {98, 0x02},
894	 {110, 0x01},
895	 {104, 0x01},
896	 {98, 0x01},
897	 {110, 0x00},
898	 {104, 0x00},
899	 {98, 0x00},
900	 {93, 0x00},
901	 {88, 0x00},
902	 {83, 0x00},
903	 {78, 0x00},
904	 },
905	/* 2.4GHz power gain idx table */
906	{
907	 {110, 0x3f},		/* highest txpower */
908	 {104, 0x3f},
909	 {98, 0x3f},
910	 {110, 0x3e},
911	 {104, 0x3e},
912	 {98, 0x3e},
913	 {110, 0x3d},
914	 {104, 0x3d},
915	 {98, 0x3d},
916	 {110, 0x3c},
917	 {104, 0x3c},
918	 {98, 0x3c},
919	 {110, 0x3b},
920	 {104, 0x3b},
921	 {98, 0x3b},
922	 {110, 0x3a},
923	 {104, 0x3a},
924	 {98, 0x3a},
925	 {110, 0x39},
926	 {104, 0x39},
927	 {98, 0x39},
928	 {110, 0x38},
929	 {104, 0x38},
930	 {98, 0x38},
931	 {110, 0x37},
932	 {104, 0x37},
933	 {98, 0x37},
934	 {110, 0x36},
935	 {104, 0x36},
936	 {98, 0x36},
937	 {110, 0x35},
938	 {104, 0x35},
939	 {98, 0x35},
940	 {110, 0x34},
941	 {104, 0x34},
942	 {98, 0x34},
943	 {110, 0x33},
944	 {104, 0x33},
945	 {98, 0x33},
946	 {110, 0x32},
947	 {104, 0x32},
948	 {98, 0x32},
949	 {110, 0x31},
950	 {104, 0x31},
951	 {98, 0x31},
952	 {110, 0x30},
953	 {104, 0x30},
954	 {98, 0x30},
955	 {110, 0x6},
956	 {104, 0x6},
957	 {98, 0x6},
958	 {110, 0x5},
959	 {104, 0x5},
960	 {98, 0x5},
961	 {110, 0x4},
962	 {104, 0x4},
963	 {98, 0x4},
964	 {110, 0x3},
965	 {104, 0x3},
966	 {98, 0x3},
967	 {110, 0x2},
968	 {104, 0x2},
969	 {98, 0x2},
970	 {110, 0x1},
971	 {104, 0x1},
972	 {98, 0x1},
973	 {110, 0x0},
974	 {104, 0x0},
975	 {98, 0x0},
976	 {97, 0},
977	 {96, 0},
978	 {95, 0},
979	 {94, 0},
980	 {93, 0},
981	 {92, 0},
982	 {91, 0},
983	 {90, 0},
984	 {89, 0},
985	 {88, 0},
986	 {87, 0},
987	 {86, 0},
988	 {85, 0},
989	 {84, 0},
990	 {83, 0},
991	 {82, 0},
992	 {81, 0},
993	 {80, 0},
994	 {79, 0},
995	 {78, 0},
996	 {77, 0},
997	 {76, 0},
998	 {75, 0},
999	 {74, 0},
1000	 {73, 0},
1001	 {72, 0},
1002	 {71, 0},
1003	 {70, 0},
1004	 {69, 0},
1005	 {68, 0},
1006	 {67, 0},
1007	 {66, 0},
1008	 {65, 0},
1009	 {64, 0},
1010	 {63, 0},
1011	 {62, 0},
1012	 {61, 0},
1013	 {60, 0},
1014	 {59, 0},
1015	 }
1016};
1017
1018static int
1019il4965_fill_txpower_tbl(struct il_priv *il, u8 band, u16 channel, u8 is_ht40,
1020			u8 ctrl_chan_high,
1021			struct il4965_tx_power_db *tx_power_tbl)
1022{
1023	u8 saturation_power;
1024	s32 target_power;
1025	s32 user_target_power;
1026	s32 power_limit;
1027	s32 current_temp;
1028	s32 reg_limit;
1029	s32 current_regulatory;
1030	s32 txatten_grp = CALIB_CH_GROUP_MAX;
1031	int i;
1032	int c;
1033	const struct il_channel_info *ch_info = NULL;
1034	struct il_eeprom_calib_ch_info ch_eeprom_info;
1035	const struct il_eeprom_calib_measure *measurement;
1036	s16 voltage;
1037	s32 init_voltage;
1038	s32 voltage_compensation;
1039	s32 degrees_per_05db_num;
1040	s32 degrees_per_05db_denom;
1041	s32 factory_temp;
1042	s32 temperature_comp[2];
1043	s32 factory_gain_idx[2];
1044	s32 factory_actual_pwr[2];
1045	s32 power_idx;
1046
1047	/* tx_power_user_lmt is in dBm, convert to half-dBm (half-dB units
1048	 *   are used for idxing into txpower table) */
1049	user_target_power = 2 * il->tx_power_user_lmt;
1050
1051	/* Get current (RXON) channel, band, width */
1052	D_TXPOWER("chan %d band %d is_ht40 %d\n", channel, band, is_ht40);
1053
1054	ch_info = il_get_channel_info(il, il->band, channel);
1055
1056	if (!il_is_channel_valid(ch_info))
1057		return -EINVAL;
1058
1059	/* get txatten group, used to select 1) thermal txpower adjustment
1060	 *   and 2) mimo txpower balance between Tx chains. */
1061	txatten_grp = il4965_get_tx_atten_grp(channel);
1062	if (txatten_grp < 0) {
1063		IL_ERR("Can't find txatten group for channel %d.\n", channel);
1064		return txatten_grp;
1065	}
1066
1067	D_TXPOWER("channel %d belongs to txatten group %d\n", channel,
1068		  txatten_grp);
1069
1070	if (is_ht40) {
1071		if (ctrl_chan_high)
1072			channel -= 2;
1073		else
1074			channel += 2;
1075	}
1076
1077	/* hardware txpower limits ...
1078	 * saturation (clipping distortion) txpowers are in half-dBm */
1079	if (band)
1080		saturation_power = il->calib_info->saturation_power24;
1081	else
1082		saturation_power = il->calib_info->saturation_power52;
1083
1084	if (saturation_power < IL_TX_POWER_SATURATION_MIN ||
1085	    saturation_power > IL_TX_POWER_SATURATION_MAX) {
1086		if (band)
1087			saturation_power = IL_TX_POWER_DEFAULT_SATURATION_24;
1088		else
1089			saturation_power = IL_TX_POWER_DEFAULT_SATURATION_52;
1090	}
1091
1092	/* regulatory txpower limits ... reg_limit values are in half-dBm,
1093	 *   max_power_avg values are in dBm, convert * 2 */
1094	if (is_ht40)
1095		reg_limit = ch_info->ht40_max_power_avg * 2;
1096	else
1097		reg_limit = ch_info->max_power_avg * 2;
1098
1099	if ((reg_limit < IL_TX_POWER_REGULATORY_MIN) ||
1100	    (reg_limit > IL_TX_POWER_REGULATORY_MAX)) {
1101		if (band)
1102			reg_limit = IL_TX_POWER_DEFAULT_REGULATORY_24;
1103		else
1104			reg_limit = IL_TX_POWER_DEFAULT_REGULATORY_52;
1105	}
1106
1107	/* Interpolate txpower calibration values for this channel,
1108	 *   based on factory calibration tests on spaced channels. */
1109	il4965_interpolate_chan(il, channel, &ch_eeprom_info);
1110
1111	/* calculate tx gain adjustment based on power supply voltage */
1112	voltage = le16_to_cpu(il->calib_info->voltage);
1113	init_voltage = (s32) le32_to_cpu(il->card_alive_init.voltage);
1114	voltage_compensation =
1115	    il4965_get_voltage_compensation(voltage, init_voltage);
1116
1117	D_TXPOWER("curr volt %d eeprom volt %d volt comp %d\n", init_voltage,
1118		  voltage, voltage_compensation);
1119
1120	/* get current temperature (Celsius) */
1121	current_temp = max(il->temperature, IL_TX_POWER_TEMPERATURE_MIN);
1122	current_temp = min(il->temperature, IL_TX_POWER_TEMPERATURE_MAX);
1123	current_temp = KELVIN_TO_CELSIUS(current_temp);
1124
1125	/* select thermal txpower adjustment params, based on channel group
1126	 *   (same frequency group used for mimo txatten adjustment) */
1127	degrees_per_05db_num =
1128	    tx_power_cmp_tble[txatten_grp].degrees_per_05db_a;
1129	degrees_per_05db_denom =
1130	    tx_power_cmp_tble[txatten_grp].degrees_per_05db_a_denom;
1131
1132	/* get per-chain txpower values from factory measurements */
1133	for (c = 0; c < 2; c++) {
1134		measurement = &ch_eeprom_info.measurements[c][1];
1135
1136		/* txgain adjustment (in half-dB steps) based on difference
1137		 *   between factory and current temperature */
1138		factory_temp = measurement->temperature;
1139		il4965_math_div_round((current_temp -
1140				       factory_temp) * degrees_per_05db_denom,
1141				      degrees_per_05db_num,
1142				      &temperature_comp[c]);
1143
1144		factory_gain_idx[c] = measurement->gain_idx;
1145		factory_actual_pwr[c] = measurement->actual_pow;
1146
1147		D_TXPOWER("chain = %d\n", c);
1148		D_TXPOWER("fctry tmp %d, " "curr tmp %d, comp %d steps\n",
1149			  factory_temp, current_temp, temperature_comp[c]);
1150
1151		D_TXPOWER("fctry idx %d, fctry pwr %d\n", factory_gain_idx[c],
1152			  factory_actual_pwr[c]);
1153	}
1154
1155	/* for each of 33 bit-rates (including 1 for CCK) */
1156	for (i = 0; i < POWER_TBL_NUM_ENTRIES; i++) {
1157		u8 is_mimo_rate;
1158		union il4965_tx_power_dual_stream tx_power;
1159
1160		/* for mimo, reduce each chain's txpower by half
1161		 * (3dB, 6 steps), so total output power is regulatory
1162		 * compliant. */
1163		if (i & 0x8) {
1164			current_regulatory =
1165			    reg_limit -
1166			    IL_TX_POWER_MIMO_REGULATORY_COMPENSATION;
1167			is_mimo_rate = 1;
1168		} else {
1169			current_regulatory = reg_limit;
1170			is_mimo_rate = 0;
1171		}
1172
1173		/* find txpower limit, either hardware or regulatory */
1174		power_limit = saturation_power - back_off_table[i];
1175		if (power_limit > current_regulatory)
1176			power_limit = current_regulatory;
1177
1178		/* reduce user's txpower request if necessary
1179		 * for this rate on this channel */
1180		target_power = user_target_power;
1181		if (target_power > power_limit)
1182			target_power = power_limit;
1183
1184		D_TXPOWER("rate %d sat %d reg %d usr %d tgt %d\n", i,
1185			  saturation_power - back_off_table[i],
1186			  current_regulatory, user_target_power, target_power);
1187
1188		/* for each of 2 Tx chains (radio transmitters) */
1189		for (c = 0; c < 2; c++) {
1190			s32 atten_value;
1191
1192			if (is_mimo_rate)
1193				atten_value =
1194				    (s32) le32_to_cpu(il->card_alive_init.
1195						      tx_atten[txatten_grp][c]);
1196			else
1197				atten_value = 0;
1198
1199			/* calculate idx; higher idx means lower txpower */
1200			power_idx =
1201			    (u8) (factory_gain_idx[c] -
1202				  (target_power - factory_actual_pwr[c]) -
1203				  temperature_comp[c] - voltage_compensation +
1204				  atten_value);
1205
1206/*			D_TXPOWER("calculated txpower idx %d\n",
1207						power_idx); */
1208
1209			if (power_idx < get_min_power_idx(i, band))
1210				power_idx = get_min_power_idx(i, band);
1211
1212			/* adjust 5 GHz idx to support negative idxes */
1213			if (!band)
1214				power_idx += 9;
1215
1216			/* CCK, rate 32, reduce txpower for CCK */
1217			if (i == POWER_TBL_CCK_ENTRY)
1218				power_idx +=
1219				    IL_TX_POWER_CCK_COMPENSATION_C_STEP;
1220
1221			/* stay within the table! */
1222			if (power_idx > 107) {
1223				IL_WARN("txpower idx %d > 107\n", power_idx);
1224				power_idx = 107;
1225			}
1226			if (power_idx < 0) {
1227				IL_WARN("txpower idx %d < 0\n", power_idx);
1228				power_idx = 0;
1229			}
1230
1231			/* fill txpower command for this rate/chain */
1232			tx_power.s.radio_tx_gain[c] =
1233			    gain_table[band][power_idx].radio;
1234			tx_power.s.dsp_predis_atten[c] =
1235			    gain_table[band][power_idx].dsp;
1236
1237			D_TXPOWER("chain %d mimo %d idx %d "
1238				  "gain 0x%02x dsp %d\n", c, atten_value,
1239				  power_idx, tx_power.s.radio_tx_gain[c],
1240				  tx_power.s.dsp_predis_atten[c]);
1241		}		/* for each chain */
1242
1243		tx_power_tbl->power_tbl[i].dw = cpu_to_le32(tx_power.dw);
1244
1245	}			/* for each rate */
1246
1247	return 0;
1248}
1249
1250/**
1251 * il4965_send_tx_power - Configure the TXPOWER level user limit
1252 *
1253 * Uses the active RXON for channel, band, and characteristics (ht40, high)
1254 * The power limit is taken from il->tx_power_user_lmt.
1255 */
1256static int
1257il4965_send_tx_power(struct il_priv *il)
1258{
1259	struct il4965_txpowertable_cmd cmd = { 0 };
1260	int ret;
1261	u8 band = 0;
1262	bool is_ht40 = false;
1263	u8 ctrl_chan_high = 0;
1264
1265	if (WARN_ONCE
1266	    (test_bit(S_SCAN_HW, &il->status),
1267	     "TX Power requested while scanning!\n"))
1268		return -EAGAIN;
1269
1270	band = il->band == IEEE80211_BAND_2GHZ;
1271
1272	is_ht40 = iw4965_is_ht40_channel(il->active.flags);
1273
1274	if (is_ht40 && (il->active.flags & RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK))
1275		ctrl_chan_high = 1;
1276
1277	cmd.band = band;
1278	cmd.channel = il->active.channel;
1279
1280	ret =
1281	    il4965_fill_txpower_tbl(il, band, le16_to_cpu(il->active.channel),
1282				    is_ht40, ctrl_chan_high, &cmd.tx_power);
1283	if (ret)
1284		goto out;
1285
1286	ret = il_send_cmd_pdu(il, C_TX_PWR_TBL, sizeof(cmd), &cmd);
1287
1288out:
1289	return ret;
1290}
1291
1292static int
1293il4965_send_rxon_assoc(struct il_priv *il)
1294{
1295	int ret = 0;
1296	struct il4965_rxon_assoc_cmd rxon_assoc;
1297	const struct il_rxon_cmd *rxon1 = &il->staging;
1298	const struct il_rxon_cmd *rxon2 = &il->active;
1299
1300	if (rxon1->flags == rxon2->flags &&
1301	    rxon1->filter_flags == rxon2->filter_flags &&
1302	    rxon1->cck_basic_rates == rxon2->cck_basic_rates &&
1303	    rxon1->ofdm_ht_single_stream_basic_rates ==
1304	    rxon2->ofdm_ht_single_stream_basic_rates &&
1305	    rxon1->ofdm_ht_dual_stream_basic_rates ==
1306	    rxon2->ofdm_ht_dual_stream_basic_rates &&
1307	    rxon1->rx_chain == rxon2->rx_chain &&
1308	    rxon1->ofdm_basic_rates == rxon2->ofdm_basic_rates) {
1309		D_INFO("Using current RXON_ASSOC.  Not resending.\n");
1310		return 0;
1311	}
1312
1313	rxon_assoc.flags = il->staging.flags;
1314	rxon_assoc.filter_flags = il->staging.filter_flags;
1315	rxon_assoc.ofdm_basic_rates = il->staging.ofdm_basic_rates;
1316	rxon_assoc.cck_basic_rates = il->staging.cck_basic_rates;
1317	rxon_assoc.reserved = 0;
1318	rxon_assoc.ofdm_ht_single_stream_basic_rates =
1319	    il->staging.ofdm_ht_single_stream_basic_rates;
1320	rxon_assoc.ofdm_ht_dual_stream_basic_rates =
1321	    il->staging.ofdm_ht_dual_stream_basic_rates;
1322	rxon_assoc.rx_chain_select_flags = il->staging.rx_chain;
1323
1324	ret =
1325	    il_send_cmd_pdu_async(il, C_RXON_ASSOC, sizeof(rxon_assoc),
1326				  &rxon_assoc, NULL);
1327
1328	return ret;
1329}
1330
1331static int
1332il4965_commit_rxon(struct il_priv *il)
1333{
1334	/* cast away the const for active_rxon in this function */
1335	struct il_rxon_cmd *active_rxon = (void *)&il->active;
1336	int ret;
1337	bool new_assoc = !!(il->staging.filter_flags & RXON_FILTER_ASSOC_MSK);
1338
1339	if (!il_is_alive(il))
1340		return -EBUSY;
1341
1342	/* always get timestamp with Rx frame */
1343	il->staging.flags |= RXON_FLG_TSF2HOST_MSK;
1344
1345	ret = il_check_rxon_cmd(il);
1346	if (ret) {
1347		IL_ERR("Invalid RXON configuration.  Not committing.\n");
1348		return -EINVAL;
1349	}
1350
1351	/*
1352	 * receive commit_rxon request
1353	 * abort any previous channel switch if still in process
1354	 */
1355	if (test_bit(S_CHANNEL_SWITCH_PENDING, &il->status) &&
1356	    il->switch_channel != il->staging.channel) {
1357		D_11H("abort channel switch on %d\n",
1358		      le16_to_cpu(il->switch_channel));
1359		il_chswitch_done(il, false);
1360	}
1361
1362	/* If we don't need to send a full RXON, we can use
1363	 * il_rxon_assoc_cmd which is used to reconfigure filter
1364	 * and other flags for the current radio configuration. */
1365	if (!il_full_rxon_required(il)) {
1366		ret = il_send_rxon_assoc(il);
1367		if (ret) {
1368			IL_ERR("Error setting RXON_ASSOC (%d)\n", ret);
1369			return ret;
1370		}
1371
1372		memcpy(active_rxon, &il->staging, sizeof(*active_rxon));
1373		il_print_rx_config_cmd(il);
1374		/*
1375		 * We do not commit tx power settings while channel changing,
1376		 * do it now if tx power changed.
1377		 */
1378		il_set_tx_power(il, il->tx_power_next, false);
1379		return 0;
1380	}
1381
1382	/* If we are currently associated and the new config requires
1383	 * an RXON_ASSOC and the new config wants the associated mask enabled,
1384	 * we must clear the associated from the active configuration
1385	 * before we apply the new config */
1386	if (il_is_associated(il) && new_assoc) {
1387		D_INFO("Toggling associated bit on current RXON\n");
1388		active_rxon->filter_flags &= ~RXON_FILTER_ASSOC_MSK;
1389
1390		ret =
1391		    il_send_cmd_pdu(il, C_RXON,
1392				    sizeof(struct il_rxon_cmd), active_rxon);
1393
1394		/* If the mask clearing failed then we set
1395		 * active_rxon back to what it was previously */
1396		if (ret) {
1397			active_rxon->filter_flags |= RXON_FILTER_ASSOC_MSK;
1398			IL_ERR("Error clearing ASSOC_MSK (%d)\n", ret);
1399			return ret;
1400		}
1401		il_clear_ucode_stations(il);
1402		il_restore_stations(il);
1403		ret = il4965_restore_default_wep_keys(il);
1404		if (ret) {
1405			IL_ERR("Failed to restore WEP keys (%d)\n", ret);
1406			return ret;
1407		}
1408	}
1409
1410	D_INFO("Sending RXON\n" "* with%s RXON_FILTER_ASSOC_MSK\n"
1411	       "* channel = %d\n" "* bssid = %pM\n", (new_assoc ? "" : "out"),
1412	       le16_to_cpu(il->staging.channel), il->staging.bssid_addr);
1413
1414	il_set_rxon_hwcrypto(il, !il->cfg->mod_params->sw_crypto);
1415
1416	/* Apply the new configuration
1417	 * RXON unassoc clears the station table in uCode so restoration of
1418	 * stations is needed after it (the RXON command) completes
1419	 */
1420	if (!new_assoc) {
1421		ret =
1422		    il_send_cmd_pdu(il, C_RXON,
1423				    sizeof(struct il_rxon_cmd), &il->staging);
1424		if (ret) {
1425			IL_ERR("Error setting new RXON (%d)\n", ret);
1426			return ret;
1427		}
1428		D_INFO("Return from !new_assoc RXON.\n");
1429		memcpy(active_rxon, &il->staging, sizeof(*active_rxon));
1430		il_clear_ucode_stations(il);
1431		il_restore_stations(il);
1432		ret = il4965_restore_default_wep_keys(il);
1433		if (ret) {
1434			IL_ERR("Failed to restore WEP keys (%d)\n", ret);
1435			return ret;
1436		}
1437	}
1438	if (new_assoc) {
1439		il->start_calib = 0;
1440		/* Apply the new configuration
1441		 * RXON assoc doesn't clear the station table in uCode,
1442		 */
1443		ret =
1444		    il_send_cmd_pdu(il, C_RXON,
1445				    sizeof(struct il_rxon_cmd), &il->staging);
1446		if (ret) {
1447			IL_ERR("Error setting new RXON (%d)\n", ret);
1448			return ret;
1449		}
1450		memcpy(active_rxon, &il->staging, sizeof(*active_rxon));
1451	}
1452	il_print_rx_config_cmd(il);
1453
1454	il4965_init_sensitivity(il);
1455
1456	/* If we issue a new RXON command which required a tune then we must
1457	 * send a new TXPOWER command or we won't be able to Tx any frames */
1458	ret = il_set_tx_power(il, il->tx_power_next, true);
1459	if (ret) {
1460		IL_ERR("Error sending TX power (%d)\n", ret);
1461		return ret;
1462	}
1463
1464	return 0;
1465}
1466
1467static int
1468il4965_hw_channel_switch(struct il_priv *il,
1469			 struct ieee80211_channel_switch *ch_switch)
1470{
1471	int rc;
1472	u8 band = 0;
1473	bool is_ht40 = false;
1474	u8 ctrl_chan_high = 0;
1475	struct il4965_channel_switch_cmd cmd;
1476	const struct il_channel_info *ch_info;
1477	u32 switch_time_in_usec, ucode_switch_time;
1478	u16 ch;
1479	u32 tsf_low;
1480	u8 switch_count;
1481	u16 beacon_interval = le16_to_cpu(il->timing.beacon_interval);
1482	struct ieee80211_vif *vif = il->vif;
1483	band = (il->band == IEEE80211_BAND_2GHZ);
1484
1485	if (WARN_ON_ONCE(vif == NULL))
1486		return -EIO;
1487
1488	is_ht40 = iw4965_is_ht40_channel(il->staging.flags);
1489
1490	if (is_ht40 && (il->staging.flags & RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK))
1491		ctrl_chan_high = 1;
1492
1493	cmd.band = band;
1494	cmd.expect_beacon = 0;
1495	ch = ch_switch->chandef.chan->hw_value;
1496	cmd.channel = cpu_to_le16(ch);
1497	cmd.rxon_flags = il->staging.flags;
1498	cmd.rxon_filter_flags = il->staging.filter_flags;
1499	switch_count = ch_switch->count;
1500	tsf_low = ch_switch->timestamp & 0x0ffffffff;
1501	/*
1502	 * calculate the ucode channel switch time
1503	 * adding TSF as one of the factor for when to switch
1504	 */
1505	if (il->ucode_beacon_time > tsf_low && beacon_interval) {
1506		if (switch_count >
1507		    ((il->ucode_beacon_time - tsf_low) / beacon_interval)) {
1508			switch_count -=
1509			    (il->ucode_beacon_time - tsf_low) / beacon_interval;
1510		} else
1511			switch_count = 0;
1512	}
1513	if (switch_count <= 1)
1514		cmd.switch_time = cpu_to_le32(il->ucode_beacon_time);
1515	else {
1516		switch_time_in_usec =
1517		    vif->bss_conf.beacon_int * switch_count * TIME_UNIT;
1518		ucode_switch_time =
1519		    il_usecs_to_beacons(il, switch_time_in_usec,
1520					beacon_interval);
1521		cmd.switch_time =
1522		    il_add_beacon_time(il, il->ucode_beacon_time,
1523				       ucode_switch_time, beacon_interval);
1524	}
1525	D_11H("uCode time for the switch is 0x%x\n", cmd.switch_time);
1526	ch_info = il_get_channel_info(il, il->band, ch);
1527	if (ch_info)
1528		cmd.expect_beacon = il_is_channel_radar(ch_info);
1529	else {
1530		IL_ERR("invalid channel switch from %u to %u\n",
1531		       il->active.channel, ch);
1532		return -EFAULT;
1533	}
1534
1535	rc = il4965_fill_txpower_tbl(il, band, ch, is_ht40, ctrl_chan_high,
1536				     &cmd.tx_power);
1537	if (rc) {
1538		D_11H("error:%d  fill txpower_tbl\n", rc);
1539		return rc;
1540	}
1541
1542	return il_send_cmd_pdu(il, C_CHANNEL_SWITCH, sizeof(cmd), &cmd);
1543}
1544
1545/**
1546 * il4965_txq_update_byte_cnt_tbl - Set up entry in Tx byte-count array
1547 */
1548static void
1549il4965_txq_update_byte_cnt_tbl(struct il_priv *il, struct il_tx_queue *txq,
1550			       u16 byte_cnt)
1551{
1552	struct il4965_scd_bc_tbl *scd_bc_tbl = il->scd_bc_tbls.addr;
1553	int txq_id = txq->q.id;
1554	int write_ptr = txq->q.write_ptr;
1555	int len = byte_cnt + IL_TX_CRC_SIZE + IL_TX_DELIMITER_SIZE;
1556	__le16 bc_ent;
1557
1558	WARN_ON(len > 0xFFF || write_ptr >= TFD_QUEUE_SIZE_MAX);
1559
1560	bc_ent = cpu_to_le16(len & 0xFFF);
1561	/* Set up byte count within first 256 entries */
1562	scd_bc_tbl[txq_id].tfd_offset[write_ptr] = bc_ent;
1563
1564	/* If within first 64 entries, duplicate at end */
1565	if (write_ptr < TFD_QUEUE_SIZE_BC_DUP)
1566		scd_bc_tbl[txq_id].tfd_offset[TFD_QUEUE_SIZE_MAX + write_ptr] =
1567		    bc_ent;
1568}
1569
1570/**
1571 * il4965_hw_get_temperature - return the calibrated temperature (in Kelvin)
1572 * @stats: Provides the temperature reading from the uCode
1573 *
1574 * A return of <0 indicates bogus data in the stats
1575 */
1576static int
1577il4965_hw_get_temperature(struct il_priv *il)
1578{
1579	s32 temperature;
1580	s32 vt;
1581	s32 R1, R2, R3;
1582	u32 R4;
1583
1584	if (test_bit(S_TEMPERATURE, &il->status) &&
1585	    (il->_4965.stats.flag & STATS_REPLY_FLG_HT40_MODE_MSK)) {
1586		D_TEMP("Running HT40 temperature calibration\n");
1587		R1 = (s32) le32_to_cpu(il->card_alive_init.therm_r1[1]);
1588		R2 = (s32) le32_to_cpu(il->card_alive_init.therm_r2[1]);
1589		R3 = (s32) le32_to_cpu(il->card_alive_init.therm_r3[1]);
1590		R4 = le32_to_cpu(il->card_alive_init.therm_r4[1]);
1591	} else {
1592		D_TEMP("Running temperature calibration\n");
1593		R1 = (s32) le32_to_cpu(il->card_alive_init.therm_r1[0]);
1594		R2 = (s32) le32_to_cpu(il->card_alive_init.therm_r2[0]);
1595		R3 = (s32) le32_to_cpu(il->card_alive_init.therm_r3[0]);
1596		R4 = le32_to_cpu(il->card_alive_init.therm_r4[0]);
1597	}
1598
1599	/*
1600	 * Temperature is only 23 bits, so sign extend out to 32.
1601	 *
1602	 * NOTE If we haven't received a stats notification yet
1603	 * with an updated temperature, use R4 provided to us in the
1604	 * "initialize" ALIVE response.
1605	 */
1606	if (!test_bit(S_TEMPERATURE, &il->status))
1607		vt = sign_extend32(R4, 23);
1608	else
1609		vt = sign_extend32(le32_to_cpu
1610				   (il->_4965.stats.general.common.temperature),
1611				   23);
1612
1613	D_TEMP("Calib values R[1-3]: %d %d %d R4: %d\n", R1, R2, R3, vt);
1614
1615	if (R3 == R1) {
1616		IL_ERR("Calibration conflict R1 == R3\n");
1617		return -1;
1618	}
1619
1620	/* Calculate temperature in degrees Kelvin, adjust by 97%.
1621	 * Add offset to center the adjustment around 0 degrees Centigrade. */
1622	temperature = TEMPERATURE_CALIB_A_VAL * (vt - R2);
1623	temperature /= (R3 - R1);
1624	temperature =
1625	    (temperature * 97) / 100 + TEMPERATURE_CALIB_KELVIN_OFFSET;
1626
1627	D_TEMP("Calibrated temperature: %dK, %dC\n", temperature,
1628	       KELVIN_TO_CELSIUS(temperature));
1629
1630	return temperature;
1631}
1632
1633/* Adjust Txpower only if temperature variance is greater than threshold. */
1634#define IL_TEMPERATURE_THRESHOLD   3
1635
1636/**
1637 * il4965_is_temp_calib_needed - determines if new calibration is needed
1638 *
1639 * If the temperature changed has changed sufficiently, then a recalibration
1640 * is needed.
1641 *
1642 * Assumes caller will replace il->last_temperature once calibration
1643 * executed.
1644 */
1645static int
1646il4965_is_temp_calib_needed(struct il_priv *il)
1647{
1648	int temp_diff;
1649
1650	if (!test_bit(S_STATS, &il->status)) {
1651		D_TEMP("Temperature not updated -- no stats.\n");
1652		return 0;
1653	}
1654
1655	temp_diff = il->temperature - il->last_temperature;
1656
1657	/* get absolute value */
1658	if (temp_diff < 0) {
1659		D_POWER("Getting cooler, delta %d\n", temp_diff);
1660		temp_diff = -temp_diff;
1661	} else if (temp_diff == 0)
1662		D_POWER("Temperature unchanged\n");
1663	else
1664		D_POWER("Getting warmer, delta %d\n", temp_diff);
1665
1666	if (temp_diff < IL_TEMPERATURE_THRESHOLD) {
1667		D_POWER(" => thermal txpower calib not needed\n");
1668		return 0;
1669	}
1670
1671	D_POWER(" => thermal txpower calib needed\n");
1672
1673	return 1;
1674}
1675
1676void
1677il4965_temperature_calib(struct il_priv *il)
1678{
1679	s32 temp;
1680
1681	temp = il4965_hw_get_temperature(il);
1682	if (IL_TX_POWER_TEMPERATURE_OUT_OF_RANGE(temp))
1683		return;
1684
1685	if (il->temperature != temp) {
1686		if (il->temperature)
1687			D_TEMP("Temperature changed " "from %dC to %dC\n",
1688			       KELVIN_TO_CELSIUS(il->temperature),
1689			       KELVIN_TO_CELSIUS(temp));
1690		else
1691			D_TEMP("Temperature " "initialized to %dC\n",
1692			       KELVIN_TO_CELSIUS(temp));
1693	}
1694
1695	il->temperature = temp;
1696	set_bit(S_TEMPERATURE, &il->status);
1697
1698	if (!il->disable_tx_power_cal &&
1699	    unlikely(!test_bit(S_SCANNING, &il->status)) &&
1700	    il4965_is_temp_calib_needed(il))
1701		queue_work(il->workqueue, &il->txpower_work);
1702}
1703
1704static u16
1705il4965_get_hcmd_size(u8 cmd_id, u16 len)
1706{
1707	switch (cmd_id) {
1708	case C_RXON:
1709		return (u16) sizeof(struct il4965_rxon_cmd);
1710	default:
1711		return len;
1712	}
1713}
1714
1715static u16
1716il4965_build_addsta_hcmd(const struct il_addsta_cmd *cmd, u8 * data)
1717{
1718	struct il4965_addsta_cmd *addsta = (struct il4965_addsta_cmd *)data;
1719	addsta->mode = cmd->mode;
1720	memcpy(&addsta->sta, &cmd->sta, sizeof(struct sta_id_modify));
1721	memcpy(&addsta->key, &cmd->key, sizeof(struct il4965_keyinfo));
1722	addsta->station_flags = cmd->station_flags;
1723	addsta->station_flags_msk = cmd->station_flags_msk;
1724	addsta->tid_disable_tx = cmd->tid_disable_tx;
1725	addsta->add_immediate_ba_tid = cmd->add_immediate_ba_tid;
1726	addsta->remove_immediate_ba_tid = cmd->remove_immediate_ba_tid;
1727	addsta->add_immediate_ba_ssn = cmd->add_immediate_ba_ssn;
1728	addsta->sleep_tx_count = cmd->sleep_tx_count;
1729	addsta->reserved1 = cpu_to_le16(0);
1730	addsta->reserved2 = cpu_to_le16(0);
1731
1732	return (u16) sizeof(struct il4965_addsta_cmd);
1733}
1734
1735static void
1736il4965_post_scan(struct il_priv *il)
1737{
1738	/*
1739	 * Since setting the RXON may have been deferred while
1740	 * performing the scan, fire one off if needed
1741	 */
1742	if (memcmp(&il->staging, &il->active, sizeof(il->staging)))
1743		il_commit_rxon(il);
1744}
1745
1746static void
1747il4965_post_associate(struct il_priv *il)
1748{
1749	struct ieee80211_vif *vif = il->vif;
1750	int ret = 0;
1751
1752	if (!vif || !il->is_open)
1753		return;
1754
1755	if (test_bit(S_EXIT_PENDING, &il->status))
1756		return;
1757
1758	il_scan_cancel_timeout(il, 200);
1759
1760	il->staging.filter_flags &= ~RXON_FILTER_ASSOC_MSK;
1761	il_commit_rxon(il);
1762
1763	ret = il_send_rxon_timing(il);
1764	if (ret)
1765		IL_WARN("RXON timing - " "Attempting to continue.\n");
1766
1767	il->staging.filter_flags |= RXON_FILTER_ASSOC_MSK;
1768
1769	il_set_rxon_ht(il, &il->current_ht_config);
1770
1771	if (il->ops->set_rxon_chain)
1772		il->ops->set_rxon_chain(il);
1773
1774	il->staging.assoc_id = cpu_to_le16(vif->bss_conf.aid);
1775
1776	D_ASSOC("assoc id %d beacon interval %d\n", vif->bss_conf.aid,
1777		vif->bss_conf.beacon_int);
1778
1779	if (vif->bss_conf.use_short_preamble)
1780		il->staging.flags |= RXON_FLG_SHORT_PREAMBLE_MSK;
1781	else
1782		il->staging.flags &= ~RXON_FLG_SHORT_PREAMBLE_MSK;
1783
1784	if (il->staging.flags & RXON_FLG_BAND_24G_MSK) {
1785		if (vif->bss_conf.use_short_slot)
1786			il->staging.flags |= RXON_FLG_SHORT_SLOT_MSK;
1787		else
1788			il->staging.flags &= ~RXON_FLG_SHORT_SLOT_MSK;
1789	}
1790
1791	il_commit_rxon(il);
1792
1793	D_ASSOC("Associated as %d to: %pM\n", vif->bss_conf.aid,
1794		il->active.bssid_addr);
1795
1796	switch (vif->type) {
1797	case NL80211_IFTYPE_STATION:
1798		break;
1799	case NL80211_IFTYPE_ADHOC:
1800		il4965_send_beacon_cmd(il);
1801		break;
1802	default:
1803		IL_ERR("%s Should not be called in %d mode\n", __func__,
1804		       vif->type);
1805		break;
1806	}
1807
1808	/* the chain noise calibration will enabled PM upon completion
1809	 * If chain noise has already been run, then we need to enable
1810	 * power management here */
1811	if (il->chain_noise_data.state == IL_CHAIN_NOISE_DONE)
1812		il_power_update_mode(il, false);
1813
1814	/* Enable Rx differential gain and sensitivity calibrations */
1815	il4965_chain_noise_reset(il);
1816	il->start_calib = 1;
1817}
1818
1819static void
1820il4965_config_ap(struct il_priv *il)
1821{
1822	struct ieee80211_vif *vif = il->vif;
1823	int ret = 0;
1824
1825	lockdep_assert_held(&il->mutex);
1826
1827	if (test_bit(S_EXIT_PENDING, &il->status))
1828		return;
1829
1830	/* The following should be done only at AP bring up */
1831	if (!il_is_associated(il)) {
1832
1833		/* RXON - unassoc (to set timing command) */
1834		il->staging.filter_flags &= ~RXON_FILTER_ASSOC_MSK;
1835		il_commit_rxon(il);
1836
1837		/* RXON Timing */
1838		ret = il_send_rxon_timing(il);
1839		if (ret)
1840			IL_WARN("RXON timing failed - "
1841				"Attempting to continue.\n");
1842
1843		/* AP has all antennas */
1844		il->chain_noise_data.active_chains = il->hw_params.valid_rx_ant;
1845		il_set_rxon_ht(il, &il->current_ht_config);
1846		if (il->ops->set_rxon_chain)
1847			il->ops->set_rxon_chain(il);
1848
1849		il->staging.assoc_id = 0;
1850
1851		if (vif->bss_conf.use_short_preamble)
1852			il->staging.flags |= RXON_FLG_SHORT_PREAMBLE_MSK;
1853		else
1854			il->staging.flags &= ~RXON_FLG_SHORT_PREAMBLE_MSK;
1855
1856		if (il->staging.flags & RXON_FLG_BAND_24G_MSK) {
1857			if (vif->bss_conf.use_short_slot)
1858				il->staging.flags |= RXON_FLG_SHORT_SLOT_MSK;
1859			else
1860				il->staging.flags &= ~RXON_FLG_SHORT_SLOT_MSK;
1861		}
1862		/* need to send beacon cmd before committing assoc RXON! */
1863		il4965_send_beacon_cmd(il);
1864		/* restore RXON assoc */
1865		il->staging.filter_flags |= RXON_FILTER_ASSOC_MSK;
1866		il_commit_rxon(il);
1867	}
1868	il4965_send_beacon_cmd(il);
1869}
1870
1871const struct il_ops il4965_ops = {
1872	.txq_update_byte_cnt_tbl = il4965_txq_update_byte_cnt_tbl,
1873	.txq_attach_buf_to_tfd = il4965_hw_txq_attach_buf_to_tfd,
1874	.txq_free_tfd = il4965_hw_txq_free_tfd,
1875	.txq_init = il4965_hw_tx_queue_init,
1876	.is_valid_rtc_data_addr = il4965_hw_valid_rtc_data_addr,
1877	.init_alive_start = il4965_init_alive_start,
1878	.load_ucode = il4965_load_bsm,
1879	.dump_nic_error_log = il4965_dump_nic_error_log,
1880	.dump_fh = il4965_dump_fh,
1881	.set_channel_switch = il4965_hw_channel_switch,
1882	.apm_init = il_apm_init,
1883	.send_tx_power = il4965_send_tx_power,
1884	.update_chain_flags = il4965_update_chain_flags,
1885	.eeprom_acquire_semaphore = il4965_eeprom_acquire_semaphore,
1886	.eeprom_release_semaphore = il4965_eeprom_release_semaphore,
1887
1888	.rxon_assoc = il4965_send_rxon_assoc,
1889	.commit_rxon = il4965_commit_rxon,
1890	.set_rxon_chain = il4965_set_rxon_chain,
1891
1892	.get_hcmd_size = il4965_get_hcmd_size,
1893	.build_addsta_hcmd = il4965_build_addsta_hcmd,
1894	.request_scan = il4965_request_scan,
1895	.post_scan = il4965_post_scan,
1896
1897	.post_associate = il4965_post_associate,
1898	.config_ap = il4965_config_ap,
1899	.manage_ibss_station = il4965_manage_ibss_station,
1900	.update_bcast_stations = il4965_update_bcast_stations,
1901
1902	.send_led_cmd = il4965_send_led_cmd,
1903};
1904
1905struct il_cfg il4965_cfg = {
1906	.name = "Intel(R) Wireless WiFi Link 4965AGN",
1907	.fw_name_pre = IL4965_FW_PRE,
1908	.ucode_api_max = IL4965_UCODE_API_MAX,
1909	.ucode_api_min = IL4965_UCODE_API_MIN,
1910	.sku = IL_SKU_A | IL_SKU_G | IL_SKU_N,
1911	.valid_tx_ant = ANT_AB,
1912	.valid_rx_ant = ANT_ABC,
1913	.eeprom_ver = EEPROM_4965_EEPROM_VERSION,
1914	.eeprom_calib_ver = EEPROM_4965_TX_POWER_VERSION,
1915	.mod_params = &il4965_mod_params,
1916	.led_mode = IL_LED_BLINK,
1917	/*
1918	 * Force use of chains B and C for scan RX on 5 GHz band
1919	 * because the device has off-channel reception on chain A.
1920	 */
1921	.scan_rx_antennas[IEEE80211_BAND_5GHZ] = ANT_BC,
1922
1923	.eeprom_size = IL4965_EEPROM_IMG_SIZE,
1924	.num_of_queues = IL49_NUM_QUEUES,
1925	.num_of_ampdu_queues = IL49_NUM_AMPDU_QUEUES,
1926	.pll_cfg_val = 0,
1927	.set_l0s = true,
1928	.use_bsm = true,
1929	.led_compensation = 61,
1930	.chain_noise_num_beacons = IL4965_CAL_NUM_BEACONS,
1931	.wd_timeout = IL_DEF_WD_TIMEOUT,
1932	.temperature_kelvin = true,
1933	.ucode_tracing = true,
1934	.sensitivity_calib_by_driver = true,
1935	.chain_noise_calib_by_driver = true,
1936
1937	.regulatory_bands = {
1938		EEPROM_REGULATORY_BAND_1_CHANNELS,
1939		EEPROM_REGULATORY_BAND_2_CHANNELS,
1940		EEPROM_REGULATORY_BAND_3_CHANNELS,
1941		EEPROM_REGULATORY_BAND_4_CHANNELS,
1942		EEPROM_REGULATORY_BAND_5_CHANNELS,
1943		EEPROM_4965_REGULATORY_BAND_24_HT40_CHANNELS,
1944		EEPROM_4965_REGULATORY_BAND_52_HT40_CHANNELS
1945	},
1946
1947};
1948
1949/* Module firmware */
1950MODULE_FIRMWARE(IL4965_MODULE_FIRMWARE(IL4965_UCODE_API_MAX));
1951