1/*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include <asm/unaligned.h>
18#include "hw.h"
19#include "ar9002_phy.h"
20
21#define SIZE_EEPROM_AR9287 (sizeof(struct ar9287_eeprom) / sizeof(u16))
22
23static int ath9k_hw_ar9287_get_eeprom_ver(struct ath_hw *ah)
24{
25	return (ah->eeprom.map9287.baseEepHeader.version >> 12) & 0xF;
26}
27
28static int ath9k_hw_ar9287_get_eeprom_rev(struct ath_hw *ah)
29{
30	return (ah->eeprom.map9287.baseEepHeader.version) & 0xFFF;
31}
32
33static bool __ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
34{
35	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
36	u16 *eep_data;
37	int addr, eep_start_loc = AR9287_EEP_START_LOC;
38	eep_data = (u16 *)eep;
39
40	for (addr = 0; addr < SIZE_EEPROM_AR9287; addr++) {
41		if (!ath9k_hw_nvram_read(ah, addr + eep_start_loc, eep_data))
42			return false;
43		eep_data++;
44	}
45
46	return true;
47}
48
49static bool __ath9k_hw_usb_ar9287_fill_eeprom(struct ath_hw *ah)
50{
51	u16 *eep_data = (u16 *)&ah->eeprom.map9287;
52
53	ath9k_hw_usb_gen_fill_eeprom(ah, eep_data,
54				     AR9287_HTC_EEP_START_LOC,
55				     SIZE_EEPROM_AR9287);
56	return true;
57}
58
59static bool ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
60{
61	struct ath_common *common = ath9k_hw_common(ah);
62
63	if (!ath9k_hw_use_flash(ah)) {
64		ath_dbg(common, EEPROM, "Reading from EEPROM, not flash\n");
65	}
66
67	if (common->bus_ops->ath_bus_type == ATH_USB)
68		return __ath9k_hw_usb_ar9287_fill_eeprom(ah);
69	else
70		return __ath9k_hw_ar9287_fill_eeprom(ah);
71}
72
73#if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
74static u32 ar9287_dump_modal_eeprom(char *buf, u32 len, u32 size,
75				    struct modal_eep_ar9287_header *modal_hdr)
76{
77	PR_EEP("Chain0 Ant. Control", modal_hdr->antCtrlChain[0]);
78	PR_EEP("Chain1 Ant. Control", modal_hdr->antCtrlChain[1]);
79	PR_EEP("Ant. Common Control", modal_hdr->antCtrlCommon);
80	PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]);
81	PR_EEP("Chain1 Ant. Gain", modal_hdr->antennaGainCh[1]);
82	PR_EEP("Switch Settle", modal_hdr->switchSettling);
83	PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]);
84	PR_EEP("Chain1 TxRxAtten", modal_hdr->txRxAttenCh[1]);
85	PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]);
86	PR_EEP("Chain1 RxTxMargin", modal_hdr->rxTxMarginCh[1]);
87	PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
88	PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
89	PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn);
90	PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
91	PR_EEP("CCA Threshold)", modal_hdr->thresh62);
92	PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
93	PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]);
94	PR_EEP("xpdGain", modal_hdr->xpdGain);
95	PR_EEP("External PD", modal_hdr->xpd);
96	PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]);
97	PR_EEP("Chain1 I Coefficient", modal_hdr->iqCalICh[1]);
98	PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]);
99	PR_EEP("Chain1 Q Coefficient", modal_hdr->iqCalQCh[1]);
100	PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap);
101	PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
102	PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
103	PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
104	PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc);
105	PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]);
106	PR_EEP("Chain1 bswAtten", modal_hdr->bswAtten[1]);
107	PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]);
108	PR_EEP("Chain1 bswMargin", modal_hdr->bswMargin[1]);
109	PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40);
110	PR_EEP("AR92x7 Version", modal_hdr->version);
111	PR_EEP("DriverBias1", modal_hdr->db1);
112	PR_EEP("DriverBias2", modal_hdr->db1);
113	PR_EEP("CCK OutputBias", modal_hdr->ob_cck);
114	PR_EEP("PSK OutputBias", modal_hdr->ob_psk);
115	PR_EEP("QAM OutputBias", modal_hdr->ob_qam);
116	PR_EEP("PAL_OFF OutputBias", modal_hdr->ob_pal_off);
117
118	return len;
119}
120
121static u32 ath9k_hw_ar9287_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
122				       u8 *buf, u32 len, u32 size)
123{
124	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
125	struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
126
127	if (!dump_base_hdr) {
128		len += scnprintf(buf + len, size - len,
129				 "%20s :\n", "2GHz modal Header");
130		len = ar9287_dump_modal_eeprom(buf, len, size,
131						&eep->modalHeader);
132		goto out;
133	}
134
135	PR_EEP("Major Version", pBase->version >> 12);
136	PR_EEP("Minor Version", pBase->version & 0xFFF);
137	PR_EEP("Checksum", pBase->checksum);
138	PR_EEP("Length", pBase->length);
139	PR_EEP("RegDomain1", pBase->regDmn[0]);
140	PR_EEP("RegDomain2", pBase->regDmn[1]);
141	PR_EEP("TX Mask", pBase->txMask);
142	PR_EEP("RX Mask", pBase->rxMask);
143	PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A));
144	PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G));
145	PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags &
146					AR5416_OPFLAGS_N_2G_HT20));
147	PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags &
148					AR5416_OPFLAGS_N_2G_HT40));
149	PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags &
150					AR5416_OPFLAGS_N_5G_HT20));
151	PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags &
152					AR5416_OPFLAGS_N_5G_HT40));
153	PR_EEP("Big Endian", !!(pBase->eepMisc & 0x01));
154	PR_EEP("Cal Bin Major Ver", (pBase->binBuildNumber >> 24) & 0xFF);
155	PR_EEP("Cal Bin Minor Ver", (pBase->binBuildNumber >> 16) & 0xFF);
156	PR_EEP("Cal Bin Build", (pBase->binBuildNumber >> 8) & 0xFF);
157	PR_EEP("Power Table Offset", pBase->pwrTableOffset);
158	PR_EEP("OpenLoop Power Ctrl", pBase->openLoopPwrCntl);
159
160	len += scnprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
161			 pBase->macAddr);
162
163out:
164	if (len > size)
165		len = size;
166
167	return len;
168}
169#else
170static u32 ath9k_hw_ar9287_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
171				       u8 *buf, u32 len, u32 size)
172{
173	return 0;
174}
175#endif
176
177
178static int ath9k_hw_ar9287_check_eeprom(struct ath_hw *ah)
179{
180	u32 sum = 0, el, integer;
181	u16 temp, word, magic, magic2, *eepdata;
182	int i, addr;
183	bool need_swap = false;
184	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
185	struct ath_common *common = ath9k_hw_common(ah);
186
187	if (!ath9k_hw_use_flash(ah)) {
188		if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET,
189					 &magic)) {
190			ath_err(common, "Reading Magic # failed\n");
191			return false;
192		}
193
194		ath_dbg(common, EEPROM, "Read Magic = 0x%04X\n", magic);
195
196		if (magic != AR5416_EEPROM_MAGIC) {
197			magic2 = swab16(magic);
198
199			if (magic2 == AR5416_EEPROM_MAGIC) {
200				need_swap = true;
201				eepdata = (u16 *)(&ah->eeprom);
202
203				for (addr = 0; addr < SIZE_EEPROM_AR9287; addr++) {
204					temp = swab16(*eepdata);
205					*eepdata = temp;
206					eepdata++;
207				}
208			} else {
209				ath_err(common,
210					"Invalid EEPROM Magic. Endianness mismatch.\n");
211				return -EINVAL;
212			}
213		}
214	}
215
216	ath_dbg(common, EEPROM, "need_swap = %s\n",
217		need_swap ? "True" : "False");
218
219	if (need_swap)
220		el = swab16(ah->eeprom.map9287.baseEepHeader.length);
221	else
222		el = ah->eeprom.map9287.baseEepHeader.length;
223
224	if (el > sizeof(struct ar9287_eeprom))
225		el = sizeof(struct ar9287_eeprom) / sizeof(u16);
226	else
227		el = el / sizeof(u16);
228
229	eepdata = (u16 *)(&ah->eeprom);
230
231	for (i = 0; i < el; i++)
232		sum ^= *eepdata++;
233
234	if (need_swap) {
235		word = swab16(eep->baseEepHeader.length);
236		eep->baseEepHeader.length = word;
237
238		word = swab16(eep->baseEepHeader.checksum);
239		eep->baseEepHeader.checksum = word;
240
241		word = swab16(eep->baseEepHeader.version);
242		eep->baseEepHeader.version = word;
243
244		word = swab16(eep->baseEepHeader.regDmn[0]);
245		eep->baseEepHeader.regDmn[0] = word;
246
247		word = swab16(eep->baseEepHeader.regDmn[1]);
248		eep->baseEepHeader.regDmn[1] = word;
249
250		word = swab16(eep->baseEepHeader.rfSilent);
251		eep->baseEepHeader.rfSilent = word;
252
253		word = swab16(eep->baseEepHeader.blueToothOptions);
254		eep->baseEepHeader.blueToothOptions = word;
255
256		word = swab16(eep->baseEepHeader.deviceCap);
257		eep->baseEepHeader.deviceCap = word;
258
259		integer = swab32(eep->modalHeader.antCtrlCommon);
260		eep->modalHeader.antCtrlCommon = integer;
261
262		for (i = 0; i < AR9287_MAX_CHAINS; i++) {
263			integer = swab32(eep->modalHeader.antCtrlChain[i]);
264			eep->modalHeader.antCtrlChain[i] = integer;
265		}
266
267		for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
268			word = swab16(eep->modalHeader.spurChans[i].spurChan);
269			eep->modalHeader.spurChans[i].spurChan = word;
270		}
271	}
272
273	if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR9287_EEP_VER
274	    || ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
275		ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
276			sum, ah->eep_ops->get_eeprom_ver(ah));
277		return -EINVAL;
278	}
279
280	return 0;
281}
282
283static u32 ath9k_hw_ar9287_get_eeprom(struct ath_hw *ah,
284				      enum eeprom_param param)
285{
286	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
287	struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
288	struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
289	u16 ver_minor;
290
291	ver_minor = pBase->version & AR9287_EEP_VER_MINOR_MASK;
292
293	switch (param) {
294	case EEP_NFTHRESH_2:
295		return pModal->noiseFloorThreshCh[0];
296	case EEP_MAC_LSW:
297		return get_unaligned_be16(pBase->macAddr);
298	case EEP_MAC_MID:
299		return get_unaligned_be16(pBase->macAddr + 2);
300	case EEP_MAC_MSW:
301		return get_unaligned_be16(pBase->macAddr + 4);
302	case EEP_REG_0:
303		return pBase->regDmn[0];
304	case EEP_OP_CAP:
305		return pBase->deviceCap;
306	case EEP_OP_MODE:
307		return pBase->opCapFlags;
308	case EEP_RF_SILENT:
309		return pBase->rfSilent;
310	case EEP_MINOR_REV:
311		return ver_minor;
312	case EEP_TX_MASK:
313		return pBase->txMask;
314	case EEP_RX_MASK:
315		return pBase->rxMask;
316	case EEP_DEV_TYPE:
317		return pBase->deviceType;
318	case EEP_OL_PWRCTRL:
319		return pBase->openLoopPwrCntl;
320	case EEP_TEMPSENSE_SLOPE:
321		if (ver_minor >= AR9287_EEP_MINOR_VER_2)
322			return pBase->tempSensSlope;
323		else
324			return 0;
325	case EEP_TEMPSENSE_SLOPE_PAL_ON:
326		if (ver_minor >= AR9287_EEP_MINOR_VER_3)
327			return pBase->tempSensSlopePalOn;
328		else
329			return 0;
330	case EEP_ANTENNA_GAIN_2G:
331		return max_t(u8, pModal->antennaGainCh[0],
332				 pModal->antennaGainCh[1]);
333	default:
334		return 0;
335	}
336}
337
338static void ar9287_eeprom_get_tx_gain_index(struct ath_hw *ah,
339			    struct ath9k_channel *chan,
340			    struct cal_data_op_loop_ar9287 *pRawDatasetOpLoop,
341			    u8 *pCalChans,  u16 availPiers, int8_t *pPwr)
342{
343	u16 idxL = 0, idxR = 0, numPiers;
344	bool match;
345	struct chan_centers centers;
346
347	ath9k_hw_get_channel_centers(ah, chan, &centers);
348
349	for (numPiers = 0; numPiers < availPiers; numPiers++) {
350		if (pCalChans[numPiers] == AR5416_BCHAN_UNUSED)
351			break;
352	}
353
354	match = ath9k_hw_get_lower_upper_index(
355		(u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
356		pCalChans, numPiers, &idxL, &idxR);
357
358	if (match) {
359		*pPwr = (int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0];
360	} else {
361		*pPwr = ((int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0] +
362			 (int8_t) pRawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
363	}
364
365}
366
367static void ar9287_eeprom_olpc_set_pdadcs(struct ath_hw *ah,
368					  int32_t txPower, u16 chain)
369{
370	u32 tmpVal;
371	u32 a;
372
373	/* Enable OLPC for chain 0 */
374
375	tmpVal = REG_READ(ah, 0xa270);
376	tmpVal = tmpVal & 0xFCFFFFFF;
377	tmpVal = tmpVal | (0x3 << 24);
378	REG_WRITE(ah, 0xa270, tmpVal);
379
380	/* Enable OLPC for chain 1 */
381
382	tmpVal = REG_READ(ah, 0xb270);
383	tmpVal = tmpVal & 0xFCFFFFFF;
384	tmpVal = tmpVal | (0x3 << 24);
385	REG_WRITE(ah, 0xb270, tmpVal);
386
387	/* Write the OLPC ref power for chain 0 */
388
389	if (chain == 0) {
390		tmpVal = REG_READ(ah, 0xa398);
391		tmpVal = tmpVal & 0xff00ffff;
392		a = (txPower)&0xff;
393		tmpVal = tmpVal | (a << 16);
394		REG_WRITE(ah, 0xa398, tmpVal);
395	}
396
397	/* Write the OLPC ref power for chain 1 */
398
399	if (chain == 1) {
400		tmpVal = REG_READ(ah, 0xb398);
401		tmpVal = tmpVal & 0xff00ffff;
402		a = (txPower)&0xff;
403		tmpVal = tmpVal | (a << 16);
404		REG_WRITE(ah, 0xb398, tmpVal);
405	}
406}
407
408static void ath9k_hw_set_ar9287_power_cal_table(struct ath_hw *ah,
409						struct ath9k_channel *chan)
410{
411	struct cal_data_per_freq_ar9287 *pRawDataset;
412	struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
413	u8 *pCalBChans = NULL;
414	u16 pdGainOverlap_t2;
415	u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
416	u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
417	u16 numPiers = 0, i, j;
418	u16 numXpdGain, xpdMask;
419	u16 xpdGainValues[AR5416_NUM_PD_GAINS] = {0, 0, 0, 0};
420	u32 reg32, regOffset, regChainOffset, regval;
421	int16_t diff = 0;
422	struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
423
424	xpdMask = pEepData->modalHeader.xpdGain;
425
426	if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
427	    AR9287_EEP_MINOR_VER_2)
428		pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
429	else
430		pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
431					    AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
432
433	if (IS_CHAN_2GHZ(chan)) {
434		pCalBChans = pEepData->calFreqPier2G;
435		numPiers = AR9287_NUM_2G_CAL_PIERS;
436		if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
437			pRawDatasetOpenLoop =
438			(struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[0];
439			ah->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
440		}
441	}
442
443	numXpdGain = 0;
444
445	/* Calculate the value of xpdgains from the xpdGain Mask */
446	for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
447		if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
448			if (numXpdGain >= AR5416_NUM_PD_GAINS)
449				break;
450			xpdGainValues[numXpdGain] =
451				(u16)(AR5416_PD_GAINS_IN_MASK-i);
452			numXpdGain++;
453		}
454	}
455
456	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
457		      (numXpdGain - 1) & 0x3);
458	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
459		      xpdGainValues[0]);
460	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
461		      xpdGainValues[1]);
462	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
463		      xpdGainValues[2]);
464
465	for (i = 0; i < AR9287_MAX_CHAINS; i++)	{
466		regChainOffset = i * 0x1000;
467
468		if (pEepData->baseEepHeader.txMask & (1 << i)) {
469			pRawDatasetOpenLoop =
470			(struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[i];
471
472			if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
473				int8_t txPower;
474				ar9287_eeprom_get_tx_gain_index(ah, chan,
475							pRawDatasetOpenLoop,
476							pCalBChans, numPiers,
477							&txPower);
478				ar9287_eeprom_olpc_set_pdadcs(ah, txPower, i);
479			} else {
480				pRawDataset =
481					(struct cal_data_per_freq_ar9287 *)
482					pEepData->calPierData2G[i];
483
484				ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
485							   pRawDataset,
486							   pCalBChans, numPiers,
487							   pdGainOverlap_t2,
488							   gainBoundaries,
489							   pdadcValues,
490							   numXpdGain);
491			}
492
493			ENABLE_REGWRITE_BUFFER(ah);
494
495			if (i == 0) {
496				if (!ath9k_hw_ar9287_get_eeprom(ah,
497							EEP_OL_PWRCTRL)) {
498
499					regval = SM(pdGainOverlap_t2,
500						    AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
501						| SM(gainBoundaries[0],
502						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
503						| SM(gainBoundaries[1],
504						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
505						| SM(gainBoundaries[2],
506						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
507						| SM(gainBoundaries[3],
508						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4);
509
510					REG_WRITE(ah,
511						  AR_PHY_TPCRG5 + regChainOffset,
512						  regval);
513				}
514			}
515
516			if ((int32_t)AR9287_PWR_TABLE_OFFSET_DB !=
517			    pEepData->baseEepHeader.pwrTableOffset) {
518				diff = (u16)(pEepData->baseEepHeader.pwrTableOffset -
519					     (int32_t)AR9287_PWR_TABLE_OFFSET_DB);
520				diff *= 2;
521
522				for (j = 0; j < ((u16)AR5416_NUM_PDADC_VALUES-diff); j++)
523					pdadcValues[j] = pdadcValues[j+diff];
524
525				for (j = (u16)(AR5416_NUM_PDADC_VALUES-diff);
526				     j < AR5416_NUM_PDADC_VALUES; j++)
527					pdadcValues[j] =
528					  pdadcValues[AR5416_NUM_PDADC_VALUES-diff];
529			}
530
531			if (!ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
532				regOffset = AR_PHY_BASE +
533					(672 << 2) + regChainOffset;
534
535				for (j = 0; j < 32; j++) {
536					reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
537
538					REG_WRITE(ah, regOffset, reg32);
539					regOffset += 4;
540				}
541			}
542			REGWRITE_BUFFER_FLUSH(ah);
543		}
544	}
545}
546
547static void ath9k_hw_set_ar9287_power_per_rate_table(struct ath_hw *ah,
548						     struct ath9k_channel *chan,
549						     int16_t *ratesArray,
550						     u16 cfgCtl,
551						     u16 antenna_reduction,
552						     u16 powerLimit)
553{
554#define CMP_CTL \
555	(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
556	 pEepData->ctlIndex[i])
557
558#define CMP_NO_CTL \
559	(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
560	 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
561
562	u16 twiceMaxEdgePower;
563	int i;
564	struct cal_ctl_data_ar9287 *rep;
565	struct cal_target_power_leg targetPowerOfdm = {0, {0, 0, 0, 0} },
566				    targetPowerCck = {0, {0, 0, 0, 0} };
567	struct cal_target_power_leg targetPowerOfdmExt = {0, {0, 0, 0, 0} },
568				    targetPowerCckExt = {0, {0, 0, 0, 0} };
569	struct cal_target_power_ht targetPowerHt20,
570				    targetPowerHt40 = {0, {0, 0, 0, 0} };
571	u16 scaledPower = 0, minCtlPower;
572	static const u16 ctlModesFor11g[] = {
573		CTL_11B, CTL_11G, CTL_2GHT20,
574		CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
575	};
576	u16 numCtlModes = 0;
577	const u16 *pCtlMode = NULL;
578	u16 ctlMode, freq;
579	struct chan_centers centers;
580	int tx_chainmask;
581	u16 twiceMinEdgePower;
582	struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
583	tx_chainmask = ah->txchainmask;
584
585	ath9k_hw_get_channel_centers(ah, chan, &centers);
586	scaledPower = ath9k_hw_get_scaled_power(ah, powerLimit,
587						antenna_reduction);
588
589	/*
590	 * Get TX power from EEPROM.
591	 */
592	if (IS_CHAN_2GHZ(chan))	{
593		/* CTL_11B, CTL_11G, CTL_2GHT20 */
594		numCtlModes =
595			ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
596
597		pCtlMode = ctlModesFor11g;
598
599		ath9k_hw_get_legacy_target_powers(ah, chan,
600						  pEepData->calTargetPowerCck,
601						  AR9287_NUM_2G_CCK_TARGET_POWERS,
602						  &targetPowerCck, 4, false);
603		ath9k_hw_get_legacy_target_powers(ah, chan,
604						  pEepData->calTargetPower2G,
605						  AR9287_NUM_2G_20_TARGET_POWERS,
606						  &targetPowerOfdm, 4, false);
607		ath9k_hw_get_target_powers(ah, chan,
608					   pEepData->calTargetPower2GHT20,
609					   AR9287_NUM_2G_20_TARGET_POWERS,
610					   &targetPowerHt20, 8, false);
611
612		if (IS_CHAN_HT40(chan))	{
613			/* All 2G CTLs */
614			numCtlModes = ARRAY_SIZE(ctlModesFor11g);
615			ath9k_hw_get_target_powers(ah, chan,
616						   pEepData->calTargetPower2GHT40,
617						   AR9287_NUM_2G_40_TARGET_POWERS,
618						   &targetPowerHt40, 8, true);
619			ath9k_hw_get_legacy_target_powers(ah, chan,
620						  pEepData->calTargetPowerCck,
621						  AR9287_NUM_2G_CCK_TARGET_POWERS,
622						  &targetPowerCckExt, 4, true);
623			ath9k_hw_get_legacy_target_powers(ah, chan,
624						  pEepData->calTargetPower2G,
625						  AR9287_NUM_2G_20_TARGET_POWERS,
626						  &targetPowerOfdmExt, 4, true);
627		}
628	}
629
630	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
631		bool isHt40CtlMode =
632			(pCtlMode[ctlMode] == CTL_2GHT40) ? true : false;
633
634		if (isHt40CtlMode)
635			freq = centers.synth_center;
636		else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
637			freq = centers.ext_center;
638		else
639			freq = centers.ctl_center;
640
641		twiceMaxEdgePower = MAX_RATE_POWER;
642		/* Walk through the CTL indices stored in EEPROM */
643		for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
644			struct cal_ctl_edges *pRdEdgesPower;
645
646			/*
647			 * Compare test group from regulatory channel list
648			 * with test mode from pCtlMode list
649			 */
650			if (CMP_CTL || CMP_NO_CTL) {
651				rep = &(pEepData->ctlData[i]);
652				pRdEdgesPower =
653				rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1];
654
655				twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
656								pRdEdgesPower,
657								IS_CHAN_2GHZ(chan),
658								AR5416_NUM_BAND_EDGES);
659
660				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
661					twiceMaxEdgePower = min(twiceMaxEdgePower,
662								twiceMinEdgePower);
663				} else {
664					twiceMaxEdgePower = twiceMinEdgePower;
665					break;
666				}
667			}
668		}
669
670		minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
671
672		/* Apply ctl mode to correct target power set */
673		switch (pCtlMode[ctlMode]) {
674		case CTL_11B:
675			for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
676				targetPowerCck.tPow2x[i] =
677					(u8)min((u16)targetPowerCck.tPow2x[i],
678						minCtlPower);
679			}
680			break;
681		case CTL_11A:
682		case CTL_11G:
683			for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
684				targetPowerOfdm.tPow2x[i] =
685					(u8)min((u16)targetPowerOfdm.tPow2x[i],
686						minCtlPower);
687			}
688			break;
689		case CTL_5GHT20:
690		case CTL_2GHT20:
691			for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
692				targetPowerHt20.tPow2x[i] =
693					(u8)min((u16)targetPowerHt20.tPow2x[i],
694						minCtlPower);
695			}
696			break;
697		case CTL_11B_EXT:
698			targetPowerCckExt.tPow2x[0] =
699				(u8)min((u16)targetPowerCckExt.tPow2x[0],
700					minCtlPower);
701			break;
702		case CTL_11A_EXT:
703		case CTL_11G_EXT:
704			targetPowerOfdmExt.tPow2x[0] =
705				(u8)min((u16)targetPowerOfdmExt.tPow2x[0],
706					minCtlPower);
707			break;
708		case CTL_5GHT40:
709		case CTL_2GHT40:
710			for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
711				targetPowerHt40.tPow2x[i] =
712					(u8)min((u16)targetPowerHt40.tPow2x[i],
713						minCtlPower);
714			}
715			break;
716		default:
717			break;
718		}
719	}
720
721	/* Now set the rates array */
722
723	ratesArray[rate6mb] =
724	ratesArray[rate9mb] =
725	ratesArray[rate12mb] =
726	ratesArray[rate18mb] =
727	ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0];
728
729	ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
730	ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
731	ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
732	ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
733
734	for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
735		ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
736
737	if (IS_CHAN_2GHZ(chan))	{
738		ratesArray[rate1l] = targetPowerCck.tPow2x[0];
739		ratesArray[rate2s] =
740		ratesArray[rate2l] = targetPowerCck.tPow2x[1];
741		ratesArray[rate5_5s] =
742		ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
743		ratesArray[rate11s] =
744		ratesArray[rate11l] = targetPowerCck.tPow2x[3];
745	}
746	if (IS_CHAN_HT40(chan))	{
747		for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++)
748			ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
749
750		ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
751		ratesArray[rateDupCck]  = targetPowerHt40.tPow2x[0];
752		ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
753
754		if (IS_CHAN_2GHZ(chan))
755			ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
756	}
757
758#undef CMP_CTL
759#undef CMP_NO_CTL
760}
761
762static void ath9k_hw_ar9287_set_txpower(struct ath_hw *ah,
763					struct ath9k_channel *chan, u16 cfgCtl,
764					u8 twiceAntennaReduction,
765					u8 powerLimit, bool test)
766{
767	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
768	struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
769	struct modal_eep_ar9287_header *pModal = &pEepData->modalHeader;
770	int16_t ratesArray[Ar5416RateSize];
771	u8 ht40PowerIncForPdadc = 2;
772	int i;
773
774	memset(ratesArray, 0, sizeof(ratesArray));
775
776	if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
777	    AR9287_EEP_MINOR_VER_2)
778		ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
779
780	ath9k_hw_set_ar9287_power_per_rate_table(ah, chan,
781						 &ratesArray[0], cfgCtl,
782						 twiceAntennaReduction,
783						 powerLimit);
784
785	ath9k_hw_set_ar9287_power_cal_table(ah, chan);
786
787	regulatory->max_power_level = 0;
788	for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
789		if (ratesArray[i] > MAX_RATE_POWER)
790			ratesArray[i] = MAX_RATE_POWER;
791
792		if (ratesArray[i] > regulatory->max_power_level)
793			regulatory->max_power_level = ratesArray[i];
794	}
795
796	ath9k_hw_update_regulatory_maxpower(ah);
797
798	if (test)
799		return;
800
801	for (i = 0; i < Ar5416RateSize; i++)
802		ratesArray[i] -= AR9287_PWR_TABLE_OFFSET_DB * 2;
803
804	ENABLE_REGWRITE_BUFFER(ah);
805
806	/* OFDM power per rate */
807	REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
808		  ATH9K_POW_SM(ratesArray[rate18mb], 24)
809		  | ATH9K_POW_SM(ratesArray[rate12mb], 16)
810		  | ATH9K_POW_SM(ratesArray[rate9mb], 8)
811		  | ATH9K_POW_SM(ratesArray[rate6mb], 0));
812
813	REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
814		  ATH9K_POW_SM(ratesArray[rate54mb], 24)
815		  | ATH9K_POW_SM(ratesArray[rate48mb], 16)
816		  | ATH9K_POW_SM(ratesArray[rate36mb], 8)
817		  | ATH9K_POW_SM(ratesArray[rate24mb], 0));
818
819	/* CCK power per rate */
820	if (IS_CHAN_2GHZ(chan))	{
821		REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
822			  ATH9K_POW_SM(ratesArray[rate2s], 24)
823			  | ATH9K_POW_SM(ratesArray[rate2l], 16)
824			  | ATH9K_POW_SM(ratesArray[rateXr], 8)
825			  | ATH9K_POW_SM(ratesArray[rate1l], 0));
826		REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
827			  ATH9K_POW_SM(ratesArray[rate11s], 24)
828			  | ATH9K_POW_SM(ratesArray[rate11l], 16)
829			  | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
830			  | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
831	}
832
833	/* HT20 power per rate */
834	REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
835		  ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
836		  | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
837		  | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
838		  | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
839
840	REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
841		  ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
842		  | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
843		  | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
844		  | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
845
846	/* HT40 power per rate */
847	if (IS_CHAN_HT40(chan))	{
848		if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
849			REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
850				  ATH9K_POW_SM(ratesArray[rateHt40_3], 24)
851				  | ATH9K_POW_SM(ratesArray[rateHt40_2], 16)
852				  | ATH9K_POW_SM(ratesArray[rateHt40_1], 8)
853				  | ATH9K_POW_SM(ratesArray[rateHt40_0], 0));
854
855			REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
856				  ATH9K_POW_SM(ratesArray[rateHt40_7], 24)
857				  | ATH9K_POW_SM(ratesArray[rateHt40_6], 16)
858				  | ATH9K_POW_SM(ratesArray[rateHt40_5], 8)
859				  | ATH9K_POW_SM(ratesArray[rateHt40_4], 0));
860		} else {
861			REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
862				  ATH9K_POW_SM(ratesArray[rateHt40_3] +
863					       ht40PowerIncForPdadc, 24)
864				  | ATH9K_POW_SM(ratesArray[rateHt40_2] +
865						 ht40PowerIncForPdadc, 16)
866				  | ATH9K_POW_SM(ratesArray[rateHt40_1] +
867						 ht40PowerIncForPdadc, 8)
868				  | ATH9K_POW_SM(ratesArray[rateHt40_0] +
869						 ht40PowerIncForPdadc, 0));
870
871			REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
872				  ATH9K_POW_SM(ratesArray[rateHt40_7] +
873					       ht40PowerIncForPdadc, 24)
874				  | ATH9K_POW_SM(ratesArray[rateHt40_6] +
875						 ht40PowerIncForPdadc, 16)
876				  | ATH9K_POW_SM(ratesArray[rateHt40_5] +
877						 ht40PowerIncForPdadc, 8)
878				  | ATH9K_POW_SM(ratesArray[rateHt40_4] +
879						 ht40PowerIncForPdadc, 0));
880		}
881
882		/* Dup/Ext power per rate */
883		REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
884			  ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
885			  | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
886			  | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
887			  | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
888	}
889
890	/* TPC initializations */
891	if (ah->tpc_enabled) {
892		int ht40_delta;
893
894		ht40_delta = (IS_CHAN_HT40(chan)) ? ht40PowerIncForPdadc : 0;
895		ar5008_hw_init_rate_txpower(ah, ratesArray, chan, ht40_delta);
896		/* Enable TPC */
897		REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX,
898			MAX_RATE_POWER | AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE);
899	} else {
900		/* Disable TPC */
901		REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER);
902	}
903
904	REGWRITE_BUFFER_FLUSH(ah);
905}
906
907static void ath9k_hw_ar9287_set_board_values(struct ath_hw *ah,
908					     struct ath9k_channel *chan)
909{
910	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
911	struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
912	u32 regChainOffset, regval;
913	u8 txRxAttenLocal;
914	int i;
915
916	pModal = &eep->modalHeader;
917
918	REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
919
920	for (i = 0; i < AR9287_MAX_CHAINS; i++)	{
921		regChainOffset = i * 0x1000;
922
923		REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
924			  pModal->antCtrlChain[i]);
925
926		REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
927			  (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset)
928			   & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
929			       AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
930			  SM(pModal->iqCalICh[i],
931			     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
932			  SM(pModal->iqCalQCh[i],
933			     AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
934
935		txRxAttenLocal = pModal->txRxAttenCh[i];
936
937		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
938			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
939			      pModal->bswMargin[i]);
940		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
941			      AR_PHY_GAIN_2GHZ_XATTEN1_DB,
942			      pModal->bswAtten[i]);
943		REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
944			      AR9280_PHY_RXGAIN_TXRX_ATTEN,
945			      txRxAttenLocal);
946		REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
947			      AR9280_PHY_RXGAIN_TXRX_MARGIN,
948			      pModal->rxTxMarginCh[i]);
949	}
950
951
952	if (IS_CHAN_HT40(chan))
953		REG_RMW_FIELD(ah, AR_PHY_SETTLING,
954			      AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
955	else
956		REG_RMW_FIELD(ah, AR_PHY_SETTLING,
957			      AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
958
959	REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
960		      AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
961
962	REG_WRITE(ah, AR_PHY_RF_CTL4,
963		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
964		  | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
965		  | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
966		  | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
967
968	REG_RMW_FIELD(ah, AR_PHY_RF_CTL3,
969		      AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
970
971	REG_RMW_FIELD(ah, AR_PHY_CCA,
972		      AR9280_PHY_CCA_THRESH62, pModal->thresh62);
973	REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
974		      AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62);
975
976	regval = REG_READ(ah, AR9287_AN_RF2G3_CH0);
977	regval &= ~(AR9287_AN_RF2G3_DB1 |
978		    AR9287_AN_RF2G3_DB2 |
979		    AR9287_AN_RF2G3_OB_CCK |
980		    AR9287_AN_RF2G3_OB_PSK |
981		    AR9287_AN_RF2G3_OB_QAM |
982		    AR9287_AN_RF2G3_OB_PAL_OFF);
983	regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
984		   SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
985		   SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
986		   SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
987		   SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
988		   SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
989
990	ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH0, regval);
991
992	regval = REG_READ(ah, AR9287_AN_RF2G3_CH1);
993	regval &= ~(AR9287_AN_RF2G3_DB1 |
994		    AR9287_AN_RF2G3_DB2 |
995		    AR9287_AN_RF2G3_OB_CCK |
996		    AR9287_AN_RF2G3_OB_PSK |
997		    AR9287_AN_RF2G3_OB_QAM |
998		    AR9287_AN_RF2G3_OB_PAL_OFF);
999	regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
1000		   SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
1001		   SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
1002		   SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
1003		   SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
1004		   SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
1005
1006	ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH1, regval);
1007
1008	REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
1009		      AR_PHY_TX_END_DATA_START, pModal->txFrameToDataStart);
1010	REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
1011		      AR_PHY_TX_END_PA_ON, pModal->txFrameToPaOn);
1012
1013	ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TOP2,
1014				  AR9287_AN_TOP2_XPABIAS_LVL,
1015				  AR9287_AN_TOP2_XPABIAS_LVL_S,
1016				  pModal->xpaBiasLvl);
1017}
1018
1019static u16 ath9k_hw_ar9287_get_spur_channel(struct ath_hw *ah,
1020					    u16 i, bool is2GHz)
1021{
1022	return ah->eeprom.map9287.modalHeader.spurChans[i].spurChan;
1023}
1024
1025const struct eeprom_ops eep_ar9287_ops = {
1026	.check_eeprom		= ath9k_hw_ar9287_check_eeprom,
1027	.get_eeprom		= ath9k_hw_ar9287_get_eeprom,
1028	.fill_eeprom		= ath9k_hw_ar9287_fill_eeprom,
1029	.dump_eeprom		= ath9k_hw_ar9287_dump_eeprom,
1030	.get_eeprom_ver		= ath9k_hw_ar9287_get_eeprom_ver,
1031	.get_eeprom_rev		= ath9k_hw_ar9287_get_eeprom_rev,
1032	.set_board_values	= ath9k_hw_ar9287_set_board_values,
1033	.set_txpower		= ath9k_hw_ar9287_set_txpower,
1034	.get_spur_channel	= ath9k_hw_ar9287_get_spur_channel
1035};
1036