1/*
2 * Copyright (c) 2010-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include <asm/unaligned.h>
18#include "hw.h"
19#include "ar9003_phy.h"
20#include "ar9003_eeprom.h"
21#include "ar9003_mci.h"
22
23#define COMP_HDR_LEN 4
24#define COMP_CKSUM_LEN 2
25
26#define LE16(x) cpu_to_le16(x)
27#define LE32(x) cpu_to_le32(x)
28
29/* Local defines to distinguish between extension and control CTL's */
30#define EXT_ADDITIVE (0x8000)
31#define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
32#define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
33#define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
34
35#define SUB_NUM_CTL_MODES_AT_5G_40 2    /* excluding HT40, EXT-OFDM */
36#define SUB_NUM_CTL_MODES_AT_2G_40 3    /* excluding HT40, EXT-OFDM, EXT-CCK */
37
38#define CTL(_tpower, _flag) ((_tpower) | ((_flag) << 6))
39
40#define EEPROM_DATA_LEN_9485	1088
41
42static int ar9003_hw_power_interpolate(int32_t x,
43				       int32_t *px, int32_t *py, u_int16_t np);
44
45static const struct ar9300_eeprom ar9300_default = {
46	.eepromVersion = 2,
47	.templateVersion = 2,
48	.macAddr = {0, 2, 3, 4, 5, 6},
49	.custData = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
50		     0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
51	.baseEepHeader = {
52		.regDmn = { LE16(0), LE16(0x1f) },
53		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
54		.opCapFlags = {
55			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
56			.eepMisc = 0,
57		},
58		.rfSilent = 0,
59		.blueToothOptions = 0,
60		.deviceCap = 0,
61		.deviceType = 5, /* takes lower byte in eeprom location */
62		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
63		.params_for_tuning_caps = {0, 0},
64		.featureEnable = 0x0c,
65		 /*
66		  * bit0 - enable tx temp comp - disabled
67		  * bit1 - enable tx volt comp - disabled
68		  * bit2 - enable fastClock - enabled
69		  * bit3 - enable doubling - enabled
70		  * bit4 - enable internal regulator - disabled
71		  * bit5 - enable pa predistortion - disabled
72		  */
73		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
74		.eepromWriteEnableGpio = 3,
75		.wlanDisableGpio = 0,
76		.wlanLedGpio = 8,
77		.rxBandSelectGpio = 0xff,
78		.txrxgain = 0,
79		.swreg = 0,
80	 },
81	.modalHeader2G = {
82	/* ar9300_modal_eep_header  2g */
83		/* 4 idle,t1,t2,b(4 bits per setting) */
84		.antCtrlCommon = LE32(0x110),
85		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
86		.antCtrlCommon2 = LE32(0x22222),
87
88		/*
89		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
90		 * rx1, rx12, b (2 bits each)
91		 */
92		.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
93
94		/*
95		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
96		 * for ar9280 (0xa20c/b20c 5:0)
97		 */
98		.xatten1DB = {0, 0, 0},
99
100		/*
101		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
102		 * for ar9280 (0xa20c/b20c 16:12
103		 */
104		.xatten1Margin = {0, 0, 0},
105		.tempSlope = 36,
106		.voltSlope = 0,
107
108		/*
109		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
110		 * channels in usual fbin coding format
111		 */
112		.spurChans = {0, 0, 0, 0, 0},
113
114		/*
115		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
116		 * if the register is per chain
117		 */
118		.noiseFloorThreshCh = {-1, 0, 0},
119		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
120		.quick_drop = 0,
121		.xpaBiasLvl = 0,
122		.txFrameToDataStart = 0x0e,
123		.txFrameToPaOn = 0x0e,
124		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
125		.antennaGain = 0,
126		.switchSettling = 0x2c,
127		.adcDesiredSize = -30,
128		.txEndToXpaOff = 0,
129		.txEndToRxOn = 0x2,
130		.txFrameToXpaOn = 0xe,
131		.thresh62 = 28,
132		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
133		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
134		.switchcomspdt = 0,
135		.xlna_bias_strength = 0,
136		.futureModal = {
137			0, 0, 0, 0, 0, 0, 0,
138		},
139	 },
140	.base_ext1 = {
141		.ant_div_control = 0,
142		.future = {0, 0},
143		.tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
144	},
145	.calFreqPier2G = {
146		FREQ2FBIN(2412, 1),
147		FREQ2FBIN(2437, 1),
148		FREQ2FBIN(2472, 1),
149	 },
150	/* ar9300_cal_data_per_freq_op_loop 2g */
151	.calPierData2G = {
152		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
153		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
154		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
155	 },
156	.calTarget_freqbin_Cck = {
157		FREQ2FBIN(2412, 1),
158		FREQ2FBIN(2484, 1),
159	 },
160	.calTarget_freqbin_2G = {
161		FREQ2FBIN(2412, 1),
162		FREQ2FBIN(2437, 1),
163		FREQ2FBIN(2472, 1)
164	 },
165	.calTarget_freqbin_2GHT20 = {
166		FREQ2FBIN(2412, 1),
167		FREQ2FBIN(2437, 1),
168		FREQ2FBIN(2472, 1)
169	 },
170	.calTarget_freqbin_2GHT40 = {
171		FREQ2FBIN(2412, 1),
172		FREQ2FBIN(2437, 1),
173		FREQ2FBIN(2472, 1)
174	 },
175	.calTargetPowerCck = {
176		 /* 1L-5L,5S,11L,11S */
177		 { {36, 36, 36, 36} },
178		 { {36, 36, 36, 36} },
179	},
180	.calTargetPower2G = {
181		 /* 6-24,36,48,54 */
182		 { {32, 32, 28, 24} },
183		 { {32, 32, 28, 24} },
184		 { {32, 32, 28, 24} },
185	},
186	.calTargetPower2GHT20 = {
187		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
188		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
189		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
190	},
191	.calTargetPower2GHT40 = {
192		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
193		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
194		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
195	},
196	.ctlIndex_2G =  {
197		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
198		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
199	},
200	.ctl_freqbin_2G = {
201		{
202			FREQ2FBIN(2412, 1),
203			FREQ2FBIN(2417, 1),
204			FREQ2FBIN(2457, 1),
205			FREQ2FBIN(2462, 1)
206		},
207		{
208			FREQ2FBIN(2412, 1),
209			FREQ2FBIN(2417, 1),
210			FREQ2FBIN(2462, 1),
211			0xFF,
212		},
213
214		{
215			FREQ2FBIN(2412, 1),
216			FREQ2FBIN(2417, 1),
217			FREQ2FBIN(2462, 1),
218			0xFF,
219		},
220		{
221			FREQ2FBIN(2422, 1),
222			FREQ2FBIN(2427, 1),
223			FREQ2FBIN(2447, 1),
224			FREQ2FBIN(2452, 1)
225		},
226
227		{
228			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
229			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
230			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
231			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
232		},
233
234		{
235			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
236			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
237			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
238			0,
239		},
240
241		{
242			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
243			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
244			FREQ2FBIN(2472, 1),
245			0,
246		},
247
248		{
249			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
250			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
251			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
252			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
253		},
254
255		{
256			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
257			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
258			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
259		},
260
261		{
262			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
263			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
264			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
265			0
266		},
267
268		{
269			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
270			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
271			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
272			0
273		},
274
275		{
276			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
277			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
278			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
279			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
280		}
281	 },
282	.ctlPowerData_2G = {
283		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
284		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
285		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
286
287		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
288		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
289		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
290
291		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
292		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
293		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
294
295		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
296		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
297		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
298	 },
299	.modalHeader5G = {
300		/* 4 idle,t1,t2,b (4 bits per setting) */
301		.antCtrlCommon = LE32(0x110),
302		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
303		.antCtrlCommon2 = LE32(0x22222),
304		 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
305		.antCtrlChain = {
306			LE16(0x000), LE16(0x000), LE16(0x000),
307		},
308		 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
309		.xatten1DB = {0, 0, 0},
310
311		/*
312		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
313		 * for merlin (0xa20c/b20c 16:12
314		 */
315		.xatten1Margin = {0, 0, 0},
316		.tempSlope = 68,
317		.voltSlope = 0,
318		/* spurChans spur channels in usual fbin coding format */
319		.spurChans = {0, 0, 0, 0, 0},
320		/* noiseFloorThreshCh Check if the register is per chain */
321		.noiseFloorThreshCh = {-1, 0, 0},
322		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
323		.quick_drop = 0,
324		.xpaBiasLvl = 0,
325		.txFrameToDataStart = 0x0e,
326		.txFrameToPaOn = 0x0e,
327		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
328		.antennaGain = 0,
329		.switchSettling = 0x2d,
330		.adcDesiredSize = -30,
331		.txEndToXpaOff = 0,
332		.txEndToRxOn = 0x2,
333		.txFrameToXpaOn = 0xe,
334		.thresh62 = 28,
335		.papdRateMaskHt20 = LE32(0x0c80c080),
336		.papdRateMaskHt40 = LE32(0x0080c080),
337		.switchcomspdt = 0,
338		.xlna_bias_strength = 0,
339		.futureModal = {
340			0, 0, 0, 0, 0, 0, 0,
341		},
342	 },
343	.base_ext2 = {
344		.tempSlopeLow = 0,
345		.tempSlopeHigh = 0,
346		.xatten1DBLow = {0, 0, 0},
347		.xatten1MarginLow = {0, 0, 0},
348		.xatten1DBHigh = {0, 0, 0},
349		.xatten1MarginHigh = {0, 0, 0}
350	},
351	.calFreqPier5G = {
352		FREQ2FBIN(5180, 0),
353		FREQ2FBIN(5220, 0),
354		FREQ2FBIN(5320, 0),
355		FREQ2FBIN(5400, 0),
356		FREQ2FBIN(5500, 0),
357		FREQ2FBIN(5600, 0),
358		FREQ2FBIN(5725, 0),
359		FREQ2FBIN(5825, 0)
360	},
361	.calPierData5G = {
362			{
363				{0, 0, 0, 0, 0},
364				{0, 0, 0, 0, 0},
365				{0, 0, 0, 0, 0},
366				{0, 0, 0, 0, 0},
367				{0, 0, 0, 0, 0},
368				{0, 0, 0, 0, 0},
369				{0, 0, 0, 0, 0},
370				{0, 0, 0, 0, 0},
371			},
372			{
373				{0, 0, 0, 0, 0},
374				{0, 0, 0, 0, 0},
375				{0, 0, 0, 0, 0},
376				{0, 0, 0, 0, 0},
377				{0, 0, 0, 0, 0},
378				{0, 0, 0, 0, 0},
379				{0, 0, 0, 0, 0},
380				{0, 0, 0, 0, 0},
381			},
382			{
383				{0, 0, 0, 0, 0},
384				{0, 0, 0, 0, 0},
385				{0, 0, 0, 0, 0},
386				{0, 0, 0, 0, 0},
387				{0, 0, 0, 0, 0},
388				{0, 0, 0, 0, 0},
389				{0, 0, 0, 0, 0},
390				{0, 0, 0, 0, 0},
391			},
392
393	},
394	.calTarget_freqbin_5G = {
395		FREQ2FBIN(5180, 0),
396		FREQ2FBIN(5220, 0),
397		FREQ2FBIN(5320, 0),
398		FREQ2FBIN(5400, 0),
399		FREQ2FBIN(5500, 0),
400		FREQ2FBIN(5600, 0),
401		FREQ2FBIN(5725, 0),
402		FREQ2FBIN(5825, 0)
403	},
404	.calTarget_freqbin_5GHT20 = {
405		FREQ2FBIN(5180, 0),
406		FREQ2FBIN(5240, 0),
407		FREQ2FBIN(5320, 0),
408		FREQ2FBIN(5500, 0),
409		FREQ2FBIN(5700, 0),
410		FREQ2FBIN(5745, 0),
411		FREQ2FBIN(5725, 0),
412		FREQ2FBIN(5825, 0)
413	},
414	.calTarget_freqbin_5GHT40 = {
415		FREQ2FBIN(5180, 0),
416		FREQ2FBIN(5240, 0),
417		FREQ2FBIN(5320, 0),
418		FREQ2FBIN(5500, 0),
419		FREQ2FBIN(5700, 0),
420		FREQ2FBIN(5745, 0),
421		FREQ2FBIN(5725, 0),
422		FREQ2FBIN(5825, 0)
423	 },
424	.calTargetPower5G = {
425		/* 6-24,36,48,54 */
426		{ {20, 20, 20, 10} },
427		{ {20, 20, 20, 10} },
428		{ {20, 20, 20, 10} },
429		{ {20, 20, 20, 10} },
430		{ {20, 20, 20, 10} },
431		{ {20, 20, 20, 10} },
432		{ {20, 20, 20, 10} },
433		{ {20, 20, 20, 10} },
434	 },
435	.calTargetPower5GHT20 = {
436		/*
437		 * 0_8_16,1-3_9-11_17-19,
438		 * 4,5,6,7,12,13,14,15,20,21,22,23
439		 */
440		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
441		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
442		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
443		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
444		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
445		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
446		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
447		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
448	 },
449	.calTargetPower5GHT40 =  {
450		/*
451		 * 0_8_16,1-3_9-11_17-19,
452		 * 4,5,6,7,12,13,14,15,20,21,22,23
453		 */
454		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
455		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
456		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
457		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
458		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
459		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
460		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
461		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
462	 },
463	.ctlIndex_5G =  {
464		0x10, 0x16, 0x18, 0x40, 0x46,
465		0x48, 0x30, 0x36, 0x38
466	},
467	.ctl_freqbin_5G =  {
468		{
469			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
470			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
471			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
472			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
473			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
474			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
475			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
476			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
477		},
478		{
479			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
480			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
481			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
482			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
483			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
484			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
485			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
486			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
487		},
488
489		{
490			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
491			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
492			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
493			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
494			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
495			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
496			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
497			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
498		},
499
500		{
501			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
502			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
503			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
504			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
505			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
506			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
507			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
508			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
509		},
510
511		{
512			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
513			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
514			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
515			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
516			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
517			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
518			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
519			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
520		},
521
522		{
523			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
524			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
525			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
526			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
527			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
528			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
529			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
530			/* Data[5].ctlEdges[7].bChannel */ 0xFF
531		},
532
533		{
534			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
535			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
536			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
537			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
538			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
539			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
540			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
541			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
542		},
543
544		{
545			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
546			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
547			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
548			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
549			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
550			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
551			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
552			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
553		},
554
555		{
556			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
557			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
558			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
559			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
560			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
561			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
562			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
563			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
564		}
565	 },
566	.ctlPowerData_5G = {
567		{
568			{
569				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
570				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
571			}
572		},
573		{
574			{
575				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
576				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
577			}
578		},
579		{
580			{
581				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
582				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
583			}
584		},
585		{
586			{
587				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
588				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
589			}
590		},
591		{
592			{
593				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
594				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
595			}
596		},
597		{
598			{
599				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
600				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
601			}
602		},
603		{
604			{
605				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
606				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
607			}
608		},
609		{
610			{
611				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
612				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
613			}
614		},
615		{
616			{
617				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
618				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
619			}
620		},
621	 }
622};
623
624static const struct ar9300_eeprom ar9300_x113 = {
625	.eepromVersion = 2,
626	.templateVersion = 6,
627	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
628	.custData = {"x113-023-f0000"},
629	.baseEepHeader = {
630		.regDmn = { LE16(0), LE16(0x1f) },
631		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
632		.opCapFlags = {
633			.opFlags = AR5416_OPFLAGS_11A,
634			.eepMisc = 0,
635		},
636		.rfSilent = 0,
637		.blueToothOptions = 0,
638		.deviceCap = 0,
639		.deviceType = 5, /* takes lower byte in eeprom location */
640		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
641		.params_for_tuning_caps = {0, 0},
642		.featureEnable = 0x0d,
643		 /*
644		  * bit0 - enable tx temp comp - disabled
645		  * bit1 - enable tx volt comp - disabled
646		  * bit2 - enable fastClock - enabled
647		  * bit3 - enable doubling - enabled
648		  * bit4 - enable internal regulator - disabled
649		  * bit5 - enable pa predistortion - disabled
650		  */
651		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
652		.eepromWriteEnableGpio = 6,
653		.wlanDisableGpio = 0,
654		.wlanLedGpio = 8,
655		.rxBandSelectGpio = 0xff,
656		.txrxgain = 0x21,
657		.swreg = 0,
658	 },
659	.modalHeader2G = {
660	/* ar9300_modal_eep_header  2g */
661		/* 4 idle,t1,t2,b(4 bits per setting) */
662		.antCtrlCommon = LE32(0x110),
663		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
664		.antCtrlCommon2 = LE32(0x44444),
665
666		/*
667		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
668		 * rx1, rx12, b (2 bits each)
669		 */
670		.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
671
672		/*
673		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
674		 * for ar9280 (0xa20c/b20c 5:0)
675		 */
676		.xatten1DB = {0, 0, 0},
677
678		/*
679		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
680		 * for ar9280 (0xa20c/b20c 16:12
681		 */
682		.xatten1Margin = {0, 0, 0},
683		.tempSlope = 25,
684		.voltSlope = 0,
685
686		/*
687		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
688		 * channels in usual fbin coding format
689		 */
690		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
691
692		/*
693		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
694		 * if the register is per chain
695		 */
696		.noiseFloorThreshCh = {-1, 0, 0},
697		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
698		.quick_drop = 0,
699		.xpaBiasLvl = 0,
700		.txFrameToDataStart = 0x0e,
701		.txFrameToPaOn = 0x0e,
702		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
703		.antennaGain = 0,
704		.switchSettling = 0x2c,
705		.adcDesiredSize = -30,
706		.txEndToXpaOff = 0,
707		.txEndToRxOn = 0x2,
708		.txFrameToXpaOn = 0xe,
709		.thresh62 = 28,
710		.papdRateMaskHt20 = LE32(0x0c80c080),
711		.papdRateMaskHt40 = LE32(0x0080c080),
712		.switchcomspdt = 0,
713		.xlna_bias_strength = 0,
714		.futureModal = {
715			0, 0, 0, 0, 0, 0, 0,
716		},
717	 },
718	 .base_ext1 = {
719		.ant_div_control = 0,
720		.future = {0, 0},
721		.tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
722	 },
723	.calFreqPier2G = {
724		FREQ2FBIN(2412, 1),
725		FREQ2FBIN(2437, 1),
726		FREQ2FBIN(2472, 1),
727	 },
728	/* ar9300_cal_data_per_freq_op_loop 2g */
729	.calPierData2G = {
730		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
731		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
732		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
733	 },
734	.calTarget_freqbin_Cck = {
735		FREQ2FBIN(2412, 1),
736		FREQ2FBIN(2472, 1),
737	 },
738	.calTarget_freqbin_2G = {
739		FREQ2FBIN(2412, 1),
740		FREQ2FBIN(2437, 1),
741		FREQ2FBIN(2472, 1)
742	 },
743	.calTarget_freqbin_2GHT20 = {
744		FREQ2FBIN(2412, 1),
745		FREQ2FBIN(2437, 1),
746		FREQ2FBIN(2472, 1)
747	 },
748	.calTarget_freqbin_2GHT40 = {
749		FREQ2FBIN(2412, 1),
750		FREQ2FBIN(2437, 1),
751		FREQ2FBIN(2472, 1)
752	 },
753	.calTargetPowerCck = {
754		 /* 1L-5L,5S,11L,11S */
755		 { {34, 34, 34, 34} },
756		 { {34, 34, 34, 34} },
757	},
758	.calTargetPower2G = {
759		 /* 6-24,36,48,54 */
760		 { {34, 34, 32, 32} },
761		 { {34, 34, 32, 32} },
762		 { {34, 34, 32, 32} },
763	},
764	.calTargetPower2GHT20 = {
765		{ {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
766		{ {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
767		{ {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
768	},
769	.calTargetPower2GHT40 = {
770		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
771		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
772		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
773	},
774	.ctlIndex_2G =  {
775		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
776		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
777	},
778	.ctl_freqbin_2G = {
779		{
780			FREQ2FBIN(2412, 1),
781			FREQ2FBIN(2417, 1),
782			FREQ2FBIN(2457, 1),
783			FREQ2FBIN(2462, 1)
784		},
785		{
786			FREQ2FBIN(2412, 1),
787			FREQ2FBIN(2417, 1),
788			FREQ2FBIN(2462, 1),
789			0xFF,
790		},
791
792		{
793			FREQ2FBIN(2412, 1),
794			FREQ2FBIN(2417, 1),
795			FREQ2FBIN(2462, 1),
796			0xFF,
797		},
798		{
799			FREQ2FBIN(2422, 1),
800			FREQ2FBIN(2427, 1),
801			FREQ2FBIN(2447, 1),
802			FREQ2FBIN(2452, 1)
803		},
804
805		{
806			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
807			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
808			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
809			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
810		},
811
812		{
813			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
814			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
815			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
816			0,
817		},
818
819		{
820			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
821			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
822			FREQ2FBIN(2472, 1),
823			0,
824		},
825
826		{
827			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
828			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
829			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
830			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
831		},
832
833		{
834			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
835			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
836			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
837		},
838
839		{
840			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
841			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
842			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
843			0
844		},
845
846		{
847			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
848			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
849			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
850			0
851		},
852
853		{
854			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
855			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
856			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
857			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
858		}
859	 },
860	.ctlPowerData_2G = {
861		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
862		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
863		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
864
865		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
866		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
867		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
868
869		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
870		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
871		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
872
873		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
874		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
875		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
876	 },
877	.modalHeader5G = {
878		/* 4 idle,t1,t2,b (4 bits per setting) */
879		.antCtrlCommon = LE32(0x220),
880		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
881		.antCtrlCommon2 = LE32(0x11111),
882		 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
883		.antCtrlChain = {
884			LE16(0x150), LE16(0x150), LE16(0x150),
885		},
886		 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
887		.xatten1DB = {0, 0, 0},
888
889		/*
890		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
891		 * for merlin (0xa20c/b20c 16:12
892		 */
893		.xatten1Margin = {0, 0, 0},
894		.tempSlope = 68,
895		.voltSlope = 0,
896		/* spurChans spur channels in usual fbin coding format */
897		.spurChans = {FREQ2FBIN(5500, 0), 0, 0, 0, 0},
898		/* noiseFloorThreshCh Check if the register is per chain */
899		.noiseFloorThreshCh = {-1, 0, 0},
900		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
901		.quick_drop = 0,
902		.xpaBiasLvl = 0xf,
903		.txFrameToDataStart = 0x0e,
904		.txFrameToPaOn = 0x0e,
905		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
906		.antennaGain = 0,
907		.switchSettling = 0x2d,
908		.adcDesiredSize = -30,
909		.txEndToXpaOff = 0,
910		.txEndToRxOn = 0x2,
911		.txFrameToXpaOn = 0xe,
912		.thresh62 = 28,
913		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
914		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
915		.switchcomspdt = 0,
916		.xlna_bias_strength = 0,
917		.futureModal = {
918			0, 0, 0, 0, 0, 0, 0,
919		},
920	 },
921	.base_ext2 = {
922		.tempSlopeLow = 72,
923		.tempSlopeHigh = 105,
924		.xatten1DBLow = {0, 0, 0},
925		.xatten1MarginLow = {0, 0, 0},
926		.xatten1DBHigh = {0, 0, 0},
927		.xatten1MarginHigh = {0, 0, 0}
928	 },
929	.calFreqPier5G = {
930		FREQ2FBIN(5180, 0),
931		FREQ2FBIN(5240, 0),
932		FREQ2FBIN(5320, 0),
933		FREQ2FBIN(5400, 0),
934		FREQ2FBIN(5500, 0),
935		FREQ2FBIN(5600, 0),
936		FREQ2FBIN(5745, 0),
937		FREQ2FBIN(5785, 0)
938	},
939	.calPierData5G = {
940			{
941				{0, 0, 0, 0, 0},
942				{0, 0, 0, 0, 0},
943				{0, 0, 0, 0, 0},
944				{0, 0, 0, 0, 0},
945				{0, 0, 0, 0, 0},
946				{0, 0, 0, 0, 0},
947				{0, 0, 0, 0, 0},
948				{0, 0, 0, 0, 0},
949			},
950			{
951				{0, 0, 0, 0, 0},
952				{0, 0, 0, 0, 0},
953				{0, 0, 0, 0, 0},
954				{0, 0, 0, 0, 0},
955				{0, 0, 0, 0, 0},
956				{0, 0, 0, 0, 0},
957				{0, 0, 0, 0, 0},
958				{0, 0, 0, 0, 0},
959			},
960			{
961				{0, 0, 0, 0, 0},
962				{0, 0, 0, 0, 0},
963				{0, 0, 0, 0, 0},
964				{0, 0, 0, 0, 0},
965				{0, 0, 0, 0, 0},
966				{0, 0, 0, 0, 0},
967				{0, 0, 0, 0, 0},
968				{0, 0, 0, 0, 0},
969			},
970
971	},
972	.calTarget_freqbin_5G = {
973		FREQ2FBIN(5180, 0),
974		FREQ2FBIN(5220, 0),
975		FREQ2FBIN(5320, 0),
976		FREQ2FBIN(5400, 0),
977		FREQ2FBIN(5500, 0),
978		FREQ2FBIN(5600, 0),
979		FREQ2FBIN(5745, 0),
980		FREQ2FBIN(5785, 0)
981	},
982	.calTarget_freqbin_5GHT20 = {
983		FREQ2FBIN(5180, 0),
984		FREQ2FBIN(5240, 0),
985		FREQ2FBIN(5320, 0),
986		FREQ2FBIN(5400, 0),
987		FREQ2FBIN(5500, 0),
988		FREQ2FBIN(5700, 0),
989		FREQ2FBIN(5745, 0),
990		FREQ2FBIN(5825, 0)
991	},
992	.calTarget_freqbin_5GHT40 = {
993		FREQ2FBIN(5190, 0),
994		FREQ2FBIN(5230, 0),
995		FREQ2FBIN(5320, 0),
996		FREQ2FBIN(5410, 0),
997		FREQ2FBIN(5510, 0),
998		FREQ2FBIN(5670, 0),
999		FREQ2FBIN(5755, 0),
1000		FREQ2FBIN(5825, 0)
1001	 },
1002	.calTargetPower5G = {
1003		/* 6-24,36,48,54 */
1004		{ {42, 40, 40, 34} },
1005		{ {42, 40, 40, 34} },
1006		{ {42, 40, 40, 34} },
1007		{ {42, 40, 40, 34} },
1008		{ {42, 40, 40, 34} },
1009		{ {42, 40, 40, 34} },
1010		{ {42, 40, 40, 34} },
1011		{ {42, 40, 40, 34} },
1012	 },
1013	.calTargetPower5GHT20 = {
1014		/*
1015		 * 0_8_16,1-3_9-11_17-19,
1016		 * 4,5,6,7,12,13,14,15,20,21,22,23
1017		 */
1018		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1019		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1020		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1021		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1022		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1023		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1024		{ {38, 38, 38, 38, 32, 28, 38, 38, 32, 28, 38, 38, 32, 26} },
1025		{ {36, 36, 36, 36, 32, 28, 36, 36, 32, 28, 36, 36, 32, 26} },
1026	 },
1027	.calTargetPower5GHT40 =  {
1028		/*
1029		 * 0_8_16,1-3_9-11_17-19,
1030		 * 4,5,6,7,12,13,14,15,20,21,22,23
1031		 */
1032		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1033		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1034		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1035		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1036		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1037		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1038		{ {36, 36, 36, 36, 30, 26, 36, 36, 30, 26, 36, 36, 30, 24} },
1039		{ {34, 34, 34, 34, 30, 26, 34, 34, 30, 26, 34, 34, 30, 24} },
1040	 },
1041	.ctlIndex_5G =  {
1042		0x10, 0x16, 0x18, 0x40, 0x46,
1043		0x48, 0x30, 0x36, 0x38
1044	},
1045	.ctl_freqbin_5G =  {
1046		{
1047			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1048			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1049			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1050			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1051			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
1052			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1053			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1054			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1055		},
1056		{
1057			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1058			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1059			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1060			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1061			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
1062			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1063			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1064			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1065		},
1066
1067		{
1068			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1069			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1070			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1071			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
1072			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
1073			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
1074			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
1075			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
1076		},
1077
1078		{
1079			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1080			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1081			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
1082			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
1083			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1084			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1085			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
1086			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
1087		},
1088
1089		{
1090			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1091			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1092			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
1093			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
1094			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
1095			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
1096			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
1097			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
1098		},
1099
1100		{
1101			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1102			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
1103			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
1104			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1105			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
1106			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1107			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
1108			/* Data[5].ctlEdges[7].bChannel */ 0xFF
1109		},
1110
1111		{
1112			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1113			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1114			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
1115			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
1116			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1117			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
1118			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
1119			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
1120		},
1121
1122		{
1123			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1124			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1125			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
1126			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1127			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
1128			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1129			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1130			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1131		},
1132
1133		{
1134			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1135			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1136			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1137			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1138			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
1139			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1140			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
1141			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
1142		}
1143	 },
1144	.ctlPowerData_5G = {
1145		{
1146			{
1147				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1148				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1149			}
1150		},
1151		{
1152			{
1153				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1154				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1155			}
1156		},
1157		{
1158			{
1159				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1160				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1161			}
1162		},
1163		{
1164			{
1165				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1166				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1167			}
1168		},
1169		{
1170			{
1171				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1172				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1173			}
1174		},
1175		{
1176			{
1177				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1178				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1179			}
1180		},
1181		{
1182			{
1183				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1184				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1185			}
1186		},
1187		{
1188			{
1189				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1190				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1191			}
1192		},
1193		{
1194			{
1195				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
1196				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1197			}
1198		},
1199	 }
1200};
1201
1202
1203static const struct ar9300_eeprom ar9300_h112 = {
1204	.eepromVersion = 2,
1205	.templateVersion = 3,
1206	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
1207	.custData = {"h112-241-f0000"},
1208	.baseEepHeader = {
1209		.regDmn = { LE16(0), LE16(0x1f) },
1210		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
1211		.opCapFlags = {
1212			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
1213			.eepMisc = 0,
1214		},
1215		.rfSilent = 0,
1216		.blueToothOptions = 0,
1217		.deviceCap = 0,
1218		.deviceType = 5, /* takes lower byte in eeprom location */
1219		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
1220		.params_for_tuning_caps = {0, 0},
1221		.featureEnable = 0x0d,
1222		/*
1223		 * bit0 - enable tx temp comp - disabled
1224		 * bit1 - enable tx volt comp - disabled
1225		 * bit2 - enable fastClock - enabled
1226		 * bit3 - enable doubling - enabled
1227		 * bit4 - enable internal regulator - disabled
1228		 * bit5 - enable pa predistortion - disabled
1229		 */
1230		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
1231		.eepromWriteEnableGpio = 6,
1232		.wlanDisableGpio = 0,
1233		.wlanLedGpio = 8,
1234		.rxBandSelectGpio = 0xff,
1235		.txrxgain = 0x10,
1236		.swreg = 0,
1237	},
1238	.modalHeader2G = {
1239		/* ar9300_modal_eep_header  2g */
1240		/* 4 idle,t1,t2,b(4 bits per setting) */
1241		.antCtrlCommon = LE32(0x110),
1242		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
1243		.antCtrlCommon2 = LE32(0x44444),
1244
1245		/*
1246		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
1247		 * rx1, rx12, b (2 bits each)
1248		 */
1249		.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
1250
1251		/*
1252		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
1253		 * for ar9280 (0xa20c/b20c 5:0)
1254		 */
1255		.xatten1DB = {0, 0, 0},
1256
1257		/*
1258		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
1259		 * for ar9280 (0xa20c/b20c 16:12
1260		 */
1261		.xatten1Margin = {0, 0, 0},
1262		.tempSlope = 25,
1263		.voltSlope = 0,
1264
1265		/*
1266		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
1267		 * channels in usual fbin coding format
1268		 */
1269		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
1270
1271		/*
1272		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
1273		 * if the register is per chain
1274		 */
1275		.noiseFloorThreshCh = {-1, 0, 0},
1276		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1277		.quick_drop = 0,
1278		.xpaBiasLvl = 0,
1279		.txFrameToDataStart = 0x0e,
1280		.txFrameToPaOn = 0x0e,
1281		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1282		.antennaGain = 0,
1283		.switchSettling = 0x2c,
1284		.adcDesiredSize = -30,
1285		.txEndToXpaOff = 0,
1286		.txEndToRxOn = 0x2,
1287		.txFrameToXpaOn = 0xe,
1288		.thresh62 = 28,
1289		.papdRateMaskHt20 = LE32(0x0c80c080),
1290		.papdRateMaskHt40 = LE32(0x0080c080),
1291		.switchcomspdt = 0,
1292		.xlna_bias_strength = 0,
1293		.futureModal = {
1294			0, 0, 0, 0, 0, 0, 0,
1295		},
1296	},
1297	.base_ext1 = {
1298		.ant_div_control = 0,
1299		.future = {0, 0},
1300		.tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
1301	},
1302	.calFreqPier2G = {
1303		FREQ2FBIN(2412, 1),
1304		FREQ2FBIN(2437, 1),
1305		FREQ2FBIN(2462, 1),
1306	},
1307	/* ar9300_cal_data_per_freq_op_loop 2g */
1308	.calPierData2G = {
1309		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1310		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1311		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1312	},
1313	.calTarget_freqbin_Cck = {
1314		FREQ2FBIN(2412, 1),
1315		FREQ2FBIN(2472, 1),
1316	},
1317	.calTarget_freqbin_2G = {
1318		FREQ2FBIN(2412, 1),
1319		FREQ2FBIN(2437, 1),
1320		FREQ2FBIN(2472, 1)
1321	},
1322	.calTarget_freqbin_2GHT20 = {
1323		FREQ2FBIN(2412, 1),
1324		FREQ2FBIN(2437, 1),
1325		FREQ2FBIN(2472, 1)
1326	},
1327	.calTarget_freqbin_2GHT40 = {
1328		FREQ2FBIN(2412, 1),
1329		FREQ2FBIN(2437, 1),
1330		FREQ2FBIN(2472, 1)
1331	},
1332	.calTargetPowerCck = {
1333		/* 1L-5L,5S,11L,11S */
1334		{ {34, 34, 34, 34} },
1335		{ {34, 34, 34, 34} },
1336	},
1337	.calTargetPower2G = {
1338		/* 6-24,36,48,54 */
1339		{ {34, 34, 32, 32} },
1340		{ {34, 34, 32, 32} },
1341		{ {34, 34, 32, 32} },
1342	},
1343	.calTargetPower2GHT20 = {
1344		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1345		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1346		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1347	},
1348	.calTargetPower2GHT40 = {
1349		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1350		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1351		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1352	},
1353	.ctlIndex_2G =  {
1354		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
1355		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
1356	},
1357	.ctl_freqbin_2G = {
1358		{
1359			FREQ2FBIN(2412, 1),
1360			FREQ2FBIN(2417, 1),
1361			FREQ2FBIN(2457, 1),
1362			FREQ2FBIN(2462, 1)
1363		},
1364		{
1365			FREQ2FBIN(2412, 1),
1366			FREQ2FBIN(2417, 1),
1367			FREQ2FBIN(2462, 1),
1368			0xFF,
1369		},
1370
1371		{
1372			FREQ2FBIN(2412, 1),
1373			FREQ2FBIN(2417, 1),
1374			FREQ2FBIN(2462, 1),
1375			0xFF,
1376		},
1377		{
1378			FREQ2FBIN(2422, 1),
1379			FREQ2FBIN(2427, 1),
1380			FREQ2FBIN(2447, 1),
1381			FREQ2FBIN(2452, 1)
1382		},
1383
1384		{
1385			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1386			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1387			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1388			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
1389		},
1390
1391		{
1392			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1393			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1394			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1395			0,
1396		},
1397
1398		{
1399			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1400			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1401			FREQ2FBIN(2472, 1),
1402			0,
1403		},
1404
1405		{
1406			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
1407			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
1408			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
1409			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
1410		},
1411
1412		{
1413			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1414			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1415			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1416		},
1417
1418		{
1419			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1420			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1421			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1422			0
1423		},
1424
1425		{
1426			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1427			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1428			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1429			0
1430		},
1431
1432		{
1433			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
1434			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
1435			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
1436			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
1437		}
1438	},
1439	.ctlPowerData_2G = {
1440		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1441		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1442		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
1443
1444		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
1445		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1446		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1447
1448		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
1449		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1450		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1451
1452		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1453		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
1454		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
1455	},
1456	.modalHeader5G = {
1457		/* 4 idle,t1,t2,b (4 bits per setting) */
1458		.antCtrlCommon = LE32(0x220),
1459		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
1460		.antCtrlCommon2 = LE32(0x44444),
1461		/* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
1462		.antCtrlChain = {
1463			LE16(0x150), LE16(0x150), LE16(0x150),
1464		},
1465		/* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
1466		.xatten1DB = {0, 0, 0},
1467
1468		/*
1469		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
1470		 * for merlin (0xa20c/b20c 16:12
1471		 */
1472		.xatten1Margin = {0, 0, 0},
1473		.tempSlope = 45,
1474		.voltSlope = 0,
1475		/* spurChans spur channels in usual fbin coding format */
1476		.spurChans = {0, 0, 0, 0, 0},
1477		/* noiseFloorThreshCh Check if the register is per chain */
1478		.noiseFloorThreshCh = {-1, 0, 0},
1479		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1480		.quick_drop = 0,
1481		.xpaBiasLvl = 0,
1482		.txFrameToDataStart = 0x0e,
1483		.txFrameToPaOn = 0x0e,
1484		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1485		.antennaGain = 0,
1486		.switchSettling = 0x2d,
1487		.adcDesiredSize = -30,
1488		.txEndToXpaOff = 0,
1489		.txEndToRxOn = 0x2,
1490		.txFrameToXpaOn = 0xe,
1491		.thresh62 = 28,
1492		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
1493		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
1494		.switchcomspdt = 0,
1495		.xlna_bias_strength = 0,
1496		.futureModal = {
1497			0, 0, 0, 0, 0, 0, 0,
1498		},
1499	},
1500	.base_ext2 = {
1501		.tempSlopeLow = 40,
1502		.tempSlopeHigh = 50,
1503		.xatten1DBLow = {0, 0, 0},
1504		.xatten1MarginLow = {0, 0, 0},
1505		.xatten1DBHigh = {0, 0, 0},
1506		.xatten1MarginHigh = {0, 0, 0}
1507	},
1508	.calFreqPier5G = {
1509		FREQ2FBIN(5180, 0),
1510		FREQ2FBIN(5220, 0),
1511		FREQ2FBIN(5320, 0),
1512		FREQ2FBIN(5400, 0),
1513		FREQ2FBIN(5500, 0),
1514		FREQ2FBIN(5600, 0),
1515		FREQ2FBIN(5700, 0),
1516		FREQ2FBIN(5785, 0)
1517	},
1518	.calPierData5G = {
1519		{
1520			{0, 0, 0, 0, 0},
1521			{0, 0, 0, 0, 0},
1522			{0, 0, 0, 0, 0},
1523			{0, 0, 0, 0, 0},
1524			{0, 0, 0, 0, 0},
1525			{0, 0, 0, 0, 0},
1526			{0, 0, 0, 0, 0},
1527			{0, 0, 0, 0, 0},
1528		},
1529		{
1530			{0, 0, 0, 0, 0},
1531			{0, 0, 0, 0, 0},
1532			{0, 0, 0, 0, 0},
1533			{0, 0, 0, 0, 0},
1534			{0, 0, 0, 0, 0},
1535			{0, 0, 0, 0, 0},
1536			{0, 0, 0, 0, 0},
1537			{0, 0, 0, 0, 0},
1538		},
1539		{
1540			{0, 0, 0, 0, 0},
1541			{0, 0, 0, 0, 0},
1542			{0, 0, 0, 0, 0},
1543			{0, 0, 0, 0, 0},
1544			{0, 0, 0, 0, 0},
1545			{0, 0, 0, 0, 0},
1546			{0, 0, 0, 0, 0},
1547			{0, 0, 0, 0, 0},
1548		},
1549
1550	},
1551	.calTarget_freqbin_5G = {
1552		FREQ2FBIN(5180, 0),
1553		FREQ2FBIN(5240, 0),
1554		FREQ2FBIN(5320, 0),
1555		FREQ2FBIN(5400, 0),
1556		FREQ2FBIN(5500, 0),
1557		FREQ2FBIN(5600, 0),
1558		FREQ2FBIN(5700, 0),
1559		FREQ2FBIN(5825, 0)
1560	},
1561	.calTarget_freqbin_5GHT20 = {
1562		FREQ2FBIN(5180, 0),
1563		FREQ2FBIN(5240, 0),
1564		FREQ2FBIN(5320, 0),
1565		FREQ2FBIN(5400, 0),
1566		FREQ2FBIN(5500, 0),
1567		FREQ2FBIN(5700, 0),
1568		FREQ2FBIN(5745, 0),
1569		FREQ2FBIN(5825, 0)
1570	},
1571	.calTarget_freqbin_5GHT40 = {
1572		FREQ2FBIN(5180, 0),
1573		FREQ2FBIN(5240, 0),
1574		FREQ2FBIN(5320, 0),
1575		FREQ2FBIN(5400, 0),
1576		FREQ2FBIN(5500, 0),
1577		FREQ2FBIN(5700, 0),
1578		FREQ2FBIN(5745, 0),
1579		FREQ2FBIN(5825, 0)
1580	},
1581	.calTargetPower5G = {
1582		/* 6-24,36,48,54 */
1583		{ {30, 30, 28, 24} },
1584		{ {30, 30, 28, 24} },
1585		{ {30, 30, 28, 24} },
1586		{ {30, 30, 28, 24} },
1587		{ {30, 30, 28, 24} },
1588		{ {30, 30, 28, 24} },
1589		{ {30, 30, 28, 24} },
1590		{ {30, 30, 28, 24} },
1591	},
1592	.calTargetPower5GHT20 = {
1593		/*
1594		 * 0_8_16,1-3_9-11_17-19,
1595		 * 4,5,6,7,12,13,14,15,20,21,22,23
1596		 */
1597		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
1598		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
1599		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
1600		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
1601		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
1602		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
1603		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
1604		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
1605	},
1606	.calTargetPower5GHT40 =  {
1607		/*
1608		 * 0_8_16,1-3_9-11_17-19,
1609		 * 4,5,6,7,12,13,14,15,20,21,22,23
1610		 */
1611		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
1612		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
1613		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
1614		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
1615		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
1616		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
1617		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
1618		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
1619	},
1620	.ctlIndex_5G =  {
1621		0x10, 0x16, 0x18, 0x40, 0x46,
1622		0x48, 0x30, 0x36, 0x38
1623	},
1624	.ctl_freqbin_5G =  {
1625		{
1626			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1627			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1628			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1629			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1630			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
1631			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1632			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1633			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1634		},
1635		{
1636			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1637			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1638			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1639			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1640			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
1641			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1642			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1643			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1644		},
1645
1646		{
1647			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1648			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1649			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1650			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
1651			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
1652			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
1653			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
1654			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
1655		},
1656
1657		{
1658			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1659			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1660			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
1661			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
1662			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1663			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1664			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
1665			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
1666		},
1667
1668		{
1669			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1670			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1671			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
1672			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
1673			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
1674			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
1675			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
1676			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
1677		},
1678
1679		{
1680			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1681			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
1682			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
1683			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1684			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
1685			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1686			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
1687			/* Data[5].ctlEdges[7].bChannel */ 0xFF
1688		},
1689
1690		{
1691			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1692			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1693			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
1694			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
1695			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1696			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
1697			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
1698			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
1699		},
1700
1701		{
1702			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1703			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1704			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
1705			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1706			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
1707			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1708			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1709			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1710		},
1711
1712		{
1713			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1714			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1715			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1716			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1717			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
1718			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1719			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
1720			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
1721		}
1722	},
1723	.ctlPowerData_5G = {
1724		{
1725			{
1726				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1727				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1728			}
1729		},
1730		{
1731			{
1732				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1733				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1734			}
1735		},
1736		{
1737			{
1738				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1739				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1740			}
1741		},
1742		{
1743			{
1744				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1745				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1746			}
1747		},
1748		{
1749			{
1750				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1751				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1752			}
1753		},
1754		{
1755			{
1756				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1757				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1758			}
1759		},
1760		{
1761			{
1762				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1763				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1764			}
1765		},
1766		{
1767			{
1768				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1769				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1770			}
1771		},
1772		{
1773			{
1774				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
1775				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1776			}
1777		},
1778	}
1779};
1780
1781
1782static const struct ar9300_eeprom ar9300_x112 = {
1783	.eepromVersion = 2,
1784	.templateVersion = 5,
1785	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
1786	.custData = {"x112-041-f0000"},
1787	.baseEepHeader = {
1788		.regDmn = { LE16(0), LE16(0x1f) },
1789		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
1790		.opCapFlags = {
1791			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
1792			.eepMisc = 0,
1793		},
1794		.rfSilent = 0,
1795		.blueToothOptions = 0,
1796		.deviceCap = 0,
1797		.deviceType = 5, /* takes lower byte in eeprom location */
1798		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
1799		.params_for_tuning_caps = {0, 0},
1800		.featureEnable = 0x0d,
1801		/*
1802		 * bit0 - enable tx temp comp - disabled
1803		 * bit1 - enable tx volt comp - disabled
1804		 * bit2 - enable fastclock - enabled
1805		 * bit3 - enable doubling - enabled
1806		 * bit4 - enable internal regulator - disabled
1807		 * bit5 - enable pa predistortion - disabled
1808		 */
1809		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
1810		.eepromWriteEnableGpio = 6,
1811		.wlanDisableGpio = 0,
1812		.wlanLedGpio = 8,
1813		.rxBandSelectGpio = 0xff,
1814		.txrxgain = 0x0,
1815		.swreg = 0,
1816	},
1817	.modalHeader2G = {
1818		/* ar9300_modal_eep_header  2g */
1819		/* 4 idle,t1,t2,b(4 bits per setting) */
1820		.antCtrlCommon = LE32(0x110),
1821		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
1822		.antCtrlCommon2 = LE32(0x22222),
1823
1824		/*
1825		 * antCtrlChain[ar9300_max_chains]; 6 idle, t, r,
1826		 * rx1, rx12, b (2 bits each)
1827		 */
1828		.antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },
1829
1830		/*
1831		 * xatten1DB[AR9300_max_chains];  3 xatten1_db
1832		 * for ar9280 (0xa20c/b20c 5:0)
1833		 */
1834		.xatten1DB = {0x1b, 0x1b, 0x1b},
1835
1836		/*
1837		 * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
1838		 * for ar9280 (0xa20c/b20c 16:12
1839		 */
1840		.xatten1Margin = {0x15, 0x15, 0x15},
1841		.tempSlope = 50,
1842		.voltSlope = 0,
1843
1844		/*
1845		 * spurChans[OSPrey_eeprom_modal_sPURS]; spur
1846		 * channels in usual fbin coding format
1847		 */
1848		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
1849
1850		/*
1851		 * noiseFloorThreshch[ar9300_max_cHAINS]; 3 Check
1852		 * if the register is per chain
1853		 */
1854		.noiseFloorThreshCh = {-1, 0, 0},
1855		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1856		.quick_drop = 0,
1857		.xpaBiasLvl = 0,
1858		.txFrameToDataStart = 0x0e,
1859		.txFrameToPaOn = 0x0e,
1860		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1861		.antennaGain = 0,
1862		.switchSettling = 0x2c,
1863		.adcDesiredSize = -30,
1864		.txEndToXpaOff = 0,
1865		.txEndToRxOn = 0x2,
1866		.txFrameToXpaOn = 0xe,
1867		.thresh62 = 28,
1868		.papdRateMaskHt20 = LE32(0x0c80c080),
1869		.papdRateMaskHt40 = LE32(0x0080c080),
1870		.switchcomspdt = 0,
1871		.xlna_bias_strength = 0,
1872		.futureModal = {
1873			0, 0, 0, 0, 0, 0, 0,
1874		},
1875	},
1876	.base_ext1 = {
1877		.ant_div_control = 0,
1878		.future = {0, 0},
1879		.tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
1880	},
1881	.calFreqPier2G = {
1882		FREQ2FBIN(2412, 1),
1883		FREQ2FBIN(2437, 1),
1884		FREQ2FBIN(2472, 1),
1885	},
1886	/* ar9300_cal_data_per_freq_op_loop 2g */
1887	.calPierData2G = {
1888		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1889		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1890		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1891	},
1892	.calTarget_freqbin_Cck = {
1893		FREQ2FBIN(2412, 1),
1894		FREQ2FBIN(2472, 1),
1895	},
1896	.calTarget_freqbin_2G = {
1897		FREQ2FBIN(2412, 1),
1898		FREQ2FBIN(2437, 1),
1899		FREQ2FBIN(2472, 1)
1900	},
1901	.calTarget_freqbin_2GHT20 = {
1902		FREQ2FBIN(2412, 1),
1903		FREQ2FBIN(2437, 1),
1904		FREQ2FBIN(2472, 1)
1905	},
1906	.calTarget_freqbin_2GHT40 = {
1907		FREQ2FBIN(2412, 1),
1908		FREQ2FBIN(2437, 1),
1909		FREQ2FBIN(2472, 1)
1910	},
1911	.calTargetPowerCck = {
1912		/* 1L-5L,5S,11L,11s */
1913		{ {38, 38, 38, 38} },
1914		{ {38, 38, 38, 38} },
1915	},
1916	.calTargetPower2G = {
1917		/* 6-24,36,48,54 */
1918		{ {38, 38, 36, 34} },
1919		{ {38, 38, 36, 34} },
1920		{ {38, 38, 34, 32} },
1921	},
1922	.calTargetPower2GHT20 = {
1923		{ {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
1924		{ {36, 36, 36, 36, 36, 34, 36, 34, 32, 30, 30, 30, 28, 26} },
1925		{ {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
1926	},
1927	.calTargetPower2GHT40 = {
1928		{ {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
1929		{ {36, 36, 36, 36, 34, 32, 34, 32, 30, 28, 28, 28, 28, 24} },
1930		{ {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
1931	},
1932	.ctlIndex_2G =  {
1933		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
1934		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
1935	},
1936	.ctl_freqbin_2G = {
1937		{
1938			FREQ2FBIN(2412, 1),
1939			FREQ2FBIN(2417, 1),
1940			FREQ2FBIN(2457, 1),
1941			FREQ2FBIN(2462, 1)
1942		},
1943		{
1944			FREQ2FBIN(2412, 1),
1945			FREQ2FBIN(2417, 1),
1946			FREQ2FBIN(2462, 1),
1947			0xFF,
1948		},
1949
1950		{
1951			FREQ2FBIN(2412, 1),
1952			FREQ2FBIN(2417, 1),
1953			FREQ2FBIN(2462, 1),
1954			0xFF,
1955		},
1956		{
1957			FREQ2FBIN(2422, 1),
1958			FREQ2FBIN(2427, 1),
1959			FREQ2FBIN(2447, 1),
1960			FREQ2FBIN(2452, 1)
1961		},
1962
1963		{
1964			/* Data[4].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1965			/* Data[4].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1966			/* Data[4].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1967			/* Data[4].ctledges[3].bchannel */ FREQ2FBIN(2484, 1),
1968		},
1969
1970		{
1971			/* Data[5].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1972			/* Data[5].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1973			/* Data[5].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1974			0,
1975		},
1976
1977		{
1978			/* Data[6].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1979			/* Data[6].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1980			FREQ2FBIN(2472, 1),
1981			0,
1982		},
1983
1984		{
1985			/* Data[7].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
1986			/* Data[7].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
1987			/* Data[7].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
1988			/* Data[7].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
1989		},
1990
1991		{
1992			/* Data[8].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1993			/* Data[8].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1994			/* Data[8].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1995		},
1996
1997		{
1998			/* Data[9].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1999			/* Data[9].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
2000			/* Data[9].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
2001			0
2002		},
2003
2004		{
2005			/* Data[10].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
2006			/* Data[10].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
2007			/* Data[10].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
2008			0
2009		},
2010
2011		{
2012			/* Data[11].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
2013			/* Data[11].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
2014			/* Data[11].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
2015			/* Data[11].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
2016		}
2017	},
2018	.ctlPowerData_2G = {
2019		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2020		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2021		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
2022
2023		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
2024		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2025		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2026
2027		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
2028		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2029		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2030
2031		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2032		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2033		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2034	},
2035	.modalHeader5G = {
2036		/* 4 idle,t1,t2,b (4 bits per setting) */
2037		.antCtrlCommon = LE32(0x110),
2038		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
2039		.antCtrlCommon2 = LE32(0x22222),
2040		/* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
2041		.antCtrlChain = {
2042			LE16(0x0), LE16(0x0), LE16(0x0),
2043		},
2044		/* xatten1DB 3 xatten1_db for ar9280 (0xa20c/b20c 5:0) */
2045		.xatten1DB = {0x13, 0x19, 0x17},
2046
2047		/*
2048		 * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
2049		 * for merlin (0xa20c/b20c 16:12
2050		 */
2051		.xatten1Margin = {0x19, 0x19, 0x19},
2052		.tempSlope = 70,
2053		.voltSlope = 15,
2054		/* spurChans spur channels in usual fbin coding format */
2055		.spurChans = {0, 0, 0, 0, 0},
2056		/* noiseFloorThreshch check if the register is per chain */
2057		.noiseFloorThreshCh = {-1, 0, 0},
2058		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2059		.quick_drop = 0,
2060		.xpaBiasLvl = 0,
2061		.txFrameToDataStart = 0x0e,
2062		.txFrameToPaOn = 0x0e,
2063		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2064		.antennaGain = 0,
2065		.switchSettling = 0x2d,
2066		.adcDesiredSize = -30,
2067		.txEndToXpaOff = 0,
2068		.txEndToRxOn = 0x2,
2069		.txFrameToXpaOn = 0xe,
2070		.thresh62 = 28,
2071		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
2072		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
2073		.switchcomspdt = 0,
2074		.xlna_bias_strength = 0,
2075		.futureModal = {
2076			0, 0, 0, 0, 0, 0, 0,
2077		},
2078	},
2079	.base_ext2 = {
2080		.tempSlopeLow = 72,
2081		.tempSlopeHigh = 105,
2082		.xatten1DBLow = {0x10, 0x14, 0x10},
2083		.xatten1MarginLow = {0x19, 0x19 , 0x19},
2084		.xatten1DBHigh = {0x1d, 0x20, 0x24},
2085		.xatten1MarginHigh = {0x10, 0x10, 0x10}
2086	},
2087	.calFreqPier5G = {
2088		FREQ2FBIN(5180, 0),
2089		FREQ2FBIN(5220, 0),
2090		FREQ2FBIN(5320, 0),
2091		FREQ2FBIN(5400, 0),
2092		FREQ2FBIN(5500, 0),
2093		FREQ2FBIN(5600, 0),
2094		FREQ2FBIN(5700, 0),
2095		FREQ2FBIN(5785, 0)
2096	},
2097	.calPierData5G = {
2098		{
2099			{0, 0, 0, 0, 0},
2100			{0, 0, 0, 0, 0},
2101			{0, 0, 0, 0, 0},
2102			{0, 0, 0, 0, 0},
2103			{0, 0, 0, 0, 0},
2104			{0, 0, 0, 0, 0},
2105			{0, 0, 0, 0, 0},
2106			{0, 0, 0, 0, 0},
2107		},
2108		{
2109			{0, 0, 0, 0, 0},
2110			{0, 0, 0, 0, 0},
2111			{0, 0, 0, 0, 0},
2112			{0, 0, 0, 0, 0},
2113			{0, 0, 0, 0, 0},
2114			{0, 0, 0, 0, 0},
2115			{0, 0, 0, 0, 0},
2116			{0, 0, 0, 0, 0},
2117		},
2118		{
2119			{0, 0, 0, 0, 0},
2120			{0, 0, 0, 0, 0},
2121			{0, 0, 0, 0, 0},
2122			{0, 0, 0, 0, 0},
2123			{0, 0, 0, 0, 0},
2124			{0, 0, 0, 0, 0},
2125			{0, 0, 0, 0, 0},
2126			{0, 0, 0, 0, 0},
2127		},
2128
2129	},
2130	.calTarget_freqbin_5G = {
2131		FREQ2FBIN(5180, 0),
2132		FREQ2FBIN(5220, 0),
2133		FREQ2FBIN(5320, 0),
2134		FREQ2FBIN(5400, 0),
2135		FREQ2FBIN(5500, 0),
2136		FREQ2FBIN(5600, 0),
2137		FREQ2FBIN(5725, 0),
2138		FREQ2FBIN(5825, 0)
2139	},
2140	.calTarget_freqbin_5GHT20 = {
2141		FREQ2FBIN(5180, 0),
2142		FREQ2FBIN(5220, 0),
2143		FREQ2FBIN(5320, 0),
2144		FREQ2FBIN(5400, 0),
2145		FREQ2FBIN(5500, 0),
2146		FREQ2FBIN(5600, 0),
2147		FREQ2FBIN(5725, 0),
2148		FREQ2FBIN(5825, 0)
2149	},
2150	.calTarget_freqbin_5GHT40 = {
2151		FREQ2FBIN(5180, 0),
2152		FREQ2FBIN(5220, 0),
2153		FREQ2FBIN(5320, 0),
2154		FREQ2FBIN(5400, 0),
2155		FREQ2FBIN(5500, 0),
2156		FREQ2FBIN(5600, 0),
2157		FREQ2FBIN(5725, 0),
2158		FREQ2FBIN(5825, 0)
2159	},
2160	.calTargetPower5G = {
2161		/* 6-24,36,48,54 */
2162		{ {32, 32, 28, 26} },
2163		{ {32, 32, 28, 26} },
2164		{ {32, 32, 28, 26} },
2165		{ {32, 32, 26, 24} },
2166		{ {32, 32, 26, 24} },
2167		{ {32, 32, 24, 22} },
2168		{ {30, 30, 24, 22} },
2169		{ {30, 30, 24, 22} },
2170	},
2171	.calTargetPower5GHT20 = {
2172		/*
2173		 * 0_8_16,1-3_9-11_17-19,
2174		 * 4,5,6,7,12,13,14,15,20,21,22,23
2175		 */
2176		{ {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2177		{ {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2178		{ {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2179		{ {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 22, 22, 20, 20} },
2180		{ {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 20, 18, 16, 16} },
2181		{ {32, 32, 32, 32, 28, 26, 32, 24, 20, 16, 18, 16, 14, 14} },
2182		{ {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
2183		{ {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
2184	},
2185	.calTargetPower5GHT40 =  {
2186		/*
2187		 * 0_8_16,1-3_9-11_17-19,
2188		 * 4,5,6,7,12,13,14,15,20,21,22,23
2189		 */
2190		{ {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2191		{ {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2192		{ {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2193		{ {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 22, 22, 20, 20} },
2194		{ {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 20, 18, 16, 16} },
2195		{ {32, 32, 32, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2196		{ {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2197		{ {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2198	},
2199	.ctlIndex_5G =  {
2200		0x10, 0x16, 0x18, 0x40, 0x46,
2201		0x48, 0x30, 0x36, 0x38
2202	},
2203	.ctl_freqbin_5G =  {
2204		{
2205			/* Data[0].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2206			/* Data[0].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2207			/* Data[0].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
2208			/* Data[0].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2209			/* Data[0].ctledges[4].bchannel */ FREQ2FBIN(5600, 0),
2210			/* Data[0].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2211			/* Data[0].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2212			/* Data[0].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2213		},
2214		{
2215			/* Data[1].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2216			/* Data[1].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2217			/* Data[1].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
2218			/* Data[1].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2219			/* Data[1].ctledges[4].bchannel */ FREQ2FBIN(5520, 0),
2220			/* Data[1].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2221			/* Data[1].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2222			/* Data[1].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2223		},
2224
2225		{
2226			/* Data[2].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2227			/* Data[2].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
2228			/* Data[2].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
2229			/* Data[2].ctledges[3].bchannel */ FREQ2FBIN(5310, 0),
2230			/* Data[2].ctledges[4].bchannel */ FREQ2FBIN(5510, 0),
2231			/* Data[2].ctledges[5].bchannel */ FREQ2FBIN(5550, 0),
2232			/* Data[2].ctledges[6].bchannel */ FREQ2FBIN(5670, 0),
2233			/* Data[2].ctledges[7].bchannel */ FREQ2FBIN(5755, 0)
2234		},
2235
2236		{
2237			/* Data[3].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2238			/* Data[3].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
2239			/* Data[3].ctledges[2].bchannel */ FREQ2FBIN(5260, 0),
2240			/* Data[3].ctledges[3].bchannel */ FREQ2FBIN(5320, 0),
2241			/* Data[3].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
2242			/* Data[3].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2243			/* Data[3].ctledges[6].bchannel */ 0xFF,
2244			/* Data[3].ctledges[7].bchannel */ 0xFF,
2245		},
2246
2247		{
2248			/* Data[4].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2249			/* Data[4].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2250			/* Data[4].ctledges[2].bchannel */ FREQ2FBIN(5500, 0),
2251			/* Data[4].ctledges[3].bchannel */ FREQ2FBIN(5700, 0),
2252			/* Data[4].ctledges[4].bchannel */ 0xFF,
2253			/* Data[4].ctledges[5].bchannel */ 0xFF,
2254			/* Data[4].ctledges[6].bchannel */ 0xFF,
2255			/* Data[4].ctledges[7].bchannel */ 0xFF,
2256		},
2257
2258		{
2259			/* Data[5].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2260			/* Data[5].ctledges[1].bchannel */ FREQ2FBIN(5270, 0),
2261			/* Data[5].ctledges[2].bchannel */ FREQ2FBIN(5310, 0),
2262			/* Data[5].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
2263			/* Data[5].ctledges[4].bchannel */ FREQ2FBIN(5590, 0),
2264			/* Data[5].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
2265			/* Data[5].ctledges[6].bchannel */ 0xFF,
2266			/* Data[5].ctledges[7].bchannel */ 0xFF
2267		},
2268
2269		{
2270			/* Data[6].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2271			/* Data[6].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
2272			/* Data[6].ctledges[2].bchannel */ FREQ2FBIN(5220, 0),
2273			/* Data[6].ctledges[3].bchannel */ FREQ2FBIN(5260, 0),
2274			/* Data[6].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
2275			/* Data[6].ctledges[5].bchannel */ FREQ2FBIN(5600, 0),
2276			/* Data[6].ctledges[6].bchannel */ FREQ2FBIN(5700, 0),
2277			/* Data[6].ctledges[7].bchannel */ FREQ2FBIN(5745, 0)
2278		},
2279
2280		{
2281			/* Data[7].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2282			/* Data[7].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2283			/* Data[7].ctledges[2].bchannel */ FREQ2FBIN(5320, 0),
2284			/* Data[7].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2285			/* Data[7].ctledges[4].bchannel */ FREQ2FBIN(5560, 0),
2286			/* Data[7].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2287			/* Data[7].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2288			/* Data[7].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2289		},
2290
2291		{
2292			/* Data[8].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2293			/* Data[8].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
2294			/* Data[8].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
2295			/* Data[8].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
2296			/* Data[8].ctledges[4].bchannel */ FREQ2FBIN(5550, 0),
2297			/* Data[8].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
2298			/* Data[8].ctledges[6].bchannel */ FREQ2FBIN(5755, 0),
2299			/* Data[8].ctledges[7].bchannel */ FREQ2FBIN(5795, 0)
2300		}
2301	},
2302	.ctlPowerData_5G = {
2303		{
2304			{
2305				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2306				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2307			}
2308		},
2309		{
2310			{
2311				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2312				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2313			}
2314		},
2315		{
2316			{
2317				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2318				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2319			}
2320		},
2321		{
2322			{
2323				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2324				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2325			}
2326		},
2327		{
2328			{
2329				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2330				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2331			}
2332		},
2333		{
2334			{
2335				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2336				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2337			}
2338		},
2339		{
2340			{
2341				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2342				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2343			}
2344		},
2345		{
2346			{
2347				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2348				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2349			}
2350		},
2351		{
2352			{
2353				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
2354				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2355			}
2356		},
2357	}
2358};
2359
2360static const struct ar9300_eeprom ar9300_h116 = {
2361	.eepromVersion = 2,
2362	.templateVersion = 4,
2363	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
2364	.custData = {"h116-041-f0000"},
2365	.baseEepHeader = {
2366		.regDmn = { LE16(0), LE16(0x1f) },
2367		.txrxMask =  0x33, /* 4 bits tx and 4 bits rx */
2368		.opCapFlags = {
2369			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
2370			.eepMisc = 0,
2371		},
2372		.rfSilent = 0,
2373		.blueToothOptions = 0,
2374		.deviceCap = 0,
2375		.deviceType = 5, /* takes lower byte in eeprom location */
2376		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
2377		.params_for_tuning_caps = {0, 0},
2378		.featureEnable = 0x0d,
2379		 /*
2380		  * bit0 - enable tx temp comp - disabled
2381		  * bit1 - enable tx volt comp - disabled
2382		  * bit2 - enable fastClock - enabled
2383		  * bit3 - enable doubling - enabled
2384		  * bit4 - enable internal regulator - disabled
2385		  * bit5 - enable pa predistortion - disabled
2386		  */
2387		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
2388		.eepromWriteEnableGpio = 6,
2389		.wlanDisableGpio = 0,
2390		.wlanLedGpio = 8,
2391		.rxBandSelectGpio = 0xff,
2392		.txrxgain = 0x10,
2393		.swreg = 0,
2394	 },
2395	.modalHeader2G = {
2396	/* ar9300_modal_eep_header  2g */
2397		/* 4 idle,t1,t2,b(4 bits per setting) */
2398		.antCtrlCommon = LE32(0x110),
2399		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
2400		.antCtrlCommon2 = LE32(0x44444),
2401
2402		/*
2403		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
2404		 * rx1, rx12, b (2 bits each)
2405		 */
2406		.antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },
2407
2408		/*
2409		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
2410		 * for ar9280 (0xa20c/b20c 5:0)
2411		 */
2412		.xatten1DB = {0x1f, 0x1f, 0x1f},
2413
2414		/*
2415		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
2416		 * for ar9280 (0xa20c/b20c 16:12
2417		 */
2418		.xatten1Margin = {0x12, 0x12, 0x12},
2419		.tempSlope = 25,
2420		.voltSlope = 0,
2421
2422		/*
2423		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
2424		 * channels in usual fbin coding format
2425		 */
2426		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
2427
2428		/*
2429		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
2430		 * if the register is per chain
2431		 */
2432		.noiseFloorThreshCh = {-1, 0, 0},
2433		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2434		.quick_drop = 0,
2435		.xpaBiasLvl = 0,
2436		.txFrameToDataStart = 0x0e,
2437		.txFrameToPaOn = 0x0e,
2438		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2439		.antennaGain = 0,
2440		.switchSettling = 0x2c,
2441		.adcDesiredSize = -30,
2442		.txEndToXpaOff = 0,
2443		.txEndToRxOn = 0x2,
2444		.txFrameToXpaOn = 0xe,
2445		.thresh62 = 28,
2446		.papdRateMaskHt20 = LE32(0x0c80C080),
2447		.papdRateMaskHt40 = LE32(0x0080C080),
2448		.switchcomspdt = 0,
2449		.xlna_bias_strength = 0,
2450		.futureModal = {
2451			0, 0, 0, 0, 0, 0, 0,
2452		},
2453	 },
2454	 .base_ext1 = {
2455		.ant_div_control = 0,
2456		.future = {0, 0},
2457		.tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
2458	 },
2459	.calFreqPier2G = {
2460		FREQ2FBIN(2412, 1),
2461		FREQ2FBIN(2437, 1),
2462		FREQ2FBIN(2462, 1),
2463	 },
2464	/* ar9300_cal_data_per_freq_op_loop 2g */
2465	.calPierData2G = {
2466		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2467		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2468		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2469	 },
2470	.calTarget_freqbin_Cck = {
2471		FREQ2FBIN(2412, 1),
2472		FREQ2FBIN(2472, 1),
2473	 },
2474	.calTarget_freqbin_2G = {
2475		FREQ2FBIN(2412, 1),
2476		FREQ2FBIN(2437, 1),
2477		FREQ2FBIN(2472, 1)
2478	 },
2479	.calTarget_freqbin_2GHT20 = {
2480		FREQ2FBIN(2412, 1),
2481		FREQ2FBIN(2437, 1),
2482		FREQ2FBIN(2472, 1)
2483	 },
2484	.calTarget_freqbin_2GHT40 = {
2485		FREQ2FBIN(2412, 1),
2486		FREQ2FBIN(2437, 1),
2487		FREQ2FBIN(2472, 1)
2488	 },
2489	.calTargetPowerCck = {
2490		 /* 1L-5L,5S,11L,11S */
2491		 { {34, 34, 34, 34} },
2492		 { {34, 34, 34, 34} },
2493	},
2494	.calTargetPower2G = {
2495		 /* 6-24,36,48,54 */
2496		 { {34, 34, 32, 32} },
2497		 { {34, 34, 32, 32} },
2498		 { {34, 34, 32, 32} },
2499	},
2500	.calTargetPower2GHT20 = {
2501		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2502		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2503		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2504	},
2505	.calTargetPower2GHT40 = {
2506		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2507		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2508		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2509	},
2510	.ctlIndex_2G =  {
2511		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
2512		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
2513	},
2514	.ctl_freqbin_2G = {
2515		{
2516			FREQ2FBIN(2412, 1),
2517			FREQ2FBIN(2417, 1),
2518			FREQ2FBIN(2457, 1),
2519			FREQ2FBIN(2462, 1)
2520		},
2521		{
2522			FREQ2FBIN(2412, 1),
2523			FREQ2FBIN(2417, 1),
2524			FREQ2FBIN(2462, 1),
2525			0xFF,
2526		},
2527
2528		{
2529			FREQ2FBIN(2412, 1),
2530			FREQ2FBIN(2417, 1),
2531			FREQ2FBIN(2462, 1),
2532			0xFF,
2533		},
2534		{
2535			FREQ2FBIN(2422, 1),
2536			FREQ2FBIN(2427, 1),
2537			FREQ2FBIN(2447, 1),
2538			FREQ2FBIN(2452, 1)
2539		},
2540
2541		{
2542			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2543			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2544			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2545			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
2546		},
2547
2548		{
2549			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2550			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2551			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2552			0,
2553		},
2554
2555		{
2556			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2557			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2558			FREQ2FBIN(2472, 1),
2559			0,
2560		},
2561
2562		{
2563			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
2564			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
2565			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
2566			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
2567		},
2568
2569		{
2570			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2571			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2572			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2573		},
2574
2575		{
2576			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2577			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2578			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2579			0
2580		},
2581
2582		{
2583			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2584			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2585			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2586			0
2587		},
2588
2589		{
2590			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
2591			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
2592			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
2593			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
2594		}
2595	 },
2596	.ctlPowerData_2G = {
2597		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2598		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2599		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
2600
2601		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
2602		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2603		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2604
2605		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
2606		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2607		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2608
2609		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2610		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2611		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2612	 },
2613	.modalHeader5G = {
2614		/* 4 idle,t1,t2,b (4 bits per setting) */
2615		.antCtrlCommon = LE32(0x220),
2616		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
2617		.antCtrlCommon2 = LE32(0x44444),
2618		 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
2619		.antCtrlChain = {
2620			LE16(0x150), LE16(0x150), LE16(0x150),
2621		},
2622		 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
2623		.xatten1DB = {0x19, 0x19, 0x19},
2624
2625		/*
2626		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
2627		 * for merlin (0xa20c/b20c 16:12
2628		 */
2629		.xatten1Margin = {0x14, 0x14, 0x14},
2630		.tempSlope = 70,
2631		.voltSlope = 0,
2632		/* spurChans spur channels in usual fbin coding format */
2633		.spurChans = {0, 0, 0, 0, 0},
2634		/* noiseFloorThreshCh Check if the register is per chain */
2635		.noiseFloorThreshCh = {-1, 0, 0},
2636		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2637		.quick_drop = 0,
2638		.xpaBiasLvl = 0,
2639		.txFrameToDataStart = 0x0e,
2640		.txFrameToPaOn = 0x0e,
2641		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2642		.antennaGain = 0,
2643		.switchSettling = 0x2d,
2644		.adcDesiredSize = -30,
2645		.txEndToXpaOff = 0,
2646		.txEndToRxOn = 0x2,
2647		.txFrameToXpaOn = 0xe,
2648		.thresh62 = 28,
2649		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
2650		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
2651		.switchcomspdt = 0,
2652		.xlna_bias_strength = 0,
2653		.futureModal = {
2654			0, 0, 0, 0, 0, 0, 0,
2655		},
2656	 },
2657	.base_ext2 = {
2658		.tempSlopeLow = 35,
2659		.tempSlopeHigh = 50,
2660		.xatten1DBLow = {0, 0, 0},
2661		.xatten1MarginLow = {0, 0, 0},
2662		.xatten1DBHigh = {0, 0, 0},
2663		.xatten1MarginHigh = {0, 0, 0}
2664	 },
2665	.calFreqPier5G = {
2666		FREQ2FBIN(5160, 0),
2667		FREQ2FBIN(5220, 0),
2668		FREQ2FBIN(5320, 0),
2669		FREQ2FBIN(5400, 0),
2670		FREQ2FBIN(5500, 0),
2671		FREQ2FBIN(5600, 0),
2672		FREQ2FBIN(5700, 0),
2673		FREQ2FBIN(5785, 0)
2674	},
2675	.calPierData5G = {
2676			{
2677				{0, 0, 0, 0, 0},
2678				{0, 0, 0, 0, 0},
2679				{0, 0, 0, 0, 0},
2680				{0, 0, 0, 0, 0},
2681				{0, 0, 0, 0, 0},
2682				{0, 0, 0, 0, 0},
2683				{0, 0, 0, 0, 0},
2684				{0, 0, 0, 0, 0},
2685			},
2686			{
2687				{0, 0, 0, 0, 0},
2688				{0, 0, 0, 0, 0},
2689				{0, 0, 0, 0, 0},
2690				{0, 0, 0, 0, 0},
2691				{0, 0, 0, 0, 0},
2692				{0, 0, 0, 0, 0},
2693				{0, 0, 0, 0, 0},
2694				{0, 0, 0, 0, 0},
2695			},
2696			{
2697				{0, 0, 0, 0, 0},
2698				{0, 0, 0, 0, 0},
2699				{0, 0, 0, 0, 0},
2700				{0, 0, 0, 0, 0},
2701				{0, 0, 0, 0, 0},
2702				{0, 0, 0, 0, 0},
2703				{0, 0, 0, 0, 0},
2704				{0, 0, 0, 0, 0},
2705			},
2706
2707	},
2708	.calTarget_freqbin_5G = {
2709		FREQ2FBIN(5180, 0),
2710		FREQ2FBIN(5240, 0),
2711		FREQ2FBIN(5320, 0),
2712		FREQ2FBIN(5400, 0),
2713		FREQ2FBIN(5500, 0),
2714		FREQ2FBIN(5600, 0),
2715		FREQ2FBIN(5700, 0),
2716		FREQ2FBIN(5825, 0)
2717	},
2718	.calTarget_freqbin_5GHT20 = {
2719		FREQ2FBIN(5180, 0),
2720		FREQ2FBIN(5240, 0),
2721		FREQ2FBIN(5320, 0),
2722		FREQ2FBIN(5400, 0),
2723		FREQ2FBIN(5500, 0),
2724		FREQ2FBIN(5700, 0),
2725		FREQ2FBIN(5745, 0),
2726		FREQ2FBIN(5825, 0)
2727	},
2728	.calTarget_freqbin_5GHT40 = {
2729		FREQ2FBIN(5180, 0),
2730		FREQ2FBIN(5240, 0),
2731		FREQ2FBIN(5320, 0),
2732		FREQ2FBIN(5400, 0),
2733		FREQ2FBIN(5500, 0),
2734		FREQ2FBIN(5700, 0),
2735		FREQ2FBIN(5745, 0),
2736		FREQ2FBIN(5825, 0)
2737	 },
2738	.calTargetPower5G = {
2739		/* 6-24,36,48,54 */
2740		{ {30, 30, 28, 24} },
2741		{ {30, 30, 28, 24} },
2742		{ {30, 30, 28, 24} },
2743		{ {30, 30, 28, 24} },
2744		{ {30, 30, 28, 24} },
2745		{ {30, 30, 28, 24} },
2746		{ {30, 30, 28, 24} },
2747		{ {30, 30, 28, 24} },
2748	 },
2749	.calTargetPower5GHT20 = {
2750		/*
2751		 * 0_8_16,1-3_9-11_17-19,
2752		 * 4,5,6,7,12,13,14,15,20,21,22,23
2753		 */
2754		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
2755		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
2756		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
2757		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
2758		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
2759		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
2760		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
2761		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
2762	 },
2763	.calTargetPower5GHT40 =  {
2764		/*
2765		 * 0_8_16,1-3_9-11_17-19,
2766		 * 4,5,6,7,12,13,14,15,20,21,22,23
2767		 */
2768		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
2769		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
2770		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
2771		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
2772		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
2773		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
2774		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
2775		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
2776	 },
2777	.ctlIndex_5G =  {
2778		0x10, 0x16, 0x18, 0x40, 0x46,
2779		0x48, 0x30, 0x36, 0x38
2780	},
2781	.ctl_freqbin_5G =  {
2782		{
2783			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2784			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2785			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
2786			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2787			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
2788			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2789			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2790			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2791		},
2792		{
2793			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2794			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2795			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
2796			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2797			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
2798			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2799			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2800			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2801		},
2802
2803		{
2804			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2805			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
2806			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
2807			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
2808			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
2809			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
2810			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
2811			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
2812		},
2813
2814		{
2815			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2816			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
2817			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
2818			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
2819			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
2820			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2821			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
2822			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
2823		},
2824
2825		{
2826			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2827			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2828			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
2829			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
2830			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
2831			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
2832			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
2833			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
2834		},
2835
2836		{
2837			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2838			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
2839			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
2840			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
2841			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
2842			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
2843			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
2844			/* Data[5].ctlEdges[7].bChannel */ 0xFF
2845		},
2846
2847		{
2848			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2849			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
2850			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
2851			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
2852			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
2853			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
2854			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
2855			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
2856		},
2857
2858		{
2859			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2860			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2861			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
2862			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2863			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
2864			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2865			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2866			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2867		},
2868
2869		{
2870			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2871			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
2872			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
2873			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
2874			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
2875			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
2876			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
2877			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
2878		}
2879	 },
2880	.ctlPowerData_5G = {
2881		{
2882			{
2883				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2884				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2885			}
2886		},
2887		{
2888			{
2889				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2890				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2891			}
2892		},
2893		{
2894			{
2895				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2896				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2897			}
2898		},
2899		{
2900			{
2901				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2902				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2903			}
2904		},
2905		{
2906			{
2907				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2908				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2909			}
2910		},
2911		{
2912			{
2913				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2914				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2915			}
2916		},
2917		{
2918			{
2919				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2920				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2921			}
2922		},
2923		{
2924			{
2925				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2926				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2927			}
2928		},
2929		{
2930			{
2931				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
2932				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2933			}
2934		},
2935	 }
2936};
2937
2938
2939static const struct ar9300_eeprom *ar9300_eep_templates[] = {
2940	&ar9300_default,
2941	&ar9300_x112,
2942	&ar9300_h116,
2943	&ar9300_h112,
2944	&ar9300_x113,
2945};
2946
2947static const struct ar9300_eeprom *ar9003_eeprom_struct_find_by_id(int id)
2948{
2949#define N_LOOP (sizeof(ar9300_eep_templates) / sizeof(ar9300_eep_templates[0]))
2950	int it;
2951
2952	for (it = 0; it < N_LOOP; it++)
2953		if (ar9300_eep_templates[it]->templateVersion == id)
2954			return ar9300_eep_templates[it];
2955	return NULL;
2956#undef N_LOOP
2957}
2958
2959static int ath9k_hw_ar9300_check_eeprom(struct ath_hw *ah)
2960{
2961	return 0;
2962}
2963
2964static int interpolate(int x, int xa, int xb, int ya, int yb)
2965{
2966	int bf, factor, plus;
2967
2968	bf = 2 * (yb - ya) * (x - xa) / (xb - xa);
2969	factor = bf / 2;
2970	plus = bf % 2;
2971	return ya + factor + plus;
2972}
2973
2974static u32 ath9k_hw_ar9300_get_eeprom(struct ath_hw *ah,
2975				      enum eeprom_param param)
2976{
2977	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
2978	struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
2979
2980	switch (param) {
2981	case EEP_MAC_LSW:
2982		return get_unaligned_be16(eep->macAddr);
2983	case EEP_MAC_MID:
2984		return get_unaligned_be16(eep->macAddr + 2);
2985	case EEP_MAC_MSW:
2986		return get_unaligned_be16(eep->macAddr + 4);
2987	case EEP_REG_0:
2988		return le16_to_cpu(pBase->regDmn[0]);
2989	case EEP_OP_CAP:
2990		return pBase->deviceCap;
2991	case EEP_OP_MODE:
2992		return pBase->opCapFlags.opFlags;
2993	case EEP_RF_SILENT:
2994		return pBase->rfSilent;
2995	case EEP_TX_MASK:
2996		return (pBase->txrxMask >> 4) & 0xf;
2997	case EEP_RX_MASK:
2998		return pBase->txrxMask & 0xf;
2999	case EEP_PAPRD:
3000		return !!(pBase->featureEnable & BIT(5));
3001	case EEP_CHAIN_MASK_REDUCE:
3002		return (pBase->miscConfiguration >> 0x3) & 0x1;
3003	case EEP_ANT_DIV_CTL1:
3004		if (AR_SREV_9565(ah))
3005			return AR9300_EEP_ANTDIV_CONTROL_DEFAULT_VALUE;
3006		else
3007			return eep->base_ext1.ant_div_control;
3008	case EEP_ANTENNA_GAIN_5G:
3009		return eep->modalHeader5G.antennaGain;
3010	case EEP_ANTENNA_GAIN_2G:
3011		return eep->modalHeader2G.antennaGain;
3012	default:
3013		return 0;
3014	}
3015}
3016
3017static bool ar9300_eeprom_read_byte(struct ath_hw *ah, int address,
3018				    u8 *buffer)
3019{
3020	u16 val;
3021
3022	if (unlikely(!ath9k_hw_nvram_read(ah, address / 2, &val)))
3023		return false;
3024
3025	*buffer = (val >> (8 * (address % 2))) & 0xff;
3026	return true;
3027}
3028
3029static bool ar9300_eeprom_read_word(struct ath_hw *ah, int address,
3030				    u8 *buffer)
3031{
3032	u16 val;
3033
3034	if (unlikely(!ath9k_hw_nvram_read(ah, address / 2, &val)))
3035		return false;
3036
3037	buffer[0] = val >> 8;
3038	buffer[1] = val & 0xff;
3039
3040	return true;
3041}
3042
3043static bool ar9300_read_eeprom(struct ath_hw *ah, int address, u8 *buffer,
3044			       int count)
3045{
3046	struct ath_common *common = ath9k_hw_common(ah);
3047	int i;
3048
3049	if ((address < 0) || ((address + count) / 2 > AR9300_EEPROM_SIZE - 1)) {
3050		ath_dbg(common, EEPROM, "eeprom address not in range\n");
3051		return false;
3052	}
3053
3054	/*
3055	 * Since we're reading the bytes in reverse order from a little-endian
3056	 * word stream, an even address means we only use the lower half of
3057	 * the 16-bit word at that address
3058	 */
3059	if (address % 2 == 0) {
3060		if (!ar9300_eeprom_read_byte(ah, address--, buffer++))
3061			goto error;
3062
3063		count--;
3064	}
3065
3066	for (i = 0; i < count / 2; i++) {
3067		if (!ar9300_eeprom_read_word(ah, address, buffer))
3068			goto error;
3069
3070		address -= 2;
3071		buffer += 2;
3072	}
3073
3074	if (count % 2)
3075		if (!ar9300_eeprom_read_byte(ah, address, buffer))
3076			goto error;
3077
3078	return true;
3079
3080error:
3081	ath_dbg(common, EEPROM, "unable to read eeprom region at offset %d\n",
3082		address);
3083	return false;
3084}
3085
3086static bool ar9300_otp_read_word(struct ath_hw *ah, int addr, u32 *data)
3087{
3088	REG_READ(ah, AR9300_OTP_BASE + (4 * addr));
3089
3090	if (!ath9k_hw_wait(ah, AR9300_OTP_STATUS, AR9300_OTP_STATUS_TYPE,
3091			   AR9300_OTP_STATUS_VALID, 1000))
3092		return false;
3093
3094	*data = REG_READ(ah, AR9300_OTP_READ_DATA);
3095	return true;
3096}
3097
3098static bool ar9300_read_otp(struct ath_hw *ah, int address, u8 *buffer,
3099			    int count)
3100{
3101	u32 data;
3102	int i;
3103
3104	for (i = 0; i < count; i++) {
3105		int offset = 8 * ((address - i) % 4);
3106		if (!ar9300_otp_read_word(ah, (address - i) / 4, &data))
3107			return false;
3108
3109		buffer[i] = (data >> offset) & 0xff;
3110	}
3111
3112	return true;
3113}
3114
3115
3116static void ar9300_comp_hdr_unpack(u8 *best, int *code, int *reference,
3117				   int *length, int *major, int *minor)
3118{
3119	unsigned long value[4];
3120
3121	value[0] = best[0];
3122	value[1] = best[1];
3123	value[2] = best[2];
3124	value[3] = best[3];
3125	*code = ((value[0] >> 5) & 0x0007);
3126	*reference = (value[0] & 0x001f) | ((value[1] >> 2) & 0x0020);
3127	*length = ((value[1] << 4) & 0x07f0) | ((value[2] >> 4) & 0x000f);
3128	*major = (value[2] & 0x000f);
3129	*minor = (value[3] & 0x00ff);
3130}
3131
3132static u16 ar9300_comp_cksum(u8 *data, int dsize)
3133{
3134	int it, checksum = 0;
3135
3136	for (it = 0; it < dsize; it++) {
3137		checksum += data[it];
3138		checksum &= 0xffff;
3139	}
3140
3141	return checksum;
3142}
3143
3144static bool ar9300_uncompress_block(struct ath_hw *ah,
3145				    u8 *mptr,
3146				    int mdataSize,
3147				    u8 *block,
3148				    int size)
3149{
3150	int it;
3151	int spot;
3152	int offset;
3153	int length;
3154	struct ath_common *common = ath9k_hw_common(ah);
3155
3156	spot = 0;
3157
3158	for (it = 0; it < size; it += (length+2)) {
3159		offset = block[it];
3160		offset &= 0xff;
3161		spot += offset;
3162		length = block[it+1];
3163		length &= 0xff;
3164
3165		if (length > 0 && spot >= 0 && spot+length <= mdataSize) {
3166			ath_dbg(common, EEPROM,
3167				"Restore at %d: spot=%d offset=%d length=%d\n",
3168				it, spot, offset, length);
3169			memcpy(&mptr[spot], &block[it+2], length);
3170			spot += length;
3171		} else if (length > 0) {
3172			ath_dbg(common, EEPROM,
3173				"Bad restore at %d: spot=%d offset=%d length=%d\n",
3174				it, spot, offset, length);
3175			return false;
3176		}
3177	}
3178	return true;
3179}
3180
3181static int ar9300_compress_decision(struct ath_hw *ah,
3182				    int it,
3183				    int code,
3184				    int reference,
3185				    u8 *mptr,
3186				    u8 *word, int length, int mdata_size)
3187{
3188	struct ath_common *common = ath9k_hw_common(ah);
3189	const struct ar9300_eeprom *eep = NULL;
3190
3191	switch (code) {
3192	case _CompressNone:
3193		if (length != mdata_size) {
3194			ath_dbg(common, EEPROM,
3195				"EEPROM structure size mismatch memory=%d eeprom=%d\n",
3196				mdata_size, length);
3197			return -1;
3198		}
3199		memcpy(mptr, word + COMP_HDR_LEN, length);
3200		ath_dbg(common, EEPROM,
3201			"restored eeprom %d: uncompressed, length %d\n",
3202			it, length);
3203		break;
3204	case _CompressBlock:
3205		if (reference == 0) {
3206		} else {
3207			eep = ar9003_eeprom_struct_find_by_id(reference);
3208			if (eep == NULL) {
3209				ath_dbg(common, EEPROM,
3210					"can't find reference eeprom struct %d\n",
3211					reference);
3212				return -1;
3213			}
3214			memcpy(mptr, eep, mdata_size);
3215		}
3216		ath_dbg(common, EEPROM,
3217			"restore eeprom %d: block, reference %d, length %d\n",
3218			it, reference, length);
3219		ar9300_uncompress_block(ah, mptr, mdata_size,
3220					(word + COMP_HDR_LEN), length);
3221		break;
3222	default:
3223		ath_dbg(common, EEPROM, "unknown compression code %d\n", code);
3224		return -1;
3225	}
3226	return 0;
3227}
3228
3229typedef bool (*eeprom_read_op)(struct ath_hw *ah, int address, u8 *buffer,
3230			       int count);
3231
3232static bool ar9300_check_header(void *data)
3233{
3234	u32 *word = data;
3235	return !(*word == 0 || *word == ~0);
3236}
3237
3238static bool ar9300_check_eeprom_header(struct ath_hw *ah, eeprom_read_op read,
3239				       int base_addr)
3240{
3241	u8 header[4];
3242
3243	if (!read(ah, base_addr, header, 4))
3244		return false;
3245
3246	return ar9300_check_header(header);
3247}
3248
3249static int ar9300_eeprom_restore_flash(struct ath_hw *ah, u8 *mptr,
3250				       int mdata_size)
3251{
3252	u16 *data = (u16 *) mptr;
3253	int i;
3254
3255	for (i = 0; i < mdata_size / 2; i++, data++)
3256		ath9k_hw_nvram_read(ah, i, data);
3257
3258	return 0;
3259}
3260/*
3261 * Read the configuration data from the eeprom.
3262 * The data can be put in any specified memory buffer.
3263 *
3264 * Returns -1 on error.
3265 * Returns address of next memory location on success.
3266 */
3267static int ar9300_eeprom_restore_internal(struct ath_hw *ah,
3268					  u8 *mptr, int mdata_size)
3269{
3270#define MDEFAULT 15
3271#define MSTATE 100
3272	int cptr;
3273	u8 *word;
3274	int code;
3275	int reference, length, major, minor;
3276	int osize;
3277	int it;
3278	u16 checksum, mchecksum;
3279	struct ath_common *common = ath9k_hw_common(ah);
3280	struct ar9300_eeprom *eep;
3281	eeprom_read_op read;
3282
3283	if (ath9k_hw_use_flash(ah)) {
3284		u8 txrx;
3285
3286		ar9300_eeprom_restore_flash(ah, mptr, mdata_size);
3287
3288		/* check if eeprom contains valid data */
3289		eep = (struct ar9300_eeprom *) mptr;
3290		txrx = eep->baseEepHeader.txrxMask;
3291		if (txrx != 0 && txrx != 0xff)
3292			return 0;
3293	}
3294
3295	word = kzalloc(2048, GFP_KERNEL);
3296	if (!word)
3297		return -ENOMEM;
3298
3299	memcpy(mptr, &ar9300_default, mdata_size);
3300
3301	read = ar9300_read_eeprom;
3302	if (AR_SREV_9485(ah))
3303		cptr = AR9300_BASE_ADDR_4K;
3304	else if (AR_SREV_9330(ah))
3305		cptr = AR9300_BASE_ADDR_512;
3306	else
3307		cptr = AR9300_BASE_ADDR;
3308	ath_dbg(common, EEPROM, "Trying EEPROM access at Address 0x%04x\n",
3309		cptr);
3310	if (ar9300_check_eeprom_header(ah, read, cptr))
3311		goto found;
3312
3313	cptr = AR9300_BASE_ADDR_512;
3314	ath_dbg(common, EEPROM, "Trying EEPROM access at Address 0x%04x\n",
3315		cptr);
3316	if (ar9300_check_eeprom_header(ah, read, cptr))
3317		goto found;
3318
3319	read = ar9300_read_otp;
3320	cptr = AR9300_BASE_ADDR;
3321	ath_dbg(common, EEPROM, "Trying OTP access at Address 0x%04x\n", cptr);
3322	if (ar9300_check_eeprom_header(ah, read, cptr))
3323		goto found;
3324
3325	cptr = AR9300_BASE_ADDR_512;
3326	ath_dbg(common, EEPROM, "Trying OTP access at Address 0x%04x\n", cptr);
3327	if (ar9300_check_eeprom_header(ah, read, cptr))
3328		goto found;
3329
3330	goto fail;
3331
3332found:
3333	ath_dbg(common, EEPROM, "Found valid EEPROM data\n");
3334
3335	for (it = 0; it < MSTATE; it++) {
3336		if (!read(ah, cptr, word, COMP_HDR_LEN))
3337			goto fail;
3338
3339		if (!ar9300_check_header(word))
3340			break;
3341
3342		ar9300_comp_hdr_unpack(word, &code, &reference,
3343				       &length, &major, &minor);
3344		ath_dbg(common, EEPROM,
3345			"Found block at %x: code=%d ref=%d length=%d major=%d minor=%d\n",
3346			cptr, code, reference, length, major, minor);
3347		if ((!AR_SREV_9485(ah) && length >= 1024) ||
3348		    (AR_SREV_9485(ah) && length > EEPROM_DATA_LEN_9485)) {
3349			ath_dbg(common, EEPROM, "Skipping bad header\n");
3350			cptr -= COMP_HDR_LEN;
3351			continue;
3352		}
3353
3354		osize = length;
3355		read(ah, cptr, word, COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
3356		checksum = ar9300_comp_cksum(&word[COMP_HDR_LEN], length);
3357		mchecksum = get_unaligned_le16(&word[COMP_HDR_LEN + osize]);
3358		ath_dbg(common, EEPROM, "checksum %x %x\n",
3359			checksum, mchecksum);
3360		if (checksum == mchecksum) {
3361			ar9300_compress_decision(ah, it, code, reference, mptr,
3362						 word, length, mdata_size);
3363		} else {
3364			ath_dbg(common, EEPROM,
3365				"skipping block with bad checksum\n");
3366		}
3367		cptr -= (COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
3368	}
3369
3370	kfree(word);
3371	return cptr;
3372
3373fail:
3374	kfree(word);
3375	return -1;
3376}
3377
3378/*
3379 * Restore the configuration structure by reading the eeprom.
3380 * This function destroys any existing in-memory structure
3381 * content.
3382 */
3383static bool ath9k_hw_ar9300_fill_eeprom(struct ath_hw *ah)
3384{
3385	u8 *mptr = (u8 *) &ah->eeprom.ar9300_eep;
3386
3387	if (ar9300_eeprom_restore_internal(ah, mptr,
3388			sizeof(struct ar9300_eeprom)) < 0)
3389		return false;
3390
3391	return true;
3392}
3393
3394#if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
3395static u32 ar9003_dump_modal_eeprom(char *buf, u32 len, u32 size,
3396				    struct ar9300_modal_eep_header *modal_hdr)
3397{
3398	PR_EEP("Chain0 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[0]));
3399	PR_EEP("Chain1 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[1]));
3400	PR_EEP("Chain2 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[2]));
3401	PR_EEP("Ant. Common Control", le32_to_cpu(modal_hdr->antCtrlCommon));
3402	PR_EEP("Ant. Common Control2", le32_to_cpu(modal_hdr->antCtrlCommon2));
3403	PR_EEP("Ant. Gain", modal_hdr->antennaGain);
3404	PR_EEP("Switch Settle", modal_hdr->switchSettling);
3405	PR_EEP("Chain0 xatten1DB", modal_hdr->xatten1DB[0]);
3406	PR_EEP("Chain1 xatten1DB", modal_hdr->xatten1DB[1]);
3407	PR_EEP("Chain2 xatten1DB", modal_hdr->xatten1DB[2]);
3408	PR_EEP("Chain0 xatten1Margin", modal_hdr->xatten1Margin[0]);
3409	PR_EEP("Chain1 xatten1Margin", modal_hdr->xatten1Margin[1]);
3410	PR_EEP("Chain2 xatten1Margin", modal_hdr->xatten1Margin[2]);
3411	PR_EEP("Temp Slope", modal_hdr->tempSlope);
3412	PR_EEP("Volt Slope", modal_hdr->voltSlope);
3413	PR_EEP("spur Channels0", modal_hdr->spurChans[0]);
3414	PR_EEP("spur Channels1", modal_hdr->spurChans[1]);
3415	PR_EEP("spur Channels2", modal_hdr->spurChans[2]);
3416	PR_EEP("spur Channels3", modal_hdr->spurChans[3]);
3417	PR_EEP("spur Channels4", modal_hdr->spurChans[4]);
3418	PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
3419	PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]);
3420	PR_EEP("Chain2 NF Threshold", modal_hdr->noiseFloorThreshCh[2]);
3421	PR_EEP("Quick Drop", modal_hdr->quick_drop);
3422	PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
3423	PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
3424	PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
3425	PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
3426	PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
3427	PR_EEP("txClip", modal_hdr->txClip);
3428	PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
3429
3430	return len;
3431}
3432
3433static u32 ath9k_hw_ar9003_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
3434				       u8 *buf, u32 len, u32 size)
3435{
3436	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3437	struct ar9300_base_eep_hdr *pBase;
3438
3439	if (!dump_base_hdr) {
3440		len += scnprintf(buf + len, size - len,
3441				 "%20s :\n", "2GHz modal Header");
3442		len = ar9003_dump_modal_eeprom(buf, len, size,
3443						&eep->modalHeader2G);
3444		len += scnprintf(buf + len, size - len,
3445				 "%20s :\n", "5GHz modal Header");
3446		len = ar9003_dump_modal_eeprom(buf, len, size,
3447						&eep->modalHeader5G);
3448		goto out;
3449	}
3450
3451	pBase = &eep->baseEepHeader;
3452
3453	PR_EEP("EEPROM Version", ah->eeprom.ar9300_eep.eepromVersion);
3454	PR_EEP("RegDomain1", le16_to_cpu(pBase->regDmn[0]));
3455	PR_EEP("RegDomain2", le16_to_cpu(pBase->regDmn[1]));
3456	PR_EEP("TX Mask", (pBase->txrxMask >> 4));
3457	PR_EEP("RX Mask", (pBase->txrxMask & 0x0f));
3458	PR_EEP("Allow 5GHz", !!(pBase->opCapFlags.opFlags &
3459				AR5416_OPFLAGS_11A));
3460	PR_EEP("Allow 2GHz", !!(pBase->opCapFlags.opFlags &
3461				AR5416_OPFLAGS_11G));
3462	PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags.opFlags &
3463					AR5416_OPFLAGS_N_2G_HT20));
3464	PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags.opFlags &
3465					AR5416_OPFLAGS_N_2G_HT40));
3466	PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags.opFlags &
3467					AR5416_OPFLAGS_N_5G_HT20));
3468	PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags.opFlags &
3469					AR5416_OPFLAGS_N_5G_HT40));
3470	PR_EEP("Big Endian", !!(pBase->opCapFlags.eepMisc & 0x01));
3471	PR_EEP("RF Silent", pBase->rfSilent);
3472	PR_EEP("BT option", pBase->blueToothOptions);
3473	PR_EEP("Device Cap", pBase->deviceCap);
3474	PR_EEP("Device Type", pBase->deviceType);
3475	PR_EEP("Power Table Offset", pBase->pwrTableOffset);
3476	PR_EEP("Tuning Caps1", pBase->params_for_tuning_caps[0]);
3477	PR_EEP("Tuning Caps2", pBase->params_for_tuning_caps[1]);
3478	PR_EEP("Enable Tx Temp Comp", !!(pBase->featureEnable & BIT(0)));
3479	PR_EEP("Enable Tx Volt Comp", !!(pBase->featureEnable & BIT(1)));
3480	PR_EEP("Enable fast clock", !!(pBase->featureEnable & BIT(2)));
3481	PR_EEP("Enable doubling", !!(pBase->featureEnable & BIT(3)));
3482	PR_EEP("Internal regulator", !!(pBase->featureEnable & BIT(4)));
3483	PR_EEP("Enable Paprd", !!(pBase->featureEnable & BIT(5)));
3484	PR_EEP("Driver Strength", !!(pBase->miscConfiguration & BIT(0)));
3485	PR_EEP("Quick Drop", !!(pBase->miscConfiguration & BIT(1)));
3486	PR_EEP("Chain mask Reduce", (pBase->miscConfiguration >> 0x3) & 0x1);
3487	PR_EEP("Write enable Gpio", pBase->eepromWriteEnableGpio);
3488	PR_EEP("WLAN Disable Gpio", pBase->wlanDisableGpio);
3489	PR_EEP("WLAN LED Gpio", pBase->wlanLedGpio);
3490	PR_EEP("Rx Band Select Gpio", pBase->rxBandSelectGpio);
3491	PR_EEP("Tx Gain", pBase->txrxgain >> 4);
3492	PR_EEP("Rx Gain", pBase->txrxgain & 0xf);
3493	PR_EEP("SW Reg", le32_to_cpu(pBase->swreg));
3494
3495	len += scnprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
3496			 ah->eeprom.ar9300_eep.macAddr);
3497out:
3498	if (len > size)
3499		len = size;
3500
3501	return len;
3502}
3503#else
3504static u32 ath9k_hw_ar9003_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
3505				       u8 *buf, u32 len, u32 size)
3506{
3507	return 0;
3508}
3509#endif
3510
3511/* XXX: review hardware docs */
3512static int ath9k_hw_ar9300_get_eeprom_ver(struct ath_hw *ah)
3513{
3514	return ah->eeprom.ar9300_eep.eepromVersion;
3515}
3516
3517/* XXX: could be read from the eepromVersion, not sure yet */
3518static int ath9k_hw_ar9300_get_eeprom_rev(struct ath_hw *ah)
3519{
3520	return 0;
3521}
3522
3523static struct ar9300_modal_eep_header *ar9003_modal_header(struct ath_hw *ah,
3524							   bool is2ghz)
3525{
3526	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3527
3528	if (is2ghz)
3529		return &eep->modalHeader2G;
3530	else
3531		return &eep->modalHeader5G;
3532}
3533
3534static void ar9003_hw_xpa_bias_level_apply(struct ath_hw *ah, bool is2ghz)
3535{
3536	int bias = ar9003_modal_header(ah, is2ghz)->xpaBiasLvl;
3537
3538	if (AR_SREV_9485(ah) || AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
3539	    AR_SREV_9531(ah) || AR_SREV_9561(ah))
3540		REG_RMW_FIELD(ah, AR_CH0_TOP2, AR_CH0_TOP2_XPABIASLVL, bias);
3541	else if (AR_SREV_9462(ah) || AR_SREV_9550(ah) || AR_SREV_9565(ah))
3542		REG_RMW_FIELD(ah, AR_CH0_TOP, AR_CH0_TOP_XPABIASLVL, bias);
3543	else {
3544		REG_RMW_FIELD(ah, AR_CH0_TOP, AR_CH0_TOP_XPABIASLVL, bias);
3545		REG_RMW_FIELD(ah, AR_CH0_THERM,
3546				AR_CH0_THERM_XPABIASLVL_MSB,
3547				bias >> 2);
3548		REG_RMW_FIELD(ah, AR_CH0_THERM,
3549				AR_CH0_THERM_XPASHORT2GND, 1);
3550	}
3551}
3552
3553static u16 ar9003_switch_com_spdt_get(struct ath_hw *ah, bool is2ghz)
3554{
3555	return le16_to_cpu(ar9003_modal_header(ah, is2ghz)->switchcomspdt);
3556}
3557
3558u32 ar9003_hw_ant_ctrl_common_get(struct ath_hw *ah, bool is2ghz)
3559{
3560	return le32_to_cpu(ar9003_modal_header(ah, is2ghz)->antCtrlCommon);
3561}
3562
3563u32 ar9003_hw_ant_ctrl_common_2_get(struct ath_hw *ah, bool is2ghz)
3564{
3565	return le32_to_cpu(ar9003_modal_header(ah, is2ghz)->antCtrlCommon2);
3566}
3567
3568static u16 ar9003_hw_ant_ctrl_chain_get(struct ath_hw *ah, int chain,
3569					bool is2ghz)
3570{
3571	__le16 val = ar9003_modal_header(ah, is2ghz)->antCtrlChain[chain];
3572	return le16_to_cpu(val);
3573}
3574
3575static void ar9003_hw_ant_ctrl_apply(struct ath_hw *ah, bool is2ghz)
3576{
3577	struct ath_common *common = ath9k_hw_common(ah);
3578	struct ath9k_hw_capabilities *pCap = &ah->caps;
3579	int chain;
3580	u32 regval, value, gpio;
3581	static const u32 switch_chain_reg[AR9300_MAX_CHAINS] = {
3582			AR_PHY_SWITCH_CHAIN_0,
3583			AR_PHY_SWITCH_CHAIN_1,
3584			AR_PHY_SWITCH_CHAIN_2,
3585	};
3586
3587	if (AR_SREV_9485(ah) && (ar9003_hw_get_rx_gain_idx(ah) == 0)) {
3588		if (ah->config.xlna_gpio)
3589			gpio = ah->config.xlna_gpio;
3590		else
3591			gpio = AR9300_EXT_LNA_CTL_GPIO_AR9485;
3592
3593		ath9k_hw_cfg_output(ah, gpio,
3594				    AR_GPIO_OUTPUT_MUX_AS_PCIE_ATTENTION_LED);
3595	}
3596
3597	value = ar9003_hw_ant_ctrl_common_get(ah, is2ghz);
3598
3599	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3600		REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
3601				AR_SWITCH_TABLE_COM_AR9462_ALL, value);
3602	} else if (AR_SREV_9550(ah) || AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
3603		REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
3604				AR_SWITCH_TABLE_COM_AR9550_ALL, value);
3605	} else
3606		REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
3607			      AR_SWITCH_TABLE_COM_ALL, value);
3608
3609
3610	/*
3611	 *   AR9462 defines new switch table for BT/WLAN,
3612	 *       here's new field name in XXX.ref for both 2G and 5G.
3613	 *   Register: [GLB_CONTROL] GLB_CONTROL (@0x20044)
3614	 *   15:12   R/W     SWITCH_TABLE_COM_SPDT_WLAN_RX
3615	 * SWITCH_TABLE_COM_SPDT_WLAN_RX
3616	 *
3617	 *   11:8     R/W     SWITCH_TABLE_COM_SPDT_WLAN_TX
3618	 * SWITCH_TABLE_COM_SPDT_WLAN_TX
3619	 *
3620	 *   7:4 R/W  SWITCH_TABLE_COM_SPDT_WLAN_IDLE
3621	 * SWITCH_TABLE_COM_SPDT_WLAN_IDLE
3622	 */
3623	if (AR_SREV_9462_20_OR_LATER(ah) || AR_SREV_9565(ah)) {
3624		value = ar9003_switch_com_spdt_get(ah, is2ghz);
3625		REG_RMW_FIELD(ah, AR_PHY_GLB_CONTROL,
3626				AR_SWITCH_TABLE_COM_SPDT_ALL, value);
3627		REG_SET_BIT(ah, AR_PHY_GLB_CONTROL, AR_BTCOEX_CTRL_SPDT_ENABLE);
3628	}
3629
3630	value = ar9003_hw_ant_ctrl_common_2_get(ah, is2ghz);
3631	if (AR_SREV_9485(ah) && common->bt_ant_diversity) {
3632		value &= ~AR_SWITCH_TABLE_COM2_ALL;
3633		value |= ah->config.ant_ctrl_comm2g_switch_enable;
3634
3635	}
3636	REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL, value);
3637
3638	if ((AR_SREV_9462(ah)) && (ah->rxchainmask == 0x2)) {
3639		value = ar9003_hw_ant_ctrl_chain_get(ah, 1, is2ghz);
3640		REG_RMW_FIELD(ah, switch_chain_reg[0],
3641			      AR_SWITCH_TABLE_ALL, value);
3642	}
3643
3644	for (chain = 0; chain < AR9300_MAX_CHAINS; chain++) {
3645		if ((ah->rxchainmask & BIT(chain)) ||
3646		    (ah->txchainmask & BIT(chain))) {
3647			value = ar9003_hw_ant_ctrl_chain_get(ah, chain,
3648							     is2ghz);
3649			REG_RMW_FIELD(ah, switch_chain_reg[chain],
3650				      AR_SWITCH_TABLE_ALL, value);
3651		}
3652	}
3653
3654	if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
3655		value = ath9k_hw_ar9300_get_eeprom(ah, EEP_ANT_DIV_CTL1);
3656		/*
3657		 * main_lnaconf, alt_lnaconf, main_tb, alt_tb
3658		 * are the fields present
3659		 */
3660		regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
3661		regval &= (~AR_ANT_DIV_CTRL_ALL);
3662		regval |= (value & 0x3f) << AR_ANT_DIV_CTRL_ALL_S;
3663		/* enable_lnadiv */
3664		regval &= (~AR_PHY_ANT_DIV_LNADIV);
3665		regval |= ((value >> 6) & 0x1) << AR_PHY_ANT_DIV_LNADIV_S;
3666
3667		if (AR_SREV_9485(ah) && common->bt_ant_diversity)
3668			regval |= AR_ANT_DIV_ENABLE;
3669
3670		if (AR_SREV_9565(ah)) {
3671			if (common->bt_ant_diversity) {
3672				regval |= (1 << AR_PHY_ANT_SW_RX_PROT_S);
3673
3674				REG_SET_BIT(ah, AR_PHY_RESTART,
3675					    AR_PHY_RESTART_ENABLE_DIV_M2FLAG);
3676
3677				/* Force WLAN LNA diversity ON */
3678				REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV,
3679					    AR_BTCOEX_WL_LNADIV_FORCE_ON);
3680			} else {
3681				regval &= ~(1 << AR_PHY_ANT_DIV_LNADIV_S);
3682				regval &= ~(1 << AR_PHY_ANT_SW_RX_PROT_S);
3683
3684				REG_CLR_BIT(ah, AR_PHY_MC_GAIN_CTRL,
3685					    (1 << AR_PHY_ANT_SW_RX_PROT_S));
3686
3687				/* Force WLAN LNA diversity OFF */
3688				REG_CLR_BIT(ah, AR_BTCOEX_WL_LNADIV,
3689					    AR_BTCOEX_WL_LNADIV_FORCE_ON);
3690			}
3691		}
3692
3693		REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
3694
3695		/* enable fast_div */
3696		regval = REG_READ(ah, AR_PHY_CCK_DETECT);
3697		regval &= (~AR_FAST_DIV_ENABLE);
3698		regval |= ((value >> 7) & 0x1) << AR_FAST_DIV_ENABLE_S;
3699
3700		if ((AR_SREV_9485(ah) || AR_SREV_9565(ah))
3701		    && common->bt_ant_diversity)
3702			regval |= AR_FAST_DIV_ENABLE;
3703
3704		REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
3705
3706		if (pCap->hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) {
3707			regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
3708			/*
3709			 * clear bits 25-30 main_lnaconf, alt_lnaconf,
3710			 * main_tb, alt_tb
3711			 */
3712			regval &= (~(AR_PHY_ANT_DIV_MAIN_LNACONF |
3713				     AR_PHY_ANT_DIV_ALT_LNACONF |
3714				     AR_PHY_ANT_DIV_ALT_GAINTB |
3715				     AR_PHY_ANT_DIV_MAIN_GAINTB));
3716			/* by default use LNA1 for the main antenna */
3717			regval |= (ATH_ANT_DIV_COMB_LNA1 <<
3718				   AR_PHY_ANT_DIV_MAIN_LNACONF_S);
3719			regval |= (ATH_ANT_DIV_COMB_LNA2 <<
3720				   AR_PHY_ANT_DIV_ALT_LNACONF_S);
3721			REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
3722		}
3723	}
3724}
3725
3726static void ar9003_hw_drive_strength_apply(struct ath_hw *ah)
3727{
3728	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3729	struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
3730	int drive_strength;
3731	unsigned long reg;
3732
3733	drive_strength = pBase->miscConfiguration & BIT(0);
3734	if (!drive_strength)
3735		return;
3736
3737	reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS1);
3738	reg &= ~0x00ffffc0;
3739	reg |= 0x5 << 21;
3740	reg |= 0x5 << 18;
3741	reg |= 0x5 << 15;
3742	reg |= 0x5 << 12;
3743	reg |= 0x5 << 9;
3744	reg |= 0x5 << 6;
3745	REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS1, reg);
3746
3747	reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS2);
3748	reg &= ~0xffffffe0;
3749	reg |= 0x5 << 29;
3750	reg |= 0x5 << 26;
3751	reg |= 0x5 << 23;
3752	reg |= 0x5 << 20;
3753	reg |= 0x5 << 17;
3754	reg |= 0x5 << 14;
3755	reg |= 0x5 << 11;
3756	reg |= 0x5 << 8;
3757	reg |= 0x5 << 5;
3758	REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS2, reg);
3759
3760	reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS4);
3761	reg &= ~0xff800000;
3762	reg |= 0x5 << 29;
3763	reg |= 0x5 << 26;
3764	reg |= 0x5 << 23;
3765	REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS4, reg);
3766}
3767
3768static u16 ar9003_hw_atten_chain_get(struct ath_hw *ah, int chain,
3769				     struct ath9k_channel *chan)
3770{
3771	int f[3], t[3];
3772	u16 value;
3773	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3774
3775	if (chain >= 0 && chain < 3) {
3776		if (IS_CHAN_2GHZ(chan))
3777			return eep->modalHeader2G.xatten1DB[chain];
3778		else if (eep->base_ext2.xatten1DBLow[chain] != 0) {
3779			t[0] = eep->base_ext2.xatten1DBLow[chain];
3780			f[0] = 5180;
3781			t[1] = eep->modalHeader5G.xatten1DB[chain];
3782			f[1] = 5500;
3783			t[2] = eep->base_ext2.xatten1DBHigh[chain];
3784			f[2] = 5785;
3785			value = ar9003_hw_power_interpolate((s32) chan->channel,
3786							    f, t, 3);
3787			return value;
3788		} else
3789			return eep->modalHeader5G.xatten1DB[chain];
3790	}
3791
3792	return 0;
3793}
3794
3795
3796static u16 ar9003_hw_atten_chain_get_margin(struct ath_hw *ah, int chain,
3797					    struct ath9k_channel *chan)
3798{
3799	int f[3], t[3];
3800	u16 value;
3801	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3802
3803	if (chain >= 0 && chain < 3) {
3804		if (IS_CHAN_2GHZ(chan))
3805			return eep->modalHeader2G.xatten1Margin[chain];
3806		else if (eep->base_ext2.xatten1MarginLow[chain] != 0) {
3807			t[0] = eep->base_ext2.xatten1MarginLow[chain];
3808			f[0] = 5180;
3809			t[1] = eep->modalHeader5G.xatten1Margin[chain];
3810			f[1] = 5500;
3811			t[2] = eep->base_ext2.xatten1MarginHigh[chain];
3812			f[2] = 5785;
3813			value = ar9003_hw_power_interpolate((s32) chan->channel,
3814							    f, t, 3);
3815			return value;
3816		} else
3817			return eep->modalHeader5G.xatten1Margin[chain];
3818	}
3819
3820	return 0;
3821}
3822
3823static void ar9003_hw_atten_apply(struct ath_hw *ah, struct ath9k_channel *chan)
3824{
3825	int i;
3826	u16 value;
3827	unsigned long ext_atten_reg[3] = {AR_PHY_EXT_ATTEN_CTL_0,
3828					  AR_PHY_EXT_ATTEN_CTL_1,
3829					  AR_PHY_EXT_ATTEN_CTL_2,
3830					 };
3831
3832	if ((AR_SREV_9462(ah)) && (ah->rxchainmask == 0x2)) {
3833		value = ar9003_hw_atten_chain_get(ah, 1, chan);
3834		REG_RMW_FIELD(ah, ext_atten_reg[0],
3835			      AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
3836
3837		value = ar9003_hw_atten_chain_get_margin(ah, 1, chan);
3838		REG_RMW_FIELD(ah, ext_atten_reg[0],
3839			      AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
3840			      value);
3841	}
3842
3843	/* Test value. if 0 then attenuation is unused. Don't load anything. */
3844	for (i = 0; i < 3; i++) {
3845		if (ah->txchainmask & BIT(i)) {
3846			value = ar9003_hw_atten_chain_get(ah, i, chan);
3847			REG_RMW_FIELD(ah, ext_atten_reg[i],
3848				      AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
3849
3850			if (AR_SREV_9485(ah) &&
3851			    (ar9003_hw_get_rx_gain_idx(ah) == 0) &&
3852			    ah->config.xatten_margin_cfg)
3853				value = 5;
3854			else
3855				value = ar9003_hw_atten_chain_get_margin(ah, i, chan);
3856
3857			if (ah->config.alt_mingainidx)
3858				REG_RMW_FIELD(ah, AR_PHY_EXT_ATTEN_CTL_0,
3859					      AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
3860					      value);
3861
3862			REG_RMW_FIELD(ah, ext_atten_reg[i],
3863				      AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
3864				      value);
3865		}
3866	}
3867}
3868
3869static bool is_pmu_set(struct ath_hw *ah, u32 pmu_reg, int pmu_set)
3870{
3871	int timeout = 100;
3872
3873	while (pmu_set != REG_READ(ah, pmu_reg)) {
3874		if (timeout-- == 0)
3875			return false;
3876		REG_WRITE(ah, pmu_reg, pmu_set);
3877		udelay(10);
3878	}
3879
3880	return true;
3881}
3882
3883void ar9003_hw_internal_regulator_apply(struct ath_hw *ah)
3884{
3885	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3886	struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
3887	u32 reg_val;
3888
3889	if (pBase->featureEnable & BIT(4)) {
3890		if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
3891			int reg_pmu_set;
3892
3893			reg_pmu_set = REG_READ(ah, AR_PHY_PMU2) & ~AR_PHY_PMU2_PGM;
3894			REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3895			if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3896				return;
3897
3898			if (AR_SREV_9330(ah)) {
3899				if (ah->is_clk_25mhz) {
3900					reg_pmu_set = (3 << 1) | (8 << 4) |
3901						      (3 << 8) | (1 << 14) |
3902						      (6 << 17) | (1 << 20) |
3903						      (3 << 24);
3904				} else {
3905					reg_pmu_set = (4 << 1)  | (7 << 4) |
3906						      (3 << 8)  | (1 << 14) |
3907						      (6 << 17) | (1 << 20) |
3908						      (3 << 24);
3909				}
3910			} else {
3911				reg_pmu_set = (5 << 1) | (7 << 4) |
3912					      (2 << 8) | (2 << 14) |
3913					      (6 << 17) | (1 << 20) |
3914					      (3 << 24) | (1 << 28);
3915			}
3916
3917			REG_WRITE(ah, AR_PHY_PMU1, reg_pmu_set);
3918			if (!is_pmu_set(ah, AR_PHY_PMU1, reg_pmu_set))
3919				return;
3920
3921			reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0xFFC00000)
3922					| (4 << 26);
3923			REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3924			if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3925				return;
3926
3927			reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0x00200000)
3928					| (1 << 21);
3929			REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3930			if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3931				return;
3932		} else if (AR_SREV_9462(ah) || AR_SREV_9565(ah) ||
3933			   AR_SREV_9561(ah)) {
3934			reg_val = le32_to_cpu(pBase->swreg);
3935			REG_WRITE(ah, AR_PHY_PMU1, reg_val);
3936
3937			if (AR_SREV_9561(ah))
3938				REG_WRITE(ah, AR_PHY_PMU2, 0x10200000);
3939		} else {
3940			/* Internal regulator is ON. Write swreg register. */
3941			reg_val = le32_to_cpu(pBase->swreg);
3942			REG_WRITE(ah, AR_RTC_REG_CONTROL1,
3943				  REG_READ(ah, AR_RTC_REG_CONTROL1) &
3944				  (~AR_RTC_REG_CONTROL1_SWREG_PROGRAM));
3945			REG_WRITE(ah, AR_RTC_REG_CONTROL0, reg_val);
3946			/* Set REG_CONTROL1.SWREG_PROGRAM */
3947			REG_WRITE(ah, AR_RTC_REG_CONTROL1,
3948				  REG_READ(ah,
3949					   AR_RTC_REG_CONTROL1) |
3950					   AR_RTC_REG_CONTROL1_SWREG_PROGRAM);
3951		}
3952	} else {
3953		if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
3954			REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0);
3955			while (REG_READ_FIELD(ah, AR_PHY_PMU2,
3956						AR_PHY_PMU2_PGM))
3957				udelay(10);
3958
3959			REG_RMW_FIELD(ah, AR_PHY_PMU1, AR_PHY_PMU1_PWD, 0x1);
3960			while (!REG_READ_FIELD(ah, AR_PHY_PMU1,
3961						AR_PHY_PMU1_PWD))
3962				udelay(10);
3963			REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0x1);
3964			while (!REG_READ_FIELD(ah, AR_PHY_PMU2,
3965						AR_PHY_PMU2_PGM))
3966				udelay(10);
3967		} else if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
3968			REG_RMW_FIELD(ah, AR_PHY_PMU1, AR_PHY_PMU1_PWD, 0x1);
3969		else {
3970			reg_val = REG_READ(ah, AR_RTC_SLEEP_CLK) |
3971				AR_RTC_FORCE_SWREG_PRD;
3972			REG_WRITE(ah, AR_RTC_SLEEP_CLK, reg_val);
3973		}
3974	}
3975
3976}
3977
3978static void ar9003_hw_apply_tuning_caps(struct ath_hw *ah)
3979{
3980	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3981	u8 tuning_caps_param = eep->baseEepHeader.params_for_tuning_caps[0];
3982
3983	if (AR_SREV_9340(ah) || AR_SREV_9531(ah))
3984		return;
3985
3986	if (eep->baseEepHeader.featureEnable & 0x40) {
3987		tuning_caps_param &= 0x7f;
3988		REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPINDAC,
3989			      tuning_caps_param);
3990		REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPOUTDAC,
3991			      tuning_caps_param);
3992	}
3993}
3994
3995static void ar9003_hw_quick_drop_apply(struct ath_hw *ah, u16 freq)
3996{
3997	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3998	struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
3999	int quick_drop;
4000	s32 t[3], f[3] = {5180, 5500, 5785};
4001
4002	if (!(pBase->miscConfiguration & BIT(4)))
4003		return;
4004
4005	if (AR_SREV_9300(ah) || AR_SREV_9580(ah) || AR_SREV_9340(ah)) {
4006		if (freq < 4000) {
4007			quick_drop = eep->modalHeader2G.quick_drop;
4008		} else {
4009			t[0] = eep->base_ext1.quick_drop_low;
4010			t[1] = eep->modalHeader5G.quick_drop;
4011			t[2] = eep->base_ext1.quick_drop_high;
4012			quick_drop = ar9003_hw_power_interpolate(freq, f, t, 3);
4013		}
4014		REG_RMW_FIELD(ah, AR_PHY_AGC, AR_PHY_AGC_QUICK_DROP, quick_drop);
4015	}
4016}
4017
4018static void ar9003_hw_txend_to_xpa_off_apply(struct ath_hw *ah, bool is2ghz)
4019{
4020	u32 value;
4021
4022	value = ar9003_modal_header(ah, is2ghz)->txEndToXpaOff;
4023
4024	REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
4025		      AR_PHY_XPA_TIMING_CTL_TX_END_XPAB_OFF, value);
4026	REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
4027		      AR_PHY_XPA_TIMING_CTL_TX_END_XPAA_OFF, value);
4028}
4029
4030static void ar9003_hw_xpa_timing_control_apply(struct ath_hw *ah, bool is2ghz)
4031{
4032	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4033	u8 xpa_ctl;
4034
4035	if (!(eep->baseEepHeader.featureEnable & 0x80))
4036		return;
4037
4038	if (!AR_SREV_9300(ah) &&
4039	    !AR_SREV_9340(ah) &&
4040	    !AR_SREV_9580(ah) &&
4041	    !AR_SREV_9531(ah) &&
4042	    !AR_SREV_9561(ah))
4043		return;
4044
4045	xpa_ctl = ar9003_modal_header(ah, is2ghz)->txFrameToXpaOn;
4046	if (is2ghz)
4047		REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
4048			      AR_PHY_XPA_TIMING_CTL_FRAME_XPAB_ON, xpa_ctl);
4049	else
4050		REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
4051			      AR_PHY_XPA_TIMING_CTL_FRAME_XPAA_ON, xpa_ctl);
4052}
4053
4054static void ar9003_hw_xlna_bias_strength_apply(struct ath_hw *ah, bool is2ghz)
4055{
4056	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4057	u8 bias;
4058
4059	if (!(eep->baseEepHeader.miscConfiguration & 0x40))
4060		return;
4061
4062	if (!AR_SREV_9300(ah))
4063		return;
4064
4065	bias = ar9003_modal_header(ah, is2ghz)->xlna_bias_strength;
4066	REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS,
4067		      bias & 0x3);
4068	bias >>= 2;
4069	REG_RMW_FIELD(ah, AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS,
4070		      bias & 0x3);
4071	bias >>= 2;
4072	REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS,
4073		      bias & 0x3);
4074}
4075
4076static int ar9003_hw_get_thermometer(struct ath_hw *ah)
4077{
4078	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4079	struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
4080	int thermometer =  (pBase->miscConfiguration >> 1) & 0x3;
4081
4082	return --thermometer;
4083}
4084
4085static void ar9003_hw_thermometer_apply(struct ath_hw *ah)
4086{
4087	struct ath9k_hw_capabilities *pCap = &ah->caps;
4088	int thermometer = ar9003_hw_get_thermometer(ah);
4089	u8 therm_on = (thermometer < 0) ? 0 : 1;
4090
4091	REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_RXTX4,
4092		      AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, therm_on);
4093	if (pCap->chip_chainmask & BIT(1))
4094		REG_RMW_FIELD(ah, AR_PHY_65NM_CH1_RXTX4,
4095			      AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, therm_on);
4096	if (pCap->chip_chainmask & BIT(2))
4097		REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
4098			      AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, therm_on);
4099
4100	therm_on = (thermometer < 0) ? 0 : (thermometer == 0);
4101	REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_RXTX4,
4102		      AR_PHY_65NM_CH0_RXTX4_THERM_ON, therm_on);
4103	if (pCap->chip_chainmask & BIT(1)) {
4104		therm_on = (thermometer < 0) ? 0 : (thermometer == 1);
4105		REG_RMW_FIELD(ah, AR_PHY_65NM_CH1_RXTX4,
4106			      AR_PHY_65NM_CH0_RXTX4_THERM_ON, therm_on);
4107	}
4108	if (pCap->chip_chainmask & BIT(2)) {
4109		therm_on = (thermometer < 0) ? 0 : (thermometer == 2);
4110		REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
4111			      AR_PHY_65NM_CH0_RXTX4_THERM_ON, therm_on);
4112	}
4113}
4114
4115static void ar9003_hw_thermo_cal_apply(struct ath_hw *ah)
4116{
4117	u32 data, ko, kg;
4118
4119	if (!AR_SREV_9462_20_OR_LATER(ah))
4120		return;
4121
4122	ar9300_otp_read_word(ah, 1, &data);
4123	ko = data & 0xff;
4124	kg = (data >> 8) & 0xff;
4125	if (ko || kg) {
4126		REG_RMW_FIELD(ah, AR_PHY_BB_THERM_ADC_3,
4127			      AR_PHY_BB_THERM_ADC_3_THERM_ADC_OFFSET, ko);
4128		REG_RMW_FIELD(ah, AR_PHY_BB_THERM_ADC_3,
4129			      AR_PHY_BB_THERM_ADC_3_THERM_ADC_SCALE_GAIN,
4130			      kg + 256);
4131	}
4132}
4133
4134static void ar9003_hw_apply_minccapwr_thresh(struct ath_hw *ah,
4135					     bool is2ghz)
4136{
4137	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4138	const u_int32_t cca_ctrl[AR9300_MAX_CHAINS] = {
4139		AR_PHY_CCA_CTRL_0,
4140		AR_PHY_CCA_CTRL_1,
4141		AR_PHY_CCA_CTRL_2,
4142	};
4143	int chain;
4144	u32 val;
4145
4146	if (is2ghz) {
4147		if (!(eep->base_ext1.misc_enable & BIT(2)))
4148			return;
4149	} else {
4150		if (!(eep->base_ext1.misc_enable & BIT(3)))
4151			return;
4152	}
4153
4154	for (chain = 0; chain < AR9300_MAX_CHAINS; chain++) {
4155		if (!(ah->caps.tx_chainmask & BIT(chain)))
4156			continue;
4157
4158		val = ar9003_modal_header(ah, is2ghz)->noiseFloorThreshCh[chain];
4159		REG_RMW_FIELD(ah, cca_ctrl[chain],
4160			      AR_PHY_EXT_CCA0_THRESH62_1, val);
4161	}
4162
4163}
4164
4165static void ath9k_hw_ar9300_set_board_values(struct ath_hw *ah,
4166					     struct ath9k_channel *chan)
4167{
4168	bool is2ghz = IS_CHAN_2GHZ(chan);
4169	ar9003_hw_xpa_timing_control_apply(ah, is2ghz);
4170	ar9003_hw_xpa_bias_level_apply(ah, is2ghz);
4171	ar9003_hw_ant_ctrl_apply(ah, is2ghz);
4172	ar9003_hw_drive_strength_apply(ah);
4173	ar9003_hw_xlna_bias_strength_apply(ah, is2ghz);
4174	ar9003_hw_atten_apply(ah, chan);
4175	ar9003_hw_quick_drop_apply(ah, chan->channel);
4176	if (!AR_SREV_9330(ah) && !AR_SREV_9340(ah) && !AR_SREV_9531(ah))
4177		ar9003_hw_internal_regulator_apply(ah);
4178	ar9003_hw_apply_tuning_caps(ah);
4179	ar9003_hw_apply_minccapwr_thresh(ah, chan);
4180	ar9003_hw_txend_to_xpa_off_apply(ah, is2ghz);
4181	ar9003_hw_thermometer_apply(ah);
4182	ar9003_hw_thermo_cal_apply(ah);
4183}
4184
4185static void ath9k_hw_ar9300_set_addac(struct ath_hw *ah,
4186				      struct ath9k_channel *chan)
4187{
4188}
4189
4190/*
4191 * Returns the interpolated y value corresponding to the specified x value
4192 * from the np ordered pairs of data (px,py).
4193 * The pairs do not have to be in any order.
4194 * If the specified x value is less than any of the px,
4195 * the returned y value is equal to the py for the lowest px.
4196 * If the specified x value is greater than any of the px,
4197 * the returned y value is equal to the py for the highest px.
4198 */
4199static int ar9003_hw_power_interpolate(int32_t x,
4200				       int32_t *px, int32_t *py, u_int16_t np)
4201{
4202	int ip = 0;
4203	int lx = 0, ly = 0, lhave = 0;
4204	int hx = 0, hy = 0, hhave = 0;
4205	int dx = 0;
4206	int y = 0;
4207
4208	lhave = 0;
4209	hhave = 0;
4210
4211	/* identify best lower and higher x calibration measurement */
4212	for (ip = 0; ip < np; ip++) {
4213		dx = x - px[ip];
4214
4215		/* this measurement is higher than our desired x */
4216		if (dx <= 0) {
4217			if (!hhave || dx > (x - hx)) {
4218				/* new best higher x measurement */
4219				hx = px[ip];
4220				hy = py[ip];
4221				hhave = 1;
4222			}
4223		}
4224		/* this measurement is lower than our desired x */
4225		if (dx >= 0) {
4226			if (!lhave || dx < (x - lx)) {
4227				/* new best lower x measurement */
4228				lx = px[ip];
4229				ly = py[ip];
4230				lhave = 1;
4231			}
4232		}
4233	}
4234
4235	/* the low x is good */
4236	if (lhave) {
4237		/* so is the high x */
4238		if (hhave) {
4239			/* they're the same, so just pick one */
4240			if (hx == lx)
4241				y = ly;
4242			else	/* interpolate  */
4243				y = interpolate(x, lx, hx, ly, hy);
4244		} else		/* only low is good, use it */
4245			y = ly;
4246	} else if (hhave)	/* only high is good, use it */
4247		y = hy;
4248	else /* nothing is good,this should never happen unless np=0, ???? */
4249		y = -(1 << 30);
4250	return y;
4251}
4252
4253static u8 ar9003_hw_eeprom_get_tgt_pwr(struct ath_hw *ah,
4254				       u16 rateIndex, u16 freq, bool is2GHz)
4255{
4256	u16 numPiers, i;
4257	s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
4258	s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
4259	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4260	struct cal_tgt_pow_legacy *pEepromTargetPwr;
4261	u8 *pFreqBin;
4262
4263	if (is2GHz) {
4264		numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
4265		pEepromTargetPwr = eep->calTargetPower2G;
4266		pFreqBin = eep->calTarget_freqbin_2G;
4267	} else {
4268		numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
4269		pEepromTargetPwr = eep->calTargetPower5G;
4270		pFreqBin = eep->calTarget_freqbin_5G;
4271	}
4272
4273	/*
4274	 * create array of channels and targetpower from
4275	 * targetpower piers stored on eeprom
4276	 */
4277	for (i = 0; i < numPiers; i++) {
4278		freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], is2GHz);
4279		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4280	}
4281
4282	/* interpolate to get target power for given frequency */
4283	return (u8) ar9003_hw_power_interpolate((s32) freq,
4284						 freqArray,
4285						 targetPowerArray, numPiers);
4286}
4287
4288static u8 ar9003_hw_eeprom_get_ht20_tgt_pwr(struct ath_hw *ah,
4289					    u16 rateIndex,
4290					    u16 freq, bool is2GHz)
4291{
4292	u16 numPiers, i;
4293	s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
4294	s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
4295	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4296	struct cal_tgt_pow_ht *pEepromTargetPwr;
4297	u8 *pFreqBin;
4298
4299	if (is2GHz) {
4300		numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
4301		pEepromTargetPwr = eep->calTargetPower2GHT20;
4302		pFreqBin = eep->calTarget_freqbin_2GHT20;
4303	} else {
4304		numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
4305		pEepromTargetPwr = eep->calTargetPower5GHT20;
4306		pFreqBin = eep->calTarget_freqbin_5GHT20;
4307	}
4308
4309	/*
4310	 * create array of channels and targetpower
4311	 * from targetpower piers stored on eeprom
4312	 */
4313	for (i = 0; i < numPiers; i++) {
4314		freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], is2GHz);
4315		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4316	}
4317
4318	/* interpolate to get target power for given frequency */
4319	return (u8) ar9003_hw_power_interpolate((s32) freq,
4320						 freqArray,
4321						 targetPowerArray, numPiers);
4322}
4323
4324static u8 ar9003_hw_eeprom_get_ht40_tgt_pwr(struct ath_hw *ah,
4325					    u16 rateIndex,
4326					    u16 freq, bool is2GHz)
4327{
4328	u16 numPiers, i;
4329	s32 targetPowerArray[AR9300_NUM_5G_40_TARGET_POWERS];
4330	s32 freqArray[AR9300_NUM_5G_40_TARGET_POWERS];
4331	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4332	struct cal_tgt_pow_ht *pEepromTargetPwr;
4333	u8 *pFreqBin;
4334
4335	if (is2GHz) {
4336		numPiers = AR9300_NUM_2G_40_TARGET_POWERS;
4337		pEepromTargetPwr = eep->calTargetPower2GHT40;
4338		pFreqBin = eep->calTarget_freqbin_2GHT40;
4339	} else {
4340		numPiers = AR9300_NUM_5G_40_TARGET_POWERS;
4341		pEepromTargetPwr = eep->calTargetPower5GHT40;
4342		pFreqBin = eep->calTarget_freqbin_5GHT40;
4343	}
4344
4345	/*
4346	 * create array of channels and targetpower from
4347	 * targetpower piers stored on eeprom
4348	 */
4349	for (i = 0; i < numPiers; i++) {
4350		freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], is2GHz);
4351		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4352	}
4353
4354	/* interpolate to get target power for given frequency */
4355	return (u8) ar9003_hw_power_interpolate((s32) freq,
4356						 freqArray,
4357						 targetPowerArray, numPiers);
4358}
4359
4360static u8 ar9003_hw_eeprom_get_cck_tgt_pwr(struct ath_hw *ah,
4361					   u16 rateIndex, u16 freq)
4362{
4363	u16 numPiers = AR9300_NUM_2G_CCK_TARGET_POWERS, i;
4364	s32 targetPowerArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
4365	s32 freqArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
4366	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4367	struct cal_tgt_pow_legacy *pEepromTargetPwr = eep->calTargetPowerCck;
4368	u8 *pFreqBin = eep->calTarget_freqbin_Cck;
4369
4370	/*
4371	 * create array of channels and targetpower from
4372	 * targetpower piers stored on eeprom
4373	 */
4374	for (i = 0; i < numPiers; i++) {
4375		freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], 1);
4376		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4377	}
4378
4379	/* interpolate to get target power for given frequency */
4380	return (u8) ar9003_hw_power_interpolate((s32) freq,
4381						 freqArray,
4382						 targetPowerArray, numPiers);
4383}
4384
4385static void ar9003_hw_selfgen_tpc_txpower(struct ath_hw *ah,
4386					  struct ath9k_channel *chan,
4387					  u8 *pwr_array)
4388{
4389	u32 val;
4390
4391	/* target power values for self generated frames (ACK,RTS/CTS) */
4392	if (IS_CHAN_2GHZ(chan)) {
4393		val = SM(pwr_array[ALL_TARGET_LEGACY_1L_5L], AR_TPC_ACK) |
4394		      SM(pwr_array[ALL_TARGET_LEGACY_1L_5L], AR_TPC_CTS) |
4395		      SM(0x3f, AR_TPC_CHIRP) | SM(0x3f, AR_TPC_RPT);
4396	} else {
4397		val = SM(pwr_array[ALL_TARGET_LEGACY_6_24], AR_TPC_ACK) |
4398		      SM(pwr_array[ALL_TARGET_LEGACY_6_24], AR_TPC_CTS) |
4399		      SM(0x3f, AR_TPC_CHIRP) | SM(0x3f, AR_TPC_RPT);
4400	}
4401	REG_WRITE(ah, AR_TPC, val);
4402}
4403
4404/* Set tx power registers to array of values passed in */
4405static int ar9003_hw_tx_power_regwrite(struct ath_hw *ah, u8 * pPwrArray)
4406{
4407#define POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
4408	/* make sure forced gain is not set */
4409	REG_WRITE(ah, AR_PHY_TX_FORCED_GAIN, 0);
4410
4411	/* Write the OFDM power per rate set */
4412
4413	/* 6 (LSB), 9, 12, 18 (MSB) */
4414	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(0),
4415		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
4416		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 16) |
4417		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 8) |
4418		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
4419
4420	/* 24 (LSB), 36, 48, 54 (MSB) */
4421	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(1),
4422		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_54], 24) |
4423		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_48], 16) |
4424		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_36], 8) |
4425		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
4426
4427	/* Write the CCK power per rate set */
4428
4429	/* 1L (LSB), reserved, 2L, 2S (MSB) */
4430	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(2),
4431		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 24) |
4432		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
4433		  /* POW_SM(txPowerTimes2,  8) | this is reserved for AR9003 */
4434		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0));
4435
4436	/* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
4437	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(3),
4438		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_11S], 24) |
4439		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_11L], 16) |
4440		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_5S], 8) |
4441		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0)
4442	    );
4443
4444        /* Write the power for duplicated frames - HT40 */
4445
4446        /* dup40_cck (LSB), dup40_ofdm, ext20_cck, ext20_ofdm (MSB) */
4447	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(8),
4448		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
4449		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
4450		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24],  8) |
4451		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L],  0)
4452	    );
4453
4454	/* Write the HT20 power per rate set */
4455
4456	/* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
4457	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(4),
4458		  POW_SM(pPwrArray[ALL_TARGET_HT20_5], 24) |
4459		  POW_SM(pPwrArray[ALL_TARGET_HT20_4], 16) |
4460		  POW_SM(pPwrArray[ALL_TARGET_HT20_1_3_9_11_17_19], 8) |
4461		  POW_SM(pPwrArray[ALL_TARGET_HT20_0_8_16], 0)
4462	    );
4463
4464	/* 6 (LSB), 7, 12, 13 (MSB) */
4465	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(5),
4466		  POW_SM(pPwrArray[ALL_TARGET_HT20_13], 24) |
4467		  POW_SM(pPwrArray[ALL_TARGET_HT20_12], 16) |
4468		  POW_SM(pPwrArray[ALL_TARGET_HT20_7], 8) |
4469		  POW_SM(pPwrArray[ALL_TARGET_HT20_6], 0)
4470	    );
4471
4472	/* 14 (LSB), 15, 20, 21 */
4473	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(9),
4474		  POW_SM(pPwrArray[ALL_TARGET_HT20_21], 24) |
4475		  POW_SM(pPwrArray[ALL_TARGET_HT20_20], 16) |
4476		  POW_SM(pPwrArray[ALL_TARGET_HT20_15], 8) |
4477		  POW_SM(pPwrArray[ALL_TARGET_HT20_14], 0)
4478	    );
4479
4480	/* Mixed HT20 and HT40 rates */
4481
4482	/* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
4483	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(10),
4484		  POW_SM(pPwrArray[ALL_TARGET_HT40_23], 24) |
4485		  POW_SM(pPwrArray[ALL_TARGET_HT40_22], 16) |
4486		  POW_SM(pPwrArray[ALL_TARGET_HT20_23], 8) |
4487		  POW_SM(pPwrArray[ALL_TARGET_HT20_22], 0)
4488	    );
4489
4490	/*
4491	 * Write the HT40 power per rate set
4492	 * correct PAR difference between HT40 and HT20/LEGACY
4493	 * 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB)
4494	 */
4495	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(6),
4496		  POW_SM(pPwrArray[ALL_TARGET_HT40_5], 24) |
4497		  POW_SM(pPwrArray[ALL_TARGET_HT40_4], 16) |
4498		  POW_SM(pPwrArray[ALL_TARGET_HT40_1_3_9_11_17_19], 8) |
4499		  POW_SM(pPwrArray[ALL_TARGET_HT40_0_8_16], 0)
4500	    );
4501
4502	/* 6 (LSB), 7, 12, 13 (MSB) */
4503	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(7),
4504		  POW_SM(pPwrArray[ALL_TARGET_HT40_13], 24) |
4505		  POW_SM(pPwrArray[ALL_TARGET_HT40_12], 16) |
4506		  POW_SM(pPwrArray[ALL_TARGET_HT40_7], 8) |
4507		  POW_SM(pPwrArray[ALL_TARGET_HT40_6], 0)
4508	    );
4509
4510	/* 14 (LSB), 15, 20, 21 */
4511	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(11),
4512		  POW_SM(pPwrArray[ALL_TARGET_HT40_21], 24) |
4513		  POW_SM(pPwrArray[ALL_TARGET_HT40_20], 16) |
4514		  POW_SM(pPwrArray[ALL_TARGET_HT40_15], 8) |
4515		  POW_SM(pPwrArray[ALL_TARGET_HT40_14], 0)
4516	    );
4517
4518	return 0;
4519#undef POW_SM
4520}
4521
4522static void ar9003_hw_get_legacy_target_powers(struct ath_hw *ah, u16 freq,
4523					       u8 *targetPowerValT2,
4524					       bool is2GHz)
4525{
4526	targetPowerValT2[ALL_TARGET_LEGACY_6_24] =
4527	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_6_24, freq,
4528					 is2GHz);
4529	targetPowerValT2[ALL_TARGET_LEGACY_36] =
4530	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_36, freq,
4531					 is2GHz);
4532	targetPowerValT2[ALL_TARGET_LEGACY_48] =
4533	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_48, freq,
4534					 is2GHz);
4535	targetPowerValT2[ALL_TARGET_LEGACY_54] =
4536	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_54, freq,
4537					 is2GHz);
4538}
4539
4540static void ar9003_hw_get_cck_target_powers(struct ath_hw *ah, u16 freq,
4541					    u8 *targetPowerValT2)
4542{
4543	targetPowerValT2[ALL_TARGET_LEGACY_1L_5L] =
4544	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_1L_5L,
4545					     freq);
4546	targetPowerValT2[ALL_TARGET_LEGACY_5S] =
4547	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_5S, freq);
4548	targetPowerValT2[ALL_TARGET_LEGACY_11L] =
4549	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11L, freq);
4550	targetPowerValT2[ALL_TARGET_LEGACY_11S] =
4551	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11S, freq);
4552}
4553
4554static void ar9003_hw_get_ht20_target_powers(struct ath_hw *ah, u16 freq,
4555					     u8 *targetPowerValT2, bool is2GHz)
4556{
4557	targetPowerValT2[ALL_TARGET_HT20_0_8_16] =
4558	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
4559					      is2GHz);
4560	targetPowerValT2[ALL_TARGET_HT20_1_3_9_11_17_19] =
4561	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
4562					      freq, is2GHz);
4563	targetPowerValT2[ALL_TARGET_HT20_4] =
4564	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
4565					      is2GHz);
4566	targetPowerValT2[ALL_TARGET_HT20_5] =
4567	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
4568					      is2GHz);
4569	targetPowerValT2[ALL_TARGET_HT20_6] =
4570	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
4571					      is2GHz);
4572	targetPowerValT2[ALL_TARGET_HT20_7] =
4573	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
4574					      is2GHz);
4575	targetPowerValT2[ALL_TARGET_HT20_12] =
4576	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
4577					      is2GHz);
4578	targetPowerValT2[ALL_TARGET_HT20_13] =
4579	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
4580					      is2GHz);
4581	targetPowerValT2[ALL_TARGET_HT20_14] =
4582	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
4583					      is2GHz);
4584	targetPowerValT2[ALL_TARGET_HT20_15] =
4585	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
4586					      is2GHz);
4587	targetPowerValT2[ALL_TARGET_HT20_20] =
4588	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
4589					      is2GHz);
4590	targetPowerValT2[ALL_TARGET_HT20_21] =
4591	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
4592					      is2GHz);
4593	targetPowerValT2[ALL_TARGET_HT20_22] =
4594	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
4595					      is2GHz);
4596	targetPowerValT2[ALL_TARGET_HT20_23] =
4597	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
4598					      is2GHz);
4599}
4600
4601static void ar9003_hw_get_ht40_target_powers(struct ath_hw *ah,
4602						   u16 freq,
4603						   u8 *targetPowerValT2,
4604						   bool is2GHz)
4605{
4606	/* XXX: hard code for now, need to get from eeprom struct */
4607	u8 ht40PowerIncForPdadc = 0;
4608
4609	targetPowerValT2[ALL_TARGET_HT40_0_8_16] =
4610	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
4611					      is2GHz) + ht40PowerIncForPdadc;
4612	targetPowerValT2[ALL_TARGET_HT40_1_3_9_11_17_19] =
4613	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
4614					      freq,
4615					      is2GHz) + ht40PowerIncForPdadc;
4616	targetPowerValT2[ALL_TARGET_HT40_4] =
4617	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
4618					      is2GHz) + ht40PowerIncForPdadc;
4619	targetPowerValT2[ALL_TARGET_HT40_5] =
4620	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
4621					      is2GHz) + ht40PowerIncForPdadc;
4622	targetPowerValT2[ALL_TARGET_HT40_6] =
4623	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
4624					      is2GHz) + ht40PowerIncForPdadc;
4625	targetPowerValT2[ALL_TARGET_HT40_7] =
4626	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
4627					      is2GHz) + ht40PowerIncForPdadc;
4628	targetPowerValT2[ALL_TARGET_HT40_12] =
4629	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
4630					      is2GHz) + ht40PowerIncForPdadc;
4631	targetPowerValT2[ALL_TARGET_HT40_13] =
4632	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
4633					      is2GHz) + ht40PowerIncForPdadc;
4634	targetPowerValT2[ALL_TARGET_HT40_14] =
4635	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
4636					      is2GHz) + ht40PowerIncForPdadc;
4637	targetPowerValT2[ALL_TARGET_HT40_15] =
4638	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
4639					      is2GHz) + ht40PowerIncForPdadc;
4640	targetPowerValT2[ALL_TARGET_HT40_20] =
4641	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
4642					      is2GHz) + ht40PowerIncForPdadc;
4643	targetPowerValT2[ALL_TARGET_HT40_21] =
4644	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
4645					      is2GHz) + ht40PowerIncForPdadc;
4646	targetPowerValT2[ALL_TARGET_HT40_22] =
4647	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
4648					      is2GHz) + ht40PowerIncForPdadc;
4649	targetPowerValT2[ALL_TARGET_HT40_23] =
4650	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
4651					      is2GHz) + ht40PowerIncForPdadc;
4652}
4653
4654static void ar9003_hw_get_target_power_eeprom(struct ath_hw *ah,
4655					      struct ath9k_channel *chan,
4656					      u8 *targetPowerValT2)
4657{
4658	bool is2GHz = IS_CHAN_2GHZ(chan);
4659	unsigned int i = 0;
4660	struct ath_common *common = ath9k_hw_common(ah);
4661	u16 freq = chan->channel;
4662
4663	if (is2GHz)
4664		ar9003_hw_get_cck_target_powers(ah, freq, targetPowerValT2);
4665
4666	ar9003_hw_get_legacy_target_powers(ah, freq, targetPowerValT2, is2GHz);
4667	ar9003_hw_get_ht20_target_powers(ah, freq, targetPowerValT2, is2GHz);
4668
4669	if (IS_CHAN_HT40(chan))
4670		ar9003_hw_get_ht40_target_powers(ah, freq, targetPowerValT2,
4671						 is2GHz);
4672
4673	for (i = 0; i < ar9300RateSize; i++) {
4674		ath_dbg(common, REGULATORY, "TPC[%02d] 0x%08x\n",
4675			i, targetPowerValT2[i]);
4676	}
4677}
4678
4679static int ar9003_hw_cal_pier_get(struct ath_hw *ah,
4680				  int mode,
4681				  int ipier,
4682				  int ichain,
4683				  int *pfrequency,
4684				  int *pcorrection,
4685				  int *ptemperature, int *pvoltage)
4686{
4687	u8 *pCalPier;
4688	struct ar9300_cal_data_per_freq_op_loop *pCalPierStruct;
4689	int is2GHz;
4690	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4691	struct ath_common *common = ath9k_hw_common(ah);
4692
4693	if (ichain >= AR9300_MAX_CHAINS) {
4694		ath_dbg(common, EEPROM,
4695			"Invalid chain index, must be less than %d\n",
4696			AR9300_MAX_CHAINS);
4697		return -1;
4698	}
4699
4700	if (mode) {		/* 5GHz */
4701		if (ipier >= AR9300_NUM_5G_CAL_PIERS) {
4702			ath_dbg(common, EEPROM,
4703				"Invalid 5GHz cal pier index, must be less than %d\n",
4704				AR9300_NUM_5G_CAL_PIERS);
4705			return -1;
4706		}
4707		pCalPier = &(eep->calFreqPier5G[ipier]);
4708		pCalPierStruct = &(eep->calPierData5G[ichain][ipier]);
4709		is2GHz = 0;
4710	} else {
4711		if (ipier >= AR9300_NUM_2G_CAL_PIERS) {
4712			ath_dbg(common, EEPROM,
4713				"Invalid 2GHz cal pier index, must be less than %d\n",
4714				AR9300_NUM_2G_CAL_PIERS);
4715			return -1;
4716		}
4717
4718		pCalPier = &(eep->calFreqPier2G[ipier]);
4719		pCalPierStruct = &(eep->calPierData2G[ichain][ipier]);
4720		is2GHz = 1;
4721	}
4722
4723	*pfrequency = ath9k_hw_fbin2freq(*pCalPier, is2GHz);
4724	*pcorrection = pCalPierStruct->refPower;
4725	*ptemperature = pCalPierStruct->tempMeas;
4726	*pvoltage = pCalPierStruct->voltMeas;
4727
4728	return 0;
4729}
4730
4731static void ar9003_hw_power_control_override(struct ath_hw *ah,
4732					     int frequency,
4733					     int *correction,
4734					     int *voltage, int *temperature)
4735{
4736	int temp_slope = 0, temp_slope1 = 0, temp_slope2 = 0;
4737	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4738	int f[8], t[8], t1[3], t2[3], i;
4739
4740	REG_RMW(ah, AR_PHY_TPC_11_B0,
4741		(correction[0] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4742		AR_PHY_TPC_OLPC_GAIN_DELTA);
4743	if (ah->caps.tx_chainmask & BIT(1))
4744		REG_RMW(ah, AR_PHY_TPC_11_B1,
4745			(correction[1] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4746			AR_PHY_TPC_OLPC_GAIN_DELTA);
4747	if (ah->caps.tx_chainmask & BIT(2))
4748		REG_RMW(ah, AR_PHY_TPC_11_B2,
4749			(correction[2] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4750			AR_PHY_TPC_OLPC_GAIN_DELTA);
4751
4752	/* enable open loop power control on chip */
4753	REG_RMW(ah, AR_PHY_TPC_6_B0,
4754		(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4755		AR_PHY_TPC_6_ERROR_EST_MODE);
4756	if (ah->caps.tx_chainmask & BIT(1))
4757		REG_RMW(ah, AR_PHY_TPC_6_B1,
4758			(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4759			AR_PHY_TPC_6_ERROR_EST_MODE);
4760	if (ah->caps.tx_chainmask & BIT(2))
4761		REG_RMW(ah, AR_PHY_TPC_6_B2,
4762			(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4763			AR_PHY_TPC_6_ERROR_EST_MODE);
4764
4765	/*
4766	 * enable temperature compensation
4767	 * Need to use register names
4768	 */
4769	if (frequency < 4000) {
4770		temp_slope = eep->modalHeader2G.tempSlope;
4771	} else {
4772		if (AR_SREV_9550(ah)) {
4773			t[0] = eep->base_ext1.tempslopextension[2];
4774			t1[0] = eep->base_ext1.tempslopextension[3];
4775			t2[0] = eep->base_ext1.tempslopextension[4];
4776			f[0] = 5180;
4777
4778			t[1] = eep->modalHeader5G.tempSlope;
4779			t1[1] = eep->base_ext1.tempslopextension[0];
4780			t2[1] = eep->base_ext1.tempslopextension[1];
4781			f[1] = 5500;
4782
4783			t[2] = eep->base_ext1.tempslopextension[5];
4784			t1[2] = eep->base_ext1.tempslopextension[6];
4785			t2[2] = eep->base_ext1.tempslopextension[7];
4786			f[2] = 5785;
4787
4788			temp_slope = ar9003_hw_power_interpolate(frequency,
4789								 f, t, 3);
4790			temp_slope1 = ar9003_hw_power_interpolate(frequency,
4791								   f, t1, 3);
4792			temp_slope2 = ar9003_hw_power_interpolate(frequency,
4793								   f, t2, 3);
4794
4795			goto tempslope;
4796		}
4797
4798		if ((eep->baseEepHeader.miscConfiguration & 0x20) != 0) {
4799			for (i = 0; i < 8; i++) {
4800				t[i] = eep->base_ext1.tempslopextension[i];
4801				f[i] = FBIN2FREQ(eep->calFreqPier5G[i], 0);
4802			}
4803			temp_slope = ar9003_hw_power_interpolate((s32) frequency,
4804								 f, t, 8);
4805		} else if (eep->base_ext2.tempSlopeLow != 0) {
4806			t[0] = eep->base_ext2.tempSlopeLow;
4807			f[0] = 5180;
4808			t[1] = eep->modalHeader5G.tempSlope;
4809			f[1] = 5500;
4810			t[2] = eep->base_ext2.tempSlopeHigh;
4811			f[2] = 5785;
4812			temp_slope = ar9003_hw_power_interpolate((s32) frequency,
4813								 f, t, 3);
4814		} else {
4815			temp_slope = eep->modalHeader5G.tempSlope;
4816		}
4817	}
4818
4819tempslope:
4820	if (AR_SREV_9550(ah) || AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
4821		u8 txmask = (eep->baseEepHeader.txrxMask & 0xf0) >> 4;
4822
4823		/*
4824		 * AR955x has tempSlope register for each chain.
4825		 * Check whether temp_compensation feature is enabled or not.
4826		 */
4827		if (eep->baseEepHeader.featureEnable & 0x1) {
4828			if (frequency < 4000) {
4829				if (txmask & BIT(0))
4830					REG_RMW_FIELD(ah, AR_PHY_TPC_19,
4831						      AR_PHY_TPC_19_ALPHA_THERM,
4832						      eep->base_ext2.tempSlopeLow);
4833				if (txmask & BIT(1))
4834					REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
4835						      AR_PHY_TPC_19_ALPHA_THERM,
4836						      temp_slope);
4837				if (txmask & BIT(2))
4838					REG_RMW_FIELD(ah, AR_PHY_TPC_19_B2,
4839						      AR_PHY_TPC_19_ALPHA_THERM,
4840						      eep->base_ext2.tempSlopeHigh);
4841			} else {
4842				if (txmask & BIT(0))
4843					REG_RMW_FIELD(ah, AR_PHY_TPC_19,
4844						      AR_PHY_TPC_19_ALPHA_THERM,
4845						      temp_slope);
4846				if (txmask & BIT(1))
4847					REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
4848						      AR_PHY_TPC_19_ALPHA_THERM,
4849						      temp_slope1);
4850				if (txmask & BIT(2))
4851					REG_RMW_FIELD(ah, AR_PHY_TPC_19_B2,
4852						      AR_PHY_TPC_19_ALPHA_THERM,
4853						      temp_slope2);
4854			}
4855		} else {
4856			/*
4857			 * If temp compensation is not enabled,
4858			 * set all registers to 0.
4859			 */
4860			if (txmask & BIT(0))
4861				REG_RMW_FIELD(ah, AR_PHY_TPC_19,
4862					      AR_PHY_TPC_19_ALPHA_THERM, 0);
4863			if (txmask & BIT(1))
4864				REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
4865					      AR_PHY_TPC_19_ALPHA_THERM, 0);
4866			if (txmask & BIT(2))
4867				REG_RMW_FIELD(ah, AR_PHY_TPC_19_B2,
4868					      AR_PHY_TPC_19_ALPHA_THERM, 0);
4869		}
4870	} else {
4871		REG_RMW_FIELD(ah, AR_PHY_TPC_19,
4872			      AR_PHY_TPC_19_ALPHA_THERM, temp_slope);
4873	}
4874
4875	if (AR_SREV_9462_20_OR_LATER(ah))
4876		REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
4877			      AR_PHY_TPC_19_B1_ALPHA_THERM, temp_slope);
4878
4879
4880	REG_RMW_FIELD(ah, AR_PHY_TPC_18, AR_PHY_TPC_18_THERM_CAL_VALUE,
4881		      temperature[0]);
4882}
4883
4884/* Apply the recorded correction values. */
4885static int ar9003_hw_calibration_apply(struct ath_hw *ah, int frequency)
4886{
4887	int ichain, ipier, npier;
4888	int mode;
4889	int lfrequency[AR9300_MAX_CHAINS],
4890	    lcorrection[AR9300_MAX_CHAINS],
4891	    ltemperature[AR9300_MAX_CHAINS], lvoltage[AR9300_MAX_CHAINS];
4892	int hfrequency[AR9300_MAX_CHAINS],
4893	    hcorrection[AR9300_MAX_CHAINS],
4894	    htemperature[AR9300_MAX_CHAINS], hvoltage[AR9300_MAX_CHAINS];
4895	int fdiff;
4896	int correction[AR9300_MAX_CHAINS],
4897	    voltage[AR9300_MAX_CHAINS], temperature[AR9300_MAX_CHAINS];
4898	int pfrequency, pcorrection, ptemperature, pvoltage;
4899	struct ath_common *common = ath9k_hw_common(ah);
4900
4901	mode = (frequency >= 4000);
4902	if (mode)
4903		npier = AR9300_NUM_5G_CAL_PIERS;
4904	else
4905		npier = AR9300_NUM_2G_CAL_PIERS;
4906
4907	for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4908		lfrequency[ichain] = 0;
4909		hfrequency[ichain] = 100000;
4910	}
4911	/* identify best lower and higher frequency calibration measurement */
4912	for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4913		for (ipier = 0; ipier < npier; ipier++) {
4914			if (!ar9003_hw_cal_pier_get(ah, mode, ipier, ichain,
4915						    &pfrequency, &pcorrection,
4916						    &ptemperature, &pvoltage)) {
4917				fdiff = frequency - pfrequency;
4918
4919				/*
4920				 * this measurement is higher than
4921				 * our desired frequency
4922				 */
4923				if (fdiff <= 0) {
4924					if (hfrequency[ichain] <= 0 ||
4925					    hfrequency[ichain] >= 100000 ||
4926					    fdiff >
4927					    (frequency - hfrequency[ichain])) {
4928						/*
4929						 * new best higher
4930						 * frequency measurement
4931						 */
4932						hfrequency[ichain] = pfrequency;
4933						hcorrection[ichain] =
4934						    pcorrection;
4935						htemperature[ichain] =
4936						    ptemperature;
4937						hvoltage[ichain] = pvoltage;
4938					}
4939				}
4940				if (fdiff >= 0) {
4941					if (lfrequency[ichain] <= 0
4942					    || fdiff <
4943					    (frequency - lfrequency[ichain])) {
4944						/*
4945						 * new best lower
4946						 * frequency measurement
4947						 */
4948						lfrequency[ichain] = pfrequency;
4949						lcorrection[ichain] =
4950						    pcorrection;
4951						ltemperature[ichain] =
4952						    ptemperature;
4953						lvoltage[ichain] = pvoltage;
4954					}
4955				}
4956			}
4957		}
4958	}
4959
4960	/* interpolate  */
4961	for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4962		ath_dbg(common, EEPROM, "ch=%d f=%d low=%d %d h=%d %d\n",
4963			ichain, frequency, lfrequency[ichain],
4964			lcorrection[ichain], hfrequency[ichain],
4965			hcorrection[ichain]);
4966		/* they're the same, so just pick one */
4967		if (hfrequency[ichain] == lfrequency[ichain]) {
4968			correction[ichain] = lcorrection[ichain];
4969			voltage[ichain] = lvoltage[ichain];
4970			temperature[ichain] = ltemperature[ichain];
4971		}
4972		/* the low frequency is good */
4973		else if (frequency - lfrequency[ichain] < 1000) {
4974			/* so is the high frequency, interpolate */
4975			if (hfrequency[ichain] - frequency < 1000) {
4976
4977				correction[ichain] = interpolate(frequency,
4978						lfrequency[ichain],
4979						hfrequency[ichain],
4980						lcorrection[ichain],
4981						hcorrection[ichain]);
4982
4983				temperature[ichain] = interpolate(frequency,
4984						lfrequency[ichain],
4985						hfrequency[ichain],
4986						ltemperature[ichain],
4987						htemperature[ichain]);
4988
4989				voltage[ichain] = interpolate(frequency,
4990						lfrequency[ichain],
4991						hfrequency[ichain],
4992						lvoltage[ichain],
4993						hvoltage[ichain]);
4994			}
4995			/* only low is good, use it */
4996			else {
4997				correction[ichain] = lcorrection[ichain];
4998				temperature[ichain] = ltemperature[ichain];
4999				voltage[ichain] = lvoltage[ichain];
5000			}
5001		}
5002		/* only high is good, use it */
5003		else if (hfrequency[ichain] - frequency < 1000) {
5004			correction[ichain] = hcorrection[ichain];
5005			temperature[ichain] = htemperature[ichain];
5006			voltage[ichain] = hvoltage[ichain];
5007		} else {	/* nothing is good, presume 0???? */
5008			correction[ichain] = 0;
5009			temperature[ichain] = 0;
5010			voltage[ichain] = 0;
5011		}
5012	}
5013
5014	ar9003_hw_power_control_override(ah, frequency, correction, voltage,
5015					 temperature);
5016
5017	ath_dbg(common, EEPROM,
5018		"for frequency=%d, calibration correction = %d %d %d\n",
5019		frequency, correction[0], correction[1], correction[2]);
5020
5021	return 0;
5022}
5023
5024static u16 ar9003_hw_get_direct_edge_power(struct ar9300_eeprom *eep,
5025					   int idx,
5026					   int edge,
5027					   bool is2GHz)
5028{
5029	struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
5030	struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
5031
5032	if (is2GHz)
5033		return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge]);
5034	else
5035		return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge]);
5036}
5037
5038static u16 ar9003_hw_get_indirect_edge_power(struct ar9300_eeprom *eep,
5039					     int idx,
5040					     unsigned int edge,
5041					     u16 freq,
5042					     bool is2GHz)
5043{
5044	struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
5045	struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
5046
5047	u8 *ctl_freqbin = is2GHz ?
5048		&eep->ctl_freqbin_2G[idx][0] :
5049		&eep->ctl_freqbin_5G[idx][0];
5050
5051	if (is2GHz) {
5052		if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 1) < freq &&
5053		    CTL_EDGE_FLAGS(ctl_2g[idx].ctlEdges[edge - 1]))
5054			return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge - 1]);
5055	} else {
5056		if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 0) < freq &&
5057		    CTL_EDGE_FLAGS(ctl_5g[idx].ctlEdges[edge - 1]))
5058			return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge - 1]);
5059	}
5060
5061	return MAX_RATE_POWER;
5062}
5063
5064/*
5065 * Find the maximum conformance test limit for the given channel and CTL info
5066 */
5067static u16 ar9003_hw_get_max_edge_power(struct ar9300_eeprom *eep,
5068					u16 freq, int idx, bool is2GHz)
5069{
5070	u16 twiceMaxEdgePower = MAX_RATE_POWER;
5071	u8 *ctl_freqbin = is2GHz ?
5072		&eep->ctl_freqbin_2G[idx][0] :
5073		&eep->ctl_freqbin_5G[idx][0];
5074	u16 num_edges = is2GHz ?
5075		AR9300_NUM_BAND_EDGES_2G : AR9300_NUM_BAND_EDGES_5G;
5076	unsigned int edge;
5077
5078	/* Get the edge power */
5079	for (edge = 0;
5080	     (edge < num_edges) && (ctl_freqbin[edge] != AR5416_BCHAN_UNUSED);
5081	     edge++) {
5082		/*
5083		 * If there's an exact channel match or an inband flag set
5084		 * on the lower channel use the given rdEdgePower
5085		 */
5086		if (freq == ath9k_hw_fbin2freq(ctl_freqbin[edge], is2GHz)) {
5087			twiceMaxEdgePower =
5088				ar9003_hw_get_direct_edge_power(eep, idx,
5089								edge, is2GHz);
5090			break;
5091		} else if ((edge > 0) &&
5092			   (freq < ath9k_hw_fbin2freq(ctl_freqbin[edge],
5093						      is2GHz))) {
5094			twiceMaxEdgePower =
5095				ar9003_hw_get_indirect_edge_power(eep, idx,
5096								  edge, freq,
5097								  is2GHz);
5098			/*
5099			 * Leave loop - no more affecting edges possible in
5100			 * this monotonic increasing list
5101			 */
5102			break;
5103		}
5104	}
5105
5106	if (is2GHz && !twiceMaxEdgePower)
5107		twiceMaxEdgePower = 60;
5108
5109	return twiceMaxEdgePower;
5110}
5111
5112static void ar9003_hw_set_power_per_rate_table(struct ath_hw *ah,
5113					       struct ath9k_channel *chan,
5114					       u8 *pPwrArray, u16 cfgCtl,
5115					       u8 antenna_reduction,
5116					       u16 powerLimit)
5117{
5118	struct ath_common *common = ath9k_hw_common(ah);
5119	struct ar9300_eeprom *pEepData = &ah->eeprom.ar9300_eep;
5120	u16 twiceMaxEdgePower;
5121	int i;
5122	u16 scaledPower = 0, minCtlPower;
5123	static const u16 ctlModesFor11a[] = {
5124		CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
5125	};
5126	static const u16 ctlModesFor11g[] = {
5127		CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT,
5128		CTL_11G_EXT, CTL_2GHT40
5129	};
5130	u16 numCtlModes;
5131	const u16 *pCtlMode;
5132	u16 ctlMode, freq;
5133	struct chan_centers centers;
5134	u8 *ctlIndex;
5135	u8 ctlNum;
5136	u16 twiceMinEdgePower;
5137	bool is2ghz = IS_CHAN_2GHZ(chan);
5138
5139	ath9k_hw_get_channel_centers(ah, chan, &centers);
5140	scaledPower = ath9k_hw_get_scaled_power(ah, powerLimit,
5141						antenna_reduction);
5142
5143	if (is2ghz) {
5144		/* Setup for CTL modes */
5145		/* CTL_11B, CTL_11G, CTL_2GHT20 */
5146		numCtlModes =
5147			ARRAY_SIZE(ctlModesFor11g) -
5148				   SUB_NUM_CTL_MODES_AT_2G_40;
5149		pCtlMode = ctlModesFor11g;
5150		if (IS_CHAN_HT40(chan))
5151			/* All 2G CTL's */
5152			numCtlModes = ARRAY_SIZE(ctlModesFor11g);
5153	} else {
5154		/* Setup for CTL modes */
5155		/* CTL_11A, CTL_5GHT20 */
5156		numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
5157					 SUB_NUM_CTL_MODES_AT_5G_40;
5158		pCtlMode = ctlModesFor11a;
5159		if (IS_CHAN_HT40(chan))
5160			/* All 5G CTL's */
5161			numCtlModes = ARRAY_SIZE(ctlModesFor11a);
5162	}
5163
5164	/*
5165	 * For MIMO, need to apply regulatory caps individually across
5166	 * dynamically running modes: CCK, OFDM, HT20, HT40
5167	 *
5168	 * The outer loop walks through each possible applicable runtime mode.
5169	 * The inner loop walks through each ctlIndex entry in EEPROM.
5170	 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
5171	 */
5172	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
5173		bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
5174			(pCtlMode[ctlMode] == CTL_2GHT40);
5175		if (isHt40CtlMode)
5176			freq = centers.synth_center;
5177		else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
5178			freq = centers.ext_center;
5179		else
5180			freq = centers.ctl_center;
5181
5182		ath_dbg(common, REGULATORY,
5183			"LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, EXT_ADDITIVE %d\n",
5184			ctlMode, numCtlModes, isHt40CtlMode,
5185			(pCtlMode[ctlMode] & EXT_ADDITIVE));
5186
5187		/* walk through each CTL index stored in EEPROM */
5188		if (is2ghz) {
5189			ctlIndex = pEepData->ctlIndex_2G;
5190			ctlNum = AR9300_NUM_CTLS_2G;
5191		} else {
5192			ctlIndex = pEepData->ctlIndex_5G;
5193			ctlNum = AR9300_NUM_CTLS_5G;
5194		}
5195
5196		twiceMaxEdgePower = MAX_RATE_POWER;
5197		for (i = 0; (i < ctlNum) && ctlIndex[i]; i++) {
5198			ath_dbg(common, REGULATORY,
5199				"LOOP-Ctlidx %d: cfgCtl 0x%2.2x pCtlMode 0x%2.2x ctlIndex 0x%2.2x chan %d\n",
5200				i, cfgCtl, pCtlMode[ctlMode], ctlIndex[i],
5201				chan->channel);
5202
5203			/*
5204			 * compare test group from regulatory
5205			 * channel list with test mode from pCtlMode
5206			 * list
5207			 */
5208			if ((((cfgCtl & ~CTL_MODE_M) |
5209			       (pCtlMode[ctlMode] & CTL_MODE_M)) ==
5210				ctlIndex[i]) ||
5211			    (((cfgCtl & ~CTL_MODE_M) |
5212			       (pCtlMode[ctlMode] & CTL_MODE_M)) ==
5213			     ((ctlIndex[i] & CTL_MODE_M) |
5214			       SD_NO_CTL))) {
5215				twiceMinEdgePower =
5216				  ar9003_hw_get_max_edge_power(pEepData,
5217							       freq, i,
5218							       is2ghz);
5219
5220				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL)
5221					/*
5222					 * Find the minimum of all CTL
5223					 * edge powers that apply to
5224					 * this channel
5225					 */
5226					twiceMaxEdgePower =
5227						min(twiceMaxEdgePower,
5228						    twiceMinEdgePower);
5229				else {
5230					/* specific */
5231					twiceMaxEdgePower = twiceMinEdgePower;
5232					break;
5233				}
5234			}
5235		}
5236
5237		minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
5238
5239		ath_dbg(common, REGULATORY,
5240			"SEL-Min ctlMode %d pCtlMode %d 2xMaxEdge %d sP %d minCtlPwr %d\n",
5241			ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
5242			scaledPower, minCtlPower);
5243
5244		/* Apply ctl mode to correct target power set */
5245		switch (pCtlMode[ctlMode]) {
5246		case CTL_11B:
5247			for (i = ALL_TARGET_LEGACY_1L_5L;
5248			     i <= ALL_TARGET_LEGACY_11S; i++)
5249				pPwrArray[i] = (u8)min((u16)pPwrArray[i],
5250						       minCtlPower);
5251			break;
5252		case CTL_11A:
5253		case CTL_11G:
5254			for (i = ALL_TARGET_LEGACY_6_24;
5255			     i <= ALL_TARGET_LEGACY_54; i++)
5256				pPwrArray[i] = (u8)min((u16)pPwrArray[i],
5257						       minCtlPower);
5258			break;
5259		case CTL_5GHT20:
5260		case CTL_2GHT20:
5261			for (i = ALL_TARGET_HT20_0_8_16;
5262			     i <= ALL_TARGET_HT20_23; i++) {
5263				pPwrArray[i] = (u8)min((u16)pPwrArray[i],
5264						       minCtlPower);
5265				if (ath9k_hw_mci_is_enabled(ah))
5266					pPwrArray[i] =
5267						(u8)min((u16)pPwrArray[i],
5268						ar9003_mci_get_max_txpower(ah,
5269							pCtlMode[ctlMode]));
5270			}
5271			break;
5272		case CTL_5GHT40:
5273		case CTL_2GHT40:
5274			for (i = ALL_TARGET_HT40_0_8_16;
5275			     i <= ALL_TARGET_HT40_23; i++) {
5276				pPwrArray[i] = (u8)min((u16)pPwrArray[i],
5277						       minCtlPower);
5278				if (ath9k_hw_mci_is_enabled(ah))
5279					pPwrArray[i] =
5280						(u8)min((u16)pPwrArray[i],
5281						ar9003_mci_get_max_txpower(ah,
5282							pCtlMode[ctlMode]));
5283			}
5284			break;
5285		default:
5286			break;
5287		}
5288	} /* end ctl mode checking */
5289}
5290
5291static inline u8 mcsidx_to_tgtpwridx(unsigned int mcs_idx, u8 base_pwridx)
5292{
5293	u8 mod_idx = mcs_idx % 8;
5294
5295	if (mod_idx <= 3)
5296		return mod_idx ? (base_pwridx + 1) : base_pwridx;
5297	else
5298		return base_pwridx + 4 * (mcs_idx / 8) + mod_idx - 2;
5299}
5300
5301static void ar9003_paprd_set_txpower(struct ath_hw *ah,
5302				     struct ath9k_channel *chan,
5303				     u8 *targetPowerValT2)
5304{
5305	int i;
5306
5307	if (!ar9003_is_paprd_enabled(ah))
5308		return;
5309
5310	if (IS_CHAN_HT40(chan))
5311		i = ALL_TARGET_HT40_7;
5312	else
5313		i = ALL_TARGET_HT20_7;
5314
5315	if (IS_CHAN_2GHZ(chan)) {
5316		if (!AR_SREV_9330(ah) && !AR_SREV_9340(ah) &&
5317		    !AR_SREV_9462(ah) && !AR_SREV_9565(ah)) {
5318			if (IS_CHAN_HT40(chan))
5319				i = ALL_TARGET_HT40_0_8_16;
5320			else
5321				i = ALL_TARGET_HT20_0_8_16;
5322		}
5323	}
5324
5325	ah->paprd_target_power = targetPowerValT2[i];
5326}
5327
5328static void ath9k_hw_ar9300_set_txpower(struct ath_hw *ah,
5329					struct ath9k_channel *chan, u16 cfgCtl,
5330					u8 twiceAntennaReduction,
5331					u8 powerLimit, bool test)
5332{
5333	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
5334	struct ath_common *common = ath9k_hw_common(ah);
5335	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5336	struct ar9300_modal_eep_header *modal_hdr;
5337	u8 targetPowerValT2[ar9300RateSize];
5338	u8 target_power_val_t2_eep[ar9300RateSize];
5339	u8 targetPowerValT2_tpc[ar9300RateSize];
5340	unsigned int i = 0, paprd_scale_factor = 0;
5341	u8 pwr_idx, min_pwridx = 0;
5342
5343	memset(targetPowerValT2, 0 , sizeof(targetPowerValT2));
5344
5345	/*
5346	 * Get target powers from EEPROM - our baseline for TX Power
5347	 */
5348	ar9003_hw_get_target_power_eeprom(ah, chan, targetPowerValT2);
5349
5350	if (ar9003_is_paprd_enabled(ah)) {
5351		if (IS_CHAN_2GHZ(chan))
5352			modal_hdr = &eep->modalHeader2G;
5353		else
5354			modal_hdr = &eep->modalHeader5G;
5355
5356		ah->paprd_ratemask =
5357			le32_to_cpu(modal_hdr->papdRateMaskHt20) &
5358			AR9300_PAPRD_RATE_MASK;
5359
5360		ah->paprd_ratemask_ht40 =
5361			le32_to_cpu(modal_hdr->papdRateMaskHt40) &
5362			AR9300_PAPRD_RATE_MASK;
5363
5364		paprd_scale_factor = ar9003_get_paprd_scale_factor(ah, chan);
5365		min_pwridx = IS_CHAN_HT40(chan) ? ALL_TARGET_HT40_0_8_16 :
5366						  ALL_TARGET_HT20_0_8_16;
5367
5368		if (!ah->paprd_table_write_done) {
5369			memcpy(target_power_val_t2_eep, targetPowerValT2,
5370			       sizeof(targetPowerValT2));
5371			for (i = 0; i < 24; i++) {
5372				pwr_idx = mcsidx_to_tgtpwridx(i, min_pwridx);
5373				if (ah->paprd_ratemask & (1 << i)) {
5374					if (targetPowerValT2[pwr_idx] &&
5375					    targetPowerValT2[pwr_idx] ==
5376					    target_power_val_t2_eep[pwr_idx])
5377						targetPowerValT2[pwr_idx] -=
5378							paprd_scale_factor;
5379				}
5380			}
5381		}
5382		memcpy(target_power_val_t2_eep, targetPowerValT2,
5383		       sizeof(targetPowerValT2));
5384	}
5385
5386	ar9003_hw_set_power_per_rate_table(ah, chan,
5387					   targetPowerValT2, cfgCtl,
5388					   twiceAntennaReduction,
5389					   powerLimit);
5390
5391	memcpy(targetPowerValT2_tpc, targetPowerValT2,
5392	       sizeof(targetPowerValT2));
5393
5394	if (ar9003_is_paprd_enabled(ah)) {
5395		for (i = 0; i < ar9300RateSize; i++) {
5396			if ((ah->paprd_ratemask & (1 << i)) &&
5397			    (abs(targetPowerValT2[i] -
5398				target_power_val_t2_eep[i]) >
5399			    paprd_scale_factor)) {
5400				ah->paprd_ratemask &= ~(1 << i);
5401				ath_dbg(common, EEPROM,
5402					"paprd disabled for mcs %d\n", i);
5403			}
5404		}
5405	}
5406
5407	regulatory->max_power_level = 0;
5408	for (i = 0; i < ar9300RateSize; i++) {
5409		if (targetPowerValT2[i] > regulatory->max_power_level)
5410			regulatory->max_power_level = targetPowerValT2[i];
5411	}
5412
5413	ath9k_hw_update_regulatory_maxpower(ah);
5414
5415	if (test)
5416		return;
5417
5418	for (i = 0; i < ar9300RateSize; i++) {
5419		ath_dbg(common, REGULATORY, "TPC[%02d] 0x%08x\n",
5420			i, targetPowerValT2[i]);
5421	}
5422
5423	/* Write target power array to registers */
5424	ar9003_hw_tx_power_regwrite(ah, targetPowerValT2);
5425	ar9003_hw_calibration_apply(ah, chan->channel);
5426	ar9003_paprd_set_txpower(ah, chan, targetPowerValT2);
5427
5428	ar9003_hw_selfgen_tpc_txpower(ah, chan, targetPowerValT2);
5429
5430	/* TPC initializations */
5431	if (ah->tpc_enabled) {
5432		u32 val;
5433
5434		ar9003_hw_init_rate_txpower(ah, targetPowerValT2_tpc, chan);
5435
5436		/* Enable TPC */
5437		REG_WRITE(ah, AR_PHY_PWRTX_MAX,
5438			  AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE);
5439		/* Disable per chain power reduction */
5440		val = REG_READ(ah, AR_PHY_POWER_TX_SUB);
5441		if (AR_SREV_9340(ah))
5442			REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
5443				  val & 0xFFFFFFC0);
5444		else
5445			REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
5446				  val & 0xFFFFF000);
5447	} else {
5448		/* Disable TPC */
5449		REG_WRITE(ah, AR_PHY_PWRTX_MAX, 0);
5450	}
5451}
5452
5453static u16 ath9k_hw_ar9300_get_spur_channel(struct ath_hw *ah,
5454					    u16 i, bool is2GHz)
5455{
5456	return AR_NO_SPUR;
5457}
5458
5459s32 ar9003_hw_get_tx_gain_idx(struct ath_hw *ah)
5460{
5461	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5462
5463	return (eep->baseEepHeader.txrxgain >> 4) & 0xf; /* bits 7:4 */
5464}
5465
5466s32 ar9003_hw_get_rx_gain_idx(struct ath_hw *ah)
5467{
5468	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5469
5470	return (eep->baseEepHeader.txrxgain) & 0xf; /* bits 3:0 */
5471}
5472
5473u8 *ar9003_get_spur_chan_ptr(struct ath_hw *ah, bool is2ghz)
5474{
5475	return ar9003_modal_header(ah, is2ghz)->spurChans;
5476}
5477
5478unsigned int ar9003_get_paprd_scale_factor(struct ath_hw *ah,
5479					   struct ath9k_channel *chan)
5480{
5481	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5482
5483	if (IS_CHAN_2GHZ(chan))
5484		return MS(le32_to_cpu(eep->modalHeader2G.papdRateMaskHt20),
5485			  AR9300_PAPRD_SCALE_1);
5486	else {
5487		if (chan->channel >= 5700)
5488		return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20),
5489			  AR9300_PAPRD_SCALE_1);
5490		else if (chan->channel >= 5400)
5491			return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40),
5492				   AR9300_PAPRD_SCALE_2);
5493		else
5494			return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40),
5495				  AR9300_PAPRD_SCALE_1);
5496	}
5497}
5498
5499const struct eeprom_ops eep_ar9300_ops = {
5500	.check_eeprom = ath9k_hw_ar9300_check_eeprom,
5501	.get_eeprom = ath9k_hw_ar9300_get_eeprom,
5502	.fill_eeprom = ath9k_hw_ar9300_fill_eeprom,
5503	.dump_eeprom = ath9k_hw_ar9003_dump_eeprom,
5504	.get_eeprom_ver = ath9k_hw_ar9300_get_eeprom_ver,
5505	.get_eeprom_rev = ath9k_hw_ar9300_get_eeprom_rev,
5506	.set_board_values = ath9k_hw_ar9300_set_board_values,
5507	.set_addac = ath9k_hw_ar9300_set_addac,
5508	.set_txpower = ath9k_hw_ar9300_set_txpower,
5509	.get_spur_channel = ath9k_hw_ar9300_get_spur_channel
5510};
5511