1/*
2 * Copyright (c) 2004-2011 Atheros Communications Inc.
3 * Copyright (c) 2011-2012 Qualcomm Atheros, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17
18#include <linux/module.h>
19#include <linux/mmc/card.h>
20#include <linux/mmc/mmc.h>
21#include <linux/mmc/host.h>
22#include <linux/mmc/sdio_func.h>
23#include <linux/mmc/sdio_ids.h>
24#include <linux/mmc/sdio.h>
25#include <linux/mmc/sd.h>
26#include "hif.h"
27#include "hif-ops.h"
28#include "target.h"
29#include "debug.h"
30#include "cfg80211.h"
31#include "trace.h"
32
33struct ath6kl_sdio {
34	struct sdio_func *func;
35
36	/* protects access to bus_req_freeq */
37	spinlock_t lock;
38
39	/* free list */
40	struct list_head bus_req_freeq;
41
42	/* available bus requests */
43	struct bus_request bus_req[BUS_REQUEST_MAX_NUM];
44
45	struct ath6kl *ar;
46
47	u8 *dma_buffer;
48
49	/* protects access to dma_buffer */
50	struct mutex dma_buffer_mutex;
51
52	/* scatter request list head */
53	struct list_head scat_req;
54
55	atomic_t irq_handling;
56	wait_queue_head_t irq_wq;
57
58	/* protects access to scat_req */
59	spinlock_t scat_lock;
60
61	bool scatter_enabled;
62
63	bool is_disabled;
64	const struct sdio_device_id *id;
65	struct work_struct wr_async_work;
66	struct list_head wr_asyncq;
67
68	/* protects access to wr_asyncq */
69	spinlock_t wr_async_lock;
70};
71
72#define CMD53_ARG_READ          0
73#define CMD53_ARG_WRITE         1
74#define CMD53_ARG_BLOCK_BASIS   1
75#define CMD53_ARG_FIXED_ADDRESS 0
76#define CMD53_ARG_INCR_ADDRESS  1
77
78static inline struct ath6kl_sdio *ath6kl_sdio_priv(struct ath6kl *ar)
79{
80	return ar->hif_priv;
81}
82
83/*
84 * Macro to check if DMA buffer is WORD-aligned and DMA-able.
85 * Most host controllers assume the buffer is DMA'able and will
86 * bug-check otherwise (i.e. buffers on the stack). virt_addr_valid
87 * check fails on stack memory.
88 */
89static inline bool buf_needs_bounce(u8 *buf)
90{
91	return ((unsigned long) buf & 0x3) || !virt_addr_valid(buf);
92}
93
94static void ath6kl_sdio_set_mbox_info(struct ath6kl *ar)
95{
96	struct ath6kl_mbox_info *mbox_info = &ar->mbox_info;
97
98	/* EP1 has an extended range */
99	mbox_info->htc_addr = HIF_MBOX_BASE_ADDR;
100	mbox_info->htc_ext_addr = HIF_MBOX0_EXT_BASE_ADDR;
101	mbox_info->htc_ext_sz = HIF_MBOX0_EXT_WIDTH;
102	mbox_info->block_size = HIF_MBOX_BLOCK_SIZE;
103	mbox_info->gmbox_addr = HIF_GMBOX_BASE_ADDR;
104	mbox_info->gmbox_sz = HIF_GMBOX_WIDTH;
105}
106
107static inline void ath6kl_sdio_set_cmd53_arg(u32 *arg, u8 rw, u8 func,
108					     u8 mode, u8 opcode, u32 addr,
109					     u16 blksz)
110{
111	*arg = (((rw & 1) << 31) |
112		((func & 0x7) << 28) |
113		((mode & 1) << 27) |
114		((opcode & 1) << 26) |
115		((addr & 0x1FFFF) << 9) |
116		(blksz & 0x1FF));
117}
118
119static inline void ath6kl_sdio_set_cmd52_arg(u32 *arg, u8 write, u8 raw,
120					     unsigned int address,
121					     unsigned char val)
122{
123	const u8 func = 0;
124
125	*arg = ((write & 1) << 31) |
126	       ((func & 0x7) << 28) |
127	       ((raw & 1) << 27) |
128	       (1 << 26) |
129	       ((address & 0x1FFFF) << 9) |
130	       (1 << 8) |
131	       (val & 0xFF);
132}
133
134static int ath6kl_sdio_func0_cmd52_wr_byte(struct mmc_card *card,
135					   unsigned int address,
136					   unsigned char byte)
137{
138	struct mmc_command io_cmd;
139
140	memset(&io_cmd, 0, sizeof(io_cmd));
141	ath6kl_sdio_set_cmd52_arg(&io_cmd.arg, 1, 0, address, byte);
142	io_cmd.opcode = SD_IO_RW_DIRECT;
143	io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC;
144
145	return mmc_wait_for_cmd(card->host, &io_cmd, 0);
146}
147
148static int ath6kl_sdio_io(struct sdio_func *func, u32 request, u32 addr,
149			  u8 *buf, u32 len)
150{
151	int ret = 0;
152
153	sdio_claim_host(func);
154
155	if (request & HIF_WRITE) {
156		/* FIXME: looks like ugly workaround for something */
157		if (addr >= HIF_MBOX_BASE_ADDR &&
158		    addr <= HIF_MBOX_END_ADDR)
159			addr += (HIF_MBOX_WIDTH - len);
160
161		/* FIXME: this also looks like ugly workaround */
162		if (addr == HIF_MBOX0_EXT_BASE_ADDR)
163			addr += HIF_MBOX0_EXT_WIDTH - len;
164
165		if (request & HIF_FIXED_ADDRESS)
166			ret = sdio_writesb(func, addr, buf, len);
167		else
168			ret = sdio_memcpy_toio(func, addr, buf, len);
169	} else {
170		if (request & HIF_FIXED_ADDRESS)
171			ret = sdio_readsb(func, buf, addr, len);
172		else
173			ret = sdio_memcpy_fromio(func, buf, addr, len);
174	}
175
176	sdio_release_host(func);
177
178	ath6kl_dbg(ATH6KL_DBG_SDIO, "%s addr 0x%x%s buf 0x%p len %d\n",
179		   request & HIF_WRITE ? "wr" : "rd", addr,
180		   request & HIF_FIXED_ADDRESS ? " (fixed)" : "", buf, len);
181	ath6kl_dbg_dump(ATH6KL_DBG_SDIO_DUMP, NULL, "sdio ", buf, len);
182
183	trace_ath6kl_sdio(addr, request, buf, len);
184
185	return ret;
186}
187
188static struct bus_request *ath6kl_sdio_alloc_busreq(struct ath6kl_sdio *ar_sdio)
189{
190	struct bus_request *bus_req;
191
192	spin_lock_bh(&ar_sdio->lock);
193
194	if (list_empty(&ar_sdio->bus_req_freeq)) {
195		spin_unlock_bh(&ar_sdio->lock);
196		return NULL;
197	}
198
199	bus_req = list_first_entry(&ar_sdio->bus_req_freeq,
200				   struct bus_request, list);
201	list_del(&bus_req->list);
202
203	spin_unlock_bh(&ar_sdio->lock);
204	ath6kl_dbg(ATH6KL_DBG_SCATTER, "%s: bus request 0x%p\n",
205		   __func__, bus_req);
206
207	return bus_req;
208}
209
210static void ath6kl_sdio_free_bus_req(struct ath6kl_sdio *ar_sdio,
211				     struct bus_request *bus_req)
212{
213	ath6kl_dbg(ATH6KL_DBG_SCATTER, "%s: bus request 0x%p\n",
214		   __func__, bus_req);
215
216	spin_lock_bh(&ar_sdio->lock);
217	list_add_tail(&bus_req->list, &ar_sdio->bus_req_freeq);
218	spin_unlock_bh(&ar_sdio->lock);
219}
220
221static void ath6kl_sdio_setup_scat_data(struct hif_scatter_req *scat_req,
222					struct mmc_data *data)
223{
224	struct scatterlist *sg;
225	int i;
226
227	data->blksz = HIF_MBOX_BLOCK_SIZE;
228	data->blocks = scat_req->len / HIF_MBOX_BLOCK_SIZE;
229
230	ath6kl_dbg(ATH6KL_DBG_SCATTER,
231		   "hif-scatter: (%s) addr: 0x%X, (block len: %d, block count: %d) , (tot:%d,sg:%d)\n",
232		   (scat_req->req & HIF_WRITE) ? "WR" : "RD", scat_req->addr,
233		   data->blksz, data->blocks, scat_req->len,
234		   scat_req->scat_entries);
235
236	data->flags = (scat_req->req & HIF_WRITE) ? MMC_DATA_WRITE :
237						    MMC_DATA_READ;
238
239	/* fill SG entries */
240	sg = scat_req->sgentries;
241	sg_init_table(sg, scat_req->scat_entries);
242
243	/* assemble SG list */
244	for (i = 0; i < scat_req->scat_entries; i++, sg++) {
245		ath6kl_dbg(ATH6KL_DBG_SCATTER, "%d: addr:0x%p, len:%d\n",
246			   i, scat_req->scat_list[i].buf,
247			   scat_req->scat_list[i].len);
248
249		sg_set_buf(sg, scat_req->scat_list[i].buf,
250			   scat_req->scat_list[i].len);
251	}
252
253	/* set scatter-gather table for request */
254	data->sg = scat_req->sgentries;
255	data->sg_len = scat_req->scat_entries;
256}
257
258static int ath6kl_sdio_scat_rw(struct ath6kl_sdio *ar_sdio,
259			       struct bus_request *req)
260{
261	struct mmc_request mmc_req;
262	struct mmc_command cmd;
263	struct mmc_data data;
264	struct hif_scatter_req *scat_req;
265	u8 opcode, rw;
266	int status, len;
267
268	scat_req = req->scat_req;
269
270	if (scat_req->virt_scat) {
271		len = scat_req->len;
272		if (scat_req->req & HIF_BLOCK_BASIS)
273			len = round_down(len, HIF_MBOX_BLOCK_SIZE);
274
275		status = ath6kl_sdio_io(ar_sdio->func, scat_req->req,
276					scat_req->addr, scat_req->virt_dma_buf,
277					len);
278		goto scat_complete;
279	}
280
281	memset(&mmc_req, 0, sizeof(struct mmc_request));
282	memset(&cmd, 0, sizeof(struct mmc_command));
283	memset(&data, 0, sizeof(struct mmc_data));
284
285	ath6kl_sdio_setup_scat_data(scat_req, &data);
286
287	opcode = (scat_req->req & HIF_FIXED_ADDRESS) ?
288		  CMD53_ARG_FIXED_ADDRESS : CMD53_ARG_INCR_ADDRESS;
289
290	rw = (scat_req->req & HIF_WRITE) ? CMD53_ARG_WRITE : CMD53_ARG_READ;
291
292	/* Fixup the address so that the last byte will fall on MBOX EOM */
293	if (scat_req->req & HIF_WRITE) {
294		if (scat_req->addr == HIF_MBOX_BASE_ADDR)
295			scat_req->addr += HIF_MBOX_WIDTH - scat_req->len;
296		else
297			/* Uses extended address range */
298			scat_req->addr += HIF_MBOX0_EXT_WIDTH - scat_req->len;
299	}
300
301	/* set command argument */
302	ath6kl_sdio_set_cmd53_arg(&cmd.arg, rw, ar_sdio->func->num,
303				  CMD53_ARG_BLOCK_BASIS, opcode, scat_req->addr,
304				  data.blocks);
305
306	cmd.opcode = SD_IO_RW_EXTENDED;
307	cmd.flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_ADTC;
308
309	mmc_req.cmd = &cmd;
310	mmc_req.data = &data;
311
312	sdio_claim_host(ar_sdio->func);
313
314	mmc_set_data_timeout(&data, ar_sdio->func->card);
315
316	trace_ath6kl_sdio_scat(scat_req->addr,
317			       scat_req->req,
318			       scat_req->len,
319			       scat_req->scat_entries,
320			       scat_req->scat_list);
321
322	/* synchronous call to process request */
323	mmc_wait_for_req(ar_sdio->func->card->host, &mmc_req);
324
325	sdio_release_host(ar_sdio->func);
326
327	status = cmd.error ? cmd.error : data.error;
328
329scat_complete:
330	scat_req->status = status;
331
332	if (scat_req->status)
333		ath6kl_err("Scatter write request failed:%d\n",
334			   scat_req->status);
335
336	if (scat_req->req & HIF_ASYNCHRONOUS)
337		scat_req->complete(ar_sdio->ar->htc_target, scat_req);
338
339	return status;
340}
341
342static int ath6kl_sdio_alloc_prep_scat_req(struct ath6kl_sdio *ar_sdio,
343					   int n_scat_entry, int n_scat_req,
344					   bool virt_scat)
345{
346	struct hif_scatter_req *s_req;
347	struct bus_request *bus_req;
348	int i, scat_req_sz, scat_list_sz, size;
349	u8 *virt_buf;
350
351	scat_list_sz = n_scat_entry * sizeof(struct hif_scatter_item);
352	scat_req_sz = sizeof(*s_req) + scat_list_sz;
353
354	if (!virt_scat)
355		size = sizeof(struct scatterlist) * n_scat_entry;
356	else
357		size =  2 * L1_CACHE_BYTES +
358			ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER;
359
360	for (i = 0; i < n_scat_req; i++) {
361		/* allocate the scatter request */
362		s_req = kzalloc(scat_req_sz, GFP_KERNEL);
363		if (!s_req)
364			return -ENOMEM;
365
366		if (virt_scat) {
367			virt_buf = kzalloc(size, GFP_KERNEL);
368			if (!virt_buf) {
369				kfree(s_req);
370				return -ENOMEM;
371			}
372
373			s_req->virt_dma_buf =
374				(u8 *)L1_CACHE_ALIGN((unsigned long)virt_buf);
375		} else {
376			/* allocate sglist */
377			s_req->sgentries = kzalloc(size, GFP_KERNEL);
378
379			if (!s_req->sgentries) {
380				kfree(s_req);
381				return -ENOMEM;
382			}
383		}
384
385		/* allocate a bus request for this scatter request */
386		bus_req = ath6kl_sdio_alloc_busreq(ar_sdio);
387		if (!bus_req) {
388			kfree(s_req->sgentries);
389			kfree(s_req->virt_dma_buf);
390			kfree(s_req);
391			return -ENOMEM;
392		}
393
394		/* assign the scatter request to this bus request */
395		bus_req->scat_req = s_req;
396		s_req->busrequest = bus_req;
397
398		s_req->virt_scat = virt_scat;
399
400		/* add it to the scatter pool */
401		hif_scatter_req_add(ar_sdio->ar, s_req);
402	}
403
404	return 0;
405}
406
407static int ath6kl_sdio_read_write_sync(struct ath6kl *ar, u32 addr, u8 *buf,
408				       u32 len, u32 request)
409{
410	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
411	u8  *tbuf = NULL;
412	int ret;
413	bool bounced = false;
414
415	if (request & HIF_BLOCK_BASIS)
416		len = round_down(len, HIF_MBOX_BLOCK_SIZE);
417
418	if (buf_needs_bounce(buf)) {
419		if (!ar_sdio->dma_buffer)
420			return -ENOMEM;
421		mutex_lock(&ar_sdio->dma_buffer_mutex);
422		tbuf = ar_sdio->dma_buffer;
423
424		if (request & HIF_WRITE)
425			memcpy(tbuf, buf, len);
426
427		bounced = true;
428	} else {
429		tbuf = buf;
430	}
431
432	ret = ath6kl_sdio_io(ar_sdio->func, request, addr, tbuf, len);
433	if ((request & HIF_READ) && bounced)
434		memcpy(buf, tbuf, len);
435
436	if (bounced)
437		mutex_unlock(&ar_sdio->dma_buffer_mutex);
438
439	return ret;
440}
441
442static void __ath6kl_sdio_write_async(struct ath6kl_sdio *ar_sdio,
443				      struct bus_request *req)
444{
445	if (req->scat_req) {
446		ath6kl_sdio_scat_rw(ar_sdio, req);
447	} else {
448		void *context;
449		int status;
450
451		status = ath6kl_sdio_read_write_sync(ar_sdio->ar, req->address,
452						     req->buffer, req->length,
453						     req->request);
454		context = req->packet;
455		ath6kl_sdio_free_bus_req(ar_sdio, req);
456		ath6kl_hif_rw_comp_handler(context, status);
457	}
458}
459
460static void ath6kl_sdio_write_async_work(struct work_struct *work)
461{
462	struct ath6kl_sdio *ar_sdio;
463	struct bus_request *req, *tmp_req;
464
465	ar_sdio = container_of(work, struct ath6kl_sdio, wr_async_work);
466
467	spin_lock_bh(&ar_sdio->wr_async_lock);
468	list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
469		list_del(&req->list);
470		spin_unlock_bh(&ar_sdio->wr_async_lock);
471		__ath6kl_sdio_write_async(ar_sdio, req);
472		spin_lock_bh(&ar_sdio->wr_async_lock);
473	}
474	spin_unlock_bh(&ar_sdio->wr_async_lock);
475}
476
477static void ath6kl_sdio_irq_handler(struct sdio_func *func)
478{
479	int status;
480	struct ath6kl_sdio *ar_sdio;
481
482	ath6kl_dbg(ATH6KL_DBG_SDIO, "irq\n");
483
484	ar_sdio = sdio_get_drvdata(func);
485	atomic_set(&ar_sdio->irq_handling, 1);
486	/*
487	 * Release the host during interrups so we can pick it back up when
488	 * we process commands.
489	 */
490	sdio_release_host(ar_sdio->func);
491
492	status = ath6kl_hif_intr_bh_handler(ar_sdio->ar);
493	sdio_claim_host(ar_sdio->func);
494
495	atomic_set(&ar_sdio->irq_handling, 0);
496	wake_up(&ar_sdio->irq_wq);
497
498	WARN_ON(status && status != -ECANCELED);
499}
500
501static int ath6kl_sdio_power_on(struct ath6kl *ar)
502{
503	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
504	struct sdio_func *func = ar_sdio->func;
505	int ret = 0;
506
507	if (!ar_sdio->is_disabled)
508		return 0;
509
510	ath6kl_dbg(ATH6KL_DBG_BOOT, "sdio power on\n");
511
512	sdio_claim_host(func);
513
514	ret = sdio_enable_func(func);
515	if (ret) {
516		ath6kl_err("Unable to enable sdio func: %d)\n", ret);
517		sdio_release_host(func);
518		return ret;
519	}
520
521	sdio_release_host(func);
522
523	/*
524	 * Wait for hardware to initialise. It should take a lot less than
525	 * 10 ms but let's be conservative here.
526	 */
527	msleep(10);
528
529	ar_sdio->is_disabled = false;
530
531	return ret;
532}
533
534static int ath6kl_sdio_power_off(struct ath6kl *ar)
535{
536	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
537	int ret;
538
539	if (ar_sdio->is_disabled)
540		return 0;
541
542	ath6kl_dbg(ATH6KL_DBG_BOOT, "sdio power off\n");
543
544	/* Disable the card */
545	sdio_claim_host(ar_sdio->func);
546	ret = sdio_disable_func(ar_sdio->func);
547	sdio_release_host(ar_sdio->func);
548
549	if (ret)
550		return ret;
551
552	ar_sdio->is_disabled = true;
553
554	return ret;
555}
556
557static int ath6kl_sdio_write_async(struct ath6kl *ar, u32 address, u8 *buffer,
558				   u32 length, u32 request,
559				   struct htc_packet *packet)
560{
561	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
562	struct bus_request *bus_req;
563
564	bus_req = ath6kl_sdio_alloc_busreq(ar_sdio);
565
566	if (WARN_ON_ONCE(!bus_req))
567		return -ENOMEM;
568
569	bus_req->address = address;
570	bus_req->buffer = buffer;
571	bus_req->length = length;
572	bus_req->request = request;
573	bus_req->packet = packet;
574
575	spin_lock_bh(&ar_sdio->wr_async_lock);
576	list_add_tail(&bus_req->list, &ar_sdio->wr_asyncq);
577	spin_unlock_bh(&ar_sdio->wr_async_lock);
578	queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work);
579
580	return 0;
581}
582
583static void ath6kl_sdio_irq_enable(struct ath6kl *ar)
584{
585	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
586	int ret;
587
588	sdio_claim_host(ar_sdio->func);
589
590	/* Register the isr */
591	ret =  sdio_claim_irq(ar_sdio->func, ath6kl_sdio_irq_handler);
592	if (ret)
593		ath6kl_err("Failed to claim sdio irq: %d\n", ret);
594
595	sdio_release_host(ar_sdio->func);
596}
597
598static bool ath6kl_sdio_is_on_irq(struct ath6kl *ar)
599{
600	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
601
602	return !atomic_read(&ar_sdio->irq_handling);
603}
604
605static void ath6kl_sdio_irq_disable(struct ath6kl *ar)
606{
607	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
608	int ret;
609
610	sdio_claim_host(ar_sdio->func);
611
612	if (atomic_read(&ar_sdio->irq_handling)) {
613		sdio_release_host(ar_sdio->func);
614
615		ret = wait_event_interruptible(ar_sdio->irq_wq,
616					       ath6kl_sdio_is_on_irq(ar));
617		if (ret)
618			return;
619
620		sdio_claim_host(ar_sdio->func);
621	}
622
623	ret = sdio_release_irq(ar_sdio->func);
624	if (ret)
625		ath6kl_err("Failed to release sdio irq: %d\n", ret);
626
627	sdio_release_host(ar_sdio->func);
628}
629
630static struct hif_scatter_req *ath6kl_sdio_scatter_req_get(struct ath6kl *ar)
631{
632	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
633	struct hif_scatter_req *node = NULL;
634
635	spin_lock_bh(&ar_sdio->scat_lock);
636
637	if (!list_empty(&ar_sdio->scat_req)) {
638		node = list_first_entry(&ar_sdio->scat_req,
639					struct hif_scatter_req, list);
640		list_del(&node->list);
641
642		node->scat_q_depth = get_queue_depth(&ar_sdio->scat_req);
643	}
644
645	spin_unlock_bh(&ar_sdio->scat_lock);
646
647	return node;
648}
649
650static void ath6kl_sdio_scatter_req_add(struct ath6kl *ar,
651					struct hif_scatter_req *s_req)
652{
653	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
654
655	spin_lock_bh(&ar_sdio->scat_lock);
656
657	list_add_tail(&s_req->list, &ar_sdio->scat_req);
658
659	spin_unlock_bh(&ar_sdio->scat_lock);
660}
661
662/* scatter gather read write request */
663static int ath6kl_sdio_async_rw_scatter(struct ath6kl *ar,
664					struct hif_scatter_req *scat_req)
665{
666	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
667	u32 request = scat_req->req;
668	int status = 0;
669
670	if (!scat_req->len)
671		return -EINVAL;
672
673	ath6kl_dbg(ATH6KL_DBG_SCATTER,
674		   "hif-scatter: total len: %d scatter entries: %d\n",
675		   scat_req->len, scat_req->scat_entries);
676
677	if (request & HIF_SYNCHRONOUS) {
678		status = ath6kl_sdio_scat_rw(ar_sdio, scat_req->busrequest);
679	} else {
680		spin_lock_bh(&ar_sdio->wr_async_lock);
681		list_add_tail(&scat_req->busrequest->list, &ar_sdio->wr_asyncq);
682		spin_unlock_bh(&ar_sdio->wr_async_lock);
683		queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work);
684	}
685
686	return status;
687}
688
689/* clean up scatter support */
690static void ath6kl_sdio_cleanup_scatter(struct ath6kl *ar)
691{
692	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
693	struct hif_scatter_req *s_req, *tmp_req;
694
695	/* empty the free list */
696	spin_lock_bh(&ar_sdio->scat_lock);
697	list_for_each_entry_safe(s_req, tmp_req, &ar_sdio->scat_req, list) {
698		list_del(&s_req->list);
699		spin_unlock_bh(&ar_sdio->scat_lock);
700
701		/*
702		 * FIXME: should we also call completion handler with
703		 * ath6kl_hif_rw_comp_handler() with status -ECANCELED so
704		 * that the packet is properly freed?
705		 */
706		if (s_req->busrequest)
707			ath6kl_sdio_free_bus_req(ar_sdio, s_req->busrequest);
708		kfree(s_req->virt_dma_buf);
709		kfree(s_req->sgentries);
710		kfree(s_req);
711
712		spin_lock_bh(&ar_sdio->scat_lock);
713	}
714	spin_unlock_bh(&ar_sdio->scat_lock);
715}
716
717/* setup of HIF scatter resources */
718static int ath6kl_sdio_enable_scatter(struct ath6kl *ar)
719{
720	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
721	struct htc_target *target = ar->htc_target;
722	int ret = 0;
723	bool virt_scat = false;
724
725	if (ar_sdio->scatter_enabled)
726		return 0;
727
728	ar_sdio->scatter_enabled = true;
729
730	/* check if host supports scatter and it meets our requirements */
731	if (ar_sdio->func->card->host->max_segs < MAX_SCATTER_ENTRIES_PER_REQ) {
732		ath6kl_err("host only supports scatter of :%d entries, need: %d\n",
733			   ar_sdio->func->card->host->max_segs,
734			   MAX_SCATTER_ENTRIES_PER_REQ);
735		virt_scat = true;
736	}
737
738	if (!virt_scat) {
739		ret = ath6kl_sdio_alloc_prep_scat_req(ar_sdio,
740				MAX_SCATTER_ENTRIES_PER_REQ,
741				MAX_SCATTER_REQUESTS, virt_scat);
742
743		if (!ret) {
744			ath6kl_dbg(ATH6KL_DBG_BOOT,
745				   "hif-scatter enabled requests %d entries %d\n",
746				   MAX_SCATTER_REQUESTS,
747				   MAX_SCATTER_ENTRIES_PER_REQ);
748
749			target->max_scat_entries = MAX_SCATTER_ENTRIES_PER_REQ;
750			target->max_xfer_szper_scatreq =
751						MAX_SCATTER_REQ_TRANSFER_SIZE;
752		} else {
753			ath6kl_sdio_cleanup_scatter(ar);
754			ath6kl_warn("hif scatter resource setup failed, trying virtual scatter method\n");
755		}
756	}
757
758	if (virt_scat || ret) {
759		ret = ath6kl_sdio_alloc_prep_scat_req(ar_sdio,
760				ATH6KL_SCATTER_ENTRIES_PER_REQ,
761				ATH6KL_SCATTER_REQS, virt_scat);
762
763		if (ret) {
764			ath6kl_err("failed to alloc virtual scatter resources !\n");
765			ath6kl_sdio_cleanup_scatter(ar);
766			return ret;
767		}
768
769		ath6kl_dbg(ATH6KL_DBG_BOOT,
770			   "virtual scatter enabled requests %d entries %d\n",
771			   ATH6KL_SCATTER_REQS, ATH6KL_SCATTER_ENTRIES_PER_REQ);
772
773		target->max_scat_entries = ATH6KL_SCATTER_ENTRIES_PER_REQ;
774		target->max_xfer_szper_scatreq =
775					ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER;
776	}
777
778	return 0;
779}
780
781static int ath6kl_sdio_config(struct ath6kl *ar)
782{
783	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
784	struct sdio_func *func = ar_sdio->func;
785	int ret;
786
787	sdio_claim_host(func);
788
789	if ((ar_sdio->id->device & MANUFACTURER_ID_ATH6KL_BASE_MASK) >=
790	    MANUFACTURER_ID_AR6003_BASE) {
791		/* enable 4-bit ASYNC interrupt on AR6003 or later */
792		ret = ath6kl_sdio_func0_cmd52_wr_byte(func->card,
793						CCCR_SDIO_IRQ_MODE_REG,
794						SDIO_IRQ_MODE_ASYNC_4BIT_IRQ);
795		if (ret) {
796			ath6kl_err("Failed to enable 4-bit async irq mode %d\n",
797				   ret);
798			goto out;
799		}
800
801		ath6kl_dbg(ATH6KL_DBG_BOOT, "4-bit async irq mode enabled\n");
802	}
803
804	/* give us some time to enable, in ms */
805	func->enable_timeout = 100;
806
807	ret = sdio_set_block_size(func, HIF_MBOX_BLOCK_SIZE);
808	if (ret) {
809		ath6kl_err("Set sdio block size %d failed: %d)\n",
810			   HIF_MBOX_BLOCK_SIZE, ret);
811		goto out;
812	}
813
814out:
815	sdio_release_host(func);
816
817	return ret;
818}
819
820static int ath6kl_set_sdio_pm_caps(struct ath6kl *ar)
821{
822	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
823	struct sdio_func *func = ar_sdio->func;
824	mmc_pm_flag_t flags;
825	int ret;
826
827	flags = sdio_get_host_pm_caps(func);
828
829	ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio suspend pm_caps 0x%x\n", flags);
830
831	if (!(flags & MMC_PM_WAKE_SDIO_IRQ) ||
832	    !(flags & MMC_PM_KEEP_POWER))
833		return -EINVAL;
834
835	ret = sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER);
836	if (ret) {
837		ath6kl_err("set sdio keep pwr flag failed: %d\n", ret);
838		return ret;
839	}
840
841	/* sdio irq wakes up host */
842	ret = sdio_set_host_pm_flags(func, MMC_PM_WAKE_SDIO_IRQ);
843	if (ret)
844		ath6kl_err("set sdio wake irq flag failed: %d\n", ret);
845
846	return ret;
847}
848
849static int ath6kl_sdio_suspend(struct ath6kl *ar, struct cfg80211_wowlan *wow)
850{
851	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
852	struct sdio_func *func = ar_sdio->func;
853	mmc_pm_flag_t flags;
854	bool try_deepsleep = false;
855	int ret;
856
857	if (ar->suspend_mode == WLAN_POWER_STATE_WOW ||
858	    (!ar->suspend_mode && wow)) {
859		ret = ath6kl_set_sdio_pm_caps(ar);
860		if (ret)
861			goto cut_pwr;
862
863		ret = ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_WOW, wow);
864		if (ret && ret != -ENOTCONN)
865			ath6kl_err("wow suspend failed: %d\n", ret);
866
867		if (ret &&
868		    (!ar->wow_suspend_mode ||
869		     ar->wow_suspend_mode == WLAN_POWER_STATE_DEEP_SLEEP))
870			try_deepsleep = true;
871		else if (ret &&
872			 ar->wow_suspend_mode == WLAN_POWER_STATE_CUT_PWR)
873			goto cut_pwr;
874		if (!ret)
875			return 0;
876	}
877
878	if (ar->suspend_mode == WLAN_POWER_STATE_DEEP_SLEEP ||
879	    !ar->suspend_mode || try_deepsleep) {
880		flags = sdio_get_host_pm_caps(func);
881		if (!(flags & MMC_PM_KEEP_POWER))
882			goto cut_pwr;
883
884		ret = sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER);
885		if (ret)
886			goto cut_pwr;
887
888		/*
889		 * Workaround to support Deep Sleep with MSM, set the host pm
890		 * flag as MMC_PM_WAKE_SDIO_IRQ to allow SDCC deiver to disable
891		 * the sdc2_clock and internally allows MSM to enter
892		 * TCXO shutdown properly.
893		 */
894		if ((flags & MMC_PM_WAKE_SDIO_IRQ)) {
895			ret = sdio_set_host_pm_flags(func,
896						MMC_PM_WAKE_SDIO_IRQ);
897			if (ret)
898				goto cut_pwr;
899		}
900
901		ret = ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_DEEPSLEEP,
902					      NULL);
903		if (ret)
904			goto cut_pwr;
905
906		return 0;
907	}
908
909cut_pwr:
910	if (func->card && func->card->host)
911		func->card->host->pm_flags &= ~MMC_PM_KEEP_POWER;
912
913	return ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_CUTPOWER, NULL);
914}
915
916static int ath6kl_sdio_resume(struct ath6kl *ar)
917{
918	switch (ar->state) {
919	case ATH6KL_STATE_OFF:
920	case ATH6KL_STATE_CUTPOWER:
921		ath6kl_dbg(ATH6KL_DBG_SUSPEND,
922			   "sdio resume configuring sdio\n");
923
924		/* need to set sdio settings after power is cut from sdio */
925		ath6kl_sdio_config(ar);
926		break;
927
928	case ATH6KL_STATE_ON:
929		break;
930
931	case ATH6KL_STATE_DEEPSLEEP:
932		break;
933
934	case ATH6KL_STATE_WOW:
935		break;
936
937	case ATH6KL_STATE_SUSPENDING:
938		break;
939
940	case ATH6KL_STATE_RESUMING:
941		break;
942
943	case ATH6KL_STATE_RECOVERY:
944		break;
945	}
946
947	ath6kl_cfg80211_resume(ar);
948
949	return 0;
950}
951
952/* set the window address register (using 4-byte register access ). */
953static int ath6kl_set_addrwin_reg(struct ath6kl *ar, u32 reg_addr, u32 addr)
954{
955	int status;
956	u8 addr_val[4];
957	s32 i;
958
959	/*
960	 * Write bytes 1,2,3 of the register to set the upper address bytes,
961	 * the LSB is written last to initiate the access cycle
962	 */
963
964	for (i = 1; i <= 3; i++) {
965		/*
966		 * Fill the buffer with the address byte value we want to
967		 * hit 4 times.
968		 */
969		memset(addr_val, ((u8 *)&addr)[i], 4);
970
971		/*
972		 * Hit each byte of the register address with a 4-byte
973		 * write operation to the same address, this is a harmless
974		 * operation.
975		 */
976		status = ath6kl_sdio_read_write_sync(ar, reg_addr + i, addr_val,
977					     4, HIF_WR_SYNC_BYTE_FIX);
978		if (status)
979			break;
980	}
981
982	if (status) {
983		ath6kl_err("%s: failed to write initial bytes of 0x%x to window reg: 0x%X\n",
984			   __func__, addr, reg_addr);
985		return status;
986	}
987
988	/*
989	 * Write the address register again, this time write the whole
990	 * 4-byte value. The effect here is that the LSB write causes the
991	 * cycle to start, the extra 3 byte write to bytes 1,2,3 has no
992	 * effect since we are writing the same values again
993	 */
994	status = ath6kl_sdio_read_write_sync(ar, reg_addr, (u8 *)(&addr),
995				     4, HIF_WR_SYNC_BYTE_INC);
996
997	if (status) {
998		ath6kl_err("%s: failed to write 0x%x to window reg: 0x%X\n",
999			   __func__, addr, reg_addr);
1000		return status;
1001	}
1002
1003	return 0;
1004}
1005
1006static int ath6kl_sdio_diag_read32(struct ath6kl *ar, u32 address, u32 *data)
1007{
1008	int status;
1009
1010	/* set window register to start read cycle */
1011	status = ath6kl_set_addrwin_reg(ar, WINDOW_READ_ADDR_ADDRESS,
1012					address);
1013
1014	if (status)
1015		return status;
1016
1017	/* read the data */
1018	status = ath6kl_sdio_read_write_sync(ar, WINDOW_DATA_ADDRESS,
1019				(u8 *)data, sizeof(u32), HIF_RD_SYNC_BYTE_INC);
1020	if (status) {
1021		ath6kl_err("%s: failed to read from window data addr\n",
1022			   __func__);
1023		return status;
1024	}
1025
1026	return status;
1027}
1028
1029static int ath6kl_sdio_diag_write32(struct ath6kl *ar, u32 address,
1030				    __le32 data)
1031{
1032	int status;
1033	u32 val = (__force u32) data;
1034
1035	/* set write data */
1036	status = ath6kl_sdio_read_write_sync(ar, WINDOW_DATA_ADDRESS,
1037				(u8 *) &val, sizeof(u32), HIF_WR_SYNC_BYTE_INC);
1038	if (status) {
1039		ath6kl_err("%s: failed to write 0x%x to window data addr\n",
1040			   __func__, data);
1041		return status;
1042	}
1043
1044	/* set window register, which starts the write cycle */
1045	return ath6kl_set_addrwin_reg(ar, WINDOW_WRITE_ADDR_ADDRESS,
1046				      address);
1047}
1048
1049static int ath6kl_sdio_bmi_credits(struct ath6kl *ar)
1050{
1051	u32 addr;
1052	unsigned long timeout;
1053	int ret;
1054
1055	ar->bmi.cmd_credits = 0;
1056
1057	/* Read the counter register to get the command credits */
1058	addr = COUNT_DEC_ADDRESS + (HTC_MAILBOX_NUM_MAX + ENDPOINT1) * 4;
1059
1060	timeout = jiffies + msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT);
1061	while (time_before(jiffies, timeout) && !ar->bmi.cmd_credits) {
1062		/*
1063		 * Hit the credit counter with a 4-byte access, the first byte
1064		 * read will hit the counter and cause a decrement, while the
1065		 * remaining 3 bytes has no effect. The rationale behind this
1066		 * is to make all HIF accesses 4-byte aligned.
1067		 */
1068		ret = ath6kl_sdio_read_write_sync(ar, addr,
1069					 (u8 *)&ar->bmi.cmd_credits, 4,
1070					 HIF_RD_SYNC_BYTE_INC);
1071		if (ret) {
1072			ath6kl_err("Unable to decrement the command credit count register: %d\n",
1073				   ret);
1074			return ret;
1075		}
1076
1077		/* The counter is only 8 bits.
1078		 * Ignore anything in the upper 3 bytes
1079		 */
1080		ar->bmi.cmd_credits &= 0xFF;
1081	}
1082
1083	if (!ar->bmi.cmd_credits) {
1084		ath6kl_err("bmi communication timeout\n");
1085		return -ETIMEDOUT;
1086	}
1087
1088	return 0;
1089}
1090
1091static int ath6kl_bmi_get_rx_lkahd(struct ath6kl *ar)
1092{
1093	unsigned long timeout;
1094	u32 rx_word = 0;
1095	int ret = 0;
1096
1097	timeout = jiffies + msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT);
1098	while ((time_before(jiffies, timeout)) && !rx_word) {
1099		ret = ath6kl_sdio_read_write_sync(ar,
1100					RX_LOOKAHEAD_VALID_ADDRESS,
1101					(u8 *)&rx_word, sizeof(rx_word),
1102					HIF_RD_SYNC_BYTE_INC);
1103		if (ret) {
1104			ath6kl_err("unable to read RX_LOOKAHEAD_VALID\n");
1105			return ret;
1106		}
1107
1108		 /* all we really want is one bit */
1109		rx_word &= (1 << ENDPOINT1);
1110	}
1111
1112	if (!rx_word) {
1113		ath6kl_err("bmi_recv_buf FIFO empty\n");
1114		return -EINVAL;
1115	}
1116
1117	return ret;
1118}
1119
1120static int ath6kl_sdio_bmi_write(struct ath6kl *ar, u8 *buf, u32 len)
1121{
1122	int ret;
1123	u32 addr;
1124
1125	ret = ath6kl_sdio_bmi_credits(ar);
1126	if (ret)
1127		return ret;
1128
1129	addr = ar->mbox_info.htc_addr;
1130
1131	ret = ath6kl_sdio_read_write_sync(ar, addr, buf, len,
1132					  HIF_WR_SYNC_BYTE_INC);
1133	if (ret) {
1134		ath6kl_err("unable to send the bmi data to the device\n");
1135		return ret;
1136	}
1137
1138	return 0;
1139}
1140
1141static int ath6kl_sdio_bmi_read(struct ath6kl *ar, u8 *buf, u32 len)
1142{
1143	int ret;
1144	u32 addr;
1145
1146	/*
1147	 * During normal bootup, small reads may be required.
1148	 * Rather than issue an HIF Read and then wait as the Target
1149	 * adds successive bytes to the FIFO, we wait here until
1150	 * we know that response data is available.
1151	 *
1152	 * This allows us to cleanly timeout on an unexpected
1153	 * Target failure rather than risk problems at the HIF level.
1154	 * In particular, this avoids SDIO timeouts and possibly garbage
1155	 * data on some host controllers.  And on an interconnect
1156	 * such as Compact Flash (as well as some SDIO masters) which
1157	 * does not provide any indication on data timeout, it avoids
1158	 * a potential hang or garbage response.
1159	 *
1160	 * Synchronization is more difficult for reads larger than the
1161	 * size of the MBOX FIFO (128B), because the Target is unable
1162	 * to push the 129th byte of data until AFTER the Host posts an
1163	 * HIF Read and removes some FIFO data.  So for large reads the
1164	 * Host proceeds to post an HIF Read BEFORE all the data is
1165	 * actually available to read.  Fortunately, large BMI reads do
1166	 * not occur in practice -- they're supported for debug/development.
1167	 *
1168	 * So Host/Target BMI synchronization is divided into these cases:
1169	 *  CASE 1: length < 4
1170	 *        Should not happen
1171	 *
1172	 *  CASE 2: 4 <= length <= 128
1173	 *        Wait for first 4 bytes to be in FIFO
1174	 *        If CONSERVATIVE_BMI_READ is enabled, also wait for
1175	 *        a BMI command credit, which indicates that the ENTIRE
1176	 *        response is available in the the FIFO
1177	 *
1178	 *  CASE 3: length > 128
1179	 *        Wait for the first 4 bytes to be in FIFO
1180	 *
1181	 * For most uses, a small timeout should be sufficient and we will
1182	 * usually see a response quickly; but there may be some unusual
1183	 * (debug) cases of BMI_EXECUTE where we want an larger timeout.
1184	 * For now, we use an unbounded busy loop while waiting for
1185	 * BMI_EXECUTE.
1186	 *
1187	 * If BMI_EXECUTE ever needs to support longer-latency execution,
1188	 * especially in production, this code needs to be enhanced to sleep
1189	 * and yield.  Also note that BMI_COMMUNICATION_TIMEOUT is currently
1190	 * a function of Host processor speed.
1191	 */
1192	if (len >= 4) { /* NB: Currently, always true */
1193		ret = ath6kl_bmi_get_rx_lkahd(ar);
1194		if (ret)
1195			return ret;
1196	}
1197
1198	addr = ar->mbox_info.htc_addr;
1199	ret = ath6kl_sdio_read_write_sync(ar, addr, buf, len,
1200				  HIF_RD_SYNC_BYTE_INC);
1201	if (ret) {
1202		ath6kl_err("Unable to read the bmi data from the device: %d\n",
1203			   ret);
1204		return ret;
1205	}
1206
1207	return 0;
1208}
1209
1210static void ath6kl_sdio_stop(struct ath6kl *ar)
1211{
1212	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
1213	struct bus_request *req, *tmp_req;
1214	void *context;
1215
1216	/* FIXME: make sure that wq is not queued again */
1217
1218	cancel_work_sync(&ar_sdio->wr_async_work);
1219
1220	spin_lock_bh(&ar_sdio->wr_async_lock);
1221
1222	list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
1223		list_del(&req->list);
1224
1225		if (req->scat_req) {
1226			/* this is a scatter gather request */
1227			req->scat_req->status = -ECANCELED;
1228			req->scat_req->complete(ar_sdio->ar->htc_target,
1229						req->scat_req);
1230		} else {
1231			context = req->packet;
1232			ath6kl_sdio_free_bus_req(ar_sdio, req);
1233			ath6kl_hif_rw_comp_handler(context, -ECANCELED);
1234		}
1235	}
1236
1237	spin_unlock_bh(&ar_sdio->wr_async_lock);
1238
1239	WARN_ON(get_queue_depth(&ar_sdio->scat_req) != 4);
1240}
1241
1242static const struct ath6kl_hif_ops ath6kl_sdio_ops = {
1243	.read_write_sync = ath6kl_sdio_read_write_sync,
1244	.write_async = ath6kl_sdio_write_async,
1245	.irq_enable = ath6kl_sdio_irq_enable,
1246	.irq_disable = ath6kl_sdio_irq_disable,
1247	.scatter_req_get = ath6kl_sdio_scatter_req_get,
1248	.scatter_req_add = ath6kl_sdio_scatter_req_add,
1249	.enable_scatter = ath6kl_sdio_enable_scatter,
1250	.scat_req_rw = ath6kl_sdio_async_rw_scatter,
1251	.cleanup_scatter = ath6kl_sdio_cleanup_scatter,
1252	.suspend = ath6kl_sdio_suspend,
1253	.resume = ath6kl_sdio_resume,
1254	.diag_read32 = ath6kl_sdio_diag_read32,
1255	.diag_write32 = ath6kl_sdio_diag_write32,
1256	.bmi_read = ath6kl_sdio_bmi_read,
1257	.bmi_write = ath6kl_sdio_bmi_write,
1258	.power_on = ath6kl_sdio_power_on,
1259	.power_off = ath6kl_sdio_power_off,
1260	.stop = ath6kl_sdio_stop,
1261};
1262
1263#ifdef CONFIG_PM_SLEEP
1264
1265/*
1266 * Empty handlers so that mmc subsystem doesn't remove us entirely during
1267 * suspend. We instead follow cfg80211 suspend/resume handlers.
1268 */
1269static int ath6kl_sdio_pm_suspend(struct device *device)
1270{
1271	ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio pm suspend\n");
1272
1273	return 0;
1274}
1275
1276static int ath6kl_sdio_pm_resume(struct device *device)
1277{
1278	ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio pm resume\n");
1279
1280	return 0;
1281}
1282
1283static SIMPLE_DEV_PM_OPS(ath6kl_sdio_pm_ops, ath6kl_sdio_pm_suspend,
1284			 ath6kl_sdio_pm_resume);
1285
1286#define ATH6KL_SDIO_PM_OPS (&ath6kl_sdio_pm_ops)
1287
1288#else
1289
1290#define ATH6KL_SDIO_PM_OPS NULL
1291
1292#endif /* CONFIG_PM_SLEEP */
1293
1294static int ath6kl_sdio_probe(struct sdio_func *func,
1295			     const struct sdio_device_id *id)
1296{
1297	int ret;
1298	struct ath6kl_sdio *ar_sdio;
1299	struct ath6kl *ar;
1300	int count;
1301
1302	ath6kl_dbg(ATH6KL_DBG_BOOT,
1303		   "sdio new func %d vendor 0x%x device 0x%x block 0x%x/0x%x\n",
1304		   func->num, func->vendor, func->device,
1305		   func->max_blksize, func->cur_blksize);
1306
1307	ar_sdio = kzalloc(sizeof(struct ath6kl_sdio), GFP_KERNEL);
1308	if (!ar_sdio)
1309		return -ENOMEM;
1310
1311	ar_sdio->dma_buffer = kzalloc(HIF_DMA_BUFFER_SIZE, GFP_KERNEL);
1312	if (!ar_sdio->dma_buffer) {
1313		ret = -ENOMEM;
1314		goto err_hif;
1315	}
1316
1317	ar_sdio->func = func;
1318	sdio_set_drvdata(func, ar_sdio);
1319
1320	ar_sdio->id = id;
1321	ar_sdio->is_disabled = true;
1322
1323	spin_lock_init(&ar_sdio->lock);
1324	spin_lock_init(&ar_sdio->scat_lock);
1325	spin_lock_init(&ar_sdio->wr_async_lock);
1326	mutex_init(&ar_sdio->dma_buffer_mutex);
1327
1328	INIT_LIST_HEAD(&ar_sdio->scat_req);
1329	INIT_LIST_HEAD(&ar_sdio->bus_req_freeq);
1330	INIT_LIST_HEAD(&ar_sdio->wr_asyncq);
1331
1332	INIT_WORK(&ar_sdio->wr_async_work, ath6kl_sdio_write_async_work);
1333
1334	init_waitqueue_head(&ar_sdio->irq_wq);
1335
1336	for (count = 0; count < BUS_REQUEST_MAX_NUM; count++)
1337		ath6kl_sdio_free_bus_req(ar_sdio, &ar_sdio->bus_req[count]);
1338
1339	ar = ath6kl_core_create(&ar_sdio->func->dev);
1340	if (!ar) {
1341		ath6kl_err("Failed to alloc ath6kl core\n");
1342		ret = -ENOMEM;
1343		goto err_dma;
1344	}
1345
1346	ar_sdio->ar = ar;
1347	ar->hif_type = ATH6KL_HIF_TYPE_SDIO;
1348	ar->hif_priv = ar_sdio;
1349	ar->hif_ops = &ath6kl_sdio_ops;
1350	ar->bmi.max_data_size = 256;
1351
1352	ath6kl_sdio_set_mbox_info(ar);
1353
1354	ret = ath6kl_sdio_config(ar);
1355	if (ret) {
1356		ath6kl_err("Failed to config sdio: %d\n", ret);
1357		goto err_core_alloc;
1358	}
1359
1360	ret = ath6kl_core_init(ar, ATH6KL_HTC_TYPE_MBOX);
1361	if (ret) {
1362		ath6kl_err("Failed to init ath6kl core\n");
1363		goto err_core_alloc;
1364	}
1365
1366	return ret;
1367
1368err_core_alloc:
1369	ath6kl_core_destroy(ar_sdio->ar);
1370err_dma:
1371	kfree(ar_sdio->dma_buffer);
1372err_hif:
1373	kfree(ar_sdio);
1374
1375	return ret;
1376}
1377
1378static void ath6kl_sdio_remove(struct sdio_func *func)
1379{
1380	struct ath6kl_sdio *ar_sdio;
1381
1382	ath6kl_dbg(ATH6KL_DBG_BOOT,
1383		   "sdio removed func %d vendor 0x%x device 0x%x\n",
1384		   func->num, func->vendor, func->device);
1385
1386	ar_sdio = sdio_get_drvdata(func);
1387
1388	ath6kl_stop_txrx(ar_sdio->ar);
1389	cancel_work_sync(&ar_sdio->wr_async_work);
1390
1391	ath6kl_core_cleanup(ar_sdio->ar);
1392	ath6kl_core_destroy(ar_sdio->ar);
1393
1394	kfree(ar_sdio->dma_buffer);
1395	kfree(ar_sdio);
1396}
1397
1398static const struct sdio_device_id ath6kl_sdio_devices[] = {
1399	{SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6003_BASE | 0x0))},
1400	{SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6003_BASE | 0x1))},
1401	{SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x0))},
1402	{SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x1))},
1403	{SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x2))},
1404	{},
1405};
1406
1407MODULE_DEVICE_TABLE(sdio, ath6kl_sdio_devices);
1408
1409static struct sdio_driver ath6kl_sdio_driver = {
1410	.name = "ath6kl_sdio",
1411	.id_table = ath6kl_sdio_devices,
1412	.probe = ath6kl_sdio_probe,
1413	.remove = ath6kl_sdio_remove,
1414	.drv.pm = ATH6KL_SDIO_PM_OPS,
1415};
1416
1417static int __init ath6kl_sdio_init(void)
1418{
1419	int ret;
1420
1421	ret = sdio_register_driver(&ath6kl_sdio_driver);
1422	if (ret)
1423		ath6kl_err("sdio driver registration failed: %d\n", ret);
1424
1425	return ret;
1426}
1427
1428static void __exit ath6kl_sdio_exit(void)
1429{
1430	sdio_unregister_driver(&ath6kl_sdio_driver);
1431}
1432
1433module_init(ath6kl_sdio_init);
1434module_exit(ath6kl_sdio_exit);
1435
1436MODULE_AUTHOR("Atheros Communications, Inc.");
1437MODULE_DESCRIPTION("Driver support for Atheros AR600x SDIO devices");
1438MODULE_LICENSE("Dual BSD/GPL");
1439
1440MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_OTP_FILE);
1441MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_FIRMWARE_FILE);
1442MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_PATCH_FILE);
1443MODULE_FIRMWARE(AR6003_HW_2_0_BOARD_DATA_FILE);
1444MODULE_FIRMWARE(AR6003_HW_2_0_DEFAULT_BOARD_DATA_FILE);
1445MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_OTP_FILE);
1446MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_FIRMWARE_FILE);
1447MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_PATCH_FILE);
1448MODULE_FIRMWARE(AR6003_HW_2_1_1_BOARD_DATA_FILE);
1449MODULE_FIRMWARE(AR6003_HW_2_1_1_DEFAULT_BOARD_DATA_FILE);
1450MODULE_FIRMWARE(AR6004_HW_1_0_FW_DIR "/" AR6004_HW_1_0_FIRMWARE_FILE);
1451MODULE_FIRMWARE(AR6004_HW_1_0_BOARD_DATA_FILE);
1452MODULE_FIRMWARE(AR6004_HW_1_0_DEFAULT_BOARD_DATA_FILE);
1453MODULE_FIRMWARE(AR6004_HW_1_1_FW_DIR "/" AR6004_HW_1_1_FIRMWARE_FILE);
1454MODULE_FIRMWARE(AR6004_HW_1_1_BOARD_DATA_FILE);
1455MODULE_FIRMWARE(AR6004_HW_1_1_DEFAULT_BOARD_DATA_FILE);
1456MODULE_FIRMWARE(AR6004_HW_1_2_FW_DIR "/" AR6004_HW_1_2_FIRMWARE_FILE);
1457MODULE_FIRMWARE(AR6004_HW_1_2_BOARD_DATA_FILE);
1458MODULE_FIRMWARE(AR6004_HW_1_2_DEFAULT_BOARD_DATA_FILE);
1459MODULE_FIRMWARE(AR6004_HW_1_3_FW_DIR "/" AR6004_HW_1_3_FIRMWARE_FILE);
1460MODULE_FIRMWARE(AR6004_HW_1_3_BOARD_DATA_FILE);
1461MODULE_FIRMWARE(AR6004_HW_1_3_DEFAULT_BOARD_DATA_FILE);
1462