1 /*
2 * Copyright (c) 2005-2011 Atheros Communications Inc.
3 * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17
18 #include <linux/pci.h>
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/spinlock.h>
22 #include <linux/bitops.h>
23
24 #include "core.h"
25 #include "debug.h"
26
27 #include "targaddrs.h"
28 #include "bmi.h"
29
30 #include "hif.h"
31 #include "htc.h"
32
33 #include "ce.h"
34 #include "pci.h"
35
36 enum ath10k_pci_irq_mode {
37 ATH10K_PCI_IRQ_AUTO = 0,
38 ATH10K_PCI_IRQ_LEGACY = 1,
39 ATH10K_PCI_IRQ_MSI = 2,
40 };
41
42 enum ath10k_pci_reset_mode {
43 ATH10K_PCI_RESET_AUTO = 0,
44 ATH10K_PCI_RESET_WARM_ONLY = 1,
45 };
46
47 static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
48 static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
49
50 module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
51 MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
52
53 module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
54 MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
55
56 /* how long wait to wait for target to initialise, in ms */
57 #define ATH10K_PCI_TARGET_WAIT 3000
58 #define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
59
60 #define QCA988X_2_0_DEVICE_ID (0x003c)
61 #define QCA6174_2_1_DEVICE_ID (0x003e)
62
63 static const struct pci_device_id ath10k_pci_id_table[] = {
64 { PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
65 { PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */
66 {0}
67 };
68
69 static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = {
70 /* QCA988X pre 2.0 chips are not supported because they need some nasty
71 * hacks. ath10k doesn't have them and these devices crash horribly
72 * because of that.
73 */
74 { QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV },
75 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
76 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
77 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
78 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
79 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
80 };
81
82 static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
83 static int ath10k_pci_cold_reset(struct ath10k *ar);
84 static int ath10k_pci_warm_reset(struct ath10k *ar);
85 static int ath10k_pci_wait_for_target_init(struct ath10k *ar);
86 static int ath10k_pci_init_irq(struct ath10k *ar);
87 static int ath10k_pci_deinit_irq(struct ath10k *ar);
88 static int ath10k_pci_request_irq(struct ath10k *ar);
89 static void ath10k_pci_free_irq(struct ath10k *ar);
90 static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe,
91 struct ath10k_ce_pipe *rx_pipe,
92 struct bmi_xfer *xfer);
93
94 static const struct ce_attr host_ce_config_wlan[] = {
95 /* CE0: host->target HTC control and raw streams */
96 {
97 .flags = CE_ATTR_FLAGS,
98 .src_nentries = 16,
99 .src_sz_max = 256,
100 .dest_nentries = 0,
101 },
102
103 /* CE1: target->host HTT + HTC control */
104 {
105 .flags = CE_ATTR_FLAGS,
106 .src_nentries = 0,
107 .src_sz_max = 2048,
108 .dest_nentries = 512,
109 },
110
111 /* CE2: target->host WMI */
112 {
113 .flags = CE_ATTR_FLAGS,
114 .src_nentries = 0,
115 .src_sz_max = 2048,
116 .dest_nentries = 32,
117 },
118
119 /* CE3: host->target WMI */
120 {
121 .flags = CE_ATTR_FLAGS,
122 .src_nentries = 32,
123 .src_sz_max = 2048,
124 .dest_nentries = 0,
125 },
126
127 /* CE4: host->target HTT */
128 {
129 .flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
130 .src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
131 .src_sz_max = 256,
132 .dest_nentries = 0,
133 },
134
135 /* CE5: unused */
136 {
137 .flags = CE_ATTR_FLAGS,
138 .src_nentries = 0,
139 .src_sz_max = 0,
140 .dest_nentries = 0,
141 },
142
143 /* CE6: target autonomous hif_memcpy */
144 {
145 .flags = CE_ATTR_FLAGS,
146 .src_nentries = 0,
147 .src_sz_max = 0,
148 .dest_nentries = 0,
149 },
150
151 /* CE7: ce_diag, the Diagnostic Window */
152 {
153 .flags = CE_ATTR_FLAGS,
154 .src_nentries = 2,
155 .src_sz_max = DIAG_TRANSFER_LIMIT,
156 .dest_nentries = 2,
157 },
158 };
159
160 /* Target firmware's Copy Engine configuration. */
161 static const struct ce_pipe_config target_ce_config_wlan[] = {
162 /* CE0: host->target HTC control and raw streams */
163 {
164 .pipenum = __cpu_to_le32(0),
165 .pipedir = __cpu_to_le32(PIPEDIR_OUT),
166 .nentries = __cpu_to_le32(32),
167 .nbytes_max = __cpu_to_le32(256),
168 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
169 .reserved = __cpu_to_le32(0),
170 },
171
172 /* CE1: target->host HTT + HTC control */
173 {
174 .pipenum = __cpu_to_le32(1),
175 .pipedir = __cpu_to_le32(PIPEDIR_IN),
176 .nentries = __cpu_to_le32(32),
177 .nbytes_max = __cpu_to_le32(2048),
178 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
179 .reserved = __cpu_to_le32(0),
180 },
181
182 /* CE2: target->host WMI */
183 {
184 .pipenum = __cpu_to_le32(2),
185 .pipedir = __cpu_to_le32(PIPEDIR_IN),
186 .nentries = __cpu_to_le32(32),
187 .nbytes_max = __cpu_to_le32(2048),
188 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
189 .reserved = __cpu_to_le32(0),
190 },
191
192 /* CE3: host->target WMI */
193 {
194 .pipenum = __cpu_to_le32(3),
195 .pipedir = __cpu_to_le32(PIPEDIR_OUT),
196 .nentries = __cpu_to_le32(32),
197 .nbytes_max = __cpu_to_le32(2048),
198 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
199 .reserved = __cpu_to_le32(0),
200 },
201
202 /* CE4: host->target HTT */
203 {
204 .pipenum = __cpu_to_le32(4),
205 .pipedir = __cpu_to_le32(PIPEDIR_OUT),
206 .nentries = __cpu_to_le32(256),
207 .nbytes_max = __cpu_to_le32(256),
208 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
209 .reserved = __cpu_to_le32(0),
210 },
211
212 /* NB: 50% of src nentries, since tx has 2 frags */
213
214 /* CE5: unused */
215 {
216 .pipenum = __cpu_to_le32(5),
217 .pipedir = __cpu_to_le32(PIPEDIR_OUT),
218 .nentries = __cpu_to_le32(32),
219 .nbytes_max = __cpu_to_le32(2048),
220 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
221 .reserved = __cpu_to_le32(0),
222 },
223
224 /* CE6: Reserved for target autonomous hif_memcpy */
225 {
226 .pipenum = __cpu_to_le32(6),
227 .pipedir = __cpu_to_le32(PIPEDIR_INOUT),
228 .nentries = __cpu_to_le32(32),
229 .nbytes_max = __cpu_to_le32(4096),
230 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
231 .reserved = __cpu_to_le32(0),
232 },
233
234 /* CE7 used only by Host */
235 };
236
237 /*
238 * Map from service/endpoint to Copy Engine.
239 * This table is derived from the CE_PCI TABLE, above.
240 * It is passed to the Target at startup for use by firmware.
241 */
242 static const struct service_to_pipe target_service_to_ce_map_wlan[] = {
243 {
244 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
245 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
246 __cpu_to_le32(3),
247 },
248 {
249 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
250 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
251 __cpu_to_le32(2),
252 },
253 {
254 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
255 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
256 __cpu_to_le32(3),
257 },
258 {
259 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
260 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
261 __cpu_to_le32(2),
262 },
263 {
264 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
265 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
266 __cpu_to_le32(3),
267 },
268 {
269 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
270 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
271 __cpu_to_le32(2),
272 },
273 {
274 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
275 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
276 __cpu_to_le32(3),
277 },
278 {
279 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
280 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
281 __cpu_to_le32(2),
282 },
283 {
284 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
285 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
286 __cpu_to_le32(3),
287 },
288 {
289 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
290 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
291 __cpu_to_le32(2),
292 },
293 {
294 __cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
295 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
296 __cpu_to_le32(0),
297 },
298 {
299 __cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
300 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
301 __cpu_to_le32(1),
302 },
303 { /* not used */
304 __cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
305 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
306 __cpu_to_le32(0),
307 },
308 { /* not used */
309 __cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
310 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
311 __cpu_to_le32(1),
312 },
313 {
314 __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
315 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
316 __cpu_to_le32(4),
317 },
318 {
319 __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
320 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
321 __cpu_to_le32(1),
322 },
323
324 /* (Additions here) */
325
326 { /* must be last */
327 __cpu_to_le32(0),
328 __cpu_to_le32(0),
329 __cpu_to_le32(0),
330 },
331 };
332
ath10k_pci_irq_pending(struct ath10k * ar)333 static bool ath10k_pci_irq_pending(struct ath10k *ar)
334 {
335 u32 cause;
336
337 /* Check if the shared legacy irq is for us */
338 cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
339 PCIE_INTR_CAUSE_ADDRESS);
340 if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
341 return true;
342
343 return false;
344 }
345
ath10k_pci_disable_and_clear_legacy_irq(struct ath10k * ar)346 static void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
347 {
348 /* IMPORTANT: INTR_CLR register has to be set after
349 * INTR_ENABLE is set to 0, otherwise interrupt can not be
350 * really cleared. */
351 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
352 0);
353 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
354 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
355
356 /* IMPORTANT: this extra read transaction is required to
357 * flush the posted write buffer. */
358 (void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
359 PCIE_INTR_ENABLE_ADDRESS);
360 }
361
ath10k_pci_enable_legacy_irq(struct ath10k * ar)362 static void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
363 {
364 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
365 PCIE_INTR_ENABLE_ADDRESS,
366 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
367
368 /* IMPORTANT: this extra read transaction is required to
369 * flush the posted write buffer. */
370 (void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
371 PCIE_INTR_ENABLE_ADDRESS);
372 }
373
ath10k_pci_get_irq_method(struct ath10k * ar)374 static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
375 {
376 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
377
378 if (ar_pci->num_msi_intrs > 1)
379 return "msi-x";
380
381 if (ar_pci->num_msi_intrs == 1)
382 return "msi";
383
384 return "legacy";
385 }
386
__ath10k_pci_rx_post_buf(struct ath10k_pci_pipe * pipe)387 static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
388 {
389 struct ath10k *ar = pipe->hif_ce_state;
390 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
391 struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
392 struct sk_buff *skb;
393 dma_addr_t paddr;
394 int ret;
395
396 lockdep_assert_held(&ar_pci->ce_lock);
397
398 skb = dev_alloc_skb(pipe->buf_sz);
399 if (!skb)
400 return -ENOMEM;
401
402 WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
403
404 paddr = dma_map_single(ar->dev, skb->data,
405 skb->len + skb_tailroom(skb),
406 DMA_FROM_DEVICE);
407 if (unlikely(dma_mapping_error(ar->dev, paddr))) {
408 ath10k_warn(ar, "failed to dma map pci rx buf\n");
409 dev_kfree_skb_any(skb);
410 return -EIO;
411 }
412
413 ATH10K_SKB_RXCB(skb)->paddr = paddr;
414
415 ret = __ath10k_ce_rx_post_buf(ce_pipe, skb, paddr);
416 if (ret) {
417 ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
418 dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
419 DMA_FROM_DEVICE);
420 dev_kfree_skb_any(skb);
421 return ret;
422 }
423
424 return 0;
425 }
426
__ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe * pipe)427 static void __ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
428 {
429 struct ath10k *ar = pipe->hif_ce_state;
430 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
431 struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
432 int ret, num;
433
434 lockdep_assert_held(&ar_pci->ce_lock);
435
436 if (pipe->buf_sz == 0)
437 return;
438
439 if (!ce_pipe->dest_ring)
440 return;
441
442 num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
443 while (num--) {
444 ret = __ath10k_pci_rx_post_buf(pipe);
445 if (ret) {
446 ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
447 mod_timer(&ar_pci->rx_post_retry, jiffies +
448 ATH10K_PCI_RX_POST_RETRY_MS);
449 break;
450 }
451 }
452 }
453
ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe * pipe)454 static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
455 {
456 struct ath10k *ar = pipe->hif_ce_state;
457 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
458
459 spin_lock_bh(&ar_pci->ce_lock);
460 __ath10k_pci_rx_post_pipe(pipe);
461 spin_unlock_bh(&ar_pci->ce_lock);
462 }
463
ath10k_pci_rx_post(struct ath10k * ar)464 static void ath10k_pci_rx_post(struct ath10k *ar)
465 {
466 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
467 int i;
468
469 spin_lock_bh(&ar_pci->ce_lock);
470 for (i = 0; i < CE_COUNT; i++)
471 __ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
472 spin_unlock_bh(&ar_pci->ce_lock);
473 }
474
ath10k_pci_rx_replenish_retry(unsigned long ptr)475 static void ath10k_pci_rx_replenish_retry(unsigned long ptr)
476 {
477 struct ath10k *ar = (void *)ptr;
478
479 ath10k_pci_rx_post(ar);
480 }
481
482 /*
483 * Diagnostic read/write access is provided for startup/config/debug usage.
484 * Caller must guarantee proper alignment, when applicable, and single user
485 * at any moment.
486 */
ath10k_pci_diag_read_mem(struct ath10k * ar,u32 address,void * data,int nbytes)487 static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
488 int nbytes)
489 {
490 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
491 int ret = 0;
492 u32 buf;
493 unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
494 unsigned int id;
495 unsigned int flags;
496 struct ath10k_ce_pipe *ce_diag;
497 /* Host buffer address in CE space */
498 u32 ce_data;
499 dma_addr_t ce_data_base = 0;
500 void *data_buf = NULL;
501 int i;
502
503 spin_lock_bh(&ar_pci->ce_lock);
504
505 ce_diag = ar_pci->ce_diag;
506
507 /*
508 * Allocate a temporary bounce buffer to hold caller's data
509 * to be DMA'ed from Target. This guarantees
510 * 1) 4-byte alignment
511 * 2) Buffer in DMA-able space
512 */
513 orig_nbytes = nbytes;
514 data_buf = (unsigned char *)dma_alloc_coherent(ar->dev,
515 orig_nbytes,
516 &ce_data_base,
517 GFP_ATOMIC);
518
519 if (!data_buf) {
520 ret = -ENOMEM;
521 goto done;
522 }
523 memset(data_buf, 0, orig_nbytes);
524
525 remaining_bytes = orig_nbytes;
526 ce_data = ce_data_base;
527 while (remaining_bytes) {
528 nbytes = min_t(unsigned int, remaining_bytes,
529 DIAG_TRANSFER_LIMIT);
530
531 ret = __ath10k_ce_rx_post_buf(ce_diag, NULL, ce_data);
532 if (ret != 0)
533 goto done;
534
535 /* Request CE to send from Target(!) address to Host buffer */
536 /*
537 * The address supplied by the caller is in the
538 * Target CPU virtual address space.
539 *
540 * In order to use this address with the diagnostic CE,
541 * convert it from Target CPU virtual address space
542 * to CE address space
543 */
544 address = TARG_CPU_SPACE_TO_CE_SPACE(ar, ar_pci->mem,
545 address);
546
547 ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)address, nbytes, 0,
548 0);
549 if (ret)
550 goto done;
551
552 i = 0;
553 while (ath10k_ce_completed_send_next_nolock(ce_diag, NULL, &buf,
554 &completed_nbytes,
555 &id) != 0) {
556 mdelay(1);
557 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
558 ret = -EBUSY;
559 goto done;
560 }
561 }
562
563 if (nbytes != completed_nbytes) {
564 ret = -EIO;
565 goto done;
566 }
567
568 if (buf != (u32)address) {
569 ret = -EIO;
570 goto done;
571 }
572
573 i = 0;
574 while (ath10k_ce_completed_recv_next_nolock(ce_diag, NULL, &buf,
575 &completed_nbytes,
576 &id, &flags) != 0) {
577 mdelay(1);
578
579 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
580 ret = -EBUSY;
581 goto done;
582 }
583 }
584
585 if (nbytes != completed_nbytes) {
586 ret = -EIO;
587 goto done;
588 }
589
590 if (buf != ce_data) {
591 ret = -EIO;
592 goto done;
593 }
594
595 remaining_bytes -= nbytes;
596 address += nbytes;
597 ce_data += nbytes;
598 }
599
600 done:
601 if (ret == 0)
602 memcpy(data, data_buf, orig_nbytes);
603 else
604 ath10k_warn(ar, "failed to read diag value at 0x%x: %d\n",
605 address, ret);
606
607 if (data_buf)
608 dma_free_coherent(ar->dev, orig_nbytes, data_buf,
609 ce_data_base);
610
611 spin_unlock_bh(&ar_pci->ce_lock);
612
613 return ret;
614 }
615
ath10k_pci_diag_read32(struct ath10k * ar,u32 address,u32 * value)616 static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
617 {
618 __le32 val = 0;
619 int ret;
620
621 ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
622 *value = __le32_to_cpu(val);
623
624 return ret;
625 }
626
__ath10k_pci_diag_read_hi(struct ath10k * ar,void * dest,u32 src,u32 len)627 static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
628 u32 src, u32 len)
629 {
630 u32 host_addr, addr;
631 int ret;
632
633 host_addr = host_interest_item_address(src);
634
635 ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
636 if (ret != 0) {
637 ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
638 src, ret);
639 return ret;
640 }
641
642 ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
643 if (ret != 0) {
644 ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
645 addr, len, ret);
646 return ret;
647 }
648
649 return 0;
650 }
651
652 #define ath10k_pci_diag_read_hi(ar, dest, src, len) \
653 __ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
654
ath10k_pci_diag_write_mem(struct ath10k * ar,u32 address,const void * data,int nbytes)655 static int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
656 const void *data, int nbytes)
657 {
658 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
659 int ret = 0;
660 u32 buf;
661 unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
662 unsigned int id;
663 unsigned int flags;
664 struct ath10k_ce_pipe *ce_diag;
665 void *data_buf = NULL;
666 u32 ce_data; /* Host buffer address in CE space */
667 dma_addr_t ce_data_base = 0;
668 int i;
669
670 spin_lock_bh(&ar_pci->ce_lock);
671
672 ce_diag = ar_pci->ce_diag;
673
674 /*
675 * Allocate a temporary bounce buffer to hold caller's data
676 * to be DMA'ed to Target. This guarantees
677 * 1) 4-byte alignment
678 * 2) Buffer in DMA-able space
679 */
680 orig_nbytes = nbytes;
681 data_buf = (unsigned char *)dma_alloc_coherent(ar->dev,
682 orig_nbytes,
683 &ce_data_base,
684 GFP_ATOMIC);
685 if (!data_buf) {
686 ret = -ENOMEM;
687 goto done;
688 }
689
690 /* Copy caller's data to allocated DMA buf */
691 memcpy(data_buf, data, orig_nbytes);
692
693 /*
694 * The address supplied by the caller is in the
695 * Target CPU virtual address space.
696 *
697 * In order to use this address with the diagnostic CE,
698 * convert it from
699 * Target CPU virtual address space
700 * to
701 * CE address space
702 */
703 address = TARG_CPU_SPACE_TO_CE_SPACE(ar, ar_pci->mem, address);
704
705 remaining_bytes = orig_nbytes;
706 ce_data = ce_data_base;
707 while (remaining_bytes) {
708 /* FIXME: check cast */
709 nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
710
711 /* Set up to receive directly into Target(!) address */
712 ret = __ath10k_ce_rx_post_buf(ce_diag, NULL, address);
713 if (ret != 0)
714 goto done;
715
716 /*
717 * Request CE to send caller-supplied data that
718 * was copied to bounce buffer to Target(!) address.
719 */
720 ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)ce_data,
721 nbytes, 0, 0);
722 if (ret != 0)
723 goto done;
724
725 i = 0;
726 while (ath10k_ce_completed_send_next_nolock(ce_diag, NULL, &buf,
727 &completed_nbytes,
728 &id) != 0) {
729 mdelay(1);
730
731 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
732 ret = -EBUSY;
733 goto done;
734 }
735 }
736
737 if (nbytes != completed_nbytes) {
738 ret = -EIO;
739 goto done;
740 }
741
742 if (buf != ce_data) {
743 ret = -EIO;
744 goto done;
745 }
746
747 i = 0;
748 while (ath10k_ce_completed_recv_next_nolock(ce_diag, NULL, &buf,
749 &completed_nbytes,
750 &id, &flags) != 0) {
751 mdelay(1);
752
753 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
754 ret = -EBUSY;
755 goto done;
756 }
757 }
758
759 if (nbytes != completed_nbytes) {
760 ret = -EIO;
761 goto done;
762 }
763
764 if (buf != address) {
765 ret = -EIO;
766 goto done;
767 }
768
769 remaining_bytes -= nbytes;
770 address += nbytes;
771 ce_data += nbytes;
772 }
773
774 done:
775 if (data_buf) {
776 dma_free_coherent(ar->dev, orig_nbytes, data_buf,
777 ce_data_base);
778 }
779
780 if (ret != 0)
781 ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
782 address, ret);
783
784 spin_unlock_bh(&ar_pci->ce_lock);
785
786 return ret;
787 }
788
ath10k_pci_diag_write32(struct ath10k * ar,u32 address,u32 value)789 static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
790 {
791 __le32 val = __cpu_to_le32(value);
792
793 return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
794 }
795
ath10k_pci_is_awake(struct ath10k * ar)796 static bool ath10k_pci_is_awake(struct ath10k *ar)
797 {
798 u32 val = ath10k_pci_reg_read32(ar, RTC_STATE_ADDRESS);
799
800 return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
801 }
802
ath10k_pci_wake_wait(struct ath10k * ar)803 static int ath10k_pci_wake_wait(struct ath10k *ar)
804 {
805 int tot_delay = 0;
806 int curr_delay = 5;
807
808 while (tot_delay < PCIE_WAKE_TIMEOUT) {
809 if (ath10k_pci_is_awake(ar))
810 return 0;
811
812 udelay(curr_delay);
813 tot_delay += curr_delay;
814
815 if (curr_delay < 50)
816 curr_delay += 5;
817 }
818
819 return -ETIMEDOUT;
820 }
821
ath10k_pci_wake(struct ath10k * ar)822 static int ath10k_pci_wake(struct ath10k *ar)
823 {
824 ath10k_pci_reg_write32(ar, PCIE_SOC_WAKE_ADDRESS,
825 PCIE_SOC_WAKE_V_MASK);
826 return ath10k_pci_wake_wait(ar);
827 }
828
ath10k_pci_sleep(struct ath10k * ar)829 static void ath10k_pci_sleep(struct ath10k *ar)
830 {
831 ath10k_pci_reg_write32(ar, PCIE_SOC_WAKE_ADDRESS,
832 PCIE_SOC_WAKE_RESET);
833 }
834
835 /* Called by lower (CE) layer when a send to Target completes. */
ath10k_pci_ce_send_done(struct ath10k_ce_pipe * ce_state)836 static void ath10k_pci_ce_send_done(struct ath10k_ce_pipe *ce_state)
837 {
838 struct ath10k *ar = ce_state->ar;
839 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
840 struct ath10k_hif_cb *cb = &ar_pci->msg_callbacks_current;
841 struct sk_buff_head list;
842 struct sk_buff *skb;
843 u32 ce_data;
844 unsigned int nbytes;
845 unsigned int transfer_id;
846
847 __skb_queue_head_init(&list);
848 while (ath10k_ce_completed_send_next(ce_state, (void **)&skb, &ce_data,
849 &nbytes, &transfer_id) == 0) {
850 /* no need to call tx completion for NULL pointers */
851 if (skb == NULL)
852 continue;
853
854 __skb_queue_tail(&list, skb);
855 }
856
857 while ((skb = __skb_dequeue(&list)))
858 cb->tx_completion(ar, skb);
859 }
860
861 /* Called by lower (CE) layer when data is received from the Target. */
ath10k_pci_ce_recv_data(struct ath10k_ce_pipe * ce_state)862 static void ath10k_pci_ce_recv_data(struct ath10k_ce_pipe *ce_state)
863 {
864 struct ath10k *ar = ce_state->ar;
865 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
866 struct ath10k_pci_pipe *pipe_info = &ar_pci->pipe_info[ce_state->id];
867 struct ath10k_hif_cb *cb = &ar_pci->msg_callbacks_current;
868 struct sk_buff *skb;
869 struct sk_buff_head list;
870 void *transfer_context;
871 u32 ce_data;
872 unsigned int nbytes, max_nbytes;
873 unsigned int transfer_id;
874 unsigned int flags;
875
876 __skb_queue_head_init(&list);
877 while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
878 &ce_data, &nbytes, &transfer_id,
879 &flags) == 0) {
880 skb = transfer_context;
881 max_nbytes = skb->len + skb_tailroom(skb);
882 dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
883 max_nbytes, DMA_FROM_DEVICE);
884
885 if (unlikely(max_nbytes < nbytes)) {
886 ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
887 nbytes, max_nbytes);
888 dev_kfree_skb_any(skb);
889 continue;
890 }
891
892 skb_put(skb, nbytes);
893 __skb_queue_tail(&list, skb);
894 }
895
896 while ((skb = __skb_dequeue(&list))) {
897 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
898 ce_state->id, skb->len);
899 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
900 skb->data, skb->len);
901
902 cb->rx_completion(ar, skb);
903 }
904
905 ath10k_pci_rx_post_pipe(pipe_info);
906 }
907
ath10k_pci_hif_tx_sg(struct ath10k * ar,u8 pipe_id,struct ath10k_hif_sg_item * items,int n_items)908 static int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
909 struct ath10k_hif_sg_item *items, int n_items)
910 {
911 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
912 struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
913 struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
914 struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
915 unsigned int nentries_mask;
916 unsigned int sw_index;
917 unsigned int write_index;
918 int err, i = 0;
919
920 spin_lock_bh(&ar_pci->ce_lock);
921
922 nentries_mask = src_ring->nentries_mask;
923 sw_index = src_ring->sw_index;
924 write_index = src_ring->write_index;
925
926 if (unlikely(CE_RING_DELTA(nentries_mask,
927 write_index, sw_index - 1) < n_items)) {
928 err = -ENOBUFS;
929 goto err;
930 }
931
932 for (i = 0; i < n_items - 1; i++) {
933 ath10k_dbg(ar, ATH10K_DBG_PCI,
934 "pci tx item %d paddr 0x%08x len %d n_items %d\n",
935 i, items[i].paddr, items[i].len, n_items);
936 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
937 items[i].vaddr, items[i].len);
938
939 err = ath10k_ce_send_nolock(ce_pipe,
940 items[i].transfer_context,
941 items[i].paddr,
942 items[i].len,
943 items[i].transfer_id,
944 CE_SEND_FLAG_GATHER);
945 if (err)
946 goto err;
947 }
948
949 /* `i` is equal to `n_items -1` after for() */
950
951 ath10k_dbg(ar, ATH10K_DBG_PCI,
952 "pci tx item %d paddr 0x%08x len %d n_items %d\n",
953 i, items[i].paddr, items[i].len, n_items);
954 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
955 items[i].vaddr, items[i].len);
956
957 err = ath10k_ce_send_nolock(ce_pipe,
958 items[i].transfer_context,
959 items[i].paddr,
960 items[i].len,
961 items[i].transfer_id,
962 0);
963 if (err)
964 goto err;
965
966 spin_unlock_bh(&ar_pci->ce_lock);
967 return 0;
968
969 err:
970 for (; i > 0; i--)
971 __ath10k_ce_send_revert(ce_pipe);
972
973 spin_unlock_bh(&ar_pci->ce_lock);
974 return err;
975 }
976
ath10k_pci_hif_diag_read(struct ath10k * ar,u32 address,void * buf,size_t buf_len)977 static int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
978 size_t buf_len)
979 {
980 return ath10k_pci_diag_read_mem(ar, address, buf, buf_len);
981 }
982
ath10k_pci_hif_get_free_queue_number(struct ath10k * ar,u8 pipe)983 static u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
984 {
985 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
986
987 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
988
989 return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
990 }
991
ath10k_pci_dump_registers(struct ath10k * ar,struct ath10k_fw_crash_data * crash_data)992 static void ath10k_pci_dump_registers(struct ath10k *ar,
993 struct ath10k_fw_crash_data *crash_data)
994 {
995 __le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
996 int i, ret;
997
998 lockdep_assert_held(&ar->data_lock);
999
1000 ret = ath10k_pci_diag_read_hi(ar, ®_dump_values[0],
1001 hi_failure_state,
1002 REG_DUMP_COUNT_QCA988X * sizeof(__le32));
1003 if (ret) {
1004 ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
1005 return;
1006 }
1007
1008 BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
1009
1010 ath10k_err(ar, "firmware register dump:\n");
1011 for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
1012 ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
1013 i,
1014 __le32_to_cpu(reg_dump_values[i]),
1015 __le32_to_cpu(reg_dump_values[i + 1]),
1016 __le32_to_cpu(reg_dump_values[i + 2]),
1017 __le32_to_cpu(reg_dump_values[i + 3]));
1018
1019 if (!crash_data)
1020 return;
1021
1022 for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
1023 crash_data->registers[i] = reg_dump_values[i];
1024 }
1025
ath10k_pci_fw_crashed_dump(struct ath10k * ar)1026 static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
1027 {
1028 struct ath10k_fw_crash_data *crash_data;
1029 char uuid[50];
1030
1031 spin_lock_bh(&ar->data_lock);
1032
1033 ar->stats.fw_crash_counter++;
1034
1035 crash_data = ath10k_debug_get_new_fw_crash_data(ar);
1036
1037 if (crash_data)
1038 scnprintf(uuid, sizeof(uuid), "%pUl", &crash_data->uuid);
1039 else
1040 scnprintf(uuid, sizeof(uuid), "n/a");
1041
1042 ath10k_err(ar, "firmware crashed! (uuid %s)\n", uuid);
1043 ath10k_print_driver_info(ar);
1044 ath10k_pci_dump_registers(ar, crash_data);
1045
1046 spin_unlock_bh(&ar->data_lock);
1047
1048 queue_work(ar->workqueue, &ar->restart_work);
1049 }
1050
ath10k_pci_hif_send_complete_check(struct ath10k * ar,u8 pipe,int force)1051 static void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
1052 int force)
1053 {
1054 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
1055
1056 if (!force) {
1057 int resources;
1058 /*
1059 * Decide whether to actually poll for completions, or just
1060 * wait for a later chance.
1061 * If there seem to be plenty of resources left, then just wait
1062 * since checking involves reading a CE register, which is a
1063 * relatively expensive operation.
1064 */
1065 resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
1066
1067 /*
1068 * If at least 50% of the total resources are still available,
1069 * don't bother checking again yet.
1070 */
1071 if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1))
1072 return;
1073 }
1074 ath10k_ce_per_engine_service(ar, pipe);
1075 }
1076
ath10k_pci_hif_set_callbacks(struct ath10k * ar,struct ath10k_hif_cb * callbacks)1077 static void ath10k_pci_hif_set_callbacks(struct ath10k *ar,
1078 struct ath10k_hif_cb *callbacks)
1079 {
1080 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1081
1082 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif set callbacks\n");
1083
1084 memcpy(&ar_pci->msg_callbacks_current, callbacks,
1085 sizeof(ar_pci->msg_callbacks_current));
1086 }
1087
ath10k_pci_kill_tasklet(struct ath10k * ar)1088 static void ath10k_pci_kill_tasklet(struct ath10k *ar)
1089 {
1090 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1091 int i;
1092
1093 tasklet_kill(&ar_pci->intr_tq);
1094 tasklet_kill(&ar_pci->msi_fw_err);
1095
1096 for (i = 0; i < CE_COUNT; i++)
1097 tasklet_kill(&ar_pci->pipe_info[i].intr);
1098
1099 del_timer_sync(&ar_pci->rx_post_retry);
1100 }
1101
ath10k_pci_hif_map_service_to_pipe(struct ath10k * ar,u16 service_id,u8 * ul_pipe,u8 * dl_pipe,int * ul_is_polled,int * dl_is_polled)1102 static int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar,
1103 u16 service_id, u8 *ul_pipe,
1104 u8 *dl_pipe, int *ul_is_polled,
1105 int *dl_is_polled)
1106 {
1107 const struct service_to_pipe *entry;
1108 bool ul_set = false, dl_set = false;
1109 int i;
1110
1111 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
1112
1113 /* polling for received messages not supported */
1114 *dl_is_polled = 0;
1115
1116 for (i = 0; i < ARRAY_SIZE(target_service_to_ce_map_wlan); i++) {
1117 entry = &target_service_to_ce_map_wlan[i];
1118
1119 if (__le32_to_cpu(entry->service_id) != service_id)
1120 continue;
1121
1122 switch (__le32_to_cpu(entry->pipedir)) {
1123 case PIPEDIR_NONE:
1124 break;
1125 case PIPEDIR_IN:
1126 WARN_ON(dl_set);
1127 *dl_pipe = __le32_to_cpu(entry->pipenum);
1128 dl_set = true;
1129 break;
1130 case PIPEDIR_OUT:
1131 WARN_ON(ul_set);
1132 *ul_pipe = __le32_to_cpu(entry->pipenum);
1133 ul_set = true;
1134 break;
1135 case PIPEDIR_INOUT:
1136 WARN_ON(dl_set);
1137 WARN_ON(ul_set);
1138 *dl_pipe = __le32_to_cpu(entry->pipenum);
1139 *ul_pipe = __le32_to_cpu(entry->pipenum);
1140 dl_set = true;
1141 ul_set = true;
1142 break;
1143 }
1144 }
1145
1146 if (WARN_ON(!ul_set || !dl_set))
1147 return -ENOENT;
1148
1149 *ul_is_polled =
1150 (host_ce_config_wlan[*ul_pipe].flags & CE_ATTR_DIS_INTR) != 0;
1151
1152 return 0;
1153 }
1154
ath10k_pci_hif_get_default_pipe(struct ath10k * ar,u8 * ul_pipe,u8 * dl_pipe)1155 static void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1156 u8 *ul_pipe, u8 *dl_pipe)
1157 {
1158 int ul_is_polled, dl_is_polled;
1159
1160 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
1161
1162 (void)ath10k_pci_hif_map_service_to_pipe(ar,
1163 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1164 ul_pipe,
1165 dl_pipe,
1166 &ul_is_polled,
1167 &dl_is_polled);
1168 }
1169
ath10k_pci_irq_msi_fw_mask(struct ath10k * ar)1170 static void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
1171 {
1172 u32 val;
1173
1174 val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS);
1175 val &= ~CORE_CTRL_PCIE_REG_31_MASK;
1176
1177 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS, val);
1178 }
1179
ath10k_pci_irq_msi_fw_unmask(struct ath10k * ar)1180 static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
1181 {
1182 u32 val;
1183
1184 val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS);
1185 val |= CORE_CTRL_PCIE_REG_31_MASK;
1186
1187 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS, val);
1188 }
1189
ath10k_pci_irq_disable(struct ath10k * ar)1190 static void ath10k_pci_irq_disable(struct ath10k *ar)
1191 {
1192 ath10k_ce_disable_interrupts(ar);
1193 ath10k_pci_disable_and_clear_legacy_irq(ar);
1194 ath10k_pci_irq_msi_fw_mask(ar);
1195 }
1196
ath10k_pci_irq_sync(struct ath10k * ar)1197 static void ath10k_pci_irq_sync(struct ath10k *ar)
1198 {
1199 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1200 int i;
1201
1202 for (i = 0; i < max(1, ar_pci->num_msi_intrs); i++)
1203 synchronize_irq(ar_pci->pdev->irq + i);
1204 }
1205
ath10k_pci_irq_enable(struct ath10k * ar)1206 static void ath10k_pci_irq_enable(struct ath10k *ar)
1207 {
1208 ath10k_ce_enable_interrupts(ar);
1209 ath10k_pci_enable_legacy_irq(ar);
1210 ath10k_pci_irq_msi_fw_unmask(ar);
1211 }
1212
ath10k_pci_hif_start(struct ath10k * ar)1213 static int ath10k_pci_hif_start(struct ath10k *ar)
1214 {
1215 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
1216
1217 ath10k_pci_irq_enable(ar);
1218 ath10k_pci_rx_post(ar);
1219
1220 return 0;
1221 }
1222
ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe * pci_pipe)1223 static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1224 {
1225 struct ath10k *ar;
1226 struct ath10k_ce_pipe *ce_pipe;
1227 struct ath10k_ce_ring *ce_ring;
1228 struct sk_buff *skb;
1229 int i;
1230
1231 ar = pci_pipe->hif_ce_state;
1232 ce_pipe = pci_pipe->ce_hdl;
1233 ce_ring = ce_pipe->dest_ring;
1234
1235 if (!ce_ring)
1236 return;
1237
1238 if (!pci_pipe->buf_sz)
1239 return;
1240
1241 for (i = 0; i < ce_ring->nentries; i++) {
1242 skb = ce_ring->per_transfer_context[i];
1243 if (!skb)
1244 continue;
1245
1246 ce_ring->per_transfer_context[i] = NULL;
1247
1248 dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1249 skb->len + skb_tailroom(skb),
1250 DMA_FROM_DEVICE);
1251 dev_kfree_skb_any(skb);
1252 }
1253 }
1254
ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe * pci_pipe)1255 static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1256 {
1257 struct ath10k *ar;
1258 struct ath10k_pci *ar_pci;
1259 struct ath10k_ce_pipe *ce_pipe;
1260 struct ath10k_ce_ring *ce_ring;
1261 struct ce_desc *ce_desc;
1262 struct sk_buff *skb;
1263 unsigned int id;
1264 int i;
1265
1266 ar = pci_pipe->hif_ce_state;
1267 ar_pci = ath10k_pci_priv(ar);
1268 ce_pipe = pci_pipe->ce_hdl;
1269 ce_ring = ce_pipe->src_ring;
1270
1271 if (!ce_ring)
1272 return;
1273
1274 if (!pci_pipe->buf_sz)
1275 return;
1276
1277 ce_desc = ce_ring->shadow_base;
1278 if (WARN_ON(!ce_desc))
1279 return;
1280
1281 for (i = 0; i < ce_ring->nentries; i++) {
1282 skb = ce_ring->per_transfer_context[i];
1283 if (!skb)
1284 continue;
1285
1286 ce_ring->per_transfer_context[i] = NULL;
1287 id = MS(__le16_to_cpu(ce_desc[i].flags),
1288 CE_DESC_FLAGS_META_DATA);
1289
1290 ar_pci->msg_callbacks_current.tx_completion(ar, skb);
1291 }
1292 }
1293
1294 /*
1295 * Cleanup residual buffers for device shutdown:
1296 * buffers that were enqueued for receive
1297 * buffers that were to be sent
1298 * Note: Buffers that had completed but which were
1299 * not yet processed are on a completion queue. They
1300 * are handled when the completion thread shuts down.
1301 */
ath10k_pci_buffer_cleanup(struct ath10k * ar)1302 static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
1303 {
1304 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1305 int pipe_num;
1306
1307 for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
1308 struct ath10k_pci_pipe *pipe_info;
1309
1310 pipe_info = &ar_pci->pipe_info[pipe_num];
1311 ath10k_pci_rx_pipe_cleanup(pipe_info);
1312 ath10k_pci_tx_pipe_cleanup(pipe_info);
1313 }
1314 }
1315
ath10k_pci_ce_deinit(struct ath10k * ar)1316 static void ath10k_pci_ce_deinit(struct ath10k *ar)
1317 {
1318 int i;
1319
1320 for (i = 0; i < CE_COUNT; i++)
1321 ath10k_ce_deinit_pipe(ar, i);
1322 }
1323
ath10k_pci_flush(struct ath10k * ar)1324 static void ath10k_pci_flush(struct ath10k *ar)
1325 {
1326 ath10k_pci_kill_tasklet(ar);
1327 ath10k_pci_buffer_cleanup(ar);
1328 }
1329
ath10k_pci_hif_stop(struct ath10k * ar)1330 static void ath10k_pci_hif_stop(struct ath10k *ar)
1331 {
1332 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
1333
1334 /* Most likely the device has HTT Rx ring configured. The only way to
1335 * prevent the device from accessing (and possible corrupting) host
1336 * memory is to reset the chip now.
1337 *
1338 * There's also no known way of masking MSI interrupts on the device.
1339 * For ranged MSI the CE-related interrupts can be masked. However
1340 * regardless how many MSI interrupts are assigned the first one
1341 * is always used for firmware indications (crashes) and cannot be
1342 * masked. To prevent the device from asserting the interrupt reset it
1343 * before proceeding with cleanup.
1344 */
1345 ath10k_pci_warm_reset(ar);
1346
1347 ath10k_pci_irq_disable(ar);
1348 ath10k_pci_irq_sync(ar);
1349 ath10k_pci_flush(ar);
1350 }
1351
ath10k_pci_hif_exchange_bmi_msg(struct ath10k * ar,void * req,u32 req_len,void * resp,u32 * resp_len)1352 static int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
1353 void *req, u32 req_len,
1354 void *resp, u32 *resp_len)
1355 {
1356 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1357 struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
1358 struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
1359 struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
1360 struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
1361 dma_addr_t req_paddr = 0;
1362 dma_addr_t resp_paddr = 0;
1363 struct bmi_xfer xfer = {};
1364 void *treq, *tresp = NULL;
1365 int ret = 0;
1366
1367 might_sleep();
1368
1369 if (resp && !resp_len)
1370 return -EINVAL;
1371
1372 if (resp && resp_len && *resp_len == 0)
1373 return -EINVAL;
1374
1375 treq = kmemdup(req, req_len, GFP_KERNEL);
1376 if (!treq)
1377 return -ENOMEM;
1378
1379 req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
1380 ret = dma_mapping_error(ar->dev, req_paddr);
1381 if (ret) {
1382 ret = -EIO;
1383 goto err_dma;
1384 }
1385
1386 if (resp && resp_len) {
1387 tresp = kzalloc(*resp_len, GFP_KERNEL);
1388 if (!tresp) {
1389 ret = -ENOMEM;
1390 goto err_req;
1391 }
1392
1393 resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
1394 DMA_FROM_DEVICE);
1395 ret = dma_mapping_error(ar->dev, resp_paddr);
1396 if (ret) {
1397 ret = EIO;
1398 goto err_req;
1399 }
1400
1401 xfer.wait_for_resp = true;
1402 xfer.resp_len = 0;
1403
1404 ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
1405 }
1406
1407 ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
1408 if (ret)
1409 goto err_resp;
1410
1411 ret = ath10k_pci_bmi_wait(ce_tx, ce_rx, &xfer);
1412 if (ret) {
1413 u32 unused_buffer;
1414 unsigned int unused_nbytes;
1415 unsigned int unused_id;
1416
1417 ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
1418 &unused_nbytes, &unused_id);
1419 } else {
1420 /* non-zero means we did not time out */
1421 ret = 0;
1422 }
1423
1424 err_resp:
1425 if (resp) {
1426 u32 unused_buffer;
1427
1428 ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
1429 dma_unmap_single(ar->dev, resp_paddr,
1430 *resp_len, DMA_FROM_DEVICE);
1431 }
1432 err_req:
1433 dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
1434
1435 if (ret == 0 && resp_len) {
1436 *resp_len = min(*resp_len, xfer.resp_len);
1437 memcpy(resp, tresp, xfer.resp_len);
1438 }
1439 err_dma:
1440 kfree(treq);
1441 kfree(tresp);
1442
1443 return ret;
1444 }
1445
ath10k_pci_bmi_send_done(struct ath10k_ce_pipe * ce_state)1446 static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
1447 {
1448 struct bmi_xfer *xfer;
1449 u32 ce_data;
1450 unsigned int nbytes;
1451 unsigned int transfer_id;
1452
1453 if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer, &ce_data,
1454 &nbytes, &transfer_id))
1455 return;
1456
1457 xfer->tx_done = true;
1458 }
1459
ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe * ce_state)1460 static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
1461 {
1462 struct ath10k *ar = ce_state->ar;
1463 struct bmi_xfer *xfer;
1464 u32 ce_data;
1465 unsigned int nbytes;
1466 unsigned int transfer_id;
1467 unsigned int flags;
1468
1469 if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer, &ce_data,
1470 &nbytes, &transfer_id, &flags))
1471 return;
1472
1473 if (WARN_ON_ONCE(!xfer))
1474 return;
1475
1476 if (!xfer->wait_for_resp) {
1477 ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
1478 return;
1479 }
1480
1481 xfer->resp_len = nbytes;
1482 xfer->rx_done = true;
1483 }
1484
ath10k_pci_bmi_wait(struct ath10k_ce_pipe * tx_pipe,struct ath10k_ce_pipe * rx_pipe,struct bmi_xfer * xfer)1485 static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe,
1486 struct ath10k_ce_pipe *rx_pipe,
1487 struct bmi_xfer *xfer)
1488 {
1489 unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
1490
1491 while (time_before_eq(jiffies, timeout)) {
1492 ath10k_pci_bmi_send_done(tx_pipe);
1493 ath10k_pci_bmi_recv_data(rx_pipe);
1494
1495 if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp))
1496 return 0;
1497
1498 schedule();
1499 }
1500
1501 return -ETIMEDOUT;
1502 }
1503
1504 /*
1505 * Send an interrupt to the device to wake up the Target CPU
1506 * so it has an opportunity to notice any changed state.
1507 */
ath10k_pci_wake_target_cpu(struct ath10k * ar)1508 static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
1509 {
1510 u32 addr, val;
1511
1512 addr = SOC_CORE_BASE_ADDRESS | CORE_CTRL_ADDRESS;
1513 val = ath10k_pci_read32(ar, addr);
1514 val |= CORE_CTRL_CPU_INTR_MASK;
1515 ath10k_pci_write32(ar, addr, val);
1516
1517 return 0;
1518 }
1519
ath10k_pci_get_num_banks(struct ath10k * ar)1520 static int ath10k_pci_get_num_banks(struct ath10k *ar)
1521 {
1522 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1523
1524 switch (ar_pci->pdev->device) {
1525 case QCA988X_2_0_DEVICE_ID:
1526 return 1;
1527 case QCA6174_2_1_DEVICE_ID:
1528 switch (MS(ar->chip_id, SOC_CHIP_ID_REV)) {
1529 case QCA6174_HW_1_0_CHIP_ID_REV:
1530 case QCA6174_HW_1_1_CHIP_ID_REV:
1531 case QCA6174_HW_2_1_CHIP_ID_REV:
1532 case QCA6174_HW_2_2_CHIP_ID_REV:
1533 return 3;
1534 case QCA6174_HW_1_3_CHIP_ID_REV:
1535 return 2;
1536 case QCA6174_HW_3_0_CHIP_ID_REV:
1537 case QCA6174_HW_3_1_CHIP_ID_REV:
1538 case QCA6174_HW_3_2_CHIP_ID_REV:
1539 return 9;
1540 }
1541 break;
1542 }
1543
1544 ath10k_warn(ar, "unknown number of banks, assuming 1\n");
1545 return 1;
1546 }
1547
ath10k_pci_init_config(struct ath10k * ar)1548 static int ath10k_pci_init_config(struct ath10k *ar)
1549 {
1550 u32 interconnect_targ_addr;
1551 u32 pcie_state_targ_addr = 0;
1552 u32 pipe_cfg_targ_addr = 0;
1553 u32 svc_to_pipe_map = 0;
1554 u32 pcie_config_flags = 0;
1555 u32 ealloc_value;
1556 u32 ealloc_targ_addr;
1557 u32 flag2_value;
1558 u32 flag2_targ_addr;
1559 int ret = 0;
1560
1561 /* Download to Target the CE Config and the service-to-CE map */
1562 interconnect_targ_addr =
1563 host_interest_item_address(HI_ITEM(hi_interconnect_state));
1564
1565 /* Supply Target-side CE configuration */
1566 ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
1567 &pcie_state_targ_addr);
1568 if (ret != 0) {
1569 ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
1570 return ret;
1571 }
1572
1573 if (pcie_state_targ_addr == 0) {
1574 ret = -EIO;
1575 ath10k_err(ar, "Invalid pcie state addr\n");
1576 return ret;
1577 }
1578
1579 ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
1580 offsetof(struct pcie_state,
1581 pipe_cfg_addr)),
1582 &pipe_cfg_targ_addr);
1583 if (ret != 0) {
1584 ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
1585 return ret;
1586 }
1587
1588 if (pipe_cfg_targ_addr == 0) {
1589 ret = -EIO;
1590 ath10k_err(ar, "Invalid pipe cfg addr\n");
1591 return ret;
1592 }
1593
1594 ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
1595 target_ce_config_wlan,
1596 sizeof(target_ce_config_wlan));
1597
1598 if (ret != 0) {
1599 ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
1600 return ret;
1601 }
1602
1603 ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
1604 offsetof(struct pcie_state,
1605 svc_to_pipe_map)),
1606 &svc_to_pipe_map);
1607 if (ret != 0) {
1608 ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
1609 return ret;
1610 }
1611
1612 if (svc_to_pipe_map == 0) {
1613 ret = -EIO;
1614 ath10k_err(ar, "Invalid svc_to_pipe map\n");
1615 return ret;
1616 }
1617
1618 ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
1619 target_service_to_ce_map_wlan,
1620 sizeof(target_service_to_ce_map_wlan));
1621 if (ret != 0) {
1622 ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
1623 return ret;
1624 }
1625
1626 ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
1627 offsetof(struct pcie_state,
1628 config_flags)),
1629 &pcie_config_flags);
1630 if (ret != 0) {
1631 ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
1632 return ret;
1633 }
1634
1635 pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
1636
1637 ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
1638 offsetof(struct pcie_state,
1639 config_flags)),
1640 pcie_config_flags);
1641 if (ret != 0) {
1642 ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
1643 return ret;
1644 }
1645
1646 /* configure early allocation */
1647 ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
1648
1649 ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
1650 if (ret != 0) {
1651 ath10k_err(ar, "Faile to get early alloc val: %d\n", ret);
1652 return ret;
1653 }
1654
1655 /* first bank is switched to IRAM */
1656 ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
1657 HI_EARLY_ALLOC_MAGIC_MASK);
1658 ealloc_value |= ((ath10k_pci_get_num_banks(ar) <<
1659 HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
1660 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
1661
1662 ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
1663 if (ret != 0) {
1664 ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
1665 return ret;
1666 }
1667
1668 /* Tell Target to proceed with initialization */
1669 flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
1670
1671 ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
1672 if (ret != 0) {
1673 ath10k_err(ar, "Failed to get option val: %d\n", ret);
1674 return ret;
1675 }
1676
1677 flag2_value |= HI_OPTION_EARLY_CFG_DONE;
1678
1679 ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
1680 if (ret != 0) {
1681 ath10k_err(ar, "Failed to set option val: %d\n", ret);
1682 return ret;
1683 }
1684
1685 return 0;
1686 }
1687
ath10k_pci_alloc_pipes(struct ath10k * ar)1688 static int ath10k_pci_alloc_pipes(struct ath10k *ar)
1689 {
1690 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1691 struct ath10k_pci_pipe *pipe;
1692 int i, ret;
1693
1694 for (i = 0; i < CE_COUNT; i++) {
1695 pipe = &ar_pci->pipe_info[i];
1696 pipe->ce_hdl = &ar_pci->ce_states[i];
1697 pipe->pipe_num = i;
1698 pipe->hif_ce_state = ar;
1699
1700 ret = ath10k_ce_alloc_pipe(ar, i, &host_ce_config_wlan[i],
1701 ath10k_pci_ce_send_done,
1702 ath10k_pci_ce_recv_data);
1703 if (ret) {
1704 ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
1705 i, ret);
1706 return ret;
1707 }
1708
1709 /* Last CE is Diagnostic Window */
1710 if (i == CE_COUNT - 1) {
1711 ar_pci->ce_diag = pipe->ce_hdl;
1712 continue;
1713 }
1714
1715 pipe->buf_sz = (size_t)(host_ce_config_wlan[i].src_sz_max);
1716 }
1717
1718 return 0;
1719 }
1720
ath10k_pci_free_pipes(struct ath10k * ar)1721 static void ath10k_pci_free_pipes(struct ath10k *ar)
1722 {
1723 int i;
1724
1725 for (i = 0; i < CE_COUNT; i++)
1726 ath10k_ce_free_pipe(ar, i);
1727 }
1728
ath10k_pci_init_pipes(struct ath10k * ar)1729 static int ath10k_pci_init_pipes(struct ath10k *ar)
1730 {
1731 int i, ret;
1732
1733 for (i = 0; i < CE_COUNT; i++) {
1734 ret = ath10k_ce_init_pipe(ar, i, &host_ce_config_wlan[i]);
1735 if (ret) {
1736 ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
1737 i, ret);
1738 return ret;
1739 }
1740 }
1741
1742 return 0;
1743 }
1744
ath10k_pci_has_fw_crashed(struct ath10k * ar)1745 static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
1746 {
1747 return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
1748 FW_IND_EVENT_PENDING;
1749 }
1750
ath10k_pci_fw_crashed_clear(struct ath10k * ar)1751 static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
1752 {
1753 u32 val;
1754
1755 val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
1756 val &= ~FW_IND_EVENT_PENDING;
1757 ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
1758 }
1759
1760 /* this function effectively clears target memory controller assert line */
ath10k_pci_warm_reset_si0(struct ath10k * ar)1761 static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
1762 {
1763 u32 val;
1764
1765 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
1766 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
1767 val | SOC_RESET_CONTROL_SI0_RST_MASK);
1768 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
1769
1770 msleep(10);
1771
1772 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
1773 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
1774 val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
1775 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
1776
1777 msleep(10);
1778 }
1779
ath10k_pci_warm_reset_cpu(struct ath10k * ar)1780 static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
1781 {
1782 u32 val;
1783
1784 ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
1785
1786 val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
1787 SOC_RESET_CONTROL_ADDRESS);
1788 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
1789 val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
1790 }
1791
ath10k_pci_warm_reset_ce(struct ath10k * ar)1792 static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
1793 {
1794 u32 val;
1795
1796 val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
1797 SOC_RESET_CONTROL_ADDRESS);
1798
1799 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
1800 val | SOC_RESET_CONTROL_CE_RST_MASK);
1801 msleep(10);
1802 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
1803 val & ~SOC_RESET_CONTROL_CE_RST_MASK);
1804 }
1805
ath10k_pci_warm_reset_clear_lf(struct ath10k * ar)1806 static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
1807 {
1808 u32 val;
1809
1810 val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
1811 SOC_LF_TIMER_CONTROL0_ADDRESS);
1812 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS +
1813 SOC_LF_TIMER_CONTROL0_ADDRESS,
1814 val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
1815 }
1816
ath10k_pci_warm_reset(struct ath10k * ar)1817 static int ath10k_pci_warm_reset(struct ath10k *ar)
1818 {
1819 int ret;
1820
1821 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
1822
1823 spin_lock_bh(&ar->data_lock);
1824 ar->stats.fw_warm_reset_counter++;
1825 spin_unlock_bh(&ar->data_lock);
1826
1827 ath10k_pci_irq_disable(ar);
1828
1829 /* Make sure the target CPU is not doing anything dangerous, e.g. if it
1830 * were to access copy engine while host performs copy engine reset
1831 * then it is possible for the device to confuse pci-e controller to
1832 * the point of bringing host system to a complete stop (i.e. hang).
1833 */
1834 ath10k_pci_warm_reset_si0(ar);
1835 ath10k_pci_warm_reset_cpu(ar);
1836 ath10k_pci_init_pipes(ar);
1837 ath10k_pci_wait_for_target_init(ar);
1838
1839 ath10k_pci_warm_reset_clear_lf(ar);
1840 ath10k_pci_warm_reset_ce(ar);
1841 ath10k_pci_warm_reset_cpu(ar);
1842 ath10k_pci_init_pipes(ar);
1843
1844 ret = ath10k_pci_wait_for_target_init(ar);
1845 if (ret) {
1846 ath10k_warn(ar, "failed to wait for target init: %d\n", ret);
1847 return ret;
1848 }
1849
1850 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
1851
1852 return 0;
1853 }
1854
ath10k_pci_qca988x_chip_reset(struct ath10k * ar)1855 static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar)
1856 {
1857 int i, ret;
1858 u32 val;
1859
1860 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n");
1861
1862 /* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
1863 * It is thus preferred to use warm reset which is safer but may not be
1864 * able to recover the device from all possible fail scenarios.
1865 *
1866 * Warm reset doesn't always work on first try so attempt it a few
1867 * times before giving up.
1868 */
1869 for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
1870 ret = ath10k_pci_warm_reset(ar);
1871 if (ret) {
1872 ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n",
1873 i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
1874 ret);
1875 continue;
1876 }
1877
1878 /* FIXME: Sometimes copy engine doesn't recover after warm
1879 * reset. In most cases this needs cold reset. In some of these
1880 * cases the device is in such a state that a cold reset may
1881 * lock up the host.
1882 *
1883 * Reading any host interest register via copy engine is
1884 * sufficient to verify if device is capable of booting
1885 * firmware blob.
1886 */
1887 ret = ath10k_pci_init_pipes(ar);
1888 if (ret) {
1889 ath10k_warn(ar, "failed to init copy engine: %d\n",
1890 ret);
1891 continue;
1892 }
1893
1894 ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
1895 &val);
1896 if (ret) {
1897 ath10k_warn(ar, "failed to poke copy engine: %d\n",
1898 ret);
1899 continue;
1900 }
1901
1902 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
1903 return 0;
1904 }
1905
1906 if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
1907 ath10k_warn(ar, "refusing cold reset as requested\n");
1908 return -EPERM;
1909 }
1910
1911 ret = ath10k_pci_cold_reset(ar);
1912 if (ret) {
1913 ath10k_warn(ar, "failed to cold reset: %d\n", ret);
1914 return ret;
1915 }
1916
1917 ret = ath10k_pci_wait_for_target_init(ar);
1918 if (ret) {
1919 ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
1920 ret);
1921 return ret;
1922 }
1923
1924 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n");
1925
1926 return 0;
1927 }
1928
ath10k_pci_qca6174_chip_reset(struct ath10k * ar)1929 static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar)
1930 {
1931 int ret;
1932
1933 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n");
1934
1935 /* FIXME: QCA6174 requires cold + warm reset to work. */
1936
1937 ret = ath10k_pci_cold_reset(ar);
1938 if (ret) {
1939 ath10k_warn(ar, "failed to cold reset: %d\n", ret);
1940 return ret;
1941 }
1942
1943 ret = ath10k_pci_wait_for_target_init(ar);
1944 if (ret) {
1945 ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
1946 ret);
1947 return ret;
1948 }
1949
1950 ret = ath10k_pci_warm_reset(ar);
1951 if (ret) {
1952 ath10k_warn(ar, "failed to warm reset: %d\n", ret);
1953 return ret;
1954 }
1955
1956 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n");
1957
1958 return 0;
1959 }
1960
ath10k_pci_chip_reset(struct ath10k * ar)1961 static int ath10k_pci_chip_reset(struct ath10k *ar)
1962 {
1963 if (QCA_REV_988X(ar))
1964 return ath10k_pci_qca988x_chip_reset(ar);
1965 else if (QCA_REV_6174(ar))
1966 return ath10k_pci_qca6174_chip_reset(ar);
1967 else
1968 return -ENOTSUPP;
1969 }
1970
ath10k_pci_hif_power_up(struct ath10k * ar)1971 static int ath10k_pci_hif_power_up(struct ath10k *ar)
1972 {
1973 int ret;
1974
1975 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
1976
1977 ret = ath10k_pci_wake(ar);
1978 if (ret) {
1979 ath10k_err(ar, "failed to wake up target: %d\n", ret);
1980 return ret;
1981 }
1982
1983 /*
1984 * Bring the target up cleanly.
1985 *
1986 * The target may be in an undefined state with an AUX-powered Target
1987 * and a Host in WoW mode. If the Host crashes, loses power, or is
1988 * restarted (without unloading the driver) then the Target is left
1989 * (aux) powered and running. On a subsequent driver load, the Target
1990 * is in an unexpected state. We try to catch that here in order to
1991 * reset the Target and retry the probe.
1992 */
1993 ret = ath10k_pci_chip_reset(ar);
1994 if (ret) {
1995 if (ath10k_pci_has_fw_crashed(ar)) {
1996 ath10k_warn(ar, "firmware crashed during chip reset\n");
1997 ath10k_pci_fw_crashed_clear(ar);
1998 ath10k_pci_fw_crashed_dump(ar);
1999 }
2000
2001 ath10k_err(ar, "failed to reset chip: %d\n", ret);
2002 goto err_sleep;
2003 }
2004
2005 ret = ath10k_pci_init_pipes(ar);
2006 if (ret) {
2007 ath10k_err(ar, "failed to initialize CE: %d\n", ret);
2008 goto err_sleep;
2009 }
2010
2011 ret = ath10k_pci_init_config(ar);
2012 if (ret) {
2013 ath10k_err(ar, "failed to setup init config: %d\n", ret);
2014 goto err_ce;
2015 }
2016
2017 ret = ath10k_pci_wake_target_cpu(ar);
2018 if (ret) {
2019 ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
2020 goto err_ce;
2021 }
2022
2023 return 0;
2024
2025 err_ce:
2026 ath10k_pci_ce_deinit(ar);
2027
2028 err_sleep:
2029 ath10k_pci_sleep(ar);
2030 return ret;
2031 }
2032
ath10k_pci_hif_power_down(struct ath10k * ar)2033 static void ath10k_pci_hif_power_down(struct ath10k *ar)
2034 {
2035 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
2036
2037 /* Currently hif_power_up performs effectively a reset and hif_stop
2038 * resets the chip as well so there's no point in resetting here.
2039 */
2040
2041 ath10k_pci_sleep(ar);
2042 }
2043
2044 #ifdef CONFIG_PM
2045
2046 #define ATH10K_PCI_PM_CONTROL 0x44
2047
ath10k_pci_hif_suspend(struct ath10k * ar)2048 static int ath10k_pci_hif_suspend(struct ath10k *ar)
2049 {
2050 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2051 struct pci_dev *pdev = ar_pci->pdev;
2052 u32 val;
2053
2054 pci_read_config_dword(pdev, ATH10K_PCI_PM_CONTROL, &val);
2055
2056 if ((val & 0x000000ff) != 0x3) {
2057 pci_save_state(pdev);
2058 pci_disable_device(pdev);
2059 pci_write_config_dword(pdev, ATH10K_PCI_PM_CONTROL,
2060 (val & 0xffffff00) | 0x03);
2061 }
2062
2063 return 0;
2064 }
2065
ath10k_pci_hif_resume(struct ath10k * ar)2066 static int ath10k_pci_hif_resume(struct ath10k *ar)
2067 {
2068 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2069 struct pci_dev *pdev = ar_pci->pdev;
2070 u32 val;
2071
2072 pci_read_config_dword(pdev, ATH10K_PCI_PM_CONTROL, &val);
2073
2074 if ((val & 0x000000ff) != 0) {
2075 pci_restore_state(pdev);
2076 pci_write_config_dword(pdev, ATH10K_PCI_PM_CONTROL,
2077 val & 0xffffff00);
2078 /*
2079 * Suspend/Resume resets the PCI configuration space,
2080 * so we have to re-disable the RETRY_TIMEOUT register (0x41)
2081 * to keep PCI Tx retries from interfering with C3 CPU state
2082 */
2083 pci_read_config_dword(pdev, 0x40, &val);
2084
2085 if ((val & 0x0000ff00) != 0)
2086 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2087 }
2088
2089 return 0;
2090 }
2091 #endif
2092
2093 static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
2094 .tx_sg = ath10k_pci_hif_tx_sg,
2095 .diag_read = ath10k_pci_hif_diag_read,
2096 .diag_write = ath10k_pci_diag_write_mem,
2097 .exchange_bmi_msg = ath10k_pci_hif_exchange_bmi_msg,
2098 .start = ath10k_pci_hif_start,
2099 .stop = ath10k_pci_hif_stop,
2100 .map_service_to_pipe = ath10k_pci_hif_map_service_to_pipe,
2101 .get_default_pipe = ath10k_pci_hif_get_default_pipe,
2102 .send_complete_check = ath10k_pci_hif_send_complete_check,
2103 .set_callbacks = ath10k_pci_hif_set_callbacks,
2104 .get_free_queue_number = ath10k_pci_hif_get_free_queue_number,
2105 .power_up = ath10k_pci_hif_power_up,
2106 .power_down = ath10k_pci_hif_power_down,
2107 .read32 = ath10k_pci_read32,
2108 .write32 = ath10k_pci_write32,
2109 #ifdef CONFIG_PM
2110 .suspend = ath10k_pci_hif_suspend,
2111 .resume = ath10k_pci_hif_resume,
2112 #endif
2113 };
2114
ath10k_pci_ce_tasklet(unsigned long ptr)2115 static void ath10k_pci_ce_tasklet(unsigned long ptr)
2116 {
2117 struct ath10k_pci_pipe *pipe = (struct ath10k_pci_pipe *)ptr;
2118 struct ath10k_pci *ar_pci = pipe->ar_pci;
2119
2120 ath10k_ce_per_engine_service(ar_pci->ar, pipe->pipe_num);
2121 }
2122
ath10k_msi_err_tasklet(unsigned long data)2123 static void ath10k_msi_err_tasklet(unsigned long data)
2124 {
2125 struct ath10k *ar = (struct ath10k *)data;
2126
2127 if (!ath10k_pci_has_fw_crashed(ar)) {
2128 ath10k_warn(ar, "received unsolicited fw crash interrupt\n");
2129 return;
2130 }
2131
2132 ath10k_pci_irq_disable(ar);
2133 ath10k_pci_fw_crashed_clear(ar);
2134 ath10k_pci_fw_crashed_dump(ar);
2135 }
2136
2137 /*
2138 * Handler for a per-engine interrupt on a PARTICULAR CE.
2139 * This is used in cases where each CE has a private MSI interrupt.
2140 */
ath10k_pci_per_engine_handler(int irq,void * arg)2141 static irqreturn_t ath10k_pci_per_engine_handler(int irq, void *arg)
2142 {
2143 struct ath10k *ar = arg;
2144 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2145 int ce_id = irq - ar_pci->pdev->irq - MSI_ASSIGN_CE_INITIAL;
2146
2147 if (ce_id < 0 || ce_id >= ARRAY_SIZE(ar_pci->pipe_info)) {
2148 ath10k_warn(ar, "unexpected/invalid irq %d ce_id %d\n", irq,
2149 ce_id);
2150 return IRQ_HANDLED;
2151 }
2152
2153 /*
2154 * NOTE: We are able to derive ce_id from irq because we
2155 * use a one-to-one mapping for CE's 0..5.
2156 * CE's 6 & 7 do not use interrupts at all.
2157 *
2158 * This mapping must be kept in sync with the mapping
2159 * used by firmware.
2160 */
2161 tasklet_schedule(&ar_pci->pipe_info[ce_id].intr);
2162 return IRQ_HANDLED;
2163 }
2164
ath10k_pci_msi_fw_handler(int irq,void * arg)2165 static irqreturn_t ath10k_pci_msi_fw_handler(int irq, void *arg)
2166 {
2167 struct ath10k *ar = arg;
2168 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2169
2170 tasklet_schedule(&ar_pci->msi_fw_err);
2171 return IRQ_HANDLED;
2172 }
2173
2174 /*
2175 * Top-level interrupt handler for all PCI interrupts from a Target.
2176 * When a block of MSI interrupts is allocated, this top-level handler
2177 * is not used; instead, we directly call the correct sub-handler.
2178 */
ath10k_pci_interrupt_handler(int irq,void * arg)2179 static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
2180 {
2181 struct ath10k *ar = arg;
2182 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2183
2184 if (ar_pci->num_msi_intrs == 0) {
2185 if (!ath10k_pci_irq_pending(ar))
2186 return IRQ_NONE;
2187
2188 ath10k_pci_disable_and_clear_legacy_irq(ar);
2189 }
2190
2191 tasklet_schedule(&ar_pci->intr_tq);
2192
2193 return IRQ_HANDLED;
2194 }
2195
ath10k_pci_tasklet(unsigned long data)2196 static void ath10k_pci_tasklet(unsigned long data)
2197 {
2198 struct ath10k *ar = (struct ath10k *)data;
2199 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2200
2201 if (ath10k_pci_has_fw_crashed(ar)) {
2202 ath10k_pci_irq_disable(ar);
2203 ath10k_pci_fw_crashed_clear(ar);
2204 ath10k_pci_fw_crashed_dump(ar);
2205 return;
2206 }
2207
2208 ath10k_ce_per_engine_service_any(ar);
2209
2210 /* Re-enable legacy irq that was disabled in the irq handler */
2211 if (ar_pci->num_msi_intrs == 0)
2212 ath10k_pci_enable_legacy_irq(ar);
2213 }
2214
ath10k_pci_request_irq_msix(struct ath10k * ar)2215 static int ath10k_pci_request_irq_msix(struct ath10k *ar)
2216 {
2217 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2218 int ret, i;
2219
2220 ret = request_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW,
2221 ath10k_pci_msi_fw_handler,
2222 IRQF_SHARED, "ath10k_pci", ar);
2223 if (ret) {
2224 ath10k_warn(ar, "failed to request MSI-X fw irq %d: %d\n",
2225 ar_pci->pdev->irq + MSI_ASSIGN_FW, ret);
2226 return ret;
2227 }
2228
2229 for (i = MSI_ASSIGN_CE_INITIAL; i <= MSI_ASSIGN_CE_MAX; i++) {
2230 ret = request_irq(ar_pci->pdev->irq + i,
2231 ath10k_pci_per_engine_handler,
2232 IRQF_SHARED, "ath10k_pci", ar);
2233 if (ret) {
2234 ath10k_warn(ar, "failed to request MSI-X ce irq %d: %d\n",
2235 ar_pci->pdev->irq + i, ret);
2236
2237 for (i--; i >= MSI_ASSIGN_CE_INITIAL; i--)
2238 free_irq(ar_pci->pdev->irq + i, ar);
2239
2240 free_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW, ar);
2241 return ret;
2242 }
2243 }
2244
2245 return 0;
2246 }
2247
ath10k_pci_request_irq_msi(struct ath10k * ar)2248 static int ath10k_pci_request_irq_msi(struct ath10k *ar)
2249 {
2250 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2251 int ret;
2252
2253 ret = request_irq(ar_pci->pdev->irq,
2254 ath10k_pci_interrupt_handler,
2255 IRQF_SHARED, "ath10k_pci", ar);
2256 if (ret) {
2257 ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
2258 ar_pci->pdev->irq, ret);
2259 return ret;
2260 }
2261
2262 return 0;
2263 }
2264
ath10k_pci_request_irq_legacy(struct ath10k * ar)2265 static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
2266 {
2267 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2268 int ret;
2269
2270 ret = request_irq(ar_pci->pdev->irq,
2271 ath10k_pci_interrupt_handler,
2272 IRQF_SHARED, "ath10k_pci", ar);
2273 if (ret) {
2274 ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
2275 ar_pci->pdev->irq, ret);
2276 return ret;
2277 }
2278
2279 return 0;
2280 }
2281
ath10k_pci_request_irq(struct ath10k * ar)2282 static int ath10k_pci_request_irq(struct ath10k *ar)
2283 {
2284 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2285
2286 switch (ar_pci->num_msi_intrs) {
2287 case 0:
2288 return ath10k_pci_request_irq_legacy(ar);
2289 case 1:
2290 return ath10k_pci_request_irq_msi(ar);
2291 case MSI_NUM_REQUEST:
2292 return ath10k_pci_request_irq_msix(ar);
2293 }
2294
2295 ath10k_warn(ar, "unknown irq configuration upon request\n");
2296 return -EINVAL;
2297 }
2298
ath10k_pci_free_irq(struct ath10k * ar)2299 static void ath10k_pci_free_irq(struct ath10k *ar)
2300 {
2301 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2302 int i;
2303
2304 /* There's at least one interrupt irregardless whether its legacy INTR
2305 * or MSI or MSI-X */
2306 for (i = 0; i < max(1, ar_pci->num_msi_intrs); i++)
2307 free_irq(ar_pci->pdev->irq + i, ar);
2308 }
2309
ath10k_pci_init_irq_tasklets(struct ath10k * ar)2310 static void ath10k_pci_init_irq_tasklets(struct ath10k *ar)
2311 {
2312 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2313 int i;
2314
2315 tasklet_init(&ar_pci->intr_tq, ath10k_pci_tasklet, (unsigned long)ar);
2316 tasklet_init(&ar_pci->msi_fw_err, ath10k_msi_err_tasklet,
2317 (unsigned long)ar);
2318
2319 for (i = 0; i < CE_COUNT; i++) {
2320 ar_pci->pipe_info[i].ar_pci = ar_pci;
2321 tasklet_init(&ar_pci->pipe_info[i].intr, ath10k_pci_ce_tasklet,
2322 (unsigned long)&ar_pci->pipe_info[i]);
2323 }
2324 }
2325
ath10k_pci_init_irq(struct ath10k * ar)2326 static int ath10k_pci_init_irq(struct ath10k *ar)
2327 {
2328 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2329 int ret;
2330
2331 ath10k_pci_init_irq_tasklets(ar);
2332
2333 if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
2334 ath10k_info(ar, "limiting irq mode to: %d\n",
2335 ath10k_pci_irq_mode);
2336
2337 /* Try MSI-X */
2338 if (ath10k_pci_irq_mode == ATH10K_PCI_IRQ_AUTO) {
2339 ar_pci->num_msi_intrs = MSI_NUM_REQUEST;
2340 ret = pci_enable_msi_range(ar_pci->pdev, ar_pci->num_msi_intrs,
2341 ar_pci->num_msi_intrs);
2342 if (ret > 0)
2343 return 0;
2344
2345 /* fall-through */
2346 }
2347
2348 /* Try MSI */
2349 if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
2350 ar_pci->num_msi_intrs = 1;
2351 ret = pci_enable_msi(ar_pci->pdev);
2352 if (ret == 0)
2353 return 0;
2354
2355 /* fall-through */
2356 }
2357
2358 /* Try legacy irq
2359 *
2360 * A potential race occurs here: The CORE_BASE write
2361 * depends on target correctly decoding AXI address but
2362 * host won't know when target writes BAR to CORE_CTRL.
2363 * This write might get lost if target has NOT written BAR.
2364 * For now, fix the race by repeating the write in below
2365 * synchronization checking. */
2366 ar_pci->num_msi_intrs = 0;
2367
2368 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
2369 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
2370
2371 return 0;
2372 }
2373
ath10k_pci_deinit_irq_legacy(struct ath10k * ar)2374 static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
2375 {
2376 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
2377 0);
2378 }
2379
ath10k_pci_deinit_irq(struct ath10k * ar)2380 static int ath10k_pci_deinit_irq(struct ath10k *ar)
2381 {
2382 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2383
2384 switch (ar_pci->num_msi_intrs) {
2385 case 0:
2386 ath10k_pci_deinit_irq_legacy(ar);
2387 return 0;
2388 case 1:
2389 /* fall-through */
2390 case MSI_NUM_REQUEST:
2391 pci_disable_msi(ar_pci->pdev);
2392 return 0;
2393 default:
2394 pci_disable_msi(ar_pci->pdev);
2395 }
2396
2397 ath10k_warn(ar, "unknown irq configuration upon deinit\n");
2398 return -EINVAL;
2399 }
2400
ath10k_pci_wait_for_target_init(struct ath10k * ar)2401 static int ath10k_pci_wait_for_target_init(struct ath10k *ar)
2402 {
2403 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2404 unsigned long timeout;
2405 u32 val;
2406
2407 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
2408
2409 timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
2410
2411 do {
2412 val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2413
2414 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
2415 val);
2416
2417 /* target should never return this */
2418 if (val == 0xffffffff)
2419 continue;
2420
2421 /* the device has crashed so don't bother trying anymore */
2422 if (val & FW_IND_EVENT_PENDING)
2423 break;
2424
2425 if (val & FW_IND_INITIALIZED)
2426 break;
2427
2428 if (ar_pci->num_msi_intrs == 0)
2429 /* Fix potential race by repeating CORE_BASE writes */
2430 ath10k_pci_enable_legacy_irq(ar);
2431
2432 mdelay(10);
2433 } while (time_before(jiffies, timeout));
2434
2435 ath10k_pci_disable_and_clear_legacy_irq(ar);
2436 ath10k_pci_irq_msi_fw_mask(ar);
2437
2438 if (val == 0xffffffff) {
2439 ath10k_err(ar, "failed to read device register, device is gone\n");
2440 return -EIO;
2441 }
2442
2443 if (val & FW_IND_EVENT_PENDING) {
2444 ath10k_warn(ar, "device has crashed during init\n");
2445 return -ECOMM;
2446 }
2447
2448 if (!(val & FW_IND_INITIALIZED)) {
2449 ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
2450 val);
2451 return -ETIMEDOUT;
2452 }
2453
2454 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
2455 return 0;
2456 }
2457
ath10k_pci_cold_reset(struct ath10k * ar)2458 static int ath10k_pci_cold_reset(struct ath10k *ar)
2459 {
2460 int i;
2461 u32 val;
2462
2463 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
2464
2465 spin_lock_bh(&ar->data_lock);
2466
2467 ar->stats.fw_cold_reset_counter++;
2468
2469 spin_unlock_bh(&ar->data_lock);
2470
2471 /* Put Target, including PCIe, into RESET. */
2472 val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
2473 val |= 1;
2474 ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
2475
2476 for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) {
2477 if (ath10k_pci_reg_read32(ar, RTC_STATE_ADDRESS) &
2478 RTC_STATE_COLD_RESET_MASK)
2479 break;
2480 msleep(1);
2481 }
2482
2483 /* Pull Target, including PCIe, out of RESET. */
2484 val &= ~1;
2485 ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
2486
2487 for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) {
2488 if (!(ath10k_pci_reg_read32(ar, RTC_STATE_ADDRESS) &
2489 RTC_STATE_COLD_RESET_MASK))
2490 break;
2491 msleep(1);
2492 }
2493
2494 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
2495
2496 return 0;
2497 }
2498
ath10k_pci_claim(struct ath10k * ar)2499 static int ath10k_pci_claim(struct ath10k *ar)
2500 {
2501 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2502 struct pci_dev *pdev = ar_pci->pdev;
2503 u32 lcr_val;
2504 int ret;
2505
2506 pci_set_drvdata(pdev, ar);
2507
2508 ret = pci_enable_device(pdev);
2509 if (ret) {
2510 ath10k_err(ar, "failed to enable pci device: %d\n", ret);
2511 return ret;
2512 }
2513
2514 ret = pci_request_region(pdev, BAR_NUM, "ath");
2515 if (ret) {
2516 ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
2517 ret);
2518 goto err_device;
2519 }
2520
2521 /* Target expects 32 bit DMA. Enforce it. */
2522 ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2523 if (ret) {
2524 ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
2525 goto err_region;
2526 }
2527
2528 ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
2529 if (ret) {
2530 ath10k_err(ar, "failed to set consistent dma mask to 32-bit: %d\n",
2531 ret);
2532 goto err_region;
2533 }
2534
2535 pci_set_master(pdev);
2536
2537 /* Workaround: Disable ASPM */
2538 pci_read_config_dword(pdev, 0x80, &lcr_val);
2539 pci_write_config_dword(pdev, 0x80, (lcr_val & 0xffffff00));
2540
2541 /* Arrange for access to Target SoC registers. */
2542 ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
2543 if (!ar_pci->mem) {
2544 ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
2545 ret = -EIO;
2546 goto err_master;
2547 }
2548
2549 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%p\n", ar_pci->mem);
2550 return 0;
2551
2552 err_master:
2553 pci_clear_master(pdev);
2554
2555 err_region:
2556 pci_release_region(pdev, BAR_NUM);
2557
2558 err_device:
2559 pci_disable_device(pdev);
2560
2561 return ret;
2562 }
2563
ath10k_pci_release(struct ath10k * ar)2564 static void ath10k_pci_release(struct ath10k *ar)
2565 {
2566 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2567 struct pci_dev *pdev = ar_pci->pdev;
2568
2569 pci_iounmap(pdev, ar_pci->mem);
2570 pci_release_region(pdev, BAR_NUM);
2571 pci_clear_master(pdev);
2572 pci_disable_device(pdev);
2573 }
2574
ath10k_pci_chip_is_supported(u32 dev_id,u32 chip_id)2575 static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id)
2576 {
2577 const struct ath10k_pci_supp_chip *supp_chip;
2578 int i;
2579 u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV);
2580
2581 for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) {
2582 supp_chip = &ath10k_pci_supp_chips[i];
2583
2584 if (supp_chip->dev_id == dev_id &&
2585 supp_chip->rev_id == rev_id)
2586 return true;
2587 }
2588
2589 return false;
2590 }
2591
ath10k_pci_probe(struct pci_dev * pdev,const struct pci_device_id * pci_dev)2592 static int ath10k_pci_probe(struct pci_dev *pdev,
2593 const struct pci_device_id *pci_dev)
2594 {
2595 int ret = 0;
2596 struct ath10k *ar;
2597 struct ath10k_pci *ar_pci;
2598 enum ath10k_hw_rev hw_rev;
2599 u32 chip_id;
2600
2601 switch (pci_dev->device) {
2602 case QCA988X_2_0_DEVICE_ID:
2603 hw_rev = ATH10K_HW_QCA988X;
2604 break;
2605 case QCA6174_2_1_DEVICE_ID:
2606 hw_rev = ATH10K_HW_QCA6174;
2607 break;
2608 default:
2609 WARN_ON(1);
2610 return -ENOTSUPP;
2611 }
2612
2613 ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI,
2614 hw_rev, &ath10k_pci_hif_ops);
2615 if (!ar) {
2616 dev_err(&pdev->dev, "failed to allocate core\n");
2617 return -ENOMEM;
2618 }
2619
2620 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci probe\n");
2621
2622 ar_pci = ath10k_pci_priv(ar);
2623 ar_pci->pdev = pdev;
2624 ar_pci->dev = &pdev->dev;
2625 ar_pci->ar = ar;
2626
2627 spin_lock_init(&ar_pci->ce_lock);
2628 setup_timer(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry,
2629 (unsigned long)ar);
2630
2631 ret = ath10k_pci_claim(ar);
2632 if (ret) {
2633 ath10k_err(ar, "failed to claim device: %d\n", ret);
2634 goto err_core_destroy;
2635 }
2636
2637 ret = ath10k_pci_wake(ar);
2638 if (ret) {
2639 ath10k_err(ar, "failed to wake up: %d\n", ret);
2640 goto err_release;
2641 }
2642
2643 ret = ath10k_pci_alloc_pipes(ar);
2644 if (ret) {
2645 ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
2646 ret);
2647 goto err_sleep;
2648 }
2649
2650 ath10k_pci_ce_deinit(ar);
2651 ath10k_pci_irq_disable(ar);
2652
2653 ret = ath10k_pci_init_irq(ar);
2654 if (ret) {
2655 ath10k_err(ar, "failed to init irqs: %d\n", ret);
2656 goto err_free_pipes;
2657 }
2658
2659 ath10k_info(ar, "pci irq %s interrupts %d irq_mode %d reset_mode %d\n",
2660 ath10k_pci_get_irq_method(ar), ar_pci->num_msi_intrs,
2661 ath10k_pci_irq_mode, ath10k_pci_reset_mode);
2662
2663 ret = ath10k_pci_request_irq(ar);
2664 if (ret) {
2665 ath10k_warn(ar, "failed to request irqs: %d\n", ret);
2666 goto err_deinit_irq;
2667 }
2668
2669 ret = ath10k_pci_chip_reset(ar);
2670 if (ret) {
2671 ath10k_err(ar, "failed to reset chip: %d\n", ret);
2672 goto err_free_irq;
2673 }
2674
2675 chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
2676 if (chip_id == 0xffffffff) {
2677 ath10k_err(ar, "failed to get chip id\n");
2678 goto err_free_irq;
2679 }
2680
2681 if (!ath10k_pci_chip_is_supported(pdev->device, chip_id)) {
2682 ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n",
2683 pdev->device, chip_id);
2684 goto err_sleep;
2685 }
2686
2687 ath10k_pci_sleep(ar);
2688
2689 ret = ath10k_core_register(ar, chip_id);
2690 if (ret) {
2691 ath10k_err(ar, "failed to register driver core: %d\n", ret);
2692 goto err_free_irq;
2693 }
2694
2695 return 0;
2696
2697 err_free_irq:
2698 ath10k_pci_free_irq(ar);
2699 ath10k_pci_kill_tasklet(ar);
2700
2701 err_deinit_irq:
2702 ath10k_pci_deinit_irq(ar);
2703
2704 err_free_pipes:
2705 ath10k_pci_free_pipes(ar);
2706
2707 err_sleep:
2708 ath10k_pci_sleep(ar);
2709
2710 err_release:
2711 ath10k_pci_release(ar);
2712
2713 err_core_destroy:
2714 ath10k_core_destroy(ar);
2715
2716 return ret;
2717 }
2718
ath10k_pci_remove(struct pci_dev * pdev)2719 static void ath10k_pci_remove(struct pci_dev *pdev)
2720 {
2721 struct ath10k *ar = pci_get_drvdata(pdev);
2722 struct ath10k_pci *ar_pci;
2723
2724 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
2725
2726 if (!ar)
2727 return;
2728
2729 ar_pci = ath10k_pci_priv(ar);
2730
2731 if (!ar_pci)
2732 return;
2733
2734 ath10k_core_unregister(ar);
2735 ath10k_pci_free_irq(ar);
2736 ath10k_pci_kill_tasklet(ar);
2737 ath10k_pci_deinit_irq(ar);
2738 ath10k_pci_ce_deinit(ar);
2739 ath10k_pci_free_pipes(ar);
2740 ath10k_pci_release(ar);
2741 ath10k_core_destroy(ar);
2742 }
2743
2744 MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
2745
2746 static struct pci_driver ath10k_pci_driver = {
2747 .name = "ath10k_pci",
2748 .id_table = ath10k_pci_id_table,
2749 .probe = ath10k_pci_probe,
2750 .remove = ath10k_pci_remove,
2751 };
2752
ath10k_pci_init(void)2753 static int __init ath10k_pci_init(void)
2754 {
2755 int ret;
2756
2757 ret = pci_register_driver(&ath10k_pci_driver);
2758 if (ret)
2759 printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
2760 ret);
2761
2762 return ret;
2763 }
2764 module_init(ath10k_pci_init);
2765
ath10k_pci_exit(void)2766 static void __exit ath10k_pci_exit(void)
2767 {
2768 pci_unregister_driver(&ath10k_pci_driver);
2769 }
2770
2771 module_exit(ath10k_pci_exit);
2772
2773 MODULE_AUTHOR("Qualcomm Atheros");
2774 MODULE_DESCRIPTION("Driver support for Atheros QCA988X PCIe devices");
2775 MODULE_LICENSE("Dual BSD/GPL");
2776 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_FW_FILE);
2777 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
2778 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
2779 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
2780