1/*
2 * Copyright (c) 2005-2011 Atheros Communications Inc.
3 * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17
18#include <linux/pci.h>
19#include <linux/module.h>
20#include <linux/interrupt.h>
21#include <linux/spinlock.h>
22#include <linux/bitops.h>
23
24#include "core.h"
25#include "debug.h"
26
27#include "targaddrs.h"
28#include "bmi.h"
29
30#include "hif.h"
31#include "htc.h"
32
33#include "ce.h"
34#include "pci.h"
35
36enum ath10k_pci_irq_mode {
37	ATH10K_PCI_IRQ_AUTO = 0,
38	ATH10K_PCI_IRQ_LEGACY = 1,
39	ATH10K_PCI_IRQ_MSI = 2,
40};
41
42enum ath10k_pci_reset_mode {
43	ATH10K_PCI_RESET_AUTO = 0,
44	ATH10K_PCI_RESET_WARM_ONLY = 1,
45};
46
47static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
48static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
49
50module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
51MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
52
53module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
54MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
55
56/* how long wait to wait for target to initialise, in ms */
57#define ATH10K_PCI_TARGET_WAIT 3000
58#define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
59
60#define QCA988X_2_0_DEVICE_ID	(0x003c)
61#define QCA6174_2_1_DEVICE_ID	(0x003e)
62
63static const struct pci_device_id ath10k_pci_id_table[] = {
64	{ PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
65	{ PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */
66	{0}
67};
68
69static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = {
70	/* QCA988X pre 2.0 chips are not supported because they need some nasty
71	 * hacks. ath10k doesn't have them and these devices crash horribly
72	 * because of that.
73	 */
74	{ QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV },
75	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
76	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
77	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
78	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
79	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
80};
81
82static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
83static int ath10k_pci_cold_reset(struct ath10k *ar);
84static int ath10k_pci_warm_reset(struct ath10k *ar);
85static int ath10k_pci_wait_for_target_init(struct ath10k *ar);
86static int ath10k_pci_init_irq(struct ath10k *ar);
87static int ath10k_pci_deinit_irq(struct ath10k *ar);
88static int ath10k_pci_request_irq(struct ath10k *ar);
89static void ath10k_pci_free_irq(struct ath10k *ar);
90static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe,
91			       struct ath10k_ce_pipe *rx_pipe,
92			       struct bmi_xfer *xfer);
93
94static const struct ce_attr host_ce_config_wlan[] = {
95	/* CE0: host->target HTC control and raw streams */
96	{
97		.flags = CE_ATTR_FLAGS,
98		.src_nentries = 16,
99		.src_sz_max = 256,
100		.dest_nentries = 0,
101	},
102
103	/* CE1: target->host HTT + HTC control */
104	{
105		.flags = CE_ATTR_FLAGS,
106		.src_nentries = 0,
107		.src_sz_max = 2048,
108		.dest_nentries = 512,
109	},
110
111	/* CE2: target->host WMI */
112	{
113		.flags = CE_ATTR_FLAGS,
114		.src_nentries = 0,
115		.src_sz_max = 2048,
116		.dest_nentries = 32,
117	},
118
119	/* CE3: host->target WMI */
120	{
121		.flags = CE_ATTR_FLAGS,
122		.src_nentries = 32,
123		.src_sz_max = 2048,
124		.dest_nentries = 0,
125	},
126
127	/* CE4: host->target HTT */
128	{
129		.flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
130		.src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
131		.src_sz_max = 256,
132		.dest_nentries = 0,
133	},
134
135	/* CE5: unused */
136	{
137		.flags = CE_ATTR_FLAGS,
138		.src_nentries = 0,
139		.src_sz_max = 0,
140		.dest_nentries = 0,
141	},
142
143	/* CE6: target autonomous hif_memcpy */
144	{
145		.flags = CE_ATTR_FLAGS,
146		.src_nentries = 0,
147		.src_sz_max = 0,
148		.dest_nentries = 0,
149	},
150
151	/* CE7: ce_diag, the Diagnostic Window */
152	{
153		.flags = CE_ATTR_FLAGS,
154		.src_nentries = 2,
155		.src_sz_max = DIAG_TRANSFER_LIMIT,
156		.dest_nentries = 2,
157	},
158};
159
160/* Target firmware's Copy Engine configuration. */
161static const struct ce_pipe_config target_ce_config_wlan[] = {
162	/* CE0: host->target HTC control and raw streams */
163	{
164		.pipenum = __cpu_to_le32(0),
165		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
166		.nentries = __cpu_to_le32(32),
167		.nbytes_max = __cpu_to_le32(256),
168		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
169		.reserved = __cpu_to_le32(0),
170	},
171
172	/* CE1: target->host HTT + HTC control */
173	{
174		.pipenum = __cpu_to_le32(1),
175		.pipedir = __cpu_to_le32(PIPEDIR_IN),
176		.nentries = __cpu_to_le32(32),
177		.nbytes_max = __cpu_to_le32(2048),
178		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
179		.reserved = __cpu_to_le32(0),
180	},
181
182	/* CE2: target->host WMI */
183	{
184		.pipenum = __cpu_to_le32(2),
185		.pipedir = __cpu_to_le32(PIPEDIR_IN),
186		.nentries = __cpu_to_le32(32),
187		.nbytes_max = __cpu_to_le32(2048),
188		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
189		.reserved = __cpu_to_le32(0),
190	},
191
192	/* CE3: host->target WMI */
193	{
194		.pipenum = __cpu_to_le32(3),
195		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
196		.nentries = __cpu_to_le32(32),
197		.nbytes_max = __cpu_to_le32(2048),
198		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
199		.reserved = __cpu_to_le32(0),
200	},
201
202	/* CE4: host->target HTT */
203	{
204		.pipenum = __cpu_to_le32(4),
205		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
206		.nentries = __cpu_to_le32(256),
207		.nbytes_max = __cpu_to_le32(256),
208		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
209		.reserved = __cpu_to_le32(0),
210	},
211
212	/* NB: 50% of src nentries, since tx has 2 frags */
213
214	/* CE5: unused */
215	{
216		.pipenum = __cpu_to_le32(5),
217		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
218		.nentries = __cpu_to_le32(32),
219		.nbytes_max = __cpu_to_le32(2048),
220		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
221		.reserved = __cpu_to_le32(0),
222	},
223
224	/* CE6: Reserved for target autonomous hif_memcpy */
225	{
226		.pipenum = __cpu_to_le32(6),
227		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
228		.nentries = __cpu_to_le32(32),
229		.nbytes_max = __cpu_to_le32(4096),
230		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
231		.reserved = __cpu_to_le32(0),
232	},
233
234	/* CE7 used only by Host */
235};
236
237/*
238 * Map from service/endpoint to Copy Engine.
239 * This table is derived from the CE_PCI TABLE, above.
240 * It is passed to the Target at startup for use by firmware.
241 */
242static const struct service_to_pipe target_service_to_ce_map_wlan[] = {
243	{
244		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
245		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
246		__cpu_to_le32(3),
247	},
248	{
249		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
250		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
251		__cpu_to_le32(2),
252	},
253	{
254		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
255		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
256		__cpu_to_le32(3),
257	},
258	{
259		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
260		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
261		__cpu_to_le32(2),
262	},
263	{
264		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
265		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
266		__cpu_to_le32(3),
267	},
268	{
269		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
270		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
271		__cpu_to_le32(2),
272	},
273	{
274		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
275		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
276		__cpu_to_le32(3),
277	},
278	{
279		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
280		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
281		__cpu_to_le32(2),
282	},
283	{
284		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
285		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
286		__cpu_to_le32(3),
287	},
288	{
289		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
290		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
291		__cpu_to_le32(2),
292	},
293	{
294		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
295		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
296		__cpu_to_le32(0),
297	},
298	{
299		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
300		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
301		__cpu_to_le32(1),
302	},
303	{ /* not used */
304		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
305		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
306		__cpu_to_le32(0),
307	},
308	{ /* not used */
309		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
310		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
311		__cpu_to_le32(1),
312	},
313	{
314		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
315		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
316		__cpu_to_le32(4),
317	},
318	{
319		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
320		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
321		__cpu_to_le32(1),
322	},
323
324	/* (Additions here) */
325
326	{ /* must be last */
327		__cpu_to_le32(0),
328		__cpu_to_le32(0),
329		__cpu_to_le32(0),
330	},
331};
332
333static bool ath10k_pci_irq_pending(struct ath10k *ar)
334{
335	u32 cause;
336
337	/* Check if the shared legacy irq is for us */
338	cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
339				  PCIE_INTR_CAUSE_ADDRESS);
340	if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
341		return true;
342
343	return false;
344}
345
346static void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
347{
348	/* IMPORTANT: INTR_CLR register has to be set after
349	 * INTR_ENABLE is set to 0, otherwise interrupt can not be
350	 * really cleared. */
351	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
352			   0);
353	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
354			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
355
356	/* IMPORTANT: this extra read transaction is required to
357	 * flush the posted write buffer. */
358	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
359				PCIE_INTR_ENABLE_ADDRESS);
360}
361
362static void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
363{
364	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
365			   PCIE_INTR_ENABLE_ADDRESS,
366			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
367
368	/* IMPORTANT: this extra read transaction is required to
369	 * flush the posted write buffer. */
370	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
371				PCIE_INTR_ENABLE_ADDRESS);
372}
373
374static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
375{
376	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
377
378	if (ar_pci->num_msi_intrs > 1)
379		return "msi-x";
380
381	if (ar_pci->num_msi_intrs == 1)
382		return "msi";
383
384	return "legacy";
385}
386
387static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
388{
389	struct ath10k *ar = pipe->hif_ce_state;
390	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
391	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
392	struct sk_buff *skb;
393	dma_addr_t paddr;
394	int ret;
395
396	lockdep_assert_held(&ar_pci->ce_lock);
397
398	skb = dev_alloc_skb(pipe->buf_sz);
399	if (!skb)
400		return -ENOMEM;
401
402	WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
403
404	paddr = dma_map_single(ar->dev, skb->data,
405			       skb->len + skb_tailroom(skb),
406			       DMA_FROM_DEVICE);
407	if (unlikely(dma_mapping_error(ar->dev, paddr))) {
408		ath10k_warn(ar, "failed to dma map pci rx buf\n");
409		dev_kfree_skb_any(skb);
410		return -EIO;
411	}
412
413	ATH10K_SKB_RXCB(skb)->paddr = paddr;
414
415	ret = __ath10k_ce_rx_post_buf(ce_pipe, skb, paddr);
416	if (ret) {
417		ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
418		dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
419				 DMA_FROM_DEVICE);
420		dev_kfree_skb_any(skb);
421		return ret;
422	}
423
424	return 0;
425}
426
427static void __ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
428{
429	struct ath10k *ar = pipe->hif_ce_state;
430	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
431	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
432	int ret, num;
433
434	lockdep_assert_held(&ar_pci->ce_lock);
435
436	if (pipe->buf_sz == 0)
437		return;
438
439	if (!ce_pipe->dest_ring)
440		return;
441
442	num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
443	while (num--) {
444		ret = __ath10k_pci_rx_post_buf(pipe);
445		if (ret) {
446			ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
447			mod_timer(&ar_pci->rx_post_retry, jiffies +
448				  ATH10K_PCI_RX_POST_RETRY_MS);
449			break;
450		}
451	}
452}
453
454static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
455{
456	struct ath10k *ar = pipe->hif_ce_state;
457	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
458
459	spin_lock_bh(&ar_pci->ce_lock);
460	__ath10k_pci_rx_post_pipe(pipe);
461	spin_unlock_bh(&ar_pci->ce_lock);
462}
463
464static void ath10k_pci_rx_post(struct ath10k *ar)
465{
466	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
467	int i;
468
469	spin_lock_bh(&ar_pci->ce_lock);
470	for (i = 0; i < CE_COUNT; i++)
471		__ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
472	spin_unlock_bh(&ar_pci->ce_lock);
473}
474
475static void ath10k_pci_rx_replenish_retry(unsigned long ptr)
476{
477	struct ath10k *ar = (void *)ptr;
478
479	ath10k_pci_rx_post(ar);
480}
481
482/*
483 * Diagnostic read/write access is provided for startup/config/debug usage.
484 * Caller must guarantee proper alignment, when applicable, and single user
485 * at any moment.
486 */
487static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
488				    int nbytes)
489{
490	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
491	int ret = 0;
492	u32 buf;
493	unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
494	unsigned int id;
495	unsigned int flags;
496	struct ath10k_ce_pipe *ce_diag;
497	/* Host buffer address in CE space */
498	u32 ce_data;
499	dma_addr_t ce_data_base = 0;
500	void *data_buf = NULL;
501	int i;
502
503	spin_lock_bh(&ar_pci->ce_lock);
504
505	ce_diag = ar_pci->ce_diag;
506
507	/*
508	 * Allocate a temporary bounce buffer to hold caller's data
509	 * to be DMA'ed from Target. This guarantees
510	 *   1) 4-byte alignment
511	 *   2) Buffer in DMA-able space
512	 */
513	orig_nbytes = nbytes;
514	data_buf = (unsigned char *)dma_alloc_coherent(ar->dev,
515						       orig_nbytes,
516						       &ce_data_base,
517						       GFP_ATOMIC);
518
519	if (!data_buf) {
520		ret = -ENOMEM;
521		goto done;
522	}
523	memset(data_buf, 0, orig_nbytes);
524
525	remaining_bytes = orig_nbytes;
526	ce_data = ce_data_base;
527	while (remaining_bytes) {
528		nbytes = min_t(unsigned int, remaining_bytes,
529			       DIAG_TRANSFER_LIMIT);
530
531		ret = __ath10k_ce_rx_post_buf(ce_diag, NULL, ce_data);
532		if (ret != 0)
533			goto done;
534
535		/* Request CE to send from Target(!) address to Host buffer */
536		/*
537		 * The address supplied by the caller is in the
538		 * Target CPU virtual address space.
539		 *
540		 * In order to use this address with the diagnostic CE,
541		 * convert it from Target CPU virtual address space
542		 * to CE address space
543		 */
544		address = TARG_CPU_SPACE_TO_CE_SPACE(ar, ar_pci->mem,
545						     address);
546
547		ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)address, nbytes, 0,
548					    0);
549		if (ret)
550			goto done;
551
552		i = 0;
553		while (ath10k_ce_completed_send_next_nolock(ce_diag, NULL, &buf,
554							    &completed_nbytes,
555							    &id) != 0) {
556			mdelay(1);
557			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
558				ret = -EBUSY;
559				goto done;
560			}
561		}
562
563		if (nbytes != completed_nbytes) {
564			ret = -EIO;
565			goto done;
566		}
567
568		if (buf != (u32)address) {
569			ret = -EIO;
570			goto done;
571		}
572
573		i = 0;
574		while (ath10k_ce_completed_recv_next_nolock(ce_diag, NULL, &buf,
575							    &completed_nbytes,
576							    &id, &flags) != 0) {
577			mdelay(1);
578
579			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
580				ret = -EBUSY;
581				goto done;
582			}
583		}
584
585		if (nbytes != completed_nbytes) {
586			ret = -EIO;
587			goto done;
588		}
589
590		if (buf != ce_data) {
591			ret = -EIO;
592			goto done;
593		}
594
595		remaining_bytes -= nbytes;
596		address += nbytes;
597		ce_data += nbytes;
598	}
599
600done:
601	if (ret == 0)
602		memcpy(data, data_buf, orig_nbytes);
603	else
604		ath10k_warn(ar, "failed to read diag value at 0x%x: %d\n",
605			    address, ret);
606
607	if (data_buf)
608		dma_free_coherent(ar->dev, orig_nbytes, data_buf,
609				  ce_data_base);
610
611	spin_unlock_bh(&ar_pci->ce_lock);
612
613	return ret;
614}
615
616static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
617{
618	__le32 val = 0;
619	int ret;
620
621	ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
622	*value = __le32_to_cpu(val);
623
624	return ret;
625}
626
627static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
628				     u32 src, u32 len)
629{
630	u32 host_addr, addr;
631	int ret;
632
633	host_addr = host_interest_item_address(src);
634
635	ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
636	if (ret != 0) {
637		ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
638			    src, ret);
639		return ret;
640	}
641
642	ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
643	if (ret != 0) {
644		ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
645			    addr, len, ret);
646		return ret;
647	}
648
649	return 0;
650}
651
652#define ath10k_pci_diag_read_hi(ar, dest, src, len)		\
653	__ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
654
655static int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
656				     const void *data, int nbytes)
657{
658	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
659	int ret = 0;
660	u32 buf;
661	unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
662	unsigned int id;
663	unsigned int flags;
664	struct ath10k_ce_pipe *ce_diag;
665	void *data_buf = NULL;
666	u32 ce_data;	/* Host buffer address in CE space */
667	dma_addr_t ce_data_base = 0;
668	int i;
669
670	spin_lock_bh(&ar_pci->ce_lock);
671
672	ce_diag = ar_pci->ce_diag;
673
674	/*
675	 * Allocate a temporary bounce buffer to hold caller's data
676	 * to be DMA'ed to Target. This guarantees
677	 *   1) 4-byte alignment
678	 *   2) Buffer in DMA-able space
679	 */
680	orig_nbytes = nbytes;
681	data_buf = (unsigned char *)dma_alloc_coherent(ar->dev,
682						       orig_nbytes,
683						       &ce_data_base,
684						       GFP_ATOMIC);
685	if (!data_buf) {
686		ret = -ENOMEM;
687		goto done;
688	}
689
690	/* Copy caller's data to allocated DMA buf */
691	memcpy(data_buf, data, orig_nbytes);
692
693	/*
694	 * The address supplied by the caller is in the
695	 * Target CPU virtual address space.
696	 *
697	 * In order to use this address with the diagnostic CE,
698	 * convert it from
699	 *    Target CPU virtual address space
700	 * to
701	 *    CE address space
702	 */
703	address = TARG_CPU_SPACE_TO_CE_SPACE(ar, ar_pci->mem, address);
704
705	remaining_bytes = orig_nbytes;
706	ce_data = ce_data_base;
707	while (remaining_bytes) {
708		/* FIXME: check cast */
709		nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
710
711		/* Set up to receive directly into Target(!) address */
712		ret = __ath10k_ce_rx_post_buf(ce_diag, NULL, address);
713		if (ret != 0)
714			goto done;
715
716		/*
717		 * Request CE to send caller-supplied data that
718		 * was copied to bounce buffer to Target(!) address.
719		 */
720		ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)ce_data,
721					    nbytes, 0, 0);
722		if (ret != 0)
723			goto done;
724
725		i = 0;
726		while (ath10k_ce_completed_send_next_nolock(ce_diag, NULL, &buf,
727							    &completed_nbytes,
728							    &id) != 0) {
729			mdelay(1);
730
731			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
732				ret = -EBUSY;
733				goto done;
734			}
735		}
736
737		if (nbytes != completed_nbytes) {
738			ret = -EIO;
739			goto done;
740		}
741
742		if (buf != ce_data) {
743			ret = -EIO;
744			goto done;
745		}
746
747		i = 0;
748		while (ath10k_ce_completed_recv_next_nolock(ce_diag, NULL, &buf,
749							    &completed_nbytes,
750							    &id, &flags) != 0) {
751			mdelay(1);
752
753			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
754				ret = -EBUSY;
755				goto done;
756			}
757		}
758
759		if (nbytes != completed_nbytes) {
760			ret = -EIO;
761			goto done;
762		}
763
764		if (buf != address) {
765			ret = -EIO;
766			goto done;
767		}
768
769		remaining_bytes -= nbytes;
770		address += nbytes;
771		ce_data += nbytes;
772	}
773
774done:
775	if (data_buf) {
776		dma_free_coherent(ar->dev, orig_nbytes, data_buf,
777				  ce_data_base);
778	}
779
780	if (ret != 0)
781		ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
782			    address, ret);
783
784	spin_unlock_bh(&ar_pci->ce_lock);
785
786	return ret;
787}
788
789static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
790{
791	__le32 val = __cpu_to_le32(value);
792
793	return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
794}
795
796static bool ath10k_pci_is_awake(struct ath10k *ar)
797{
798	u32 val = ath10k_pci_reg_read32(ar, RTC_STATE_ADDRESS);
799
800	return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
801}
802
803static int ath10k_pci_wake_wait(struct ath10k *ar)
804{
805	int tot_delay = 0;
806	int curr_delay = 5;
807
808	while (tot_delay < PCIE_WAKE_TIMEOUT) {
809		if (ath10k_pci_is_awake(ar))
810			return 0;
811
812		udelay(curr_delay);
813		tot_delay += curr_delay;
814
815		if (curr_delay < 50)
816			curr_delay += 5;
817	}
818
819	return -ETIMEDOUT;
820}
821
822static int ath10k_pci_wake(struct ath10k *ar)
823{
824	ath10k_pci_reg_write32(ar, PCIE_SOC_WAKE_ADDRESS,
825			       PCIE_SOC_WAKE_V_MASK);
826	return ath10k_pci_wake_wait(ar);
827}
828
829static void ath10k_pci_sleep(struct ath10k *ar)
830{
831	ath10k_pci_reg_write32(ar, PCIE_SOC_WAKE_ADDRESS,
832			       PCIE_SOC_WAKE_RESET);
833}
834
835/* Called by lower (CE) layer when a send to Target completes. */
836static void ath10k_pci_ce_send_done(struct ath10k_ce_pipe *ce_state)
837{
838	struct ath10k *ar = ce_state->ar;
839	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
840	struct ath10k_hif_cb *cb = &ar_pci->msg_callbacks_current;
841	struct sk_buff_head list;
842	struct sk_buff *skb;
843	u32 ce_data;
844	unsigned int nbytes;
845	unsigned int transfer_id;
846
847	__skb_queue_head_init(&list);
848	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb, &ce_data,
849					     &nbytes, &transfer_id) == 0) {
850		/* no need to call tx completion for NULL pointers */
851		if (skb == NULL)
852			continue;
853
854		__skb_queue_tail(&list, skb);
855	}
856
857	while ((skb = __skb_dequeue(&list)))
858		cb->tx_completion(ar, skb);
859}
860
861/* Called by lower (CE) layer when data is received from the Target. */
862static void ath10k_pci_ce_recv_data(struct ath10k_ce_pipe *ce_state)
863{
864	struct ath10k *ar = ce_state->ar;
865	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
866	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
867	struct ath10k_hif_cb *cb = &ar_pci->msg_callbacks_current;
868	struct sk_buff *skb;
869	struct sk_buff_head list;
870	void *transfer_context;
871	u32 ce_data;
872	unsigned int nbytes, max_nbytes;
873	unsigned int transfer_id;
874	unsigned int flags;
875
876	__skb_queue_head_init(&list);
877	while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
878					     &ce_data, &nbytes, &transfer_id,
879					     &flags) == 0) {
880		skb = transfer_context;
881		max_nbytes = skb->len + skb_tailroom(skb);
882		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
883				 max_nbytes, DMA_FROM_DEVICE);
884
885		if (unlikely(max_nbytes < nbytes)) {
886			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
887				    nbytes, max_nbytes);
888			dev_kfree_skb_any(skb);
889			continue;
890		}
891
892		skb_put(skb, nbytes);
893		__skb_queue_tail(&list, skb);
894	}
895
896	while ((skb = __skb_dequeue(&list))) {
897		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
898			   ce_state->id, skb->len);
899		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
900				skb->data, skb->len);
901
902		cb->rx_completion(ar, skb);
903	}
904
905	ath10k_pci_rx_post_pipe(pipe_info);
906}
907
908static int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
909				struct ath10k_hif_sg_item *items, int n_items)
910{
911	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
912	struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
913	struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
914	struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
915	unsigned int nentries_mask;
916	unsigned int sw_index;
917	unsigned int write_index;
918	int err, i = 0;
919
920	spin_lock_bh(&ar_pci->ce_lock);
921
922	nentries_mask = src_ring->nentries_mask;
923	sw_index = src_ring->sw_index;
924	write_index = src_ring->write_index;
925
926	if (unlikely(CE_RING_DELTA(nentries_mask,
927				   write_index, sw_index - 1) < n_items)) {
928		err = -ENOBUFS;
929		goto err;
930	}
931
932	for (i = 0; i < n_items - 1; i++) {
933		ath10k_dbg(ar, ATH10K_DBG_PCI,
934			   "pci tx item %d paddr 0x%08x len %d n_items %d\n",
935			   i, items[i].paddr, items[i].len, n_items);
936		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
937				items[i].vaddr, items[i].len);
938
939		err = ath10k_ce_send_nolock(ce_pipe,
940					    items[i].transfer_context,
941					    items[i].paddr,
942					    items[i].len,
943					    items[i].transfer_id,
944					    CE_SEND_FLAG_GATHER);
945		if (err)
946			goto err;
947	}
948
949	/* `i` is equal to `n_items -1` after for() */
950
951	ath10k_dbg(ar, ATH10K_DBG_PCI,
952		   "pci tx item %d paddr 0x%08x len %d n_items %d\n",
953		   i, items[i].paddr, items[i].len, n_items);
954	ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
955			items[i].vaddr, items[i].len);
956
957	err = ath10k_ce_send_nolock(ce_pipe,
958				    items[i].transfer_context,
959				    items[i].paddr,
960				    items[i].len,
961				    items[i].transfer_id,
962				    0);
963	if (err)
964		goto err;
965
966	spin_unlock_bh(&ar_pci->ce_lock);
967	return 0;
968
969err:
970	for (; i > 0; i--)
971		__ath10k_ce_send_revert(ce_pipe);
972
973	spin_unlock_bh(&ar_pci->ce_lock);
974	return err;
975}
976
977static int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
978				    size_t buf_len)
979{
980	return ath10k_pci_diag_read_mem(ar, address, buf, buf_len);
981}
982
983static u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
984{
985	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
986
987	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
988
989	return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
990}
991
992static void ath10k_pci_dump_registers(struct ath10k *ar,
993				      struct ath10k_fw_crash_data *crash_data)
994{
995	__le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
996	int i, ret;
997
998	lockdep_assert_held(&ar->data_lock);
999
1000	ret = ath10k_pci_diag_read_hi(ar, &reg_dump_values[0],
1001				      hi_failure_state,
1002				      REG_DUMP_COUNT_QCA988X * sizeof(__le32));
1003	if (ret) {
1004		ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
1005		return;
1006	}
1007
1008	BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
1009
1010	ath10k_err(ar, "firmware register dump:\n");
1011	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
1012		ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
1013			   i,
1014			   __le32_to_cpu(reg_dump_values[i]),
1015			   __le32_to_cpu(reg_dump_values[i + 1]),
1016			   __le32_to_cpu(reg_dump_values[i + 2]),
1017			   __le32_to_cpu(reg_dump_values[i + 3]));
1018
1019	if (!crash_data)
1020		return;
1021
1022	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
1023		crash_data->registers[i] = reg_dump_values[i];
1024}
1025
1026static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
1027{
1028	struct ath10k_fw_crash_data *crash_data;
1029	char uuid[50];
1030
1031	spin_lock_bh(&ar->data_lock);
1032
1033	ar->stats.fw_crash_counter++;
1034
1035	crash_data = ath10k_debug_get_new_fw_crash_data(ar);
1036
1037	if (crash_data)
1038		scnprintf(uuid, sizeof(uuid), "%pUl", &crash_data->uuid);
1039	else
1040		scnprintf(uuid, sizeof(uuid), "n/a");
1041
1042	ath10k_err(ar, "firmware crashed! (uuid %s)\n", uuid);
1043	ath10k_print_driver_info(ar);
1044	ath10k_pci_dump_registers(ar, crash_data);
1045
1046	spin_unlock_bh(&ar->data_lock);
1047
1048	queue_work(ar->workqueue, &ar->restart_work);
1049}
1050
1051static void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
1052					       int force)
1053{
1054	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
1055
1056	if (!force) {
1057		int resources;
1058		/*
1059		 * Decide whether to actually poll for completions, or just
1060		 * wait for a later chance.
1061		 * If there seem to be plenty of resources left, then just wait
1062		 * since checking involves reading a CE register, which is a
1063		 * relatively expensive operation.
1064		 */
1065		resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
1066
1067		/*
1068		 * If at least 50% of the total resources are still available,
1069		 * don't bother checking again yet.
1070		 */
1071		if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1))
1072			return;
1073	}
1074	ath10k_ce_per_engine_service(ar, pipe);
1075}
1076
1077static void ath10k_pci_hif_set_callbacks(struct ath10k *ar,
1078					 struct ath10k_hif_cb *callbacks)
1079{
1080	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1081
1082	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif set callbacks\n");
1083
1084	memcpy(&ar_pci->msg_callbacks_current, callbacks,
1085	       sizeof(ar_pci->msg_callbacks_current));
1086}
1087
1088static void ath10k_pci_kill_tasklet(struct ath10k *ar)
1089{
1090	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1091	int i;
1092
1093	tasklet_kill(&ar_pci->intr_tq);
1094	tasklet_kill(&ar_pci->msi_fw_err);
1095
1096	for (i = 0; i < CE_COUNT; i++)
1097		tasklet_kill(&ar_pci->pipe_info[i].intr);
1098
1099	del_timer_sync(&ar_pci->rx_post_retry);
1100}
1101
1102static int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar,
1103					      u16 service_id, u8 *ul_pipe,
1104					      u8 *dl_pipe, int *ul_is_polled,
1105					      int *dl_is_polled)
1106{
1107	const struct service_to_pipe *entry;
1108	bool ul_set = false, dl_set = false;
1109	int i;
1110
1111	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
1112
1113	/* polling for received messages not supported */
1114	*dl_is_polled = 0;
1115
1116	for (i = 0; i < ARRAY_SIZE(target_service_to_ce_map_wlan); i++) {
1117		entry = &target_service_to_ce_map_wlan[i];
1118
1119		if (__le32_to_cpu(entry->service_id) != service_id)
1120			continue;
1121
1122		switch (__le32_to_cpu(entry->pipedir)) {
1123		case PIPEDIR_NONE:
1124			break;
1125		case PIPEDIR_IN:
1126			WARN_ON(dl_set);
1127			*dl_pipe = __le32_to_cpu(entry->pipenum);
1128			dl_set = true;
1129			break;
1130		case PIPEDIR_OUT:
1131			WARN_ON(ul_set);
1132			*ul_pipe = __le32_to_cpu(entry->pipenum);
1133			ul_set = true;
1134			break;
1135		case PIPEDIR_INOUT:
1136			WARN_ON(dl_set);
1137			WARN_ON(ul_set);
1138			*dl_pipe = __le32_to_cpu(entry->pipenum);
1139			*ul_pipe = __le32_to_cpu(entry->pipenum);
1140			dl_set = true;
1141			ul_set = true;
1142			break;
1143		}
1144	}
1145
1146	if (WARN_ON(!ul_set || !dl_set))
1147		return -ENOENT;
1148
1149	*ul_is_polled =
1150		(host_ce_config_wlan[*ul_pipe].flags & CE_ATTR_DIS_INTR) != 0;
1151
1152	return 0;
1153}
1154
1155static void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1156					    u8 *ul_pipe, u8 *dl_pipe)
1157{
1158	int ul_is_polled, dl_is_polled;
1159
1160	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
1161
1162	(void)ath10k_pci_hif_map_service_to_pipe(ar,
1163						 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1164						 ul_pipe,
1165						 dl_pipe,
1166						 &ul_is_polled,
1167						 &dl_is_polled);
1168}
1169
1170static void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
1171{
1172	u32 val;
1173
1174	val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS);
1175	val &= ~CORE_CTRL_PCIE_REG_31_MASK;
1176
1177	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS, val);
1178}
1179
1180static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
1181{
1182	u32 val;
1183
1184	val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS);
1185	val |= CORE_CTRL_PCIE_REG_31_MASK;
1186
1187	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS, val);
1188}
1189
1190static void ath10k_pci_irq_disable(struct ath10k *ar)
1191{
1192	ath10k_ce_disable_interrupts(ar);
1193	ath10k_pci_disable_and_clear_legacy_irq(ar);
1194	ath10k_pci_irq_msi_fw_mask(ar);
1195}
1196
1197static void ath10k_pci_irq_sync(struct ath10k *ar)
1198{
1199	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1200	int i;
1201
1202	for (i = 0; i < max(1, ar_pci->num_msi_intrs); i++)
1203		synchronize_irq(ar_pci->pdev->irq + i);
1204}
1205
1206static void ath10k_pci_irq_enable(struct ath10k *ar)
1207{
1208	ath10k_ce_enable_interrupts(ar);
1209	ath10k_pci_enable_legacy_irq(ar);
1210	ath10k_pci_irq_msi_fw_unmask(ar);
1211}
1212
1213static int ath10k_pci_hif_start(struct ath10k *ar)
1214{
1215	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
1216
1217	ath10k_pci_irq_enable(ar);
1218	ath10k_pci_rx_post(ar);
1219
1220	return 0;
1221}
1222
1223static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1224{
1225	struct ath10k *ar;
1226	struct ath10k_ce_pipe *ce_pipe;
1227	struct ath10k_ce_ring *ce_ring;
1228	struct sk_buff *skb;
1229	int i;
1230
1231	ar = pci_pipe->hif_ce_state;
1232	ce_pipe = pci_pipe->ce_hdl;
1233	ce_ring = ce_pipe->dest_ring;
1234
1235	if (!ce_ring)
1236		return;
1237
1238	if (!pci_pipe->buf_sz)
1239		return;
1240
1241	for (i = 0; i < ce_ring->nentries; i++) {
1242		skb = ce_ring->per_transfer_context[i];
1243		if (!skb)
1244			continue;
1245
1246		ce_ring->per_transfer_context[i] = NULL;
1247
1248		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1249				 skb->len + skb_tailroom(skb),
1250				 DMA_FROM_DEVICE);
1251		dev_kfree_skb_any(skb);
1252	}
1253}
1254
1255static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1256{
1257	struct ath10k *ar;
1258	struct ath10k_pci *ar_pci;
1259	struct ath10k_ce_pipe *ce_pipe;
1260	struct ath10k_ce_ring *ce_ring;
1261	struct ce_desc *ce_desc;
1262	struct sk_buff *skb;
1263	unsigned int id;
1264	int i;
1265
1266	ar = pci_pipe->hif_ce_state;
1267	ar_pci = ath10k_pci_priv(ar);
1268	ce_pipe = pci_pipe->ce_hdl;
1269	ce_ring = ce_pipe->src_ring;
1270
1271	if (!ce_ring)
1272		return;
1273
1274	if (!pci_pipe->buf_sz)
1275		return;
1276
1277	ce_desc = ce_ring->shadow_base;
1278	if (WARN_ON(!ce_desc))
1279		return;
1280
1281	for (i = 0; i < ce_ring->nentries; i++) {
1282		skb = ce_ring->per_transfer_context[i];
1283		if (!skb)
1284			continue;
1285
1286		ce_ring->per_transfer_context[i] = NULL;
1287		id = MS(__le16_to_cpu(ce_desc[i].flags),
1288			CE_DESC_FLAGS_META_DATA);
1289
1290		ar_pci->msg_callbacks_current.tx_completion(ar, skb);
1291	}
1292}
1293
1294/*
1295 * Cleanup residual buffers for device shutdown:
1296 *    buffers that were enqueued for receive
1297 *    buffers that were to be sent
1298 * Note: Buffers that had completed but which were
1299 * not yet processed are on a completion queue. They
1300 * are handled when the completion thread shuts down.
1301 */
1302static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
1303{
1304	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1305	int pipe_num;
1306
1307	for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
1308		struct ath10k_pci_pipe *pipe_info;
1309
1310		pipe_info = &ar_pci->pipe_info[pipe_num];
1311		ath10k_pci_rx_pipe_cleanup(pipe_info);
1312		ath10k_pci_tx_pipe_cleanup(pipe_info);
1313	}
1314}
1315
1316static void ath10k_pci_ce_deinit(struct ath10k *ar)
1317{
1318	int i;
1319
1320	for (i = 0; i < CE_COUNT; i++)
1321		ath10k_ce_deinit_pipe(ar, i);
1322}
1323
1324static void ath10k_pci_flush(struct ath10k *ar)
1325{
1326	ath10k_pci_kill_tasklet(ar);
1327	ath10k_pci_buffer_cleanup(ar);
1328}
1329
1330static void ath10k_pci_hif_stop(struct ath10k *ar)
1331{
1332	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
1333
1334	/* Most likely the device has HTT Rx ring configured. The only way to
1335	 * prevent the device from accessing (and possible corrupting) host
1336	 * memory is to reset the chip now.
1337	 *
1338	 * There's also no known way of masking MSI interrupts on the device.
1339	 * For ranged MSI the CE-related interrupts can be masked. However
1340	 * regardless how many MSI interrupts are assigned the first one
1341	 * is always used for firmware indications (crashes) and cannot be
1342	 * masked. To prevent the device from asserting the interrupt reset it
1343	 * before proceeding with cleanup.
1344	 */
1345	ath10k_pci_warm_reset(ar);
1346
1347	ath10k_pci_irq_disable(ar);
1348	ath10k_pci_irq_sync(ar);
1349	ath10k_pci_flush(ar);
1350}
1351
1352static int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
1353					   void *req, u32 req_len,
1354					   void *resp, u32 *resp_len)
1355{
1356	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1357	struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
1358	struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
1359	struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
1360	struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
1361	dma_addr_t req_paddr = 0;
1362	dma_addr_t resp_paddr = 0;
1363	struct bmi_xfer xfer = {};
1364	void *treq, *tresp = NULL;
1365	int ret = 0;
1366
1367	might_sleep();
1368
1369	if (resp && !resp_len)
1370		return -EINVAL;
1371
1372	if (resp && resp_len && *resp_len == 0)
1373		return -EINVAL;
1374
1375	treq = kmemdup(req, req_len, GFP_KERNEL);
1376	if (!treq)
1377		return -ENOMEM;
1378
1379	req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
1380	ret = dma_mapping_error(ar->dev, req_paddr);
1381	if (ret) {
1382		ret = -EIO;
1383		goto err_dma;
1384	}
1385
1386	if (resp && resp_len) {
1387		tresp = kzalloc(*resp_len, GFP_KERNEL);
1388		if (!tresp) {
1389			ret = -ENOMEM;
1390			goto err_req;
1391		}
1392
1393		resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
1394					    DMA_FROM_DEVICE);
1395		ret = dma_mapping_error(ar->dev, resp_paddr);
1396		if (ret) {
1397			ret = EIO;
1398			goto err_req;
1399		}
1400
1401		xfer.wait_for_resp = true;
1402		xfer.resp_len = 0;
1403
1404		ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
1405	}
1406
1407	ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
1408	if (ret)
1409		goto err_resp;
1410
1411	ret = ath10k_pci_bmi_wait(ce_tx, ce_rx, &xfer);
1412	if (ret) {
1413		u32 unused_buffer;
1414		unsigned int unused_nbytes;
1415		unsigned int unused_id;
1416
1417		ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
1418					   &unused_nbytes, &unused_id);
1419	} else {
1420		/* non-zero means we did not time out */
1421		ret = 0;
1422	}
1423
1424err_resp:
1425	if (resp) {
1426		u32 unused_buffer;
1427
1428		ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
1429		dma_unmap_single(ar->dev, resp_paddr,
1430				 *resp_len, DMA_FROM_DEVICE);
1431	}
1432err_req:
1433	dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
1434
1435	if (ret == 0 && resp_len) {
1436		*resp_len = min(*resp_len, xfer.resp_len);
1437		memcpy(resp, tresp, xfer.resp_len);
1438	}
1439err_dma:
1440	kfree(treq);
1441	kfree(tresp);
1442
1443	return ret;
1444}
1445
1446static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
1447{
1448	struct bmi_xfer *xfer;
1449	u32 ce_data;
1450	unsigned int nbytes;
1451	unsigned int transfer_id;
1452
1453	if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer, &ce_data,
1454					  &nbytes, &transfer_id))
1455		return;
1456
1457	xfer->tx_done = true;
1458}
1459
1460static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
1461{
1462	struct ath10k *ar = ce_state->ar;
1463	struct bmi_xfer *xfer;
1464	u32 ce_data;
1465	unsigned int nbytes;
1466	unsigned int transfer_id;
1467	unsigned int flags;
1468
1469	if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer, &ce_data,
1470					  &nbytes, &transfer_id, &flags))
1471		return;
1472
1473	if (WARN_ON_ONCE(!xfer))
1474		return;
1475
1476	if (!xfer->wait_for_resp) {
1477		ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
1478		return;
1479	}
1480
1481	xfer->resp_len = nbytes;
1482	xfer->rx_done = true;
1483}
1484
1485static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe,
1486			       struct ath10k_ce_pipe *rx_pipe,
1487			       struct bmi_xfer *xfer)
1488{
1489	unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
1490
1491	while (time_before_eq(jiffies, timeout)) {
1492		ath10k_pci_bmi_send_done(tx_pipe);
1493		ath10k_pci_bmi_recv_data(rx_pipe);
1494
1495		if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp))
1496			return 0;
1497
1498		schedule();
1499	}
1500
1501	return -ETIMEDOUT;
1502}
1503
1504/*
1505 * Send an interrupt to the device to wake up the Target CPU
1506 * so it has an opportunity to notice any changed state.
1507 */
1508static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
1509{
1510	u32 addr, val;
1511
1512	addr = SOC_CORE_BASE_ADDRESS | CORE_CTRL_ADDRESS;
1513	val = ath10k_pci_read32(ar, addr);
1514	val |= CORE_CTRL_CPU_INTR_MASK;
1515	ath10k_pci_write32(ar, addr, val);
1516
1517	return 0;
1518}
1519
1520static int ath10k_pci_get_num_banks(struct ath10k *ar)
1521{
1522	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1523
1524	switch (ar_pci->pdev->device) {
1525	case QCA988X_2_0_DEVICE_ID:
1526		return 1;
1527	case QCA6174_2_1_DEVICE_ID:
1528		switch (MS(ar->chip_id, SOC_CHIP_ID_REV)) {
1529		case QCA6174_HW_1_0_CHIP_ID_REV:
1530		case QCA6174_HW_1_1_CHIP_ID_REV:
1531		case QCA6174_HW_2_1_CHIP_ID_REV:
1532		case QCA6174_HW_2_2_CHIP_ID_REV:
1533			return 3;
1534		case QCA6174_HW_1_3_CHIP_ID_REV:
1535			return 2;
1536		case QCA6174_HW_3_0_CHIP_ID_REV:
1537		case QCA6174_HW_3_1_CHIP_ID_REV:
1538		case QCA6174_HW_3_2_CHIP_ID_REV:
1539			return 9;
1540		}
1541		break;
1542	}
1543
1544	ath10k_warn(ar, "unknown number of banks, assuming 1\n");
1545	return 1;
1546}
1547
1548static int ath10k_pci_init_config(struct ath10k *ar)
1549{
1550	u32 interconnect_targ_addr;
1551	u32 pcie_state_targ_addr = 0;
1552	u32 pipe_cfg_targ_addr = 0;
1553	u32 svc_to_pipe_map = 0;
1554	u32 pcie_config_flags = 0;
1555	u32 ealloc_value;
1556	u32 ealloc_targ_addr;
1557	u32 flag2_value;
1558	u32 flag2_targ_addr;
1559	int ret = 0;
1560
1561	/* Download to Target the CE Config and the service-to-CE map */
1562	interconnect_targ_addr =
1563		host_interest_item_address(HI_ITEM(hi_interconnect_state));
1564
1565	/* Supply Target-side CE configuration */
1566	ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
1567				     &pcie_state_targ_addr);
1568	if (ret != 0) {
1569		ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
1570		return ret;
1571	}
1572
1573	if (pcie_state_targ_addr == 0) {
1574		ret = -EIO;
1575		ath10k_err(ar, "Invalid pcie state addr\n");
1576		return ret;
1577	}
1578
1579	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
1580					  offsetof(struct pcie_state,
1581						   pipe_cfg_addr)),
1582				     &pipe_cfg_targ_addr);
1583	if (ret != 0) {
1584		ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
1585		return ret;
1586	}
1587
1588	if (pipe_cfg_targ_addr == 0) {
1589		ret = -EIO;
1590		ath10k_err(ar, "Invalid pipe cfg addr\n");
1591		return ret;
1592	}
1593
1594	ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
1595					target_ce_config_wlan,
1596					sizeof(target_ce_config_wlan));
1597
1598	if (ret != 0) {
1599		ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
1600		return ret;
1601	}
1602
1603	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
1604					  offsetof(struct pcie_state,
1605						   svc_to_pipe_map)),
1606				     &svc_to_pipe_map);
1607	if (ret != 0) {
1608		ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
1609		return ret;
1610	}
1611
1612	if (svc_to_pipe_map == 0) {
1613		ret = -EIO;
1614		ath10k_err(ar, "Invalid svc_to_pipe map\n");
1615		return ret;
1616	}
1617
1618	ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
1619					target_service_to_ce_map_wlan,
1620					sizeof(target_service_to_ce_map_wlan));
1621	if (ret != 0) {
1622		ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
1623		return ret;
1624	}
1625
1626	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
1627					  offsetof(struct pcie_state,
1628						   config_flags)),
1629				     &pcie_config_flags);
1630	if (ret != 0) {
1631		ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
1632		return ret;
1633	}
1634
1635	pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
1636
1637	ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
1638					   offsetof(struct pcie_state,
1639						    config_flags)),
1640				      pcie_config_flags);
1641	if (ret != 0) {
1642		ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
1643		return ret;
1644	}
1645
1646	/* configure early allocation */
1647	ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
1648
1649	ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
1650	if (ret != 0) {
1651		ath10k_err(ar, "Faile to get early alloc val: %d\n", ret);
1652		return ret;
1653	}
1654
1655	/* first bank is switched to IRAM */
1656	ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
1657			 HI_EARLY_ALLOC_MAGIC_MASK);
1658	ealloc_value |= ((ath10k_pci_get_num_banks(ar) <<
1659			  HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
1660			 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
1661
1662	ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
1663	if (ret != 0) {
1664		ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
1665		return ret;
1666	}
1667
1668	/* Tell Target to proceed with initialization */
1669	flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
1670
1671	ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
1672	if (ret != 0) {
1673		ath10k_err(ar, "Failed to get option val: %d\n", ret);
1674		return ret;
1675	}
1676
1677	flag2_value |= HI_OPTION_EARLY_CFG_DONE;
1678
1679	ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
1680	if (ret != 0) {
1681		ath10k_err(ar, "Failed to set option val: %d\n", ret);
1682		return ret;
1683	}
1684
1685	return 0;
1686}
1687
1688static int ath10k_pci_alloc_pipes(struct ath10k *ar)
1689{
1690	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1691	struct ath10k_pci_pipe *pipe;
1692	int i, ret;
1693
1694	for (i = 0; i < CE_COUNT; i++) {
1695		pipe = &ar_pci->pipe_info[i];
1696		pipe->ce_hdl = &ar_pci->ce_states[i];
1697		pipe->pipe_num = i;
1698		pipe->hif_ce_state = ar;
1699
1700		ret = ath10k_ce_alloc_pipe(ar, i, &host_ce_config_wlan[i],
1701					   ath10k_pci_ce_send_done,
1702					   ath10k_pci_ce_recv_data);
1703		if (ret) {
1704			ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
1705				   i, ret);
1706			return ret;
1707		}
1708
1709		/* Last CE is Diagnostic Window */
1710		if (i == CE_COUNT - 1) {
1711			ar_pci->ce_diag = pipe->ce_hdl;
1712			continue;
1713		}
1714
1715		pipe->buf_sz = (size_t)(host_ce_config_wlan[i].src_sz_max);
1716	}
1717
1718	return 0;
1719}
1720
1721static void ath10k_pci_free_pipes(struct ath10k *ar)
1722{
1723	int i;
1724
1725	for (i = 0; i < CE_COUNT; i++)
1726		ath10k_ce_free_pipe(ar, i);
1727}
1728
1729static int ath10k_pci_init_pipes(struct ath10k *ar)
1730{
1731	int i, ret;
1732
1733	for (i = 0; i < CE_COUNT; i++) {
1734		ret = ath10k_ce_init_pipe(ar, i, &host_ce_config_wlan[i]);
1735		if (ret) {
1736			ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
1737				   i, ret);
1738			return ret;
1739		}
1740	}
1741
1742	return 0;
1743}
1744
1745static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
1746{
1747	return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
1748	       FW_IND_EVENT_PENDING;
1749}
1750
1751static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
1752{
1753	u32 val;
1754
1755	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
1756	val &= ~FW_IND_EVENT_PENDING;
1757	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
1758}
1759
1760/* this function effectively clears target memory controller assert line */
1761static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
1762{
1763	u32 val;
1764
1765	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
1766	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
1767			       val | SOC_RESET_CONTROL_SI0_RST_MASK);
1768	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
1769
1770	msleep(10);
1771
1772	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
1773	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
1774			       val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
1775	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
1776
1777	msleep(10);
1778}
1779
1780static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
1781{
1782	u32 val;
1783
1784	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
1785
1786	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
1787				SOC_RESET_CONTROL_ADDRESS);
1788	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
1789			   val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
1790}
1791
1792static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
1793{
1794	u32 val;
1795
1796	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
1797				SOC_RESET_CONTROL_ADDRESS);
1798
1799	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
1800			   val | SOC_RESET_CONTROL_CE_RST_MASK);
1801	msleep(10);
1802	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
1803			   val & ~SOC_RESET_CONTROL_CE_RST_MASK);
1804}
1805
1806static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
1807{
1808	u32 val;
1809
1810	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
1811				SOC_LF_TIMER_CONTROL0_ADDRESS);
1812	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS +
1813			   SOC_LF_TIMER_CONTROL0_ADDRESS,
1814			   val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
1815}
1816
1817static int ath10k_pci_warm_reset(struct ath10k *ar)
1818{
1819	int ret;
1820
1821	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
1822
1823	spin_lock_bh(&ar->data_lock);
1824	ar->stats.fw_warm_reset_counter++;
1825	spin_unlock_bh(&ar->data_lock);
1826
1827	ath10k_pci_irq_disable(ar);
1828
1829	/* Make sure the target CPU is not doing anything dangerous, e.g. if it
1830	 * were to access copy engine while host performs copy engine reset
1831	 * then it is possible for the device to confuse pci-e controller to
1832	 * the point of bringing host system to a complete stop (i.e. hang).
1833	 */
1834	ath10k_pci_warm_reset_si0(ar);
1835	ath10k_pci_warm_reset_cpu(ar);
1836	ath10k_pci_init_pipes(ar);
1837	ath10k_pci_wait_for_target_init(ar);
1838
1839	ath10k_pci_warm_reset_clear_lf(ar);
1840	ath10k_pci_warm_reset_ce(ar);
1841	ath10k_pci_warm_reset_cpu(ar);
1842	ath10k_pci_init_pipes(ar);
1843
1844	ret = ath10k_pci_wait_for_target_init(ar);
1845	if (ret) {
1846		ath10k_warn(ar, "failed to wait for target init: %d\n", ret);
1847		return ret;
1848	}
1849
1850	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
1851
1852	return 0;
1853}
1854
1855static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar)
1856{
1857	int i, ret;
1858	u32 val;
1859
1860	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n");
1861
1862	/* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
1863	 * It is thus preferred to use warm reset which is safer but may not be
1864	 * able to recover the device from all possible fail scenarios.
1865	 *
1866	 * Warm reset doesn't always work on first try so attempt it a few
1867	 * times before giving up.
1868	 */
1869	for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
1870		ret = ath10k_pci_warm_reset(ar);
1871		if (ret) {
1872			ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n",
1873				    i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
1874				    ret);
1875			continue;
1876		}
1877
1878		/* FIXME: Sometimes copy engine doesn't recover after warm
1879		 * reset. In most cases this needs cold reset. In some of these
1880		 * cases the device is in such a state that a cold reset may
1881		 * lock up the host.
1882		 *
1883		 * Reading any host interest register via copy engine is
1884		 * sufficient to verify if device is capable of booting
1885		 * firmware blob.
1886		 */
1887		ret = ath10k_pci_init_pipes(ar);
1888		if (ret) {
1889			ath10k_warn(ar, "failed to init copy engine: %d\n",
1890				    ret);
1891			continue;
1892		}
1893
1894		ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
1895					     &val);
1896		if (ret) {
1897			ath10k_warn(ar, "failed to poke copy engine: %d\n",
1898				    ret);
1899			continue;
1900		}
1901
1902		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
1903		return 0;
1904	}
1905
1906	if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
1907		ath10k_warn(ar, "refusing cold reset as requested\n");
1908		return -EPERM;
1909	}
1910
1911	ret = ath10k_pci_cold_reset(ar);
1912	if (ret) {
1913		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
1914		return ret;
1915	}
1916
1917	ret = ath10k_pci_wait_for_target_init(ar);
1918	if (ret) {
1919		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
1920			    ret);
1921		return ret;
1922	}
1923
1924	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n");
1925
1926	return 0;
1927}
1928
1929static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar)
1930{
1931	int ret;
1932
1933	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n");
1934
1935	/* FIXME: QCA6174 requires cold + warm reset to work. */
1936
1937	ret = ath10k_pci_cold_reset(ar);
1938	if (ret) {
1939		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
1940		return ret;
1941	}
1942
1943	ret = ath10k_pci_wait_for_target_init(ar);
1944	if (ret) {
1945		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
1946				ret);
1947		return ret;
1948	}
1949
1950	ret = ath10k_pci_warm_reset(ar);
1951	if (ret) {
1952		ath10k_warn(ar, "failed to warm reset: %d\n", ret);
1953		return ret;
1954	}
1955
1956	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n");
1957
1958	return 0;
1959}
1960
1961static int ath10k_pci_chip_reset(struct ath10k *ar)
1962{
1963	if (QCA_REV_988X(ar))
1964		return ath10k_pci_qca988x_chip_reset(ar);
1965	else if (QCA_REV_6174(ar))
1966		return ath10k_pci_qca6174_chip_reset(ar);
1967	else
1968		return -ENOTSUPP;
1969}
1970
1971static int ath10k_pci_hif_power_up(struct ath10k *ar)
1972{
1973	int ret;
1974
1975	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
1976
1977	ret = ath10k_pci_wake(ar);
1978	if (ret) {
1979		ath10k_err(ar, "failed to wake up target: %d\n", ret);
1980		return ret;
1981	}
1982
1983	/*
1984	 * Bring the target up cleanly.
1985	 *
1986	 * The target may be in an undefined state with an AUX-powered Target
1987	 * and a Host in WoW mode. If the Host crashes, loses power, or is
1988	 * restarted (without unloading the driver) then the Target is left
1989	 * (aux) powered and running. On a subsequent driver load, the Target
1990	 * is in an unexpected state. We try to catch that here in order to
1991	 * reset the Target and retry the probe.
1992	 */
1993	ret = ath10k_pci_chip_reset(ar);
1994	if (ret) {
1995		if (ath10k_pci_has_fw_crashed(ar)) {
1996			ath10k_warn(ar, "firmware crashed during chip reset\n");
1997			ath10k_pci_fw_crashed_clear(ar);
1998			ath10k_pci_fw_crashed_dump(ar);
1999		}
2000
2001		ath10k_err(ar, "failed to reset chip: %d\n", ret);
2002		goto err_sleep;
2003	}
2004
2005	ret = ath10k_pci_init_pipes(ar);
2006	if (ret) {
2007		ath10k_err(ar, "failed to initialize CE: %d\n", ret);
2008		goto err_sleep;
2009	}
2010
2011	ret = ath10k_pci_init_config(ar);
2012	if (ret) {
2013		ath10k_err(ar, "failed to setup init config: %d\n", ret);
2014		goto err_ce;
2015	}
2016
2017	ret = ath10k_pci_wake_target_cpu(ar);
2018	if (ret) {
2019		ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
2020		goto err_ce;
2021	}
2022
2023	return 0;
2024
2025err_ce:
2026	ath10k_pci_ce_deinit(ar);
2027
2028err_sleep:
2029	ath10k_pci_sleep(ar);
2030	return ret;
2031}
2032
2033static void ath10k_pci_hif_power_down(struct ath10k *ar)
2034{
2035	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
2036
2037	/* Currently hif_power_up performs effectively a reset and hif_stop
2038	 * resets the chip as well so there's no point in resetting here.
2039	 */
2040
2041	ath10k_pci_sleep(ar);
2042}
2043
2044#ifdef CONFIG_PM
2045
2046#define ATH10K_PCI_PM_CONTROL 0x44
2047
2048static int ath10k_pci_hif_suspend(struct ath10k *ar)
2049{
2050	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2051	struct pci_dev *pdev = ar_pci->pdev;
2052	u32 val;
2053
2054	pci_read_config_dword(pdev, ATH10K_PCI_PM_CONTROL, &val);
2055
2056	if ((val & 0x000000ff) != 0x3) {
2057		pci_save_state(pdev);
2058		pci_disable_device(pdev);
2059		pci_write_config_dword(pdev, ATH10K_PCI_PM_CONTROL,
2060				       (val & 0xffffff00) | 0x03);
2061	}
2062
2063	return 0;
2064}
2065
2066static int ath10k_pci_hif_resume(struct ath10k *ar)
2067{
2068	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2069	struct pci_dev *pdev = ar_pci->pdev;
2070	u32 val;
2071
2072	pci_read_config_dword(pdev, ATH10K_PCI_PM_CONTROL, &val);
2073
2074	if ((val & 0x000000ff) != 0) {
2075		pci_restore_state(pdev);
2076		pci_write_config_dword(pdev, ATH10K_PCI_PM_CONTROL,
2077				       val & 0xffffff00);
2078		/*
2079		 * Suspend/Resume resets the PCI configuration space,
2080		 * so we have to re-disable the RETRY_TIMEOUT register (0x41)
2081		 * to keep PCI Tx retries from interfering with C3 CPU state
2082		 */
2083		pci_read_config_dword(pdev, 0x40, &val);
2084
2085		if ((val & 0x0000ff00) != 0)
2086			pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2087	}
2088
2089	return 0;
2090}
2091#endif
2092
2093static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
2094	.tx_sg			= ath10k_pci_hif_tx_sg,
2095	.diag_read		= ath10k_pci_hif_diag_read,
2096	.diag_write		= ath10k_pci_diag_write_mem,
2097	.exchange_bmi_msg	= ath10k_pci_hif_exchange_bmi_msg,
2098	.start			= ath10k_pci_hif_start,
2099	.stop			= ath10k_pci_hif_stop,
2100	.map_service_to_pipe	= ath10k_pci_hif_map_service_to_pipe,
2101	.get_default_pipe	= ath10k_pci_hif_get_default_pipe,
2102	.send_complete_check	= ath10k_pci_hif_send_complete_check,
2103	.set_callbacks		= ath10k_pci_hif_set_callbacks,
2104	.get_free_queue_number	= ath10k_pci_hif_get_free_queue_number,
2105	.power_up		= ath10k_pci_hif_power_up,
2106	.power_down		= ath10k_pci_hif_power_down,
2107	.read32			= ath10k_pci_read32,
2108	.write32		= ath10k_pci_write32,
2109#ifdef CONFIG_PM
2110	.suspend		= ath10k_pci_hif_suspend,
2111	.resume			= ath10k_pci_hif_resume,
2112#endif
2113};
2114
2115static void ath10k_pci_ce_tasklet(unsigned long ptr)
2116{
2117	struct ath10k_pci_pipe *pipe = (struct ath10k_pci_pipe *)ptr;
2118	struct ath10k_pci *ar_pci = pipe->ar_pci;
2119
2120	ath10k_ce_per_engine_service(ar_pci->ar, pipe->pipe_num);
2121}
2122
2123static void ath10k_msi_err_tasklet(unsigned long data)
2124{
2125	struct ath10k *ar = (struct ath10k *)data;
2126
2127	if (!ath10k_pci_has_fw_crashed(ar)) {
2128		ath10k_warn(ar, "received unsolicited fw crash interrupt\n");
2129		return;
2130	}
2131
2132	ath10k_pci_irq_disable(ar);
2133	ath10k_pci_fw_crashed_clear(ar);
2134	ath10k_pci_fw_crashed_dump(ar);
2135}
2136
2137/*
2138 * Handler for a per-engine interrupt on a PARTICULAR CE.
2139 * This is used in cases where each CE has a private MSI interrupt.
2140 */
2141static irqreturn_t ath10k_pci_per_engine_handler(int irq, void *arg)
2142{
2143	struct ath10k *ar = arg;
2144	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2145	int ce_id = irq - ar_pci->pdev->irq - MSI_ASSIGN_CE_INITIAL;
2146
2147	if (ce_id < 0 || ce_id >= ARRAY_SIZE(ar_pci->pipe_info)) {
2148		ath10k_warn(ar, "unexpected/invalid irq %d ce_id %d\n", irq,
2149			    ce_id);
2150		return IRQ_HANDLED;
2151	}
2152
2153	/*
2154	 * NOTE: We are able to derive ce_id from irq because we
2155	 * use a one-to-one mapping for CE's 0..5.
2156	 * CE's 6 & 7 do not use interrupts at all.
2157	 *
2158	 * This mapping must be kept in sync with the mapping
2159	 * used by firmware.
2160	 */
2161	tasklet_schedule(&ar_pci->pipe_info[ce_id].intr);
2162	return IRQ_HANDLED;
2163}
2164
2165static irqreturn_t ath10k_pci_msi_fw_handler(int irq, void *arg)
2166{
2167	struct ath10k *ar = arg;
2168	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2169
2170	tasklet_schedule(&ar_pci->msi_fw_err);
2171	return IRQ_HANDLED;
2172}
2173
2174/*
2175 * Top-level interrupt handler for all PCI interrupts from a Target.
2176 * When a block of MSI interrupts is allocated, this top-level handler
2177 * is not used; instead, we directly call the correct sub-handler.
2178 */
2179static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
2180{
2181	struct ath10k *ar = arg;
2182	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2183
2184	if (ar_pci->num_msi_intrs == 0) {
2185		if (!ath10k_pci_irq_pending(ar))
2186			return IRQ_NONE;
2187
2188		ath10k_pci_disable_and_clear_legacy_irq(ar);
2189	}
2190
2191	tasklet_schedule(&ar_pci->intr_tq);
2192
2193	return IRQ_HANDLED;
2194}
2195
2196static void ath10k_pci_tasklet(unsigned long data)
2197{
2198	struct ath10k *ar = (struct ath10k *)data;
2199	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2200
2201	if (ath10k_pci_has_fw_crashed(ar)) {
2202		ath10k_pci_irq_disable(ar);
2203		ath10k_pci_fw_crashed_clear(ar);
2204		ath10k_pci_fw_crashed_dump(ar);
2205		return;
2206	}
2207
2208	ath10k_ce_per_engine_service_any(ar);
2209
2210	/* Re-enable legacy irq that was disabled in the irq handler */
2211	if (ar_pci->num_msi_intrs == 0)
2212		ath10k_pci_enable_legacy_irq(ar);
2213}
2214
2215static int ath10k_pci_request_irq_msix(struct ath10k *ar)
2216{
2217	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2218	int ret, i;
2219
2220	ret = request_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW,
2221			  ath10k_pci_msi_fw_handler,
2222			  IRQF_SHARED, "ath10k_pci", ar);
2223	if (ret) {
2224		ath10k_warn(ar, "failed to request MSI-X fw irq %d: %d\n",
2225			    ar_pci->pdev->irq + MSI_ASSIGN_FW, ret);
2226		return ret;
2227	}
2228
2229	for (i = MSI_ASSIGN_CE_INITIAL; i <= MSI_ASSIGN_CE_MAX; i++) {
2230		ret = request_irq(ar_pci->pdev->irq + i,
2231				  ath10k_pci_per_engine_handler,
2232				  IRQF_SHARED, "ath10k_pci", ar);
2233		if (ret) {
2234			ath10k_warn(ar, "failed to request MSI-X ce irq %d: %d\n",
2235				    ar_pci->pdev->irq + i, ret);
2236
2237			for (i--; i >= MSI_ASSIGN_CE_INITIAL; i--)
2238				free_irq(ar_pci->pdev->irq + i, ar);
2239
2240			free_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW, ar);
2241			return ret;
2242		}
2243	}
2244
2245	return 0;
2246}
2247
2248static int ath10k_pci_request_irq_msi(struct ath10k *ar)
2249{
2250	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2251	int ret;
2252
2253	ret = request_irq(ar_pci->pdev->irq,
2254			  ath10k_pci_interrupt_handler,
2255			  IRQF_SHARED, "ath10k_pci", ar);
2256	if (ret) {
2257		ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
2258			    ar_pci->pdev->irq, ret);
2259		return ret;
2260	}
2261
2262	return 0;
2263}
2264
2265static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
2266{
2267	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2268	int ret;
2269
2270	ret = request_irq(ar_pci->pdev->irq,
2271			  ath10k_pci_interrupt_handler,
2272			  IRQF_SHARED, "ath10k_pci", ar);
2273	if (ret) {
2274		ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
2275			    ar_pci->pdev->irq, ret);
2276		return ret;
2277	}
2278
2279	return 0;
2280}
2281
2282static int ath10k_pci_request_irq(struct ath10k *ar)
2283{
2284	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2285
2286	switch (ar_pci->num_msi_intrs) {
2287	case 0:
2288		return ath10k_pci_request_irq_legacy(ar);
2289	case 1:
2290		return ath10k_pci_request_irq_msi(ar);
2291	case MSI_NUM_REQUEST:
2292		return ath10k_pci_request_irq_msix(ar);
2293	}
2294
2295	ath10k_warn(ar, "unknown irq configuration upon request\n");
2296	return -EINVAL;
2297}
2298
2299static void ath10k_pci_free_irq(struct ath10k *ar)
2300{
2301	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2302	int i;
2303
2304	/* There's at least one interrupt irregardless whether its legacy INTR
2305	 * or MSI or MSI-X */
2306	for (i = 0; i < max(1, ar_pci->num_msi_intrs); i++)
2307		free_irq(ar_pci->pdev->irq + i, ar);
2308}
2309
2310static void ath10k_pci_init_irq_tasklets(struct ath10k *ar)
2311{
2312	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2313	int i;
2314
2315	tasklet_init(&ar_pci->intr_tq, ath10k_pci_tasklet, (unsigned long)ar);
2316	tasklet_init(&ar_pci->msi_fw_err, ath10k_msi_err_tasklet,
2317		     (unsigned long)ar);
2318
2319	for (i = 0; i < CE_COUNT; i++) {
2320		ar_pci->pipe_info[i].ar_pci = ar_pci;
2321		tasklet_init(&ar_pci->pipe_info[i].intr, ath10k_pci_ce_tasklet,
2322			     (unsigned long)&ar_pci->pipe_info[i]);
2323	}
2324}
2325
2326static int ath10k_pci_init_irq(struct ath10k *ar)
2327{
2328	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2329	int ret;
2330
2331	ath10k_pci_init_irq_tasklets(ar);
2332
2333	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
2334		ath10k_info(ar, "limiting irq mode to: %d\n",
2335			    ath10k_pci_irq_mode);
2336
2337	/* Try MSI-X */
2338	if (ath10k_pci_irq_mode == ATH10K_PCI_IRQ_AUTO) {
2339		ar_pci->num_msi_intrs = MSI_NUM_REQUEST;
2340		ret = pci_enable_msi_range(ar_pci->pdev, ar_pci->num_msi_intrs,
2341					   ar_pci->num_msi_intrs);
2342		if (ret > 0)
2343			return 0;
2344
2345		/* fall-through */
2346	}
2347
2348	/* Try MSI */
2349	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
2350		ar_pci->num_msi_intrs = 1;
2351		ret = pci_enable_msi(ar_pci->pdev);
2352		if (ret == 0)
2353			return 0;
2354
2355		/* fall-through */
2356	}
2357
2358	/* Try legacy irq
2359	 *
2360	 * A potential race occurs here: The CORE_BASE write
2361	 * depends on target correctly decoding AXI address but
2362	 * host won't know when target writes BAR to CORE_CTRL.
2363	 * This write might get lost if target has NOT written BAR.
2364	 * For now, fix the race by repeating the write in below
2365	 * synchronization checking. */
2366	ar_pci->num_msi_intrs = 0;
2367
2368	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
2369			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
2370
2371	return 0;
2372}
2373
2374static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
2375{
2376	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
2377			   0);
2378}
2379
2380static int ath10k_pci_deinit_irq(struct ath10k *ar)
2381{
2382	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2383
2384	switch (ar_pci->num_msi_intrs) {
2385	case 0:
2386		ath10k_pci_deinit_irq_legacy(ar);
2387		return 0;
2388	case 1:
2389		/* fall-through */
2390	case MSI_NUM_REQUEST:
2391		pci_disable_msi(ar_pci->pdev);
2392		return 0;
2393	default:
2394		pci_disable_msi(ar_pci->pdev);
2395	}
2396
2397	ath10k_warn(ar, "unknown irq configuration upon deinit\n");
2398	return -EINVAL;
2399}
2400
2401static int ath10k_pci_wait_for_target_init(struct ath10k *ar)
2402{
2403	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2404	unsigned long timeout;
2405	u32 val;
2406
2407	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
2408
2409	timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
2410
2411	do {
2412		val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2413
2414		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
2415			   val);
2416
2417		/* target should never return this */
2418		if (val == 0xffffffff)
2419			continue;
2420
2421		/* the device has crashed so don't bother trying anymore */
2422		if (val & FW_IND_EVENT_PENDING)
2423			break;
2424
2425		if (val & FW_IND_INITIALIZED)
2426			break;
2427
2428		if (ar_pci->num_msi_intrs == 0)
2429			/* Fix potential race by repeating CORE_BASE writes */
2430			ath10k_pci_enable_legacy_irq(ar);
2431
2432		mdelay(10);
2433	} while (time_before(jiffies, timeout));
2434
2435	ath10k_pci_disable_and_clear_legacy_irq(ar);
2436	ath10k_pci_irq_msi_fw_mask(ar);
2437
2438	if (val == 0xffffffff) {
2439		ath10k_err(ar, "failed to read device register, device is gone\n");
2440		return -EIO;
2441	}
2442
2443	if (val & FW_IND_EVENT_PENDING) {
2444		ath10k_warn(ar, "device has crashed during init\n");
2445		return -ECOMM;
2446	}
2447
2448	if (!(val & FW_IND_INITIALIZED)) {
2449		ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
2450			   val);
2451		return -ETIMEDOUT;
2452	}
2453
2454	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
2455	return 0;
2456}
2457
2458static int ath10k_pci_cold_reset(struct ath10k *ar)
2459{
2460	int i;
2461	u32 val;
2462
2463	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
2464
2465	spin_lock_bh(&ar->data_lock);
2466
2467	ar->stats.fw_cold_reset_counter++;
2468
2469	spin_unlock_bh(&ar->data_lock);
2470
2471	/* Put Target, including PCIe, into RESET. */
2472	val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
2473	val |= 1;
2474	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
2475
2476	for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) {
2477		if (ath10k_pci_reg_read32(ar, RTC_STATE_ADDRESS) &
2478					  RTC_STATE_COLD_RESET_MASK)
2479			break;
2480		msleep(1);
2481	}
2482
2483	/* Pull Target, including PCIe, out of RESET. */
2484	val &= ~1;
2485	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
2486
2487	for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) {
2488		if (!(ath10k_pci_reg_read32(ar, RTC_STATE_ADDRESS) &
2489					    RTC_STATE_COLD_RESET_MASK))
2490			break;
2491		msleep(1);
2492	}
2493
2494	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
2495
2496	return 0;
2497}
2498
2499static int ath10k_pci_claim(struct ath10k *ar)
2500{
2501	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2502	struct pci_dev *pdev = ar_pci->pdev;
2503	u32 lcr_val;
2504	int ret;
2505
2506	pci_set_drvdata(pdev, ar);
2507
2508	ret = pci_enable_device(pdev);
2509	if (ret) {
2510		ath10k_err(ar, "failed to enable pci device: %d\n", ret);
2511		return ret;
2512	}
2513
2514	ret = pci_request_region(pdev, BAR_NUM, "ath");
2515	if (ret) {
2516		ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
2517			   ret);
2518		goto err_device;
2519	}
2520
2521	/* Target expects 32 bit DMA. Enforce it. */
2522	ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2523	if (ret) {
2524		ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
2525		goto err_region;
2526	}
2527
2528	ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
2529	if (ret) {
2530		ath10k_err(ar, "failed to set consistent dma mask to 32-bit: %d\n",
2531			   ret);
2532		goto err_region;
2533	}
2534
2535	pci_set_master(pdev);
2536
2537	/* Workaround: Disable ASPM */
2538	pci_read_config_dword(pdev, 0x80, &lcr_val);
2539	pci_write_config_dword(pdev, 0x80, (lcr_val & 0xffffff00));
2540
2541	/* Arrange for access to Target SoC registers. */
2542	ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
2543	if (!ar_pci->mem) {
2544		ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
2545		ret = -EIO;
2546		goto err_master;
2547	}
2548
2549	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%p\n", ar_pci->mem);
2550	return 0;
2551
2552err_master:
2553	pci_clear_master(pdev);
2554
2555err_region:
2556	pci_release_region(pdev, BAR_NUM);
2557
2558err_device:
2559	pci_disable_device(pdev);
2560
2561	return ret;
2562}
2563
2564static void ath10k_pci_release(struct ath10k *ar)
2565{
2566	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2567	struct pci_dev *pdev = ar_pci->pdev;
2568
2569	pci_iounmap(pdev, ar_pci->mem);
2570	pci_release_region(pdev, BAR_NUM);
2571	pci_clear_master(pdev);
2572	pci_disable_device(pdev);
2573}
2574
2575static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id)
2576{
2577	const struct ath10k_pci_supp_chip *supp_chip;
2578	int i;
2579	u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV);
2580
2581	for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) {
2582		supp_chip = &ath10k_pci_supp_chips[i];
2583
2584		if (supp_chip->dev_id == dev_id &&
2585		    supp_chip->rev_id == rev_id)
2586			return true;
2587	}
2588
2589	return false;
2590}
2591
2592static int ath10k_pci_probe(struct pci_dev *pdev,
2593			    const struct pci_device_id *pci_dev)
2594{
2595	int ret = 0;
2596	struct ath10k *ar;
2597	struct ath10k_pci *ar_pci;
2598	enum ath10k_hw_rev hw_rev;
2599	u32 chip_id;
2600
2601	switch (pci_dev->device) {
2602	case QCA988X_2_0_DEVICE_ID:
2603		hw_rev = ATH10K_HW_QCA988X;
2604		break;
2605	case QCA6174_2_1_DEVICE_ID:
2606		hw_rev = ATH10K_HW_QCA6174;
2607		break;
2608	default:
2609		WARN_ON(1);
2610		return -ENOTSUPP;
2611	}
2612
2613	ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI,
2614				hw_rev, &ath10k_pci_hif_ops);
2615	if (!ar) {
2616		dev_err(&pdev->dev, "failed to allocate core\n");
2617		return -ENOMEM;
2618	}
2619
2620	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci probe\n");
2621
2622	ar_pci = ath10k_pci_priv(ar);
2623	ar_pci->pdev = pdev;
2624	ar_pci->dev = &pdev->dev;
2625	ar_pci->ar = ar;
2626
2627	spin_lock_init(&ar_pci->ce_lock);
2628	setup_timer(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry,
2629		    (unsigned long)ar);
2630
2631	ret = ath10k_pci_claim(ar);
2632	if (ret) {
2633		ath10k_err(ar, "failed to claim device: %d\n", ret);
2634		goto err_core_destroy;
2635	}
2636
2637	ret = ath10k_pci_wake(ar);
2638	if (ret) {
2639		ath10k_err(ar, "failed to wake up: %d\n", ret);
2640		goto err_release;
2641	}
2642
2643	ret = ath10k_pci_alloc_pipes(ar);
2644	if (ret) {
2645		ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
2646			   ret);
2647		goto err_sleep;
2648	}
2649
2650	ath10k_pci_ce_deinit(ar);
2651	ath10k_pci_irq_disable(ar);
2652
2653	ret = ath10k_pci_init_irq(ar);
2654	if (ret) {
2655		ath10k_err(ar, "failed to init irqs: %d\n", ret);
2656		goto err_free_pipes;
2657	}
2658
2659	ath10k_info(ar, "pci irq %s interrupts %d irq_mode %d reset_mode %d\n",
2660		    ath10k_pci_get_irq_method(ar), ar_pci->num_msi_intrs,
2661		    ath10k_pci_irq_mode, ath10k_pci_reset_mode);
2662
2663	ret = ath10k_pci_request_irq(ar);
2664	if (ret) {
2665		ath10k_warn(ar, "failed to request irqs: %d\n", ret);
2666		goto err_deinit_irq;
2667	}
2668
2669	ret = ath10k_pci_chip_reset(ar);
2670	if (ret) {
2671		ath10k_err(ar, "failed to reset chip: %d\n", ret);
2672		goto err_free_irq;
2673	}
2674
2675	chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
2676	if (chip_id == 0xffffffff) {
2677		ath10k_err(ar, "failed to get chip id\n");
2678		goto err_free_irq;
2679	}
2680
2681	if (!ath10k_pci_chip_is_supported(pdev->device, chip_id)) {
2682		ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n",
2683			   pdev->device, chip_id);
2684		goto err_sleep;
2685	}
2686
2687	ath10k_pci_sleep(ar);
2688
2689	ret = ath10k_core_register(ar, chip_id);
2690	if (ret) {
2691		ath10k_err(ar, "failed to register driver core: %d\n", ret);
2692		goto err_free_irq;
2693	}
2694
2695	return 0;
2696
2697err_free_irq:
2698	ath10k_pci_free_irq(ar);
2699	ath10k_pci_kill_tasklet(ar);
2700
2701err_deinit_irq:
2702	ath10k_pci_deinit_irq(ar);
2703
2704err_free_pipes:
2705	ath10k_pci_free_pipes(ar);
2706
2707err_sleep:
2708	ath10k_pci_sleep(ar);
2709
2710err_release:
2711	ath10k_pci_release(ar);
2712
2713err_core_destroy:
2714	ath10k_core_destroy(ar);
2715
2716	return ret;
2717}
2718
2719static void ath10k_pci_remove(struct pci_dev *pdev)
2720{
2721	struct ath10k *ar = pci_get_drvdata(pdev);
2722	struct ath10k_pci *ar_pci;
2723
2724	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
2725
2726	if (!ar)
2727		return;
2728
2729	ar_pci = ath10k_pci_priv(ar);
2730
2731	if (!ar_pci)
2732		return;
2733
2734	ath10k_core_unregister(ar);
2735	ath10k_pci_free_irq(ar);
2736	ath10k_pci_kill_tasklet(ar);
2737	ath10k_pci_deinit_irq(ar);
2738	ath10k_pci_ce_deinit(ar);
2739	ath10k_pci_free_pipes(ar);
2740	ath10k_pci_release(ar);
2741	ath10k_core_destroy(ar);
2742}
2743
2744MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
2745
2746static struct pci_driver ath10k_pci_driver = {
2747	.name = "ath10k_pci",
2748	.id_table = ath10k_pci_id_table,
2749	.probe = ath10k_pci_probe,
2750	.remove = ath10k_pci_remove,
2751};
2752
2753static int __init ath10k_pci_init(void)
2754{
2755	int ret;
2756
2757	ret = pci_register_driver(&ath10k_pci_driver);
2758	if (ret)
2759		printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
2760		       ret);
2761
2762	return ret;
2763}
2764module_init(ath10k_pci_init);
2765
2766static void __exit ath10k_pci_exit(void)
2767{
2768	pci_unregister_driver(&ath10k_pci_driver);
2769}
2770
2771module_exit(ath10k_pci_exit);
2772
2773MODULE_AUTHOR("Qualcomm Atheros");
2774MODULE_DESCRIPTION("Driver support for Atheros QCA988X PCIe devices");
2775MODULE_LICENSE("Dual BSD/GPL");
2776MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_FW_FILE);
2777MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
2778MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
2779MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
2780