1/*
2 * Copyright (c) 2005-2011 Atheros Communications Inc.
3 * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17
18#include "core.h"
19#include "htc.h"
20#include "htt.h"
21#include "txrx.h"
22#include "debug.h"
23#include "trace.h"
24#include "mac.h"
25
26#include <linux/log2.h>
27
28#define HTT_RX_RING_SIZE HTT_RX_RING_SIZE_MAX
29#define HTT_RX_RING_FILL_LEVEL (((HTT_RX_RING_SIZE) / 2) - 1)
30
31/* when under memory pressure rx ring refill may fail and needs a retry */
32#define HTT_RX_RING_REFILL_RETRY_MS 50
33
34static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb);
35static void ath10k_htt_txrx_compl_task(unsigned long ptr);
36
37static struct sk_buff *
38ath10k_htt_rx_find_skb_paddr(struct ath10k *ar, u32 paddr)
39{
40	struct ath10k_skb_rxcb *rxcb;
41
42	hash_for_each_possible(ar->htt.rx_ring.skb_table, rxcb, hlist, paddr)
43		if (rxcb->paddr == paddr)
44			return ATH10K_RXCB_SKB(rxcb);
45
46	WARN_ON_ONCE(1);
47	return NULL;
48}
49
50static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt)
51{
52	struct sk_buff *skb;
53	struct ath10k_skb_rxcb *rxcb;
54	struct hlist_node *n;
55	int i;
56
57	if (htt->rx_ring.in_ord_rx) {
58		hash_for_each_safe(htt->rx_ring.skb_table, i, n, rxcb, hlist) {
59			skb = ATH10K_RXCB_SKB(rxcb);
60			dma_unmap_single(htt->ar->dev, rxcb->paddr,
61					 skb->len + skb_tailroom(skb),
62					 DMA_FROM_DEVICE);
63			hash_del(&rxcb->hlist);
64			dev_kfree_skb_any(skb);
65		}
66	} else {
67		for (i = 0; i < htt->rx_ring.size; i++) {
68			skb = htt->rx_ring.netbufs_ring[i];
69			if (!skb)
70				continue;
71
72			rxcb = ATH10K_SKB_RXCB(skb);
73			dma_unmap_single(htt->ar->dev, rxcb->paddr,
74					 skb->len + skb_tailroom(skb),
75					 DMA_FROM_DEVICE);
76			dev_kfree_skb_any(skb);
77		}
78	}
79
80	htt->rx_ring.fill_cnt = 0;
81	hash_init(htt->rx_ring.skb_table);
82	memset(htt->rx_ring.netbufs_ring, 0,
83	       htt->rx_ring.size * sizeof(htt->rx_ring.netbufs_ring[0]));
84}
85
86static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
87{
88	struct htt_rx_desc *rx_desc;
89	struct ath10k_skb_rxcb *rxcb;
90	struct sk_buff *skb;
91	dma_addr_t paddr;
92	int ret = 0, idx;
93
94	/* The Full Rx Reorder firmware has no way of telling the host
95	 * implicitly when it copied HTT Rx Ring buffers to MAC Rx Ring.
96	 * To keep things simple make sure ring is always half empty. This
97	 * guarantees there'll be no replenishment overruns possible.
98	 */
99	BUILD_BUG_ON(HTT_RX_RING_FILL_LEVEL >= HTT_RX_RING_SIZE / 2);
100
101	idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr);
102	while (num > 0) {
103		skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN);
104		if (!skb) {
105			ret = -ENOMEM;
106			goto fail;
107		}
108
109		if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN))
110			skb_pull(skb,
111				 PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) -
112				 skb->data);
113
114		/* Clear rx_desc attention word before posting to Rx ring */
115		rx_desc = (struct htt_rx_desc *)skb->data;
116		rx_desc->attention.flags = __cpu_to_le32(0);
117
118		paddr = dma_map_single(htt->ar->dev, skb->data,
119				       skb->len + skb_tailroom(skb),
120				       DMA_FROM_DEVICE);
121
122		if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) {
123			dev_kfree_skb_any(skb);
124			ret = -ENOMEM;
125			goto fail;
126		}
127
128		rxcb = ATH10K_SKB_RXCB(skb);
129		rxcb->paddr = paddr;
130		htt->rx_ring.netbufs_ring[idx] = skb;
131		htt->rx_ring.paddrs_ring[idx] = __cpu_to_le32(paddr);
132		htt->rx_ring.fill_cnt++;
133
134		if (htt->rx_ring.in_ord_rx) {
135			hash_add(htt->rx_ring.skb_table,
136				 &ATH10K_SKB_RXCB(skb)->hlist,
137				 (u32)paddr);
138		}
139
140		num--;
141		idx++;
142		idx &= htt->rx_ring.size_mask;
143	}
144
145fail:
146	/*
147	 * Make sure the rx buffer is updated before available buffer
148	 * index to avoid any potential rx ring corruption.
149	 */
150	mb();
151	*htt->rx_ring.alloc_idx.vaddr = __cpu_to_le32(idx);
152	return ret;
153}
154
155static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
156{
157	lockdep_assert_held(&htt->rx_ring.lock);
158	return __ath10k_htt_rx_ring_fill_n(htt, num);
159}
160
161static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt)
162{
163	int ret, num_deficit, num_to_fill;
164
165	/* Refilling the whole RX ring buffer proves to be a bad idea. The
166	 * reason is RX may take up significant amount of CPU cycles and starve
167	 * other tasks, e.g. TX on an ethernet device while acting as a bridge
168	 * with ath10k wlan interface. This ended up with very poor performance
169	 * once CPU the host system was overwhelmed with RX on ath10k.
170	 *
171	 * By limiting the number of refills the replenishing occurs
172	 * progressively. This in turns makes use of the fact tasklets are
173	 * processed in FIFO order. This means actual RX processing can starve
174	 * out refilling. If there's not enough buffers on RX ring FW will not
175	 * report RX until it is refilled with enough buffers. This
176	 * automatically balances load wrt to CPU power.
177	 *
178	 * This probably comes at a cost of lower maximum throughput but
179	 * improves the average and stability. */
180	spin_lock_bh(&htt->rx_ring.lock);
181	num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt;
182	num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit);
183	num_deficit -= num_to_fill;
184	ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill);
185	if (ret == -ENOMEM) {
186		/*
187		 * Failed to fill it to the desired level -
188		 * we'll start a timer and try again next time.
189		 * As long as enough buffers are left in the ring for
190		 * another A-MPDU rx, no special recovery is needed.
191		 */
192		mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
193			  msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS));
194	} else if (num_deficit > 0) {
195		tasklet_schedule(&htt->rx_replenish_task);
196	}
197	spin_unlock_bh(&htt->rx_ring.lock);
198}
199
200static void ath10k_htt_rx_ring_refill_retry(unsigned long arg)
201{
202	struct ath10k_htt *htt = (struct ath10k_htt *)arg;
203
204	ath10k_htt_rx_msdu_buff_replenish(htt);
205}
206
207int ath10k_htt_rx_ring_refill(struct ath10k *ar)
208{
209	struct ath10k_htt *htt = &ar->htt;
210	int ret;
211
212	spin_lock_bh(&htt->rx_ring.lock);
213	ret = ath10k_htt_rx_ring_fill_n(htt, (htt->rx_ring.fill_level -
214					      htt->rx_ring.fill_cnt));
215	spin_unlock_bh(&htt->rx_ring.lock);
216
217	if (ret)
218		ath10k_htt_rx_ring_free(htt);
219
220	return ret;
221}
222
223void ath10k_htt_rx_free(struct ath10k_htt *htt)
224{
225	del_timer_sync(&htt->rx_ring.refill_retry_timer);
226	tasklet_kill(&htt->rx_replenish_task);
227	tasklet_kill(&htt->txrx_compl_task);
228
229	skb_queue_purge(&htt->tx_compl_q);
230	skb_queue_purge(&htt->rx_compl_q);
231	skb_queue_purge(&htt->rx_in_ord_compl_q);
232
233	ath10k_htt_rx_ring_free(htt);
234
235	dma_free_coherent(htt->ar->dev,
236			  (htt->rx_ring.size *
237			   sizeof(htt->rx_ring.paddrs_ring)),
238			  htt->rx_ring.paddrs_ring,
239			  htt->rx_ring.base_paddr);
240
241	dma_free_coherent(htt->ar->dev,
242			  sizeof(*htt->rx_ring.alloc_idx.vaddr),
243			  htt->rx_ring.alloc_idx.vaddr,
244			  htt->rx_ring.alloc_idx.paddr);
245
246	kfree(htt->rx_ring.netbufs_ring);
247}
248
249static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt)
250{
251	struct ath10k *ar = htt->ar;
252	int idx;
253	struct sk_buff *msdu;
254
255	lockdep_assert_held(&htt->rx_ring.lock);
256
257	if (htt->rx_ring.fill_cnt == 0) {
258		ath10k_warn(ar, "tried to pop sk_buff from an empty rx ring\n");
259		return NULL;
260	}
261
262	idx = htt->rx_ring.sw_rd_idx.msdu_payld;
263	msdu = htt->rx_ring.netbufs_ring[idx];
264	htt->rx_ring.netbufs_ring[idx] = NULL;
265	htt->rx_ring.paddrs_ring[idx] = 0;
266
267	idx++;
268	idx &= htt->rx_ring.size_mask;
269	htt->rx_ring.sw_rd_idx.msdu_payld = idx;
270	htt->rx_ring.fill_cnt--;
271
272	dma_unmap_single(htt->ar->dev,
273			 ATH10K_SKB_RXCB(msdu)->paddr,
274			 msdu->len + skb_tailroom(msdu),
275			 DMA_FROM_DEVICE);
276	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
277			msdu->data, msdu->len + skb_tailroom(msdu));
278
279	return msdu;
280}
281
282/* return: < 0 fatal error, 0 - non chained msdu, 1 chained msdu */
283static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt,
284				   u8 **fw_desc, int *fw_desc_len,
285				   struct sk_buff_head *amsdu)
286{
287	struct ath10k *ar = htt->ar;
288	int msdu_len, msdu_chaining = 0;
289	struct sk_buff *msdu;
290	struct htt_rx_desc *rx_desc;
291
292	lockdep_assert_held(&htt->rx_ring.lock);
293
294	for (;;) {
295		int last_msdu, msdu_len_invalid, msdu_chained;
296
297		msdu = ath10k_htt_rx_netbuf_pop(htt);
298		if (!msdu) {
299			__skb_queue_purge(amsdu);
300			return -ENOENT;
301		}
302
303		__skb_queue_tail(amsdu, msdu);
304
305		rx_desc = (struct htt_rx_desc *)msdu->data;
306
307		/* FIXME: we must report msdu payload since this is what caller
308		 *        expects now */
309		skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload));
310		skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload));
311
312		/*
313		 * Sanity check - confirm the HW is finished filling in the
314		 * rx data.
315		 * If the HW and SW are working correctly, then it's guaranteed
316		 * that the HW's MAC DMA is done before this point in the SW.
317		 * To prevent the case that we handle a stale Rx descriptor,
318		 * just assert for now until we have a way to recover.
319		 */
320		if (!(__le32_to_cpu(rx_desc->attention.flags)
321				& RX_ATTENTION_FLAGS_MSDU_DONE)) {
322			__skb_queue_purge(amsdu);
323			return -EIO;
324		}
325
326		/*
327		 * Copy the FW rx descriptor for this MSDU from the rx
328		 * indication message into the MSDU's netbuf. HL uses the
329		 * same rx indication message definition as LL, and simply
330		 * appends new info (fields from the HW rx desc, and the
331		 * MSDU payload itself). So, the offset into the rx
332		 * indication message only has to account for the standard
333		 * offset of the per-MSDU FW rx desc info within the
334		 * message, and how many bytes of the per-MSDU FW rx desc
335		 * info have already been consumed. (And the endianness of
336		 * the host, since for a big-endian host, the rx ind
337		 * message contents, including the per-MSDU rx desc bytes,
338		 * were byteswapped during upload.)
339		 */
340		if (*fw_desc_len > 0) {
341			rx_desc->fw_desc.info0 = **fw_desc;
342			/*
343			 * The target is expected to only provide the basic
344			 * per-MSDU rx descriptors. Just to be sure, verify
345			 * that the target has not attached extension data
346			 * (e.g. LRO flow ID).
347			 */
348
349			/* or more, if there's extension data */
350			(*fw_desc)++;
351			(*fw_desc_len)--;
352		} else {
353			/*
354			 * When an oversized AMSDU happened, FW will lost
355			 * some of MSDU status - in this case, the FW
356			 * descriptors provided will be less than the
357			 * actual MSDUs inside this MPDU. Mark the FW
358			 * descriptors so that it will still deliver to
359			 * upper stack, if no CRC error for this MPDU.
360			 *
361			 * FIX THIS - the FW descriptors are actually for
362			 * MSDUs in the end of this A-MSDU instead of the
363			 * beginning.
364			 */
365			rx_desc->fw_desc.info0 = 0;
366		}
367
368		msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags)
369					& (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR |
370					   RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR));
371		msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.info0),
372			      RX_MSDU_START_INFO0_MSDU_LENGTH);
373		msdu_chained = rx_desc->frag_info.ring2_more_count;
374
375		if (msdu_len_invalid)
376			msdu_len = 0;
377
378		skb_trim(msdu, 0);
379		skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE));
380		msdu_len -= msdu->len;
381
382		/* Note: Chained buffers do not contain rx descriptor */
383		while (msdu_chained--) {
384			msdu = ath10k_htt_rx_netbuf_pop(htt);
385			if (!msdu) {
386				__skb_queue_purge(amsdu);
387				return -ENOENT;
388			}
389
390			__skb_queue_tail(amsdu, msdu);
391			skb_trim(msdu, 0);
392			skb_put(msdu, min(msdu_len, HTT_RX_BUF_SIZE));
393			msdu_len -= msdu->len;
394			msdu_chaining = 1;
395		}
396
397		last_msdu = __le32_to_cpu(rx_desc->msdu_end.info0) &
398				RX_MSDU_END_INFO0_LAST_MSDU;
399
400		trace_ath10k_htt_rx_desc(ar, &rx_desc->attention,
401					 sizeof(*rx_desc) - sizeof(u32));
402
403		if (last_msdu)
404			break;
405	}
406
407	if (skb_queue_empty(amsdu))
408		msdu_chaining = -1;
409
410	/*
411	 * Don't refill the ring yet.
412	 *
413	 * First, the elements popped here are still in use - it is not
414	 * safe to overwrite them until the matching call to
415	 * mpdu_desc_list_next. Second, for efficiency it is preferable to
416	 * refill the rx ring with 1 PPDU's worth of rx buffers (something
417	 * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers
418	 * (something like 3 buffers). Consequently, we'll rely on the txrx
419	 * SW to tell us when it is done pulling all the PPDU's rx buffers
420	 * out of the rx ring, and then refill it just once.
421	 */
422
423	return msdu_chaining;
424}
425
426static void ath10k_htt_rx_replenish_task(unsigned long ptr)
427{
428	struct ath10k_htt *htt = (struct ath10k_htt *)ptr;
429
430	ath10k_htt_rx_msdu_buff_replenish(htt);
431}
432
433static struct sk_buff *ath10k_htt_rx_pop_paddr(struct ath10k_htt *htt,
434					       u32 paddr)
435{
436	struct ath10k *ar = htt->ar;
437	struct ath10k_skb_rxcb *rxcb;
438	struct sk_buff *msdu;
439
440	lockdep_assert_held(&htt->rx_ring.lock);
441
442	msdu = ath10k_htt_rx_find_skb_paddr(ar, paddr);
443	if (!msdu)
444		return NULL;
445
446	rxcb = ATH10K_SKB_RXCB(msdu);
447	hash_del(&rxcb->hlist);
448	htt->rx_ring.fill_cnt--;
449
450	dma_unmap_single(htt->ar->dev, rxcb->paddr,
451			 msdu->len + skb_tailroom(msdu),
452			 DMA_FROM_DEVICE);
453	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
454			msdu->data, msdu->len + skb_tailroom(msdu));
455
456	return msdu;
457}
458
459static int ath10k_htt_rx_pop_paddr_list(struct ath10k_htt *htt,
460					struct htt_rx_in_ord_ind *ev,
461					struct sk_buff_head *list)
462{
463	struct ath10k *ar = htt->ar;
464	struct htt_rx_in_ord_msdu_desc *msdu_desc = ev->msdu_descs;
465	struct htt_rx_desc *rxd;
466	struct sk_buff *msdu;
467	int msdu_count;
468	bool is_offload;
469	u32 paddr;
470
471	lockdep_assert_held(&htt->rx_ring.lock);
472
473	msdu_count = __le16_to_cpu(ev->msdu_count);
474	is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
475
476	while (msdu_count--) {
477		paddr = __le32_to_cpu(msdu_desc->msdu_paddr);
478
479		msdu = ath10k_htt_rx_pop_paddr(htt, paddr);
480		if (!msdu) {
481			__skb_queue_purge(list);
482			return -ENOENT;
483		}
484
485		__skb_queue_tail(list, msdu);
486
487		if (!is_offload) {
488			rxd = (void *)msdu->data;
489
490			trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
491
492			skb_put(msdu, sizeof(*rxd));
493			skb_pull(msdu, sizeof(*rxd));
494			skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len));
495
496			if (!(__le32_to_cpu(rxd->attention.flags) &
497			      RX_ATTENTION_FLAGS_MSDU_DONE)) {
498				ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n");
499				return -EIO;
500			}
501		}
502
503		msdu_desc++;
504	}
505
506	return 0;
507}
508
509int ath10k_htt_rx_alloc(struct ath10k_htt *htt)
510{
511	struct ath10k *ar = htt->ar;
512	dma_addr_t paddr;
513	void *vaddr;
514	size_t size;
515	struct timer_list *timer = &htt->rx_ring.refill_retry_timer;
516
517	htt->rx_confused = false;
518
519	/* XXX: The fill level could be changed during runtime in response to
520	 * the host processing latency. Is this really worth it?
521	 */
522	htt->rx_ring.size = HTT_RX_RING_SIZE;
523	htt->rx_ring.size_mask = htt->rx_ring.size - 1;
524	htt->rx_ring.fill_level = HTT_RX_RING_FILL_LEVEL;
525
526	if (!is_power_of_2(htt->rx_ring.size)) {
527		ath10k_warn(ar, "htt rx ring size is not power of 2\n");
528		return -EINVAL;
529	}
530
531	htt->rx_ring.netbufs_ring =
532		kzalloc(htt->rx_ring.size * sizeof(struct sk_buff *),
533			GFP_KERNEL);
534	if (!htt->rx_ring.netbufs_ring)
535		goto err_netbuf;
536
537	size = htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring);
538
539	vaddr = dma_alloc_coherent(htt->ar->dev, size, &paddr, GFP_DMA);
540	if (!vaddr)
541		goto err_dma_ring;
542
543	htt->rx_ring.paddrs_ring = vaddr;
544	htt->rx_ring.base_paddr = paddr;
545
546	vaddr = dma_alloc_coherent(htt->ar->dev,
547				   sizeof(*htt->rx_ring.alloc_idx.vaddr),
548				   &paddr, GFP_DMA);
549	if (!vaddr)
550		goto err_dma_idx;
551
552	htt->rx_ring.alloc_idx.vaddr = vaddr;
553	htt->rx_ring.alloc_idx.paddr = paddr;
554	htt->rx_ring.sw_rd_idx.msdu_payld = htt->rx_ring.size_mask;
555	*htt->rx_ring.alloc_idx.vaddr = 0;
556
557	/* Initialize the Rx refill retry timer */
558	setup_timer(timer, ath10k_htt_rx_ring_refill_retry, (unsigned long)htt);
559
560	spin_lock_init(&htt->rx_ring.lock);
561
562	htt->rx_ring.fill_cnt = 0;
563	htt->rx_ring.sw_rd_idx.msdu_payld = 0;
564	hash_init(htt->rx_ring.skb_table);
565
566	tasklet_init(&htt->rx_replenish_task, ath10k_htt_rx_replenish_task,
567		     (unsigned long)htt);
568
569	skb_queue_head_init(&htt->tx_compl_q);
570	skb_queue_head_init(&htt->rx_compl_q);
571	skb_queue_head_init(&htt->rx_in_ord_compl_q);
572
573	tasklet_init(&htt->txrx_compl_task, ath10k_htt_txrx_compl_task,
574		     (unsigned long)htt);
575
576	ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n",
577		   htt->rx_ring.size, htt->rx_ring.fill_level);
578	return 0;
579
580err_dma_idx:
581	dma_free_coherent(htt->ar->dev,
582			  (htt->rx_ring.size *
583			   sizeof(htt->rx_ring.paddrs_ring)),
584			  htt->rx_ring.paddrs_ring,
585			  htt->rx_ring.base_paddr);
586err_dma_ring:
587	kfree(htt->rx_ring.netbufs_ring);
588err_netbuf:
589	return -ENOMEM;
590}
591
592static int ath10k_htt_rx_crypto_param_len(struct ath10k *ar,
593					  enum htt_rx_mpdu_encrypt_type type)
594{
595	switch (type) {
596	case HTT_RX_MPDU_ENCRYPT_NONE:
597		return 0;
598	case HTT_RX_MPDU_ENCRYPT_WEP40:
599	case HTT_RX_MPDU_ENCRYPT_WEP104:
600		return IEEE80211_WEP_IV_LEN;
601	case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
602	case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
603		return IEEE80211_TKIP_IV_LEN;
604	case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
605		return IEEE80211_CCMP_HDR_LEN;
606	case HTT_RX_MPDU_ENCRYPT_WEP128:
607	case HTT_RX_MPDU_ENCRYPT_WAPI:
608		break;
609	}
610
611	ath10k_warn(ar, "unsupported encryption type %d\n", type);
612	return 0;
613}
614
615#define MICHAEL_MIC_LEN 8
616
617static int ath10k_htt_rx_crypto_tail_len(struct ath10k *ar,
618					 enum htt_rx_mpdu_encrypt_type type)
619{
620	switch (type) {
621	case HTT_RX_MPDU_ENCRYPT_NONE:
622		return 0;
623	case HTT_RX_MPDU_ENCRYPT_WEP40:
624	case HTT_RX_MPDU_ENCRYPT_WEP104:
625		return IEEE80211_WEP_ICV_LEN;
626	case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
627	case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
628		return IEEE80211_TKIP_ICV_LEN;
629	case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
630		return IEEE80211_CCMP_MIC_LEN;
631	case HTT_RX_MPDU_ENCRYPT_WEP128:
632	case HTT_RX_MPDU_ENCRYPT_WAPI:
633		break;
634	}
635
636	ath10k_warn(ar, "unsupported encryption type %d\n", type);
637	return 0;
638}
639
640struct rfc1042_hdr {
641	u8 llc_dsap;
642	u8 llc_ssap;
643	u8 llc_ctrl;
644	u8 snap_oui[3];
645	__be16 snap_type;
646} __packed;
647
648struct amsdu_subframe_hdr {
649	u8 dst[ETH_ALEN];
650	u8 src[ETH_ALEN];
651	__be16 len;
652} __packed;
653
654static const u8 rx_legacy_rate_idx[] = {
655	3,	/* 0x00  - 11Mbps  */
656	2,	/* 0x01  - 5.5Mbps */
657	1,	/* 0x02  - 2Mbps   */
658	0,	/* 0x03  - 1Mbps   */
659	3,	/* 0x04  - 11Mbps  */
660	2,	/* 0x05  - 5.5Mbps */
661	1,	/* 0x06  - 2Mbps   */
662	0,	/* 0x07  - 1Mbps   */
663	10,	/* 0x08  - 48Mbps  */
664	8,	/* 0x09  - 24Mbps  */
665	6,	/* 0x0A  - 12Mbps  */
666	4,	/* 0x0B  - 6Mbps   */
667	11,	/* 0x0C  - 54Mbps  */
668	9,	/* 0x0D  - 36Mbps  */
669	7,	/* 0x0E  - 18Mbps  */
670	5,	/* 0x0F  - 9Mbps   */
671};
672
673static void ath10k_htt_rx_h_rates(struct ath10k *ar,
674				  struct ieee80211_rx_status *status,
675				  struct htt_rx_desc *rxd)
676{
677	enum ieee80211_band band;
678	u8 cck, rate, rate_idx, bw, sgi, mcs, nss;
679	u8 preamble = 0;
680	u32 info1, info2, info3;
681
682	/* Band value can't be set as undefined but freq can be 0 - use that to
683	 * determine whether band is provided.
684	 *
685	 * FIXME: Perhaps this can go away if CCK rate reporting is a little
686	 * reworked?
687	 */
688	if (!status->freq)
689		return;
690
691	band = status->band;
692	info1 = __le32_to_cpu(rxd->ppdu_start.info1);
693	info2 = __le32_to_cpu(rxd->ppdu_start.info2);
694	info3 = __le32_to_cpu(rxd->ppdu_start.info3);
695
696	preamble = MS(info1, RX_PPDU_START_INFO1_PREAMBLE_TYPE);
697
698	switch (preamble) {
699	case HTT_RX_LEGACY:
700		cck = info1 & RX_PPDU_START_INFO1_L_SIG_RATE_SELECT;
701		rate = MS(info1, RX_PPDU_START_INFO1_L_SIG_RATE);
702		rate_idx = 0;
703
704		if (rate < 0x08 || rate > 0x0F)
705			break;
706
707		switch (band) {
708		case IEEE80211_BAND_2GHZ:
709			if (cck)
710				rate &= ~BIT(3);
711			rate_idx = rx_legacy_rate_idx[rate];
712			break;
713		case IEEE80211_BAND_5GHZ:
714			rate_idx = rx_legacy_rate_idx[rate];
715			/* We are using same rate table registering
716			   HW - ath10k_rates[]. In case of 5GHz skip
717			   CCK rates, so -4 here */
718			rate_idx -= 4;
719			break;
720		default:
721			break;
722		}
723
724		status->rate_idx = rate_idx;
725		break;
726	case HTT_RX_HT:
727	case HTT_RX_HT_WITH_TXBF:
728		/* HT-SIG - Table 20-11 in info2 and info3 */
729		mcs = info2 & 0x1F;
730		nss = mcs >> 3;
731		bw = (info2 >> 7) & 1;
732		sgi = (info3 >> 7) & 1;
733
734		status->rate_idx = mcs;
735		status->flag |= RX_FLAG_HT;
736		if (sgi)
737			status->flag |= RX_FLAG_SHORT_GI;
738		if (bw)
739			status->flag |= RX_FLAG_40MHZ;
740		break;
741	case HTT_RX_VHT:
742	case HTT_RX_VHT_WITH_TXBF:
743		/* VHT-SIG-A1 in info2, VHT-SIG-A2 in info3
744		   TODO check this */
745		mcs = (info3 >> 4) & 0x0F;
746		nss = ((info2 >> 10) & 0x07) + 1;
747		bw = info2 & 3;
748		sgi = info3 & 1;
749
750		status->rate_idx = mcs;
751		status->vht_nss = nss;
752
753		if (sgi)
754			status->flag |= RX_FLAG_SHORT_GI;
755
756		switch (bw) {
757		/* 20MHZ */
758		case 0:
759			break;
760		/* 40MHZ */
761		case 1:
762			status->flag |= RX_FLAG_40MHZ;
763			break;
764		/* 80MHZ */
765		case 2:
766			status->vht_flag |= RX_VHT_FLAG_80MHZ;
767		}
768
769		status->flag |= RX_FLAG_VHT;
770		break;
771	default:
772		break;
773	}
774}
775
776static bool ath10k_htt_rx_h_channel(struct ath10k *ar,
777				    struct ieee80211_rx_status *status)
778{
779	struct ieee80211_channel *ch;
780
781	spin_lock_bh(&ar->data_lock);
782	ch = ar->scan_channel;
783	if (!ch)
784		ch = ar->rx_channel;
785	spin_unlock_bh(&ar->data_lock);
786
787	if (!ch)
788		return false;
789
790	status->band = ch->band;
791	status->freq = ch->center_freq;
792
793	return true;
794}
795
796static void ath10k_htt_rx_h_signal(struct ath10k *ar,
797				   struct ieee80211_rx_status *status,
798				   struct htt_rx_desc *rxd)
799{
800	/* FIXME: Get real NF */
801	status->signal = ATH10K_DEFAULT_NOISE_FLOOR +
802			 rxd->ppdu_start.rssi_comb;
803	status->flag &= ~RX_FLAG_NO_SIGNAL_VAL;
804}
805
806static void ath10k_htt_rx_h_mactime(struct ath10k *ar,
807				    struct ieee80211_rx_status *status,
808				    struct htt_rx_desc *rxd)
809{
810	/* FIXME: TSF is known only at the end of PPDU, in the last MPDU. This
811	 * means all prior MSDUs in a PPDU are reported to mac80211 without the
812	 * TSF. Is it worth holding frames until end of PPDU is known?
813	 *
814	 * FIXME: Can we get/compute 64bit TSF?
815	 */
816	status->mactime = __le32_to_cpu(rxd->ppdu_end.common.tsf_timestamp);
817	status->flag |= RX_FLAG_MACTIME_END;
818}
819
820static void ath10k_htt_rx_h_ppdu(struct ath10k *ar,
821				 struct sk_buff_head *amsdu,
822				 struct ieee80211_rx_status *status)
823{
824	struct sk_buff *first;
825	struct htt_rx_desc *rxd;
826	bool is_first_ppdu;
827	bool is_last_ppdu;
828
829	if (skb_queue_empty(amsdu))
830		return;
831
832	first = skb_peek(amsdu);
833	rxd = (void *)first->data - sizeof(*rxd);
834
835	is_first_ppdu = !!(rxd->attention.flags &
836			   __cpu_to_le32(RX_ATTENTION_FLAGS_FIRST_MPDU));
837	is_last_ppdu = !!(rxd->attention.flags &
838			  __cpu_to_le32(RX_ATTENTION_FLAGS_LAST_MPDU));
839
840	if (is_first_ppdu) {
841		/* New PPDU starts so clear out the old per-PPDU status. */
842		status->freq = 0;
843		status->rate_idx = 0;
844		status->vht_nss = 0;
845		status->vht_flag &= ~RX_VHT_FLAG_80MHZ;
846		status->flag &= ~(RX_FLAG_HT |
847				  RX_FLAG_VHT |
848				  RX_FLAG_SHORT_GI |
849				  RX_FLAG_40MHZ |
850				  RX_FLAG_MACTIME_END);
851		status->flag |= RX_FLAG_NO_SIGNAL_VAL;
852
853		ath10k_htt_rx_h_signal(ar, status, rxd);
854		ath10k_htt_rx_h_channel(ar, status);
855		ath10k_htt_rx_h_rates(ar, status, rxd);
856	}
857
858	if (is_last_ppdu)
859		ath10k_htt_rx_h_mactime(ar, status, rxd);
860}
861
862static const char * const tid_to_ac[] = {
863	"BE",
864	"BK",
865	"BK",
866	"BE",
867	"VI",
868	"VI",
869	"VO",
870	"VO",
871};
872
873static char *ath10k_get_tid(struct ieee80211_hdr *hdr, char *out, size_t size)
874{
875	u8 *qc;
876	int tid;
877
878	if (!ieee80211_is_data_qos(hdr->frame_control))
879		return "";
880
881	qc = ieee80211_get_qos_ctl(hdr);
882	tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
883	if (tid < 8)
884		snprintf(out, size, "tid %d (%s)", tid, tid_to_ac[tid]);
885	else
886		snprintf(out, size, "tid %d", tid);
887
888	return out;
889}
890
891static void ath10k_process_rx(struct ath10k *ar,
892			      struct ieee80211_rx_status *rx_status,
893			      struct sk_buff *skb)
894{
895	struct ieee80211_rx_status *status;
896	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
897	char tid[32];
898
899	status = IEEE80211_SKB_RXCB(skb);
900	*status = *rx_status;
901
902	ath10k_dbg(ar, ATH10K_DBG_DATA,
903		   "rx skb %p len %u peer %pM %s %s sn %u %s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%x fcs-err %i mic-err %i amsdu-more %i\n",
904		   skb,
905		   skb->len,
906		   ieee80211_get_SA(hdr),
907		   ath10k_get_tid(hdr, tid, sizeof(tid)),
908		   is_multicast_ether_addr(ieee80211_get_DA(hdr)) ?
909							"mcast" : "ucast",
910		   (__le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4,
911		   status->flag == 0 ? "legacy" : "",
912		   status->flag & RX_FLAG_HT ? "ht" : "",
913		   status->flag & RX_FLAG_VHT ? "vht" : "",
914		   status->flag & RX_FLAG_40MHZ ? "40" : "",
915		   status->vht_flag & RX_VHT_FLAG_80MHZ ? "80" : "",
916		   status->flag & RX_FLAG_SHORT_GI ? "sgi " : "",
917		   status->rate_idx,
918		   status->vht_nss,
919		   status->freq,
920		   status->band, status->flag,
921		   !!(status->flag & RX_FLAG_FAILED_FCS_CRC),
922		   !!(status->flag & RX_FLAG_MMIC_ERROR),
923		   !!(status->flag & RX_FLAG_AMSDU_MORE));
924	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ",
925			skb->data, skb->len);
926	trace_ath10k_rx_hdr(ar, skb->data, skb->len);
927	trace_ath10k_rx_payload(ar, skb->data, skb->len);
928
929	ieee80211_rx(ar->hw, skb);
930}
931
932static int ath10k_htt_rx_nwifi_hdrlen(struct ieee80211_hdr *hdr)
933{
934	/* nwifi header is padded to 4 bytes. this fixes 4addr rx */
935	return round_up(ieee80211_hdrlen(hdr->frame_control), 4);
936}
937
938static void ath10k_htt_rx_h_undecap_raw(struct ath10k *ar,
939					struct sk_buff *msdu,
940					struct ieee80211_rx_status *status,
941					enum htt_rx_mpdu_encrypt_type enctype,
942					bool is_decrypted)
943{
944	struct ieee80211_hdr *hdr;
945	struct htt_rx_desc *rxd;
946	size_t hdr_len;
947	size_t crypto_len;
948	bool is_first;
949	bool is_last;
950
951	rxd = (void *)msdu->data - sizeof(*rxd);
952	is_first = !!(rxd->msdu_end.info0 &
953		      __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
954	is_last = !!(rxd->msdu_end.info0 &
955		     __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
956
957	/* Delivered decapped frame:
958	 * [802.11 header]
959	 * [crypto param] <-- can be trimmed if !fcs_err &&
960	 *                    !decrypt_err && !peer_idx_invalid
961	 * [amsdu header] <-- only if A-MSDU
962	 * [rfc1042/llc]
963	 * [payload]
964	 * [FCS] <-- at end, needs to be trimmed
965	 */
966
967	/* This probably shouldn't happen but warn just in case */
968	if (unlikely(WARN_ON_ONCE(!is_first)))
969		return;
970
971	/* This probably shouldn't happen but warn just in case */
972	if (unlikely(WARN_ON_ONCE(!(is_first && is_last))))
973		return;
974
975	skb_trim(msdu, msdu->len - FCS_LEN);
976
977	/* In most cases this will be true for sniffed frames. It makes sense
978	 * to deliver them as-is without stripping the crypto param. This would
979	 * also make sense for software based decryption (which is not
980	 * implemented in ath10k).
981	 *
982	 * If there's no error then the frame is decrypted. At least that is
983	 * the case for frames that come in via fragmented rx indication.
984	 */
985	if (!is_decrypted)
986		return;
987
988	/* The payload is decrypted so strip crypto params. Start from tail
989	 * since hdr is used to compute some stuff.
990	 */
991
992	hdr = (void *)msdu->data;
993
994	/* Tail */
995	skb_trim(msdu, msdu->len - ath10k_htt_rx_crypto_tail_len(ar, enctype));
996
997	/* MMIC */
998	if (!ieee80211_has_morefrags(hdr->frame_control) &&
999	    enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA)
1000		skb_trim(msdu, msdu->len - 8);
1001
1002	/* Head */
1003	hdr_len = ieee80211_hdrlen(hdr->frame_control);
1004	crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1005
1006	memmove((void *)msdu->data + crypto_len,
1007		(void *)msdu->data, hdr_len);
1008	skb_pull(msdu, crypto_len);
1009}
1010
1011static void ath10k_htt_rx_h_undecap_nwifi(struct ath10k *ar,
1012					  struct sk_buff *msdu,
1013					  struct ieee80211_rx_status *status,
1014					  const u8 first_hdr[64])
1015{
1016	struct ieee80211_hdr *hdr;
1017	size_t hdr_len;
1018	u8 da[ETH_ALEN];
1019	u8 sa[ETH_ALEN];
1020
1021	/* Delivered decapped frame:
1022	 * [nwifi 802.11 header] <-- replaced with 802.11 hdr
1023	 * [rfc1042/llc]
1024	 *
1025	 * Note: The nwifi header doesn't have QoS Control and is
1026	 * (always?) a 3addr frame.
1027	 *
1028	 * Note2: There's no A-MSDU subframe header. Even if it's part
1029	 * of an A-MSDU.
1030	 */
1031
1032	/* pull decapped header and copy SA & DA */
1033	hdr = (struct ieee80211_hdr *)msdu->data;
1034	hdr_len = ath10k_htt_rx_nwifi_hdrlen(hdr);
1035	ether_addr_copy(da, ieee80211_get_DA(hdr));
1036	ether_addr_copy(sa, ieee80211_get_SA(hdr));
1037	skb_pull(msdu, hdr_len);
1038
1039	/* push original 802.11 header */
1040	hdr = (struct ieee80211_hdr *)first_hdr;
1041	hdr_len = ieee80211_hdrlen(hdr->frame_control);
1042	memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1043
1044	/* original 802.11 header has a different DA and in
1045	 * case of 4addr it may also have different SA
1046	 */
1047	hdr = (struct ieee80211_hdr *)msdu->data;
1048	ether_addr_copy(ieee80211_get_DA(hdr), da);
1049	ether_addr_copy(ieee80211_get_SA(hdr), sa);
1050}
1051
1052static void *ath10k_htt_rx_h_find_rfc1042(struct ath10k *ar,
1053					  struct sk_buff *msdu,
1054					  enum htt_rx_mpdu_encrypt_type enctype)
1055{
1056	struct ieee80211_hdr *hdr;
1057	struct htt_rx_desc *rxd;
1058	size_t hdr_len, crypto_len;
1059	void *rfc1042;
1060	bool is_first, is_last, is_amsdu;
1061
1062	rxd = (void *)msdu->data - sizeof(*rxd);
1063	hdr = (void *)rxd->rx_hdr_status;
1064
1065	is_first = !!(rxd->msdu_end.info0 &
1066		      __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
1067	is_last = !!(rxd->msdu_end.info0 &
1068		     __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
1069	is_amsdu = !(is_first && is_last);
1070
1071	rfc1042 = hdr;
1072
1073	if (is_first) {
1074		hdr_len = ieee80211_hdrlen(hdr->frame_control);
1075		crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1076
1077		rfc1042 += round_up(hdr_len, 4) +
1078			   round_up(crypto_len, 4);
1079	}
1080
1081	if (is_amsdu)
1082		rfc1042 += sizeof(struct amsdu_subframe_hdr);
1083
1084	return rfc1042;
1085}
1086
1087static void ath10k_htt_rx_h_undecap_eth(struct ath10k *ar,
1088					struct sk_buff *msdu,
1089					struct ieee80211_rx_status *status,
1090					const u8 first_hdr[64],
1091					enum htt_rx_mpdu_encrypt_type enctype)
1092{
1093	struct ieee80211_hdr *hdr;
1094	struct ethhdr *eth;
1095	size_t hdr_len;
1096	void *rfc1042;
1097	u8 da[ETH_ALEN];
1098	u8 sa[ETH_ALEN];
1099
1100	/* Delivered decapped frame:
1101	 * [eth header] <-- replaced with 802.11 hdr & rfc1042/llc
1102	 * [payload]
1103	 */
1104
1105	rfc1042 = ath10k_htt_rx_h_find_rfc1042(ar, msdu, enctype);
1106	if (WARN_ON_ONCE(!rfc1042))
1107		return;
1108
1109	/* pull decapped header and copy SA & DA */
1110	eth = (struct ethhdr *)msdu->data;
1111	ether_addr_copy(da, eth->h_dest);
1112	ether_addr_copy(sa, eth->h_source);
1113	skb_pull(msdu, sizeof(struct ethhdr));
1114
1115	/* push rfc1042/llc/snap */
1116	memcpy(skb_push(msdu, sizeof(struct rfc1042_hdr)), rfc1042,
1117	       sizeof(struct rfc1042_hdr));
1118
1119	/* push original 802.11 header */
1120	hdr = (struct ieee80211_hdr *)first_hdr;
1121	hdr_len = ieee80211_hdrlen(hdr->frame_control);
1122	memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1123
1124	/* original 802.11 header has a different DA and in
1125	 * case of 4addr it may also have different SA
1126	 */
1127	hdr = (struct ieee80211_hdr *)msdu->data;
1128	ether_addr_copy(ieee80211_get_DA(hdr), da);
1129	ether_addr_copy(ieee80211_get_SA(hdr), sa);
1130}
1131
1132static void ath10k_htt_rx_h_undecap_snap(struct ath10k *ar,
1133					 struct sk_buff *msdu,
1134					 struct ieee80211_rx_status *status,
1135					 const u8 first_hdr[64])
1136{
1137	struct ieee80211_hdr *hdr;
1138	size_t hdr_len;
1139
1140	/* Delivered decapped frame:
1141	 * [amsdu header] <-- replaced with 802.11 hdr
1142	 * [rfc1042/llc]
1143	 * [payload]
1144	 */
1145
1146	skb_pull(msdu, sizeof(struct amsdu_subframe_hdr));
1147
1148	hdr = (struct ieee80211_hdr *)first_hdr;
1149	hdr_len = ieee80211_hdrlen(hdr->frame_control);
1150	memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1151}
1152
1153static void ath10k_htt_rx_h_undecap(struct ath10k *ar,
1154				    struct sk_buff *msdu,
1155				    struct ieee80211_rx_status *status,
1156				    u8 first_hdr[64],
1157				    enum htt_rx_mpdu_encrypt_type enctype,
1158				    bool is_decrypted)
1159{
1160	struct htt_rx_desc *rxd;
1161	enum rx_msdu_decap_format decap;
1162	struct ieee80211_hdr *hdr;
1163
1164	/* First msdu's decapped header:
1165	 * [802.11 header] <-- padded to 4 bytes long
1166	 * [crypto param] <-- padded to 4 bytes long
1167	 * [amsdu header] <-- only if A-MSDU
1168	 * [rfc1042/llc]
1169	 *
1170	 * Other (2nd, 3rd, ..) msdu's decapped header:
1171	 * [amsdu header] <-- only if A-MSDU
1172	 * [rfc1042/llc]
1173	 */
1174
1175	rxd = (void *)msdu->data - sizeof(*rxd);
1176	hdr = (void *)rxd->rx_hdr_status;
1177	decap = MS(__le32_to_cpu(rxd->msdu_start.info1),
1178		   RX_MSDU_START_INFO1_DECAP_FORMAT);
1179
1180	switch (decap) {
1181	case RX_MSDU_DECAP_RAW:
1182		ath10k_htt_rx_h_undecap_raw(ar, msdu, status, enctype,
1183					    is_decrypted);
1184		break;
1185	case RX_MSDU_DECAP_NATIVE_WIFI:
1186		ath10k_htt_rx_h_undecap_nwifi(ar, msdu, status, first_hdr);
1187		break;
1188	case RX_MSDU_DECAP_ETHERNET2_DIX:
1189		ath10k_htt_rx_h_undecap_eth(ar, msdu, status, first_hdr, enctype);
1190		break;
1191	case RX_MSDU_DECAP_8023_SNAP_LLC:
1192		ath10k_htt_rx_h_undecap_snap(ar, msdu, status, first_hdr);
1193		break;
1194	}
1195}
1196
1197static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb)
1198{
1199	struct htt_rx_desc *rxd;
1200	u32 flags, info;
1201	bool is_ip4, is_ip6;
1202	bool is_tcp, is_udp;
1203	bool ip_csum_ok, tcpudp_csum_ok;
1204
1205	rxd = (void *)skb->data - sizeof(*rxd);
1206	flags = __le32_to_cpu(rxd->attention.flags);
1207	info = __le32_to_cpu(rxd->msdu_start.info1);
1208
1209	is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO);
1210	is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO);
1211	is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO);
1212	is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO);
1213	ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL);
1214	tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL);
1215
1216	if (!is_ip4 && !is_ip6)
1217		return CHECKSUM_NONE;
1218	if (!is_tcp && !is_udp)
1219		return CHECKSUM_NONE;
1220	if (!ip_csum_ok)
1221		return CHECKSUM_NONE;
1222	if (!tcpudp_csum_ok)
1223		return CHECKSUM_NONE;
1224
1225	return CHECKSUM_UNNECESSARY;
1226}
1227
1228static void ath10k_htt_rx_h_csum_offload(struct sk_buff *msdu)
1229{
1230	msdu->ip_summed = ath10k_htt_rx_get_csum_state(msdu);
1231}
1232
1233static void ath10k_htt_rx_h_mpdu(struct ath10k *ar,
1234				 struct sk_buff_head *amsdu,
1235				 struct ieee80211_rx_status *status)
1236{
1237	struct sk_buff *first;
1238	struct sk_buff *last;
1239	struct sk_buff *msdu;
1240	struct htt_rx_desc *rxd;
1241	struct ieee80211_hdr *hdr;
1242	enum htt_rx_mpdu_encrypt_type enctype;
1243	u8 first_hdr[64];
1244	u8 *qos;
1245	size_t hdr_len;
1246	bool has_fcs_err;
1247	bool has_crypto_err;
1248	bool has_tkip_err;
1249	bool has_peer_idx_invalid;
1250	bool is_decrypted;
1251	u32 attention;
1252
1253	if (skb_queue_empty(amsdu))
1254		return;
1255
1256	first = skb_peek(amsdu);
1257	rxd = (void *)first->data - sizeof(*rxd);
1258
1259	enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
1260		     RX_MPDU_START_INFO0_ENCRYPT_TYPE);
1261
1262	/* First MSDU's Rx descriptor in an A-MSDU contains full 802.11
1263	 * decapped header. It'll be used for undecapping of each MSDU.
1264	 */
1265	hdr = (void *)rxd->rx_hdr_status;
1266	hdr_len = ieee80211_hdrlen(hdr->frame_control);
1267	memcpy(first_hdr, hdr, hdr_len);
1268
1269	/* Each A-MSDU subframe will use the original header as the base and be
1270	 * reported as a separate MSDU so strip the A-MSDU bit from QoS Ctl.
1271	 */
1272	hdr = (void *)first_hdr;
1273	qos = ieee80211_get_qos_ctl(hdr);
1274	qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1275
1276	/* Some attention flags are valid only in the last MSDU. */
1277	last = skb_peek_tail(amsdu);
1278	rxd = (void *)last->data - sizeof(*rxd);
1279	attention = __le32_to_cpu(rxd->attention.flags);
1280
1281	has_fcs_err = !!(attention & RX_ATTENTION_FLAGS_FCS_ERR);
1282	has_crypto_err = !!(attention & RX_ATTENTION_FLAGS_DECRYPT_ERR);
1283	has_tkip_err = !!(attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR);
1284	has_peer_idx_invalid = !!(attention & RX_ATTENTION_FLAGS_PEER_IDX_INVALID);
1285
1286	/* Note: If hardware captures an encrypted frame that it can't decrypt,
1287	 * e.g. due to fcs error, missing peer or invalid key data it will
1288	 * report the frame as raw.
1289	 */
1290	is_decrypted = (enctype != HTT_RX_MPDU_ENCRYPT_NONE &&
1291			!has_fcs_err &&
1292			!has_crypto_err &&
1293			!has_peer_idx_invalid);
1294
1295	/* Clear per-MPDU flags while leaving per-PPDU flags intact. */
1296	status->flag &= ~(RX_FLAG_FAILED_FCS_CRC |
1297			  RX_FLAG_MMIC_ERROR |
1298			  RX_FLAG_DECRYPTED |
1299			  RX_FLAG_IV_STRIPPED |
1300			  RX_FLAG_MMIC_STRIPPED);
1301
1302	if (has_fcs_err)
1303		status->flag |= RX_FLAG_FAILED_FCS_CRC;
1304
1305	if (has_tkip_err)
1306		status->flag |= RX_FLAG_MMIC_ERROR;
1307
1308	if (is_decrypted)
1309		status->flag |= RX_FLAG_DECRYPTED |
1310				RX_FLAG_IV_STRIPPED |
1311				RX_FLAG_MMIC_STRIPPED;
1312
1313	skb_queue_walk(amsdu, msdu) {
1314		ath10k_htt_rx_h_csum_offload(msdu);
1315		ath10k_htt_rx_h_undecap(ar, msdu, status, first_hdr, enctype,
1316					is_decrypted);
1317
1318		/* Undecapping involves copying the original 802.11 header back
1319		 * to sk_buff. If frame is protected and hardware has decrypted
1320		 * it then remove the protected bit.
1321		 */
1322		if (!is_decrypted)
1323			continue;
1324
1325		hdr = (void *)msdu->data;
1326		hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1327	}
1328}
1329
1330static void ath10k_htt_rx_h_deliver(struct ath10k *ar,
1331				    struct sk_buff_head *amsdu,
1332				    struct ieee80211_rx_status *status)
1333{
1334	struct sk_buff *msdu;
1335
1336	while ((msdu = __skb_dequeue(amsdu))) {
1337		/* Setup per-MSDU flags */
1338		if (skb_queue_empty(amsdu))
1339			status->flag &= ~RX_FLAG_AMSDU_MORE;
1340		else
1341			status->flag |= RX_FLAG_AMSDU_MORE;
1342
1343		ath10k_process_rx(ar, status, msdu);
1344	}
1345}
1346
1347static int ath10k_unchain_msdu(struct sk_buff_head *amsdu)
1348{
1349	struct sk_buff *skb, *first;
1350	int space;
1351	int total_len = 0;
1352
1353	/* TODO:  Might could optimize this by using
1354	 * skb_try_coalesce or similar method to
1355	 * decrease copying, or maybe get mac80211 to
1356	 * provide a way to just receive a list of
1357	 * skb?
1358	 */
1359
1360	first = __skb_dequeue(amsdu);
1361
1362	/* Allocate total length all at once. */
1363	skb_queue_walk(amsdu, skb)
1364		total_len += skb->len;
1365
1366	space = total_len - skb_tailroom(first);
1367	if ((space > 0) &&
1368	    (pskb_expand_head(first, 0, space, GFP_ATOMIC) < 0)) {
1369		/* TODO:  bump some rx-oom error stat */
1370		/* put it back together so we can free the
1371		 * whole list at once.
1372		 */
1373		__skb_queue_head(amsdu, first);
1374		return -1;
1375	}
1376
1377	/* Walk list again, copying contents into
1378	 * msdu_head
1379	 */
1380	while ((skb = __skb_dequeue(amsdu))) {
1381		skb_copy_from_linear_data(skb, skb_put(first, skb->len),
1382					  skb->len);
1383		dev_kfree_skb_any(skb);
1384	}
1385
1386	__skb_queue_head(amsdu, first);
1387	return 0;
1388}
1389
1390static void ath10k_htt_rx_h_unchain(struct ath10k *ar,
1391				    struct sk_buff_head *amsdu,
1392				    bool chained)
1393{
1394	struct sk_buff *first;
1395	struct htt_rx_desc *rxd;
1396	enum rx_msdu_decap_format decap;
1397
1398	first = skb_peek(amsdu);
1399	rxd = (void *)first->data - sizeof(*rxd);
1400	decap = MS(__le32_to_cpu(rxd->msdu_start.info1),
1401		   RX_MSDU_START_INFO1_DECAP_FORMAT);
1402
1403	if (!chained)
1404		return;
1405
1406	/* FIXME: Current unchaining logic can only handle simple case of raw
1407	 * msdu chaining. If decapping is other than raw the chaining may be
1408	 * more complex and this isn't handled by the current code. Don't even
1409	 * try re-constructing such frames - it'll be pretty much garbage.
1410	 */
1411	if (decap != RX_MSDU_DECAP_RAW ||
1412	    skb_queue_len(amsdu) != 1 + rxd->frag_info.ring2_more_count) {
1413		__skb_queue_purge(amsdu);
1414		return;
1415	}
1416
1417	ath10k_unchain_msdu(amsdu);
1418}
1419
1420static bool ath10k_htt_rx_amsdu_allowed(struct ath10k *ar,
1421					struct sk_buff_head *amsdu,
1422					struct ieee80211_rx_status *rx_status)
1423{
1424	struct sk_buff *msdu;
1425	struct htt_rx_desc *rxd;
1426	bool is_mgmt;
1427	bool has_fcs_err;
1428
1429	msdu = skb_peek(amsdu);
1430	rxd = (void *)msdu->data - sizeof(*rxd);
1431
1432	/* FIXME: It might be a good idea to do some fuzzy-testing to drop
1433	 * invalid/dangerous frames.
1434	 */
1435
1436	if (!rx_status->freq) {
1437		ath10k_warn(ar, "no channel configured; ignoring frame(s)!\n");
1438		return false;
1439	}
1440
1441	is_mgmt = !!(rxd->attention.flags &
1442		     __cpu_to_le32(RX_ATTENTION_FLAGS_MGMT_TYPE));
1443	has_fcs_err = !!(rxd->attention.flags &
1444			 __cpu_to_le32(RX_ATTENTION_FLAGS_FCS_ERR));
1445
1446	/* Management frames are handled via WMI events. The pros of such
1447	 * approach is that channel is explicitly provided in WMI events
1448	 * whereas HTT doesn't provide channel information for Rxed frames.
1449	 *
1450	 * However some firmware revisions don't report corrupted frames via
1451	 * WMI so don't drop them.
1452	 */
1453	if (is_mgmt && !has_fcs_err) {
1454		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx mgmt ctrl\n");
1455		return false;
1456	}
1457
1458	if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) {
1459		ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx cac running\n");
1460		return false;
1461	}
1462
1463	return true;
1464}
1465
1466static void ath10k_htt_rx_h_filter(struct ath10k *ar,
1467				   struct sk_buff_head *amsdu,
1468				   struct ieee80211_rx_status *rx_status)
1469{
1470	if (skb_queue_empty(amsdu))
1471		return;
1472
1473	if (ath10k_htt_rx_amsdu_allowed(ar, amsdu, rx_status))
1474		return;
1475
1476	__skb_queue_purge(amsdu);
1477}
1478
1479static void ath10k_htt_rx_handler(struct ath10k_htt *htt,
1480				  struct htt_rx_indication *rx)
1481{
1482	struct ath10k *ar = htt->ar;
1483	struct ieee80211_rx_status *rx_status = &htt->rx_status;
1484	struct htt_rx_indication_mpdu_range *mpdu_ranges;
1485	struct sk_buff_head amsdu;
1486	int num_mpdu_ranges;
1487	int fw_desc_len;
1488	u8 *fw_desc;
1489	int i, ret, mpdu_count = 0;
1490
1491	lockdep_assert_held(&htt->rx_ring.lock);
1492
1493	if (htt->rx_confused)
1494		return;
1495
1496	fw_desc_len = __le16_to_cpu(rx->prefix.fw_rx_desc_bytes);
1497	fw_desc = (u8 *)&rx->fw_desc;
1498
1499	num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
1500			     HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
1501	mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx);
1502
1503	ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ",
1504			rx, sizeof(*rx) +
1505			(sizeof(struct htt_rx_indication_mpdu_range) *
1506				num_mpdu_ranges));
1507
1508	for (i = 0; i < num_mpdu_ranges; i++)
1509		mpdu_count += mpdu_ranges[i].mpdu_count;
1510
1511	while (mpdu_count--) {
1512		__skb_queue_head_init(&amsdu);
1513		ret = ath10k_htt_rx_amsdu_pop(htt, &fw_desc,
1514					      &fw_desc_len, &amsdu);
1515		if (ret < 0) {
1516			ath10k_warn(ar, "rx ring became corrupted: %d\n", ret);
1517			__skb_queue_purge(&amsdu);
1518			/* FIXME: It's probably a good idea to reboot the
1519			 * device instead of leaving it inoperable.
1520			 */
1521			htt->rx_confused = true;
1522			break;
1523		}
1524
1525		ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status);
1526		ath10k_htt_rx_h_unchain(ar, &amsdu, ret > 0);
1527		ath10k_htt_rx_h_filter(ar, &amsdu, rx_status);
1528		ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status);
1529		ath10k_htt_rx_h_deliver(ar, &amsdu, rx_status);
1530	}
1531
1532	tasklet_schedule(&htt->rx_replenish_task);
1533}
1534
1535static void ath10k_htt_rx_frag_handler(struct ath10k_htt *htt,
1536				       struct htt_rx_fragment_indication *frag)
1537{
1538	struct ath10k *ar = htt->ar;
1539	struct ieee80211_rx_status *rx_status = &htt->rx_status;
1540	struct sk_buff_head amsdu;
1541	int ret;
1542	u8 *fw_desc;
1543	int fw_desc_len;
1544
1545	fw_desc_len = __le16_to_cpu(frag->fw_rx_desc_bytes);
1546	fw_desc = (u8 *)frag->fw_msdu_rx_desc;
1547
1548	__skb_queue_head_init(&amsdu);
1549
1550	spin_lock_bh(&htt->rx_ring.lock);
1551	ret = ath10k_htt_rx_amsdu_pop(htt, &fw_desc, &fw_desc_len,
1552				      &amsdu);
1553	spin_unlock_bh(&htt->rx_ring.lock);
1554
1555	tasklet_schedule(&htt->rx_replenish_task);
1556
1557	ath10k_dbg(ar, ATH10K_DBG_HTT_DUMP, "htt rx frag ahead\n");
1558
1559	if (ret) {
1560		ath10k_warn(ar, "failed to pop amsdu from httr rx ring for fragmented rx %d\n",
1561			    ret);
1562		__skb_queue_purge(&amsdu);
1563		return;
1564	}
1565
1566	if (skb_queue_len(&amsdu) != 1) {
1567		ath10k_warn(ar, "failed to pop frag amsdu: too many msdus\n");
1568		__skb_queue_purge(&amsdu);
1569		return;
1570	}
1571
1572	ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status);
1573	ath10k_htt_rx_h_filter(ar, &amsdu, rx_status);
1574	ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status);
1575	ath10k_htt_rx_h_deliver(ar, &amsdu, rx_status);
1576
1577	if (fw_desc_len > 0) {
1578		ath10k_dbg(ar, ATH10K_DBG_HTT,
1579			   "expecting more fragmented rx in one indication %d\n",
1580			   fw_desc_len);
1581	}
1582}
1583
1584static void ath10k_htt_rx_frm_tx_compl(struct ath10k *ar,
1585				       struct sk_buff *skb)
1586{
1587	struct ath10k_htt *htt = &ar->htt;
1588	struct htt_resp *resp = (struct htt_resp *)skb->data;
1589	struct htt_tx_done tx_done = {};
1590	int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS);
1591	__le16 msdu_id;
1592	int i;
1593
1594	lockdep_assert_held(&htt->tx_lock);
1595
1596	switch (status) {
1597	case HTT_DATA_TX_STATUS_NO_ACK:
1598		tx_done.no_ack = true;
1599		break;
1600	case HTT_DATA_TX_STATUS_OK:
1601		break;
1602	case HTT_DATA_TX_STATUS_DISCARD:
1603	case HTT_DATA_TX_STATUS_POSTPONE:
1604	case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL:
1605		tx_done.discard = true;
1606		break;
1607	default:
1608		ath10k_warn(ar, "unhandled tx completion status %d\n", status);
1609		tx_done.discard = true;
1610		break;
1611	}
1612
1613	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n",
1614		   resp->data_tx_completion.num_msdus);
1615
1616	for (i = 0; i < resp->data_tx_completion.num_msdus; i++) {
1617		msdu_id = resp->data_tx_completion.msdus[i];
1618		tx_done.msdu_id = __le16_to_cpu(msdu_id);
1619		ath10k_txrx_tx_unref(htt, &tx_done);
1620	}
1621}
1622
1623static void ath10k_htt_rx_addba(struct ath10k *ar, struct htt_resp *resp)
1624{
1625	struct htt_rx_addba *ev = &resp->rx_addba;
1626	struct ath10k_peer *peer;
1627	struct ath10k_vif *arvif;
1628	u16 info0, tid, peer_id;
1629
1630	info0 = __le16_to_cpu(ev->info0);
1631	tid = MS(info0, HTT_RX_BA_INFO0_TID);
1632	peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
1633
1634	ath10k_dbg(ar, ATH10K_DBG_HTT,
1635		   "htt rx addba tid %hu peer_id %hu size %hhu\n",
1636		   tid, peer_id, ev->window_size);
1637
1638	spin_lock_bh(&ar->data_lock);
1639	peer = ath10k_peer_find_by_id(ar, peer_id);
1640	if (!peer) {
1641		ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
1642			    peer_id);
1643		spin_unlock_bh(&ar->data_lock);
1644		return;
1645	}
1646
1647	arvif = ath10k_get_arvif(ar, peer->vdev_id);
1648	if (!arvif) {
1649		ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
1650			    peer->vdev_id);
1651		spin_unlock_bh(&ar->data_lock);
1652		return;
1653	}
1654
1655	ath10k_dbg(ar, ATH10K_DBG_HTT,
1656		   "htt rx start rx ba session sta %pM tid %hu size %hhu\n",
1657		   peer->addr, tid, ev->window_size);
1658
1659	ieee80211_start_rx_ba_session_offl(arvif->vif, peer->addr, tid);
1660	spin_unlock_bh(&ar->data_lock);
1661}
1662
1663static void ath10k_htt_rx_delba(struct ath10k *ar, struct htt_resp *resp)
1664{
1665	struct htt_rx_delba *ev = &resp->rx_delba;
1666	struct ath10k_peer *peer;
1667	struct ath10k_vif *arvif;
1668	u16 info0, tid, peer_id;
1669
1670	info0 = __le16_to_cpu(ev->info0);
1671	tid = MS(info0, HTT_RX_BA_INFO0_TID);
1672	peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
1673
1674	ath10k_dbg(ar, ATH10K_DBG_HTT,
1675		   "htt rx delba tid %hu peer_id %hu\n",
1676		   tid, peer_id);
1677
1678	spin_lock_bh(&ar->data_lock);
1679	peer = ath10k_peer_find_by_id(ar, peer_id);
1680	if (!peer) {
1681		ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
1682			    peer_id);
1683		spin_unlock_bh(&ar->data_lock);
1684		return;
1685	}
1686
1687	arvif = ath10k_get_arvif(ar, peer->vdev_id);
1688	if (!arvif) {
1689		ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
1690			    peer->vdev_id);
1691		spin_unlock_bh(&ar->data_lock);
1692		return;
1693	}
1694
1695	ath10k_dbg(ar, ATH10K_DBG_HTT,
1696		   "htt rx stop rx ba session sta %pM tid %hu\n",
1697		   peer->addr, tid);
1698
1699	ieee80211_stop_rx_ba_session_offl(arvif->vif, peer->addr, tid);
1700	spin_unlock_bh(&ar->data_lock);
1701}
1702
1703static int ath10k_htt_rx_extract_amsdu(struct sk_buff_head *list,
1704				       struct sk_buff_head *amsdu)
1705{
1706	struct sk_buff *msdu;
1707	struct htt_rx_desc *rxd;
1708
1709	if (skb_queue_empty(list))
1710		return -ENOBUFS;
1711
1712	if (WARN_ON(!skb_queue_empty(amsdu)))
1713		return -EINVAL;
1714
1715	while ((msdu = __skb_dequeue(list))) {
1716		__skb_queue_tail(amsdu, msdu);
1717
1718		rxd = (void *)msdu->data - sizeof(*rxd);
1719		if (rxd->msdu_end.info0 &
1720		    __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))
1721			break;
1722	}
1723
1724	msdu = skb_peek_tail(amsdu);
1725	rxd = (void *)msdu->data - sizeof(*rxd);
1726	if (!(rxd->msdu_end.info0 &
1727	      __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))) {
1728		skb_queue_splice_init(amsdu, list);
1729		return -EAGAIN;
1730	}
1731
1732	return 0;
1733}
1734
1735static void ath10k_htt_rx_h_rx_offload_prot(struct ieee80211_rx_status *status,
1736					    struct sk_buff *skb)
1737{
1738	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1739
1740	if (!ieee80211_has_protected(hdr->frame_control))
1741		return;
1742
1743	/* Offloaded frames are already decrypted but firmware insists they are
1744	 * protected in the 802.11 header. Strip the flag.  Otherwise mac80211
1745	 * will drop the frame.
1746	 */
1747
1748	hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1749	status->flag |= RX_FLAG_DECRYPTED |
1750			RX_FLAG_IV_STRIPPED |
1751			RX_FLAG_MMIC_STRIPPED;
1752}
1753
1754static void ath10k_htt_rx_h_rx_offload(struct ath10k *ar,
1755				       struct sk_buff_head *list)
1756{
1757	struct ath10k_htt *htt = &ar->htt;
1758	struct ieee80211_rx_status *status = &htt->rx_status;
1759	struct htt_rx_offload_msdu *rx;
1760	struct sk_buff *msdu;
1761	size_t offset;
1762
1763	while ((msdu = __skb_dequeue(list))) {
1764		/* Offloaded frames don't have Rx descriptor. Instead they have
1765		 * a short meta information header.
1766		 */
1767
1768		rx = (void *)msdu->data;
1769
1770		skb_put(msdu, sizeof(*rx));
1771		skb_pull(msdu, sizeof(*rx));
1772
1773		if (skb_tailroom(msdu) < __le16_to_cpu(rx->msdu_len)) {
1774			ath10k_warn(ar, "dropping frame: offloaded rx msdu is too long!\n");
1775			dev_kfree_skb_any(msdu);
1776			continue;
1777		}
1778
1779		skb_put(msdu, __le16_to_cpu(rx->msdu_len));
1780
1781		/* Offloaded rx header length isn't multiple of 2 nor 4 so the
1782		 * actual payload is unaligned. Align the frame.  Otherwise
1783		 * mac80211 complains.  This shouldn't reduce performance much
1784		 * because these offloaded frames are rare.
1785		 */
1786		offset = 4 - ((unsigned long)msdu->data & 3);
1787		skb_put(msdu, offset);
1788		memmove(msdu->data + offset, msdu->data, msdu->len);
1789		skb_pull(msdu, offset);
1790
1791		/* FIXME: The frame is NWifi. Re-construct QoS Control
1792		 * if possible later.
1793		 */
1794
1795		memset(status, 0, sizeof(*status));
1796		status->flag |= RX_FLAG_NO_SIGNAL_VAL;
1797
1798		ath10k_htt_rx_h_rx_offload_prot(status, msdu);
1799		ath10k_htt_rx_h_channel(ar, status);
1800		ath10k_process_rx(ar, status, msdu);
1801	}
1802}
1803
1804static void ath10k_htt_rx_in_ord_ind(struct ath10k *ar, struct sk_buff *skb)
1805{
1806	struct ath10k_htt *htt = &ar->htt;
1807	struct htt_resp *resp = (void *)skb->data;
1808	struct ieee80211_rx_status *status = &htt->rx_status;
1809	struct sk_buff_head list;
1810	struct sk_buff_head amsdu;
1811	u16 peer_id;
1812	u16 msdu_count;
1813	u8 vdev_id;
1814	u8 tid;
1815	bool offload;
1816	bool frag;
1817	int ret;
1818
1819	lockdep_assert_held(&htt->rx_ring.lock);
1820
1821	if (htt->rx_confused)
1822		return;
1823
1824	skb_pull(skb, sizeof(resp->hdr));
1825	skb_pull(skb, sizeof(resp->rx_in_ord_ind));
1826
1827	peer_id = __le16_to_cpu(resp->rx_in_ord_ind.peer_id);
1828	msdu_count = __le16_to_cpu(resp->rx_in_ord_ind.msdu_count);
1829	vdev_id = resp->rx_in_ord_ind.vdev_id;
1830	tid = SM(resp->rx_in_ord_ind.info, HTT_RX_IN_ORD_IND_INFO_TID);
1831	offload = !!(resp->rx_in_ord_ind.info &
1832			HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
1833	frag = !!(resp->rx_in_ord_ind.info & HTT_RX_IN_ORD_IND_INFO_FRAG_MASK);
1834
1835	ath10k_dbg(ar, ATH10K_DBG_HTT,
1836		   "htt rx in ord vdev %i peer %i tid %i offload %i frag %i msdu count %i\n",
1837		   vdev_id, peer_id, tid, offload, frag, msdu_count);
1838
1839	if (skb->len < msdu_count * sizeof(*resp->rx_in_ord_ind.msdu_descs)) {
1840		ath10k_warn(ar, "dropping invalid in order rx indication\n");
1841		return;
1842	}
1843
1844	/* The event can deliver more than 1 A-MSDU. Each A-MSDU is later
1845	 * extracted and processed.
1846	 */
1847	__skb_queue_head_init(&list);
1848	ret = ath10k_htt_rx_pop_paddr_list(htt, &resp->rx_in_ord_ind, &list);
1849	if (ret < 0) {
1850		ath10k_warn(ar, "failed to pop paddr list: %d\n", ret);
1851		htt->rx_confused = true;
1852		return;
1853	}
1854
1855	/* Offloaded frames are very different and need to be handled
1856	 * separately.
1857	 */
1858	if (offload)
1859		ath10k_htt_rx_h_rx_offload(ar, &list);
1860
1861	while (!skb_queue_empty(&list)) {
1862		__skb_queue_head_init(&amsdu);
1863		ret = ath10k_htt_rx_extract_amsdu(&list, &amsdu);
1864		switch (ret) {
1865		case 0:
1866			/* Note: The in-order indication may report interleaved
1867			 * frames from different PPDUs meaning reported rx rate
1868			 * to mac80211 isn't accurate/reliable. It's still
1869			 * better to report something than nothing though. This
1870			 * should still give an idea about rx rate to the user.
1871			 */
1872			ath10k_htt_rx_h_ppdu(ar, &amsdu, status);
1873			ath10k_htt_rx_h_filter(ar, &amsdu, status);
1874			ath10k_htt_rx_h_mpdu(ar, &amsdu, status);
1875			ath10k_htt_rx_h_deliver(ar, &amsdu, status);
1876			break;
1877		case -EAGAIN:
1878			/* fall through */
1879		default:
1880			/* Should not happen. */
1881			ath10k_warn(ar, "failed to extract amsdu: %d\n", ret);
1882			htt->rx_confused = true;
1883			__skb_queue_purge(&list);
1884			return;
1885		}
1886	}
1887
1888	tasklet_schedule(&htt->rx_replenish_task);
1889}
1890
1891void ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
1892{
1893	struct ath10k_htt *htt = &ar->htt;
1894	struct htt_resp *resp = (struct htt_resp *)skb->data;
1895
1896	/* confirm alignment */
1897	if (!IS_ALIGNED((unsigned long)skb->data, 4))
1898		ath10k_warn(ar, "unaligned htt message, expect trouble\n");
1899
1900	ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n",
1901		   resp->hdr.msg_type);
1902	switch (resp->hdr.msg_type) {
1903	case HTT_T2H_MSG_TYPE_VERSION_CONF: {
1904		htt->target_version_major = resp->ver_resp.major;
1905		htt->target_version_minor = resp->ver_resp.minor;
1906		complete(&htt->target_version_received);
1907		break;
1908	}
1909	case HTT_T2H_MSG_TYPE_RX_IND:
1910		spin_lock_bh(&htt->rx_ring.lock);
1911		__skb_queue_tail(&htt->rx_compl_q, skb);
1912		spin_unlock_bh(&htt->rx_ring.lock);
1913		tasklet_schedule(&htt->txrx_compl_task);
1914		return;
1915	case HTT_T2H_MSG_TYPE_PEER_MAP: {
1916		struct htt_peer_map_event ev = {
1917			.vdev_id = resp->peer_map.vdev_id,
1918			.peer_id = __le16_to_cpu(resp->peer_map.peer_id),
1919		};
1920		memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr));
1921		ath10k_peer_map_event(htt, &ev);
1922		break;
1923	}
1924	case HTT_T2H_MSG_TYPE_PEER_UNMAP: {
1925		struct htt_peer_unmap_event ev = {
1926			.peer_id = __le16_to_cpu(resp->peer_unmap.peer_id),
1927		};
1928		ath10k_peer_unmap_event(htt, &ev);
1929		break;
1930	}
1931	case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: {
1932		struct htt_tx_done tx_done = {};
1933		int status = __le32_to_cpu(resp->mgmt_tx_completion.status);
1934
1935		tx_done.msdu_id =
1936			__le32_to_cpu(resp->mgmt_tx_completion.desc_id);
1937
1938		switch (status) {
1939		case HTT_MGMT_TX_STATUS_OK:
1940			break;
1941		case HTT_MGMT_TX_STATUS_RETRY:
1942			tx_done.no_ack = true;
1943			break;
1944		case HTT_MGMT_TX_STATUS_DROP:
1945			tx_done.discard = true;
1946			break;
1947		}
1948
1949		spin_lock_bh(&htt->tx_lock);
1950		ath10k_txrx_tx_unref(htt, &tx_done);
1951		spin_unlock_bh(&htt->tx_lock);
1952		break;
1953	}
1954	case HTT_T2H_MSG_TYPE_TX_COMPL_IND:
1955		spin_lock_bh(&htt->tx_lock);
1956		__skb_queue_tail(&htt->tx_compl_q, skb);
1957		spin_unlock_bh(&htt->tx_lock);
1958		tasklet_schedule(&htt->txrx_compl_task);
1959		return;
1960	case HTT_T2H_MSG_TYPE_SEC_IND: {
1961		struct ath10k *ar = htt->ar;
1962		struct htt_security_indication *ev = &resp->security_indication;
1963
1964		ath10k_dbg(ar, ATH10K_DBG_HTT,
1965			   "sec ind peer_id %d unicast %d type %d\n",
1966			  __le16_to_cpu(ev->peer_id),
1967			  !!(ev->flags & HTT_SECURITY_IS_UNICAST),
1968			  MS(ev->flags, HTT_SECURITY_TYPE));
1969		complete(&ar->install_key_done);
1970		break;
1971	}
1972	case HTT_T2H_MSG_TYPE_RX_FRAG_IND: {
1973		ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
1974				skb->data, skb->len);
1975		ath10k_htt_rx_frag_handler(htt, &resp->rx_frag_ind);
1976		break;
1977	}
1978	case HTT_T2H_MSG_TYPE_TEST:
1979		/* FIX THIS */
1980		break;
1981	case HTT_T2H_MSG_TYPE_STATS_CONF:
1982		trace_ath10k_htt_stats(ar, skb->data, skb->len);
1983		break;
1984	case HTT_T2H_MSG_TYPE_TX_INSPECT_IND:
1985		/* Firmware can return tx frames if it's unable to fully
1986		 * process them and suspects host may be able to fix it. ath10k
1987		 * sends all tx frames as already inspected so this shouldn't
1988		 * happen unless fw has a bug.
1989		 */
1990		ath10k_warn(ar, "received an unexpected htt tx inspect event\n");
1991		break;
1992	case HTT_T2H_MSG_TYPE_RX_ADDBA:
1993		ath10k_htt_rx_addba(ar, resp);
1994		break;
1995	case HTT_T2H_MSG_TYPE_RX_DELBA:
1996		ath10k_htt_rx_delba(ar, resp);
1997		break;
1998	case HTT_T2H_MSG_TYPE_PKTLOG: {
1999		struct ath10k_pktlog_hdr *hdr =
2000			(struct ath10k_pktlog_hdr *)resp->pktlog_msg.payload;
2001
2002		trace_ath10k_htt_pktlog(ar, resp->pktlog_msg.payload,
2003					sizeof(*hdr) +
2004					__le16_to_cpu(hdr->size));
2005		break;
2006	}
2007	case HTT_T2H_MSG_TYPE_RX_FLUSH: {
2008		/* Ignore this event because mac80211 takes care of Rx
2009		 * aggregation reordering.
2010		 */
2011		break;
2012	}
2013	case HTT_T2H_MSG_TYPE_RX_IN_ORD_PADDR_IND: {
2014		spin_lock_bh(&htt->rx_ring.lock);
2015		__skb_queue_tail(&htt->rx_in_ord_compl_q, skb);
2016		spin_unlock_bh(&htt->rx_ring.lock);
2017		tasklet_schedule(&htt->txrx_compl_task);
2018		return;
2019	}
2020	case HTT_T2H_MSG_TYPE_TX_CREDIT_UPDATE_IND:
2021		/* FIXME: This WMI-TLV event is overlapping with 10.2
2022		 * CHAN_CHANGE - both being 0xF. Neither is being used in
2023		 * practice so no immediate action is necessary. Nevertheless
2024		 * HTT may need an abstraction layer like WMI has one day.
2025		 */
2026		break;
2027	default:
2028		ath10k_warn(ar, "htt event (%d) not handled\n",
2029			    resp->hdr.msg_type);
2030		ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
2031				skb->data, skb->len);
2032		break;
2033	};
2034
2035	/* Free the indication buffer */
2036	dev_kfree_skb_any(skb);
2037}
2038
2039static void ath10k_htt_txrx_compl_task(unsigned long ptr)
2040{
2041	struct ath10k_htt *htt = (struct ath10k_htt *)ptr;
2042	struct ath10k *ar = htt->ar;
2043	struct htt_resp *resp;
2044	struct sk_buff *skb;
2045
2046	spin_lock_bh(&htt->tx_lock);
2047	while ((skb = __skb_dequeue(&htt->tx_compl_q))) {
2048		ath10k_htt_rx_frm_tx_compl(htt->ar, skb);
2049		dev_kfree_skb_any(skb);
2050	}
2051	spin_unlock_bh(&htt->tx_lock);
2052
2053	spin_lock_bh(&htt->rx_ring.lock);
2054	while ((skb = __skb_dequeue(&htt->rx_compl_q))) {
2055		resp = (struct htt_resp *)skb->data;
2056		ath10k_htt_rx_handler(htt, &resp->rx_ind);
2057		dev_kfree_skb_any(skb);
2058	}
2059
2060	while ((skb = __skb_dequeue(&htt->rx_in_ord_compl_q))) {
2061		ath10k_htt_rx_in_ord_ind(ar, skb);
2062		dev_kfree_skb_any(skb);
2063	}
2064	spin_unlock_bh(&htt->rx_ring.lock);
2065}
2066