1/*
2 * AT86RF230/RF231 driver
3 *
4 * Copyright (C) 2009-2012 Siemens AG
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 * GNU General Public License for more details.
14 *
15 * Written by:
16 * Dmitry Eremin-Solenikov <dbaryshkov@gmail.com>
17 * Alexander Smirnov <alex.bluesman.smirnov@gmail.com>
18 * Alexander Aring <aar@pengutronix.de>
19 */
20#include <linux/kernel.h>
21#include <linux/module.h>
22#include <linux/hrtimer.h>
23#include <linux/jiffies.h>
24#include <linux/interrupt.h>
25#include <linux/irq.h>
26#include <linux/gpio.h>
27#include <linux/delay.h>
28#include <linux/spi/spi.h>
29#include <linux/spi/at86rf230.h>
30#include <linux/regmap.h>
31#include <linux/skbuff.h>
32#include <linux/of_gpio.h>
33#include <linux/ieee802154.h>
34
35#include <net/mac802154.h>
36#include <net/cfg802154.h>
37
38struct at86rf230_local;
39/* at86rf2xx chip depend data.
40 * All timings are in us.
41 */
42struct at86rf2xx_chip_data {
43	u16 t_sleep_cycle;
44	u16 t_channel_switch;
45	u16 t_reset_to_off;
46	u16 t_off_to_aack;
47	u16 t_off_to_tx_on;
48	u16 t_frame;
49	u16 t_p_ack;
50	int rssi_base_val;
51
52	int (*set_channel)(struct at86rf230_local *, u8, u8);
53	int (*get_desense_steps)(struct at86rf230_local *, s32);
54};
55
56#define AT86RF2XX_MAX_BUF		(127 + 3)
57/* tx retries to access the TX_ON state
58 * if it's above then force change will be started.
59 *
60 * We assume the max_frame_retries (7) value of 802.15.4 here.
61 */
62#define AT86RF2XX_MAX_TX_RETRIES	7
63/* We use the recommended 5 minutes timeout to recalibrate */
64#define AT86RF2XX_CAL_LOOP_TIMEOUT	(5 * 60 * HZ)
65
66struct at86rf230_state_change {
67	struct at86rf230_local *lp;
68	int irq;
69
70	struct hrtimer timer;
71	struct spi_message msg;
72	struct spi_transfer trx;
73	u8 buf[AT86RF2XX_MAX_BUF];
74
75	void (*complete)(void *context);
76	u8 from_state;
77	u8 to_state;
78
79	bool irq_enable;
80};
81
82struct at86rf230_local {
83	struct spi_device *spi;
84
85	struct ieee802154_hw *hw;
86	struct at86rf2xx_chip_data *data;
87	struct regmap *regmap;
88	int slp_tr;
89
90	struct completion state_complete;
91	struct at86rf230_state_change state;
92
93	struct at86rf230_state_change irq;
94
95	bool tx_aret;
96	unsigned long cal_timeout;
97	s8 max_frame_retries;
98	bool is_tx;
99	bool is_tx_from_off;
100	u8 tx_retry;
101	struct sk_buff *tx_skb;
102	struct at86rf230_state_change tx;
103};
104
105#define RG_TRX_STATUS	(0x01)
106#define SR_TRX_STATUS		0x01, 0x1f, 0
107#define SR_RESERVED_01_3	0x01, 0x20, 5
108#define SR_CCA_STATUS		0x01, 0x40, 6
109#define SR_CCA_DONE		0x01, 0x80, 7
110#define RG_TRX_STATE	(0x02)
111#define SR_TRX_CMD		0x02, 0x1f, 0
112#define SR_TRAC_STATUS		0x02, 0xe0, 5
113#define RG_TRX_CTRL_0	(0x03)
114#define SR_CLKM_CTRL		0x03, 0x07, 0
115#define SR_CLKM_SHA_SEL		0x03, 0x08, 3
116#define SR_PAD_IO_CLKM		0x03, 0x30, 4
117#define SR_PAD_IO		0x03, 0xc0, 6
118#define RG_TRX_CTRL_1	(0x04)
119#define SR_IRQ_POLARITY		0x04, 0x01, 0
120#define SR_IRQ_MASK_MODE	0x04, 0x02, 1
121#define SR_SPI_CMD_MODE		0x04, 0x0c, 2
122#define SR_RX_BL_CTRL		0x04, 0x10, 4
123#define SR_TX_AUTO_CRC_ON	0x04, 0x20, 5
124#define SR_IRQ_2_EXT_EN		0x04, 0x40, 6
125#define SR_PA_EXT_EN		0x04, 0x80, 7
126#define RG_PHY_TX_PWR	(0x05)
127#define SR_TX_PWR		0x05, 0x0f, 0
128#define SR_PA_LT		0x05, 0x30, 4
129#define SR_PA_BUF_LT		0x05, 0xc0, 6
130#define RG_PHY_RSSI	(0x06)
131#define SR_RSSI			0x06, 0x1f, 0
132#define SR_RND_VALUE		0x06, 0x60, 5
133#define SR_RX_CRC_VALID		0x06, 0x80, 7
134#define RG_PHY_ED_LEVEL	(0x07)
135#define SR_ED_LEVEL		0x07, 0xff, 0
136#define RG_PHY_CC_CCA	(0x08)
137#define SR_CHANNEL		0x08, 0x1f, 0
138#define SR_CCA_MODE		0x08, 0x60, 5
139#define SR_CCA_REQUEST		0x08, 0x80, 7
140#define RG_CCA_THRES	(0x09)
141#define SR_CCA_ED_THRES		0x09, 0x0f, 0
142#define SR_RESERVED_09_1	0x09, 0xf0, 4
143#define RG_RX_CTRL	(0x0a)
144#define SR_PDT_THRES		0x0a, 0x0f, 0
145#define SR_RESERVED_0a_1	0x0a, 0xf0, 4
146#define RG_SFD_VALUE	(0x0b)
147#define SR_SFD_VALUE		0x0b, 0xff, 0
148#define RG_TRX_CTRL_2	(0x0c)
149#define SR_OQPSK_DATA_RATE	0x0c, 0x03, 0
150#define SR_SUB_MODE		0x0c, 0x04, 2
151#define SR_BPSK_QPSK		0x0c, 0x08, 3
152#define SR_OQPSK_SUB1_RC_EN	0x0c, 0x10, 4
153#define SR_RESERVED_0c_5	0x0c, 0x60, 5
154#define SR_RX_SAFE_MODE		0x0c, 0x80, 7
155#define RG_ANT_DIV	(0x0d)
156#define SR_ANT_CTRL		0x0d, 0x03, 0
157#define SR_ANT_EXT_SW_EN	0x0d, 0x04, 2
158#define SR_ANT_DIV_EN		0x0d, 0x08, 3
159#define SR_RESERVED_0d_2	0x0d, 0x70, 4
160#define SR_ANT_SEL		0x0d, 0x80, 7
161#define RG_IRQ_MASK	(0x0e)
162#define SR_IRQ_MASK		0x0e, 0xff, 0
163#define RG_IRQ_STATUS	(0x0f)
164#define SR_IRQ_0_PLL_LOCK	0x0f, 0x01, 0
165#define SR_IRQ_1_PLL_UNLOCK	0x0f, 0x02, 1
166#define SR_IRQ_2_RX_START	0x0f, 0x04, 2
167#define SR_IRQ_3_TRX_END	0x0f, 0x08, 3
168#define SR_IRQ_4_CCA_ED_DONE	0x0f, 0x10, 4
169#define SR_IRQ_5_AMI		0x0f, 0x20, 5
170#define SR_IRQ_6_TRX_UR		0x0f, 0x40, 6
171#define SR_IRQ_7_BAT_LOW	0x0f, 0x80, 7
172#define RG_VREG_CTRL	(0x10)
173#define SR_RESERVED_10_6	0x10, 0x03, 0
174#define SR_DVDD_OK		0x10, 0x04, 2
175#define SR_DVREG_EXT		0x10, 0x08, 3
176#define SR_RESERVED_10_3	0x10, 0x30, 4
177#define SR_AVDD_OK		0x10, 0x40, 6
178#define SR_AVREG_EXT		0x10, 0x80, 7
179#define RG_BATMON	(0x11)
180#define SR_BATMON_VTH		0x11, 0x0f, 0
181#define SR_BATMON_HR		0x11, 0x10, 4
182#define SR_BATMON_OK		0x11, 0x20, 5
183#define SR_RESERVED_11_1	0x11, 0xc0, 6
184#define RG_XOSC_CTRL	(0x12)
185#define SR_XTAL_TRIM		0x12, 0x0f, 0
186#define SR_XTAL_MODE		0x12, 0xf0, 4
187#define RG_RX_SYN	(0x15)
188#define SR_RX_PDT_LEVEL		0x15, 0x0f, 0
189#define SR_RESERVED_15_2	0x15, 0x70, 4
190#define SR_RX_PDT_DIS		0x15, 0x80, 7
191#define RG_XAH_CTRL_1	(0x17)
192#define SR_RESERVED_17_8	0x17, 0x01, 0
193#define SR_AACK_PROM_MODE	0x17, 0x02, 1
194#define SR_AACK_ACK_TIME	0x17, 0x04, 2
195#define SR_RESERVED_17_5	0x17, 0x08, 3
196#define SR_AACK_UPLD_RES_FT	0x17, 0x10, 4
197#define SR_AACK_FLTR_RES_FT	0x17, 0x20, 5
198#define SR_CSMA_LBT_MODE	0x17, 0x40, 6
199#define SR_RESERVED_17_1	0x17, 0x80, 7
200#define RG_FTN_CTRL	(0x18)
201#define SR_RESERVED_18_2	0x18, 0x7f, 0
202#define SR_FTN_START		0x18, 0x80, 7
203#define RG_PLL_CF	(0x1a)
204#define SR_RESERVED_1a_2	0x1a, 0x7f, 0
205#define SR_PLL_CF_START		0x1a, 0x80, 7
206#define RG_PLL_DCU	(0x1b)
207#define SR_RESERVED_1b_3	0x1b, 0x3f, 0
208#define SR_RESERVED_1b_2	0x1b, 0x40, 6
209#define SR_PLL_DCU_START	0x1b, 0x80, 7
210#define RG_PART_NUM	(0x1c)
211#define SR_PART_NUM		0x1c, 0xff, 0
212#define RG_VERSION_NUM	(0x1d)
213#define SR_VERSION_NUM		0x1d, 0xff, 0
214#define RG_MAN_ID_0	(0x1e)
215#define SR_MAN_ID_0		0x1e, 0xff, 0
216#define RG_MAN_ID_1	(0x1f)
217#define SR_MAN_ID_1		0x1f, 0xff, 0
218#define RG_SHORT_ADDR_0	(0x20)
219#define SR_SHORT_ADDR_0		0x20, 0xff, 0
220#define RG_SHORT_ADDR_1	(0x21)
221#define SR_SHORT_ADDR_1		0x21, 0xff, 0
222#define RG_PAN_ID_0	(0x22)
223#define SR_PAN_ID_0		0x22, 0xff, 0
224#define RG_PAN_ID_1	(0x23)
225#define SR_PAN_ID_1		0x23, 0xff, 0
226#define RG_IEEE_ADDR_0	(0x24)
227#define SR_IEEE_ADDR_0		0x24, 0xff, 0
228#define RG_IEEE_ADDR_1	(0x25)
229#define SR_IEEE_ADDR_1		0x25, 0xff, 0
230#define RG_IEEE_ADDR_2	(0x26)
231#define SR_IEEE_ADDR_2		0x26, 0xff, 0
232#define RG_IEEE_ADDR_3	(0x27)
233#define SR_IEEE_ADDR_3		0x27, 0xff, 0
234#define RG_IEEE_ADDR_4	(0x28)
235#define SR_IEEE_ADDR_4		0x28, 0xff, 0
236#define RG_IEEE_ADDR_5	(0x29)
237#define SR_IEEE_ADDR_5		0x29, 0xff, 0
238#define RG_IEEE_ADDR_6	(0x2a)
239#define SR_IEEE_ADDR_6		0x2a, 0xff, 0
240#define RG_IEEE_ADDR_7	(0x2b)
241#define SR_IEEE_ADDR_7		0x2b, 0xff, 0
242#define RG_XAH_CTRL_0	(0x2c)
243#define SR_SLOTTED_OPERATION	0x2c, 0x01, 0
244#define SR_MAX_CSMA_RETRIES	0x2c, 0x0e, 1
245#define SR_MAX_FRAME_RETRIES	0x2c, 0xf0, 4
246#define RG_CSMA_SEED_0	(0x2d)
247#define SR_CSMA_SEED_0		0x2d, 0xff, 0
248#define RG_CSMA_SEED_1	(0x2e)
249#define SR_CSMA_SEED_1		0x2e, 0x07, 0
250#define SR_AACK_I_AM_COORD	0x2e, 0x08, 3
251#define SR_AACK_DIS_ACK		0x2e, 0x10, 4
252#define SR_AACK_SET_PD		0x2e, 0x20, 5
253#define SR_AACK_FVN_MODE	0x2e, 0xc0, 6
254#define RG_CSMA_BE	(0x2f)
255#define SR_MIN_BE		0x2f, 0x0f, 0
256#define SR_MAX_BE		0x2f, 0xf0, 4
257
258#define CMD_REG		0x80
259#define CMD_REG_MASK	0x3f
260#define CMD_WRITE	0x40
261#define CMD_FB		0x20
262
263#define IRQ_BAT_LOW	(1 << 7)
264#define IRQ_TRX_UR	(1 << 6)
265#define IRQ_AMI		(1 << 5)
266#define IRQ_CCA_ED	(1 << 4)
267#define IRQ_TRX_END	(1 << 3)
268#define IRQ_RX_START	(1 << 2)
269#define IRQ_PLL_UNL	(1 << 1)
270#define IRQ_PLL_LOCK	(1 << 0)
271
272#define IRQ_ACTIVE_HIGH	0
273#define IRQ_ACTIVE_LOW	1
274
275#define STATE_P_ON		0x00	/* BUSY */
276#define STATE_BUSY_RX		0x01
277#define STATE_BUSY_TX		0x02
278#define STATE_FORCE_TRX_OFF	0x03
279#define STATE_FORCE_TX_ON	0x04	/* IDLE */
280/* 0x05 */				/* INVALID_PARAMETER */
281#define STATE_RX_ON		0x06
282/* 0x07 */				/* SUCCESS */
283#define STATE_TRX_OFF		0x08
284#define STATE_TX_ON		0x09
285/* 0x0a - 0x0e */			/* 0x0a - UNSUPPORTED_ATTRIBUTE */
286#define STATE_SLEEP		0x0F
287#define STATE_PREP_DEEP_SLEEP	0x10
288#define STATE_BUSY_RX_AACK	0x11
289#define STATE_BUSY_TX_ARET	0x12
290#define STATE_RX_AACK_ON	0x16
291#define STATE_TX_ARET_ON	0x19
292#define STATE_RX_ON_NOCLK	0x1C
293#define STATE_RX_AACK_ON_NOCLK	0x1D
294#define STATE_BUSY_RX_AACK_NOCLK 0x1E
295#define STATE_TRANSITION_IN_PROGRESS 0x1F
296
297#define TRX_STATE_MASK		(0x1F)
298
299#define AT86RF2XX_NUMREGS 0x3F
300
301static void
302at86rf230_async_state_change(struct at86rf230_local *lp,
303			     struct at86rf230_state_change *ctx,
304			     const u8 state, void (*complete)(void *context),
305			     const bool irq_enable);
306
307static inline int
308__at86rf230_write(struct at86rf230_local *lp,
309		  unsigned int addr, unsigned int data)
310{
311	return regmap_write(lp->regmap, addr, data);
312}
313
314static inline int
315__at86rf230_read(struct at86rf230_local *lp,
316		 unsigned int addr, unsigned int *data)
317{
318	return regmap_read(lp->regmap, addr, data);
319}
320
321static inline int
322at86rf230_read_subreg(struct at86rf230_local *lp,
323		      unsigned int addr, unsigned int mask,
324		      unsigned int shift, unsigned int *data)
325{
326	int rc;
327
328	rc = __at86rf230_read(lp, addr, data);
329	if (!rc)
330		*data = (*data & mask) >> shift;
331
332	return rc;
333}
334
335static inline int
336at86rf230_write_subreg(struct at86rf230_local *lp,
337		       unsigned int addr, unsigned int mask,
338		       unsigned int shift, unsigned int data)
339{
340	return regmap_update_bits(lp->regmap, addr, mask, data << shift);
341}
342
343static inline void
344at86rf230_slp_tr_rising_edge(struct at86rf230_local *lp)
345{
346	gpio_set_value(lp->slp_tr, 1);
347	udelay(1);
348	gpio_set_value(lp->slp_tr, 0);
349}
350
351static bool
352at86rf230_reg_writeable(struct device *dev, unsigned int reg)
353{
354	switch (reg) {
355	case RG_TRX_STATE:
356	case RG_TRX_CTRL_0:
357	case RG_TRX_CTRL_1:
358	case RG_PHY_TX_PWR:
359	case RG_PHY_ED_LEVEL:
360	case RG_PHY_CC_CCA:
361	case RG_CCA_THRES:
362	case RG_RX_CTRL:
363	case RG_SFD_VALUE:
364	case RG_TRX_CTRL_2:
365	case RG_ANT_DIV:
366	case RG_IRQ_MASK:
367	case RG_VREG_CTRL:
368	case RG_BATMON:
369	case RG_XOSC_CTRL:
370	case RG_RX_SYN:
371	case RG_XAH_CTRL_1:
372	case RG_FTN_CTRL:
373	case RG_PLL_CF:
374	case RG_PLL_DCU:
375	case RG_SHORT_ADDR_0:
376	case RG_SHORT_ADDR_1:
377	case RG_PAN_ID_0:
378	case RG_PAN_ID_1:
379	case RG_IEEE_ADDR_0:
380	case RG_IEEE_ADDR_1:
381	case RG_IEEE_ADDR_2:
382	case RG_IEEE_ADDR_3:
383	case RG_IEEE_ADDR_4:
384	case RG_IEEE_ADDR_5:
385	case RG_IEEE_ADDR_6:
386	case RG_IEEE_ADDR_7:
387	case RG_XAH_CTRL_0:
388	case RG_CSMA_SEED_0:
389	case RG_CSMA_SEED_1:
390	case RG_CSMA_BE:
391		return true;
392	default:
393		return false;
394	}
395}
396
397static bool
398at86rf230_reg_readable(struct device *dev, unsigned int reg)
399{
400	bool rc;
401
402	/* all writeable are also readable */
403	rc = at86rf230_reg_writeable(dev, reg);
404	if (rc)
405		return rc;
406
407	/* readonly regs */
408	switch (reg) {
409	case RG_TRX_STATUS:
410	case RG_PHY_RSSI:
411	case RG_IRQ_STATUS:
412	case RG_PART_NUM:
413	case RG_VERSION_NUM:
414	case RG_MAN_ID_1:
415	case RG_MAN_ID_0:
416		return true;
417	default:
418		return false;
419	}
420}
421
422static bool
423at86rf230_reg_volatile(struct device *dev, unsigned int reg)
424{
425	/* can be changed during runtime */
426	switch (reg) {
427	case RG_TRX_STATUS:
428	case RG_TRX_STATE:
429	case RG_PHY_RSSI:
430	case RG_PHY_ED_LEVEL:
431	case RG_IRQ_STATUS:
432	case RG_VREG_CTRL:
433	case RG_PLL_CF:
434	case RG_PLL_DCU:
435		return true;
436	default:
437		return false;
438	}
439}
440
441static bool
442at86rf230_reg_precious(struct device *dev, unsigned int reg)
443{
444	/* don't clear irq line on read */
445	switch (reg) {
446	case RG_IRQ_STATUS:
447		return true;
448	default:
449		return false;
450	}
451}
452
453static const struct regmap_config at86rf230_regmap_spi_config = {
454	.reg_bits = 8,
455	.val_bits = 8,
456	.write_flag_mask = CMD_REG | CMD_WRITE,
457	.read_flag_mask = CMD_REG,
458	.cache_type = REGCACHE_RBTREE,
459	.max_register = AT86RF2XX_NUMREGS,
460	.writeable_reg = at86rf230_reg_writeable,
461	.readable_reg = at86rf230_reg_readable,
462	.volatile_reg = at86rf230_reg_volatile,
463	.precious_reg = at86rf230_reg_precious,
464};
465
466static void
467at86rf230_async_error_recover(void *context)
468{
469	struct at86rf230_state_change *ctx = context;
470	struct at86rf230_local *lp = ctx->lp;
471
472	lp->is_tx = 0;
473	at86rf230_async_state_change(lp, ctx, STATE_RX_AACK_ON, NULL, false);
474	ieee802154_wake_queue(lp->hw);
475}
476
477static inline void
478at86rf230_async_error(struct at86rf230_local *lp,
479		      struct at86rf230_state_change *ctx, int rc)
480{
481	dev_err(&lp->spi->dev, "spi_async error %d\n", rc);
482
483	at86rf230_async_state_change(lp, ctx, STATE_FORCE_TRX_OFF,
484				     at86rf230_async_error_recover, false);
485}
486
487/* Generic function to get some register value in async mode */
488static void
489at86rf230_async_read_reg(struct at86rf230_local *lp, const u8 reg,
490			 struct at86rf230_state_change *ctx,
491			 void (*complete)(void *context),
492			 const bool irq_enable)
493{
494	int rc;
495
496	u8 *tx_buf = ctx->buf;
497
498	tx_buf[0] = (reg & CMD_REG_MASK) | CMD_REG;
499	ctx->msg.complete = complete;
500	ctx->irq_enable = irq_enable;
501	rc = spi_async(lp->spi, &ctx->msg);
502	if (rc) {
503		if (irq_enable)
504			enable_irq(ctx->irq);
505
506		at86rf230_async_error(lp, ctx, rc);
507	}
508}
509
510static inline u8 at86rf230_state_to_force(u8 state)
511{
512	if (state == STATE_TX_ON)
513		return STATE_FORCE_TX_ON;
514	else
515		return STATE_FORCE_TRX_OFF;
516}
517
518static void
519at86rf230_async_state_assert(void *context)
520{
521	struct at86rf230_state_change *ctx = context;
522	struct at86rf230_local *lp = ctx->lp;
523	const u8 *buf = ctx->buf;
524	const u8 trx_state = buf[1] & TRX_STATE_MASK;
525
526	/* Assert state change */
527	if (trx_state != ctx->to_state) {
528		/* Special handling if transceiver state is in
529		 * STATE_BUSY_RX_AACK and a SHR was detected.
530		 */
531		if  (trx_state == STATE_BUSY_RX_AACK) {
532			/* Undocumented race condition. If we send a state
533			 * change to STATE_RX_AACK_ON the transceiver could
534			 * change his state automatically to STATE_BUSY_RX_AACK
535			 * if a SHR was detected. This is not an error, but we
536			 * can't assert this.
537			 */
538			if (ctx->to_state == STATE_RX_AACK_ON)
539				goto done;
540
541			/* If we change to STATE_TX_ON without forcing and
542			 * transceiver state is STATE_BUSY_RX_AACK, we wait
543			 * 'tFrame + tPAck' receiving time. In this time the
544			 * PDU should be received. If the transceiver is still
545			 * in STATE_BUSY_RX_AACK, we run a force state change
546			 * to STATE_TX_ON. This is a timeout handling, if the
547			 * transceiver stucks in STATE_BUSY_RX_AACK.
548			 *
549			 * Additional we do several retries to try to get into
550			 * TX_ON state without forcing. If the retries are
551			 * higher or equal than AT86RF2XX_MAX_TX_RETRIES we
552			 * will do a force change.
553			 */
554			if (ctx->to_state == STATE_TX_ON ||
555			    ctx->to_state == STATE_TRX_OFF) {
556				u8 state = ctx->to_state;
557
558				if (lp->tx_retry >= AT86RF2XX_MAX_TX_RETRIES)
559					state = at86rf230_state_to_force(state);
560				lp->tx_retry++;
561
562				at86rf230_async_state_change(lp, ctx, state,
563							     ctx->complete,
564							     ctx->irq_enable);
565				return;
566			}
567		}
568
569		dev_warn(&lp->spi->dev, "unexcept state change from 0x%02x to 0x%02x. Actual state: 0x%02x\n",
570			 ctx->from_state, ctx->to_state, trx_state);
571	}
572
573done:
574	if (ctx->complete)
575		ctx->complete(context);
576}
577
578static enum hrtimer_restart at86rf230_async_state_timer(struct hrtimer *timer)
579{
580	struct at86rf230_state_change *ctx =
581		container_of(timer, struct at86rf230_state_change, timer);
582	struct at86rf230_local *lp = ctx->lp;
583
584	at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx,
585				 at86rf230_async_state_assert,
586				 ctx->irq_enable);
587
588	return HRTIMER_NORESTART;
589}
590
591/* Do state change timing delay. */
592static void
593at86rf230_async_state_delay(void *context)
594{
595	struct at86rf230_state_change *ctx = context;
596	struct at86rf230_local *lp = ctx->lp;
597	struct at86rf2xx_chip_data *c = lp->data;
598	bool force = false;
599	ktime_t tim;
600
601	/* The force state changes are will show as normal states in the
602	 * state status subregister. We change the to_state to the
603	 * corresponding one and remember if it was a force change, this
604	 * differs if we do a state change from STATE_BUSY_RX_AACK.
605	 */
606	switch (ctx->to_state) {
607	case STATE_FORCE_TX_ON:
608		ctx->to_state = STATE_TX_ON;
609		force = true;
610		break;
611	case STATE_FORCE_TRX_OFF:
612		ctx->to_state = STATE_TRX_OFF;
613		force = true;
614		break;
615	default:
616		break;
617	}
618
619	switch (ctx->from_state) {
620	case STATE_TRX_OFF:
621		switch (ctx->to_state) {
622		case STATE_RX_AACK_ON:
623			tim = ktime_set(0, c->t_off_to_aack * NSEC_PER_USEC);
624			/* state change from TRX_OFF to RX_AACK_ON to do a
625			 * calibration, we need to reset the timeout for the
626			 * next one.
627			 */
628			lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT;
629			goto change;
630		case STATE_TX_ARET_ON:
631		case STATE_TX_ON:
632			tim = ktime_set(0, c->t_off_to_tx_on * NSEC_PER_USEC);
633			/* state change from TRX_OFF to TX_ON or ARET_ON to do
634			 * a calibration, we need to reset the timeout for the
635			 * next one.
636			 */
637			lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT;
638			goto change;
639		default:
640			break;
641		}
642		break;
643	case STATE_BUSY_RX_AACK:
644		switch (ctx->to_state) {
645		case STATE_TRX_OFF:
646		case STATE_TX_ON:
647			/* Wait for worst case receiving time if we
648			 * didn't make a force change from BUSY_RX_AACK
649			 * to TX_ON or TRX_OFF.
650			 */
651			if (!force) {
652				tim = ktime_set(0, (c->t_frame + c->t_p_ack) *
653						   NSEC_PER_USEC);
654				goto change;
655			}
656			break;
657		default:
658			break;
659		}
660		break;
661	/* Default value, means RESET state */
662	case STATE_P_ON:
663		switch (ctx->to_state) {
664		case STATE_TRX_OFF:
665			tim = ktime_set(0, c->t_reset_to_off * NSEC_PER_USEC);
666			goto change;
667		default:
668			break;
669		}
670		break;
671	default:
672		break;
673	}
674
675	/* Default delay is 1us in the most cases */
676	tim = ktime_set(0, NSEC_PER_USEC);
677
678change:
679	hrtimer_start(&ctx->timer, tim, HRTIMER_MODE_REL);
680}
681
682static void
683at86rf230_async_state_change_start(void *context)
684{
685	struct at86rf230_state_change *ctx = context;
686	struct at86rf230_local *lp = ctx->lp;
687	u8 *buf = ctx->buf;
688	const u8 trx_state = buf[1] & TRX_STATE_MASK;
689	int rc;
690
691	/* Check for "possible" STATE_TRANSITION_IN_PROGRESS */
692	if (trx_state == STATE_TRANSITION_IN_PROGRESS) {
693		udelay(1);
694		at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx,
695					 at86rf230_async_state_change_start,
696					 ctx->irq_enable);
697		return;
698	}
699
700	/* Check if we already are in the state which we change in */
701	if (trx_state == ctx->to_state) {
702		if (ctx->complete)
703			ctx->complete(context);
704		return;
705	}
706
707	/* Set current state to the context of state change */
708	ctx->from_state = trx_state;
709
710	/* Going into the next step for a state change which do a timing
711	 * relevant delay.
712	 */
713	buf[0] = (RG_TRX_STATE & CMD_REG_MASK) | CMD_REG | CMD_WRITE;
714	buf[1] = ctx->to_state;
715	ctx->msg.complete = at86rf230_async_state_delay;
716	rc = spi_async(lp->spi, &ctx->msg);
717	if (rc) {
718		if (ctx->irq_enable)
719			enable_irq(ctx->irq);
720
721		at86rf230_async_error(lp, ctx, rc);
722	}
723}
724
725static void
726at86rf230_async_state_change(struct at86rf230_local *lp,
727			     struct at86rf230_state_change *ctx,
728			     const u8 state, void (*complete)(void *context),
729			     const bool irq_enable)
730{
731	/* Initialization for the state change context */
732	ctx->to_state = state;
733	ctx->complete = complete;
734	ctx->irq_enable = irq_enable;
735	at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx,
736				 at86rf230_async_state_change_start,
737				 irq_enable);
738}
739
740static void
741at86rf230_sync_state_change_complete(void *context)
742{
743	struct at86rf230_state_change *ctx = context;
744	struct at86rf230_local *lp = ctx->lp;
745
746	complete(&lp->state_complete);
747}
748
749/* This function do a sync framework above the async state change.
750 * Some callbacks of the IEEE 802.15.4 driver interface need to be
751 * handled synchronously.
752 */
753static int
754at86rf230_sync_state_change(struct at86rf230_local *lp, unsigned int state)
755{
756	unsigned long rc;
757
758	at86rf230_async_state_change(lp, &lp->state, state,
759				     at86rf230_sync_state_change_complete,
760				     false);
761
762	rc = wait_for_completion_timeout(&lp->state_complete,
763					 msecs_to_jiffies(100));
764	if (!rc) {
765		at86rf230_async_error(lp, &lp->state, -ETIMEDOUT);
766		return -ETIMEDOUT;
767	}
768
769	return 0;
770}
771
772static void
773at86rf230_tx_complete(void *context)
774{
775	struct at86rf230_state_change *ctx = context;
776	struct at86rf230_local *lp = ctx->lp;
777
778	enable_irq(ctx->irq);
779
780	ieee802154_xmit_complete(lp->hw, lp->tx_skb, !lp->tx_aret);
781}
782
783static void
784at86rf230_tx_on(void *context)
785{
786	struct at86rf230_state_change *ctx = context;
787	struct at86rf230_local *lp = ctx->lp;
788
789	at86rf230_async_state_change(lp, ctx, STATE_RX_AACK_ON,
790				     at86rf230_tx_complete, true);
791}
792
793static void
794at86rf230_tx_trac_check(void *context)
795{
796	struct at86rf230_state_change *ctx = context;
797	struct at86rf230_local *lp = ctx->lp;
798	const u8 *buf = ctx->buf;
799	const u8 trac = (buf[1] & 0xe0) >> 5;
800
801	/* If trac status is different than zero we need to do a state change
802	 * to STATE_FORCE_TRX_OFF then STATE_RX_AACK_ON to recover the
803	 * transceiver.
804	 */
805	if (trac)
806		at86rf230_async_state_change(lp, ctx, STATE_FORCE_TRX_OFF,
807					     at86rf230_tx_on, true);
808	else
809		at86rf230_tx_on(context);
810}
811
812static void
813at86rf230_tx_trac_status(void *context)
814{
815	struct at86rf230_state_change *ctx = context;
816	struct at86rf230_local *lp = ctx->lp;
817
818	at86rf230_async_read_reg(lp, RG_TRX_STATE, ctx,
819				 at86rf230_tx_trac_check, true);
820}
821
822static void
823at86rf230_rx_read_frame_complete(void *context)
824{
825	struct at86rf230_state_change *ctx = context;
826	struct at86rf230_local *lp = ctx->lp;
827	u8 rx_local_buf[AT86RF2XX_MAX_BUF];
828	const u8 *buf = ctx->buf;
829	struct sk_buff *skb;
830	u8 len, lqi;
831
832	len = buf[1];
833	if (!ieee802154_is_valid_psdu_len(len)) {
834		dev_vdbg(&lp->spi->dev, "corrupted frame received\n");
835		len = IEEE802154_MTU;
836	}
837	lqi = buf[2 + len];
838
839	memcpy(rx_local_buf, buf + 2, len);
840	ctx->trx.len = 2;
841	enable_irq(ctx->irq);
842
843	skb = dev_alloc_skb(IEEE802154_MTU);
844	if (!skb) {
845		dev_vdbg(&lp->spi->dev, "failed to allocate sk_buff\n");
846		return;
847	}
848
849	memcpy(skb_put(skb, len), rx_local_buf, len);
850	ieee802154_rx_irqsafe(lp->hw, skb, lqi);
851}
852
853static void
854at86rf230_rx_read_frame(void *context)
855{
856	struct at86rf230_state_change *ctx = context;
857	struct at86rf230_local *lp = ctx->lp;
858	u8 *buf = ctx->buf;
859	int rc;
860
861	buf[0] = CMD_FB;
862	ctx->trx.len = AT86RF2XX_MAX_BUF;
863	ctx->msg.complete = at86rf230_rx_read_frame_complete;
864	rc = spi_async(lp->spi, &ctx->msg);
865	if (rc) {
866		ctx->trx.len = 2;
867		enable_irq(ctx->irq);
868		at86rf230_async_error(lp, ctx, rc);
869	}
870}
871
872static void
873at86rf230_rx_trac_check(void *context)
874{
875	/* Possible check on trac status here. This could be useful to make
876	 * some stats why receive is failed. Not used at the moment, but it's
877	 * maybe timing relevant. Datasheet doesn't say anything about this.
878	 * The programming guide say do it so.
879	 */
880
881	at86rf230_rx_read_frame(context);
882}
883
884static void
885at86rf230_irq_trx_end(struct at86rf230_local *lp)
886{
887	if (lp->is_tx) {
888		lp->is_tx = 0;
889
890		if (lp->tx_aret)
891			at86rf230_async_state_change(lp, &lp->irq,
892						     STATE_FORCE_TX_ON,
893						     at86rf230_tx_trac_status,
894						     true);
895		else
896			at86rf230_async_state_change(lp, &lp->irq,
897						     STATE_RX_AACK_ON,
898						     at86rf230_tx_complete,
899						     true);
900	} else {
901		at86rf230_async_read_reg(lp, RG_TRX_STATE, &lp->irq,
902					 at86rf230_rx_trac_check, true);
903	}
904}
905
906static void
907at86rf230_irq_status(void *context)
908{
909	struct at86rf230_state_change *ctx = context;
910	struct at86rf230_local *lp = ctx->lp;
911	const u8 *buf = ctx->buf;
912	const u8 irq = buf[1];
913
914	if (irq & IRQ_TRX_END) {
915		at86rf230_irq_trx_end(lp);
916	} else {
917		enable_irq(ctx->irq);
918		dev_err(&lp->spi->dev, "not supported irq %02x received\n",
919			irq);
920	}
921}
922
923static irqreturn_t at86rf230_isr(int irq, void *data)
924{
925	struct at86rf230_local *lp = data;
926	struct at86rf230_state_change *ctx = &lp->irq;
927	u8 *buf = ctx->buf;
928	int rc;
929
930	disable_irq_nosync(irq);
931
932	buf[0] = (RG_IRQ_STATUS & CMD_REG_MASK) | CMD_REG;
933	ctx->msg.complete = at86rf230_irq_status;
934	rc = spi_async(lp->spi, &ctx->msg);
935	if (rc) {
936		enable_irq(irq);
937		at86rf230_async_error(lp, ctx, rc);
938		return IRQ_NONE;
939	}
940
941	return IRQ_HANDLED;
942}
943
944static void
945at86rf230_write_frame_complete(void *context)
946{
947	struct at86rf230_state_change *ctx = context;
948	struct at86rf230_local *lp = ctx->lp;
949	u8 *buf = ctx->buf;
950	int rc;
951
952	ctx->trx.len = 2;
953
954	if (gpio_is_valid(lp->slp_tr)) {
955		at86rf230_slp_tr_rising_edge(lp);
956	} else {
957		buf[0] = (RG_TRX_STATE & CMD_REG_MASK) | CMD_REG | CMD_WRITE;
958		buf[1] = STATE_BUSY_TX;
959		ctx->msg.complete = NULL;
960		rc = spi_async(lp->spi, &ctx->msg);
961		if (rc)
962			at86rf230_async_error(lp, ctx, rc);
963	}
964}
965
966static void
967at86rf230_write_frame(void *context)
968{
969	struct at86rf230_state_change *ctx = context;
970	struct at86rf230_local *lp = ctx->lp;
971	struct sk_buff *skb = lp->tx_skb;
972	u8 *buf = ctx->buf;
973	int rc;
974
975	lp->is_tx = 1;
976
977	buf[0] = CMD_FB | CMD_WRITE;
978	buf[1] = skb->len + 2;
979	memcpy(buf + 2, skb->data, skb->len);
980	ctx->trx.len = skb->len + 2;
981	ctx->msg.complete = at86rf230_write_frame_complete;
982	rc = spi_async(lp->spi, &ctx->msg);
983	if (rc) {
984		ctx->trx.len = 2;
985		at86rf230_async_error(lp, ctx, rc);
986	}
987}
988
989static void
990at86rf230_xmit_tx_on(void *context)
991{
992	struct at86rf230_state_change *ctx = context;
993	struct at86rf230_local *lp = ctx->lp;
994
995	at86rf230_async_state_change(lp, ctx, STATE_TX_ARET_ON,
996				     at86rf230_write_frame, false);
997}
998
999static void
1000at86rf230_xmit_start(void *context)
1001{
1002	struct at86rf230_state_change *ctx = context;
1003	struct at86rf230_local *lp = ctx->lp;
1004
1005	/* In ARET mode we need to go into STATE_TX_ARET_ON after we
1006	 * are in STATE_TX_ON. The pfad differs here, so we change
1007	 * the complete handler.
1008	 */
1009	if (lp->tx_aret) {
1010		if (lp->is_tx_from_off) {
1011			lp->is_tx_from_off = false;
1012			at86rf230_async_state_change(lp, ctx, STATE_TX_ARET_ON,
1013						     at86rf230_xmit_tx_on,
1014						     false);
1015		} else {
1016			at86rf230_async_state_change(lp, ctx, STATE_TX_ON,
1017						     at86rf230_xmit_tx_on,
1018						     false);
1019		}
1020	} else {
1021		at86rf230_async_state_change(lp, ctx, STATE_TX_ON,
1022					     at86rf230_write_frame, false);
1023	}
1024}
1025
1026static int
1027at86rf230_xmit(struct ieee802154_hw *hw, struct sk_buff *skb)
1028{
1029	struct at86rf230_local *lp = hw->priv;
1030	struct at86rf230_state_change *ctx = &lp->tx;
1031
1032	lp->tx_skb = skb;
1033	lp->tx_retry = 0;
1034
1035	/* After 5 minutes in PLL and the same frequency we run again the
1036	 * calibration loops which is recommended by at86rf2xx datasheets.
1037	 *
1038	 * The calibration is initiate by a state change from TRX_OFF
1039	 * to TX_ON, the lp->cal_timeout should be reinit by state_delay
1040	 * function then to start in the next 5 minutes.
1041	 */
1042	if (time_is_before_jiffies(lp->cal_timeout)) {
1043		lp->is_tx_from_off = true;
1044		at86rf230_async_state_change(lp, ctx, STATE_TRX_OFF,
1045					     at86rf230_xmit_start, false);
1046	} else {
1047		at86rf230_xmit_start(ctx);
1048	}
1049
1050	return 0;
1051}
1052
1053static int
1054at86rf230_ed(struct ieee802154_hw *hw, u8 *level)
1055{
1056	BUG_ON(!level);
1057	*level = 0xbe;
1058	return 0;
1059}
1060
1061static int
1062at86rf230_start(struct ieee802154_hw *hw)
1063{
1064	return at86rf230_sync_state_change(hw->priv, STATE_RX_AACK_ON);
1065}
1066
1067static void
1068at86rf230_stop(struct ieee802154_hw *hw)
1069{
1070	at86rf230_sync_state_change(hw->priv, STATE_FORCE_TRX_OFF);
1071}
1072
1073static int
1074at86rf23x_set_channel(struct at86rf230_local *lp, u8 page, u8 channel)
1075{
1076	return at86rf230_write_subreg(lp, SR_CHANNEL, channel);
1077}
1078
1079static int
1080at86rf212_set_channel(struct at86rf230_local *lp, u8 page, u8 channel)
1081{
1082	int rc;
1083
1084	if (channel == 0)
1085		rc = at86rf230_write_subreg(lp, SR_SUB_MODE, 0);
1086	else
1087		rc = at86rf230_write_subreg(lp, SR_SUB_MODE, 1);
1088	if (rc < 0)
1089		return rc;
1090
1091	if (page == 0) {
1092		rc = at86rf230_write_subreg(lp, SR_BPSK_QPSK, 0);
1093		lp->data->rssi_base_val = -100;
1094	} else {
1095		rc = at86rf230_write_subreg(lp, SR_BPSK_QPSK, 1);
1096		lp->data->rssi_base_val = -98;
1097	}
1098	if (rc < 0)
1099		return rc;
1100
1101	/* This sets the symbol_duration according frequency on the 212.
1102	 * TODO move this handling while set channel and page in cfg802154.
1103	 * We can do that, this timings are according 802.15.4 standard.
1104	 * If we do that in cfg802154, this is a more generic calculation.
1105	 *
1106	 * This should also protected from ifs_timer. Means cancel timer and
1107	 * init with a new value. For now, this is okay.
1108	 */
1109	if (channel == 0) {
1110		if (page == 0) {
1111			/* SUB:0 and BPSK:0 -> BPSK-20 */
1112			lp->hw->phy->symbol_duration = 50;
1113		} else {
1114			/* SUB:1 and BPSK:0 -> BPSK-40 */
1115			lp->hw->phy->symbol_duration = 25;
1116		}
1117	} else {
1118		if (page == 0)
1119			/* SUB:0 and BPSK:1 -> OQPSK-100/200/400 */
1120			lp->hw->phy->symbol_duration = 40;
1121		else
1122			/* SUB:1 and BPSK:1 -> OQPSK-250/500/1000 */
1123			lp->hw->phy->symbol_duration = 16;
1124	}
1125
1126	lp->hw->phy->lifs_period = IEEE802154_LIFS_PERIOD *
1127				   lp->hw->phy->symbol_duration;
1128	lp->hw->phy->sifs_period = IEEE802154_SIFS_PERIOD *
1129				   lp->hw->phy->symbol_duration;
1130
1131	return at86rf230_write_subreg(lp, SR_CHANNEL, channel);
1132}
1133
1134static int
1135at86rf230_channel(struct ieee802154_hw *hw, u8 page, u8 channel)
1136{
1137	struct at86rf230_local *lp = hw->priv;
1138	int rc;
1139
1140	rc = lp->data->set_channel(lp, page, channel);
1141	/* Wait for PLL */
1142	usleep_range(lp->data->t_channel_switch,
1143		     lp->data->t_channel_switch + 10);
1144
1145	lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT;
1146	return rc;
1147}
1148
1149static int
1150at86rf230_set_hw_addr_filt(struct ieee802154_hw *hw,
1151			   struct ieee802154_hw_addr_filt *filt,
1152			   unsigned long changed)
1153{
1154	struct at86rf230_local *lp = hw->priv;
1155
1156	if (changed & IEEE802154_AFILT_SADDR_CHANGED) {
1157		u16 addr = le16_to_cpu(filt->short_addr);
1158
1159		dev_vdbg(&lp->spi->dev,
1160			 "at86rf230_set_hw_addr_filt called for saddr\n");
1161		__at86rf230_write(lp, RG_SHORT_ADDR_0, addr);
1162		__at86rf230_write(lp, RG_SHORT_ADDR_1, addr >> 8);
1163	}
1164
1165	if (changed & IEEE802154_AFILT_PANID_CHANGED) {
1166		u16 pan = le16_to_cpu(filt->pan_id);
1167
1168		dev_vdbg(&lp->spi->dev,
1169			 "at86rf230_set_hw_addr_filt called for pan id\n");
1170		__at86rf230_write(lp, RG_PAN_ID_0, pan);
1171		__at86rf230_write(lp, RG_PAN_ID_1, pan >> 8);
1172	}
1173
1174	if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) {
1175		u8 i, addr[8];
1176
1177		memcpy(addr, &filt->ieee_addr, 8);
1178		dev_vdbg(&lp->spi->dev,
1179			 "at86rf230_set_hw_addr_filt called for IEEE addr\n");
1180		for (i = 0; i < 8; i++)
1181			__at86rf230_write(lp, RG_IEEE_ADDR_0 + i, addr[i]);
1182	}
1183
1184	if (changed & IEEE802154_AFILT_PANC_CHANGED) {
1185		dev_vdbg(&lp->spi->dev,
1186			 "at86rf230_set_hw_addr_filt called for panc change\n");
1187		if (filt->pan_coord)
1188			at86rf230_write_subreg(lp, SR_AACK_I_AM_COORD, 1);
1189		else
1190			at86rf230_write_subreg(lp, SR_AACK_I_AM_COORD, 0);
1191	}
1192
1193	return 0;
1194}
1195
1196static int
1197at86rf230_set_txpower(struct ieee802154_hw *hw, s8 db)
1198{
1199	struct at86rf230_local *lp = hw->priv;
1200
1201	/* typical maximum output is 5dBm with RG_PHY_TX_PWR 0x60, lower five
1202	 * bits decrease power in 1dB steps. 0x60 represents extra PA gain of
1203	 * 0dB.
1204	 * thus, supported values for db range from -26 to 5, for 31dB of
1205	 * reduction to 0dB of reduction.
1206	 */
1207	if (db > 5 || db < -26)
1208		return -EINVAL;
1209
1210	db = -(db - 5);
1211
1212	return __at86rf230_write(lp, RG_PHY_TX_PWR, 0x60 | db);
1213}
1214
1215static int
1216at86rf230_set_lbt(struct ieee802154_hw *hw, bool on)
1217{
1218	struct at86rf230_local *lp = hw->priv;
1219
1220	return at86rf230_write_subreg(lp, SR_CSMA_LBT_MODE, on);
1221}
1222
1223static int
1224at86rf230_set_cca_mode(struct ieee802154_hw *hw,
1225		       const struct wpan_phy_cca *cca)
1226{
1227	struct at86rf230_local *lp = hw->priv;
1228	u8 val;
1229
1230	/* mapping 802.15.4 to driver spec */
1231	switch (cca->mode) {
1232	case NL802154_CCA_ENERGY:
1233		val = 1;
1234		break;
1235	case NL802154_CCA_CARRIER:
1236		val = 2;
1237		break;
1238	case NL802154_CCA_ENERGY_CARRIER:
1239		switch (cca->opt) {
1240		case NL802154_CCA_OPT_ENERGY_CARRIER_AND:
1241			val = 3;
1242			break;
1243		case NL802154_CCA_OPT_ENERGY_CARRIER_OR:
1244			val = 0;
1245			break;
1246		default:
1247			return -EINVAL;
1248		}
1249		break;
1250	default:
1251		return -EINVAL;
1252	}
1253
1254	return at86rf230_write_subreg(lp, SR_CCA_MODE, val);
1255}
1256
1257static int
1258at86rf212_get_desens_steps(struct at86rf230_local *lp, s32 level)
1259{
1260	return (level - lp->data->rssi_base_val) * 100 / 207;
1261}
1262
1263static int
1264at86rf23x_get_desens_steps(struct at86rf230_local *lp, s32 level)
1265{
1266	return (level - lp->data->rssi_base_val) / 2;
1267}
1268
1269static int
1270at86rf230_set_cca_ed_level(struct ieee802154_hw *hw, s32 level)
1271{
1272	struct at86rf230_local *lp = hw->priv;
1273
1274	if (level < lp->data->rssi_base_val || level > 30)
1275		return -EINVAL;
1276
1277	return at86rf230_write_subreg(lp, SR_CCA_ED_THRES,
1278				      lp->data->get_desense_steps(lp, level));
1279}
1280
1281static int
1282at86rf230_set_csma_params(struct ieee802154_hw *hw, u8 min_be, u8 max_be,
1283			  u8 retries)
1284{
1285	struct at86rf230_local *lp = hw->priv;
1286	int rc;
1287
1288	rc = at86rf230_write_subreg(lp, SR_MIN_BE, min_be);
1289	if (rc)
1290		return rc;
1291
1292	rc = at86rf230_write_subreg(lp, SR_MAX_BE, max_be);
1293	if (rc)
1294		return rc;
1295
1296	return at86rf230_write_subreg(lp, SR_MAX_CSMA_RETRIES, retries);
1297}
1298
1299static int
1300at86rf230_set_frame_retries(struct ieee802154_hw *hw, s8 retries)
1301{
1302	struct at86rf230_local *lp = hw->priv;
1303	int rc = 0;
1304
1305	lp->tx_aret = retries >= 0;
1306	lp->max_frame_retries = retries;
1307
1308	if (retries >= 0)
1309		rc = at86rf230_write_subreg(lp, SR_MAX_FRAME_RETRIES, retries);
1310
1311	return rc;
1312}
1313
1314static int
1315at86rf230_set_promiscuous_mode(struct ieee802154_hw *hw, const bool on)
1316{
1317	struct at86rf230_local *lp = hw->priv;
1318	int rc;
1319
1320	if (on) {
1321		rc = at86rf230_write_subreg(lp, SR_AACK_DIS_ACK, 1);
1322		if (rc < 0)
1323			return rc;
1324
1325		rc = at86rf230_write_subreg(lp, SR_AACK_PROM_MODE, 1);
1326		if (rc < 0)
1327			return rc;
1328	} else {
1329		rc = at86rf230_write_subreg(lp, SR_AACK_PROM_MODE, 0);
1330		if (rc < 0)
1331			return rc;
1332
1333		rc = at86rf230_write_subreg(lp, SR_AACK_DIS_ACK, 0);
1334		if (rc < 0)
1335			return rc;
1336	}
1337
1338	return 0;
1339}
1340
1341static const struct ieee802154_ops at86rf230_ops = {
1342	.owner = THIS_MODULE,
1343	.xmit_async = at86rf230_xmit,
1344	.ed = at86rf230_ed,
1345	.set_channel = at86rf230_channel,
1346	.start = at86rf230_start,
1347	.stop = at86rf230_stop,
1348	.set_hw_addr_filt = at86rf230_set_hw_addr_filt,
1349	.set_txpower = at86rf230_set_txpower,
1350	.set_lbt = at86rf230_set_lbt,
1351	.set_cca_mode = at86rf230_set_cca_mode,
1352	.set_cca_ed_level = at86rf230_set_cca_ed_level,
1353	.set_csma_params = at86rf230_set_csma_params,
1354	.set_frame_retries = at86rf230_set_frame_retries,
1355	.set_promiscuous_mode = at86rf230_set_promiscuous_mode,
1356};
1357
1358static struct at86rf2xx_chip_data at86rf233_data = {
1359	.t_sleep_cycle = 330,
1360	.t_channel_switch = 11,
1361	.t_reset_to_off = 26,
1362	.t_off_to_aack = 80,
1363	.t_off_to_tx_on = 80,
1364	.t_frame = 4096,
1365	.t_p_ack = 545,
1366	.rssi_base_val = -91,
1367	.set_channel = at86rf23x_set_channel,
1368	.get_desense_steps = at86rf23x_get_desens_steps
1369};
1370
1371static struct at86rf2xx_chip_data at86rf231_data = {
1372	.t_sleep_cycle = 330,
1373	.t_channel_switch = 24,
1374	.t_reset_to_off = 37,
1375	.t_off_to_aack = 110,
1376	.t_off_to_tx_on = 110,
1377	.t_frame = 4096,
1378	.t_p_ack = 545,
1379	.rssi_base_val = -91,
1380	.set_channel = at86rf23x_set_channel,
1381	.get_desense_steps = at86rf23x_get_desens_steps
1382};
1383
1384static struct at86rf2xx_chip_data at86rf212_data = {
1385	.t_sleep_cycle = 330,
1386	.t_channel_switch = 11,
1387	.t_reset_to_off = 26,
1388	.t_off_to_aack = 200,
1389	.t_off_to_tx_on = 200,
1390	.t_frame = 4096,
1391	.t_p_ack = 545,
1392	.rssi_base_val = -100,
1393	.set_channel = at86rf212_set_channel,
1394	.get_desense_steps = at86rf212_get_desens_steps
1395};
1396
1397static int at86rf230_hw_init(struct at86rf230_local *lp, u8 xtal_trim)
1398{
1399	int rc, irq_type, irq_pol = IRQ_ACTIVE_HIGH;
1400	unsigned int dvdd;
1401	u8 csma_seed[2];
1402
1403	rc = at86rf230_sync_state_change(lp, STATE_FORCE_TRX_OFF);
1404	if (rc)
1405		return rc;
1406
1407	irq_type = irq_get_trigger_type(lp->spi->irq);
1408	if (irq_type == IRQ_TYPE_EDGE_RISING ||
1409	    irq_type == IRQ_TYPE_EDGE_FALLING)
1410		dev_warn(&lp->spi->dev,
1411			 "Using edge triggered irq's are not recommended!\n");
1412	if (irq_type == IRQ_TYPE_EDGE_FALLING ||
1413	    irq_type == IRQ_TYPE_LEVEL_LOW)
1414		irq_pol = IRQ_ACTIVE_LOW;
1415
1416	rc = at86rf230_write_subreg(lp, SR_IRQ_POLARITY, irq_pol);
1417	if (rc)
1418		return rc;
1419
1420	rc = at86rf230_write_subreg(lp, SR_RX_SAFE_MODE, 1);
1421	if (rc)
1422		return rc;
1423
1424	rc = at86rf230_write_subreg(lp, SR_IRQ_MASK, IRQ_TRX_END);
1425	if (rc)
1426		return rc;
1427
1428	/* reset values differs in at86rf231 and at86rf233 */
1429	rc = at86rf230_write_subreg(lp, SR_IRQ_MASK_MODE, 0);
1430	if (rc)
1431		return rc;
1432
1433	get_random_bytes(csma_seed, ARRAY_SIZE(csma_seed));
1434	rc = at86rf230_write_subreg(lp, SR_CSMA_SEED_0, csma_seed[0]);
1435	if (rc)
1436		return rc;
1437	rc = at86rf230_write_subreg(lp, SR_CSMA_SEED_1, csma_seed[1]);
1438	if (rc)
1439		return rc;
1440
1441	/* CLKM changes are applied immediately */
1442	rc = at86rf230_write_subreg(lp, SR_CLKM_SHA_SEL, 0x00);
1443	if (rc)
1444		return rc;
1445
1446	/* Turn CLKM Off */
1447	rc = at86rf230_write_subreg(lp, SR_CLKM_CTRL, 0x00);
1448	if (rc)
1449		return rc;
1450	/* Wait the next SLEEP cycle */
1451	usleep_range(lp->data->t_sleep_cycle,
1452		     lp->data->t_sleep_cycle + 100);
1453
1454	/* xtal_trim value is calculated by:
1455	 * CL = 0.5 * (CX + CTRIM + CPAR)
1456	 *
1457	 * whereas:
1458	 * CL = capacitor of used crystal
1459	 * CX = connected capacitors at xtal pins
1460	 * CPAR = in all at86rf2xx datasheets this is a constant value 3 pF,
1461	 *	  but this is different on each board setup. You need to fine
1462	 *	  tuning this value via CTRIM.
1463	 * CTRIM = variable capacitor setting. Resolution is 0.3 pF range is
1464	 *	   0 pF upto 4.5 pF.
1465	 *
1466	 * Examples:
1467	 * atben transceiver:
1468	 *
1469	 * CL = 8 pF
1470	 * CX = 12 pF
1471	 * CPAR = 3 pF (We assume the magic constant from datasheet)
1472	 * CTRIM = 0.9 pF
1473	 *
1474	 * (12+0.9+3)/2 = 7.95 which is nearly at 8 pF
1475	 *
1476	 * xtal_trim = 0x3
1477	 *
1478	 * openlabs transceiver:
1479	 *
1480	 * CL = 16 pF
1481	 * CX = 22 pF
1482	 * CPAR = 3 pF (We assume the magic constant from datasheet)
1483	 * CTRIM = 4.5 pF
1484	 *
1485	 * (22+4.5+3)/2 = 14.75 which is the nearest value to 16 pF
1486	 *
1487	 * xtal_trim = 0xf
1488	 */
1489	rc = at86rf230_write_subreg(lp, SR_XTAL_TRIM, xtal_trim);
1490	if (rc)
1491		return rc;
1492
1493	rc = at86rf230_read_subreg(lp, SR_DVDD_OK, &dvdd);
1494	if (rc)
1495		return rc;
1496	if (!dvdd) {
1497		dev_err(&lp->spi->dev, "DVDD error\n");
1498		return -EINVAL;
1499	}
1500
1501	/* Force setting slotted operation bit to 0. Sometimes the atben
1502	 * sets this bit and I don't know why. We set this always force
1503	 * to zero while probing.
1504	 */
1505	return at86rf230_write_subreg(lp, SR_SLOTTED_OPERATION, 0);
1506}
1507
1508static int
1509at86rf230_get_pdata(struct spi_device *spi, int *rstn, int *slp_tr,
1510		    u8 *xtal_trim)
1511{
1512	struct at86rf230_platform_data *pdata = spi->dev.platform_data;
1513	int ret;
1514
1515	if (!IS_ENABLED(CONFIG_OF) || !spi->dev.of_node) {
1516		if (!pdata)
1517			return -ENOENT;
1518
1519		*rstn = pdata->rstn;
1520		*slp_tr = pdata->slp_tr;
1521		*xtal_trim = pdata->xtal_trim;
1522		return 0;
1523	}
1524
1525	*rstn = of_get_named_gpio(spi->dev.of_node, "reset-gpio", 0);
1526	*slp_tr = of_get_named_gpio(spi->dev.of_node, "sleep-gpio", 0);
1527	ret = of_property_read_u8(spi->dev.of_node, "xtal-trim", xtal_trim);
1528	if (ret < 0 && ret != -EINVAL)
1529		return ret;
1530
1531	return 0;
1532}
1533
1534static int
1535at86rf230_detect_device(struct at86rf230_local *lp)
1536{
1537	unsigned int part, version, val;
1538	u16 man_id = 0;
1539	const char *chip;
1540	int rc;
1541
1542	rc = __at86rf230_read(lp, RG_MAN_ID_0, &val);
1543	if (rc)
1544		return rc;
1545	man_id |= val;
1546
1547	rc = __at86rf230_read(lp, RG_MAN_ID_1, &val);
1548	if (rc)
1549		return rc;
1550	man_id |= (val << 8);
1551
1552	rc = __at86rf230_read(lp, RG_PART_NUM, &part);
1553	if (rc)
1554		return rc;
1555
1556	rc = __at86rf230_read(lp, RG_VERSION_NUM, &version);
1557	if (rc)
1558		return rc;
1559
1560	if (man_id != 0x001f) {
1561		dev_err(&lp->spi->dev, "Non-Atmel dev found (MAN_ID %02x %02x)\n",
1562			man_id >> 8, man_id & 0xFF);
1563		return -EINVAL;
1564	}
1565
1566	lp->hw->flags = IEEE802154_HW_TX_OMIT_CKSUM | IEEE802154_HW_AACK |
1567			IEEE802154_HW_TXPOWER | IEEE802154_HW_ARET |
1568			IEEE802154_HW_AFILT | IEEE802154_HW_PROMISCUOUS;
1569
1570	lp->hw->phy->cca.mode = NL802154_CCA_ENERGY;
1571
1572	switch (part) {
1573	case 2:
1574		chip = "at86rf230";
1575		rc = -ENOTSUPP;
1576		break;
1577	case 3:
1578		chip = "at86rf231";
1579		lp->data = &at86rf231_data;
1580		lp->hw->phy->channels_supported[0] = 0x7FFF800;
1581		lp->hw->phy->current_channel = 11;
1582		lp->hw->phy->symbol_duration = 16;
1583		break;
1584	case 7:
1585		chip = "at86rf212";
1586		lp->data = &at86rf212_data;
1587		lp->hw->flags |= IEEE802154_HW_LBT;
1588		lp->hw->phy->channels_supported[0] = 0x00007FF;
1589		lp->hw->phy->channels_supported[2] = 0x00007FF;
1590		lp->hw->phy->current_channel = 5;
1591		lp->hw->phy->symbol_duration = 25;
1592		break;
1593	case 11:
1594		chip = "at86rf233";
1595		lp->data = &at86rf233_data;
1596		lp->hw->phy->channels_supported[0] = 0x7FFF800;
1597		lp->hw->phy->current_channel = 13;
1598		lp->hw->phy->symbol_duration = 16;
1599		break;
1600	default:
1601		chip = "unknown";
1602		rc = -ENOTSUPP;
1603		break;
1604	}
1605
1606	dev_info(&lp->spi->dev, "Detected %s chip version %d\n", chip, version);
1607
1608	return rc;
1609}
1610
1611static void
1612at86rf230_setup_spi_messages(struct at86rf230_local *lp)
1613{
1614	lp->state.lp = lp;
1615	lp->state.irq = lp->spi->irq;
1616	spi_message_init(&lp->state.msg);
1617	lp->state.msg.context = &lp->state;
1618	lp->state.trx.len = 2;
1619	lp->state.trx.tx_buf = lp->state.buf;
1620	lp->state.trx.rx_buf = lp->state.buf;
1621	spi_message_add_tail(&lp->state.trx, &lp->state.msg);
1622	hrtimer_init(&lp->state.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1623	lp->state.timer.function = at86rf230_async_state_timer;
1624
1625	lp->irq.lp = lp;
1626	lp->irq.irq = lp->spi->irq;
1627	spi_message_init(&lp->irq.msg);
1628	lp->irq.msg.context = &lp->irq;
1629	lp->irq.trx.len = 2;
1630	lp->irq.trx.tx_buf = lp->irq.buf;
1631	lp->irq.trx.rx_buf = lp->irq.buf;
1632	spi_message_add_tail(&lp->irq.trx, &lp->irq.msg);
1633	hrtimer_init(&lp->irq.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1634	lp->irq.timer.function = at86rf230_async_state_timer;
1635
1636	lp->tx.lp = lp;
1637	lp->tx.irq = lp->spi->irq;
1638	spi_message_init(&lp->tx.msg);
1639	lp->tx.msg.context = &lp->tx;
1640	lp->tx.trx.len = 2;
1641	lp->tx.trx.tx_buf = lp->tx.buf;
1642	lp->tx.trx.rx_buf = lp->tx.buf;
1643	spi_message_add_tail(&lp->tx.trx, &lp->tx.msg);
1644	hrtimer_init(&lp->tx.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1645	lp->tx.timer.function = at86rf230_async_state_timer;
1646}
1647
1648static int at86rf230_probe(struct spi_device *spi)
1649{
1650	struct ieee802154_hw *hw;
1651	struct at86rf230_local *lp;
1652	unsigned int status;
1653	int rc, irq_type, rstn, slp_tr;
1654	u8 xtal_trim = 0;
1655
1656	if (!spi->irq) {
1657		dev_err(&spi->dev, "no IRQ specified\n");
1658		return -EINVAL;
1659	}
1660
1661	rc = at86rf230_get_pdata(spi, &rstn, &slp_tr, &xtal_trim);
1662	if (rc < 0) {
1663		dev_err(&spi->dev, "failed to parse platform_data: %d\n", rc);
1664		return rc;
1665	}
1666
1667	if (gpio_is_valid(rstn)) {
1668		rc = devm_gpio_request_one(&spi->dev, rstn,
1669					   GPIOF_OUT_INIT_HIGH, "rstn");
1670		if (rc)
1671			return rc;
1672	}
1673
1674	if (gpio_is_valid(slp_tr)) {
1675		rc = devm_gpio_request_one(&spi->dev, slp_tr,
1676					   GPIOF_OUT_INIT_LOW, "slp_tr");
1677		if (rc)
1678			return rc;
1679	}
1680
1681	/* Reset */
1682	if (gpio_is_valid(rstn)) {
1683		udelay(1);
1684		gpio_set_value(rstn, 0);
1685		udelay(1);
1686		gpio_set_value(rstn, 1);
1687		usleep_range(120, 240);
1688	}
1689
1690	hw = ieee802154_alloc_hw(sizeof(*lp), &at86rf230_ops);
1691	if (!hw)
1692		return -ENOMEM;
1693
1694	lp = hw->priv;
1695	lp->hw = hw;
1696	lp->spi = spi;
1697	lp->slp_tr = slp_tr;
1698	hw->parent = &spi->dev;
1699	hw->vif_data_size = sizeof(*lp);
1700	ieee802154_random_extended_addr(&hw->phy->perm_extended_addr);
1701
1702	lp->regmap = devm_regmap_init_spi(spi, &at86rf230_regmap_spi_config);
1703	if (IS_ERR(lp->regmap)) {
1704		rc = PTR_ERR(lp->regmap);
1705		dev_err(&spi->dev, "Failed to allocate register map: %d\n",
1706			rc);
1707		goto free_dev;
1708	}
1709
1710	at86rf230_setup_spi_messages(lp);
1711
1712	rc = at86rf230_detect_device(lp);
1713	if (rc < 0)
1714		goto free_dev;
1715
1716	init_completion(&lp->state_complete);
1717
1718	spi_set_drvdata(spi, lp);
1719
1720	rc = at86rf230_hw_init(lp, xtal_trim);
1721	if (rc)
1722		goto free_dev;
1723
1724	/* Read irq status register to reset irq line */
1725	rc = at86rf230_read_subreg(lp, RG_IRQ_STATUS, 0xff, 0, &status);
1726	if (rc)
1727		goto free_dev;
1728
1729	irq_type = irq_get_trigger_type(spi->irq);
1730	if (!irq_type)
1731		irq_type = IRQF_TRIGGER_RISING;
1732
1733	rc = devm_request_irq(&spi->dev, spi->irq, at86rf230_isr,
1734			      IRQF_SHARED | irq_type, dev_name(&spi->dev), lp);
1735	if (rc)
1736		goto free_dev;
1737
1738	rc = ieee802154_register_hw(lp->hw);
1739	if (rc)
1740		goto free_dev;
1741
1742	return rc;
1743
1744free_dev:
1745	ieee802154_free_hw(lp->hw);
1746
1747	return rc;
1748}
1749
1750static int at86rf230_remove(struct spi_device *spi)
1751{
1752	struct at86rf230_local *lp = spi_get_drvdata(spi);
1753
1754	/* mask all at86rf230 irq's */
1755	at86rf230_write_subreg(lp, SR_IRQ_MASK, 0);
1756	ieee802154_unregister_hw(lp->hw);
1757	ieee802154_free_hw(lp->hw);
1758	dev_dbg(&spi->dev, "unregistered at86rf230\n");
1759
1760	return 0;
1761}
1762
1763static const struct of_device_id at86rf230_of_match[] = {
1764	{ .compatible = "atmel,at86rf230", },
1765	{ .compatible = "atmel,at86rf231", },
1766	{ .compatible = "atmel,at86rf233", },
1767	{ .compatible = "atmel,at86rf212", },
1768	{ },
1769};
1770MODULE_DEVICE_TABLE(of, at86rf230_of_match);
1771
1772static const struct spi_device_id at86rf230_device_id[] = {
1773	{ .name = "at86rf230", },
1774	{ .name = "at86rf231", },
1775	{ .name = "at86rf233", },
1776	{ .name = "at86rf212", },
1777	{ },
1778};
1779MODULE_DEVICE_TABLE(spi, at86rf230_device_id);
1780
1781static struct spi_driver at86rf230_driver = {
1782	.id_table = at86rf230_device_id,
1783	.driver = {
1784		.of_match_table = of_match_ptr(at86rf230_of_match),
1785		.name	= "at86rf230",
1786		.owner	= THIS_MODULE,
1787	},
1788	.probe      = at86rf230_probe,
1789	.remove     = at86rf230_remove,
1790};
1791
1792module_spi_driver(at86rf230_driver);
1793
1794MODULE_DESCRIPTION("AT86RF230 Transceiver Driver");
1795MODULE_LICENSE("GPL v2");
1796