1/*
2 * This code is derived from the VIA reference driver (copyright message
3 * below) provided to Red Hat by VIA Networking Technologies, Inc. for
4 * addition to the Linux kernel.
5 *
6 * The code has been merged into one source file, cleaned up to follow
7 * Linux coding style,  ported to the Linux 2.6 kernel tree and cleaned
8 * for 64bit hardware platforms.
9 *
10 * TODO
11 *	rx_copybreak/alignment
12 *	More testing
13 *
14 * The changes are (c) Copyright 2004, Red Hat Inc. <alan@lxorguk.ukuu.org.uk>
15 * Additional fixes and clean up: Francois Romieu
16 *
17 * This source has not been verified for use in safety critical systems.
18 *
19 * Please direct queries about the revamped driver to the linux-kernel
20 * list not VIA.
21 *
22 * Original code:
23 *
24 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
25 * All rights reserved.
26 *
27 * This software may be redistributed and/or modified under
28 * the terms of the GNU General Public License as published by the Free
29 * Software Foundation; either version 2 of the License, or
30 * any later version.
31 *
32 * This program is distributed in the hope that it will be useful, but
33 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
34 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
35 * for more details.
36 *
37 * Author: Chuang Liang-Shing, AJ Jiang
38 *
39 * Date: Jan 24, 2003
40 *
41 * MODULE_LICENSE("GPL");
42 *
43 */
44
45#include <linux/module.h>
46#include <linux/types.h>
47#include <linux/bitops.h>
48#include <linux/init.h>
49#include <linux/dma-mapping.h>
50#include <linux/mm.h>
51#include <linux/errno.h>
52#include <linux/ioport.h>
53#include <linux/pci.h>
54#include <linux/kernel.h>
55#include <linux/netdevice.h>
56#include <linux/etherdevice.h>
57#include <linux/skbuff.h>
58#include <linux/delay.h>
59#include <linux/timer.h>
60#include <linux/slab.h>
61#include <linux/interrupt.h>
62#include <linux/string.h>
63#include <linux/wait.h>
64#include <linux/io.h>
65#include <linux/if.h>
66#include <linux/uaccess.h>
67#include <linux/proc_fs.h>
68#include <linux/of_address.h>
69#include <linux/of_device.h>
70#include <linux/of_irq.h>
71#include <linux/inetdevice.h>
72#include <linux/platform_device.h>
73#include <linux/reboot.h>
74#include <linux/ethtool.h>
75#include <linux/mii.h>
76#include <linux/in.h>
77#include <linux/if_arp.h>
78#include <linux/if_vlan.h>
79#include <linux/ip.h>
80#include <linux/tcp.h>
81#include <linux/udp.h>
82#include <linux/crc-ccitt.h>
83#include <linux/crc32.h>
84
85#include "via-velocity.h"
86
87enum velocity_bus_type {
88	BUS_PCI,
89	BUS_PLATFORM,
90};
91
92static int velocity_nics;
93static int msglevel = MSG_LEVEL_INFO;
94
95static void velocity_set_power_state(struct velocity_info *vptr, char state)
96{
97	void *addr = vptr->mac_regs;
98
99	if (vptr->pdev)
100		pci_set_power_state(vptr->pdev, state);
101	else
102		writeb(state, addr + 0x154);
103}
104
105/**
106 *	mac_get_cam_mask	-	Read a CAM mask
107 *	@regs: register block for this velocity
108 *	@mask: buffer to store mask
109 *
110 *	Fetch the mask bits of the selected CAM and store them into the
111 *	provided mask buffer.
112 */
113static void mac_get_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
114{
115	int i;
116
117	/* Select CAM mask */
118	BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
119
120	writeb(0, &regs->CAMADDR);
121
122	/* read mask */
123	for (i = 0; i < 8; i++)
124		*mask++ = readb(&(regs->MARCAM[i]));
125
126	/* disable CAMEN */
127	writeb(0, &regs->CAMADDR);
128
129	/* Select mar */
130	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
131}
132
133/**
134 *	mac_set_cam_mask	-	Set a CAM mask
135 *	@regs: register block for this velocity
136 *	@mask: CAM mask to load
137 *
138 *	Store a new mask into a CAM
139 */
140static void mac_set_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
141{
142	int i;
143	/* Select CAM mask */
144	BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
145
146	writeb(CAMADDR_CAMEN, &regs->CAMADDR);
147
148	for (i = 0; i < 8; i++)
149		writeb(*mask++, &(regs->MARCAM[i]));
150
151	/* disable CAMEN */
152	writeb(0, &regs->CAMADDR);
153
154	/* Select mar */
155	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
156}
157
158static void mac_set_vlan_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
159{
160	int i;
161	/* Select CAM mask */
162	BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
163
164	writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL, &regs->CAMADDR);
165
166	for (i = 0; i < 8; i++)
167		writeb(*mask++, &(regs->MARCAM[i]));
168
169	/* disable CAMEN */
170	writeb(0, &regs->CAMADDR);
171
172	/* Select mar */
173	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
174}
175
176/**
177 *	mac_set_cam	-	set CAM data
178 *	@regs: register block of this velocity
179 *	@idx: Cam index
180 *	@addr: 2 or 6 bytes of CAM data
181 *
182 *	Load an address or vlan tag into a CAM
183 */
184static void mac_set_cam(struct mac_regs __iomem *regs, int idx, const u8 *addr)
185{
186	int i;
187
188	/* Select CAM mask */
189	BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
190
191	idx &= (64 - 1);
192
193	writeb(CAMADDR_CAMEN | idx, &regs->CAMADDR);
194
195	for (i = 0; i < 6; i++)
196		writeb(*addr++, &(regs->MARCAM[i]));
197
198	BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
199
200	udelay(10);
201
202	writeb(0, &regs->CAMADDR);
203
204	/* Select mar */
205	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
206}
207
208static void mac_set_vlan_cam(struct mac_regs __iomem *regs, int idx,
209			     const u8 *addr)
210{
211
212	/* Select CAM mask */
213	BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
214
215	idx &= (64 - 1);
216
217	writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL | idx, &regs->CAMADDR);
218	writew(*((u16 *) addr), &regs->MARCAM[0]);
219
220	BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
221
222	udelay(10);
223
224	writeb(0, &regs->CAMADDR);
225
226	/* Select mar */
227	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
228}
229
230
231/**
232 *	mac_wol_reset	-	reset WOL after exiting low power
233 *	@regs: register block of this velocity
234 *
235 *	Called after we drop out of wake on lan mode in order to
236 *	reset the Wake on lan features. This function doesn't restore
237 *	the rest of the logic from the result of sleep/wakeup
238 */
239static void mac_wol_reset(struct mac_regs __iomem *regs)
240{
241
242	/* Turn off SWPTAG right after leaving power mode */
243	BYTE_REG_BITS_OFF(STICKHW_SWPTAG, &regs->STICKHW);
244	/* clear sticky bits */
245	BYTE_REG_BITS_OFF((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
246
247	BYTE_REG_BITS_OFF(CHIPGCR_FCGMII, &regs->CHIPGCR);
248	BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
249	/* disable force PME-enable */
250	writeb(WOLCFG_PMEOVR, &regs->WOLCFGClr);
251	/* disable power-event config bit */
252	writew(0xFFFF, &regs->WOLCRClr);
253	/* clear power status */
254	writew(0xFFFF, &regs->WOLSRClr);
255}
256
257static const struct ethtool_ops velocity_ethtool_ops;
258
259/*
260    Define module options
261*/
262
263MODULE_AUTHOR("VIA Networking Technologies, Inc.");
264MODULE_LICENSE("GPL");
265MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver");
266
267#define VELOCITY_PARAM(N, D) \
268	static int N[MAX_UNITS] = OPTION_DEFAULT;\
269	module_param_array(N, int, NULL, 0); \
270	MODULE_PARM_DESC(N, D);
271
272#define RX_DESC_MIN     64
273#define RX_DESC_MAX     255
274#define RX_DESC_DEF     64
275VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors");
276
277#define TX_DESC_MIN     16
278#define TX_DESC_MAX     256
279#define TX_DESC_DEF     64
280VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors");
281
282#define RX_THRESH_MIN   0
283#define RX_THRESH_MAX   3
284#define RX_THRESH_DEF   0
285/* rx_thresh[] is used for controlling the receive fifo threshold.
286   0: indicate the rxfifo threshold is 128 bytes.
287   1: indicate the rxfifo threshold is 512 bytes.
288   2: indicate the rxfifo threshold is 1024 bytes.
289   3: indicate the rxfifo threshold is store & forward.
290*/
291VELOCITY_PARAM(rx_thresh, "Receive fifo threshold");
292
293#define DMA_LENGTH_MIN  0
294#define DMA_LENGTH_MAX  7
295#define DMA_LENGTH_DEF  6
296
297/* DMA_length[] is used for controlling the DMA length
298   0: 8 DWORDs
299   1: 16 DWORDs
300   2: 32 DWORDs
301   3: 64 DWORDs
302   4: 128 DWORDs
303   5: 256 DWORDs
304   6: SF(flush till emply)
305   7: SF(flush till emply)
306*/
307VELOCITY_PARAM(DMA_length, "DMA length");
308
309#define IP_ALIG_DEF     0
310/* IP_byte_align[] is used for IP header DWORD byte aligned
311   0: indicate the IP header won't be DWORD byte aligned.(Default) .
312   1: indicate the IP header will be DWORD byte aligned.
313      In some environment, the IP header should be DWORD byte aligned,
314      or the packet will be droped when we receive it. (eg: IPVS)
315*/
316VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned");
317
318#define FLOW_CNTL_DEF   1
319#define FLOW_CNTL_MIN   1
320#define FLOW_CNTL_MAX   5
321
322/* flow_control[] is used for setting the flow control ability of NIC.
323   1: hardware deafult - AUTO (default). Use Hardware default value in ANAR.
324   2: enable TX flow control.
325   3: enable RX flow control.
326   4: enable RX/TX flow control.
327   5: disable
328*/
329VELOCITY_PARAM(flow_control, "Enable flow control ability");
330
331#define MED_LNK_DEF 0
332#define MED_LNK_MIN 0
333#define MED_LNK_MAX 5
334/* speed_duplex[] is used for setting the speed and duplex mode of NIC.
335   0: indicate autonegotiation for both speed and duplex mode
336   1: indicate 100Mbps half duplex mode
337   2: indicate 100Mbps full duplex mode
338   3: indicate 10Mbps half duplex mode
339   4: indicate 10Mbps full duplex mode
340   5: indicate 1000Mbps full duplex mode
341
342   Note:
343   if EEPROM have been set to the force mode, this option is ignored
344   by driver.
345*/
346VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode");
347
348#define VAL_PKT_LEN_DEF     0
349/* ValPktLen[] is used for setting the checksum offload ability of NIC.
350   0: Receive frame with invalid layer 2 length (Default)
351   1: Drop frame with invalid layer 2 length
352*/
353VELOCITY_PARAM(ValPktLen, "Receiving or Drop invalid 802.3 frame");
354
355#define WOL_OPT_DEF     0
356#define WOL_OPT_MIN     0
357#define WOL_OPT_MAX     7
358/* wol_opts[] is used for controlling wake on lan behavior.
359   0: Wake up if recevied a magic packet. (Default)
360   1: Wake up if link status is on/off.
361   2: Wake up if recevied an arp packet.
362   4: Wake up if recevied any unicast packet.
363   Those value can be sumed up to support more than one option.
364*/
365VELOCITY_PARAM(wol_opts, "Wake On Lan options");
366
367static int rx_copybreak = 200;
368module_param(rx_copybreak, int, 0644);
369MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
370
371/*
372 *	Internal board variants. At the moment we have only one
373 */
374static struct velocity_info_tbl chip_info_table[] = {
375	{CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 1, 0x00FFFFFFUL},
376	{ }
377};
378
379/*
380 *	Describe the PCI device identifiers that we support in this
381 *	device driver. Used for hotplug autoloading.
382 */
383
384static const struct pci_device_id velocity_pci_id_table[] = {
385	{ PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X) },
386	{ }
387};
388
389MODULE_DEVICE_TABLE(pci, velocity_pci_id_table);
390
391/**
392 *	Describe the OF device identifiers that we support in this
393 *	device driver. Used for devicetree nodes.
394 */
395static const struct of_device_id velocity_of_ids[] = {
396	{ .compatible = "via,velocity-vt6110", .data = &chip_info_table[0] },
397	{ /* Sentinel */ },
398};
399MODULE_DEVICE_TABLE(of, velocity_of_ids);
400
401/**
402 *	get_chip_name	- 	identifier to name
403 *	@id: chip identifier
404 *
405 *	Given a chip identifier return a suitable description. Returns
406 *	a pointer a static string valid while the driver is loaded.
407 */
408static const char *get_chip_name(enum chip_type chip_id)
409{
410	int i;
411	for (i = 0; chip_info_table[i].name != NULL; i++)
412		if (chip_info_table[i].chip_id == chip_id)
413			break;
414	return chip_info_table[i].name;
415}
416
417/**
418 *	velocity_set_int_opt	-	parser for integer options
419 *	@opt: pointer to option value
420 *	@val: value the user requested (or -1 for default)
421 *	@min: lowest value allowed
422 *	@max: highest value allowed
423 *	@def: default value
424 *	@name: property name
425 *	@dev: device name
426 *
427 *	Set an integer property in the module options. This function does
428 *	all the verification and checking as well as reporting so that
429 *	we don't duplicate code for each option.
430 */
431static void velocity_set_int_opt(int *opt, int val, int min, int max, int def,
432				 char *name, const char *devname)
433{
434	if (val == -1)
435		*opt = def;
436	else if (val < min || val > max) {
437		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (%d-%d)\n",
438					devname, name, min, max);
439		*opt = def;
440	} else {
441		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_INFO "%s: set value of parameter %s to %d\n",
442					devname, name, val);
443		*opt = val;
444	}
445}
446
447/**
448 *	velocity_set_bool_opt	-	parser for boolean options
449 *	@opt: pointer to option value
450 *	@val: value the user requested (or -1 for default)
451 *	@def: default value (yes/no)
452 *	@flag: numeric value to set for true.
453 *	@name: property name
454 *	@dev: device name
455 *
456 *	Set a boolean property in the module options. This function does
457 *	all the verification and checking as well as reporting so that
458 *	we don't duplicate code for each option.
459 */
460static void velocity_set_bool_opt(u32 *opt, int val, int def, u32 flag,
461				  char *name, const char *devname)
462{
463	(*opt) &= (~flag);
464	if (val == -1)
465		*opt |= (def ? flag : 0);
466	else if (val < 0 || val > 1) {
467		printk(KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (0-1)\n",
468			devname, name);
469		*opt |= (def ? flag : 0);
470	} else {
471		printk(KERN_INFO "%s: set parameter %s to %s\n",
472			devname, name, val ? "TRUE" : "FALSE");
473		*opt |= (val ? flag : 0);
474	}
475}
476
477/**
478 *	velocity_get_options	-	set options on device
479 *	@opts: option structure for the device
480 *	@index: index of option to use in module options array
481 *	@devname: device name
482 *
483 *	Turn the module and command options into a single structure
484 *	for the current device
485 */
486static void velocity_get_options(struct velocity_opt *opts, int index,
487				 const char *devname)
488{
489
490	velocity_set_int_opt(&opts->rx_thresh, rx_thresh[index], RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF, "rx_thresh", devname);
491	velocity_set_int_opt(&opts->DMA_length, DMA_length[index], DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF, "DMA_length", devname);
492	velocity_set_int_opt(&opts->numrx, RxDescriptors[index], RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF, "RxDescriptors", devname);
493	velocity_set_int_opt(&opts->numtx, TxDescriptors[index], TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF, "TxDescriptors", devname);
494
495	velocity_set_int_opt(&opts->flow_cntl, flow_control[index], FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF, "flow_control", devname);
496	velocity_set_bool_opt(&opts->flags, IP_byte_align[index], IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN, "IP_byte_align", devname);
497	velocity_set_bool_opt(&opts->flags, ValPktLen[index], VAL_PKT_LEN_DEF, VELOCITY_FLAGS_VAL_PKT_LEN, "ValPktLen", devname);
498	velocity_set_int_opt((int *) &opts->spd_dpx, speed_duplex[index], MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF, "Media link mode", devname);
499	velocity_set_int_opt(&opts->wol_opts, wol_opts[index], WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF, "Wake On Lan options", devname);
500	opts->numrx = (opts->numrx & ~3);
501}
502
503/**
504 *	velocity_init_cam_filter	-	initialise CAM
505 *	@vptr: velocity to program
506 *
507 *	Initialize the content addressable memory used for filters. Load
508 *	appropriately according to the presence of VLAN
509 */
510static void velocity_init_cam_filter(struct velocity_info *vptr)
511{
512	struct mac_regs __iomem *regs = vptr->mac_regs;
513	unsigned int vid, i = 0;
514
515	/* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */
516	WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, &regs->MCFG);
517	WORD_REG_BITS_ON(MCFG_VIDFR, &regs->MCFG);
518
519	/* Disable all CAMs */
520	memset(vptr->vCAMmask, 0, sizeof(u8) * 8);
521	memset(vptr->mCAMmask, 0, sizeof(u8) * 8);
522	mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
523	mac_set_cam_mask(regs, vptr->mCAMmask);
524
525	/* Enable VCAMs */
526	for_each_set_bit(vid, vptr->active_vlans, VLAN_N_VID) {
527		mac_set_vlan_cam(regs, i, (u8 *) &vid);
528		vptr->vCAMmask[i / 8] |= 0x1 << (i % 8);
529		if (++i >= VCAM_SIZE)
530			break;
531	}
532	mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
533}
534
535static int velocity_vlan_rx_add_vid(struct net_device *dev,
536				    __be16 proto, u16 vid)
537{
538	struct velocity_info *vptr = netdev_priv(dev);
539
540	spin_lock_irq(&vptr->lock);
541	set_bit(vid, vptr->active_vlans);
542	velocity_init_cam_filter(vptr);
543	spin_unlock_irq(&vptr->lock);
544	return 0;
545}
546
547static int velocity_vlan_rx_kill_vid(struct net_device *dev,
548				     __be16 proto, u16 vid)
549{
550	struct velocity_info *vptr = netdev_priv(dev);
551
552	spin_lock_irq(&vptr->lock);
553	clear_bit(vid, vptr->active_vlans);
554	velocity_init_cam_filter(vptr);
555	spin_unlock_irq(&vptr->lock);
556	return 0;
557}
558
559static void velocity_init_rx_ring_indexes(struct velocity_info *vptr)
560{
561	vptr->rx.dirty = vptr->rx.filled = vptr->rx.curr = 0;
562}
563
564/**
565 *	velocity_rx_reset	-	handle a receive reset
566 *	@vptr: velocity we are resetting
567 *
568 *	Reset the ownership and status for the receive ring side.
569 *	Hand all the receive queue to the NIC.
570 */
571static void velocity_rx_reset(struct velocity_info *vptr)
572{
573
574	struct mac_regs __iomem *regs = vptr->mac_regs;
575	int i;
576
577	velocity_init_rx_ring_indexes(vptr);
578
579	/*
580	 *	Init state, all RD entries belong to the NIC
581	 */
582	for (i = 0; i < vptr->options.numrx; ++i)
583		vptr->rx.ring[i].rdesc0.len |= OWNED_BY_NIC;
584
585	writew(vptr->options.numrx, &regs->RBRDU);
586	writel(vptr->rx.pool_dma, &regs->RDBaseLo);
587	writew(0, &regs->RDIdx);
588	writew(vptr->options.numrx - 1, &regs->RDCSize);
589}
590
591/**
592 *	velocity_get_opt_media_mode	-	get media selection
593 *	@vptr: velocity adapter
594 *
595 *	Get the media mode stored in EEPROM or module options and load
596 *	mii_status accordingly. The requested link state information
597 *	is also returned.
598 */
599static u32 velocity_get_opt_media_mode(struct velocity_info *vptr)
600{
601	u32 status = 0;
602
603	switch (vptr->options.spd_dpx) {
604	case SPD_DPX_AUTO:
605		status = VELOCITY_AUTONEG_ENABLE;
606		break;
607	case SPD_DPX_100_FULL:
608		status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL;
609		break;
610	case SPD_DPX_10_FULL:
611		status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL;
612		break;
613	case SPD_DPX_100_HALF:
614		status = VELOCITY_SPEED_100;
615		break;
616	case SPD_DPX_10_HALF:
617		status = VELOCITY_SPEED_10;
618		break;
619	case SPD_DPX_1000_FULL:
620		status = VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
621		break;
622	}
623	vptr->mii_status = status;
624	return status;
625}
626
627/**
628 *	safe_disable_mii_autopoll	-	autopoll off
629 *	@regs: velocity registers
630 *
631 *	Turn off the autopoll and wait for it to disable on the chip
632 */
633static void safe_disable_mii_autopoll(struct mac_regs __iomem *regs)
634{
635	u16 ww;
636
637	/*  turn off MAUTO */
638	writeb(0, &regs->MIICR);
639	for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
640		udelay(1);
641		if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
642			break;
643	}
644}
645
646/**
647 *	enable_mii_autopoll	-	turn on autopolling
648 *	@regs: velocity registers
649 *
650 *	Enable the MII link status autopoll feature on the Velocity
651 *	hardware. Wait for it to enable.
652 */
653static void enable_mii_autopoll(struct mac_regs __iomem *regs)
654{
655	int ii;
656
657	writeb(0, &(regs->MIICR));
658	writeb(MIIADR_SWMPL, &regs->MIIADR);
659
660	for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
661		udelay(1);
662		if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
663			break;
664	}
665
666	writeb(MIICR_MAUTO, &regs->MIICR);
667
668	for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
669		udelay(1);
670		if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
671			break;
672	}
673
674}
675
676/**
677 *	velocity_mii_read	-	read MII data
678 *	@regs: velocity registers
679 *	@index: MII register index
680 *	@data: buffer for received data
681 *
682 *	Perform a single read of an MII 16bit register. Returns zero
683 *	on success or -ETIMEDOUT if the PHY did not respond.
684 */
685static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data)
686{
687	u16 ww;
688
689	/*
690	 *	Disable MIICR_MAUTO, so that mii addr can be set normally
691	 */
692	safe_disable_mii_autopoll(regs);
693
694	writeb(index, &regs->MIIADR);
695
696	BYTE_REG_BITS_ON(MIICR_RCMD, &regs->MIICR);
697
698	for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
699		if (!(readb(&regs->MIICR) & MIICR_RCMD))
700			break;
701	}
702
703	*data = readw(&regs->MIIDATA);
704
705	enable_mii_autopoll(regs);
706	if (ww == W_MAX_TIMEOUT)
707		return -ETIMEDOUT;
708	return 0;
709}
710
711/**
712 *	mii_check_media_mode	-	check media state
713 *	@regs: velocity registers
714 *
715 *	Check the current MII status and determine the link status
716 *	accordingly
717 */
718static u32 mii_check_media_mode(struct mac_regs __iomem *regs)
719{
720	u32 status = 0;
721	u16 ANAR;
722
723	if (!MII_REG_BITS_IS_ON(BMSR_LSTATUS, MII_BMSR, regs))
724		status |= VELOCITY_LINK_FAIL;
725
726	if (MII_REG_BITS_IS_ON(ADVERTISE_1000FULL, MII_CTRL1000, regs))
727		status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
728	else if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF, MII_CTRL1000, regs))
729		status |= (VELOCITY_SPEED_1000);
730	else {
731		velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
732		if (ANAR & ADVERTISE_100FULL)
733			status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL);
734		else if (ANAR & ADVERTISE_100HALF)
735			status |= VELOCITY_SPEED_100;
736		else if (ANAR & ADVERTISE_10FULL)
737			status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL);
738		else
739			status |= (VELOCITY_SPEED_10);
740	}
741
742	if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) {
743		velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
744		if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF))
745		    == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) {
746			if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs))
747				status |= VELOCITY_AUTONEG_ENABLE;
748		}
749	}
750
751	return status;
752}
753
754/**
755 *	velocity_mii_write	-	write MII data
756 *	@regs: velocity registers
757 *	@index: MII register index
758 *	@data: 16bit data for the MII register
759 *
760 *	Perform a single write to an MII 16bit register. Returns zero
761 *	on success or -ETIMEDOUT if the PHY did not respond.
762 */
763static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data)
764{
765	u16 ww;
766
767	/*
768	 *	Disable MIICR_MAUTO, so that mii addr can be set normally
769	 */
770	safe_disable_mii_autopoll(regs);
771
772	/* MII reg offset */
773	writeb(mii_addr, &regs->MIIADR);
774	/* set MII data */
775	writew(data, &regs->MIIDATA);
776
777	/* turn on MIICR_WCMD */
778	BYTE_REG_BITS_ON(MIICR_WCMD, &regs->MIICR);
779
780	/* W_MAX_TIMEOUT is the timeout period */
781	for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
782		udelay(5);
783		if (!(readb(&regs->MIICR) & MIICR_WCMD))
784			break;
785	}
786	enable_mii_autopoll(regs);
787
788	if (ww == W_MAX_TIMEOUT)
789		return -ETIMEDOUT;
790	return 0;
791}
792
793/**
794 *	set_mii_flow_control	-	flow control setup
795 *	@vptr: velocity interface
796 *
797 *	Set up the flow control on this interface according to
798 *	the supplied user/eeprom options.
799 */
800static void set_mii_flow_control(struct velocity_info *vptr)
801{
802	/*Enable or Disable PAUSE in ANAR */
803	switch (vptr->options.flow_cntl) {
804	case FLOW_CNTL_TX:
805		MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
806		MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
807		break;
808
809	case FLOW_CNTL_RX:
810		MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
811		MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
812		break;
813
814	case FLOW_CNTL_TX_RX:
815		MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
816		MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
817		break;
818
819	case FLOW_CNTL_DISABLE:
820		MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
821		MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
822		break;
823	default:
824		break;
825	}
826}
827
828/**
829 *	mii_set_auto_on		-	autonegotiate on
830 *	@vptr: velocity
831 *
832 *	Enable autonegotation on this interface
833 */
834static void mii_set_auto_on(struct velocity_info *vptr)
835{
836	if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs))
837		MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs);
838	else
839		MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs);
840}
841
842static u32 check_connection_type(struct mac_regs __iomem *regs)
843{
844	u32 status = 0;
845	u8 PHYSR0;
846	u16 ANAR;
847	PHYSR0 = readb(&regs->PHYSR0);
848
849	/*
850	   if (!(PHYSR0 & PHYSR0_LINKGD))
851	   status|=VELOCITY_LINK_FAIL;
852	 */
853
854	if (PHYSR0 & PHYSR0_FDPX)
855		status |= VELOCITY_DUPLEX_FULL;
856
857	if (PHYSR0 & PHYSR0_SPDG)
858		status |= VELOCITY_SPEED_1000;
859	else if (PHYSR0 & PHYSR0_SPD10)
860		status |= VELOCITY_SPEED_10;
861	else
862		status |= VELOCITY_SPEED_100;
863
864	if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) {
865		velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
866		if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF))
867		    == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) {
868			if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs))
869				status |= VELOCITY_AUTONEG_ENABLE;
870		}
871	}
872
873	return status;
874}
875
876/**
877 *	velocity_set_media_mode		-	set media mode
878 *	@mii_status: old MII link state
879 *
880 *	Check the media link state and configure the flow control
881 *	PHY and also velocity hardware setup accordingly. In particular
882 *	we need to set up CD polling and frame bursting.
883 */
884static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status)
885{
886	u32 curr_status;
887	struct mac_regs __iomem *regs = vptr->mac_regs;
888
889	vptr->mii_status = mii_check_media_mode(vptr->mac_regs);
890	curr_status = vptr->mii_status & (~VELOCITY_LINK_FAIL);
891
892	/* Set mii link status */
893	set_mii_flow_control(vptr);
894
895	/*
896	   Check if new status is consistent with current status
897	   if (((mii_status & curr_status) & VELOCITY_AUTONEG_ENABLE) ||
898	       (mii_status==curr_status)) {
899	   vptr->mii_status=mii_check_media_mode(vptr->mac_regs);
900	   vptr->mii_status=check_connection_type(vptr->mac_regs);
901	   VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity link no change\n");
902	   return 0;
903	   }
904	 */
905
906	if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
907		MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs);
908
909	/*
910	 *	If connection type is AUTO
911	 */
912	if (mii_status & VELOCITY_AUTONEG_ENABLE) {
913		VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity is AUTO mode\n");
914		/* clear force MAC mode bit */
915		BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
916		/* set duplex mode of MAC according to duplex mode of MII */
917		MII_REG_BITS_ON(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF, MII_ADVERTISE, vptr->mac_regs);
918		MII_REG_BITS_ON(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs);
919		MII_REG_BITS_ON(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs);
920
921		/* enable AUTO-NEGO mode */
922		mii_set_auto_on(vptr);
923	} else {
924		u16 CTRL1000;
925		u16 ANAR;
926		u8 CHIPGCR;
927
928		/*
929		 * 1. if it's 3119, disable frame bursting in halfduplex mode
930		 *    and enable it in fullduplex mode
931		 * 2. set correct MII/GMII and half/full duplex mode in CHIPGCR
932		 * 3. only enable CD heart beat counter in 10HD mode
933		 */
934
935		/* set force MAC mode bit */
936		BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
937
938		CHIPGCR = readb(&regs->CHIPGCR);
939
940		if (mii_status & VELOCITY_SPEED_1000)
941			CHIPGCR |= CHIPGCR_FCGMII;
942		else
943			CHIPGCR &= ~CHIPGCR_FCGMII;
944
945		if (mii_status & VELOCITY_DUPLEX_FULL) {
946			CHIPGCR |= CHIPGCR_FCFDX;
947			writeb(CHIPGCR, &regs->CHIPGCR);
948			VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced full mode\n");
949			if (vptr->rev_id < REV_ID_VT3216_A0)
950				BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
951		} else {
952			CHIPGCR &= ~CHIPGCR_FCFDX;
953			VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced half mode\n");
954			writeb(CHIPGCR, &regs->CHIPGCR);
955			if (vptr->rev_id < REV_ID_VT3216_A0)
956				BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
957		}
958
959		velocity_mii_read(vptr->mac_regs, MII_CTRL1000, &CTRL1000);
960		CTRL1000 &= ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF);
961		if ((mii_status & VELOCITY_SPEED_1000) &&
962		    (mii_status & VELOCITY_DUPLEX_FULL)) {
963			CTRL1000 |= ADVERTISE_1000FULL;
964		}
965		velocity_mii_write(vptr->mac_regs, MII_CTRL1000, CTRL1000);
966
967		if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10))
968			BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
969		else
970			BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
971
972		/* MII_REG_BITS_OFF(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs); */
973		velocity_mii_read(vptr->mac_regs, MII_ADVERTISE, &ANAR);
974		ANAR &= (~(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF));
975		if (mii_status & VELOCITY_SPEED_100) {
976			if (mii_status & VELOCITY_DUPLEX_FULL)
977				ANAR |= ADVERTISE_100FULL;
978			else
979				ANAR |= ADVERTISE_100HALF;
980		} else if (mii_status & VELOCITY_SPEED_10) {
981			if (mii_status & VELOCITY_DUPLEX_FULL)
982				ANAR |= ADVERTISE_10FULL;
983			else
984				ANAR |= ADVERTISE_10HALF;
985		}
986		velocity_mii_write(vptr->mac_regs, MII_ADVERTISE, ANAR);
987		/* enable AUTO-NEGO mode */
988		mii_set_auto_on(vptr);
989		/* MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs); */
990	}
991	/* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */
992	/* vptr->mii_status=check_connection_type(vptr->mac_regs); */
993	return VELOCITY_LINK_CHANGE;
994}
995
996/**
997 *	velocity_print_link_status	-	link status reporting
998 *	@vptr: velocity to report on
999 *
1000 *	Turn the link status of the velocity card into a kernel log
1001 *	description of the new link state, detailing speed and duplex
1002 *	status
1003 */
1004static void velocity_print_link_status(struct velocity_info *vptr)
1005{
1006
1007	if (vptr->mii_status & VELOCITY_LINK_FAIL) {
1008		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: failed to detect cable link\n", vptr->netdev->name);
1009	} else if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1010		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link auto-negotiation", vptr->netdev->name);
1011
1012		if (vptr->mii_status & VELOCITY_SPEED_1000)
1013			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps");
1014		else if (vptr->mii_status & VELOCITY_SPEED_100)
1015			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps");
1016		else
1017			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps");
1018
1019		if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1020			VELOCITY_PRT(MSG_LEVEL_INFO, " full duplex\n");
1021		else
1022			VELOCITY_PRT(MSG_LEVEL_INFO, " half duplex\n");
1023	} else {
1024		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link forced", vptr->netdev->name);
1025		switch (vptr->options.spd_dpx) {
1026		case SPD_DPX_1000_FULL:
1027			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps full duplex\n");
1028			break;
1029		case SPD_DPX_100_HALF:
1030			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps half duplex\n");
1031			break;
1032		case SPD_DPX_100_FULL:
1033			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps full duplex\n");
1034			break;
1035		case SPD_DPX_10_HALF:
1036			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps half duplex\n");
1037			break;
1038		case SPD_DPX_10_FULL:
1039			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps full duplex\n");
1040			break;
1041		default:
1042			break;
1043		}
1044	}
1045}
1046
1047/**
1048 *	enable_flow_control_ability	-	flow control
1049 *	@vptr: veloity to configure
1050 *
1051 *	Set up flow control according to the flow control options
1052 *	determined by the eeprom/configuration.
1053 */
1054static void enable_flow_control_ability(struct velocity_info *vptr)
1055{
1056
1057	struct mac_regs __iomem *regs = vptr->mac_regs;
1058
1059	switch (vptr->options.flow_cntl) {
1060
1061	case FLOW_CNTL_DEFAULT:
1062		if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, &regs->PHYSR0))
1063			writel(CR0_FDXRFCEN, &regs->CR0Set);
1064		else
1065			writel(CR0_FDXRFCEN, &regs->CR0Clr);
1066
1067		if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, &regs->PHYSR0))
1068			writel(CR0_FDXTFCEN, &regs->CR0Set);
1069		else
1070			writel(CR0_FDXTFCEN, &regs->CR0Clr);
1071		break;
1072
1073	case FLOW_CNTL_TX:
1074		writel(CR0_FDXTFCEN, &regs->CR0Set);
1075		writel(CR0_FDXRFCEN, &regs->CR0Clr);
1076		break;
1077
1078	case FLOW_CNTL_RX:
1079		writel(CR0_FDXRFCEN, &regs->CR0Set);
1080		writel(CR0_FDXTFCEN, &regs->CR0Clr);
1081		break;
1082
1083	case FLOW_CNTL_TX_RX:
1084		writel(CR0_FDXTFCEN, &regs->CR0Set);
1085		writel(CR0_FDXRFCEN, &regs->CR0Set);
1086		break;
1087
1088	case FLOW_CNTL_DISABLE:
1089		writel(CR0_FDXRFCEN, &regs->CR0Clr);
1090		writel(CR0_FDXTFCEN, &regs->CR0Clr);
1091		break;
1092
1093	default:
1094		break;
1095	}
1096
1097}
1098
1099/**
1100 *	velocity_soft_reset	-	soft reset
1101 *	@vptr: velocity to reset
1102 *
1103 *	Kick off a soft reset of the velocity adapter and then poll
1104 *	until the reset sequence has completed before returning.
1105 */
1106static int velocity_soft_reset(struct velocity_info *vptr)
1107{
1108	struct mac_regs __iomem *regs = vptr->mac_regs;
1109	int i = 0;
1110
1111	writel(CR0_SFRST, &regs->CR0Set);
1112
1113	for (i = 0; i < W_MAX_TIMEOUT; i++) {
1114		udelay(5);
1115		if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, &regs->CR0Set))
1116			break;
1117	}
1118
1119	if (i == W_MAX_TIMEOUT) {
1120		writel(CR0_FORSRST, &regs->CR0Set);
1121		/* FIXME: PCI POSTING */
1122		/* delay 2ms */
1123		mdelay(2);
1124	}
1125	return 0;
1126}
1127
1128/**
1129 *	velocity_set_multi	-	filter list change callback
1130 *	@dev: network device
1131 *
1132 *	Called by the network layer when the filter lists need to change
1133 *	for a velocity adapter. Reload the CAMs with the new address
1134 *	filter ruleset.
1135 */
1136static void velocity_set_multi(struct net_device *dev)
1137{
1138	struct velocity_info *vptr = netdev_priv(dev);
1139	struct mac_regs __iomem *regs = vptr->mac_regs;
1140	u8 rx_mode;
1141	int i;
1142	struct netdev_hw_addr *ha;
1143
1144	if (dev->flags & IFF_PROMISC) {	/* Set promiscuous. */
1145		writel(0xffffffff, &regs->MARCAM[0]);
1146		writel(0xffffffff, &regs->MARCAM[4]);
1147		rx_mode = (RCR_AM | RCR_AB | RCR_PROM);
1148	} else if ((netdev_mc_count(dev) > vptr->multicast_limit) ||
1149		   (dev->flags & IFF_ALLMULTI)) {
1150		writel(0xffffffff, &regs->MARCAM[0]);
1151		writel(0xffffffff, &regs->MARCAM[4]);
1152		rx_mode = (RCR_AM | RCR_AB);
1153	} else {
1154		int offset = MCAM_SIZE - vptr->multicast_limit;
1155		mac_get_cam_mask(regs, vptr->mCAMmask);
1156
1157		i = 0;
1158		netdev_for_each_mc_addr(ha, dev) {
1159			mac_set_cam(regs, i + offset, ha->addr);
1160			vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7);
1161			i++;
1162		}
1163
1164		mac_set_cam_mask(regs, vptr->mCAMmask);
1165		rx_mode = RCR_AM | RCR_AB | RCR_AP;
1166	}
1167	if (dev->mtu > 1500)
1168		rx_mode |= RCR_AL;
1169
1170	BYTE_REG_BITS_ON(rx_mode, &regs->RCR);
1171
1172}
1173
1174/*
1175 * MII access , media link mode setting functions
1176 */
1177
1178/**
1179 *	mii_init	-	set up MII
1180 *	@vptr: velocity adapter
1181 *	@mii_status:  links tatus
1182 *
1183 *	Set up the PHY for the current link state.
1184 */
1185static void mii_init(struct velocity_info *vptr, u32 mii_status)
1186{
1187	u16 BMCR;
1188
1189	switch (PHYID_GET_PHY_ID(vptr->phy_id)) {
1190	case PHYID_ICPLUS_IP101A:
1191		MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP),
1192						MII_ADVERTISE, vptr->mac_regs);
1193		if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1194			MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION,
1195								vptr->mac_regs);
1196		else
1197			MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION,
1198								vptr->mac_regs);
1199		MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs);
1200		break;
1201	case PHYID_CICADA_CS8201:
1202		/*
1203		 *	Reset to hardware default
1204		 */
1205		MII_REG_BITS_OFF((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1206		/*
1207		 *	Turn on ECHODIS bit in NWay-forced full mode and turn it
1208		 *	off it in NWay-forced half mode for NWay-forced v.s.
1209		 *	legacy-forced issue.
1210		 */
1211		if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1212			MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1213		else
1214			MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1215		/*
1216		 *	Turn on Link/Activity LED enable bit for CIS8201
1217		 */
1218		MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs);
1219		break;
1220	case PHYID_VT3216_32BIT:
1221	case PHYID_VT3216_64BIT:
1222		/*
1223		 *	Reset to hardware default
1224		 */
1225		MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1226		/*
1227		 *	Turn on ECHODIS bit in NWay-forced full mode and turn it
1228		 *	off it in NWay-forced half mode for NWay-forced v.s.
1229		 *	legacy-forced issue
1230		 */
1231		if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1232			MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1233		else
1234			MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1235		break;
1236
1237	case PHYID_MARVELL_1000:
1238	case PHYID_MARVELL_1000S:
1239		/*
1240		 *	Assert CRS on Transmit
1241		 */
1242		MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs);
1243		/*
1244		 *	Reset to hardware default
1245		 */
1246		MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1247		break;
1248	default:
1249		;
1250	}
1251	velocity_mii_read(vptr->mac_regs, MII_BMCR, &BMCR);
1252	if (BMCR & BMCR_ISOLATE) {
1253		BMCR &= ~BMCR_ISOLATE;
1254		velocity_mii_write(vptr->mac_regs, MII_BMCR, BMCR);
1255	}
1256}
1257
1258/**
1259 * setup_queue_timers	-	Setup interrupt timers
1260 *
1261 * Setup interrupt frequency during suppression (timeout if the frame
1262 * count isn't filled).
1263 */
1264static void setup_queue_timers(struct velocity_info *vptr)
1265{
1266	/* Only for newer revisions */
1267	if (vptr->rev_id >= REV_ID_VT3216_A0) {
1268		u8 txqueue_timer = 0;
1269		u8 rxqueue_timer = 0;
1270
1271		if (vptr->mii_status & (VELOCITY_SPEED_1000 |
1272				VELOCITY_SPEED_100)) {
1273			txqueue_timer = vptr->options.txqueue_timer;
1274			rxqueue_timer = vptr->options.rxqueue_timer;
1275		}
1276
1277		writeb(txqueue_timer, &vptr->mac_regs->TQETMR);
1278		writeb(rxqueue_timer, &vptr->mac_regs->RQETMR);
1279	}
1280}
1281
1282/**
1283 * setup_adaptive_interrupts  -  Setup interrupt suppression
1284 *
1285 * @vptr velocity adapter
1286 *
1287 * The velocity is able to suppress interrupt during high interrupt load.
1288 * This function turns on that feature.
1289 */
1290static void setup_adaptive_interrupts(struct velocity_info *vptr)
1291{
1292	struct mac_regs __iomem *regs = vptr->mac_regs;
1293	u16 tx_intsup = vptr->options.tx_intsup;
1294	u16 rx_intsup = vptr->options.rx_intsup;
1295
1296	/* Setup default interrupt mask (will be changed below) */
1297	vptr->int_mask = INT_MASK_DEF;
1298
1299	/* Set Tx Interrupt Suppression Threshold */
1300	writeb(CAMCR_PS0, &regs->CAMCR);
1301	if (tx_intsup != 0) {
1302		vptr->int_mask &= ~(ISR_PTXI | ISR_PTX0I | ISR_PTX1I |
1303				ISR_PTX2I | ISR_PTX3I);
1304		writew(tx_intsup, &regs->ISRCTL);
1305	} else
1306		writew(ISRCTL_TSUPDIS, &regs->ISRCTL);
1307
1308	/* Set Rx Interrupt Suppression Threshold */
1309	writeb(CAMCR_PS1, &regs->CAMCR);
1310	if (rx_intsup != 0) {
1311		vptr->int_mask &= ~ISR_PRXI;
1312		writew(rx_intsup, &regs->ISRCTL);
1313	} else
1314		writew(ISRCTL_RSUPDIS, &regs->ISRCTL);
1315
1316	/* Select page to interrupt hold timer */
1317	writeb(0, &regs->CAMCR);
1318}
1319
1320/**
1321 *	velocity_init_registers	-	initialise MAC registers
1322 *	@vptr: velocity to init
1323 *	@type: type of initialisation (hot or cold)
1324 *
1325 *	Initialise the MAC on a reset or on first set up on the
1326 *	hardware.
1327 */
1328static void velocity_init_registers(struct velocity_info *vptr,
1329				    enum velocity_init_type type)
1330{
1331	struct mac_regs __iomem *regs = vptr->mac_regs;
1332	struct net_device *netdev = vptr->netdev;
1333	int i, mii_status;
1334
1335	mac_wol_reset(regs);
1336
1337	switch (type) {
1338	case VELOCITY_INIT_RESET:
1339	case VELOCITY_INIT_WOL:
1340
1341		netif_stop_queue(netdev);
1342
1343		/*
1344		 *	Reset RX to prevent RX pointer not on the 4X location
1345		 */
1346		velocity_rx_reset(vptr);
1347		mac_rx_queue_run(regs);
1348		mac_rx_queue_wake(regs);
1349
1350		mii_status = velocity_get_opt_media_mode(vptr);
1351		if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1352			velocity_print_link_status(vptr);
1353			if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1354				netif_wake_queue(netdev);
1355		}
1356
1357		enable_flow_control_ability(vptr);
1358
1359		mac_clear_isr(regs);
1360		writel(CR0_STOP, &regs->CR0Clr);
1361		writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT),
1362							&regs->CR0Set);
1363
1364		break;
1365
1366	case VELOCITY_INIT_COLD:
1367	default:
1368		/*
1369		 *	Do reset
1370		 */
1371		velocity_soft_reset(vptr);
1372		mdelay(5);
1373
1374		if (!vptr->no_eeprom) {
1375			mac_eeprom_reload(regs);
1376			for (i = 0; i < 6; i++)
1377				writeb(netdev->dev_addr[i], regs->PAR + i);
1378		}
1379
1380		/*
1381		 *	clear Pre_ACPI bit.
1382		 */
1383		BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA));
1384		mac_set_rx_thresh(regs, vptr->options.rx_thresh);
1385		mac_set_dma_length(regs, vptr->options.DMA_length);
1386
1387		writeb(WOLCFG_SAM | WOLCFG_SAB, &regs->WOLCFGSet);
1388		/*
1389		 *	Back off algorithm use original IEEE standard
1390		 */
1391		BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), &regs->CFGB);
1392
1393		/*
1394		 *	Init CAM filter
1395		 */
1396		velocity_init_cam_filter(vptr);
1397
1398		/*
1399		 *	Set packet filter: Receive directed and broadcast address
1400		 */
1401		velocity_set_multi(netdev);
1402
1403		/*
1404		 *	Enable MII auto-polling
1405		 */
1406		enable_mii_autopoll(regs);
1407
1408		setup_adaptive_interrupts(vptr);
1409
1410		writel(vptr->rx.pool_dma, &regs->RDBaseLo);
1411		writew(vptr->options.numrx - 1, &regs->RDCSize);
1412		mac_rx_queue_run(regs);
1413		mac_rx_queue_wake(regs);
1414
1415		writew(vptr->options.numtx - 1, &regs->TDCSize);
1416
1417		for (i = 0; i < vptr->tx.numq; i++) {
1418			writel(vptr->tx.pool_dma[i], &regs->TDBaseLo[i]);
1419			mac_tx_queue_run(regs, i);
1420		}
1421
1422		init_flow_control_register(vptr);
1423
1424		writel(CR0_STOP, &regs->CR0Clr);
1425		writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), &regs->CR0Set);
1426
1427		mii_status = velocity_get_opt_media_mode(vptr);
1428		netif_stop_queue(netdev);
1429
1430		mii_init(vptr, mii_status);
1431
1432		if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1433			velocity_print_link_status(vptr);
1434			if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1435				netif_wake_queue(netdev);
1436		}
1437
1438		enable_flow_control_ability(vptr);
1439		mac_hw_mibs_init(regs);
1440		mac_write_int_mask(vptr->int_mask, regs);
1441		mac_clear_isr(regs);
1442
1443	}
1444}
1445
1446static void velocity_give_many_rx_descs(struct velocity_info *vptr)
1447{
1448	struct mac_regs __iomem *regs = vptr->mac_regs;
1449	int avail, dirty, unusable;
1450
1451	/*
1452	 * RD number must be equal to 4X per hardware spec
1453	 * (programming guide rev 1.20, p.13)
1454	 */
1455	if (vptr->rx.filled < 4)
1456		return;
1457
1458	wmb();
1459
1460	unusable = vptr->rx.filled & 0x0003;
1461	dirty = vptr->rx.dirty - unusable;
1462	for (avail = vptr->rx.filled & 0xfffc; avail; avail--) {
1463		dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1;
1464		vptr->rx.ring[dirty].rdesc0.len |= OWNED_BY_NIC;
1465	}
1466
1467	writew(vptr->rx.filled & 0xfffc, &regs->RBRDU);
1468	vptr->rx.filled = unusable;
1469}
1470
1471/**
1472 *	velocity_init_dma_rings	-	set up DMA rings
1473 *	@vptr: Velocity to set up
1474 *
1475 *	Allocate PCI mapped DMA rings for the receive and transmit layer
1476 *	to use.
1477 */
1478static int velocity_init_dma_rings(struct velocity_info *vptr)
1479{
1480	struct velocity_opt *opt = &vptr->options;
1481	const unsigned int rx_ring_size = opt->numrx * sizeof(struct rx_desc);
1482	const unsigned int tx_ring_size = opt->numtx * sizeof(struct tx_desc);
1483	dma_addr_t pool_dma;
1484	void *pool;
1485	unsigned int i;
1486
1487	/*
1488	 * Allocate all RD/TD rings a single pool.
1489	 *
1490	 * dma_alloc_coherent() fulfills the requirement for 64 bytes
1491	 * alignment
1492	 */
1493	pool = dma_alloc_coherent(vptr->dev, tx_ring_size * vptr->tx.numq +
1494				    rx_ring_size, &pool_dma, GFP_ATOMIC);
1495	if (!pool) {
1496		dev_err(vptr->dev, "%s : DMA memory allocation failed.\n",
1497			vptr->netdev->name);
1498		return -ENOMEM;
1499	}
1500
1501	vptr->rx.ring = pool;
1502	vptr->rx.pool_dma = pool_dma;
1503
1504	pool += rx_ring_size;
1505	pool_dma += rx_ring_size;
1506
1507	for (i = 0; i < vptr->tx.numq; i++) {
1508		vptr->tx.rings[i] = pool;
1509		vptr->tx.pool_dma[i] = pool_dma;
1510		pool += tx_ring_size;
1511		pool_dma += tx_ring_size;
1512	}
1513
1514	return 0;
1515}
1516
1517static void velocity_set_rxbufsize(struct velocity_info *vptr, int mtu)
1518{
1519	vptr->rx.buf_sz = (mtu <= ETH_DATA_LEN) ? PKT_BUF_SZ : mtu + 32;
1520}
1521
1522/**
1523 *	velocity_alloc_rx_buf	-	allocate aligned receive buffer
1524 *	@vptr: velocity
1525 *	@idx: ring index
1526 *
1527 *	Allocate a new full sized buffer for the reception of a frame and
1528 *	map it into PCI space for the hardware to use. The hardware
1529 *	requires *64* byte alignment of the buffer which makes life
1530 *	less fun than would be ideal.
1531 */
1532static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx)
1533{
1534	struct rx_desc *rd = &(vptr->rx.ring[idx]);
1535	struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
1536
1537	rd_info->skb = netdev_alloc_skb(vptr->netdev, vptr->rx.buf_sz + 64);
1538	if (rd_info->skb == NULL)
1539		return -ENOMEM;
1540
1541	/*
1542	 *	Do the gymnastics to get the buffer head for data at
1543	 *	64byte alignment.
1544	 */
1545	skb_reserve(rd_info->skb,
1546			64 - ((unsigned long) rd_info->skb->data & 63));
1547	rd_info->skb_dma = dma_map_single(vptr->dev, rd_info->skb->data,
1548					vptr->rx.buf_sz, DMA_FROM_DEVICE);
1549
1550	/*
1551	 *	Fill in the descriptor to match
1552	 */
1553
1554	*((u32 *) & (rd->rdesc0)) = 0;
1555	rd->size = cpu_to_le16(vptr->rx.buf_sz) | RX_INTEN;
1556	rd->pa_low = cpu_to_le32(rd_info->skb_dma);
1557	rd->pa_high = 0;
1558	return 0;
1559}
1560
1561
1562static int velocity_rx_refill(struct velocity_info *vptr)
1563{
1564	int dirty = vptr->rx.dirty, done = 0;
1565
1566	do {
1567		struct rx_desc *rd = vptr->rx.ring + dirty;
1568
1569		/* Fine for an all zero Rx desc at init time as well */
1570		if (rd->rdesc0.len & OWNED_BY_NIC)
1571			break;
1572
1573		if (!vptr->rx.info[dirty].skb) {
1574			if (velocity_alloc_rx_buf(vptr, dirty) < 0)
1575				break;
1576		}
1577		done++;
1578		dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0;
1579	} while (dirty != vptr->rx.curr);
1580
1581	if (done) {
1582		vptr->rx.dirty = dirty;
1583		vptr->rx.filled += done;
1584	}
1585
1586	return done;
1587}
1588
1589/**
1590 *	velocity_free_rd_ring	-	free receive ring
1591 *	@vptr: velocity to clean up
1592 *
1593 *	Free the receive buffers for each ring slot and any
1594 *	attached socket buffers that need to go away.
1595 */
1596static void velocity_free_rd_ring(struct velocity_info *vptr)
1597{
1598	int i;
1599
1600	if (vptr->rx.info == NULL)
1601		return;
1602
1603	for (i = 0; i < vptr->options.numrx; i++) {
1604		struct velocity_rd_info *rd_info = &(vptr->rx.info[i]);
1605		struct rx_desc *rd = vptr->rx.ring + i;
1606
1607		memset(rd, 0, sizeof(*rd));
1608
1609		if (!rd_info->skb)
1610			continue;
1611		dma_unmap_single(vptr->dev, rd_info->skb_dma, vptr->rx.buf_sz,
1612				 DMA_FROM_DEVICE);
1613		rd_info->skb_dma = 0;
1614
1615		dev_kfree_skb(rd_info->skb);
1616		rd_info->skb = NULL;
1617	}
1618
1619	kfree(vptr->rx.info);
1620	vptr->rx.info = NULL;
1621}
1622
1623/**
1624 *	velocity_init_rd_ring	-	set up receive ring
1625 *	@vptr: velocity to configure
1626 *
1627 *	Allocate and set up the receive buffers for each ring slot and
1628 *	assign them to the network adapter.
1629 */
1630static int velocity_init_rd_ring(struct velocity_info *vptr)
1631{
1632	int ret = -ENOMEM;
1633
1634	vptr->rx.info = kcalloc(vptr->options.numrx,
1635				sizeof(struct velocity_rd_info), GFP_KERNEL);
1636	if (!vptr->rx.info)
1637		goto out;
1638
1639	velocity_init_rx_ring_indexes(vptr);
1640
1641	if (velocity_rx_refill(vptr) != vptr->options.numrx) {
1642		VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR
1643			"%s: failed to allocate RX buffer.\n", vptr->netdev->name);
1644		velocity_free_rd_ring(vptr);
1645		goto out;
1646	}
1647
1648	ret = 0;
1649out:
1650	return ret;
1651}
1652
1653/**
1654 *	velocity_init_td_ring	-	set up transmit ring
1655 *	@vptr:	velocity
1656 *
1657 *	Set up the transmit ring and chain the ring pointers together.
1658 *	Returns zero on success or a negative posix errno code for
1659 *	failure.
1660 */
1661static int velocity_init_td_ring(struct velocity_info *vptr)
1662{
1663	int j;
1664
1665	/* Init the TD ring entries */
1666	for (j = 0; j < vptr->tx.numq; j++) {
1667
1668		vptr->tx.infos[j] = kcalloc(vptr->options.numtx,
1669					    sizeof(struct velocity_td_info),
1670					    GFP_KERNEL);
1671		if (!vptr->tx.infos[j])	{
1672			while (--j >= 0)
1673				kfree(vptr->tx.infos[j]);
1674			return -ENOMEM;
1675		}
1676
1677		vptr->tx.tail[j] = vptr->tx.curr[j] = vptr->tx.used[j] = 0;
1678	}
1679	return 0;
1680}
1681
1682/**
1683 *	velocity_free_dma_rings	-	free PCI ring pointers
1684 *	@vptr: Velocity to free from
1685 *
1686 *	Clean up the PCI ring buffers allocated to this velocity.
1687 */
1688static void velocity_free_dma_rings(struct velocity_info *vptr)
1689{
1690	const int size = vptr->options.numrx * sizeof(struct rx_desc) +
1691		vptr->options.numtx * sizeof(struct tx_desc) * vptr->tx.numq;
1692
1693	dma_free_coherent(vptr->dev, size, vptr->rx.ring, vptr->rx.pool_dma);
1694}
1695
1696static int velocity_init_rings(struct velocity_info *vptr, int mtu)
1697{
1698	int ret;
1699
1700	velocity_set_rxbufsize(vptr, mtu);
1701
1702	ret = velocity_init_dma_rings(vptr);
1703	if (ret < 0)
1704		goto out;
1705
1706	ret = velocity_init_rd_ring(vptr);
1707	if (ret < 0)
1708		goto err_free_dma_rings_0;
1709
1710	ret = velocity_init_td_ring(vptr);
1711	if (ret < 0)
1712		goto err_free_rd_ring_1;
1713out:
1714	return ret;
1715
1716err_free_rd_ring_1:
1717	velocity_free_rd_ring(vptr);
1718err_free_dma_rings_0:
1719	velocity_free_dma_rings(vptr);
1720	goto out;
1721}
1722
1723/**
1724 *	velocity_free_tx_buf	-	free transmit buffer
1725 *	@vptr: velocity
1726 *	@tdinfo: buffer
1727 *
1728 *	Release an transmit buffer. If the buffer was preallocated then
1729 *	recycle it, if not then unmap the buffer.
1730 */
1731static void velocity_free_tx_buf(struct velocity_info *vptr,
1732		struct velocity_td_info *tdinfo, struct tx_desc *td)
1733{
1734	struct sk_buff *skb = tdinfo->skb;
1735
1736	/*
1737	 *	Don't unmap the pre-allocated tx_bufs
1738	 */
1739	if (tdinfo->skb_dma) {
1740		int i;
1741
1742		for (i = 0; i < tdinfo->nskb_dma; i++) {
1743			size_t pktlen = max_t(size_t, skb->len, ETH_ZLEN);
1744
1745			/* For scatter-gather */
1746			if (skb_shinfo(skb)->nr_frags > 0)
1747				pktlen = max_t(size_t, pktlen,
1748						td->td_buf[i].size & ~TD_QUEUE);
1749
1750			dma_unmap_single(vptr->dev, tdinfo->skb_dma[i],
1751					le16_to_cpu(pktlen), DMA_TO_DEVICE);
1752		}
1753	}
1754	dev_kfree_skb_irq(skb);
1755	tdinfo->skb = NULL;
1756}
1757
1758/*
1759 *	FIXME: could we merge this with velocity_free_tx_buf ?
1760 */
1761static void velocity_free_td_ring_entry(struct velocity_info *vptr,
1762							 int q, int n)
1763{
1764	struct velocity_td_info *td_info = &(vptr->tx.infos[q][n]);
1765	int i;
1766
1767	if (td_info == NULL)
1768		return;
1769
1770	if (td_info->skb) {
1771		for (i = 0; i < td_info->nskb_dma; i++) {
1772			if (td_info->skb_dma[i]) {
1773				dma_unmap_single(vptr->dev, td_info->skb_dma[i],
1774					td_info->skb->len, DMA_TO_DEVICE);
1775				td_info->skb_dma[i] = 0;
1776			}
1777		}
1778		dev_kfree_skb(td_info->skb);
1779		td_info->skb = NULL;
1780	}
1781}
1782
1783/**
1784 *	velocity_free_td_ring	-	free td ring
1785 *	@vptr: velocity
1786 *
1787 *	Free up the transmit ring for this particular velocity adapter.
1788 *	We free the ring contents but not the ring itself.
1789 */
1790static void velocity_free_td_ring(struct velocity_info *vptr)
1791{
1792	int i, j;
1793
1794	for (j = 0; j < vptr->tx.numq; j++) {
1795		if (vptr->tx.infos[j] == NULL)
1796			continue;
1797		for (i = 0; i < vptr->options.numtx; i++)
1798			velocity_free_td_ring_entry(vptr, j, i);
1799
1800		kfree(vptr->tx.infos[j]);
1801		vptr->tx.infos[j] = NULL;
1802	}
1803}
1804
1805static void velocity_free_rings(struct velocity_info *vptr)
1806{
1807	velocity_free_td_ring(vptr);
1808	velocity_free_rd_ring(vptr);
1809	velocity_free_dma_rings(vptr);
1810}
1811
1812/**
1813 *	velocity_error	-	handle error from controller
1814 *	@vptr: velocity
1815 *	@status: card status
1816 *
1817 *	Process an error report from the hardware and attempt to recover
1818 *	the card itself. At the moment we cannot recover from some
1819 *	theoretically impossible errors but this could be fixed using
1820 *	the pci_device_failed logic to bounce the hardware
1821 *
1822 */
1823static void velocity_error(struct velocity_info *vptr, int status)
1824{
1825
1826	if (status & ISR_TXSTLI) {
1827		struct mac_regs __iomem *regs = vptr->mac_regs;
1828
1829		printk(KERN_ERR "TD structure error TDindex=%hx\n", readw(&regs->TDIdx[0]));
1830		BYTE_REG_BITS_ON(TXESR_TDSTR, &regs->TXESR);
1831		writew(TRDCSR_RUN, &regs->TDCSRClr);
1832		netif_stop_queue(vptr->netdev);
1833
1834		/* FIXME: port over the pci_device_failed code and use it
1835		   here */
1836	}
1837
1838	if (status & ISR_SRCI) {
1839		struct mac_regs __iomem *regs = vptr->mac_regs;
1840		int linked;
1841
1842		if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1843			vptr->mii_status = check_connection_type(regs);
1844
1845			/*
1846			 *	If it is a 3119, disable frame bursting in
1847			 *	halfduplex mode and enable it in fullduplex
1848			 *	 mode
1849			 */
1850			if (vptr->rev_id < REV_ID_VT3216_A0) {
1851				if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1852					BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
1853				else
1854					BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
1855			}
1856			/*
1857			 *	Only enable CD heart beat counter in 10HD mode
1858			 */
1859			if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10))
1860				BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
1861			else
1862				BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
1863
1864			setup_queue_timers(vptr);
1865		}
1866		/*
1867		 *	Get link status from PHYSR0
1868		 */
1869		linked = readb(&regs->PHYSR0) & PHYSR0_LINKGD;
1870
1871		if (linked) {
1872			vptr->mii_status &= ~VELOCITY_LINK_FAIL;
1873			netif_carrier_on(vptr->netdev);
1874		} else {
1875			vptr->mii_status |= VELOCITY_LINK_FAIL;
1876			netif_carrier_off(vptr->netdev);
1877		}
1878
1879		velocity_print_link_status(vptr);
1880		enable_flow_control_ability(vptr);
1881
1882		/*
1883		 *	Re-enable auto-polling because SRCI will disable
1884		 *	auto-polling
1885		 */
1886
1887		enable_mii_autopoll(regs);
1888
1889		if (vptr->mii_status & VELOCITY_LINK_FAIL)
1890			netif_stop_queue(vptr->netdev);
1891		else
1892			netif_wake_queue(vptr->netdev);
1893
1894	}
1895	if (status & ISR_MIBFI)
1896		velocity_update_hw_mibs(vptr);
1897	if (status & ISR_LSTEI)
1898		mac_rx_queue_wake(vptr->mac_regs);
1899}
1900
1901/**
1902 *	tx_srv		-	transmit interrupt service
1903 *	@vptr; Velocity
1904 *
1905 *	Scan the queues looking for transmitted packets that
1906 *	we can complete and clean up. Update any statistics as
1907 *	necessary/
1908 */
1909static int velocity_tx_srv(struct velocity_info *vptr)
1910{
1911	struct tx_desc *td;
1912	int qnum;
1913	int full = 0;
1914	int idx;
1915	int works = 0;
1916	struct velocity_td_info *tdinfo;
1917	struct net_device_stats *stats = &vptr->netdev->stats;
1918
1919	for (qnum = 0; qnum < vptr->tx.numq; qnum++) {
1920		for (idx = vptr->tx.tail[qnum]; vptr->tx.used[qnum] > 0;
1921			idx = (idx + 1) % vptr->options.numtx) {
1922
1923			/*
1924			 *	Get Tx Descriptor
1925			 */
1926			td = &(vptr->tx.rings[qnum][idx]);
1927			tdinfo = &(vptr->tx.infos[qnum][idx]);
1928
1929			if (td->tdesc0.len & OWNED_BY_NIC)
1930				break;
1931
1932			if ((works++ > 15))
1933				break;
1934
1935			if (td->tdesc0.TSR & TSR0_TERR) {
1936				stats->tx_errors++;
1937				stats->tx_dropped++;
1938				if (td->tdesc0.TSR & TSR0_CDH)
1939					stats->tx_heartbeat_errors++;
1940				if (td->tdesc0.TSR & TSR0_CRS)
1941					stats->tx_carrier_errors++;
1942				if (td->tdesc0.TSR & TSR0_ABT)
1943					stats->tx_aborted_errors++;
1944				if (td->tdesc0.TSR & TSR0_OWC)
1945					stats->tx_window_errors++;
1946			} else {
1947				stats->tx_packets++;
1948				stats->tx_bytes += tdinfo->skb->len;
1949			}
1950			velocity_free_tx_buf(vptr, tdinfo, td);
1951			vptr->tx.used[qnum]--;
1952		}
1953		vptr->tx.tail[qnum] = idx;
1954
1955		if (AVAIL_TD(vptr, qnum) < 1)
1956			full = 1;
1957	}
1958	/*
1959	 *	Look to see if we should kick the transmit network
1960	 *	layer for more work.
1961	 */
1962	if (netif_queue_stopped(vptr->netdev) && (full == 0) &&
1963	    (!(vptr->mii_status & VELOCITY_LINK_FAIL))) {
1964		netif_wake_queue(vptr->netdev);
1965	}
1966	return works;
1967}
1968
1969/**
1970 *	velocity_rx_csum	-	checksum process
1971 *	@rd: receive packet descriptor
1972 *	@skb: network layer packet buffer
1973 *
1974 *	Process the status bits for the received packet and determine
1975 *	if the checksum was computed and verified by the hardware
1976 */
1977static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb)
1978{
1979	skb_checksum_none_assert(skb);
1980
1981	if (rd->rdesc1.CSM & CSM_IPKT) {
1982		if (rd->rdesc1.CSM & CSM_IPOK) {
1983			if ((rd->rdesc1.CSM & CSM_TCPKT) ||
1984					(rd->rdesc1.CSM & CSM_UDPKT)) {
1985				if (!(rd->rdesc1.CSM & CSM_TUPOK))
1986					return;
1987			}
1988			skb->ip_summed = CHECKSUM_UNNECESSARY;
1989		}
1990	}
1991}
1992
1993/**
1994 *	velocity_rx_copy	-	in place Rx copy for small packets
1995 *	@rx_skb: network layer packet buffer candidate
1996 *	@pkt_size: received data size
1997 *	@rd: receive packet descriptor
1998 *	@dev: network device
1999 *
2000 *	Replace the current skb that is scheduled for Rx processing by a
2001 *	shorter, immediately allocated skb, if the received packet is small
2002 *	enough. This function returns a negative value if the received
2003 *	packet is too big or if memory is exhausted.
2004 */
2005static int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size,
2006			    struct velocity_info *vptr)
2007{
2008	int ret = -1;
2009	if (pkt_size < rx_copybreak) {
2010		struct sk_buff *new_skb;
2011
2012		new_skb = netdev_alloc_skb_ip_align(vptr->netdev, pkt_size);
2013		if (new_skb) {
2014			new_skb->ip_summed = rx_skb[0]->ip_summed;
2015			skb_copy_from_linear_data(*rx_skb, new_skb->data, pkt_size);
2016			*rx_skb = new_skb;
2017			ret = 0;
2018		}
2019
2020	}
2021	return ret;
2022}
2023
2024/**
2025 *	velocity_iph_realign	-	IP header alignment
2026 *	@vptr: velocity we are handling
2027 *	@skb: network layer packet buffer
2028 *	@pkt_size: received data size
2029 *
2030 *	Align IP header on a 2 bytes boundary. This behavior can be
2031 *	configured by the user.
2032 */
2033static inline void velocity_iph_realign(struct velocity_info *vptr,
2034					struct sk_buff *skb, int pkt_size)
2035{
2036	if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) {
2037		memmove(skb->data + 2, skb->data, pkt_size);
2038		skb_reserve(skb, 2);
2039	}
2040}
2041
2042/**
2043 *	velocity_receive_frame	-	received packet processor
2044 *	@vptr: velocity we are handling
2045 *	@idx: ring index
2046 *
2047 *	A packet has arrived. We process the packet and if appropriate
2048 *	pass the frame up the network stack
2049 */
2050static int velocity_receive_frame(struct velocity_info *vptr, int idx)
2051{
2052	struct net_device_stats *stats = &vptr->netdev->stats;
2053	struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
2054	struct rx_desc *rd = &(vptr->rx.ring[idx]);
2055	int pkt_len = le16_to_cpu(rd->rdesc0.len) & 0x3fff;
2056	struct sk_buff *skb;
2057
2058	if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP)) {
2059		VELOCITY_PRT(MSG_LEVEL_VERBOSE, KERN_ERR " %s : the received frame spans multiple RDs.\n", vptr->netdev->name);
2060		stats->rx_length_errors++;
2061		return -EINVAL;
2062	}
2063
2064	if (rd->rdesc0.RSR & RSR_MAR)
2065		stats->multicast++;
2066
2067	skb = rd_info->skb;
2068
2069	dma_sync_single_for_cpu(vptr->dev, rd_info->skb_dma,
2070				    vptr->rx.buf_sz, DMA_FROM_DEVICE);
2071
2072	/*
2073	 *	Drop frame not meeting IEEE 802.3
2074	 */
2075
2076	if (vptr->flags & VELOCITY_FLAGS_VAL_PKT_LEN) {
2077		if (rd->rdesc0.RSR & RSR_RL) {
2078			stats->rx_length_errors++;
2079			return -EINVAL;
2080		}
2081	}
2082
2083	velocity_rx_csum(rd, skb);
2084
2085	if (velocity_rx_copy(&skb, pkt_len, vptr) < 0) {
2086		velocity_iph_realign(vptr, skb, pkt_len);
2087		rd_info->skb = NULL;
2088		dma_unmap_single(vptr->dev, rd_info->skb_dma, vptr->rx.buf_sz,
2089				 DMA_FROM_DEVICE);
2090	} else {
2091		dma_sync_single_for_device(vptr->dev, rd_info->skb_dma,
2092					   vptr->rx.buf_sz, DMA_FROM_DEVICE);
2093	}
2094
2095	skb_put(skb, pkt_len - 4);
2096	skb->protocol = eth_type_trans(skb, vptr->netdev);
2097
2098	if (rd->rdesc0.RSR & RSR_DETAG) {
2099		u16 vid = swab16(le16_to_cpu(rd->rdesc1.PQTAG));
2100
2101		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
2102	}
2103	netif_receive_skb(skb);
2104
2105	stats->rx_bytes += pkt_len;
2106	stats->rx_packets++;
2107
2108	return 0;
2109}
2110
2111/**
2112 *	velocity_rx_srv		-	service RX interrupt
2113 *	@vptr: velocity
2114 *
2115 *	Walk the receive ring of the velocity adapter and remove
2116 *	any received packets from the receive queue. Hand the ring
2117 *	slots back to the adapter for reuse.
2118 */
2119static int velocity_rx_srv(struct velocity_info *vptr, int budget_left)
2120{
2121	struct net_device_stats *stats = &vptr->netdev->stats;
2122	int rd_curr = vptr->rx.curr;
2123	int works = 0;
2124
2125	while (works < budget_left) {
2126		struct rx_desc *rd = vptr->rx.ring + rd_curr;
2127
2128		if (!vptr->rx.info[rd_curr].skb)
2129			break;
2130
2131		if (rd->rdesc0.len & OWNED_BY_NIC)
2132			break;
2133
2134		rmb();
2135
2136		/*
2137		 *	Don't drop CE or RL error frame although RXOK is off
2138		 */
2139		if (rd->rdesc0.RSR & (RSR_RXOK | RSR_CE | RSR_RL)) {
2140			if (velocity_receive_frame(vptr, rd_curr) < 0)
2141				stats->rx_dropped++;
2142		} else {
2143			if (rd->rdesc0.RSR & RSR_CRC)
2144				stats->rx_crc_errors++;
2145			if (rd->rdesc0.RSR & RSR_FAE)
2146				stats->rx_frame_errors++;
2147
2148			stats->rx_dropped++;
2149		}
2150
2151		rd->size |= RX_INTEN;
2152
2153		rd_curr++;
2154		if (rd_curr >= vptr->options.numrx)
2155			rd_curr = 0;
2156		works++;
2157	}
2158
2159	vptr->rx.curr = rd_curr;
2160
2161	if ((works > 0) && (velocity_rx_refill(vptr) > 0))
2162		velocity_give_many_rx_descs(vptr);
2163
2164	VAR_USED(stats);
2165	return works;
2166}
2167
2168static int velocity_poll(struct napi_struct *napi, int budget)
2169{
2170	struct velocity_info *vptr = container_of(napi,
2171			struct velocity_info, napi);
2172	unsigned int rx_done;
2173	unsigned long flags;
2174
2175	/*
2176	 * Do rx and tx twice for performance (taken from the VIA
2177	 * out-of-tree driver).
2178	 */
2179	rx_done = velocity_rx_srv(vptr, budget);
2180	spin_lock_irqsave(&vptr->lock, flags);
2181	velocity_tx_srv(vptr);
2182	/* If budget not fully consumed, exit the polling mode */
2183	if (rx_done < budget) {
2184		napi_complete(napi);
2185		mac_enable_int(vptr->mac_regs);
2186	}
2187	spin_unlock_irqrestore(&vptr->lock, flags);
2188
2189	return rx_done;
2190}
2191
2192/**
2193 *	velocity_intr		-	interrupt callback
2194 *	@irq: interrupt number
2195 *	@dev_instance: interrupting device
2196 *
2197 *	Called whenever an interrupt is generated by the velocity
2198 *	adapter IRQ line. We may not be the source of the interrupt
2199 *	and need to identify initially if we are, and if not exit as
2200 *	efficiently as possible.
2201 */
2202static irqreturn_t velocity_intr(int irq, void *dev_instance)
2203{
2204	struct net_device *dev = dev_instance;
2205	struct velocity_info *vptr = netdev_priv(dev);
2206	u32 isr_status;
2207
2208	spin_lock(&vptr->lock);
2209	isr_status = mac_read_isr(vptr->mac_regs);
2210
2211	/* Not us ? */
2212	if (isr_status == 0) {
2213		spin_unlock(&vptr->lock);
2214		return IRQ_NONE;
2215	}
2216
2217	/* Ack the interrupt */
2218	mac_write_isr(vptr->mac_regs, isr_status);
2219
2220	if (likely(napi_schedule_prep(&vptr->napi))) {
2221		mac_disable_int(vptr->mac_regs);
2222		__napi_schedule(&vptr->napi);
2223	}
2224
2225	if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI)))
2226		velocity_error(vptr, isr_status);
2227
2228	spin_unlock(&vptr->lock);
2229
2230	return IRQ_HANDLED;
2231}
2232
2233/**
2234 *	velocity_open		-	interface activation callback
2235 *	@dev: network layer device to open
2236 *
2237 *	Called when the network layer brings the interface up. Returns
2238 *	a negative posix error code on failure, or zero on success.
2239 *
2240 *	All the ring allocation and set up is done on open for this
2241 *	adapter to minimise memory usage when inactive
2242 */
2243static int velocity_open(struct net_device *dev)
2244{
2245	struct velocity_info *vptr = netdev_priv(dev);
2246	int ret;
2247
2248	ret = velocity_init_rings(vptr, dev->mtu);
2249	if (ret < 0)
2250		goto out;
2251
2252	/* Ensure chip is running */
2253	velocity_set_power_state(vptr, PCI_D0);
2254
2255	velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2256
2257	ret = request_irq(dev->irq, velocity_intr, IRQF_SHARED,
2258			  dev->name, dev);
2259	if (ret < 0) {
2260		/* Power down the chip */
2261		velocity_set_power_state(vptr, PCI_D3hot);
2262		velocity_free_rings(vptr);
2263		goto out;
2264	}
2265
2266	velocity_give_many_rx_descs(vptr);
2267
2268	mac_enable_int(vptr->mac_regs);
2269	netif_start_queue(dev);
2270	napi_enable(&vptr->napi);
2271	vptr->flags |= VELOCITY_FLAGS_OPENED;
2272out:
2273	return ret;
2274}
2275
2276/**
2277 *	velocity_shutdown	-	shut down the chip
2278 *	@vptr: velocity to deactivate
2279 *
2280 *	Shuts down the internal operations of the velocity and
2281 *	disables interrupts, autopolling, transmit and receive
2282 */
2283static void velocity_shutdown(struct velocity_info *vptr)
2284{
2285	struct mac_regs __iomem *regs = vptr->mac_regs;
2286	mac_disable_int(regs);
2287	writel(CR0_STOP, &regs->CR0Set);
2288	writew(0xFFFF, &regs->TDCSRClr);
2289	writeb(0xFF, &regs->RDCSRClr);
2290	safe_disable_mii_autopoll(regs);
2291	mac_clear_isr(regs);
2292}
2293
2294/**
2295 *	velocity_change_mtu	-	MTU change callback
2296 *	@dev: network device
2297 *	@new_mtu: desired MTU
2298 *
2299 *	Handle requests from the networking layer for MTU change on
2300 *	this interface. It gets called on a change by the network layer.
2301 *	Return zero for success or negative posix error code.
2302 */
2303static int velocity_change_mtu(struct net_device *dev, int new_mtu)
2304{
2305	struct velocity_info *vptr = netdev_priv(dev);
2306	int ret = 0;
2307
2308	if ((new_mtu < VELOCITY_MIN_MTU) || new_mtu > (VELOCITY_MAX_MTU)) {
2309		VELOCITY_PRT(MSG_LEVEL_ERR, KERN_NOTICE "%s: Invalid MTU.\n",
2310				vptr->netdev->name);
2311		ret = -EINVAL;
2312		goto out_0;
2313	}
2314
2315	if (!netif_running(dev)) {
2316		dev->mtu = new_mtu;
2317		goto out_0;
2318	}
2319
2320	if (dev->mtu != new_mtu) {
2321		struct velocity_info *tmp_vptr;
2322		unsigned long flags;
2323		struct rx_info rx;
2324		struct tx_info tx;
2325
2326		tmp_vptr = kzalloc(sizeof(*tmp_vptr), GFP_KERNEL);
2327		if (!tmp_vptr) {
2328			ret = -ENOMEM;
2329			goto out_0;
2330		}
2331
2332		tmp_vptr->netdev = dev;
2333		tmp_vptr->pdev = vptr->pdev;
2334		tmp_vptr->dev = vptr->dev;
2335		tmp_vptr->options = vptr->options;
2336		tmp_vptr->tx.numq = vptr->tx.numq;
2337
2338		ret = velocity_init_rings(tmp_vptr, new_mtu);
2339		if (ret < 0)
2340			goto out_free_tmp_vptr_1;
2341
2342		napi_disable(&vptr->napi);
2343
2344		spin_lock_irqsave(&vptr->lock, flags);
2345
2346		netif_stop_queue(dev);
2347		velocity_shutdown(vptr);
2348
2349		rx = vptr->rx;
2350		tx = vptr->tx;
2351
2352		vptr->rx = tmp_vptr->rx;
2353		vptr->tx = tmp_vptr->tx;
2354
2355		tmp_vptr->rx = rx;
2356		tmp_vptr->tx = tx;
2357
2358		dev->mtu = new_mtu;
2359
2360		velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2361
2362		velocity_give_many_rx_descs(vptr);
2363
2364		napi_enable(&vptr->napi);
2365
2366		mac_enable_int(vptr->mac_regs);
2367		netif_start_queue(dev);
2368
2369		spin_unlock_irqrestore(&vptr->lock, flags);
2370
2371		velocity_free_rings(tmp_vptr);
2372
2373out_free_tmp_vptr_1:
2374		kfree(tmp_vptr);
2375	}
2376out_0:
2377	return ret;
2378}
2379
2380#ifdef CONFIG_NET_POLL_CONTROLLER
2381/**
2382 *  velocity_poll_controller		-	Velocity Poll controller function
2383 *  @dev: network device
2384 *
2385 *
2386 *  Used by NETCONSOLE and other diagnostic tools to allow network I/P
2387 *  with interrupts disabled.
2388 */
2389static void velocity_poll_controller(struct net_device *dev)
2390{
2391	disable_irq(dev->irq);
2392	velocity_intr(dev->irq, dev);
2393	enable_irq(dev->irq);
2394}
2395#endif
2396
2397/**
2398 *	velocity_mii_ioctl		-	MII ioctl handler
2399 *	@dev: network device
2400 *	@ifr: the ifreq block for the ioctl
2401 *	@cmd: the command
2402 *
2403 *	Process MII requests made via ioctl from the network layer. These
2404 *	are used by tools like kudzu to interrogate the link state of the
2405 *	hardware
2406 */
2407static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2408{
2409	struct velocity_info *vptr = netdev_priv(dev);
2410	struct mac_regs __iomem *regs = vptr->mac_regs;
2411	unsigned long flags;
2412	struct mii_ioctl_data *miidata = if_mii(ifr);
2413	int err;
2414
2415	switch (cmd) {
2416	case SIOCGMIIPHY:
2417		miidata->phy_id = readb(&regs->MIIADR) & 0x1f;
2418		break;
2419	case SIOCGMIIREG:
2420		if (velocity_mii_read(vptr->mac_regs, miidata->reg_num & 0x1f, &(miidata->val_out)) < 0)
2421			return -ETIMEDOUT;
2422		break;
2423	case SIOCSMIIREG:
2424		spin_lock_irqsave(&vptr->lock, flags);
2425		err = velocity_mii_write(vptr->mac_regs, miidata->reg_num & 0x1f, miidata->val_in);
2426		spin_unlock_irqrestore(&vptr->lock, flags);
2427		check_connection_type(vptr->mac_regs);
2428		if (err)
2429			return err;
2430		break;
2431	default:
2432		return -EOPNOTSUPP;
2433	}
2434	return 0;
2435}
2436
2437/**
2438 *	velocity_ioctl		-	ioctl entry point
2439 *	@dev: network device
2440 *	@rq: interface request ioctl
2441 *	@cmd: command code
2442 *
2443 *	Called when the user issues an ioctl request to the network
2444 *	device in question. The velocity interface supports MII.
2445 */
2446static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2447{
2448	struct velocity_info *vptr = netdev_priv(dev);
2449	int ret;
2450
2451	/* If we are asked for information and the device is power
2452	   saving then we need to bring the device back up to talk to it */
2453
2454	if (!netif_running(dev))
2455		velocity_set_power_state(vptr, PCI_D0);
2456
2457	switch (cmd) {
2458	case SIOCGMIIPHY:	/* Get address of MII PHY in use. */
2459	case SIOCGMIIREG:	/* Read MII PHY register. */
2460	case SIOCSMIIREG:	/* Write to MII PHY register. */
2461		ret = velocity_mii_ioctl(dev, rq, cmd);
2462		break;
2463
2464	default:
2465		ret = -EOPNOTSUPP;
2466	}
2467	if (!netif_running(dev))
2468		velocity_set_power_state(vptr, PCI_D3hot);
2469
2470
2471	return ret;
2472}
2473
2474/**
2475 *	velocity_get_status	-	statistics callback
2476 *	@dev: network device
2477 *
2478 *	Callback from the network layer to allow driver statistics
2479 *	to be resynchronized with hardware collected state. In the
2480 *	case of the velocity we need to pull the MIB counters from
2481 *	the hardware into the counters before letting the network
2482 *	layer display them.
2483 */
2484static struct net_device_stats *velocity_get_stats(struct net_device *dev)
2485{
2486	struct velocity_info *vptr = netdev_priv(dev);
2487
2488	/* If the hardware is down, don't touch MII */
2489	if (!netif_running(dev))
2490		return &dev->stats;
2491
2492	spin_lock_irq(&vptr->lock);
2493	velocity_update_hw_mibs(vptr);
2494	spin_unlock_irq(&vptr->lock);
2495
2496	dev->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts];
2497	dev->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts];
2498	dev->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors];
2499
2500//  unsigned long   rx_dropped;     /* no space in linux buffers    */
2501	dev->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions];
2502	/* detailed rx_errors: */
2503//  unsigned long   rx_length_errors;
2504//  unsigned long   rx_over_errors;     /* receiver ring buff overflow  */
2505	dev->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE];
2506//  unsigned long   rx_frame_errors;    /* recv'd frame alignment error */
2507//  unsigned long   rx_fifo_errors;     /* recv'r fifo overrun      */
2508//  unsigned long   rx_missed_errors;   /* receiver missed packet   */
2509
2510	/* detailed tx_errors */
2511//  unsigned long   tx_fifo_errors;
2512
2513	return &dev->stats;
2514}
2515
2516/**
2517 *	velocity_close		-	close adapter callback
2518 *	@dev: network device
2519 *
2520 *	Callback from the network layer when the velocity is being
2521 *	deactivated by the network layer
2522 */
2523static int velocity_close(struct net_device *dev)
2524{
2525	struct velocity_info *vptr = netdev_priv(dev);
2526
2527	napi_disable(&vptr->napi);
2528	netif_stop_queue(dev);
2529	velocity_shutdown(vptr);
2530
2531	if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED)
2532		velocity_get_ip(vptr);
2533
2534	free_irq(dev->irq, dev);
2535
2536	velocity_free_rings(vptr);
2537
2538	vptr->flags &= (~VELOCITY_FLAGS_OPENED);
2539	return 0;
2540}
2541
2542/**
2543 *	velocity_xmit		-	transmit packet callback
2544 *	@skb: buffer to transmit
2545 *	@dev: network device
2546 *
2547 *	Called by the networ layer to request a packet is queued to
2548 *	the velocity. Returns zero on success.
2549 */
2550static netdev_tx_t velocity_xmit(struct sk_buff *skb,
2551				 struct net_device *dev)
2552{
2553	struct velocity_info *vptr = netdev_priv(dev);
2554	int qnum = 0;
2555	struct tx_desc *td_ptr;
2556	struct velocity_td_info *tdinfo;
2557	unsigned long flags;
2558	int pktlen;
2559	int index, prev;
2560	int i = 0;
2561
2562	if (skb_padto(skb, ETH_ZLEN))
2563		goto out;
2564
2565	/* The hardware can handle at most 7 memory segments, so merge
2566	 * the skb if there are more */
2567	if (skb_shinfo(skb)->nr_frags > 6 && __skb_linearize(skb)) {
2568		dev_kfree_skb_any(skb);
2569		return NETDEV_TX_OK;
2570	}
2571
2572	pktlen = skb_shinfo(skb)->nr_frags == 0 ?
2573			max_t(unsigned int, skb->len, ETH_ZLEN) :
2574				skb_headlen(skb);
2575
2576	spin_lock_irqsave(&vptr->lock, flags);
2577
2578	index = vptr->tx.curr[qnum];
2579	td_ptr = &(vptr->tx.rings[qnum][index]);
2580	tdinfo = &(vptr->tx.infos[qnum][index]);
2581
2582	td_ptr->tdesc1.TCR = TCR0_TIC;
2583	td_ptr->td_buf[0].size &= ~TD_QUEUE;
2584
2585	/*
2586	 *	Map the linear network buffer into PCI space and
2587	 *	add it to the transmit ring.
2588	 */
2589	tdinfo->skb = skb;
2590	tdinfo->skb_dma[0] = dma_map_single(vptr->dev, skb->data, pktlen,
2591								DMA_TO_DEVICE);
2592	td_ptr->tdesc0.len = cpu_to_le16(pktlen);
2593	td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
2594	td_ptr->td_buf[0].pa_high = 0;
2595	td_ptr->td_buf[0].size = cpu_to_le16(pktlen);
2596
2597	/* Handle fragments */
2598	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2599		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2600
2601		tdinfo->skb_dma[i + 1] = skb_frag_dma_map(vptr->dev,
2602							  frag, 0,
2603							  skb_frag_size(frag),
2604							  DMA_TO_DEVICE);
2605
2606		td_ptr->td_buf[i + 1].pa_low = cpu_to_le32(tdinfo->skb_dma[i + 1]);
2607		td_ptr->td_buf[i + 1].pa_high = 0;
2608		td_ptr->td_buf[i + 1].size = cpu_to_le16(skb_frag_size(frag));
2609	}
2610	tdinfo->nskb_dma = i + 1;
2611
2612	td_ptr->tdesc1.cmd = TCPLS_NORMAL + (tdinfo->nskb_dma + 1) * 16;
2613
2614	if (skb_vlan_tag_present(skb)) {
2615		td_ptr->tdesc1.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
2616		td_ptr->tdesc1.TCR |= TCR0_VETAG;
2617	}
2618
2619	/*
2620	 *	Handle hardware checksum
2621	 */
2622	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2623		const struct iphdr *ip = ip_hdr(skb);
2624		if (ip->protocol == IPPROTO_TCP)
2625			td_ptr->tdesc1.TCR |= TCR0_TCPCK;
2626		else if (ip->protocol == IPPROTO_UDP)
2627			td_ptr->tdesc1.TCR |= (TCR0_UDPCK);
2628		td_ptr->tdesc1.TCR |= TCR0_IPCK;
2629	}
2630
2631	prev = index - 1;
2632	if (prev < 0)
2633		prev = vptr->options.numtx - 1;
2634	td_ptr->tdesc0.len |= OWNED_BY_NIC;
2635	vptr->tx.used[qnum]++;
2636	vptr->tx.curr[qnum] = (index + 1) % vptr->options.numtx;
2637
2638	if (AVAIL_TD(vptr, qnum) < 1)
2639		netif_stop_queue(dev);
2640
2641	td_ptr = &(vptr->tx.rings[qnum][prev]);
2642	td_ptr->td_buf[0].size |= TD_QUEUE;
2643	mac_tx_queue_wake(vptr->mac_regs, qnum);
2644
2645	spin_unlock_irqrestore(&vptr->lock, flags);
2646out:
2647	return NETDEV_TX_OK;
2648}
2649
2650static const struct net_device_ops velocity_netdev_ops = {
2651	.ndo_open		= velocity_open,
2652	.ndo_stop		= velocity_close,
2653	.ndo_start_xmit		= velocity_xmit,
2654	.ndo_get_stats		= velocity_get_stats,
2655	.ndo_validate_addr	= eth_validate_addr,
2656	.ndo_set_mac_address	= eth_mac_addr,
2657	.ndo_set_rx_mode	= velocity_set_multi,
2658	.ndo_change_mtu		= velocity_change_mtu,
2659	.ndo_do_ioctl		= velocity_ioctl,
2660	.ndo_vlan_rx_add_vid	= velocity_vlan_rx_add_vid,
2661	.ndo_vlan_rx_kill_vid	= velocity_vlan_rx_kill_vid,
2662#ifdef CONFIG_NET_POLL_CONTROLLER
2663	.ndo_poll_controller = velocity_poll_controller,
2664#endif
2665};
2666
2667/**
2668 *	velocity_init_info	-	init private data
2669 *	@pdev: PCI device
2670 *	@vptr: Velocity info
2671 *	@info: Board type
2672 *
2673 *	Set up the initial velocity_info struct for the device that has been
2674 *	discovered.
2675 */
2676static void velocity_init_info(struct velocity_info *vptr,
2677				const struct velocity_info_tbl *info)
2678{
2679	vptr->chip_id = info->chip_id;
2680	vptr->tx.numq = info->txqueue;
2681	vptr->multicast_limit = MCAM_SIZE;
2682	spin_lock_init(&vptr->lock);
2683}
2684
2685/**
2686 *	velocity_get_pci_info	-	retrieve PCI info for device
2687 *	@vptr: velocity device
2688 *	@pdev: PCI device it matches
2689 *
2690 *	Retrieve the PCI configuration space data that interests us from
2691 *	the kernel PCI layer
2692 */
2693static int velocity_get_pci_info(struct velocity_info *vptr)
2694{
2695	struct pci_dev *pdev = vptr->pdev;
2696
2697	pci_set_master(pdev);
2698
2699	vptr->ioaddr = pci_resource_start(pdev, 0);
2700	vptr->memaddr = pci_resource_start(pdev, 1);
2701
2702	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_IO)) {
2703		dev_err(&pdev->dev,
2704			   "region #0 is not an I/O resource, aborting.\n");
2705		return -EINVAL;
2706	}
2707
2708	if ((pci_resource_flags(pdev, 1) & IORESOURCE_IO)) {
2709		dev_err(&pdev->dev,
2710			   "region #1 is an I/O resource, aborting.\n");
2711		return -EINVAL;
2712	}
2713
2714	if (pci_resource_len(pdev, 1) < VELOCITY_IO_SIZE) {
2715		dev_err(&pdev->dev, "region #1 is too small.\n");
2716		return -EINVAL;
2717	}
2718
2719	return 0;
2720}
2721
2722/**
2723 *	velocity_get_platform_info - retrieve platform info for device
2724 *	@vptr: velocity device
2725 *	@pdev: platform device it matches
2726 *
2727 *	Retrieve the Platform configuration data that interests us
2728 */
2729static int velocity_get_platform_info(struct velocity_info *vptr)
2730{
2731	struct resource res;
2732	int ret;
2733
2734	if (of_get_property(vptr->dev->of_node, "no-eeprom", NULL))
2735		vptr->no_eeprom = 1;
2736
2737	ret = of_address_to_resource(vptr->dev->of_node, 0, &res);
2738	if (ret) {
2739		dev_err(vptr->dev, "unable to find memory address\n");
2740		return ret;
2741	}
2742
2743	vptr->memaddr = res.start;
2744
2745	if (resource_size(&res) < VELOCITY_IO_SIZE) {
2746		dev_err(vptr->dev, "memory region is too small.\n");
2747		return -EINVAL;
2748	}
2749
2750	return 0;
2751}
2752
2753/**
2754 *	velocity_print_info	-	per driver data
2755 *	@vptr: velocity
2756 *
2757 *	Print per driver data as the kernel driver finds Velocity
2758 *	hardware
2759 */
2760static void velocity_print_info(struct velocity_info *vptr)
2761{
2762	struct net_device *dev = vptr->netdev;
2763
2764	printk(KERN_INFO "%s: %s\n", dev->name, get_chip_name(vptr->chip_id));
2765	printk(KERN_INFO "%s: Ethernet Address: %pM\n",
2766		dev->name, dev->dev_addr);
2767}
2768
2769static u32 velocity_get_link(struct net_device *dev)
2770{
2771	struct velocity_info *vptr = netdev_priv(dev);
2772	struct mac_regs __iomem *regs = vptr->mac_regs;
2773	return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, &regs->PHYSR0) ? 1 : 0;
2774}
2775
2776/**
2777 *	velocity_probe - set up discovered velocity device
2778 *	@pdev: PCI device
2779 *	@ent: PCI device table entry that matched
2780 *	@bustype: bus that device is connected to
2781 *
2782 *	Configure a discovered adapter from scratch. Return a negative
2783 *	errno error code on failure paths.
2784 */
2785static int velocity_probe(struct device *dev, int irq,
2786			   const struct velocity_info_tbl *info,
2787			   enum velocity_bus_type bustype)
2788{
2789	static int first = 1;
2790	struct net_device *netdev;
2791	int i;
2792	const char *drv_string;
2793	struct velocity_info *vptr;
2794	struct mac_regs __iomem *regs;
2795	int ret = -ENOMEM;
2796
2797	/* FIXME: this driver, like almost all other ethernet drivers,
2798	 * can support more than MAX_UNITS.
2799	 */
2800	if (velocity_nics >= MAX_UNITS) {
2801		dev_notice(dev, "already found %d NICs.\n", velocity_nics);
2802		return -ENODEV;
2803	}
2804
2805	netdev = alloc_etherdev(sizeof(struct velocity_info));
2806	if (!netdev)
2807		goto out;
2808
2809	/* Chain it all together */
2810
2811	SET_NETDEV_DEV(netdev, dev);
2812	vptr = netdev_priv(netdev);
2813
2814	if (first) {
2815		printk(KERN_INFO "%s Ver. %s\n",
2816			VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION);
2817		printk(KERN_INFO "Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n");
2818		printk(KERN_INFO "Copyright (c) 2004 Red Hat Inc.\n");
2819		first = 0;
2820	}
2821
2822	netdev->irq = irq;
2823	vptr->netdev = netdev;
2824	vptr->dev = dev;
2825
2826	velocity_init_info(vptr, info);
2827
2828	if (bustype == BUS_PCI) {
2829		vptr->pdev = to_pci_dev(dev);
2830
2831		ret = velocity_get_pci_info(vptr);
2832		if (ret < 0)
2833			goto err_free_dev;
2834	} else {
2835		vptr->pdev = NULL;
2836		ret = velocity_get_platform_info(vptr);
2837		if (ret < 0)
2838			goto err_free_dev;
2839	}
2840
2841	regs = ioremap(vptr->memaddr, VELOCITY_IO_SIZE);
2842	if (regs == NULL) {
2843		ret = -EIO;
2844		goto err_free_dev;
2845	}
2846
2847	vptr->mac_regs = regs;
2848	vptr->rev_id = readb(&regs->rev_id);
2849
2850	mac_wol_reset(regs);
2851
2852	for (i = 0; i < 6; i++)
2853		netdev->dev_addr[i] = readb(&regs->PAR[i]);
2854
2855
2856	drv_string = dev_driver_string(dev);
2857
2858	velocity_get_options(&vptr->options, velocity_nics, drv_string);
2859
2860	/*
2861	 *	Mask out the options cannot be set to the chip
2862	 */
2863
2864	vptr->options.flags &= info->flags;
2865
2866	/*
2867	 *	Enable the chip specified capbilities
2868	 */
2869
2870	vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL);
2871
2872	vptr->wol_opts = vptr->options.wol_opts;
2873	vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2874
2875	vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs);
2876
2877	netdev->netdev_ops = &velocity_netdev_ops;
2878	netdev->ethtool_ops = &velocity_ethtool_ops;
2879	netif_napi_add(netdev, &vptr->napi, velocity_poll,
2880							VELOCITY_NAPI_WEIGHT);
2881
2882	netdev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
2883			   NETIF_F_HW_VLAN_CTAG_TX;
2884	netdev->features |= NETIF_F_HW_VLAN_CTAG_TX |
2885			NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX |
2886			NETIF_F_IP_CSUM;
2887
2888	ret = register_netdev(netdev);
2889	if (ret < 0)
2890		goto err_iounmap;
2891
2892	if (!velocity_get_link(netdev)) {
2893		netif_carrier_off(netdev);
2894		vptr->mii_status |= VELOCITY_LINK_FAIL;
2895	}
2896
2897	velocity_print_info(vptr);
2898	dev_set_drvdata(vptr->dev, netdev);
2899
2900	/* and leave the chip powered down */
2901
2902	velocity_set_power_state(vptr, PCI_D3hot);
2903	velocity_nics++;
2904out:
2905	return ret;
2906
2907err_iounmap:
2908	netif_napi_del(&vptr->napi);
2909	iounmap(regs);
2910err_free_dev:
2911	free_netdev(netdev);
2912	goto out;
2913}
2914
2915/**
2916 *	velocity_remove	- device unplug
2917 *	@dev: device being removed
2918 *
2919 *	Device unload callback. Called on an unplug or on module
2920 *	unload for each active device that is present. Disconnects
2921 *	the device from the network layer and frees all the resources
2922 */
2923static int velocity_remove(struct device *dev)
2924{
2925	struct net_device *netdev = dev_get_drvdata(dev);
2926	struct velocity_info *vptr = netdev_priv(netdev);
2927
2928	unregister_netdev(netdev);
2929	netif_napi_del(&vptr->napi);
2930	iounmap(vptr->mac_regs);
2931	free_netdev(netdev);
2932	velocity_nics--;
2933
2934	return 0;
2935}
2936
2937static int velocity_pci_probe(struct pci_dev *pdev,
2938			       const struct pci_device_id *ent)
2939{
2940	const struct velocity_info_tbl *info =
2941					&chip_info_table[ent->driver_data];
2942	int ret;
2943
2944	ret = pci_enable_device(pdev);
2945	if (ret < 0)
2946		return ret;
2947
2948	ret = pci_request_regions(pdev, VELOCITY_NAME);
2949	if (ret < 0) {
2950		dev_err(&pdev->dev, "No PCI resources.\n");
2951		goto fail1;
2952	}
2953
2954	ret = velocity_probe(&pdev->dev, pdev->irq, info, BUS_PCI);
2955	if (ret == 0)
2956		return 0;
2957
2958	pci_release_regions(pdev);
2959fail1:
2960	pci_disable_device(pdev);
2961	return ret;
2962}
2963
2964static void velocity_pci_remove(struct pci_dev *pdev)
2965{
2966	velocity_remove(&pdev->dev);
2967
2968	pci_release_regions(pdev);
2969	pci_disable_device(pdev);
2970}
2971
2972static int velocity_platform_probe(struct platform_device *pdev)
2973{
2974	const struct of_device_id *of_id;
2975	const struct velocity_info_tbl *info;
2976	int irq;
2977
2978	of_id = of_match_device(velocity_of_ids, &pdev->dev);
2979	if (!of_id)
2980		return -EINVAL;
2981	info = of_id->data;
2982
2983	irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
2984	if (!irq)
2985		return -EINVAL;
2986
2987	return velocity_probe(&pdev->dev, irq, info, BUS_PLATFORM);
2988}
2989
2990static int velocity_platform_remove(struct platform_device *pdev)
2991{
2992	velocity_remove(&pdev->dev);
2993
2994	return 0;
2995}
2996
2997#ifdef CONFIG_PM_SLEEP
2998/**
2999 *	wol_calc_crc		-	WOL CRC
3000 *	@pattern: data pattern
3001 *	@mask_pattern: mask
3002 *
3003 *	Compute the wake on lan crc hashes for the packet header
3004 *	we are interested in.
3005 */
3006static u16 wol_calc_crc(int size, u8 *pattern, u8 *mask_pattern)
3007{
3008	u16 crc = 0xFFFF;
3009	u8 mask;
3010	int i, j;
3011
3012	for (i = 0; i < size; i++) {
3013		mask = mask_pattern[i];
3014
3015		/* Skip this loop if the mask equals to zero */
3016		if (mask == 0x00)
3017			continue;
3018
3019		for (j = 0; j < 8; j++) {
3020			if ((mask & 0x01) == 0) {
3021				mask >>= 1;
3022				continue;
3023			}
3024			mask >>= 1;
3025			crc = crc_ccitt(crc, &(pattern[i * 8 + j]), 1);
3026		}
3027	}
3028	/*	Finally, invert the result once to get the correct data */
3029	crc = ~crc;
3030	return bitrev32(crc) >> 16;
3031}
3032
3033/**
3034 *	velocity_set_wol	-	set up for wake on lan
3035 *	@vptr: velocity to set WOL status on
3036 *
3037 *	Set a card up for wake on lan either by unicast or by
3038 *	ARP packet.
3039 *
3040 *	FIXME: check static buffer is safe here
3041 */
3042static int velocity_set_wol(struct velocity_info *vptr)
3043{
3044	struct mac_regs __iomem *regs = vptr->mac_regs;
3045	enum speed_opt spd_dpx = vptr->options.spd_dpx;
3046	static u8 buf[256];
3047	int i;
3048
3049	static u32 mask_pattern[2][4] = {
3050		{0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */
3051		{0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff}	 /* Magic Packet */
3052	};
3053
3054	writew(0xFFFF, &regs->WOLCRClr);
3055	writeb(WOLCFG_SAB | WOLCFG_SAM, &regs->WOLCFGSet);
3056	writew(WOLCR_MAGIC_EN, &regs->WOLCRSet);
3057
3058	/*
3059	   if (vptr->wol_opts & VELOCITY_WOL_PHY)
3060	   writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), &regs->WOLCRSet);
3061	 */
3062
3063	if (vptr->wol_opts & VELOCITY_WOL_UCAST)
3064		writew(WOLCR_UNICAST_EN, &regs->WOLCRSet);
3065
3066	if (vptr->wol_opts & VELOCITY_WOL_ARP) {
3067		struct arp_packet *arp = (struct arp_packet *) buf;
3068		u16 crc;
3069		memset(buf, 0, sizeof(struct arp_packet) + 7);
3070
3071		for (i = 0; i < 4; i++)
3072			writel(mask_pattern[0][i], &regs->ByteMask[0][i]);
3073
3074		arp->type = htons(ETH_P_ARP);
3075		arp->ar_op = htons(1);
3076
3077		memcpy(arp->ar_tip, vptr->ip_addr, 4);
3078
3079		crc = wol_calc_crc((sizeof(struct arp_packet) + 7) / 8, buf,
3080				(u8 *) & mask_pattern[0][0]);
3081
3082		writew(crc, &regs->PatternCRC[0]);
3083		writew(WOLCR_ARP_EN, &regs->WOLCRSet);
3084	}
3085
3086	BYTE_REG_BITS_ON(PWCFG_WOLTYPE, &regs->PWCFGSet);
3087	BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, &regs->PWCFGSet);
3088
3089	writew(0x0FFF, &regs->WOLSRClr);
3090
3091	if (spd_dpx == SPD_DPX_1000_FULL)
3092		goto mac_done;
3093
3094	if (spd_dpx != SPD_DPX_AUTO)
3095		goto advertise_done;
3096
3097	if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) {
3098		if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
3099			MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs);
3100
3101		MII_REG_BITS_OFF(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs);
3102	}
3103
3104	if (vptr->mii_status & VELOCITY_SPEED_1000)
3105		MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs);
3106
3107advertise_done:
3108	BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
3109
3110	{
3111		u8 GCR;
3112		GCR = readb(&regs->CHIPGCR);
3113		GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX;
3114		writeb(GCR, &regs->CHIPGCR);
3115	}
3116
3117mac_done:
3118	BYTE_REG_BITS_OFF(ISR_PWEI, &regs->ISR);
3119	/* Turn on SWPTAG just before entering power mode */
3120	BYTE_REG_BITS_ON(STICKHW_SWPTAG, &regs->STICKHW);
3121	/* Go to bed ..... */
3122	BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
3123
3124	return 0;
3125}
3126
3127/**
3128 *	velocity_save_context	-	save registers
3129 *	@vptr: velocity
3130 *	@context: buffer for stored context
3131 *
3132 *	Retrieve the current configuration from the velocity hardware
3133 *	and stash it in the context structure, for use by the context
3134 *	restore functions. This allows us to save things we need across
3135 *	power down states
3136 */
3137static void velocity_save_context(struct velocity_info *vptr, struct velocity_context *context)
3138{
3139	struct mac_regs __iomem *regs = vptr->mac_regs;
3140	u16 i;
3141	u8 __iomem *ptr = (u8 __iomem *)regs;
3142
3143	for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4)
3144		*((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3145
3146	for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4)
3147		*((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3148
3149	for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3150		*((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3151
3152}
3153
3154static int velocity_suspend(struct device *dev)
3155{
3156	struct net_device *netdev = dev_get_drvdata(dev);
3157	struct velocity_info *vptr = netdev_priv(netdev);
3158	unsigned long flags;
3159
3160	if (!netif_running(vptr->netdev))
3161		return 0;
3162
3163	netif_device_detach(vptr->netdev);
3164
3165	spin_lock_irqsave(&vptr->lock, flags);
3166	if (vptr->pdev)
3167		pci_save_state(vptr->pdev);
3168
3169	if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) {
3170		velocity_get_ip(vptr);
3171		velocity_save_context(vptr, &vptr->context);
3172		velocity_shutdown(vptr);
3173		velocity_set_wol(vptr);
3174		if (vptr->pdev)
3175			pci_enable_wake(vptr->pdev, PCI_D3hot, 1);
3176		velocity_set_power_state(vptr, PCI_D3hot);
3177	} else {
3178		velocity_save_context(vptr, &vptr->context);
3179		velocity_shutdown(vptr);
3180		if (vptr->pdev)
3181			pci_disable_device(vptr->pdev);
3182		velocity_set_power_state(vptr, PCI_D3hot);
3183	}
3184
3185	spin_unlock_irqrestore(&vptr->lock, flags);
3186	return 0;
3187}
3188
3189/**
3190 *	velocity_restore_context	-	restore registers
3191 *	@vptr: velocity
3192 *	@context: buffer for stored context
3193 *
3194 *	Reload the register configuration from the velocity context
3195 *	created by velocity_save_context.
3196 */
3197static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context)
3198{
3199	struct mac_regs __iomem *regs = vptr->mac_regs;
3200	int i;
3201	u8 __iomem *ptr = (u8 __iomem *)regs;
3202
3203	for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4)
3204		writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3205
3206	/* Just skip cr0 */
3207	for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) {
3208		/* Clear */
3209		writeb(~(*((u8 *) (context->mac_reg + i))), ptr + i + 4);
3210		/* Set */
3211		writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3212	}
3213
3214	for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4)
3215		writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3216
3217	for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3218		writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3219
3220	for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++)
3221		writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3222}
3223
3224static int velocity_resume(struct device *dev)
3225{
3226	struct net_device *netdev = dev_get_drvdata(dev);
3227	struct velocity_info *vptr = netdev_priv(netdev);
3228	unsigned long flags;
3229	int i;
3230
3231	if (!netif_running(vptr->netdev))
3232		return 0;
3233
3234	velocity_set_power_state(vptr, PCI_D0);
3235
3236	if (vptr->pdev) {
3237		pci_enable_wake(vptr->pdev, PCI_D0, 0);
3238		pci_restore_state(vptr->pdev);
3239	}
3240
3241	mac_wol_reset(vptr->mac_regs);
3242
3243	spin_lock_irqsave(&vptr->lock, flags);
3244	velocity_restore_context(vptr, &vptr->context);
3245	velocity_init_registers(vptr, VELOCITY_INIT_WOL);
3246	mac_disable_int(vptr->mac_regs);
3247
3248	velocity_tx_srv(vptr);
3249
3250	for (i = 0; i < vptr->tx.numq; i++) {
3251		if (vptr->tx.used[i])
3252			mac_tx_queue_wake(vptr->mac_regs, i);
3253	}
3254
3255	mac_enable_int(vptr->mac_regs);
3256	spin_unlock_irqrestore(&vptr->lock, flags);
3257	netif_device_attach(vptr->netdev);
3258
3259	return 0;
3260}
3261#endif	/* CONFIG_PM_SLEEP */
3262
3263static SIMPLE_DEV_PM_OPS(velocity_pm_ops, velocity_suspend, velocity_resume);
3264
3265/*
3266 *	Definition for our device driver. The PCI layer interface
3267 *	uses this to handle all our card discover and plugging
3268 */
3269static struct pci_driver velocity_pci_driver = {
3270	.name		= VELOCITY_NAME,
3271	.id_table	= velocity_pci_id_table,
3272	.probe		= velocity_pci_probe,
3273	.remove		= velocity_pci_remove,
3274	.driver = {
3275		.pm = &velocity_pm_ops,
3276	},
3277};
3278
3279static struct platform_driver velocity_platform_driver = {
3280	.probe		= velocity_platform_probe,
3281	.remove		= velocity_platform_remove,
3282	.driver = {
3283		.name = "via-velocity",
3284		.of_match_table = velocity_of_ids,
3285		.pm = &velocity_pm_ops,
3286	},
3287};
3288
3289/**
3290 *	velocity_ethtool_up	-	pre hook for ethtool
3291 *	@dev: network device
3292 *
3293 *	Called before an ethtool operation. We need to make sure the
3294 *	chip is out of D3 state before we poke at it.
3295 */
3296static int velocity_ethtool_up(struct net_device *dev)
3297{
3298	struct velocity_info *vptr = netdev_priv(dev);
3299	if (!netif_running(dev))
3300		velocity_set_power_state(vptr, PCI_D0);
3301	return 0;
3302}
3303
3304/**
3305 *	velocity_ethtool_down	-	post hook for ethtool
3306 *	@dev: network device
3307 *
3308 *	Called after an ethtool operation. Restore the chip back to D3
3309 *	state if it isn't running.
3310 */
3311static void velocity_ethtool_down(struct net_device *dev)
3312{
3313	struct velocity_info *vptr = netdev_priv(dev);
3314	if (!netif_running(dev))
3315		velocity_set_power_state(vptr, PCI_D3hot);
3316}
3317
3318static int velocity_get_settings(struct net_device *dev,
3319				 struct ethtool_cmd *cmd)
3320{
3321	struct velocity_info *vptr = netdev_priv(dev);
3322	struct mac_regs __iomem *regs = vptr->mac_regs;
3323	u32 status;
3324	status = check_connection_type(vptr->mac_regs);
3325
3326	cmd->supported = SUPPORTED_TP |
3327			SUPPORTED_Autoneg |
3328			SUPPORTED_10baseT_Half |
3329			SUPPORTED_10baseT_Full |
3330			SUPPORTED_100baseT_Half |
3331			SUPPORTED_100baseT_Full |
3332			SUPPORTED_1000baseT_Half |
3333			SUPPORTED_1000baseT_Full;
3334
3335	cmd->advertising = ADVERTISED_TP | ADVERTISED_Autoneg;
3336	if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
3337		cmd->advertising |=
3338			ADVERTISED_10baseT_Half |
3339			ADVERTISED_10baseT_Full |
3340			ADVERTISED_100baseT_Half |
3341			ADVERTISED_100baseT_Full |
3342			ADVERTISED_1000baseT_Half |
3343			ADVERTISED_1000baseT_Full;
3344	} else {
3345		switch (vptr->options.spd_dpx) {
3346		case SPD_DPX_1000_FULL:
3347			cmd->advertising |= ADVERTISED_1000baseT_Full;
3348			break;
3349		case SPD_DPX_100_HALF:
3350			cmd->advertising |= ADVERTISED_100baseT_Half;
3351			break;
3352		case SPD_DPX_100_FULL:
3353			cmd->advertising |= ADVERTISED_100baseT_Full;
3354			break;
3355		case SPD_DPX_10_HALF:
3356			cmd->advertising |= ADVERTISED_10baseT_Half;
3357			break;
3358		case SPD_DPX_10_FULL:
3359			cmd->advertising |= ADVERTISED_10baseT_Full;
3360			break;
3361		default:
3362			break;
3363		}
3364	}
3365
3366	if (status & VELOCITY_SPEED_1000)
3367		ethtool_cmd_speed_set(cmd, SPEED_1000);
3368	else if (status & VELOCITY_SPEED_100)
3369		ethtool_cmd_speed_set(cmd, SPEED_100);
3370	else
3371		ethtool_cmd_speed_set(cmd, SPEED_10);
3372
3373	cmd->autoneg = (status & VELOCITY_AUTONEG_ENABLE) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
3374	cmd->port = PORT_TP;
3375	cmd->transceiver = XCVR_INTERNAL;
3376	cmd->phy_address = readb(&regs->MIIADR) & 0x1F;
3377
3378	if (status & VELOCITY_DUPLEX_FULL)
3379		cmd->duplex = DUPLEX_FULL;
3380	else
3381		cmd->duplex = DUPLEX_HALF;
3382
3383	return 0;
3384}
3385
3386static int velocity_set_settings(struct net_device *dev,
3387				 struct ethtool_cmd *cmd)
3388{
3389	struct velocity_info *vptr = netdev_priv(dev);
3390	u32 speed = ethtool_cmd_speed(cmd);
3391	u32 curr_status;
3392	u32 new_status = 0;
3393	int ret = 0;
3394
3395	curr_status = check_connection_type(vptr->mac_regs);
3396	curr_status &= (~VELOCITY_LINK_FAIL);
3397
3398	new_status |= ((cmd->autoneg) ? VELOCITY_AUTONEG_ENABLE : 0);
3399	new_status |= ((speed == SPEED_1000) ? VELOCITY_SPEED_1000 : 0);
3400	new_status |= ((speed == SPEED_100) ? VELOCITY_SPEED_100 : 0);
3401	new_status |= ((speed == SPEED_10) ? VELOCITY_SPEED_10 : 0);
3402	new_status |= ((cmd->duplex == DUPLEX_FULL) ? VELOCITY_DUPLEX_FULL : 0);
3403
3404	if ((new_status & VELOCITY_AUTONEG_ENABLE) &&
3405	    (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE))) {
3406		ret = -EINVAL;
3407	} else {
3408		enum speed_opt spd_dpx;
3409
3410		if (new_status & VELOCITY_AUTONEG_ENABLE)
3411			spd_dpx = SPD_DPX_AUTO;
3412		else if ((new_status & VELOCITY_SPEED_1000) &&
3413			 (new_status & VELOCITY_DUPLEX_FULL)) {
3414			spd_dpx = SPD_DPX_1000_FULL;
3415		} else if (new_status & VELOCITY_SPEED_100)
3416			spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ?
3417				SPD_DPX_100_FULL : SPD_DPX_100_HALF;
3418		else if (new_status & VELOCITY_SPEED_10)
3419			spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ?
3420				SPD_DPX_10_FULL : SPD_DPX_10_HALF;
3421		else
3422			return -EOPNOTSUPP;
3423
3424		vptr->options.spd_dpx = spd_dpx;
3425
3426		velocity_set_media_mode(vptr, new_status);
3427	}
3428
3429	return ret;
3430}
3431
3432static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
3433{
3434	struct velocity_info *vptr = netdev_priv(dev);
3435
3436	strlcpy(info->driver, VELOCITY_NAME, sizeof(info->driver));
3437	strlcpy(info->version, VELOCITY_VERSION, sizeof(info->version));
3438	if (vptr->pdev)
3439		strlcpy(info->bus_info, pci_name(vptr->pdev),
3440						sizeof(info->bus_info));
3441	else
3442		strlcpy(info->bus_info, "platform", sizeof(info->bus_info));
3443}
3444
3445static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3446{
3447	struct velocity_info *vptr = netdev_priv(dev);
3448	wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP;
3449	wol->wolopts |= WAKE_MAGIC;
3450	/*
3451	   if (vptr->wol_opts & VELOCITY_WOL_PHY)
3452		   wol.wolopts|=WAKE_PHY;
3453			 */
3454	if (vptr->wol_opts & VELOCITY_WOL_UCAST)
3455		wol->wolopts |= WAKE_UCAST;
3456	if (vptr->wol_opts & VELOCITY_WOL_ARP)
3457		wol->wolopts |= WAKE_ARP;
3458	memcpy(&wol->sopass, vptr->wol_passwd, 6);
3459}
3460
3461static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3462{
3463	struct velocity_info *vptr = netdev_priv(dev);
3464
3465	if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP)))
3466		return -EFAULT;
3467	vptr->wol_opts = VELOCITY_WOL_MAGIC;
3468
3469	/*
3470	   if (wol.wolopts & WAKE_PHY) {
3471	   vptr->wol_opts|=VELOCITY_WOL_PHY;
3472	   vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED;
3473	   }
3474	 */
3475
3476	if (wol->wolopts & WAKE_MAGIC) {
3477		vptr->wol_opts |= VELOCITY_WOL_MAGIC;
3478		vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3479	}
3480	if (wol->wolopts & WAKE_UCAST) {
3481		vptr->wol_opts |= VELOCITY_WOL_UCAST;
3482		vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3483	}
3484	if (wol->wolopts & WAKE_ARP) {
3485		vptr->wol_opts |= VELOCITY_WOL_ARP;
3486		vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3487	}
3488	memcpy(vptr->wol_passwd, wol->sopass, 6);
3489	return 0;
3490}
3491
3492static u32 velocity_get_msglevel(struct net_device *dev)
3493{
3494	return msglevel;
3495}
3496
3497static void velocity_set_msglevel(struct net_device *dev, u32 value)
3498{
3499	 msglevel = value;
3500}
3501
3502static int get_pending_timer_val(int val)
3503{
3504	int mult_bits = val >> 6;
3505	int mult = 1;
3506
3507	switch (mult_bits)
3508	{
3509	case 1:
3510		mult = 4; break;
3511	case 2:
3512		mult = 16; break;
3513	case 3:
3514		mult = 64; break;
3515	case 0:
3516	default:
3517		break;
3518	}
3519
3520	return (val & 0x3f) * mult;
3521}
3522
3523static void set_pending_timer_val(int *val, u32 us)
3524{
3525	u8 mult = 0;
3526	u8 shift = 0;
3527
3528	if (us >= 0x3f) {
3529		mult = 1; /* mult with 4 */
3530		shift = 2;
3531	}
3532	if (us >= 0x3f * 4) {
3533		mult = 2; /* mult with 16 */
3534		shift = 4;
3535	}
3536	if (us >= 0x3f * 16) {
3537		mult = 3; /* mult with 64 */
3538		shift = 6;
3539	}
3540
3541	*val = (mult << 6) | ((us >> shift) & 0x3f);
3542}
3543
3544
3545static int velocity_get_coalesce(struct net_device *dev,
3546		struct ethtool_coalesce *ecmd)
3547{
3548	struct velocity_info *vptr = netdev_priv(dev);
3549
3550	ecmd->tx_max_coalesced_frames = vptr->options.tx_intsup;
3551	ecmd->rx_max_coalesced_frames = vptr->options.rx_intsup;
3552
3553	ecmd->rx_coalesce_usecs = get_pending_timer_val(vptr->options.rxqueue_timer);
3554	ecmd->tx_coalesce_usecs = get_pending_timer_val(vptr->options.txqueue_timer);
3555
3556	return 0;
3557}
3558
3559static int velocity_set_coalesce(struct net_device *dev,
3560		struct ethtool_coalesce *ecmd)
3561{
3562	struct velocity_info *vptr = netdev_priv(dev);
3563	int max_us = 0x3f * 64;
3564	unsigned long flags;
3565
3566	/* 6 bits of  */
3567	if (ecmd->tx_coalesce_usecs > max_us)
3568		return -EINVAL;
3569	if (ecmd->rx_coalesce_usecs > max_us)
3570		return -EINVAL;
3571
3572	if (ecmd->tx_max_coalesced_frames > 0xff)
3573		return -EINVAL;
3574	if (ecmd->rx_max_coalesced_frames > 0xff)
3575		return -EINVAL;
3576
3577	vptr->options.rx_intsup = ecmd->rx_max_coalesced_frames;
3578	vptr->options.tx_intsup = ecmd->tx_max_coalesced_frames;
3579
3580	set_pending_timer_val(&vptr->options.rxqueue_timer,
3581			ecmd->rx_coalesce_usecs);
3582	set_pending_timer_val(&vptr->options.txqueue_timer,
3583			ecmd->tx_coalesce_usecs);
3584
3585	/* Setup the interrupt suppression and queue timers */
3586	spin_lock_irqsave(&vptr->lock, flags);
3587	mac_disable_int(vptr->mac_regs);
3588	setup_adaptive_interrupts(vptr);
3589	setup_queue_timers(vptr);
3590
3591	mac_write_int_mask(vptr->int_mask, vptr->mac_regs);
3592	mac_clear_isr(vptr->mac_regs);
3593	mac_enable_int(vptr->mac_regs);
3594	spin_unlock_irqrestore(&vptr->lock, flags);
3595
3596	return 0;
3597}
3598
3599static const char velocity_gstrings[][ETH_GSTRING_LEN] = {
3600	"rx_all",
3601	"rx_ok",
3602	"tx_ok",
3603	"rx_error",
3604	"rx_runt_ok",
3605	"rx_runt_err",
3606	"rx_64",
3607	"tx_64",
3608	"rx_65_to_127",
3609	"tx_65_to_127",
3610	"rx_128_to_255",
3611	"tx_128_to_255",
3612	"rx_256_to_511",
3613	"tx_256_to_511",
3614	"rx_512_to_1023",
3615	"tx_512_to_1023",
3616	"rx_1024_to_1518",
3617	"tx_1024_to_1518",
3618	"tx_ether_collisions",
3619	"rx_crc_errors",
3620	"rx_jumbo",
3621	"tx_jumbo",
3622	"rx_mac_control_frames",
3623	"tx_mac_control_frames",
3624	"rx_frame_alignement_errors",
3625	"rx_long_ok",
3626	"rx_long_err",
3627	"tx_sqe_errors",
3628	"rx_no_buf",
3629	"rx_symbol_errors",
3630	"in_range_length_errors",
3631	"late_collisions"
3632};
3633
3634static void velocity_get_strings(struct net_device *dev, u32 sset, u8 *data)
3635{
3636	switch (sset) {
3637	case ETH_SS_STATS:
3638		memcpy(data, *velocity_gstrings, sizeof(velocity_gstrings));
3639		break;
3640	}
3641}
3642
3643static int velocity_get_sset_count(struct net_device *dev, int sset)
3644{
3645	switch (sset) {
3646	case ETH_SS_STATS:
3647		return ARRAY_SIZE(velocity_gstrings);
3648	default:
3649		return -EOPNOTSUPP;
3650	}
3651}
3652
3653static void velocity_get_ethtool_stats(struct net_device *dev,
3654				       struct ethtool_stats *stats, u64 *data)
3655{
3656	if (netif_running(dev)) {
3657		struct velocity_info *vptr = netdev_priv(dev);
3658		u32 *p = vptr->mib_counter;
3659		int i;
3660
3661		spin_lock_irq(&vptr->lock);
3662		velocity_update_hw_mibs(vptr);
3663		spin_unlock_irq(&vptr->lock);
3664
3665		for (i = 0; i < ARRAY_SIZE(velocity_gstrings); i++)
3666			*data++ = *p++;
3667	}
3668}
3669
3670static const struct ethtool_ops velocity_ethtool_ops = {
3671	.get_settings		= velocity_get_settings,
3672	.set_settings		= velocity_set_settings,
3673	.get_drvinfo		= velocity_get_drvinfo,
3674	.get_wol		= velocity_ethtool_get_wol,
3675	.set_wol		= velocity_ethtool_set_wol,
3676	.get_msglevel		= velocity_get_msglevel,
3677	.set_msglevel		= velocity_set_msglevel,
3678	.get_link		= velocity_get_link,
3679	.get_strings		= velocity_get_strings,
3680	.get_sset_count		= velocity_get_sset_count,
3681	.get_ethtool_stats	= velocity_get_ethtool_stats,
3682	.get_coalesce		= velocity_get_coalesce,
3683	.set_coalesce		= velocity_set_coalesce,
3684	.begin			= velocity_ethtool_up,
3685	.complete		= velocity_ethtool_down
3686};
3687
3688#if defined(CONFIG_PM) && defined(CONFIG_INET)
3689static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr)
3690{
3691	struct in_ifaddr *ifa = ptr;
3692	struct net_device *dev = ifa->ifa_dev->dev;
3693
3694	if (dev_net(dev) == &init_net &&
3695	    dev->netdev_ops == &velocity_netdev_ops)
3696		velocity_get_ip(netdev_priv(dev));
3697
3698	return NOTIFY_DONE;
3699}
3700
3701static struct notifier_block velocity_inetaddr_notifier = {
3702	.notifier_call	= velocity_netdev_event,
3703};
3704
3705static void velocity_register_notifier(void)
3706{
3707	register_inetaddr_notifier(&velocity_inetaddr_notifier);
3708}
3709
3710static void velocity_unregister_notifier(void)
3711{
3712	unregister_inetaddr_notifier(&velocity_inetaddr_notifier);
3713}
3714
3715#else
3716
3717#define velocity_register_notifier()	do {} while (0)
3718#define velocity_unregister_notifier()	do {} while (0)
3719
3720#endif	/* defined(CONFIG_PM) && defined(CONFIG_INET) */
3721
3722/**
3723 *	velocity_init_module	-	load time function
3724 *
3725 *	Called when the velocity module is loaded. The PCI driver
3726 *	is registered with the PCI layer, and in turn will call
3727 *	the probe functions for each velocity adapter installed
3728 *	in the system.
3729 */
3730static int __init velocity_init_module(void)
3731{
3732	int ret_pci, ret_platform;
3733
3734	velocity_register_notifier();
3735
3736	ret_pci = pci_register_driver(&velocity_pci_driver);
3737	ret_platform = platform_driver_register(&velocity_platform_driver);
3738
3739	/* if both_registers failed, remove the notifier */
3740	if ((ret_pci < 0) && (ret_platform < 0)) {
3741		velocity_unregister_notifier();
3742		return ret_pci;
3743	}
3744
3745	return 0;
3746}
3747
3748/**
3749 *	velocity_cleanup	-	module unload
3750 *
3751 *	When the velocity hardware is unloaded this function is called.
3752 *	It will clean up the notifiers and the unregister the PCI
3753 *	driver interface for this hardware. This in turn cleans up
3754 *	all discovered interfaces before returning from the function
3755 */
3756static void __exit velocity_cleanup_module(void)
3757{
3758	velocity_unregister_notifier();
3759
3760	pci_unregister_driver(&velocity_pci_driver);
3761	platform_driver_unregister(&velocity_platform_driver);
3762}
3763
3764module_init(velocity_init_module);
3765module_exit(velocity_cleanup_module);
3766