1/* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
2 *
3 * Copyright (C) 2004 Sun Microsystems Inc.
4 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 of the
9 * License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 *
19 * This driver uses the sungem driver (c) David Miller
20 * (davem@redhat.com) as its basis.
21 *
22 * The cassini chip has a number of features that distinguish it from
23 * the gem chip:
24 *  4 transmit descriptor rings that are used for either QoS (VLAN) or
25 *      load balancing (non-VLAN mode)
26 *  batching of multiple packets
27 *  multiple CPU dispatching
28 *  page-based RX descriptor engine with separate completion rings
29 *  Gigabit support (GMII and PCS interface)
30 *  MIF link up/down detection works
31 *
32 * RX is handled by page sized buffers that are attached as fragments to
33 * the skb. here's what's done:
34 *  -- driver allocates pages at a time and keeps reference counts
35 *     on them.
36 *  -- the upper protocol layers assume that the header is in the skb
37 *     itself. as a result, cassini will copy a small amount (64 bytes)
38 *     to make them happy.
39 *  -- driver appends the rest of the data pages as frags to skbuffs
40 *     and increments the reference count
41 *  -- on page reclamation, the driver swaps the page with a spare page.
42 *     if that page is still in use, it frees its reference to that page,
43 *     and allocates a new page for use. otherwise, it just recycles the
44 *     the page.
45 *
46 * NOTE: cassini can parse the header. however, it's not worth it
47 *       as long as the network stack requires a header copy.
48 *
49 * TX has 4 queues. currently these queues are used in a round-robin
50 * fashion for load balancing. They can also be used for QoS. for that
51 * to work, however, QoS information needs to be exposed down to the driver
52 * level so that subqueues get targeted to particular transmit rings.
53 * alternatively, the queues can be configured via use of the all-purpose
54 * ioctl.
55 *
56 * RX DATA: the rx completion ring has all the info, but the rx desc
57 * ring has all of the data. RX can conceivably come in under multiple
58 * interrupts, but the INT# assignment needs to be set up properly by
59 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
60 * that. also, the two descriptor rings are designed to distinguish between
61 * encrypted and non-encrypted packets, but we use them for buffering
62 * instead.
63 *
64 * by default, the selective clear mask is set up to process rx packets.
65 */
66
67#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
68
69#include <linux/module.h>
70#include <linux/kernel.h>
71#include <linux/types.h>
72#include <linux/compiler.h>
73#include <linux/slab.h>
74#include <linux/delay.h>
75#include <linux/init.h>
76#include <linux/interrupt.h>
77#include <linux/vmalloc.h>
78#include <linux/ioport.h>
79#include <linux/pci.h>
80#include <linux/mm.h>
81#include <linux/highmem.h>
82#include <linux/list.h>
83#include <linux/dma-mapping.h>
84
85#include <linux/netdevice.h>
86#include <linux/etherdevice.h>
87#include <linux/skbuff.h>
88#include <linux/ethtool.h>
89#include <linux/crc32.h>
90#include <linux/random.h>
91#include <linux/mii.h>
92#include <linux/ip.h>
93#include <linux/tcp.h>
94#include <linux/mutex.h>
95#include <linux/firmware.h>
96
97#include <net/checksum.h>
98
99#include <linux/atomic.h>
100#include <asm/io.h>
101#include <asm/byteorder.h>
102#include <asm/uaccess.h>
103
104#define cas_page_map(x)      kmap_atomic((x))
105#define cas_page_unmap(x)    kunmap_atomic((x))
106#define CAS_NCPUS            num_online_cpus()
107
108#define cas_skb_release(x)  netif_rx(x)
109
110/* select which firmware to use */
111#define USE_HP_WORKAROUND
112#define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
113#define CAS_HP_ALT_FIRMWARE   cas_prog_null /* alternate firmware */
114
115#include "cassini.h"
116
117#define USE_TX_COMPWB      /* use completion writeback registers */
118#define USE_CSMA_CD_PROTO  /* standard CSMA/CD */
119#define USE_RX_BLANK       /* hw interrupt mitigation */
120#undef USE_ENTROPY_DEV     /* don't test for entropy device */
121
122/* NOTE: these aren't useable unless PCI interrupts can be assigned.
123 * also, we need to make cp->lock finer-grained.
124 */
125#undef  USE_PCI_INTB
126#undef  USE_PCI_INTC
127#undef  USE_PCI_INTD
128#undef  USE_QOS
129
130#undef  USE_VPD_DEBUG       /* debug vpd information if defined */
131
132/* rx processing options */
133#define USE_PAGE_ORDER      /* specify to allocate large rx pages */
134#define RX_DONT_BATCH  0    /* if 1, don't batch flows */
135#define RX_COPY_ALWAYS 0    /* if 0, use frags */
136#define RX_COPY_MIN    64   /* copy a little to make upper layers happy */
137#undef  RX_COUNT_BUFFERS    /* define to calculate RX buffer stats */
138
139#define DRV_MODULE_NAME		"cassini"
140#define DRV_MODULE_VERSION	"1.6"
141#define DRV_MODULE_RELDATE	"21 May 2008"
142
143#define CAS_DEF_MSG_ENABLE	  \
144	(NETIF_MSG_DRV		| \
145	 NETIF_MSG_PROBE	| \
146	 NETIF_MSG_LINK		| \
147	 NETIF_MSG_TIMER	| \
148	 NETIF_MSG_IFDOWN	| \
149	 NETIF_MSG_IFUP		| \
150	 NETIF_MSG_RX_ERR	| \
151	 NETIF_MSG_TX_ERR)
152
153/* length of time before we decide the hardware is borked,
154 * and dev->tx_timeout() should be called to fix the problem
155 */
156#define CAS_TX_TIMEOUT			(HZ)
157#define CAS_LINK_TIMEOUT                (22*HZ/10)
158#define CAS_LINK_FAST_TIMEOUT           (1)
159
160/* timeout values for state changing. these specify the number
161 * of 10us delays to be used before giving up.
162 */
163#define STOP_TRIES_PHY 1000
164#define STOP_TRIES     5000
165
166/* specify a minimum frame size to deal with some fifo issues
167 * max mtu == 2 * page size - ethernet header - 64 - swivel =
168 *            2 * page_size - 0x50
169 */
170#define CAS_MIN_FRAME			97
171#define CAS_1000MB_MIN_FRAME            255
172#define CAS_MIN_MTU                     60
173#define CAS_MAX_MTU                     min(((cp->page_size << 1) - 0x50), 9000)
174
175#if 1
176/*
177 * Eliminate these and use separate atomic counters for each, to
178 * avoid a race condition.
179 */
180#else
181#define CAS_RESET_MTU                   1
182#define CAS_RESET_ALL                   2
183#define CAS_RESET_SPARE                 3
184#endif
185
186static char version[] =
187	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
188
189static int cassini_debug = -1;	/* -1 == use CAS_DEF_MSG_ENABLE as value */
190static int link_mode;
191
192MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
193MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
194MODULE_LICENSE("GPL");
195MODULE_FIRMWARE("sun/cassini.bin");
196module_param(cassini_debug, int, 0);
197MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
198module_param(link_mode, int, 0);
199MODULE_PARM_DESC(link_mode, "default link mode");
200
201/*
202 * Work around for a PCS bug in which the link goes down due to the chip
203 * being confused and never showing a link status of "up."
204 */
205#define DEFAULT_LINKDOWN_TIMEOUT 5
206/*
207 * Value in seconds, for user input.
208 */
209static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
210module_param(linkdown_timeout, int, 0);
211MODULE_PARM_DESC(linkdown_timeout,
212"min reset interval in sec. for PCS linkdown issue; disabled if not positive");
213
214/*
215 * value in 'ticks' (units used by jiffies). Set when we init the
216 * module because 'HZ' in actually a function call on some flavors of
217 * Linux.  This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
218 */
219static int link_transition_timeout;
220
221
222
223static u16 link_modes[] = {
224	BMCR_ANENABLE,			 /* 0 : autoneg */
225	0,				 /* 1 : 10bt half duplex */
226	BMCR_SPEED100,			 /* 2 : 100bt half duplex */
227	BMCR_FULLDPLX,			 /* 3 : 10bt full duplex */
228	BMCR_SPEED100|BMCR_FULLDPLX,	 /* 4 : 100bt full duplex */
229	CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
230};
231
232static const struct pci_device_id cas_pci_tbl[] = {
233	{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
234	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
235	{ PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
236	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
237	{ 0, }
238};
239
240MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
241
242static void cas_set_link_modes(struct cas *cp);
243
244static inline void cas_lock_tx(struct cas *cp)
245{
246	int i;
247
248	for (i = 0; i < N_TX_RINGS; i++)
249		spin_lock_nested(&cp->tx_lock[i], i);
250}
251
252static inline void cas_lock_all(struct cas *cp)
253{
254	spin_lock_irq(&cp->lock);
255	cas_lock_tx(cp);
256}
257
258/* WTZ: QA was finding deadlock problems with the previous
259 * versions after long test runs with multiple cards per machine.
260 * See if replacing cas_lock_all with safer versions helps. The
261 * symptoms QA is reporting match those we'd expect if interrupts
262 * aren't being properly restored, and we fixed a previous deadlock
263 * with similar symptoms by using save/restore versions in other
264 * places.
265 */
266#define cas_lock_all_save(cp, flags) \
267do { \
268	struct cas *xxxcp = (cp); \
269	spin_lock_irqsave(&xxxcp->lock, flags); \
270	cas_lock_tx(xxxcp); \
271} while (0)
272
273static inline void cas_unlock_tx(struct cas *cp)
274{
275	int i;
276
277	for (i = N_TX_RINGS; i > 0; i--)
278		spin_unlock(&cp->tx_lock[i - 1]);
279}
280
281static inline void cas_unlock_all(struct cas *cp)
282{
283	cas_unlock_tx(cp);
284	spin_unlock_irq(&cp->lock);
285}
286
287#define cas_unlock_all_restore(cp, flags) \
288do { \
289	struct cas *xxxcp = (cp); \
290	cas_unlock_tx(xxxcp); \
291	spin_unlock_irqrestore(&xxxcp->lock, flags); \
292} while (0)
293
294static void cas_disable_irq(struct cas *cp, const int ring)
295{
296	/* Make sure we won't get any more interrupts */
297	if (ring == 0) {
298		writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
299		return;
300	}
301
302	/* disable completion interrupts and selectively mask */
303	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
304		switch (ring) {
305#if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
306#ifdef USE_PCI_INTB
307		case 1:
308#endif
309#ifdef USE_PCI_INTC
310		case 2:
311#endif
312#ifdef USE_PCI_INTD
313		case 3:
314#endif
315			writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
316			       cp->regs + REG_PLUS_INTRN_MASK(ring));
317			break;
318#endif
319		default:
320			writel(INTRN_MASK_CLEAR_ALL, cp->regs +
321			       REG_PLUS_INTRN_MASK(ring));
322			break;
323		}
324	}
325}
326
327static inline void cas_mask_intr(struct cas *cp)
328{
329	int i;
330
331	for (i = 0; i < N_RX_COMP_RINGS; i++)
332		cas_disable_irq(cp, i);
333}
334
335static void cas_enable_irq(struct cas *cp, const int ring)
336{
337	if (ring == 0) { /* all but TX_DONE */
338		writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
339		return;
340	}
341
342	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
343		switch (ring) {
344#if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
345#ifdef USE_PCI_INTB
346		case 1:
347#endif
348#ifdef USE_PCI_INTC
349		case 2:
350#endif
351#ifdef USE_PCI_INTD
352		case 3:
353#endif
354			writel(INTRN_MASK_RX_EN, cp->regs +
355			       REG_PLUS_INTRN_MASK(ring));
356			break;
357#endif
358		default:
359			break;
360		}
361	}
362}
363
364static inline void cas_unmask_intr(struct cas *cp)
365{
366	int i;
367
368	for (i = 0; i < N_RX_COMP_RINGS; i++)
369		cas_enable_irq(cp, i);
370}
371
372static inline void cas_entropy_gather(struct cas *cp)
373{
374#ifdef USE_ENTROPY_DEV
375	if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
376		return;
377
378	batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
379			    readl(cp->regs + REG_ENTROPY_IV),
380			    sizeof(uint64_t)*8);
381#endif
382}
383
384static inline void cas_entropy_reset(struct cas *cp)
385{
386#ifdef USE_ENTROPY_DEV
387	if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
388		return;
389
390	writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
391	       cp->regs + REG_BIM_LOCAL_DEV_EN);
392	writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
393	writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
394
395	/* if we read back 0x0, we don't have an entropy device */
396	if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
397		cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
398#endif
399}
400
401/* access to the phy. the following assumes that we've initialized the MIF to
402 * be in frame rather than bit-bang mode
403 */
404static u16 cas_phy_read(struct cas *cp, int reg)
405{
406	u32 cmd;
407	int limit = STOP_TRIES_PHY;
408
409	cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
410	cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
411	cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
412	cmd |= MIF_FRAME_TURN_AROUND_MSB;
413	writel(cmd, cp->regs + REG_MIF_FRAME);
414
415	/* poll for completion */
416	while (limit-- > 0) {
417		udelay(10);
418		cmd = readl(cp->regs + REG_MIF_FRAME);
419		if (cmd & MIF_FRAME_TURN_AROUND_LSB)
420			return cmd & MIF_FRAME_DATA_MASK;
421	}
422	return 0xFFFF; /* -1 */
423}
424
425static int cas_phy_write(struct cas *cp, int reg, u16 val)
426{
427	int limit = STOP_TRIES_PHY;
428	u32 cmd;
429
430	cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
431	cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
432	cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
433	cmd |= MIF_FRAME_TURN_AROUND_MSB;
434	cmd |= val & MIF_FRAME_DATA_MASK;
435	writel(cmd, cp->regs + REG_MIF_FRAME);
436
437	/* poll for completion */
438	while (limit-- > 0) {
439		udelay(10);
440		cmd = readl(cp->regs + REG_MIF_FRAME);
441		if (cmd & MIF_FRAME_TURN_AROUND_LSB)
442			return 0;
443	}
444	return -1;
445}
446
447static void cas_phy_powerup(struct cas *cp)
448{
449	u16 ctl = cas_phy_read(cp, MII_BMCR);
450
451	if ((ctl & BMCR_PDOWN) == 0)
452		return;
453	ctl &= ~BMCR_PDOWN;
454	cas_phy_write(cp, MII_BMCR, ctl);
455}
456
457static void cas_phy_powerdown(struct cas *cp)
458{
459	u16 ctl = cas_phy_read(cp, MII_BMCR);
460
461	if (ctl & BMCR_PDOWN)
462		return;
463	ctl |= BMCR_PDOWN;
464	cas_phy_write(cp, MII_BMCR, ctl);
465}
466
467/* cp->lock held. note: the last put_page will free the buffer */
468static int cas_page_free(struct cas *cp, cas_page_t *page)
469{
470	pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size,
471		       PCI_DMA_FROMDEVICE);
472	__free_pages(page->buffer, cp->page_order);
473	kfree(page);
474	return 0;
475}
476
477#ifdef RX_COUNT_BUFFERS
478#define RX_USED_ADD(x, y)       ((x)->used += (y))
479#define RX_USED_SET(x, y)       ((x)->used  = (y))
480#else
481#define RX_USED_ADD(x, y)
482#define RX_USED_SET(x, y)
483#endif
484
485/* local page allocation routines for the receive buffers. jumbo pages
486 * require at least 8K contiguous and 8K aligned buffers.
487 */
488static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
489{
490	cas_page_t *page;
491
492	page = kmalloc(sizeof(cas_page_t), flags);
493	if (!page)
494		return NULL;
495
496	INIT_LIST_HEAD(&page->list);
497	RX_USED_SET(page, 0);
498	page->buffer = alloc_pages(flags, cp->page_order);
499	if (!page->buffer)
500		goto page_err;
501	page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0,
502				      cp->page_size, PCI_DMA_FROMDEVICE);
503	return page;
504
505page_err:
506	kfree(page);
507	return NULL;
508}
509
510/* initialize spare pool of rx buffers, but allocate during the open */
511static void cas_spare_init(struct cas *cp)
512{
513  	spin_lock(&cp->rx_inuse_lock);
514	INIT_LIST_HEAD(&cp->rx_inuse_list);
515	spin_unlock(&cp->rx_inuse_lock);
516
517	spin_lock(&cp->rx_spare_lock);
518	INIT_LIST_HEAD(&cp->rx_spare_list);
519	cp->rx_spares_needed = RX_SPARE_COUNT;
520	spin_unlock(&cp->rx_spare_lock);
521}
522
523/* used on close. free all the spare buffers. */
524static void cas_spare_free(struct cas *cp)
525{
526	struct list_head list, *elem, *tmp;
527
528	/* free spare buffers */
529	INIT_LIST_HEAD(&list);
530	spin_lock(&cp->rx_spare_lock);
531	list_splice_init(&cp->rx_spare_list, &list);
532	spin_unlock(&cp->rx_spare_lock);
533	list_for_each_safe(elem, tmp, &list) {
534		cas_page_free(cp, list_entry(elem, cas_page_t, list));
535	}
536
537	INIT_LIST_HEAD(&list);
538#if 1
539	/*
540	 * Looks like Adrian had protected this with a different
541	 * lock than used everywhere else to manipulate this list.
542	 */
543	spin_lock(&cp->rx_inuse_lock);
544	list_splice_init(&cp->rx_inuse_list, &list);
545	spin_unlock(&cp->rx_inuse_lock);
546#else
547	spin_lock(&cp->rx_spare_lock);
548	list_splice_init(&cp->rx_inuse_list, &list);
549	spin_unlock(&cp->rx_spare_lock);
550#endif
551	list_for_each_safe(elem, tmp, &list) {
552		cas_page_free(cp, list_entry(elem, cas_page_t, list));
553	}
554}
555
556/* replenish spares if needed */
557static void cas_spare_recover(struct cas *cp, const gfp_t flags)
558{
559	struct list_head list, *elem, *tmp;
560	int needed, i;
561
562	/* check inuse list. if we don't need any more free buffers,
563	 * just free it
564	 */
565
566	/* make a local copy of the list */
567	INIT_LIST_HEAD(&list);
568	spin_lock(&cp->rx_inuse_lock);
569	list_splice_init(&cp->rx_inuse_list, &list);
570	spin_unlock(&cp->rx_inuse_lock);
571
572	list_for_each_safe(elem, tmp, &list) {
573		cas_page_t *page = list_entry(elem, cas_page_t, list);
574
575		/*
576		 * With the lockless pagecache, cassini buffering scheme gets
577		 * slightly less accurate: we might find that a page has an
578		 * elevated reference count here, due to a speculative ref,
579		 * and skip it as in-use. Ideally we would be able to reclaim
580		 * it. However this would be such a rare case, it doesn't
581		 * matter too much as we should pick it up the next time round.
582		 *
583		 * Importantly, if we find that the page has a refcount of 1
584		 * here (our refcount), then we know it is definitely not inuse
585		 * so we can reuse it.
586		 */
587		if (page_count(page->buffer) > 1)
588			continue;
589
590		list_del(elem);
591		spin_lock(&cp->rx_spare_lock);
592		if (cp->rx_spares_needed > 0) {
593			list_add(elem, &cp->rx_spare_list);
594			cp->rx_spares_needed--;
595			spin_unlock(&cp->rx_spare_lock);
596		} else {
597			spin_unlock(&cp->rx_spare_lock);
598			cas_page_free(cp, page);
599		}
600	}
601
602	/* put any inuse buffers back on the list */
603	if (!list_empty(&list)) {
604		spin_lock(&cp->rx_inuse_lock);
605		list_splice(&list, &cp->rx_inuse_list);
606		spin_unlock(&cp->rx_inuse_lock);
607	}
608
609	spin_lock(&cp->rx_spare_lock);
610	needed = cp->rx_spares_needed;
611	spin_unlock(&cp->rx_spare_lock);
612	if (!needed)
613		return;
614
615	/* we still need spares, so try to allocate some */
616	INIT_LIST_HEAD(&list);
617	i = 0;
618	while (i < needed) {
619		cas_page_t *spare = cas_page_alloc(cp, flags);
620		if (!spare)
621			break;
622		list_add(&spare->list, &list);
623		i++;
624	}
625
626	spin_lock(&cp->rx_spare_lock);
627	list_splice(&list, &cp->rx_spare_list);
628	cp->rx_spares_needed -= i;
629	spin_unlock(&cp->rx_spare_lock);
630}
631
632/* pull a page from the list. */
633static cas_page_t *cas_page_dequeue(struct cas *cp)
634{
635	struct list_head *entry;
636	int recover;
637
638	spin_lock(&cp->rx_spare_lock);
639	if (list_empty(&cp->rx_spare_list)) {
640		/* try to do a quick recovery */
641		spin_unlock(&cp->rx_spare_lock);
642		cas_spare_recover(cp, GFP_ATOMIC);
643		spin_lock(&cp->rx_spare_lock);
644		if (list_empty(&cp->rx_spare_list)) {
645			netif_err(cp, rx_err, cp->dev,
646				  "no spare buffers available\n");
647			spin_unlock(&cp->rx_spare_lock);
648			return NULL;
649		}
650	}
651
652	entry = cp->rx_spare_list.next;
653	list_del(entry);
654	recover = ++cp->rx_spares_needed;
655	spin_unlock(&cp->rx_spare_lock);
656
657	/* trigger the timer to do the recovery */
658	if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
659#if 1
660		atomic_inc(&cp->reset_task_pending);
661		atomic_inc(&cp->reset_task_pending_spare);
662		schedule_work(&cp->reset_task);
663#else
664		atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
665		schedule_work(&cp->reset_task);
666#endif
667	}
668	return list_entry(entry, cas_page_t, list);
669}
670
671
672static void cas_mif_poll(struct cas *cp, const int enable)
673{
674	u32 cfg;
675
676	cfg  = readl(cp->regs + REG_MIF_CFG);
677	cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
678
679	if (cp->phy_type & CAS_PHY_MII_MDIO1)
680		cfg |= MIF_CFG_PHY_SELECT;
681
682	/* poll and interrupt on link status change. */
683	if (enable) {
684		cfg |= MIF_CFG_POLL_EN;
685		cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
686		cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
687	}
688	writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
689	       cp->regs + REG_MIF_MASK);
690	writel(cfg, cp->regs + REG_MIF_CFG);
691}
692
693/* Must be invoked under cp->lock */
694static void cas_begin_auto_negotiation(struct cas *cp, struct ethtool_cmd *ep)
695{
696	u16 ctl;
697#if 1
698	int lcntl;
699	int changed = 0;
700	int oldstate = cp->lstate;
701	int link_was_not_down = !(oldstate == link_down);
702#endif
703	/* Setup link parameters */
704	if (!ep)
705		goto start_aneg;
706	lcntl = cp->link_cntl;
707	if (ep->autoneg == AUTONEG_ENABLE)
708		cp->link_cntl = BMCR_ANENABLE;
709	else {
710		u32 speed = ethtool_cmd_speed(ep);
711		cp->link_cntl = 0;
712		if (speed == SPEED_100)
713			cp->link_cntl |= BMCR_SPEED100;
714		else if (speed == SPEED_1000)
715			cp->link_cntl |= CAS_BMCR_SPEED1000;
716		if (ep->duplex == DUPLEX_FULL)
717			cp->link_cntl |= BMCR_FULLDPLX;
718	}
719#if 1
720	changed = (lcntl != cp->link_cntl);
721#endif
722start_aneg:
723	if (cp->lstate == link_up) {
724		netdev_info(cp->dev, "PCS link down\n");
725	} else {
726		if (changed) {
727			netdev_info(cp->dev, "link configuration changed\n");
728		}
729	}
730	cp->lstate = link_down;
731	cp->link_transition = LINK_TRANSITION_LINK_DOWN;
732	if (!cp->hw_running)
733		return;
734#if 1
735	/*
736	 * WTZ: If the old state was link_up, we turn off the carrier
737	 * to replicate everything we do elsewhere on a link-down
738	 * event when we were already in a link-up state..
739	 */
740	if (oldstate == link_up)
741		netif_carrier_off(cp->dev);
742	if (changed  && link_was_not_down) {
743		/*
744		 * WTZ: This branch will simply schedule a full reset after
745		 * we explicitly changed link modes in an ioctl. See if this
746		 * fixes the link-problems we were having for forced mode.
747		 */
748		atomic_inc(&cp->reset_task_pending);
749		atomic_inc(&cp->reset_task_pending_all);
750		schedule_work(&cp->reset_task);
751		cp->timer_ticks = 0;
752		mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
753		return;
754	}
755#endif
756	if (cp->phy_type & CAS_PHY_SERDES) {
757		u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
758
759		if (cp->link_cntl & BMCR_ANENABLE) {
760			val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
761			cp->lstate = link_aneg;
762		} else {
763			if (cp->link_cntl & BMCR_FULLDPLX)
764				val |= PCS_MII_CTRL_DUPLEX;
765			val &= ~PCS_MII_AUTONEG_EN;
766			cp->lstate = link_force_ok;
767		}
768		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
769		writel(val, cp->regs + REG_PCS_MII_CTRL);
770
771	} else {
772		cas_mif_poll(cp, 0);
773		ctl = cas_phy_read(cp, MII_BMCR);
774		ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
775			 CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
776		ctl |= cp->link_cntl;
777		if (ctl & BMCR_ANENABLE) {
778			ctl |= BMCR_ANRESTART;
779			cp->lstate = link_aneg;
780		} else {
781			cp->lstate = link_force_ok;
782		}
783		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
784		cas_phy_write(cp, MII_BMCR, ctl);
785		cas_mif_poll(cp, 1);
786	}
787
788	cp->timer_ticks = 0;
789	mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
790}
791
792/* Must be invoked under cp->lock. */
793static int cas_reset_mii_phy(struct cas *cp)
794{
795	int limit = STOP_TRIES_PHY;
796	u16 val;
797
798	cas_phy_write(cp, MII_BMCR, BMCR_RESET);
799	udelay(100);
800	while (--limit) {
801		val = cas_phy_read(cp, MII_BMCR);
802		if ((val & BMCR_RESET) == 0)
803			break;
804		udelay(10);
805	}
806	return limit <= 0;
807}
808
809static void cas_saturn_firmware_init(struct cas *cp)
810{
811	const struct firmware *fw;
812	const char fw_name[] = "sun/cassini.bin";
813	int err;
814
815	if (PHY_NS_DP83065 != cp->phy_id)
816		return;
817
818	err = request_firmware(&fw, fw_name, &cp->pdev->dev);
819	if (err) {
820		pr_err("Failed to load firmware \"%s\"\n",
821		       fw_name);
822		return;
823	}
824	if (fw->size < 2) {
825		pr_err("bogus length %zu in \"%s\"\n",
826		       fw->size, fw_name);
827		goto out;
828	}
829	cp->fw_load_addr= fw->data[1] << 8 | fw->data[0];
830	cp->fw_size = fw->size - 2;
831	cp->fw_data = vmalloc(cp->fw_size);
832	if (!cp->fw_data)
833		goto out;
834	memcpy(cp->fw_data, &fw->data[2], cp->fw_size);
835out:
836	release_firmware(fw);
837}
838
839static void cas_saturn_firmware_load(struct cas *cp)
840{
841	int i;
842
843	if (!cp->fw_data)
844		return;
845
846	cas_phy_powerdown(cp);
847
848	/* expanded memory access mode */
849	cas_phy_write(cp, DP83065_MII_MEM, 0x0);
850
851	/* pointer configuration for new firmware */
852	cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
853	cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
854	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
855	cas_phy_write(cp, DP83065_MII_REGD, 0x82);
856	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
857	cas_phy_write(cp, DP83065_MII_REGD, 0x0);
858	cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
859	cas_phy_write(cp, DP83065_MII_REGD, 0x39);
860
861	/* download new firmware */
862	cas_phy_write(cp, DP83065_MII_MEM, 0x1);
863	cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr);
864	for (i = 0; i < cp->fw_size; i++)
865		cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]);
866
867	/* enable firmware */
868	cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
869	cas_phy_write(cp, DP83065_MII_REGD, 0x1);
870}
871
872
873/* phy initialization */
874static void cas_phy_init(struct cas *cp)
875{
876	u16 val;
877
878	/* if we're in MII/GMII mode, set up phy */
879	if (CAS_PHY_MII(cp->phy_type)) {
880		writel(PCS_DATAPATH_MODE_MII,
881		       cp->regs + REG_PCS_DATAPATH_MODE);
882
883		cas_mif_poll(cp, 0);
884		cas_reset_mii_phy(cp); /* take out of isolate mode */
885
886		if (PHY_LUCENT_B0 == cp->phy_id) {
887			/* workaround link up/down issue with lucent */
888			cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
889			cas_phy_write(cp, MII_BMCR, 0x00f1);
890			cas_phy_write(cp, LUCENT_MII_REG, 0x0);
891
892		} else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
893			/* workarounds for broadcom phy */
894			cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
895			cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
896			cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
897			cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
898			cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
899			cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
900			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
901			cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
902			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
903			cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
904			cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
905
906		} else if (PHY_BROADCOM_5411 == cp->phy_id) {
907			val = cas_phy_read(cp, BROADCOM_MII_REG4);
908			val = cas_phy_read(cp, BROADCOM_MII_REG4);
909			if (val & 0x0080) {
910				/* link workaround */
911				cas_phy_write(cp, BROADCOM_MII_REG4,
912					      val & ~0x0080);
913			}
914
915		} else if (cp->cas_flags & CAS_FLAG_SATURN) {
916			writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
917			       SATURN_PCFG_FSI : 0x0,
918			       cp->regs + REG_SATURN_PCFG);
919
920			/* load firmware to address 10Mbps auto-negotiation
921			 * issue. NOTE: this will need to be changed if the
922			 * default firmware gets fixed.
923			 */
924			if (PHY_NS_DP83065 == cp->phy_id) {
925				cas_saturn_firmware_load(cp);
926			}
927			cas_phy_powerup(cp);
928		}
929
930		/* advertise capabilities */
931		val = cas_phy_read(cp, MII_BMCR);
932		val &= ~BMCR_ANENABLE;
933		cas_phy_write(cp, MII_BMCR, val);
934		udelay(10);
935
936		cas_phy_write(cp, MII_ADVERTISE,
937			      cas_phy_read(cp, MII_ADVERTISE) |
938			      (ADVERTISE_10HALF | ADVERTISE_10FULL |
939			       ADVERTISE_100HALF | ADVERTISE_100FULL |
940			       CAS_ADVERTISE_PAUSE |
941			       CAS_ADVERTISE_ASYM_PAUSE));
942
943		if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
944			/* make sure that we don't advertise half
945			 * duplex to avoid a chip issue
946			 */
947			val  = cas_phy_read(cp, CAS_MII_1000_CTRL);
948			val &= ~CAS_ADVERTISE_1000HALF;
949			val |= CAS_ADVERTISE_1000FULL;
950			cas_phy_write(cp, CAS_MII_1000_CTRL, val);
951		}
952
953	} else {
954		/* reset pcs for serdes */
955		u32 val;
956		int limit;
957
958		writel(PCS_DATAPATH_MODE_SERDES,
959		       cp->regs + REG_PCS_DATAPATH_MODE);
960
961		/* enable serdes pins on saturn */
962		if (cp->cas_flags & CAS_FLAG_SATURN)
963			writel(0, cp->regs + REG_SATURN_PCFG);
964
965		/* Reset PCS unit. */
966		val = readl(cp->regs + REG_PCS_MII_CTRL);
967		val |= PCS_MII_RESET;
968		writel(val, cp->regs + REG_PCS_MII_CTRL);
969
970		limit = STOP_TRIES;
971		while (--limit > 0) {
972			udelay(10);
973			if ((readl(cp->regs + REG_PCS_MII_CTRL) &
974			     PCS_MII_RESET) == 0)
975				break;
976		}
977		if (limit <= 0)
978			netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n",
979				    readl(cp->regs + REG_PCS_STATE_MACHINE));
980
981		/* Make sure PCS is disabled while changing advertisement
982		 * configuration.
983		 */
984		writel(0x0, cp->regs + REG_PCS_CFG);
985
986		/* Advertise all capabilities except half-duplex. */
987		val  = readl(cp->regs + REG_PCS_MII_ADVERT);
988		val &= ~PCS_MII_ADVERT_HD;
989		val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
990			PCS_MII_ADVERT_ASYM_PAUSE);
991		writel(val, cp->regs + REG_PCS_MII_ADVERT);
992
993		/* enable PCS */
994		writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
995
996		/* pcs workaround: enable sync detect */
997		writel(PCS_SERDES_CTRL_SYNCD_EN,
998		       cp->regs + REG_PCS_SERDES_CTRL);
999	}
1000}
1001
1002
1003static int cas_pcs_link_check(struct cas *cp)
1004{
1005	u32 stat, state_machine;
1006	int retval = 0;
1007
1008	/* The link status bit latches on zero, so you must
1009	 * read it twice in such a case to see a transition
1010	 * to the link being up.
1011	 */
1012	stat = readl(cp->regs + REG_PCS_MII_STATUS);
1013	if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
1014		stat = readl(cp->regs + REG_PCS_MII_STATUS);
1015
1016	/* The remote-fault indication is only valid
1017	 * when autoneg has completed.
1018	 */
1019	if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
1020		     PCS_MII_STATUS_REMOTE_FAULT)) ==
1021	    (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT))
1022		netif_info(cp, link, cp->dev, "PCS RemoteFault\n");
1023
1024	/* work around link detection issue by querying the PCS state
1025	 * machine directly.
1026	 */
1027	state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1028	if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1029		stat &= ~PCS_MII_STATUS_LINK_STATUS;
1030	} else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1031		stat |= PCS_MII_STATUS_LINK_STATUS;
1032	}
1033
1034	if (stat & PCS_MII_STATUS_LINK_STATUS) {
1035		if (cp->lstate != link_up) {
1036			if (cp->opened) {
1037				cp->lstate = link_up;
1038				cp->link_transition = LINK_TRANSITION_LINK_UP;
1039
1040				cas_set_link_modes(cp);
1041				netif_carrier_on(cp->dev);
1042			}
1043		}
1044	} else if (cp->lstate == link_up) {
1045		cp->lstate = link_down;
1046		if (link_transition_timeout != 0 &&
1047		    cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1048		    !cp->link_transition_jiffies_valid) {
1049			/*
1050			 * force a reset, as a workaround for the
1051			 * link-failure problem. May want to move this to a
1052			 * point a bit earlier in the sequence. If we had
1053			 * generated a reset a short time ago, we'll wait for
1054			 * the link timer to check the status until a
1055			 * timer expires (link_transistion_jiffies_valid is
1056			 * true when the timer is running.)  Instead of using
1057			 * a system timer, we just do a check whenever the
1058			 * link timer is running - this clears the flag after
1059			 * a suitable delay.
1060			 */
1061			retval = 1;
1062			cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1063			cp->link_transition_jiffies = jiffies;
1064			cp->link_transition_jiffies_valid = 1;
1065		} else {
1066			cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1067		}
1068		netif_carrier_off(cp->dev);
1069		if (cp->opened)
1070			netif_info(cp, link, cp->dev, "PCS link down\n");
1071
1072		/* Cassini only: if you force a mode, there can be
1073		 * sync problems on link down. to fix that, the following
1074		 * things need to be checked:
1075		 * 1) read serialink state register
1076		 * 2) read pcs status register to verify link down.
1077		 * 3) if link down and serial link == 0x03, then you need
1078		 *    to global reset the chip.
1079		 */
1080		if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1081			/* should check to see if we're in a forced mode */
1082			stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1083			if (stat == 0x03)
1084				return 1;
1085		}
1086	} else if (cp->lstate == link_down) {
1087		if (link_transition_timeout != 0 &&
1088		    cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1089		    !cp->link_transition_jiffies_valid) {
1090			/* force a reset, as a workaround for the
1091			 * link-failure problem.  May want to move
1092			 * this to a point a bit earlier in the
1093			 * sequence.
1094			 */
1095			retval = 1;
1096			cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1097			cp->link_transition_jiffies = jiffies;
1098			cp->link_transition_jiffies_valid = 1;
1099		} else {
1100			cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1101		}
1102	}
1103
1104	return retval;
1105}
1106
1107static int cas_pcs_interrupt(struct net_device *dev,
1108			     struct cas *cp, u32 status)
1109{
1110	u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1111
1112	if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1113		return 0;
1114	return cas_pcs_link_check(cp);
1115}
1116
1117static int cas_txmac_interrupt(struct net_device *dev,
1118			       struct cas *cp, u32 status)
1119{
1120	u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1121
1122	if (!txmac_stat)
1123		return 0;
1124
1125	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1126		     "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat);
1127
1128	/* Defer timer expiration is quite normal,
1129	 * don't even log the event.
1130	 */
1131	if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1132	    !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1133		return 0;
1134
1135	spin_lock(&cp->stat_lock[0]);
1136	if (txmac_stat & MAC_TX_UNDERRUN) {
1137		netdev_err(dev, "TX MAC xmit underrun\n");
1138		cp->net_stats[0].tx_fifo_errors++;
1139	}
1140
1141	if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1142		netdev_err(dev, "TX MAC max packet size error\n");
1143		cp->net_stats[0].tx_errors++;
1144	}
1145
1146	/* The rest are all cases of one of the 16-bit TX
1147	 * counters expiring.
1148	 */
1149	if (txmac_stat & MAC_TX_COLL_NORMAL)
1150		cp->net_stats[0].collisions += 0x10000;
1151
1152	if (txmac_stat & MAC_TX_COLL_EXCESS) {
1153		cp->net_stats[0].tx_aborted_errors += 0x10000;
1154		cp->net_stats[0].collisions += 0x10000;
1155	}
1156
1157	if (txmac_stat & MAC_TX_COLL_LATE) {
1158		cp->net_stats[0].tx_aborted_errors += 0x10000;
1159		cp->net_stats[0].collisions += 0x10000;
1160	}
1161	spin_unlock(&cp->stat_lock[0]);
1162
1163	/* We do not keep track of MAC_TX_COLL_FIRST and
1164	 * MAC_TX_PEAK_ATTEMPTS events.
1165	 */
1166	return 0;
1167}
1168
1169static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1170{
1171	cas_hp_inst_t *inst;
1172	u32 val;
1173	int i;
1174
1175	i = 0;
1176	while ((inst = firmware) && inst->note) {
1177		writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1178
1179		val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1180		val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1181		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1182
1183		val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1184		val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1185		val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1186		val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1187		val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1188		val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1189		val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1190		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1191
1192		val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1193		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1194		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1195		val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1196		writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1197		++firmware;
1198		++i;
1199	}
1200}
1201
1202static void cas_init_rx_dma(struct cas *cp)
1203{
1204	u64 desc_dma = cp->block_dvma;
1205	u32 val;
1206	int i, size;
1207
1208	/* rx free descriptors */
1209	val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1210	val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1211	val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1212	if ((N_RX_DESC_RINGS > 1) &&
1213	    (cp->cas_flags & CAS_FLAG_REG_PLUS))  /* do desc 2 */
1214		val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1215	writel(val, cp->regs + REG_RX_CFG);
1216
1217	val = (unsigned long) cp->init_rxds[0] -
1218		(unsigned long) cp->init_block;
1219	writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1220	writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1221	writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1222
1223	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1224		/* rx desc 2 is for IPSEC packets. however,
1225		 * we don't it that for that purpose.
1226		 */
1227		val = (unsigned long) cp->init_rxds[1] -
1228			(unsigned long) cp->init_block;
1229		writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1230		writel((desc_dma + val) & 0xffffffff, cp->regs +
1231		       REG_PLUS_RX_DB1_LOW);
1232		writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1233		       REG_PLUS_RX_KICK1);
1234	}
1235
1236	/* rx completion registers */
1237	val = (unsigned long) cp->init_rxcs[0] -
1238		(unsigned long) cp->init_block;
1239	writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1240	writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1241
1242	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1243		/* rx comp 2-4 */
1244		for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1245			val = (unsigned long) cp->init_rxcs[i] -
1246				(unsigned long) cp->init_block;
1247			writel((desc_dma + val) >> 32, cp->regs +
1248			       REG_PLUS_RX_CBN_HI(i));
1249			writel((desc_dma + val) & 0xffffffff, cp->regs +
1250			       REG_PLUS_RX_CBN_LOW(i));
1251		}
1252	}
1253
1254	/* read selective clear regs to prevent spurious interrupts
1255	 * on reset because complete == kick.
1256	 * selective clear set up to prevent interrupts on resets
1257	 */
1258	readl(cp->regs + REG_INTR_STATUS_ALIAS);
1259	writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1260	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1261		for (i = 1; i < N_RX_COMP_RINGS; i++)
1262			readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));
1263
1264		/* 2 is different from 3 and 4 */
1265		if (N_RX_COMP_RINGS > 1)
1266			writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1,
1267			       cp->regs + REG_PLUS_ALIASN_CLEAR(1));
1268
1269		for (i = 2; i < N_RX_COMP_RINGS; i++)
1270			writel(INTR_RX_DONE_ALT,
1271			       cp->regs + REG_PLUS_ALIASN_CLEAR(i));
1272	}
1273
1274	/* set up pause thresholds */
1275	val  = CAS_BASE(RX_PAUSE_THRESH_OFF,
1276			cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1277	val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1278			cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1279	writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1280
1281	/* zero out dma reassembly buffers */
1282	for (i = 0; i < 64; i++) {
1283		writel(i, cp->regs + REG_RX_TABLE_ADDR);
1284		writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1285		writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1286		writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1287	}
1288
1289	/* make sure address register is 0 for normal operation */
1290	writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1291	writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1292
1293	/* interrupt mitigation */
1294#ifdef USE_RX_BLANK
1295	val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1296	val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1297	writel(val, cp->regs + REG_RX_BLANK);
1298#else
1299	writel(0x0, cp->regs + REG_RX_BLANK);
1300#endif
1301
1302	/* interrupt generation as a function of low water marks for
1303	 * free desc and completion entries. these are used to trigger
1304	 * housekeeping for rx descs. we don't use the free interrupt
1305	 * as it's not very useful
1306	 */
1307	/* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1308	val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1309	writel(val, cp->regs + REG_RX_AE_THRESH);
1310	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1311		val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1312		writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1313	}
1314
1315	/* Random early detect registers. useful for congestion avoidance.
1316	 * this should be tunable.
1317	 */
1318	writel(0x0, cp->regs + REG_RX_RED);
1319
1320	/* receive page sizes. default == 2K (0x800) */
1321	val = 0;
1322	if (cp->page_size == 0x1000)
1323		val = 0x1;
1324	else if (cp->page_size == 0x2000)
1325		val = 0x2;
1326	else if (cp->page_size == 0x4000)
1327		val = 0x3;
1328
1329	/* round mtu + offset. constrain to page size. */
1330	size = cp->dev->mtu + 64;
1331	if (size > cp->page_size)
1332		size = cp->page_size;
1333
1334	if (size <= 0x400)
1335		i = 0x0;
1336	else if (size <= 0x800)
1337		i = 0x1;
1338	else if (size <= 0x1000)
1339		i = 0x2;
1340	else
1341		i = 0x3;
1342
1343	cp->mtu_stride = 1 << (i + 10);
1344	val  = CAS_BASE(RX_PAGE_SIZE, val);
1345	val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1346	val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1347	val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1348	writel(val, cp->regs + REG_RX_PAGE_SIZE);
1349
1350	/* enable the header parser if desired */
1351	if (CAS_HP_FIRMWARE == cas_prog_null)
1352		return;
1353
1354	val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1355	val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1356	val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1357	writel(val, cp->regs + REG_HP_CFG);
1358}
1359
1360static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1361{
1362	memset(rxc, 0, sizeof(*rxc));
1363	rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1364}
1365
1366/* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1367 * flipping is protected by the fact that the chip will not
1368 * hand back the same page index while it's being processed.
1369 */
1370static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1371{
1372	cas_page_t *page = cp->rx_pages[1][index];
1373	cas_page_t *new;
1374
1375	if (page_count(page->buffer) == 1)
1376		return page;
1377
1378	new = cas_page_dequeue(cp);
1379	if (new) {
1380		spin_lock(&cp->rx_inuse_lock);
1381		list_add(&page->list, &cp->rx_inuse_list);
1382		spin_unlock(&cp->rx_inuse_lock);
1383	}
1384	return new;
1385}
1386
1387/* this needs to be changed if we actually use the ENC RX DESC ring */
1388static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1389				 const int index)
1390{
1391	cas_page_t **page0 = cp->rx_pages[0];
1392	cas_page_t **page1 = cp->rx_pages[1];
1393
1394	/* swap if buffer is in use */
1395	if (page_count(page0[index]->buffer) > 1) {
1396		cas_page_t *new = cas_page_spare(cp, index);
1397		if (new) {
1398			page1[index] = page0[index];
1399			page0[index] = new;
1400		}
1401	}
1402	RX_USED_SET(page0[index], 0);
1403	return page0[index];
1404}
1405
1406static void cas_clean_rxds(struct cas *cp)
1407{
1408	/* only clean ring 0 as ring 1 is used for spare buffers */
1409        struct cas_rx_desc *rxd = cp->init_rxds[0];
1410	int i, size;
1411
1412	/* release all rx flows */
1413	for (i = 0; i < N_RX_FLOWS; i++) {
1414		struct sk_buff *skb;
1415		while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1416			cas_skb_release(skb);
1417		}
1418	}
1419
1420	/* initialize descriptors */
1421	size = RX_DESC_RINGN_SIZE(0);
1422	for (i = 0; i < size; i++) {
1423		cas_page_t *page = cas_page_swap(cp, 0, i);
1424		rxd[i].buffer = cpu_to_le64(page->dma_addr);
1425		rxd[i].index  = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1426					    CAS_BASE(RX_INDEX_RING, 0));
1427	}
1428
1429	cp->rx_old[0]  = RX_DESC_RINGN_SIZE(0) - 4;
1430	cp->rx_last[0] = 0;
1431	cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1432}
1433
1434static void cas_clean_rxcs(struct cas *cp)
1435{
1436	int i, j;
1437
1438	/* take ownership of rx comp descriptors */
1439	memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1440	memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1441	for (i = 0; i < N_RX_COMP_RINGS; i++) {
1442		struct cas_rx_comp *rxc = cp->init_rxcs[i];
1443		for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1444			cas_rxc_init(rxc + j);
1445		}
1446	}
1447}
1448
1449#if 0
1450/* When we get a RX fifo overflow, the RX unit is probably hung
1451 * so we do the following.
1452 *
1453 * If any part of the reset goes wrong, we return 1 and that causes the
1454 * whole chip to be reset.
1455 */
1456static int cas_rxmac_reset(struct cas *cp)
1457{
1458	struct net_device *dev = cp->dev;
1459	int limit;
1460	u32 val;
1461
1462	/* First, reset MAC RX. */
1463	writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1464	for (limit = 0; limit < STOP_TRIES; limit++) {
1465		if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1466			break;
1467		udelay(10);
1468	}
1469	if (limit == STOP_TRIES) {
1470		netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
1471		return 1;
1472	}
1473
1474	/* Second, disable RX DMA. */
1475	writel(0, cp->regs + REG_RX_CFG);
1476	for (limit = 0; limit < STOP_TRIES; limit++) {
1477		if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1478			break;
1479		udelay(10);
1480	}
1481	if (limit == STOP_TRIES) {
1482		netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
1483		return 1;
1484	}
1485
1486	mdelay(5);
1487
1488	/* Execute RX reset command. */
1489	writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1490	for (limit = 0; limit < STOP_TRIES; limit++) {
1491		if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1492			break;
1493		udelay(10);
1494	}
1495	if (limit == STOP_TRIES) {
1496		netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
1497		return 1;
1498	}
1499
1500	/* reset driver rx state */
1501	cas_clean_rxds(cp);
1502	cas_clean_rxcs(cp);
1503
1504	/* Now, reprogram the rest of RX unit. */
1505	cas_init_rx_dma(cp);
1506
1507	/* re-enable */
1508	val = readl(cp->regs + REG_RX_CFG);
1509	writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1510	writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1511	val = readl(cp->regs + REG_MAC_RX_CFG);
1512	writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1513	return 0;
1514}
1515#endif
1516
1517static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1518			       u32 status)
1519{
1520	u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1521
1522	if (!stat)
1523		return 0;
1524
1525	netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat);
1526
1527	/* these are all rollovers */
1528	spin_lock(&cp->stat_lock[0]);
1529	if (stat & MAC_RX_ALIGN_ERR)
1530		cp->net_stats[0].rx_frame_errors += 0x10000;
1531
1532	if (stat & MAC_RX_CRC_ERR)
1533		cp->net_stats[0].rx_crc_errors += 0x10000;
1534
1535	if (stat & MAC_RX_LEN_ERR)
1536		cp->net_stats[0].rx_length_errors += 0x10000;
1537
1538	if (stat & MAC_RX_OVERFLOW) {
1539		cp->net_stats[0].rx_over_errors++;
1540		cp->net_stats[0].rx_fifo_errors++;
1541	}
1542
1543	/* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1544	 * events.
1545	 */
1546	spin_unlock(&cp->stat_lock[0]);
1547	return 0;
1548}
1549
1550static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1551			     u32 status)
1552{
1553	u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1554
1555	if (!stat)
1556		return 0;
1557
1558	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1559		     "mac interrupt, stat: 0x%x\n", stat);
1560
1561	/* This interrupt is just for pause frame and pause
1562	 * tracking.  It is useful for diagnostics and debug
1563	 * but probably by default we will mask these events.
1564	 */
1565	if (stat & MAC_CTRL_PAUSE_STATE)
1566		cp->pause_entered++;
1567
1568	if (stat & MAC_CTRL_PAUSE_RECEIVED)
1569		cp->pause_last_time_recvd = (stat >> 16);
1570
1571	return 0;
1572}
1573
1574
1575/* Must be invoked under cp->lock. */
1576static inline int cas_mdio_link_not_up(struct cas *cp)
1577{
1578	u16 val;
1579
1580	switch (cp->lstate) {
1581	case link_force_ret:
1582		netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n");
1583		cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1584		cp->timer_ticks = 5;
1585		cp->lstate = link_force_ok;
1586		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1587		break;
1588
1589	case link_aneg:
1590		val = cas_phy_read(cp, MII_BMCR);
1591
1592		/* Try forced modes. we try things in the following order:
1593		 * 1000 full -> 100 full/half -> 10 half
1594		 */
1595		val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1596		val |= BMCR_FULLDPLX;
1597		val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1598			CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1599		cas_phy_write(cp, MII_BMCR, val);
1600		cp->timer_ticks = 5;
1601		cp->lstate = link_force_try;
1602		cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1603		break;
1604
1605	case link_force_try:
1606		/* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1607		val = cas_phy_read(cp, MII_BMCR);
1608		cp->timer_ticks = 5;
1609		if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1610			val &= ~CAS_BMCR_SPEED1000;
1611			val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1612			cas_phy_write(cp, MII_BMCR, val);
1613			break;
1614		}
1615
1616		if (val & BMCR_SPEED100) {
1617			if (val & BMCR_FULLDPLX) /* fd failed */
1618				val &= ~BMCR_FULLDPLX;
1619			else { /* 100Mbps failed */
1620				val &= ~BMCR_SPEED100;
1621			}
1622			cas_phy_write(cp, MII_BMCR, val);
1623			break;
1624		}
1625	default:
1626		break;
1627	}
1628	return 0;
1629}
1630
1631
1632/* must be invoked with cp->lock held */
1633static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1634{
1635	int restart;
1636
1637	if (bmsr & BMSR_LSTATUS) {
1638		/* Ok, here we got a link. If we had it due to a forced
1639		 * fallback, and we were configured for autoneg, we
1640		 * retry a short autoneg pass. If you know your hub is
1641		 * broken, use ethtool ;)
1642		 */
1643		if ((cp->lstate == link_force_try) &&
1644		    (cp->link_cntl & BMCR_ANENABLE)) {
1645			cp->lstate = link_force_ret;
1646			cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1647			cas_mif_poll(cp, 0);
1648			cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1649			cp->timer_ticks = 5;
1650			if (cp->opened)
1651				netif_info(cp, link, cp->dev,
1652					   "Got link after fallback, retrying autoneg once...\n");
1653			cas_phy_write(cp, MII_BMCR,
1654				      cp->link_fcntl | BMCR_ANENABLE |
1655				      BMCR_ANRESTART);
1656			cas_mif_poll(cp, 1);
1657
1658		} else if (cp->lstate != link_up) {
1659			cp->lstate = link_up;
1660			cp->link_transition = LINK_TRANSITION_LINK_UP;
1661
1662			if (cp->opened) {
1663				cas_set_link_modes(cp);
1664				netif_carrier_on(cp->dev);
1665			}
1666		}
1667		return 0;
1668	}
1669
1670	/* link not up. if the link was previously up, we restart the
1671	 * whole process
1672	 */
1673	restart = 0;
1674	if (cp->lstate == link_up) {
1675		cp->lstate = link_down;
1676		cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1677
1678		netif_carrier_off(cp->dev);
1679		if (cp->opened)
1680			netif_info(cp, link, cp->dev, "Link down\n");
1681		restart = 1;
1682
1683	} else if (++cp->timer_ticks > 10)
1684		cas_mdio_link_not_up(cp);
1685
1686	return restart;
1687}
1688
1689static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1690			     u32 status)
1691{
1692	u32 stat = readl(cp->regs + REG_MIF_STATUS);
1693	u16 bmsr;
1694
1695	/* check for a link change */
1696	if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1697		return 0;
1698
1699	bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1700	return cas_mii_link_check(cp, bmsr);
1701}
1702
1703static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1704			     u32 status)
1705{
1706	u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1707
1708	if (!stat)
1709		return 0;
1710
1711	netdev_err(dev, "PCI error [%04x:%04x]",
1712		   stat, readl(cp->regs + REG_BIM_DIAG));
1713
1714	/* cassini+ has this reserved */
1715	if ((stat & PCI_ERR_BADACK) &&
1716	    ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1717		pr_cont(" <No ACK64# during ABS64 cycle>");
1718
1719	if (stat & PCI_ERR_DTRTO)
1720		pr_cont(" <Delayed transaction timeout>");
1721	if (stat & PCI_ERR_OTHER)
1722		pr_cont(" <other>");
1723	if (stat & PCI_ERR_BIM_DMA_WRITE)
1724		pr_cont(" <BIM DMA 0 write req>");
1725	if (stat & PCI_ERR_BIM_DMA_READ)
1726		pr_cont(" <BIM DMA 0 read req>");
1727	pr_cont("\n");
1728
1729	if (stat & PCI_ERR_OTHER) {
1730		u16 cfg;
1731
1732		/* Interrogate PCI config space for the
1733		 * true cause.
1734		 */
1735		pci_read_config_word(cp->pdev, PCI_STATUS, &cfg);
1736		netdev_err(dev, "Read PCI cfg space status [%04x]\n", cfg);
1737		if (cfg & PCI_STATUS_PARITY)
1738			netdev_err(dev, "PCI parity error detected\n");
1739		if (cfg & PCI_STATUS_SIG_TARGET_ABORT)
1740			netdev_err(dev, "PCI target abort\n");
1741		if (cfg & PCI_STATUS_REC_TARGET_ABORT)
1742			netdev_err(dev, "PCI master acks target abort\n");
1743		if (cfg & PCI_STATUS_REC_MASTER_ABORT)
1744			netdev_err(dev, "PCI master abort\n");
1745		if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR)
1746			netdev_err(dev, "PCI system error SERR#\n");
1747		if (cfg & PCI_STATUS_DETECTED_PARITY)
1748			netdev_err(dev, "PCI parity error\n");
1749
1750		/* Write the error bits back to clear them. */
1751		cfg &= (PCI_STATUS_PARITY |
1752			PCI_STATUS_SIG_TARGET_ABORT |
1753			PCI_STATUS_REC_TARGET_ABORT |
1754			PCI_STATUS_REC_MASTER_ABORT |
1755			PCI_STATUS_SIG_SYSTEM_ERROR |
1756			PCI_STATUS_DETECTED_PARITY);
1757		pci_write_config_word(cp->pdev, PCI_STATUS, cfg);
1758	}
1759
1760	/* For all PCI errors, we should reset the chip. */
1761	return 1;
1762}
1763
1764/* All non-normal interrupt conditions get serviced here.
1765 * Returns non-zero if we should just exit the interrupt
1766 * handler right now (ie. if we reset the card which invalidates
1767 * all of the other original irq status bits).
1768 */
1769static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1770			    u32 status)
1771{
1772	if (status & INTR_RX_TAG_ERROR) {
1773		/* corrupt RX tag framing */
1774		netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1775			     "corrupt rx tag framing\n");
1776		spin_lock(&cp->stat_lock[0]);
1777		cp->net_stats[0].rx_errors++;
1778		spin_unlock(&cp->stat_lock[0]);
1779		goto do_reset;
1780	}
1781
1782	if (status & INTR_RX_LEN_MISMATCH) {
1783		/* length mismatch. */
1784		netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1785			     "length mismatch for rx frame\n");
1786		spin_lock(&cp->stat_lock[0]);
1787		cp->net_stats[0].rx_errors++;
1788		spin_unlock(&cp->stat_lock[0]);
1789		goto do_reset;
1790	}
1791
1792	if (status & INTR_PCS_STATUS) {
1793		if (cas_pcs_interrupt(dev, cp, status))
1794			goto do_reset;
1795	}
1796
1797	if (status & INTR_TX_MAC_STATUS) {
1798		if (cas_txmac_interrupt(dev, cp, status))
1799			goto do_reset;
1800	}
1801
1802	if (status & INTR_RX_MAC_STATUS) {
1803		if (cas_rxmac_interrupt(dev, cp, status))
1804			goto do_reset;
1805	}
1806
1807	if (status & INTR_MAC_CTRL_STATUS) {
1808		if (cas_mac_interrupt(dev, cp, status))
1809			goto do_reset;
1810	}
1811
1812	if (status & INTR_MIF_STATUS) {
1813		if (cas_mif_interrupt(dev, cp, status))
1814			goto do_reset;
1815	}
1816
1817	if (status & INTR_PCI_ERROR_STATUS) {
1818		if (cas_pci_interrupt(dev, cp, status))
1819			goto do_reset;
1820	}
1821	return 0;
1822
1823do_reset:
1824#if 1
1825	atomic_inc(&cp->reset_task_pending);
1826	atomic_inc(&cp->reset_task_pending_all);
1827	netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status);
1828	schedule_work(&cp->reset_task);
1829#else
1830	atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1831	netdev_err(dev, "reset called in cas_abnormal_irq\n");
1832	schedule_work(&cp->reset_task);
1833#endif
1834	return 1;
1835}
1836
1837/* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1838 *       determining whether to do a netif_stop/wakeup
1839 */
1840#define CAS_TABORT(x)      (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1841#define CAS_ROUND_PAGE(x)  (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1842static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1843				  const int len)
1844{
1845	unsigned long off = addr + len;
1846
1847	if (CAS_TABORT(cp) == 1)
1848		return 0;
1849	if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1850		return 0;
1851	return TX_TARGET_ABORT_LEN;
1852}
1853
1854static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1855{
1856	struct cas_tx_desc *txds;
1857	struct sk_buff **skbs;
1858	struct net_device *dev = cp->dev;
1859	int entry, count;
1860
1861	spin_lock(&cp->tx_lock[ring]);
1862	txds = cp->init_txds[ring];
1863	skbs = cp->tx_skbs[ring];
1864	entry = cp->tx_old[ring];
1865
1866	count = TX_BUFF_COUNT(ring, entry, limit);
1867	while (entry != limit) {
1868		struct sk_buff *skb = skbs[entry];
1869		dma_addr_t daddr;
1870		u32 dlen;
1871		int frag;
1872
1873		if (!skb) {
1874			/* this should never occur */
1875			entry = TX_DESC_NEXT(ring, entry);
1876			continue;
1877		}
1878
1879		/* however, we might get only a partial skb release. */
1880		count -= skb_shinfo(skb)->nr_frags +
1881			+ cp->tx_tiny_use[ring][entry].nbufs + 1;
1882		if (count < 0)
1883			break;
1884
1885		netif_printk(cp, tx_done, KERN_DEBUG, cp->dev,
1886			     "tx[%d] done, slot %d\n", ring, entry);
1887
1888		skbs[entry] = NULL;
1889		cp->tx_tiny_use[ring][entry].nbufs = 0;
1890
1891		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1892			struct cas_tx_desc *txd = txds + entry;
1893
1894			daddr = le64_to_cpu(txd->buffer);
1895			dlen = CAS_VAL(TX_DESC_BUFLEN,
1896				       le64_to_cpu(txd->control));
1897			pci_unmap_page(cp->pdev, daddr, dlen,
1898				       PCI_DMA_TODEVICE);
1899			entry = TX_DESC_NEXT(ring, entry);
1900
1901			/* tiny buffer may follow */
1902			if (cp->tx_tiny_use[ring][entry].used) {
1903				cp->tx_tiny_use[ring][entry].used = 0;
1904				entry = TX_DESC_NEXT(ring, entry);
1905			}
1906		}
1907
1908		spin_lock(&cp->stat_lock[ring]);
1909		cp->net_stats[ring].tx_packets++;
1910		cp->net_stats[ring].tx_bytes += skb->len;
1911		spin_unlock(&cp->stat_lock[ring]);
1912		dev_kfree_skb_irq(skb);
1913	}
1914	cp->tx_old[ring] = entry;
1915
1916	/* this is wrong for multiple tx rings. the net device needs
1917	 * multiple queues for this to do the right thing.  we wait
1918	 * for 2*packets to be available when using tiny buffers
1919	 */
1920	if (netif_queue_stopped(dev) &&
1921	    (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1922		netif_wake_queue(dev);
1923	spin_unlock(&cp->tx_lock[ring]);
1924}
1925
1926static void cas_tx(struct net_device *dev, struct cas *cp,
1927		   u32 status)
1928{
1929        int limit, ring;
1930#ifdef USE_TX_COMPWB
1931	u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1932#endif
1933	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1934		     "tx interrupt, status: 0x%x, %llx\n",
1935		     status, (unsigned long long)compwb);
1936	/* process all the rings */
1937	for (ring = 0; ring < N_TX_RINGS; ring++) {
1938#ifdef USE_TX_COMPWB
1939		/* use the completion writeback registers */
1940		limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1941			CAS_VAL(TX_COMPWB_LSB, compwb);
1942		compwb = TX_COMPWB_NEXT(compwb);
1943#else
1944		limit = readl(cp->regs + REG_TX_COMPN(ring));
1945#endif
1946		if (cp->tx_old[ring] != limit)
1947			cas_tx_ringN(cp, ring, limit);
1948	}
1949}
1950
1951
1952static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1953			      int entry, const u64 *words,
1954			      struct sk_buff **skbref)
1955{
1956	int dlen, hlen, len, i, alloclen;
1957	int off, swivel = RX_SWIVEL_OFF_VAL;
1958	struct cas_page *page;
1959	struct sk_buff *skb;
1960	void *addr, *crcaddr;
1961	__sum16 csum;
1962	char *p;
1963
1964	hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1965	dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1966	len  = hlen + dlen;
1967
1968	if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1969		alloclen = len;
1970	else
1971		alloclen = max(hlen, RX_COPY_MIN);
1972
1973	skb = netdev_alloc_skb(cp->dev, alloclen + swivel + cp->crc_size);
1974	if (skb == NULL)
1975		return -1;
1976
1977	*skbref = skb;
1978	skb_reserve(skb, swivel);
1979
1980	p = skb->data;
1981	addr = crcaddr = NULL;
1982	if (hlen) { /* always copy header pages */
1983		i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
1984		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1985		off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
1986			swivel;
1987
1988		i = hlen;
1989		if (!dlen) /* attach FCS */
1990			i += cp->crc_size;
1991		pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
1992				    PCI_DMA_FROMDEVICE);
1993		addr = cas_page_map(page->buffer);
1994		memcpy(p, addr + off, i);
1995		pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
1996				    PCI_DMA_FROMDEVICE);
1997		cas_page_unmap(addr);
1998		RX_USED_ADD(page, 0x100);
1999		p += hlen;
2000		swivel = 0;
2001	}
2002
2003
2004	if (alloclen < (hlen + dlen)) {
2005		skb_frag_t *frag = skb_shinfo(skb)->frags;
2006
2007		/* normal or jumbo packets. we use frags */
2008		i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2009		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2010		off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2011
2012		hlen = min(cp->page_size - off, dlen);
2013		if (hlen < 0) {
2014			netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2015				     "rx page overflow: %d\n", hlen);
2016			dev_kfree_skb_irq(skb);
2017			return -1;
2018		}
2019		i = hlen;
2020		if (i == dlen)  /* attach FCS */
2021			i += cp->crc_size;
2022		pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2023				    PCI_DMA_FROMDEVICE);
2024
2025		/* make sure we always copy a header */
2026		swivel = 0;
2027		if (p == (char *) skb->data) { /* not split */
2028			addr = cas_page_map(page->buffer);
2029			memcpy(p, addr + off, RX_COPY_MIN);
2030			pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2031					PCI_DMA_FROMDEVICE);
2032			cas_page_unmap(addr);
2033			off += RX_COPY_MIN;
2034			swivel = RX_COPY_MIN;
2035			RX_USED_ADD(page, cp->mtu_stride);
2036		} else {
2037			RX_USED_ADD(page, hlen);
2038		}
2039		skb_put(skb, alloclen);
2040
2041		skb_shinfo(skb)->nr_frags++;
2042		skb->data_len += hlen - swivel;
2043		skb->truesize += hlen - swivel;
2044		skb->len      += hlen - swivel;
2045
2046		__skb_frag_set_page(frag, page->buffer);
2047		__skb_frag_ref(frag);
2048		frag->page_offset = off;
2049		skb_frag_size_set(frag, hlen - swivel);
2050
2051		/* any more data? */
2052		if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2053			hlen = dlen;
2054			off = 0;
2055
2056			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2057			page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2058			pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2059					    hlen + cp->crc_size,
2060					    PCI_DMA_FROMDEVICE);
2061			pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2062					    hlen + cp->crc_size,
2063					    PCI_DMA_FROMDEVICE);
2064
2065			skb_shinfo(skb)->nr_frags++;
2066			skb->data_len += hlen;
2067			skb->len      += hlen;
2068			frag++;
2069
2070			__skb_frag_set_page(frag, page->buffer);
2071			__skb_frag_ref(frag);
2072			frag->page_offset = 0;
2073			skb_frag_size_set(frag, hlen);
2074			RX_USED_ADD(page, hlen + cp->crc_size);
2075		}
2076
2077		if (cp->crc_size) {
2078			addr = cas_page_map(page->buffer);
2079			crcaddr  = addr + off + hlen;
2080		}
2081
2082	} else {
2083		/* copying packet */
2084		if (!dlen)
2085			goto end_copy_pkt;
2086
2087		i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2088		page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2089		off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2090		hlen = min(cp->page_size - off, dlen);
2091		if (hlen < 0) {
2092			netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2093				     "rx page overflow: %d\n", hlen);
2094			dev_kfree_skb_irq(skb);
2095			return -1;
2096		}
2097		i = hlen;
2098		if (i == dlen) /* attach FCS */
2099			i += cp->crc_size;
2100		pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2101				    PCI_DMA_FROMDEVICE);
2102		addr = cas_page_map(page->buffer);
2103		memcpy(p, addr + off, i);
2104		pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2105				    PCI_DMA_FROMDEVICE);
2106		cas_page_unmap(addr);
2107		if (p == (char *) skb->data) /* not split */
2108			RX_USED_ADD(page, cp->mtu_stride);
2109		else
2110			RX_USED_ADD(page, i);
2111
2112		/* any more data? */
2113		if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2114			p += hlen;
2115			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2116			page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2117			pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2118					    dlen + cp->crc_size,
2119					    PCI_DMA_FROMDEVICE);
2120			addr = cas_page_map(page->buffer);
2121			memcpy(p, addr, dlen + cp->crc_size);
2122			pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2123					    dlen + cp->crc_size,
2124					    PCI_DMA_FROMDEVICE);
2125			cas_page_unmap(addr);
2126			RX_USED_ADD(page, dlen + cp->crc_size);
2127		}
2128end_copy_pkt:
2129		if (cp->crc_size) {
2130			addr    = NULL;
2131			crcaddr = skb->data + alloclen;
2132		}
2133		skb_put(skb, alloclen);
2134	}
2135
2136	csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
2137	if (cp->crc_size) {
2138		/* checksum includes FCS. strip it out. */
2139		csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
2140					      csum_unfold(csum)));
2141		if (addr)
2142			cas_page_unmap(addr);
2143	}
2144	skb->protocol = eth_type_trans(skb, cp->dev);
2145	if (skb->protocol == htons(ETH_P_IP)) {
2146		skb->csum = csum_unfold(~csum);
2147		skb->ip_summed = CHECKSUM_COMPLETE;
2148	} else
2149		skb_checksum_none_assert(skb);
2150	return len;
2151}
2152
2153
2154/* we can handle up to 64 rx flows at a time. we do the same thing
2155 * as nonreassm except that we batch up the buffers.
2156 * NOTE: we currently just treat each flow as a bunch of packets that
2157 *       we pass up. a better way would be to coalesce the packets
2158 *       into a jumbo packet. to do that, we need to do the following:
2159 *       1) the first packet will have a clean split between header and
2160 *          data. save both.
2161 *       2) each time the next flow packet comes in, extend the
2162 *          data length and merge the checksums.
2163 *       3) on flow release, fix up the header.
2164 *       4) make sure the higher layer doesn't care.
2165 * because packets get coalesced, we shouldn't run into fragment count
2166 * issues.
2167 */
2168static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2169				   struct sk_buff *skb)
2170{
2171	int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2172	struct sk_buff_head *flow = &cp->rx_flows[flowid];
2173
2174	/* this is protected at a higher layer, so no need to
2175	 * do any additional locking here. stick the buffer
2176	 * at the end.
2177	 */
2178	__skb_queue_tail(flow, skb);
2179	if (words[0] & RX_COMP1_RELEASE_FLOW) {
2180		while ((skb = __skb_dequeue(flow))) {
2181			cas_skb_release(skb);
2182		}
2183	}
2184}
2185
2186/* put rx descriptor back on ring. if a buffer is in use by a higher
2187 * layer, this will need to put in a replacement.
2188 */
2189static void cas_post_page(struct cas *cp, const int ring, const int index)
2190{
2191	cas_page_t *new;
2192	int entry;
2193
2194	entry = cp->rx_old[ring];
2195
2196	new = cas_page_swap(cp, ring, index);
2197	cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2198	cp->init_rxds[ring][entry].index  =
2199		cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2200			    CAS_BASE(RX_INDEX_RING, ring));
2201
2202	entry = RX_DESC_ENTRY(ring, entry + 1);
2203	cp->rx_old[ring] = entry;
2204
2205	if (entry % 4)
2206		return;
2207
2208	if (ring == 0)
2209		writel(entry, cp->regs + REG_RX_KICK);
2210	else if ((N_RX_DESC_RINGS > 1) &&
2211		 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2212		writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2213}
2214
2215
2216/* only when things are bad */
2217static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2218{
2219	unsigned int entry, last, count, released;
2220	int cluster;
2221	cas_page_t **page = cp->rx_pages[ring];
2222
2223	entry = cp->rx_old[ring];
2224
2225	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2226		     "rxd[%d] interrupt, done: %d\n", ring, entry);
2227
2228	cluster = -1;
2229	count = entry & 0x3;
2230	last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2231	released = 0;
2232	while (entry != last) {
2233		/* make a new buffer if it's still in use */
2234		if (page_count(page[entry]->buffer) > 1) {
2235			cas_page_t *new = cas_page_dequeue(cp);
2236			if (!new) {
2237				/* let the timer know that we need to
2238				 * do this again
2239				 */
2240				cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2241				if (!timer_pending(&cp->link_timer))
2242					mod_timer(&cp->link_timer, jiffies +
2243						  CAS_LINK_FAST_TIMEOUT);
2244				cp->rx_old[ring]  = entry;
2245				cp->rx_last[ring] = num ? num - released : 0;
2246				return -ENOMEM;
2247			}
2248			spin_lock(&cp->rx_inuse_lock);
2249			list_add(&page[entry]->list, &cp->rx_inuse_list);
2250			spin_unlock(&cp->rx_inuse_lock);
2251			cp->init_rxds[ring][entry].buffer =
2252				cpu_to_le64(new->dma_addr);
2253			page[entry] = new;
2254
2255		}
2256
2257		if (++count == 4) {
2258			cluster = entry;
2259			count = 0;
2260		}
2261		released++;
2262		entry = RX_DESC_ENTRY(ring, entry + 1);
2263	}
2264	cp->rx_old[ring] = entry;
2265
2266	if (cluster < 0)
2267		return 0;
2268
2269	if (ring == 0)
2270		writel(cluster, cp->regs + REG_RX_KICK);
2271	else if ((N_RX_DESC_RINGS > 1) &&
2272		 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2273		writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2274	return 0;
2275}
2276
2277
2278/* process a completion ring. packets are set up in three basic ways:
2279 * small packets: should be copied header + data in single buffer.
2280 * large packets: header and data in a single buffer.
2281 * split packets: header in a separate buffer from data.
2282 *                data may be in multiple pages. data may be > 256
2283 *                bytes but in a single page.
2284 *
2285 * NOTE: RX page posting is done in this routine as well. while there's
2286 *       the capability of using multiple RX completion rings, it isn't
2287 *       really worthwhile due to the fact that the page posting will
2288 *       force serialization on the single descriptor ring.
2289 */
2290static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2291{
2292	struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2293	int entry, drops;
2294	int npackets = 0;
2295
2296	netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2297		     "rx[%d] interrupt, done: %d/%d\n",
2298		     ring,
2299		     readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]);
2300
2301	entry = cp->rx_new[ring];
2302	drops = 0;
2303	while (1) {
2304		struct cas_rx_comp *rxc = rxcs + entry;
2305		struct sk_buff *uninitialized_var(skb);
2306		int type, len;
2307		u64 words[4];
2308		int i, dring;
2309
2310		words[0] = le64_to_cpu(rxc->word1);
2311		words[1] = le64_to_cpu(rxc->word2);
2312		words[2] = le64_to_cpu(rxc->word3);
2313		words[3] = le64_to_cpu(rxc->word4);
2314
2315		/* don't touch if still owned by hw */
2316		type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2317		if (type == 0)
2318			break;
2319
2320		/* hw hasn't cleared the zero bit yet */
2321		if (words[3] & RX_COMP4_ZERO) {
2322			break;
2323		}
2324
2325		/* get info on the packet */
2326		if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2327			spin_lock(&cp->stat_lock[ring]);
2328			cp->net_stats[ring].rx_errors++;
2329			if (words[3] & RX_COMP4_LEN_MISMATCH)
2330				cp->net_stats[ring].rx_length_errors++;
2331			if (words[3] & RX_COMP4_BAD)
2332				cp->net_stats[ring].rx_crc_errors++;
2333			spin_unlock(&cp->stat_lock[ring]);
2334
2335			/* We'll just return it to Cassini. */
2336		drop_it:
2337			spin_lock(&cp->stat_lock[ring]);
2338			++cp->net_stats[ring].rx_dropped;
2339			spin_unlock(&cp->stat_lock[ring]);
2340			goto next;
2341		}
2342
2343		len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2344		if (len < 0) {
2345			++drops;
2346			goto drop_it;
2347		}
2348
2349		/* see if it's a flow re-assembly or not. the driver
2350		 * itself handles release back up.
2351		 */
2352		if (RX_DONT_BATCH || (type == 0x2)) {
2353			/* non-reassm: these always get released */
2354			cas_skb_release(skb);
2355		} else {
2356			cas_rx_flow_pkt(cp, words, skb);
2357		}
2358
2359		spin_lock(&cp->stat_lock[ring]);
2360		cp->net_stats[ring].rx_packets++;
2361		cp->net_stats[ring].rx_bytes += len;
2362		spin_unlock(&cp->stat_lock[ring]);
2363
2364	next:
2365		npackets++;
2366
2367		/* should it be released? */
2368		if (words[0] & RX_COMP1_RELEASE_HDR) {
2369			i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2370			dring = CAS_VAL(RX_INDEX_RING, i);
2371			i = CAS_VAL(RX_INDEX_NUM, i);
2372			cas_post_page(cp, dring, i);
2373		}
2374
2375		if (words[0] & RX_COMP1_RELEASE_DATA) {
2376			i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2377			dring = CAS_VAL(RX_INDEX_RING, i);
2378			i = CAS_VAL(RX_INDEX_NUM, i);
2379			cas_post_page(cp, dring, i);
2380		}
2381
2382		if (words[0] & RX_COMP1_RELEASE_NEXT) {
2383			i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2384			dring = CAS_VAL(RX_INDEX_RING, i);
2385			i = CAS_VAL(RX_INDEX_NUM, i);
2386			cas_post_page(cp, dring, i);
2387		}
2388
2389		/* skip to the next entry */
2390		entry = RX_COMP_ENTRY(ring, entry + 1 +
2391				      CAS_VAL(RX_COMP1_SKIP, words[0]));
2392#ifdef USE_NAPI
2393		if (budget && (npackets >= budget))
2394			break;
2395#endif
2396	}
2397	cp->rx_new[ring] = entry;
2398
2399	if (drops)
2400		netdev_info(cp->dev, "Memory squeeze, deferring packet\n");
2401	return npackets;
2402}
2403
2404
2405/* put completion entries back on the ring */
2406static void cas_post_rxcs_ringN(struct net_device *dev,
2407				struct cas *cp, int ring)
2408{
2409	struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2410	int last, entry;
2411
2412	last = cp->rx_cur[ring];
2413	entry = cp->rx_new[ring];
2414	netif_printk(cp, intr, KERN_DEBUG, dev,
2415		     "rxc[%d] interrupt, done: %d/%d\n",
2416		     ring, readl(cp->regs + REG_RX_COMP_HEAD), entry);
2417
2418	/* zero and re-mark descriptors */
2419	while (last != entry) {
2420		cas_rxc_init(rxc + last);
2421		last = RX_COMP_ENTRY(ring, last + 1);
2422	}
2423	cp->rx_cur[ring] = last;
2424
2425	if (ring == 0)
2426		writel(last, cp->regs + REG_RX_COMP_TAIL);
2427	else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2428		writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2429}
2430
2431
2432
2433/* cassini can use all four PCI interrupts for the completion ring.
2434 * rings 3 and 4 are identical
2435 */
2436#if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2437static inline void cas_handle_irqN(struct net_device *dev,
2438				   struct cas *cp, const u32 status,
2439				   const int ring)
2440{
2441	if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2442		cas_post_rxcs_ringN(dev, cp, ring);
2443}
2444
2445static irqreturn_t cas_interruptN(int irq, void *dev_id)
2446{
2447	struct net_device *dev = dev_id;
2448	struct cas *cp = netdev_priv(dev);
2449	unsigned long flags;
2450	int ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2451	u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2452
2453	/* check for shared irq */
2454	if (status == 0)
2455		return IRQ_NONE;
2456
2457	spin_lock_irqsave(&cp->lock, flags);
2458	if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2459#ifdef USE_NAPI
2460		cas_mask_intr(cp);
2461		napi_schedule(&cp->napi);
2462#else
2463		cas_rx_ringN(cp, ring, 0);
2464#endif
2465		status &= ~INTR_RX_DONE_ALT;
2466	}
2467
2468	if (status)
2469		cas_handle_irqN(dev, cp, status, ring);
2470	spin_unlock_irqrestore(&cp->lock, flags);
2471	return IRQ_HANDLED;
2472}
2473#endif
2474
2475#ifdef USE_PCI_INTB
2476/* everything but rx packets */
2477static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2478{
2479	if (status & INTR_RX_BUF_UNAVAIL_1) {
2480		/* Frame arrived, no free RX buffers available.
2481		 * NOTE: we can get this on a link transition. */
2482		cas_post_rxds_ringN(cp, 1, 0);
2483		spin_lock(&cp->stat_lock[1]);
2484		cp->net_stats[1].rx_dropped++;
2485		spin_unlock(&cp->stat_lock[1]);
2486	}
2487
2488	if (status & INTR_RX_BUF_AE_1)
2489		cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2490				    RX_AE_FREEN_VAL(1));
2491
2492	if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2493		cas_post_rxcs_ringN(cp, 1);
2494}
2495
2496/* ring 2 handles a few more events than 3 and 4 */
2497static irqreturn_t cas_interrupt1(int irq, void *dev_id)
2498{
2499	struct net_device *dev = dev_id;
2500	struct cas *cp = netdev_priv(dev);
2501	unsigned long flags;
2502	u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2503
2504	/* check for shared interrupt */
2505	if (status == 0)
2506		return IRQ_NONE;
2507
2508	spin_lock_irqsave(&cp->lock, flags);
2509	if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2510#ifdef USE_NAPI
2511		cas_mask_intr(cp);
2512		napi_schedule(&cp->napi);
2513#else
2514		cas_rx_ringN(cp, 1, 0);
2515#endif
2516		status &= ~INTR_RX_DONE_ALT;
2517	}
2518	if (status)
2519		cas_handle_irq1(cp, status);
2520	spin_unlock_irqrestore(&cp->lock, flags);
2521	return IRQ_HANDLED;
2522}
2523#endif
2524
2525static inline void cas_handle_irq(struct net_device *dev,
2526				  struct cas *cp, const u32 status)
2527{
2528	/* housekeeping interrupts */
2529	if (status & INTR_ERROR_MASK)
2530		cas_abnormal_irq(dev, cp, status);
2531
2532	if (status & INTR_RX_BUF_UNAVAIL) {
2533		/* Frame arrived, no free RX buffers available.
2534		 * NOTE: we can get this on a link transition.
2535		 */
2536		cas_post_rxds_ringN(cp, 0, 0);
2537		spin_lock(&cp->stat_lock[0]);
2538		cp->net_stats[0].rx_dropped++;
2539		spin_unlock(&cp->stat_lock[0]);
2540	} else if (status & INTR_RX_BUF_AE) {
2541		cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2542				    RX_AE_FREEN_VAL(0));
2543	}
2544
2545	if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2546		cas_post_rxcs_ringN(dev, cp, 0);
2547}
2548
2549static irqreturn_t cas_interrupt(int irq, void *dev_id)
2550{
2551	struct net_device *dev = dev_id;
2552	struct cas *cp = netdev_priv(dev);
2553	unsigned long flags;
2554	u32 status = readl(cp->regs + REG_INTR_STATUS);
2555
2556	if (status == 0)
2557		return IRQ_NONE;
2558
2559	spin_lock_irqsave(&cp->lock, flags);
2560	if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2561		cas_tx(dev, cp, status);
2562		status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2563	}
2564
2565	if (status & INTR_RX_DONE) {
2566#ifdef USE_NAPI
2567		cas_mask_intr(cp);
2568		napi_schedule(&cp->napi);
2569#else
2570		cas_rx_ringN(cp, 0, 0);
2571#endif
2572		status &= ~INTR_RX_DONE;
2573	}
2574
2575	if (status)
2576		cas_handle_irq(dev, cp, status);
2577	spin_unlock_irqrestore(&cp->lock, flags);
2578	return IRQ_HANDLED;
2579}
2580
2581
2582#ifdef USE_NAPI
2583static int cas_poll(struct napi_struct *napi, int budget)
2584{
2585	struct cas *cp = container_of(napi, struct cas, napi);
2586	struct net_device *dev = cp->dev;
2587	int i, enable_intr, credits;
2588	u32 status = readl(cp->regs + REG_INTR_STATUS);
2589	unsigned long flags;
2590
2591	spin_lock_irqsave(&cp->lock, flags);
2592	cas_tx(dev, cp, status);
2593	spin_unlock_irqrestore(&cp->lock, flags);
2594
2595	/* NAPI rx packets. we spread the credits across all of the
2596	 * rxc rings
2597	 *
2598	 * to make sure we're fair with the work we loop through each
2599	 * ring N_RX_COMP_RING times with a request of
2600	 * budget / N_RX_COMP_RINGS
2601	 */
2602	enable_intr = 1;
2603	credits = 0;
2604	for (i = 0; i < N_RX_COMP_RINGS; i++) {
2605		int j;
2606		for (j = 0; j < N_RX_COMP_RINGS; j++) {
2607			credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
2608			if (credits >= budget) {
2609				enable_intr = 0;
2610				goto rx_comp;
2611			}
2612		}
2613	}
2614
2615rx_comp:
2616	/* final rx completion */
2617	spin_lock_irqsave(&cp->lock, flags);
2618	if (status)
2619		cas_handle_irq(dev, cp, status);
2620
2621#ifdef USE_PCI_INTB
2622	if (N_RX_COMP_RINGS > 1) {
2623		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2624		if (status)
2625			cas_handle_irq1(dev, cp, status);
2626	}
2627#endif
2628
2629#ifdef USE_PCI_INTC
2630	if (N_RX_COMP_RINGS > 2) {
2631		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2632		if (status)
2633			cas_handle_irqN(dev, cp, status, 2);
2634	}
2635#endif
2636
2637#ifdef USE_PCI_INTD
2638	if (N_RX_COMP_RINGS > 3) {
2639		status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2640		if (status)
2641			cas_handle_irqN(dev, cp, status, 3);
2642	}
2643#endif
2644	spin_unlock_irqrestore(&cp->lock, flags);
2645	if (enable_intr) {
2646		napi_complete(napi);
2647		cas_unmask_intr(cp);
2648	}
2649	return credits;
2650}
2651#endif
2652
2653#ifdef CONFIG_NET_POLL_CONTROLLER
2654static void cas_netpoll(struct net_device *dev)
2655{
2656	struct cas *cp = netdev_priv(dev);
2657
2658	cas_disable_irq(cp, 0);
2659	cas_interrupt(cp->pdev->irq, dev);
2660	cas_enable_irq(cp, 0);
2661
2662#ifdef USE_PCI_INTB
2663	if (N_RX_COMP_RINGS > 1) {
2664		/* cas_interrupt1(); */
2665	}
2666#endif
2667#ifdef USE_PCI_INTC
2668	if (N_RX_COMP_RINGS > 2) {
2669		/* cas_interruptN(); */
2670	}
2671#endif
2672#ifdef USE_PCI_INTD
2673	if (N_RX_COMP_RINGS > 3) {
2674		/* cas_interruptN(); */
2675	}
2676#endif
2677}
2678#endif
2679
2680static void cas_tx_timeout(struct net_device *dev)
2681{
2682	struct cas *cp = netdev_priv(dev);
2683
2684	netdev_err(dev, "transmit timed out, resetting\n");
2685	if (!cp->hw_running) {
2686		netdev_err(dev, "hrm.. hw not running!\n");
2687		return;
2688	}
2689
2690	netdev_err(dev, "MIF_STATE[%08x]\n",
2691		   readl(cp->regs + REG_MIF_STATE_MACHINE));
2692
2693	netdev_err(dev, "MAC_STATE[%08x]\n",
2694		   readl(cp->regs + REG_MAC_STATE_MACHINE));
2695
2696	netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2697		   readl(cp->regs + REG_TX_CFG),
2698		   readl(cp->regs + REG_MAC_TX_STATUS),
2699		   readl(cp->regs + REG_MAC_TX_CFG),
2700		   readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2701		   readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2702		   readl(cp->regs + REG_TX_FIFO_READ_PTR),
2703		   readl(cp->regs + REG_TX_SM_1),
2704		   readl(cp->regs + REG_TX_SM_2));
2705
2706	netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
2707		   readl(cp->regs + REG_RX_CFG),
2708		   readl(cp->regs + REG_MAC_RX_STATUS),
2709		   readl(cp->regs + REG_MAC_RX_CFG));
2710
2711	netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n",
2712		   readl(cp->regs + REG_HP_STATE_MACHINE),
2713		   readl(cp->regs + REG_HP_STATUS0),
2714		   readl(cp->regs + REG_HP_STATUS1),
2715		   readl(cp->regs + REG_HP_STATUS2));
2716
2717#if 1
2718	atomic_inc(&cp->reset_task_pending);
2719	atomic_inc(&cp->reset_task_pending_all);
2720	schedule_work(&cp->reset_task);
2721#else
2722	atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2723	schedule_work(&cp->reset_task);
2724#endif
2725}
2726
2727static inline int cas_intme(int ring, int entry)
2728{
2729	/* Algorithm: IRQ every 1/2 of descriptors. */
2730	if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2731		return 1;
2732	return 0;
2733}
2734
2735
2736static void cas_write_txd(struct cas *cp, int ring, int entry,
2737			  dma_addr_t mapping, int len, u64 ctrl, int last)
2738{
2739	struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2740
2741	ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2742	if (cas_intme(ring, entry))
2743		ctrl |= TX_DESC_INTME;
2744	if (last)
2745		ctrl |= TX_DESC_EOF;
2746	txd->control = cpu_to_le64(ctrl);
2747	txd->buffer = cpu_to_le64(mapping);
2748}
2749
2750static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2751				const int entry)
2752{
2753	return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2754}
2755
2756static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2757				     const int entry, const int tentry)
2758{
2759	cp->tx_tiny_use[ring][tentry].nbufs++;
2760	cp->tx_tiny_use[ring][entry].used = 1;
2761	return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2762}
2763
2764static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2765				    struct sk_buff *skb)
2766{
2767	struct net_device *dev = cp->dev;
2768	int entry, nr_frags, frag, tabort, tentry;
2769	dma_addr_t mapping;
2770	unsigned long flags;
2771	u64 ctrl;
2772	u32 len;
2773
2774	spin_lock_irqsave(&cp->tx_lock[ring], flags);
2775
2776	/* This is a hard error, log it. */
2777	if (TX_BUFFS_AVAIL(cp, ring) <=
2778	    CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2779		netif_stop_queue(dev);
2780		spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2781		netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
2782		return 1;
2783	}
2784
2785	ctrl = 0;
2786	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2787		const u64 csum_start_off = skb_checksum_start_offset(skb);
2788		const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
2789
2790		ctrl =  TX_DESC_CSUM_EN |
2791			CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2792			CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2793	}
2794
2795	entry = cp->tx_new[ring];
2796	cp->tx_skbs[ring][entry] = skb;
2797
2798	nr_frags = skb_shinfo(skb)->nr_frags;
2799	len = skb_headlen(skb);
2800	mapping = pci_map_page(cp->pdev, virt_to_page(skb->data),
2801			       offset_in_page(skb->data), len,
2802			       PCI_DMA_TODEVICE);
2803
2804	tentry = entry;
2805	tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2806	if (unlikely(tabort)) {
2807		/* NOTE: len is always >  tabort */
2808		cas_write_txd(cp, ring, entry, mapping, len - tabort,
2809			      ctrl | TX_DESC_SOF, 0);
2810		entry = TX_DESC_NEXT(ring, entry);
2811
2812		skb_copy_from_linear_data_offset(skb, len - tabort,
2813			      tx_tiny_buf(cp, ring, entry), tabort);
2814		mapping = tx_tiny_map(cp, ring, entry, tentry);
2815		cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2816			      (nr_frags == 0));
2817	} else {
2818		cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2819			      TX_DESC_SOF, (nr_frags == 0));
2820	}
2821	entry = TX_DESC_NEXT(ring, entry);
2822
2823	for (frag = 0; frag < nr_frags; frag++) {
2824		const skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2825
2826		len = skb_frag_size(fragp);
2827		mapping = skb_frag_dma_map(&cp->pdev->dev, fragp, 0, len,
2828					   DMA_TO_DEVICE);
2829
2830		tabort = cas_calc_tabort(cp, fragp->page_offset, len);
2831		if (unlikely(tabort)) {
2832			void *addr;
2833
2834			/* NOTE: len is always > tabort */
2835			cas_write_txd(cp, ring, entry, mapping, len - tabort,
2836				      ctrl, 0);
2837			entry = TX_DESC_NEXT(ring, entry);
2838
2839			addr = cas_page_map(skb_frag_page(fragp));
2840			memcpy(tx_tiny_buf(cp, ring, entry),
2841			       addr + fragp->page_offset + len - tabort,
2842			       tabort);
2843			cas_page_unmap(addr);
2844			mapping = tx_tiny_map(cp, ring, entry, tentry);
2845			len     = tabort;
2846		}
2847
2848		cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2849			      (frag + 1 == nr_frags));
2850		entry = TX_DESC_NEXT(ring, entry);
2851	}
2852
2853	cp->tx_new[ring] = entry;
2854	if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2855		netif_stop_queue(dev);
2856
2857	netif_printk(cp, tx_queued, KERN_DEBUG, dev,
2858		     "tx[%d] queued, slot %d, skblen %d, avail %d\n",
2859		     ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring));
2860	writel(entry, cp->regs + REG_TX_KICKN(ring));
2861	spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2862	return 0;
2863}
2864
2865static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2866{
2867	struct cas *cp = netdev_priv(dev);
2868
2869	/* this is only used as a load-balancing hint, so it doesn't
2870	 * need to be SMP safe
2871	 */
2872	static int ring;
2873
2874	if (skb_padto(skb, cp->min_frame_size))
2875		return NETDEV_TX_OK;
2876
2877	/* XXX: we need some higher-level QoS hooks to steer packets to
2878	 *      individual queues.
2879	 */
2880	if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2881		return NETDEV_TX_BUSY;
2882	return NETDEV_TX_OK;
2883}
2884
2885static void cas_init_tx_dma(struct cas *cp)
2886{
2887	u64 desc_dma = cp->block_dvma;
2888	unsigned long off;
2889	u32 val;
2890	int i;
2891
2892	/* set up tx completion writeback registers. must be 8-byte aligned */
2893#ifdef USE_TX_COMPWB
2894	off = offsetof(struct cas_init_block, tx_compwb);
2895	writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2896	writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2897#endif
2898
2899	/* enable completion writebacks, enable paced mode,
2900	 * disable read pipe, and disable pre-interrupt compwbs
2901	 */
2902	val =   TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2903		TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2904		TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2905		TX_CFG_INTR_COMPWB_DIS;
2906
2907	/* write out tx ring info and tx desc bases */
2908	for (i = 0; i < MAX_TX_RINGS; i++) {
2909		off = (unsigned long) cp->init_txds[i] -
2910			(unsigned long) cp->init_block;
2911
2912		val |= CAS_TX_RINGN_BASE(i);
2913		writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2914		writel((desc_dma + off) & 0xffffffff, cp->regs +
2915		       REG_TX_DBN_LOW(i));
2916		/* don't zero out the kick register here as the system
2917		 * will wedge
2918		 */
2919	}
2920	writel(val, cp->regs + REG_TX_CFG);
2921
2922	/* program max burst sizes. these numbers should be different
2923	 * if doing QoS.
2924	 */
2925#ifdef USE_QOS
2926	writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2927	writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2928	writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2929	writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2930#else
2931	writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2932	writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2933	writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2934	writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2935#endif
2936}
2937
2938/* Must be invoked under cp->lock. */
2939static inline void cas_init_dma(struct cas *cp)
2940{
2941	cas_init_tx_dma(cp);
2942	cas_init_rx_dma(cp);
2943}
2944
2945static void cas_process_mc_list(struct cas *cp)
2946{
2947	u16 hash_table[16];
2948	u32 crc;
2949	struct netdev_hw_addr *ha;
2950	int i = 1;
2951
2952	memset(hash_table, 0, sizeof(hash_table));
2953	netdev_for_each_mc_addr(ha, cp->dev) {
2954		if (i <= CAS_MC_EXACT_MATCH_SIZE) {
2955			/* use the alternate mac address registers for the
2956			 * first 15 multicast addresses
2957			 */
2958			writel((ha->addr[4] << 8) | ha->addr[5],
2959			       cp->regs + REG_MAC_ADDRN(i*3 + 0));
2960			writel((ha->addr[2] << 8) | ha->addr[3],
2961			       cp->regs + REG_MAC_ADDRN(i*3 + 1));
2962			writel((ha->addr[0] << 8) | ha->addr[1],
2963			       cp->regs + REG_MAC_ADDRN(i*3 + 2));
2964			i++;
2965		}
2966		else {
2967			/* use hw hash table for the next series of
2968			 * multicast addresses
2969			 */
2970			crc = ether_crc_le(ETH_ALEN, ha->addr);
2971			crc >>= 24;
2972			hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
2973		}
2974	}
2975	for (i = 0; i < 16; i++)
2976		writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i));
2977}
2978
2979/* Must be invoked under cp->lock. */
2980static u32 cas_setup_multicast(struct cas *cp)
2981{
2982	u32 rxcfg = 0;
2983	int i;
2984
2985	if (cp->dev->flags & IFF_PROMISC) {
2986		rxcfg |= MAC_RX_CFG_PROMISC_EN;
2987
2988	} else if (cp->dev->flags & IFF_ALLMULTI) {
2989	    	for (i=0; i < 16; i++)
2990			writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
2991		rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2992
2993	} else {
2994		cas_process_mc_list(cp);
2995		rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2996	}
2997
2998	return rxcfg;
2999}
3000
3001/* must be invoked under cp->stat_lock[N_TX_RINGS] */
3002static void cas_clear_mac_err(struct cas *cp)
3003{
3004	writel(0, cp->regs + REG_MAC_COLL_NORMAL);
3005	writel(0, cp->regs + REG_MAC_COLL_FIRST);
3006	writel(0, cp->regs + REG_MAC_COLL_EXCESS);
3007	writel(0, cp->regs + REG_MAC_COLL_LATE);
3008	writel(0, cp->regs + REG_MAC_TIMER_DEFER);
3009	writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
3010	writel(0, cp->regs + REG_MAC_RECV_FRAME);
3011	writel(0, cp->regs + REG_MAC_LEN_ERR);
3012	writel(0, cp->regs + REG_MAC_ALIGN_ERR);
3013	writel(0, cp->regs + REG_MAC_FCS_ERR);
3014	writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
3015}
3016
3017
3018static void cas_mac_reset(struct cas *cp)
3019{
3020	int i;
3021
3022	/* do both TX and RX reset */
3023	writel(0x1, cp->regs + REG_MAC_TX_RESET);
3024	writel(0x1, cp->regs + REG_MAC_RX_RESET);
3025
3026	/* wait for TX */
3027	i = STOP_TRIES;
3028	while (i-- > 0) {
3029		if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
3030			break;
3031		udelay(10);
3032	}
3033
3034	/* wait for RX */
3035	i = STOP_TRIES;
3036	while (i-- > 0) {
3037		if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3038			break;
3039		udelay(10);
3040	}
3041
3042	if (readl(cp->regs + REG_MAC_TX_RESET) |
3043	    readl(cp->regs + REG_MAC_RX_RESET))
3044		netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n",
3045			   readl(cp->regs + REG_MAC_TX_RESET),
3046			   readl(cp->regs + REG_MAC_RX_RESET),
3047			   readl(cp->regs + REG_MAC_STATE_MACHINE));
3048}
3049
3050
3051/* Must be invoked under cp->lock. */
3052static void cas_init_mac(struct cas *cp)
3053{
3054	unsigned char *e = &cp->dev->dev_addr[0];
3055	int i;
3056	cas_mac_reset(cp);
3057
3058	/* setup core arbitration weight register */
3059	writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3060
3061	/* XXX Use pci_dma_burst_advice() */
3062#if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3063	/* set the infinite burst register for chips that don't have
3064	 * pci issues.
3065	 */
3066	if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3067		writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3068#endif
3069
3070	writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3071
3072	writel(0x00, cp->regs + REG_MAC_IPG0);
3073	writel(0x08, cp->regs + REG_MAC_IPG1);
3074	writel(0x04, cp->regs + REG_MAC_IPG2);
3075
3076	/* change later for 802.3z */
3077	writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3078
3079	/* min frame + FCS */
3080	writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3081
3082	/* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3083	 * specify the maximum frame size to prevent RX tag errors on
3084	 * oversized frames.
3085	 */
3086	writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3087	       CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3088			(CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3089	       cp->regs + REG_MAC_FRAMESIZE_MAX);
3090
3091	/* NOTE: crc_size is used as a surrogate for half-duplex.
3092	 * workaround saturn half-duplex issue by increasing preamble
3093	 * size to 65 bytes.
3094	 */
3095	if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3096		writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3097	else
3098		writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3099	writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3100	writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3101	writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3102
3103	writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3104
3105	writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3106	writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3107	writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3108	writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3109	writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3110
3111	/* setup mac address in perfect filter array */
3112	for (i = 0; i < 45; i++)
3113		writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3114
3115	writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3116	writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3117	writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3118
3119	writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3120	writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3121	writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3122
3123	cp->mac_rx_cfg = cas_setup_multicast(cp);
3124
3125	spin_lock(&cp->stat_lock[N_TX_RINGS]);
3126	cas_clear_mac_err(cp);
3127	spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3128
3129	/* Setup MAC interrupts.  We want to get all of the interesting
3130	 * counter expiration events, but we do not want to hear about
3131	 * normal rx/tx as the DMA engine tells us that.
3132	 */
3133	writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3134	writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3135
3136	/* Don't enable even the PAUSE interrupts for now, we
3137	 * make no use of those events other than to record them.
3138	 */
3139	writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3140}
3141
3142/* Must be invoked under cp->lock. */
3143static void cas_init_pause_thresholds(struct cas *cp)
3144{
3145	/* Calculate pause thresholds.  Setting the OFF threshold to the
3146	 * full RX fifo size effectively disables PAUSE generation
3147	 */
3148	if (cp->rx_fifo_size <= (2 * 1024)) {
3149		cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3150	} else {
3151		int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3152		if (max_frame * 3 > cp->rx_fifo_size) {
3153			cp->rx_pause_off = 7104;
3154			cp->rx_pause_on  = 960;
3155		} else {
3156			int off = (cp->rx_fifo_size - (max_frame * 2));
3157			int on = off - max_frame;
3158			cp->rx_pause_off = off;
3159			cp->rx_pause_on = on;
3160		}
3161	}
3162}
3163
3164static int cas_vpd_match(const void __iomem *p, const char *str)
3165{
3166	int len = strlen(str) + 1;
3167	int i;
3168
3169	for (i = 0; i < len; i++) {
3170		if (readb(p + i) != str[i])
3171			return 0;
3172	}
3173	return 1;
3174}
3175
3176
3177/* get the mac address by reading the vpd information in the rom.
3178 * also get the phy type and determine if there's an entropy generator.
3179 * NOTE: this is a bit convoluted for the following reasons:
3180 *  1) vpd info has order-dependent mac addresses for multinic cards
3181 *  2) the only way to determine the nic order is to use the slot
3182 *     number.
3183 *  3) fiber cards don't have bridges, so their slot numbers don't
3184 *     mean anything.
3185 *  4) we don't actually know we have a fiber card until after
3186 *     the mac addresses are parsed.
3187 */
3188static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3189			    const int offset)
3190{
3191	void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3192	void __iomem *base, *kstart;
3193	int i, len;
3194	int found = 0;
3195#define VPD_FOUND_MAC        0x01
3196#define VPD_FOUND_PHY        0x02
3197
3198	int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3199	int mac_off  = 0;
3200
3201#if defined(CONFIG_SPARC)
3202	const unsigned char *addr;
3203#endif
3204
3205	/* give us access to the PROM */
3206	writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3207	       cp->regs + REG_BIM_LOCAL_DEV_EN);
3208
3209	/* check for an expansion rom */
3210	if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3211		goto use_random_mac_addr;
3212
3213	/* search for beginning of vpd */
3214	base = NULL;
3215	for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3216		/* check for PCIR */
3217		if ((readb(p + i + 0) == 0x50) &&
3218		    (readb(p + i + 1) == 0x43) &&
3219		    (readb(p + i + 2) == 0x49) &&
3220		    (readb(p + i + 3) == 0x52)) {
3221			base = p + (readb(p + i + 8) |
3222				    (readb(p + i + 9) << 8));
3223			break;
3224		}
3225	}
3226
3227	if (!base || (readb(base) != 0x82))
3228		goto use_random_mac_addr;
3229
3230	i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3231	while (i < EXPANSION_ROM_SIZE) {
3232		if (readb(base + i) != 0x90) /* no vpd found */
3233			goto use_random_mac_addr;
3234
3235		/* found a vpd field */
3236		len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3237
3238		/* extract keywords */
3239		kstart = base + i + 3;
3240		p = kstart;
3241		while ((p - kstart) < len) {
3242			int klen = readb(p + 2);
3243			int j;
3244			char type;
3245
3246			p += 3;
3247
3248			/* look for the following things:
3249			 * -- correct length == 29
3250			 * 3 (type) + 2 (size) +
3251			 * 18 (strlen("local-mac-address") + 1) +
3252			 * 6 (mac addr)
3253			 * -- VPD Instance 'I'
3254			 * -- VPD Type Bytes 'B'
3255			 * -- VPD data length == 6
3256			 * -- property string == local-mac-address
3257			 *
3258			 * -- correct length == 24
3259			 * 3 (type) + 2 (size) +
3260			 * 12 (strlen("entropy-dev") + 1) +
3261			 * 7 (strlen("vms110") + 1)
3262			 * -- VPD Instance 'I'
3263			 * -- VPD Type String 'B'
3264			 * -- VPD data length == 7
3265			 * -- property string == entropy-dev
3266			 *
3267			 * -- correct length == 18
3268			 * 3 (type) + 2 (size) +
3269			 * 9 (strlen("phy-type") + 1) +
3270			 * 4 (strlen("pcs") + 1)
3271			 * -- VPD Instance 'I'
3272			 * -- VPD Type String 'S'
3273			 * -- VPD data length == 4
3274			 * -- property string == phy-type
3275			 *
3276			 * -- correct length == 23
3277			 * 3 (type) + 2 (size) +
3278			 * 14 (strlen("phy-interface") + 1) +
3279			 * 4 (strlen("pcs") + 1)
3280			 * -- VPD Instance 'I'
3281			 * -- VPD Type String 'S'
3282			 * -- VPD data length == 4
3283			 * -- property string == phy-interface
3284			 */
3285			if (readb(p) != 'I')
3286				goto next;
3287
3288			/* finally, check string and length */
3289			type = readb(p + 3);
3290			if (type == 'B') {
3291				if ((klen == 29) && readb(p + 4) == 6 &&
3292				    cas_vpd_match(p + 5,
3293						  "local-mac-address")) {
3294					if (mac_off++ > offset)
3295						goto next;
3296
3297					/* set mac address */
3298					for (j = 0; j < 6; j++)
3299						dev_addr[j] =
3300							readb(p + 23 + j);
3301					goto found_mac;
3302				}
3303			}
3304
3305			if (type != 'S')
3306				goto next;
3307
3308#ifdef USE_ENTROPY_DEV
3309			if ((klen == 24) &&
3310			    cas_vpd_match(p + 5, "entropy-dev") &&
3311			    cas_vpd_match(p + 17, "vms110")) {
3312				cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3313				goto next;
3314			}
3315#endif
3316
3317			if (found & VPD_FOUND_PHY)
3318				goto next;
3319
3320			if ((klen == 18) && readb(p + 4) == 4 &&
3321			    cas_vpd_match(p + 5, "phy-type")) {
3322				if (cas_vpd_match(p + 14, "pcs")) {
3323					phy_type = CAS_PHY_SERDES;
3324					goto found_phy;
3325				}
3326			}
3327
3328			if ((klen == 23) && readb(p + 4) == 4 &&
3329			    cas_vpd_match(p + 5, "phy-interface")) {
3330				if (cas_vpd_match(p + 19, "pcs")) {
3331					phy_type = CAS_PHY_SERDES;
3332					goto found_phy;
3333				}
3334			}
3335found_mac:
3336			found |= VPD_FOUND_MAC;
3337			goto next;
3338
3339found_phy:
3340			found |= VPD_FOUND_PHY;
3341
3342next:
3343			p += klen;
3344		}
3345		i += len + 3;
3346	}
3347
3348use_random_mac_addr:
3349	if (found & VPD_FOUND_MAC)
3350		goto done;
3351
3352#if defined(CONFIG_SPARC)
3353	addr = of_get_property(cp->of_node, "local-mac-address", NULL);
3354	if (addr != NULL) {
3355		memcpy(dev_addr, addr, ETH_ALEN);
3356		goto done;
3357	}
3358#endif
3359
3360	/* Sun MAC prefix then 3 random bytes. */
3361	pr_info("MAC address not found in ROM VPD\n");
3362	dev_addr[0] = 0x08;
3363	dev_addr[1] = 0x00;
3364	dev_addr[2] = 0x20;
3365	get_random_bytes(dev_addr + 3, 3);
3366
3367done:
3368	writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3369	return phy_type;
3370}
3371
3372/* check pci invariants */
3373static void cas_check_pci_invariants(struct cas *cp)
3374{
3375	struct pci_dev *pdev = cp->pdev;
3376
3377	cp->cas_flags = 0;
3378	if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3379	    (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3380		if (pdev->revision >= CAS_ID_REVPLUS)
3381			cp->cas_flags |= CAS_FLAG_REG_PLUS;
3382		if (pdev->revision < CAS_ID_REVPLUS02u)
3383			cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3384
3385		/* Original Cassini supports HW CSUM, but it's not
3386		 * enabled by default as it can trigger TX hangs.
3387		 */
3388		if (pdev->revision < CAS_ID_REV2)
3389			cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3390	} else {
3391		/* Only sun has original cassini chips.  */
3392		cp->cas_flags |= CAS_FLAG_REG_PLUS;
3393
3394		/* We use a flag because the same phy might be externally
3395		 * connected.
3396		 */
3397		if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3398		    (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3399			cp->cas_flags |= CAS_FLAG_SATURN;
3400	}
3401}
3402
3403
3404static int cas_check_invariants(struct cas *cp)
3405{
3406	struct pci_dev *pdev = cp->pdev;
3407	u32 cfg;
3408	int i;
3409
3410	/* get page size for rx buffers. */
3411	cp->page_order = 0;
3412#ifdef USE_PAGE_ORDER
3413	if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3414		/* see if we can allocate larger pages */
3415		struct page *page = alloc_pages(GFP_ATOMIC,
3416						CAS_JUMBO_PAGE_SHIFT -
3417						PAGE_SHIFT);
3418		if (page) {
3419			__free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3420			cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3421		} else {
3422			printk("MTU limited to %d bytes\n", CAS_MAX_MTU);
3423		}
3424	}
3425#endif
3426	cp->page_size = (PAGE_SIZE << cp->page_order);
3427
3428	/* Fetch the FIFO configurations. */
3429	cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3430	cp->rx_fifo_size = RX_FIFO_SIZE;
3431
3432	/* finish phy determination. MDIO1 takes precedence over MDIO0 if
3433	 * they're both connected.
3434	 */
3435	cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr,
3436					PCI_SLOT(pdev->devfn));
3437	if (cp->phy_type & CAS_PHY_SERDES) {
3438		cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3439		return 0; /* no more checking needed */
3440	}
3441
3442	/* MII */
3443	cfg = readl(cp->regs + REG_MIF_CFG);
3444	if (cfg & MIF_CFG_MDIO_1) {
3445		cp->phy_type = CAS_PHY_MII_MDIO1;
3446	} else if (cfg & MIF_CFG_MDIO_0) {
3447		cp->phy_type = CAS_PHY_MII_MDIO0;
3448	}
3449
3450	cas_mif_poll(cp, 0);
3451	writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3452
3453	for (i = 0; i < 32; i++) {
3454		u32 phy_id;
3455		int j;
3456
3457		for (j = 0; j < 3; j++) {
3458			cp->phy_addr = i;
3459			phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3460			phy_id |= cas_phy_read(cp, MII_PHYSID2);
3461			if (phy_id && (phy_id != 0xFFFFFFFF)) {
3462				cp->phy_id = phy_id;
3463				goto done;
3464			}
3465		}
3466	}
3467	pr_err("MII phy did not respond [%08x]\n",
3468	       readl(cp->regs + REG_MIF_STATE_MACHINE));
3469	return -1;
3470
3471done:
3472	/* see if we can do gigabit */
3473	cfg = cas_phy_read(cp, MII_BMSR);
3474	if ((cfg & CAS_BMSR_1000_EXTEND) &&
3475	    cas_phy_read(cp, CAS_MII_1000_EXTEND))
3476		cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3477	return 0;
3478}
3479
3480/* Must be invoked under cp->lock. */
3481static inline void cas_start_dma(struct cas *cp)
3482{
3483	int i;
3484	u32 val;
3485	int txfailed = 0;
3486
3487	/* enable dma */
3488	val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3489	writel(val, cp->regs + REG_TX_CFG);
3490	val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3491	writel(val, cp->regs + REG_RX_CFG);
3492
3493	/* enable the mac */
3494	val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3495	writel(val, cp->regs + REG_MAC_TX_CFG);
3496	val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3497	writel(val, cp->regs + REG_MAC_RX_CFG);
3498
3499	i = STOP_TRIES;
3500	while (i-- > 0) {
3501		val = readl(cp->regs + REG_MAC_TX_CFG);
3502		if ((val & MAC_TX_CFG_EN))
3503			break;
3504		udelay(10);
3505	}
3506	if (i < 0) txfailed = 1;
3507	i = STOP_TRIES;
3508	while (i-- > 0) {
3509		val = readl(cp->regs + REG_MAC_RX_CFG);
3510		if ((val & MAC_RX_CFG_EN)) {
3511			if (txfailed) {
3512				netdev_err(cp->dev,
3513					   "enabling mac failed [tx:%08x:%08x]\n",
3514					   readl(cp->regs + REG_MIF_STATE_MACHINE),
3515					   readl(cp->regs + REG_MAC_STATE_MACHINE));
3516			}
3517			goto enable_rx_done;
3518		}
3519		udelay(10);
3520	}
3521	netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n",
3522		   (txfailed ? "tx,rx" : "rx"),
3523		   readl(cp->regs + REG_MIF_STATE_MACHINE),
3524		   readl(cp->regs + REG_MAC_STATE_MACHINE));
3525
3526enable_rx_done:
3527	cas_unmask_intr(cp); /* enable interrupts */
3528	writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3529	writel(0, cp->regs + REG_RX_COMP_TAIL);
3530
3531	if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3532		if (N_RX_DESC_RINGS > 1)
3533			writel(RX_DESC_RINGN_SIZE(1) - 4,
3534			       cp->regs + REG_PLUS_RX_KICK1);
3535
3536		for (i = 1; i < N_RX_COMP_RINGS; i++)
3537			writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
3538	}
3539}
3540
3541/* Must be invoked under cp->lock. */
3542static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3543				   int *pause)
3544{
3545	u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3546	*fd     = (val & PCS_MII_LPA_FD) ? 1 : 0;
3547	*pause  = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3548	if (val & PCS_MII_LPA_ASYM_PAUSE)
3549		*pause |= 0x10;
3550	*spd = 1000;
3551}
3552
3553/* Must be invoked under cp->lock. */
3554static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3555				   int *pause)
3556{
3557	u32 val;
3558
3559	*fd = 0;
3560	*spd = 10;
3561	*pause = 0;
3562
3563	/* use GMII registers */
3564	val = cas_phy_read(cp, MII_LPA);
3565	if (val & CAS_LPA_PAUSE)
3566		*pause = 0x01;
3567
3568	if (val & CAS_LPA_ASYM_PAUSE)
3569		*pause |= 0x10;
3570
3571	if (val & LPA_DUPLEX)
3572		*fd = 1;
3573	if (val & LPA_100)
3574		*spd = 100;
3575
3576	if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3577		val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3578		if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3579			*spd = 1000;
3580		if (val & CAS_LPA_1000FULL)
3581			*fd = 1;
3582	}
3583}
3584
3585/* A link-up condition has occurred, initialize and enable the
3586 * rest of the chip.
3587 *
3588 * Must be invoked under cp->lock.
3589 */
3590static void cas_set_link_modes(struct cas *cp)
3591{
3592	u32 val;
3593	int full_duplex, speed, pause;
3594
3595	full_duplex = 0;
3596	speed = 10;
3597	pause = 0;
3598
3599	if (CAS_PHY_MII(cp->phy_type)) {
3600		cas_mif_poll(cp, 0);
3601		val = cas_phy_read(cp, MII_BMCR);
3602		if (val & BMCR_ANENABLE) {
3603			cas_read_mii_link_mode(cp, &full_duplex, &speed,
3604					       &pause);
3605		} else {
3606			if (val & BMCR_FULLDPLX)
3607				full_duplex = 1;
3608
3609			if (val & BMCR_SPEED100)
3610				speed = 100;
3611			else if (val & CAS_BMCR_SPEED1000)
3612				speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3613					1000 : 100;
3614		}
3615		cas_mif_poll(cp, 1);
3616
3617	} else {
3618		val = readl(cp->regs + REG_PCS_MII_CTRL);
3619		cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3620		if ((val & PCS_MII_AUTONEG_EN) == 0) {
3621			if (val & PCS_MII_CTRL_DUPLEX)
3622				full_duplex = 1;
3623		}
3624	}
3625
3626	netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n",
3627		   speed, full_duplex ? "full" : "half");
3628
3629	val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3630	if (CAS_PHY_MII(cp->phy_type)) {
3631		val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3632		if (!full_duplex)
3633			val |= MAC_XIF_DISABLE_ECHO;
3634	}
3635	if (full_duplex)
3636		val |= MAC_XIF_FDPLX_LED;
3637	if (speed == 1000)
3638		val |= MAC_XIF_GMII_MODE;
3639	writel(val, cp->regs + REG_MAC_XIF_CFG);
3640
3641	/* deal with carrier and collision detect. */
3642	val = MAC_TX_CFG_IPG_EN;
3643	if (full_duplex) {
3644		val |= MAC_TX_CFG_IGNORE_CARRIER;
3645		val |= MAC_TX_CFG_IGNORE_COLL;
3646	} else {
3647#ifndef USE_CSMA_CD_PROTO
3648		val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3649		val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3650#endif
3651	}
3652	/* val now set up for REG_MAC_TX_CFG */
3653
3654	/* If gigabit and half-duplex, enable carrier extension
3655	 * mode.  increase slot time to 512 bytes as well.
3656	 * else, disable it and make sure slot time is 64 bytes.
3657	 * also activate checksum bug workaround
3658	 */
3659	if ((speed == 1000) && !full_duplex) {
3660		writel(val | MAC_TX_CFG_CARRIER_EXTEND,
3661		       cp->regs + REG_MAC_TX_CFG);
3662
3663		val = readl(cp->regs + REG_MAC_RX_CFG);
3664		val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3665		writel(val | MAC_RX_CFG_CARRIER_EXTEND,
3666		       cp->regs + REG_MAC_RX_CFG);
3667
3668		writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3669
3670		cp->crc_size = 4;
3671		/* minimum size gigabit frame at half duplex */
3672		cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3673
3674	} else {
3675		writel(val, cp->regs + REG_MAC_TX_CFG);
3676
3677		/* checksum bug workaround. don't strip FCS when in
3678		 * half-duplex mode
3679		 */
3680		val = readl(cp->regs + REG_MAC_RX_CFG);
3681		if (full_duplex) {
3682			val |= MAC_RX_CFG_STRIP_FCS;
3683			cp->crc_size = 0;
3684			cp->min_frame_size = CAS_MIN_MTU;
3685		} else {
3686			val &= ~MAC_RX_CFG_STRIP_FCS;
3687			cp->crc_size = 4;
3688			cp->min_frame_size = CAS_MIN_FRAME;
3689		}
3690		writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
3691		       cp->regs + REG_MAC_RX_CFG);
3692		writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3693	}
3694
3695	if (netif_msg_link(cp)) {
3696		if (pause & 0x01) {
3697			netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
3698				    cp->rx_fifo_size,
3699				    cp->rx_pause_off,
3700				    cp->rx_pause_on);
3701		} else if (pause & 0x10) {
3702			netdev_info(cp->dev, "TX pause enabled\n");
3703		} else {
3704			netdev_info(cp->dev, "Pause is disabled\n");
3705		}
3706	}
3707
3708	val = readl(cp->regs + REG_MAC_CTRL_CFG);
3709	val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3710	if (pause) { /* symmetric or asymmetric pause */
3711		val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3712		if (pause & 0x01) { /* symmetric pause */
3713			val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3714		}
3715	}
3716	writel(val, cp->regs + REG_MAC_CTRL_CFG);
3717	cas_start_dma(cp);
3718}
3719
3720/* Must be invoked under cp->lock. */
3721static void cas_init_hw(struct cas *cp, int restart_link)
3722{
3723	if (restart_link)
3724		cas_phy_init(cp);
3725
3726	cas_init_pause_thresholds(cp);
3727	cas_init_mac(cp);
3728	cas_init_dma(cp);
3729
3730	if (restart_link) {
3731		/* Default aneg parameters */
3732		cp->timer_ticks = 0;
3733		cas_begin_auto_negotiation(cp, NULL);
3734	} else if (cp->lstate == link_up) {
3735		cas_set_link_modes(cp);
3736		netif_carrier_on(cp->dev);
3737	}
3738}
3739
3740/* Must be invoked under cp->lock. on earlier cassini boards,
3741 * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3742 * let it settle out, and then restore pci state.
3743 */
3744static void cas_hard_reset(struct cas *cp)
3745{
3746	writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3747	udelay(20);
3748	pci_restore_state(cp->pdev);
3749}
3750
3751
3752static void cas_global_reset(struct cas *cp, int blkflag)
3753{
3754	int limit;
3755
3756	/* issue a global reset. don't use RSTOUT. */
3757	if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3758		/* For PCS, when the blkflag is set, we should set the
3759		 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3760		 * the last autonegotiation from being cleared.  We'll
3761		 * need some special handling if the chip is set into a
3762		 * loopback mode.
3763		 */
3764		writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
3765		       cp->regs + REG_SW_RESET);
3766	} else {
3767		writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3768	}
3769
3770	/* need to wait at least 3ms before polling register */
3771	mdelay(3);
3772
3773	limit = STOP_TRIES;
3774	while (limit-- > 0) {
3775		u32 val = readl(cp->regs + REG_SW_RESET);
3776		if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3777			goto done;
3778		udelay(10);
3779	}
3780	netdev_err(cp->dev, "sw reset failed\n");
3781
3782done:
3783	/* enable various BIM interrupts */
3784	writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
3785	       BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3786
3787	/* clear out pci error status mask for handled errors.
3788	 * we don't deal with DMA counter overflows as they happen
3789	 * all the time.
3790	 */
3791	writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3792			       PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3793			       PCI_ERR_BIM_DMA_READ), cp->regs +
3794	       REG_PCI_ERR_STATUS_MASK);
3795
3796	/* set up for MII by default to address mac rx reset timeout
3797	 * issue
3798	 */
3799	writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3800}
3801
3802static void cas_reset(struct cas *cp, int blkflag)
3803{
3804	u32 val;
3805
3806	cas_mask_intr(cp);
3807	cas_global_reset(cp, blkflag);
3808	cas_mac_reset(cp);
3809	cas_entropy_reset(cp);
3810
3811	/* disable dma engines. */
3812	val = readl(cp->regs + REG_TX_CFG);
3813	val &= ~TX_CFG_DMA_EN;
3814	writel(val, cp->regs + REG_TX_CFG);
3815
3816	val = readl(cp->regs + REG_RX_CFG);
3817	val &= ~RX_CFG_DMA_EN;
3818	writel(val, cp->regs + REG_RX_CFG);
3819
3820	/* program header parser */
3821	if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3822	    (CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
3823		cas_load_firmware(cp, CAS_HP_FIRMWARE);
3824	} else {
3825		cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3826	}
3827
3828	/* clear out error registers */
3829	spin_lock(&cp->stat_lock[N_TX_RINGS]);
3830	cas_clear_mac_err(cp);
3831	spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3832}
3833
3834/* Shut down the chip, must be called with pm_mutex held.  */
3835static void cas_shutdown(struct cas *cp)
3836{
3837	unsigned long flags;
3838
3839	/* Make us not-running to avoid timers respawning */
3840	cp->hw_running = 0;
3841
3842	del_timer_sync(&cp->link_timer);
3843
3844	/* Stop the reset task */
3845#if 0
3846	while (atomic_read(&cp->reset_task_pending_mtu) ||
3847	       atomic_read(&cp->reset_task_pending_spare) ||
3848	       atomic_read(&cp->reset_task_pending_all))
3849		schedule();
3850
3851#else
3852	while (atomic_read(&cp->reset_task_pending))
3853		schedule();
3854#endif
3855	/* Actually stop the chip */
3856	cas_lock_all_save(cp, flags);
3857	cas_reset(cp, 0);
3858	if (cp->cas_flags & CAS_FLAG_SATURN)
3859		cas_phy_powerdown(cp);
3860	cas_unlock_all_restore(cp, flags);
3861}
3862
3863static int cas_change_mtu(struct net_device *dev, int new_mtu)
3864{
3865	struct cas *cp = netdev_priv(dev);
3866
3867	if (new_mtu < CAS_MIN_MTU || new_mtu > CAS_MAX_MTU)
3868		return -EINVAL;
3869
3870	dev->mtu = new_mtu;
3871	if (!netif_running(dev) || !netif_device_present(dev))
3872		return 0;
3873
3874	/* let the reset task handle it */
3875#if 1
3876	atomic_inc(&cp->reset_task_pending);
3877	if ((cp->phy_type & CAS_PHY_SERDES)) {
3878		atomic_inc(&cp->reset_task_pending_all);
3879	} else {
3880		atomic_inc(&cp->reset_task_pending_mtu);
3881	}
3882	schedule_work(&cp->reset_task);
3883#else
3884	atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
3885		   CAS_RESET_ALL : CAS_RESET_MTU);
3886	pr_err("reset called in cas_change_mtu\n");
3887	schedule_work(&cp->reset_task);
3888#endif
3889
3890	flush_work(&cp->reset_task);
3891	return 0;
3892}
3893
3894static void cas_clean_txd(struct cas *cp, int ring)
3895{
3896	struct cas_tx_desc *txd = cp->init_txds[ring];
3897	struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3898	u64 daddr, dlen;
3899	int i, size;
3900
3901	size = TX_DESC_RINGN_SIZE(ring);
3902	for (i = 0; i < size; i++) {
3903		int frag;
3904
3905		if (skbs[i] == NULL)
3906			continue;
3907
3908		skb = skbs[i];
3909		skbs[i] = NULL;
3910
3911		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags;  frag++) {
3912			int ent = i & (size - 1);
3913
3914			/* first buffer is never a tiny buffer and so
3915			 * needs to be unmapped.
3916			 */
3917			daddr = le64_to_cpu(txd[ent].buffer);
3918			dlen  =  CAS_VAL(TX_DESC_BUFLEN,
3919					 le64_to_cpu(txd[ent].control));
3920			pci_unmap_page(cp->pdev, daddr, dlen,
3921				       PCI_DMA_TODEVICE);
3922
3923			if (frag != skb_shinfo(skb)->nr_frags) {
3924				i++;
3925
3926				/* next buffer might by a tiny buffer.
3927				 * skip past it.
3928				 */
3929				ent = i & (size - 1);
3930				if (cp->tx_tiny_use[ring][ent].used)
3931					i++;
3932			}
3933		}
3934		dev_kfree_skb_any(skb);
3935	}
3936
3937	/* zero out tiny buf usage */
3938	memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
3939}
3940
3941/* freed on close */
3942static inline void cas_free_rx_desc(struct cas *cp, int ring)
3943{
3944	cas_page_t **page = cp->rx_pages[ring];
3945	int i, size;
3946
3947	size = RX_DESC_RINGN_SIZE(ring);
3948	for (i = 0; i < size; i++) {
3949		if (page[i]) {
3950			cas_page_free(cp, page[i]);
3951			page[i] = NULL;
3952		}
3953	}
3954}
3955
3956static void cas_free_rxds(struct cas *cp)
3957{
3958	int i;
3959
3960	for (i = 0; i < N_RX_DESC_RINGS; i++)
3961		cas_free_rx_desc(cp, i);
3962}
3963
3964/* Must be invoked under cp->lock. */
3965static void cas_clean_rings(struct cas *cp)
3966{
3967	int i;
3968
3969	/* need to clean all tx rings */
3970	memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
3971	memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
3972	for (i = 0; i < N_TX_RINGS; i++)
3973		cas_clean_txd(cp, i);
3974
3975	/* zero out init block */
3976	memset(cp->init_block, 0, sizeof(struct cas_init_block));
3977	cas_clean_rxds(cp);
3978	cas_clean_rxcs(cp);
3979}
3980
3981/* allocated on open */
3982static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
3983{
3984	cas_page_t **page = cp->rx_pages[ring];
3985	int size, i = 0;
3986
3987	size = RX_DESC_RINGN_SIZE(ring);
3988	for (i = 0; i < size; i++) {
3989		if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
3990			return -1;
3991	}
3992	return 0;
3993}
3994
3995static int cas_alloc_rxds(struct cas *cp)
3996{
3997	int i;
3998
3999	for (i = 0; i < N_RX_DESC_RINGS; i++) {
4000		if (cas_alloc_rx_desc(cp, i) < 0) {
4001			cas_free_rxds(cp);
4002			return -1;
4003		}
4004	}
4005	return 0;
4006}
4007
4008static void cas_reset_task(struct work_struct *work)
4009{
4010	struct cas *cp = container_of(work, struct cas, reset_task);
4011#if 0
4012	int pending = atomic_read(&cp->reset_task_pending);
4013#else
4014	int pending_all = atomic_read(&cp->reset_task_pending_all);
4015	int pending_spare = atomic_read(&cp->reset_task_pending_spare);
4016	int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
4017
4018	if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
4019		/* We can have more tasks scheduled than actually
4020		 * needed.
4021		 */
4022		atomic_dec(&cp->reset_task_pending);
4023		return;
4024	}
4025#endif
4026	/* The link went down, we reset the ring, but keep
4027	 * DMA stopped. Use this function for reset
4028	 * on error as well.
4029	 */
4030	if (cp->hw_running) {
4031		unsigned long flags;
4032
4033		/* Make sure we don't get interrupts or tx packets */
4034		netif_device_detach(cp->dev);
4035		cas_lock_all_save(cp, flags);
4036
4037		if (cp->opened) {
4038			/* We call cas_spare_recover when we call cas_open.
4039			 * but we do not initialize the lists cas_spare_recover
4040			 * uses until cas_open is called.
4041			 */
4042			cas_spare_recover(cp, GFP_ATOMIC);
4043		}
4044#if 1
4045		/* test => only pending_spare set */
4046		if (!pending_all && !pending_mtu)
4047			goto done;
4048#else
4049		if (pending == CAS_RESET_SPARE)
4050			goto done;
4051#endif
4052		/* when pending == CAS_RESET_ALL, the following
4053		 * call to cas_init_hw will restart auto negotiation.
4054		 * Setting the second argument of cas_reset to
4055		 * !(pending == CAS_RESET_ALL) will set this argument
4056		 * to 1 (avoiding reinitializing the PHY for the normal
4057		 * PCS case) when auto negotiation is not restarted.
4058		 */
4059#if 1
4060		cas_reset(cp, !(pending_all > 0));
4061		if (cp->opened)
4062			cas_clean_rings(cp);
4063		cas_init_hw(cp, (pending_all > 0));
4064#else
4065		cas_reset(cp, !(pending == CAS_RESET_ALL));
4066		if (cp->opened)
4067			cas_clean_rings(cp);
4068		cas_init_hw(cp, pending == CAS_RESET_ALL);
4069#endif
4070
4071done:
4072		cas_unlock_all_restore(cp, flags);
4073		netif_device_attach(cp->dev);
4074	}
4075#if 1
4076	atomic_sub(pending_all, &cp->reset_task_pending_all);
4077	atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4078	atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4079	atomic_dec(&cp->reset_task_pending);
4080#else
4081	atomic_set(&cp->reset_task_pending, 0);
4082#endif
4083}
4084
4085static void cas_link_timer(unsigned long data)
4086{
4087	struct cas *cp = (struct cas *) data;
4088	int mask, pending = 0, reset = 0;
4089	unsigned long flags;
4090
4091	if (link_transition_timeout != 0 &&
4092	    cp->link_transition_jiffies_valid &&
4093	    ((jiffies - cp->link_transition_jiffies) >
4094	      (link_transition_timeout))) {
4095		/* One-second counter so link-down workaround doesn't
4096		 * cause resets to occur so fast as to fool the switch
4097		 * into thinking the link is down.
4098		 */
4099		cp->link_transition_jiffies_valid = 0;
4100	}
4101
4102	if (!cp->hw_running)
4103		return;
4104
4105	spin_lock_irqsave(&cp->lock, flags);
4106	cas_lock_tx(cp);
4107	cas_entropy_gather(cp);
4108
4109	/* If the link task is still pending, we just
4110	 * reschedule the link timer
4111	 */
4112#if 1
4113	if (atomic_read(&cp->reset_task_pending_all) ||
4114	    atomic_read(&cp->reset_task_pending_spare) ||
4115	    atomic_read(&cp->reset_task_pending_mtu))
4116		goto done;
4117#else
4118	if (atomic_read(&cp->reset_task_pending))
4119		goto done;
4120#endif
4121
4122	/* check for rx cleaning */
4123	if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4124		int i, rmask;
4125
4126		for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4127			rmask = CAS_FLAG_RXD_POST(i);
4128			if ((mask & rmask) == 0)
4129				continue;
4130
4131			/* post_rxds will do a mod_timer */
4132			if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4133				pending = 1;
4134				continue;
4135			}
4136			cp->cas_flags &= ~rmask;
4137		}
4138	}
4139
4140	if (CAS_PHY_MII(cp->phy_type)) {
4141		u16 bmsr;
4142		cas_mif_poll(cp, 0);
4143		bmsr = cas_phy_read(cp, MII_BMSR);
4144		/* WTZ: Solaris driver reads this twice, but that
4145		 * may be due to the PCS case and the use of a
4146		 * common implementation. Read it twice here to be
4147		 * safe.
4148		 */
4149		bmsr = cas_phy_read(cp, MII_BMSR);
4150		cas_mif_poll(cp, 1);
4151		readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4152		reset = cas_mii_link_check(cp, bmsr);
4153	} else {
4154		reset = cas_pcs_link_check(cp);
4155	}
4156
4157	if (reset)
4158		goto done;
4159
4160	/* check for tx state machine confusion */
4161	if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4162		u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4163		u32 wptr, rptr;
4164		int tlm  = CAS_VAL(MAC_SM_TLM, val);
4165
4166		if (((tlm == 0x5) || (tlm == 0x3)) &&
4167		    (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4168			netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4169				     "tx err: MAC_STATE[%08x]\n", val);
4170			reset = 1;
4171			goto done;
4172		}
4173
4174		val  = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4175		wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4176		rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4177		if ((val == 0) && (wptr != rptr)) {
4178			netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4179				     "tx err: TX_FIFO[%08x:%08x:%08x]\n",
4180				     val, wptr, rptr);
4181			reset = 1;
4182		}
4183
4184		if (reset)
4185			cas_hard_reset(cp);
4186	}
4187
4188done:
4189	if (reset) {
4190#if 1
4191		atomic_inc(&cp->reset_task_pending);
4192		atomic_inc(&cp->reset_task_pending_all);
4193		schedule_work(&cp->reset_task);
4194#else
4195		atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4196		pr_err("reset called in cas_link_timer\n");
4197		schedule_work(&cp->reset_task);
4198#endif
4199	}
4200
4201	if (!pending)
4202		mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4203	cas_unlock_tx(cp);
4204	spin_unlock_irqrestore(&cp->lock, flags);
4205}
4206
4207/* tiny buffers are used to avoid target abort issues with
4208 * older cassini's
4209 */
4210static void cas_tx_tiny_free(struct cas *cp)
4211{
4212	struct pci_dev *pdev = cp->pdev;
4213	int i;
4214
4215	for (i = 0; i < N_TX_RINGS; i++) {
4216		if (!cp->tx_tiny_bufs[i])
4217			continue;
4218
4219		pci_free_consistent(pdev, TX_TINY_BUF_BLOCK,
4220				    cp->tx_tiny_bufs[i],
4221				    cp->tx_tiny_dvma[i]);
4222		cp->tx_tiny_bufs[i] = NULL;
4223	}
4224}
4225
4226static int cas_tx_tiny_alloc(struct cas *cp)
4227{
4228	struct pci_dev *pdev = cp->pdev;
4229	int i;
4230
4231	for (i = 0; i < N_TX_RINGS; i++) {
4232		cp->tx_tiny_bufs[i] =
4233			pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK,
4234					     &cp->tx_tiny_dvma[i]);
4235		if (!cp->tx_tiny_bufs[i]) {
4236			cas_tx_tiny_free(cp);
4237			return -1;
4238		}
4239	}
4240	return 0;
4241}
4242
4243
4244static int cas_open(struct net_device *dev)
4245{
4246	struct cas *cp = netdev_priv(dev);
4247	int hw_was_up, err;
4248	unsigned long flags;
4249
4250	mutex_lock(&cp->pm_mutex);
4251
4252	hw_was_up = cp->hw_running;
4253
4254	/* The power-management mutex protects the hw_running
4255	 * etc. state so it is safe to do this bit without cp->lock
4256	 */
4257	if (!cp->hw_running) {
4258		/* Reset the chip */
4259		cas_lock_all_save(cp, flags);
4260		/* We set the second arg to cas_reset to zero
4261		 * because cas_init_hw below will have its second
4262		 * argument set to non-zero, which will force
4263		 * autonegotiation to start.
4264		 */
4265		cas_reset(cp, 0);
4266		cp->hw_running = 1;
4267		cas_unlock_all_restore(cp, flags);
4268	}
4269
4270	err = -ENOMEM;
4271	if (cas_tx_tiny_alloc(cp) < 0)
4272		goto err_unlock;
4273
4274	/* alloc rx descriptors */
4275	if (cas_alloc_rxds(cp) < 0)
4276		goto err_tx_tiny;
4277
4278	/* allocate spares */
4279	cas_spare_init(cp);
4280	cas_spare_recover(cp, GFP_KERNEL);
4281
4282	/* We can now request the interrupt as we know it's masked
4283	 * on the controller. cassini+ has up to 4 interrupts
4284	 * that can be used, but you need to do explicit pci interrupt
4285	 * mapping to expose them
4286	 */
4287	if (request_irq(cp->pdev->irq, cas_interrupt,
4288			IRQF_SHARED, dev->name, (void *) dev)) {
4289		netdev_err(cp->dev, "failed to request irq !\n");
4290		err = -EAGAIN;
4291		goto err_spare;
4292	}
4293
4294#ifdef USE_NAPI
4295	napi_enable(&cp->napi);
4296#endif
4297	/* init hw */
4298	cas_lock_all_save(cp, flags);
4299	cas_clean_rings(cp);
4300	cas_init_hw(cp, !hw_was_up);
4301	cp->opened = 1;
4302	cas_unlock_all_restore(cp, flags);
4303
4304	netif_start_queue(dev);
4305	mutex_unlock(&cp->pm_mutex);
4306	return 0;
4307
4308err_spare:
4309	cas_spare_free(cp);
4310	cas_free_rxds(cp);
4311err_tx_tiny:
4312	cas_tx_tiny_free(cp);
4313err_unlock:
4314	mutex_unlock(&cp->pm_mutex);
4315	return err;
4316}
4317
4318static int cas_close(struct net_device *dev)
4319{
4320	unsigned long flags;
4321	struct cas *cp = netdev_priv(dev);
4322
4323#ifdef USE_NAPI
4324	napi_disable(&cp->napi);
4325#endif
4326	/* Make sure we don't get distracted by suspend/resume */
4327	mutex_lock(&cp->pm_mutex);
4328
4329	netif_stop_queue(dev);
4330
4331	/* Stop traffic, mark us closed */
4332	cas_lock_all_save(cp, flags);
4333	cp->opened = 0;
4334	cas_reset(cp, 0);
4335	cas_phy_init(cp);
4336	cas_begin_auto_negotiation(cp, NULL);
4337	cas_clean_rings(cp);
4338	cas_unlock_all_restore(cp, flags);
4339
4340	free_irq(cp->pdev->irq, (void *) dev);
4341	cas_spare_free(cp);
4342	cas_free_rxds(cp);
4343	cas_tx_tiny_free(cp);
4344	mutex_unlock(&cp->pm_mutex);
4345	return 0;
4346}
4347
4348static struct {
4349	const char name[ETH_GSTRING_LEN];
4350} ethtool_cassini_statnames[] = {
4351	{"collisions"},
4352	{"rx_bytes"},
4353	{"rx_crc_errors"},
4354	{"rx_dropped"},
4355	{"rx_errors"},
4356	{"rx_fifo_errors"},
4357	{"rx_frame_errors"},
4358	{"rx_length_errors"},
4359	{"rx_over_errors"},
4360	{"rx_packets"},
4361	{"tx_aborted_errors"},
4362	{"tx_bytes"},
4363	{"tx_dropped"},
4364	{"tx_errors"},
4365	{"tx_fifo_errors"},
4366	{"tx_packets"}
4367};
4368#define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4369
4370static struct {
4371	const int offsets;	/* neg. values for 2nd arg to cas_read_phy */
4372} ethtool_register_table[] = {
4373	{-MII_BMSR},
4374	{-MII_BMCR},
4375	{REG_CAWR},
4376	{REG_INF_BURST},
4377	{REG_BIM_CFG},
4378	{REG_RX_CFG},
4379	{REG_HP_CFG},
4380	{REG_MAC_TX_CFG},
4381	{REG_MAC_RX_CFG},
4382	{REG_MAC_CTRL_CFG},
4383	{REG_MAC_XIF_CFG},
4384	{REG_MIF_CFG},
4385	{REG_PCS_CFG},
4386	{REG_SATURN_PCFG},
4387	{REG_PCS_MII_STATUS},
4388	{REG_PCS_STATE_MACHINE},
4389	{REG_MAC_COLL_EXCESS},
4390	{REG_MAC_COLL_LATE}
4391};
4392#define CAS_REG_LEN 	ARRAY_SIZE(ethtool_register_table)
4393#define CAS_MAX_REGS 	(sizeof (u32)*CAS_REG_LEN)
4394
4395static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4396{
4397	u8 *p;
4398	int i;
4399	unsigned long flags;
4400
4401	spin_lock_irqsave(&cp->lock, flags);
4402	for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4403		u16 hval;
4404		u32 val;
4405		if (ethtool_register_table[i].offsets < 0) {
4406			hval = cas_phy_read(cp,
4407				    -ethtool_register_table[i].offsets);
4408			val = hval;
4409		} else {
4410			val= readl(cp->regs+ethtool_register_table[i].offsets);
4411		}
4412		memcpy(p, (u8 *)&val, sizeof(u32));
4413	}
4414	spin_unlock_irqrestore(&cp->lock, flags);
4415}
4416
4417static struct net_device_stats *cas_get_stats(struct net_device *dev)
4418{
4419	struct cas *cp = netdev_priv(dev);
4420	struct net_device_stats *stats = cp->net_stats;
4421	unsigned long flags;
4422	int i;
4423	unsigned long tmp;
4424
4425	/* we collate all of the stats into net_stats[N_TX_RING] */
4426	if (!cp->hw_running)
4427		return stats + N_TX_RINGS;
4428
4429	/* collect outstanding stats */
4430	/* WTZ: the Cassini spec gives these as 16 bit counters but
4431	 * stored in 32-bit words.  Added a mask of 0xffff to be safe,
4432	 * in case the chip somehow puts any garbage in the other bits.
4433	 * Also, counter usage didn't seem to mach what Adrian did
4434	 * in the parts of the code that set these quantities. Made
4435	 * that consistent.
4436	 */
4437	spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4438	stats[N_TX_RINGS].rx_crc_errors +=
4439	  readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4440	stats[N_TX_RINGS].rx_frame_errors +=
4441		readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4442	stats[N_TX_RINGS].rx_length_errors +=
4443		readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4444#if 1
4445	tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4446		(readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4447	stats[N_TX_RINGS].tx_aborted_errors += tmp;
4448	stats[N_TX_RINGS].collisions +=
4449	  tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4450#else
4451	stats[N_TX_RINGS].tx_aborted_errors +=
4452		readl(cp->regs + REG_MAC_COLL_EXCESS);
4453	stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4454		readl(cp->regs + REG_MAC_COLL_LATE);
4455#endif
4456	cas_clear_mac_err(cp);
4457
4458	/* saved bits that are unique to ring 0 */
4459	spin_lock(&cp->stat_lock[0]);
4460	stats[N_TX_RINGS].collisions        += stats[0].collisions;
4461	stats[N_TX_RINGS].rx_over_errors    += stats[0].rx_over_errors;
4462	stats[N_TX_RINGS].rx_frame_errors   += stats[0].rx_frame_errors;
4463	stats[N_TX_RINGS].rx_fifo_errors    += stats[0].rx_fifo_errors;
4464	stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4465	stats[N_TX_RINGS].tx_fifo_errors    += stats[0].tx_fifo_errors;
4466	spin_unlock(&cp->stat_lock[0]);
4467
4468	for (i = 0; i < N_TX_RINGS; i++) {
4469		spin_lock(&cp->stat_lock[i]);
4470		stats[N_TX_RINGS].rx_length_errors +=
4471			stats[i].rx_length_errors;
4472		stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4473		stats[N_TX_RINGS].rx_packets    += stats[i].rx_packets;
4474		stats[N_TX_RINGS].tx_packets    += stats[i].tx_packets;
4475		stats[N_TX_RINGS].rx_bytes      += stats[i].rx_bytes;
4476		stats[N_TX_RINGS].tx_bytes      += stats[i].tx_bytes;
4477		stats[N_TX_RINGS].rx_errors     += stats[i].rx_errors;
4478		stats[N_TX_RINGS].tx_errors     += stats[i].tx_errors;
4479		stats[N_TX_RINGS].rx_dropped    += stats[i].rx_dropped;
4480		stats[N_TX_RINGS].tx_dropped    += stats[i].tx_dropped;
4481		memset(stats + i, 0, sizeof(struct net_device_stats));
4482		spin_unlock(&cp->stat_lock[i]);
4483	}
4484	spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4485	return stats + N_TX_RINGS;
4486}
4487
4488
4489static void cas_set_multicast(struct net_device *dev)
4490{
4491	struct cas *cp = netdev_priv(dev);
4492	u32 rxcfg, rxcfg_new;
4493	unsigned long flags;
4494	int limit = STOP_TRIES;
4495
4496	if (!cp->hw_running)
4497		return;
4498
4499	spin_lock_irqsave(&cp->lock, flags);
4500	rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4501
4502	/* disable RX MAC and wait for completion */
4503	writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4504	while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4505		if (!limit--)
4506			break;
4507		udelay(10);
4508	}
4509
4510	/* disable hash filter and wait for completion */
4511	limit = STOP_TRIES;
4512	rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4513	writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4514	while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4515		if (!limit--)
4516			break;
4517		udelay(10);
4518	}
4519
4520	/* program hash filters */
4521	cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4522	rxcfg |= rxcfg_new;
4523	writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4524	spin_unlock_irqrestore(&cp->lock, flags);
4525}
4526
4527static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4528{
4529	struct cas *cp = netdev_priv(dev);
4530	strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
4531	strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
4532	strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
4533	info->regdump_len = cp->casreg_len < CAS_MAX_REGS ?
4534		cp->casreg_len : CAS_MAX_REGS;
4535	info->n_stats = CAS_NUM_STAT_KEYS;
4536}
4537
4538static int cas_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4539{
4540	struct cas *cp = netdev_priv(dev);
4541	u16 bmcr;
4542	int full_duplex, speed, pause;
4543	unsigned long flags;
4544	enum link_state linkstate = link_up;
4545
4546	cmd->advertising = 0;
4547	cmd->supported = SUPPORTED_Autoneg;
4548	if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4549		cmd->supported |= SUPPORTED_1000baseT_Full;
4550		cmd->advertising |= ADVERTISED_1000baseT_Full;
4551	}
4552
4553	/* Record PHY settings if HW is on. */
4554	spin_lock_irqsave(&cp->lock, flags);
4555	bmcr = 0;
4556	linkstate = cp->lstate;
4557	if (CAS_PHY_MII(cp->phy_type)) {
4558		cmd->port = PORT_MII;
4559		cmd->transceiver = (cp->cas_flags & CAS_FLAG_SATURN) ?
4560			XCVR_INTERNAL : XCVR_EXTERNAL;
4561		cmd->phy_address = cp->phy_addr;
4562		cmd->advertising |= ADVERTISED_TP | ADVERTISED_MII |
4563			ADVERTISED_10baseT_Half |
4564			ADVERTISED_10baseT_Full |
4565			ADVERTISED_100baseT_Half |
4566			ADVERTISED_100baseT_Full;
4567
4568		cmd->supported |=
4569			(SUPPORTED_10baseT_Half |
4570			 SUPPORTED_10baseT_Full |
4571			 SUPPORTED_100baseT_Half |
4572			 SUPPORTED_100baseT_Full |
4573			 SUPPORTED_TP | SUPPORTED_MII);
4574
4575		if (cp->hw_running) {
4576			cas_mif_poll(cp, 0);
4577			bmcr = cas_phy_read(cp, MII_BMCR);
4578			cas_read_mii_link_mode(cp, &full_duplex,
4579					       &speed, &pause);
4580			cas_mif_poll(cp, 1);
4581		}
4582
4583	} else {
4584		cmd->port = PORT_FIBRE;
4585		cmd->transceiver = XCVR_INTERNAL;
4586		cmd->phy_address = 0;
4587		cmd->supported   |= SUPPORTED_FIBRE;
4588		cmd->advertising |= ADVERTISED_FIBRE;
4589
4590		if (cp->hw_running) {
4591			/* pcs uses the same bits as mii */
4592			bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4593			cas_read_pcs_link_mode(cp, &full_duplex,
4594					       &speed, &pause);
4595		}
4596	}
4597	spin_unlock_irqrestore(&cp->lock, flags);
4598
4599	if (bmcr & BMCR_ANENABLE) {
4600		cmd->advertising |= ADVERTISED_Autoneg;
4601		cmd->autoneg = AUTONEG_ENABLE;
4602		ethtool_cmd_speed_set(cmd, ((speed == 10) ?
4603					    SPEED_10 :
4604					    ((speed == 1000) ?
4605					     SPEED_1000 : SPEED_100)));
4606		cmd->duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4607	} else {
4608		cmd->autoneg = AUTONEG_DISABLE;
4609		ethtool_cmd_speed_set(cmd, ((bmcr & CAS_BMCR_SPEED1000) ?
4610					    SPEED_1000 :
4611					    ((bmcr & BMCR_SPEED100) ?
4612					     SPEED_100 : SPEED_10)));
4613		cmd->duplex =
4614			(bmcr & BMCR_FULLDPLX) ?
4615			DUPLEX_FULL : DUPLEX_HALF;
4616	}
4617	if (linkstate != link_up) {
4618		/* Force these to "unknown" if the link is not up and
4619		 * autonogotiation in enabled. We can set the link
4620		 * speed to 0, but not cmd->duplex,
4621		 * because its legal values are 0 and 1.  Ethtool will
4622		 * print the value reported in parentheses after the
4623		 * word "Unknown" for unrecognized values.
4624		 *
4625		 * If in forced mode, we report the speed and duplex
4626		 * settings that we configured.
4627		 */
4628		if (cp->link_cntl & BMCR_ANENABLE) {
4629			ethtool_cmd_speed_set(cmd, 0);
4630			cmd->duplex = 0xff;
4631		} else {
4632			ethtool_cmd_speed_set(cmd, SPEED_10);
4633			if (cp->link_cntl & BMCR_SPEED100) {
4634				ethtool_cmd_speed_set(cmd, SPEED_100);
4635			} else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4636				ethtool_cmd_speed_set(cmd, SPEED_1000);
4637			}
4638			cmd->duplex = (cp->link_cntl & BMCR_FULLDPLX)?
4639				DUPLEX_FULL : DUPLEX_HALF;
4640		}
4641	}
4642	return 0;
4643}
4644
4645static int cas_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4646{
4647	struct cas *cp = netdev_priv(dev);
4648	unsigned long flags;
4649	u32 speed = ethtool_cmd_speed(cmd);
4650
4651	/* Verify the settings we care about. */
4652	if (cmd->autoneg != AUTONEG_ENABLE &&
4653	    cmd->autoneg != AUTONEG_DISABLE)
4654		return -EINVAL;
4655
4656	if (cmd->autoneg == AUTONEG_DISABLE &&
4657	    ((speed != SPEED_1000 &&
4658	      speed != SPEED_100 &&
4659	      speed != SPEED_10) ||
4660	     (cmd->duplex != DUPLEX_HALF &&
4661	      cmd->duplex != DUPLEX_FULL)))
4662		return -EINVAL;
4663
4664	/* Apply settings and restart link process. */
4665	spin_lock_irqsave(&cp->lock, flags);
4666	cas_begin_auto_negotiation(cp, cmd);
4667	spin_unlock_irqrestore(&cp->lock, flags);
4668	return 0;
4669}
4670
4671static int cas_nway_reset(struct net_device *dev)
4672{
4673	struct cas *cp = netdev_priv(dev);
4674	unsigned long flags;
4675
4676	if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4677		return -EINVAL;
4678
4679	/* Restart link process. */
4680	spin_lock_irqsave(&cp->lock, flags);
4681	cas_begin_auto_negotiation(cp, NULL);
4682	spin_unlock_irqrestore(&cp->lock, flags);
4683
4684	return 0;
4685}
4686
4687static u32 cas_get_link(struct net_device *dev)
4688{
4689	struct cas *cp = netdev_priv(dev);
4690	return cp->lstate == link_up;
4691}
4692
4693static u32 cas_get_msglevel(struct net_device *dev)
4694{
4695	struct cas *cp = netdev_priv(dev);
4696	return cp->msg_enable;
4697}
4698
4699static void cas_set_msglevel(struct net_device *dev, u32 value)
4700{
4701	struct cas *cp = netdev_priv(dev);
4702	cp->msg_enable = value;
4703}
4704
4705static int cas_get_regs_len(struct net_device *dev)
4706{
4707	struct cas *cp = netdev_priv(dev);
4708	return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS;
4709}
4710
4711static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4712			     void *p)
4713{
4714	struct cas *cp = netdev_priv(dev);
4715	regs->version = 0;
4716	/* cas_read_regs handles locks (cp->lock).  */
4717	cas_read_regs(cp, p, regs->len / sizeof(u32));
4718}
4719
4720static int cas_get_sset_count(struct net_device *dev, int sset)
4721{
4722	switch (sset) {
4723	case ETH_SS_STATS:
4724		return CAS_NUM_STAT_KEYS;
4725	default:
4726		return -EOPNOTSUPP;
4727	}
4728}
4729
4730static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4731{
4732	 memcpy(data, &ethtool_cassini_statnames,
4733					 CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4734}
4735
4736static void cas_get_ethtool_stats(struct net_device *dev,
4737				      struct ethtool_stats *estats, u64 *data)
4738{
4739	struct cas *cp = netdev_priv(dev);
4740	struct net_device_stats *stats = cas_get_stats(cp->dev);
4741	int i = 0;
4742	data[i++] = stats->collisions;
4743	data[i++] = stats->rx_bytes;
4744	data[i++] = stats->rx_crc_errors;
4745	data[i++] = stats->rx_dropped;
4746	data[i++] = stats->rx_errors;
4747	data[i++] = stats->rx_fifo_errors;
4748	data[i++] = stats->rx_frame_errors;
4749	data[i++] = stats->rx_length_errors;
4750	data[i++] = stats->rx_over_errors;
4751	data[i++] = stats->rx_packets;
4752	data[i++] = stats->tx_aborted_errors;
4753	data[i++] = stats->tx_bytes;
4754	data[i++] = stats->tx_dropped;
4755	data[i++] = stats->tx_errors;
4756	data[i++] = stats->tx_fifo_errors;
4757	data[i++] = stats->tx_packets;
4758	BUG_ON(i != CAS_NUM_STAT_KEYS);
4759}
4760
4761static const struct ethtool_ops cas_ethtool_ops = {
4762	.get_drvinfo		= cas_get_drvinfo,
4763	.get_settings		= cas_get_settings,
4764	.set_settings		= cas_set_settings,
4765	.nway_reset		= cas_nway_reset,
4766	.get_link		= cas_get_link,
4767	.get_msglevel		= cas_get_msglevel,
4768	.set_msglevel		= cas_set_msglevel,
4769	.get_regs_len		= cas_get_regs_len,
4770	.get_regs		= cas_get_regs,
4771	.get_sset_count		= cas_get_sset_count,
4772	.get_strings		= cas_get_strings,
4773	.get_ethtool_stats	= cas_get_ethtool_stats,
4774};
4775
4776static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4777{
4778	struct cas *cp = netdev_priv(dev);
4779	struct mii_ioctl_data *data = if_mii(ifr);
4780	unsigned long flags;
4781	int rc = -EOPNOTSUPP;
4782
4783	/* Hold the PM mutex while doing ioctl's or we may collide
4784	 * with open/close and power management and oops.
4785	 */
4786	mutex_lock(&cp->pm_mutex);
4787	switch (cmd) {
4788	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
4789		data->phy_id = cp->phy_addr;
4790		/* Fallthrough... */
4791
4792	case SIOCGMIIREG:		/* Read MII PHY register. */
4793		spin_lock_irqsave(&cp->lock, flags);
4794		cas_mif_poll(cp, 0);
4795		data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4796		cas_mif_poll(cp, 1);
4797		spin_unlock_irqrestore(&cp->lock, flags);
4798		rc = 0;
4799		break;
4800
4801	case SIOCSMIIREG:		/* Write MII PHY register. */
4802		spin_lock_irqsave(&cp->lock, flags);
4803		cas_mif_poll(cp, 0);
4804		rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4805		cas_mif_poll(cp, 1);
4806		spin_unlock_irqrestore(&cp->lock, flags);
4807		break;
4808	default:
4809		break;
4810	}
4811
4812	mutex_unlock(&cp->pm_mutex);
4813	return rc;
4814}
4815
4816/* When this chip sits underneath an Intel 31154 bridge, it is the
4817 * only subordinate device and we can tweak the bridge settings to
4818 * reflect that fact.
4819 */
4820static void cas_program_bridge(struct pci_dev *cas_pdev)
4821{
4822	struct pci_dev *pdev = cas_pdev->bus->self;
4823	u32 val;
4824
4825	if (!pdev)
4826		return;
4827
4828	if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
4829		return;
4830
4831	/* Clear bit 10 (Bus Parking Control) in the Secondary
4832	 * Arbiter Control/Status Register which lives at offset
4833	 * 0x41.  Using a 32-bit word read/modify/write at 0x40
4834	 * is much simpler so that's how we do this.
4835	 */
4836	pci_read_config_dword(pdev, 0x40, &val);
4837	val &= ~0x00040000;
4838	pci_write_config_dword(pdev, 0x40, val);
4839
4840	/* Max out the Multi-Transaction Timer settings since
4841	 * Cassini is the only device present.
4842	 *
4843	 * The register is 16-bit and lives at 0x50.  When the
4844	 * settings are enabled, it extends the GRANT# signal
4845	 * for a requestor after a transaction is complete.  This
4846	 * allows the next request to run without first needing
4847	 * to negotiate the GRANT# signal back.
4848	 *
4849	 * Bits 12:10 define the grant duration:
4850	 *
4851	 *	1	--	16 clocks
4852	 *	2	--	32 clocks
4853	 *	3	--	64 clocks
4854	 *	4	--	128 clocks
4855	 *	5	--	256 clocks
4856	 *
4857	 * All other values are illegal.
4858	 *
4859	 * Bits 09:00 define which REQ/GNT signal pairs get the
4860	 * GRANT# signal treatment.  We set them all.
4861	 */
4862	pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
4863
4864	/* The Read Prefecth Policy register is 16-bit and sits at
4865	 * offset 0x52.  It enables a "smart" pre-fetch policy.  We
4866	 * enable it and max out all of the settings since only one
4867	 * device is sitting underneath and thus bandwidth sharing is
4868	 * not an issue.
4869	 *
4870	 * The register has several 3 bit fields, which indicates a
4871	 * multiplier applied to the base amount of prefetching the
4872	 * chip would do.  These fields are at:
4873	 *
4874	 *	15:13	---	ReRead Primary Bus
4875	 *	12:10	---	FirstRead Primary Bus
4876	 *	09:07	---	ReRead Secondary Bus
4877	 *	06:04	---	FirstRead Secondary Bus
4878	 *
4879	 * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4880	 * get enabled on.  Bit 3 is a grouped enabler which controls
4881	 * all of the REQ/GNT pairs from [8:3].  Bits 2 to 0 control
4882	 * the individual REQ/GNT pairs [2:0].
4883	 */
4884	pci_write_config_word(pdev, 0x52,
4885			      (0x7 << 13) |
4886			      (0x7 << 10) |
4887			      (0x7 <<  7) |
4888			      (0x7 <<  4) |
4889			      (0xf <<  0));
4890
4891	/* Force cacheline size to 0x8 */
4892	pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
4893
4894	/* Force latency timer to maximum setting so Cassini can
4895	 * sit on the bus as long as it likes.
4896	 */
4897	pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
4898}
4899
4900static const struct net_device_ops cas_netdev_ops = {
4901	.ndo_open		= cas_open,
4902	.ndo_stop		= cas_close,
4903	.ndo_start_xmit		= cas_start_xmit,
4904	.ndo_get_stats 		= cas_get_stats,
4905	.ndo_set_rx_mode	= cas_set_multicast,
4906	.ndo_do_ioctl		= cas_ioctl,
4907	.ndo_tx_timeout		= cas_tx_timeout,
4908	.ndo_change_mtu		= cas_change_mtu,
4909	.ndo_set_mac_address	= eth_mac_addr,
4910	.ndo_validate_addr	= eth_validate_addr,
4911#ifdef CONFIG_NET_POLL_CONTROLLER
4912	.ndo_poll_controller	= cas_netpoll,
4913#endif
4914};
4915
4916static int cas_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4917{
4918	static int cas_version_printed = 0;
4919	unsigned long casreg_len;
4920	struct net_device *dev;
4921	struct cas *cp;
4922	int i, err, pci_using_dac;
4923	u16 pci_cmd;
4924	u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4925
4926	if (cas_version_printed++ == 0)
4927		pr_info("%s", version);
4928
4929	err = pci_enable_device(pdev);
4930	if (err) {
4931		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
4932		return err;
4933	}
4934
4935	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4936		dev_err(&pdev->dev, "Cannot find proper PCI device "
4937		       "base address, aborting\n");
4938		err = -ENODEV;
4939		goto err_out_disable_pdev;
4940	}
4941
4942	dev = alloc_etherdev(sizeof(*cp));
4943	if (!dev) {
4944		err = -ENOMEM;
4945		goto err_out_disable_pdev;
4946	}
4947	SET_NETDEV_DEV(dev, &pdev->dev);
4948
4949	err = pci_request_regions(pdev, dev->name);
4950	if (err) {
4951		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
4952		goto err_out_free_netdev;
4953	}
4954	pci_set_master(pdev);
4955
4956	/* we must always turn on parity response or else parity
4957	 * doesn't get generated properly. disable SERR/PERR as well.
4958	 * in addition, we want to turn MWI on.
4959	 */
4960	pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4961	pci_cmd &= ~PCI_COMMAND_SERR;
4962	pci_cmd |= PCI_COMMAND_PARITY;
4963	pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
4964	if (pci_try_set_mwi(pdev))
4965		pr_warn("Could not enable MWI for %s\n", pci_name(pdev));
4966
4967	cas_program_bridge(pdev);
4968
4969	/*
4970	 * On some architectures, the default cache line size set
4971	 * by pci_try_set_mwi reduces perforamnce.  We have to increase
4972	 * it for this case.  To start, we'll print some configuration
4973	 * data.
4974	 */
4975#if 1
4976	pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4977			     &orig_cacheline_size);
4978	if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
4979		cas_cacheline_size =
4980			(CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
4981			CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
4982		if (pci_write_config_byte(pdev,
4983					  PCI_CACHE_LINE_SIZE,
4984					  cas_cacheline_size)) {
4985			dev_err(&pdev->dev, "Could not set PCI cache "
4986			       "line size\n");
4987			goto err_write_cacheline;
4988		}
4989	}
4990#endif
4991
4992
4993	/* Configure DMA attributes. */
4994	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4995		pci_using_dac = 1;
4996		err = pci_set_consistent_dma_mask(pdev,
4997						  DMA_BIT_MASK(64));
4998		if (err < 0) {
4999			dev_err(&pdev->dev, "Unable to obtain 64-bit DMA "
5000			       "for consistent allocations\n");
5001			goto err_out_free_res;
5002		}
5003
5004	} else {
5005		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5006		if (err) {
5007			dev_err(&pdev->dev, "No usable DMA configuration, "
5008			       "aborting\n");
5009			goto err_out_free_res;
5010		}
5011		pci_using_dac = 0;
5012	}
5013
5014	casreg_len = pci_resource_len(pdev, 0);
5015
5016	cp = netdev_priv(dev);
5017	cp->pdev = pdev;
5018#if 1
5019	/* A value of 0 indicates we never explicitly set it */
5020	cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
5021#endif
5022	cp->dev = dev;
5023	cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
5024	  cassini_debug;
5025
5026#if defined(CONFIG_SPARC)
5027	cp->of_node = pci_device_to_OF_node(pdev);
5028#endif
5029
5030	cp->link_transition = LINK_TRANSITION_UNKNOWN;
5031	cp->link_transition_jiffies_valid = 0;
5032
5033	spin_lock_init(&cp->lock);
5034	spin_lock_init(&cp->rx_inuse_lock);
5035	spin_lock_init(&cp->rx_spare_lock);
5036	for (i = 0; i < N_TX_RINGS; i++) {
5037		spin_lock_init(&cp->stat_lock[i]);
5038		spin_lock_init(&cp->tx_lock[i]);
5039	}
5040	spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
5041	mutex_init(&cp->pm_mutex);
5042
5043	init_timer(&cp->link_timer);
5044	cp->link_timer.function = cas_link_timer;
5045	cp->link_timer.data = (unsigned long) cp;
5046
5047#if 1
5048	/* Just in case the implementation of atomic operations
5049	 * change so that an explicit initialization is necessary.
5050	 */
5051	atomic_set(&cp->reset_task_pending, 0);
5052	atomic_set(&cp->reset_task_pending_all, 0);
5053	atomic_set(&cp->reset_task_pending_spare, 0);
5054	atomic_set(&cp->reset_task_pending_mtu, 0);
5055#endif
5056	INIT_WORK(&cp->reset_task, cas_reset_task);
5057
5058	/* Default link parameters */
5059	if (link_mode >= 0 && link_mode < 6)
5060		cp->link_cntl = link_modes[link_mode];
5061	else
5062		cp->link_cntl = BMCR_ANENABLE;
5063	cp->lstate = link_down;
5064	cp->link_transition = LINK_TRANSITION_LINK_DOWN;
5065	netif_carrier_off(cp->dev);
5066	cp->timer_ticks = 0;
5067
5068	/* give us access to cassini registers */
5069	cp->regs = pci_iomap(pdev, 0, casreg_len);
5070	if (!cp->regs) {
5071		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5072		goto err_out_free_res;
5073	}
5074	cp->casreg_len = casreg_len;
5075
5076	pci_save_state(pdev);
5077	cas_check_pci_invariants(cp);
5078	cas_hard_reset(cp);
5079	cas_reset(cp, 0);
5080	if (cas_check_invariants(cp))
5081		goto err_out_iounmap;
5082	if (cp->cas_flags & CAS_FLAG_SATURN)
5083		cas_saturn_firmware_init(cp);
5084
5085	cp->init_block = (struct cas_init_block *)
5086		pci_alloc_consistent(pdev, sizeof(struct cas_init_block),
5087				     &cp->block_dvma);
5088	if (!cp->init_block) {
5089		dev_err(&pdev->dev, "Cannot allocate init block, aborting\n");
5090		goto err_out_iounmap;
5091	}
5092
5093	for (i = 0; i < N_TX_RINGS; i++)
5094		cp->init_txds[i] = cp->init_block->txds[i];
5095
5096	for (i = 0; i < N_RX_DESC_RINGS; i++)
5097		cp->init_rxds[i] = cp->init_block->rxds[i];
5098
5099	for (i = 0; i < N_RX_COMP_RINGS; i++)
5100		cp->init_rxcs[i] = cp->init_block->rxcs[i];
5101
5102	for (i = 0; i < N_RX_FLOWS; i++)
5103		skb_queue_head_init(&cp->rx_flows[i]);
5104
5105	dev->netdev_ops = &cas_netdev_ops;
5106	dev->ethtool_ops = &cas_ethtool_ops;
5107	dev->watchdog_timeo = CAS_TX_TIMEOUT;
5108
5109#ifdef USE_NAPI
5110	netif_napi_add(dev, &cp->napi, cas_poll, 64);
5111#endif
5112	dev->irq = pdev->irq;
5113	dev->dma = 0;
5114
5115	/* Cassini features. */
5116	if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5117		dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5118
5119	if (pci_using_dac)
5120		dev->features |= NETIF_F_HIGHDMA;
5121
5122	if (register_netdev(dev)) {
5123		dev_err(&pdev->dev, "Cannot register net device, aborting\n");
5124		goto err_out_free_consistent;
5125	}
5126
5127	i = readl(cp->regs + REG_BIM_CFG);
5128	netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n",
5129		    (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5130		    (i & BIM_CFG_32BIT) ? "32" : "64",
5131		    (i & BIM_CFG_66MHZ) ? "66" : "33",
5132		    (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
5133		    dev->dev_addr);
5134
5135	pci_set_drvdata(pdev, dev);
5136	cp->hw_running = 1;
5137	cas_entropy_reset(cp);
5138	cas_phy_init(cp);
5139	cas_begin_auto_negotiation(cp, NULL);
5140	return 0;
5141
5142err_out_free_consistent:
5143	pci_free_consistent(pdev, sizeof(struct cas_init_block),
5144			    cp->init_block, cp->block_dvma);
5145
5146err_out_iounmap:
5147	mutex_lock(&cp->pm_mutex);
5148	if (cp->hw_running)
5149		cas_shutdown(cp);
5150	mutex_unlock(&cp->pm_mutex);
5151
5152	pci_iounmap(pdev, cp->regs);
5153
5154
5155err_out_free_res:
5156	pci_release_regions(pdev);
5157
5158err_write_cacheline:
5159	/* Try to restore it in case the error occurred after we
5160	 * set it.
5161	 */
5162	pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5163
5164err_out_free_netdev:
5165	free_netdev(dev);
5166
5167err_out_disable_pdev:
5168	pci_disable_device(pdev);
5169	return -ENODEV;
5170}
5171
5172static void cas_remove_one(struct pci_dev *pdev)
5173{
5174	struct net_device *dev = pci_get_drvdata(pdev);
5175	struct cas *cp;
5176	if (!dev)
5177		return;
5178
5179	cp = netdev_priv(dev);
5180	unregister_netdev(dev);
5181
5182	vfree(cp->fw_data);
5183
5184	mutex_lock(&cp->pm_mutex);
5185	cancel_work_sync(&cp->reset_task);
5186	if (cp->hw_running)
5187		cas_shutdown(cp);
5188	mutex_unlock(&cp->pm_mutex);
5189
5190#if 1
5191	if (cp->orig_cacheline_size) {
5192		/* Restore the cache line size if we had modified
5193		 * it.
5194		 */
5195		pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5196				      cp->orig_cacheline_size);
5197	}
5198#endif
5199	pci_free_consistent(pdev, sizeof(struct cas_init_block),
5200			    cp->init_block, cp->block_dvma);
5201	pci_iounmap(pdev, cp->regs);
5202	free_netdev(dev);
5203	pci_release_regions(pdev);
5204	pci_disable_device(pdev);
5205}
5206
5207#ifdef CONFIG_PM
5208static int cas_suspend(struct pci_dev *pdev, pm_message_t state)
5209{
5210	struct net_device *dev = pci_get_drvdata(pdev);
5211	struct cas *cp = netdev_priv(dev);
5212	unsigned long flags;
5213
5214	mutex_lock(&cp->pm_mutex);
5215
5216	/* If the driver is opened, we stop the DMA */
5217	if (cp->opened) {
5218		netif_device_detach(dev);
5219
5220		cas_lock_all_save(cp, flags);
5221
5222		/* We can set the second arg of cas_reset to 0
5223		 * because on resume, we'll call cas_init_hw with
5224		 * its second arg set so that autonegotiation is
5225		 * restarted.
5226		 */
5227		cas_reset(cp, 0);
5228		cas_clean_rings(cp);
5229		cas_unlock_all_restore(cp, flags);
5230	}
5231
5232	if (cp->hw_running)
5233		cas_shutdown(cp);
5234	mutex_unlock(&cp->pm_mutex);
5235
5236	return 0;
5237}
5238
5239static int cas_resume(struct pci_dev *pdev)
5240{
5241	struct net_device *dev = pci_get_drvdata(pdev);
5242	struct cas *cp = netdev_priv(dev);
5243
5244	netdev_info(dev, "resuming\n");
5245
5246	mutex_lock(&cp->pm_mutex);
5247	cas_hard_reset(cp);
5248	if (cp->opened) {
5249		unsigned long flags;
5250		cas_lock_all_save(cp, flags);
5251		cas_reset(cp, 0);
5252		cp->hw_running = 1;
5253		cas_clean_rings(cp);
5254		cas_init_hw(cp, 1);
5255		cas_unlock_all_restore(cp, flags);
5256
5257		netif_device_attach(dev);
5258	}
5259	mutex_unlock(&cp->pm_mutex);
5260	return 0;
5261}
5262#endif /* CONFIG_PM */
5263
5264static struct pci_driver cas_driver = {
5265	.name		= DRV_MODULE_NAME,
5266	.id_table	= cas_pci_tbl,
5267	.probe		= cas_init_one,
5268	.remove		= cas_remove_one,
5269#ifdef CONFIG_PM
5270	.suspend	= cas_suspend,
5271	.resume		= cas_resume
5272#endif
5273};
5274
5275static int __init cas_init(void)
5276{
5277	if (linkdown_timeout > 0)
5278		link_transition_timeout = linkdown_timeout * HZ;
5279	else
5280		link_transition_timeout = 0;
5281
5282	return pci_register_driver(&cas_driver);
5283}
5284
5285static void __exit cas_cleanup(void)
5286{
5287	pci_unregister_driver(&cas_driver);
5288}
5289
5290module_init(cas_init);
5291module_exit(cas_cleanup);
5292